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Preface to the Dover Edition 

We are pleased and honored to see the re-issue of the second edition of our Introduc-
tion to Biostatistics by Dover Publications. On reviewing the copy, we find there 
is little in it that needs changing for an introductory textbook of biostatistics for an 
advanced undergraduate or beginning graduate student. The book furnishes an intro-
duction to most of the statistical topics such students are likely to encounter in their 
courses and readings in the biological and biomedical sciences. 

The reader may wonder what we would change if we were to write this book anew. 
Because of the vast changes that have taken place in modalities of computation in the 
last twenty years, we would deemphasize computational formulas that were designed 
for pre-computer desk calculators (an age before spreadsheets and comprehensive 
statistical computer programs) and refocus the reader's attention to structural for-
mulas that not only explain the nature of a given statistic, but are also less prone to 
rounding error in calculations performed by computers. In this spirit, we would omit 
the equation (3.8) on page 39 and draw the readers' attention to equation (3.7) instead. 
Similarly, we would use structural formulas in Boxes 3.1 and 3.2 on pages 41 and 42, 
respectively; on page 161 and in Box 8.1 on pages 163/164, as well as in Box 12.1 
on pages 278/279. 

Secondly, we would put more emphasis on permutation tests and resampling methods. 
Permutation tests and bootstrap estimates are now quite practical. We have found this 
approach to be not only easier for students to understand but in many cases preferable 
to the traditional parametric methods that are emphasized in this book. 

Robert R. Sokal 
F. James Rohlf 

November 2008 



Preface 

The favorable reception that the first edit ion of this book received f rom teachers 
and s tudents encouraged us to prepare a second edition. In this revised edit ion, 
we provide a t ho rough foundat ion in biological statistics for the unde rg radua te 
student who has a minimal knowledge of mathemat ics . We intend Introduction 
to Biostatistics to be used in comprehensive biostatistics courses, but it can also 
be adap ted for short courses in medical and professional schools; thus, we 
include examples f rom the health-related sciences. 

We have extracted most of this text f rom the more-inclusive second edition 
of our own Biometry. W e believe that the proven pedagogic features of that 
book, such as its informal style, will be valuable here. 

We have modified some of the features f rom Biometry, for example, in 
Introduction to Biostatistics we provide detailed outlines for statistical compu-
tat ions but we place less emphasis on the computa t ions themselves. Why? 
Students in many unde rg radua te courses are not motivated to and have few 
opportuni t ies to perform lengthy computa t ions with biological research ma-
terial; also, such computa t ions can easily be made on electronic calculators 
and microcomputers . Thus, we rely on the course instructor to advise s tudents 
on the best computa t iona l procedures to follow. 

We present material in a sequence that progresses from descriptive statistics 
to fundamenta l d is t r ibut ions and the testing of elementary statistical hypotheses; 
we (hen proceed immediately to the analysis of variance and the familiar t test 
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(which is t reated as a special case of the analysis of variance and relegated to 
several sections of the book). W e do this deliberately for two reasons: (1) since 
today 's biologists all need a tho rough founda t ion in the analysis of variance, 
s tudents should become acquain ted with the subject early in the course; and (2) 
if analysis of variance is unders tood early, the need to use the f dis t r ibut ion is 
reduced. (One would still want to use it for the setting of confidence limits and 
in a few other special situations.) All t tests can be carried out directly as anal-
yses of variance, and the a m o u n t of compu ta t ion of these analyses of variance 
is generally equivalent to that of t tests. 

This larger second edit ion includes the Kolgorov-Smirnov two-sample test, 
nonpa rame t r i c regression, stem-and-leaf d iagrams, hanging his tograms, and the 
Bonferroni me thod of mult iple compar isons . We have rewritten the chapte r on 
the analysis of frequencies in terms of the G statistic ra ther than χ 2 , because the 
former has been shown to have more desirable statistical properties. Also, be-
cause of the availability of logar i thm funct ions on calculators, the compu ta t i on 
of the G statistic is now easier than that of the earlier chi-square test. Thus , we 
reorient the chapte r to emphas ize log-l ikeiihood-rat io tests. We have also added 
new homework exercises. 

We call special, doub le -numbered tables "boxes." They can be used as con-
venient guides for compu ta t i on because they show the computa t iona l me thods 
for solving various types of biostatistical problems. They usually con ta in all 
the steps necessary to solve a p r o b l e m — f r o m the initial setup to the final result. 
Thus , s tudents familiar with material in the book can use them as quick sum-
mary reminders of a technique. 

We found in teaching this course that we wanted s tudents to be able to 
refer to the material now in these boxes. We discovered that we could not cover 
even half as much of our subject if we had to put this material on the black-
board dur ing the lecture, and so we made up and distributed boxe^ and asked 
s tudents to refer to them dur ing the lecture. Ins t ructors who use this book may 
wish to use the boxes in a similar manner . 

We emphasize the practical appl icat ions of statistics to biology in this book; 
thus, we deliberately keep discussions of statistical theory to a min imum. De-
rivations are given for some formulas , but these arc consigned to Appendix Al , 
where they should be studied and reworked by the student. Statistical tables 
to which the reader can refer when work ing th rough the methods discussed in 
this book are found in Appendix A2. 

We are grateful to K.. R. Gabriel , R. C. Lewontin, and M. K a b a y for their 
extensive commen t s on the second edition of Biometry and to M. D. Morgan , 
E. Russek-Cohen, and M. Singh for commen t s on an early draf t of this book. 
We also apprecia te the work of our secretaries, Resa Chapey and Cheryl Daly, 
with prepar ing the manuscr ip ts , and of D o n n a DiGiovanni , Patricia Rohlf, and 
Barbara T h o m s o n with proofreading. 

Robert R. Sokal 

F. James Rohlf 
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CHAPTER 

Introduction 

This chapter sets the stage for your study of biostatistics. In Section 1.1, we 
define the field itself. We then cast a necessarily brief glance at its historical 
development in Section 1.2. Then in Section 1.3 we conclude the chapter with 
a discussion of the a t t i tudes that the person trained in statistics brings to 
biological research. 

I.I Some definitions 

Wc shall define biostatistics as the application of statistical methods to the so-
lution of biological problems. The biological problems of this definit ion are those 
arising in the basic biological sciences as well as in such applied areas as the 
health-related sciences and the agricultural sciences. Biostatistics is also called 
biological statistics or biometry. 

The definition of biostatistics leaves us somewhat up in the air—"stat is t ics" 
has not been defined. Statistics is a scicnce well known by name even to the 
layman. The n u m b e r of definitions you can find for it is limited only by the 
number of books you wish to consult . We might define statistics in its modern 
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sense as the scientific study of numerical data based on natural phenomena. All 
par t s of this definition are impor t an t and deserve emphasis: 

Scientific study: Statistics must meet the commonly accepted criteria of 
validity of scientific evidence. We mus t always be objective in presenta t ion and 
evaluat ion of da t a and adhere to the general ethical code of scientific m e t h o d -
ology, or we may find that the old saying that "figures never lie, only statisticians 
d o " applies to us. 

Data: Statistics generally deals with popu la t ions or groups of individuals; 
hence it deals with quantities of in format ion , not with a single datum. Thus , the 
measurement of a single an imal or the response f r o m a single biochemical test 
will generally not be of interest. 

Numerical: Unless da ta of a s tudy can be quant if ied in one way or another , 
they will not be amenab le to statistical analysis. Numer ica l da t a can be mea-
surements (the length or wid th of a s t ruc ture or the a m o u n t of a chemical in 
a body fluid, for example) or coun t s (such as the number of bristles or teeth). 

Natural phenomena: We use this term in a wide sense to mean not only all 
those events in an imate and inanimate na tu re that take place outside the cont ro l 
of h u m a n beings, but also those evoked by scientists and part ly under their 
control , as in experiments. Different biologists will concern themselves with 
different levels of na tu ra l phenomena ; o ther k inds of scientists, wi th yet different 
ones. But all would agree that the chirping of crickets, the number of peas in 
a pod, and the age of a w o m a n at menopause are na tura l phenomena . The 
hear tbeat of rats in response to adrenal in , the muta t ion rate in maize after 
i r radiat ion, or the incidence or morbidi ty in pat ients treated with a vaccine 
may still be considered na tura l , even though scientists have interfered with the 
p h e n o m e n o n th rough their intervention. The average biologist would not con-
sider the number of stereo sets bought by persons in different states in a given 
year to be a na tura l phenomenon . Sociologists or human ecologists, however, 
might so consider it and deem it wor thy of study. The qualification "na tu ra l 
p h e n o m e n a " is included in the definit ion of statistics mostly to make certain 
that the phenomena studied are not a rb i t ra ry ones that are entirely under the 
will and contro l of the researcher, such as the number of animals employed in 
an experiment. 

T h e word "statist ics" is also used in another , though related, way. It can 
be the plural of the noun statistic, which refers t o any one of many computed 
or es t imated statistical quanti t ies , such as the mean, the s t andard deviat ion, or 
the correlat ion coefficient. Each one of these is a statistic. 

1.2 The development of biostatistics 

Modern statistics appea r s to have developed f rom two sources as far back as 
the seventeenth century. The first source was political science; a form of statistics 
developed as a quant i t ive descript ion of the var ious aspects of the affairs of 
a government or state (hence the term "statistics"). This subject also became 
known as political ari thmetic. Taxes and insurance caused people to become 
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interested in problems of censuses, longevity, and mortal i ty. Such considerat ions 
assumed increasing importance, especially in England as the coun t ry prospered 
dur ing the development of its empire. J o h n G r a u n t (1620-1674) and William 
Petty (1623-1687) were early s tudents of vital statistics, and others followed in 
their footsteps. 

At abou t the same time, the second source of mode rn statistics developed: 
the mathemat ica l theory of probabi l i ty engendered by the interest in games 
of chance a m o n g the leisure classes of the time. I m p o r t a n t cont r ibu t ions to 
this theory were m a d e by Blaise Pascal (1623-1662) and Pierre de F e r m a t 
(1601-1665), bo th Frenchmen. Jacques Bernoulli (1654-1705), a Swiss, laid the 
founda t ion of m o d e r n probabil i ty theory in /Irs Conjectandi. A b r a h a m de 
Moivre (1667-1754), a F r e n c h m a n living in England, was the first to combine 
the statistics of his day with probabil i ty theory in working out annui ty values 
and to approx imate the impor tan t no rma l distr ibution th rough the expansion 
of the binomial . 

A later s t imulus for the development of statistics came f rom the science of 
as t ronomy, in which many individual observat ions had to be digested into a 
coherent theory. M a n y of the famous as t ronomers and mathemat ic ians of the 
eighteenth century, such as Pierre Simon Laplace (1749-1827) in France and 
Kar l Friedrich G a u s s (1777-1855) in Ge rmany , were a m o n g the leaders in this 
field. The latter 's lasting cont r ibu t ion to statistics is the development of the 
method of least squares. 

Perhaps the earliest impor tan t figure in biostatistic thought was Adolphe 
Quetelet (1796-1874), a Belgian as t ronomer and mathemat ic ian , who in his 
work combined the theory and practical me thods of statistics and applied them 
to problems of biology, medicine, and sociology. Francis G a l t o n (1822-1911), 
a cousin of Charles Darwin , has been called the father of biostatistics and 
eugenics. The inadequacy of Darwin ' s genetic theories s t imulated G a l t o n to try 
to solve the problems of heredity. Ga l ton ' s m a j o r cont r ibut ion to biology was 
his applicat ion of statistical methodology to the analysis of biological variat ion, 
part icularly th rough the analysis of variability and th rough his s tudy of regres-
sion and correlat ion in biological measurements . His hope of unraveling the 
laws of genetics t h rough these procedures was in vain. He s tar ted with the most 
difficult material and with the wrong assumptions . However , his methodology 
has become the founda t ion for the appl icat ion of statistics to biology. 

Karl Pearson (1857-1936), at University College, London , became inter-
ested in the appl icat ion of statistical me thods to biology, part icularly in the 
demons t ra t ion of na tura l selection. Pearson 's interest came abou t through the 
influence of W. F. R. Wcldon (1860-1906), a zoologist at the same insti tution. 
Weldon, incidentally, is credited with coining the term "b iomet ry" for the type 
of studies he and Pearson pursued. Pearson continued in the t radi t ion of Ga l ton 
and laid the founda t ion for much of descriptive and correlat ional statistics. 

The dominan t figure in statistics and biometry in the twentieth century has 
been Ronald A. Fisher (1890 1962). His many cont r ibut ions to statistical theory 
will become obvious even to the cursory reader of this book . 
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Statistics today is a b r o a d and extremely active field whose appl icat ions 
touch almost every science and even the humanit ies . New appl icat ions for sta-
tistics are constant ly being found , and no one can predict f rom wha t b ranch 
of statistics new appl icat ions to biology will be made. 

1.3 The statistical frame of mind 

A brief perusal of a lmost any biological j ou rna l reveals how pervasive the use 
of statistics has become in the biological sciences. Why has there been such a 
marked increase in the use of statistics in biology? Apparent ly, because biol-
ogists have found tha t the interplay of biological causal and response variables 
does not fit the classic mold of nineteenth-century physical science. In tha t 
century, biologists such as Rober t Mayer , H e r m a n n von Helmhol tz , and o thers 
tried to demons t ra t e that biological processes were nothing but physicochemi-
cal phenomena . In so doing, they helped create the impression tha t the experi-
menta l me thods and na tura l phi losophy that had led to such d ramat ic progress 
in the physical sciences should be imitated fully in biology. 

M a n y biologists, even to this day, have retained the t radi t ion of strictly 
mechanis t ic and determinist ic concepts of th inking (while physicists, interest-
ingly enough, as their science has become more refined, have begun to resort 
to statistical approaches) . In biology, most p h e n o m e n a are affected by m a n y 
causal factors, uncontrol lable in their variat ion and often unidentifiable. Sta-
tistics is needed to measure such variable phenomena , to determine the e r ror 
of measurement , and to ascertain the reality of minute but impor tan t differences. 

A misunders tand ing of these principles and relationships has given rise to 
the a t t i tude of some biologists that if differences induced by an experiment, or 
observed by nature, are not clear on plain inspection (and therefore are in need 
of statistical analysis), they arc not wor th investigating. There are few legitimate 
fields of inquiry, however, in which, f rom the na tu re of the phenomena studied, 
statistical investigation is unnecessary. 

Statistical th inking is not really different f rom ordinary disciplined scientific 
thinking, in which wc try to quant i fy our observat ions. In statistics we express 
our degree of belief or disbelief as a probabi l i ty rather than as a vague, general 
s ta tement . For example, a s ta tement that individuals of species A are larger 
than those of specics Β or that women suffer more often f rom disease X than 
do men is of a kind commonly made by biological and medical scientists. Such 
s ta tements can and should be more precisely expressed in quant i ta t ive form. 

In many ways the h u m a n mind is a remarkable statistical machine, absorb-
ing many facts f rom the outs ide world, digesting these, and regurgi ta t ing them 
in simple summary form. F r o m our experience we know certain events to occur 
frequently, o thers rarely. " M a n smoking cigaret te" is a frequently observed 
event, " M a n slipping on banana peel," rare. We know f rom experience that 
Japanese arc on the average shorter than Englishmen and that Egypt ians are 
on the average darker than Swedes. We associate thunder with lightning almost 
always, flics with garbage cans in the summer frequently, but snow with the 
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southern Cal i fornian desert extremely rarely. All such knowledge comes to us 
as a result of experience, bo th our own and that of others, which we learn 
about by direct communica t ion or t h rough reading. All these facts have been 
processed by that r emarkab le computer , the h u m a n brain, which furnishes an 
abstract . This abs t rac t is constant ly under revision, and though occasionally 
faulty and biased, it is on the whole astonishingly sound; it is ou r knowledge 
of the moment . 

Al though statistics arose to satisfy the needs of scientific research, the devel-
opment of its me thodo logy in turn affected the sciences in which statistics is 
applied. Thus, t h rough positive feedback, statistics, created to serve the needs 
of na tura l science, has itself affected the content and me thods of the biological 
sciences. T o cite an example: Analysis of var iance has had a t r emendous effect 
in influencing the types of experiments researchers carry out. T h e whole field of 
quant i ta t ive genetics, one of whose problems is the separat ion of environmental 
f rom genetic effects, depends upon the analysis of variance for its realization, 
and many of the concepts of quant i ta t ive genetics have been directly built 
a round the designs inherent in the analysis of variance. 



CHAPTER 

Data in Biostatistics 

In Section 2.1 we explain the statistical mean ing of the terms "sample" and 
"popula t ion ," which we shall be using t h roughou t this book. Then, in Section 
2.2, we come to the types of observat ions that we obtain f rom biological research 
material ; we shall see how these cor respond to the different kinds of variables 
upon which we perform (he various compu ta t i ons in the rest of this book. In 
Section 2.3 we discuss the degree of accuracy necessary for recording da t a and 
the procedure for round ing off figures. We shall then be ready to consider in 
Section 2.4 certain k inds of derived da ta frequent ly used in biological science 
a m o n g them ratios and indices and the peculiar problems of accuracy and 
dis t r ibut ion they present us. Knowing how to a r range da ta in frequency distri-
but ions is impor tan t because such a r rangements give an overall impression of 
the general pat tern of the variat ion present in a sample and also facilitate fur ther 
computa t iona l procedures. Frequency distr ibutions, as well as the presentat ion 
of numerical da ta , are discussed in Section 2.5. In Section 2.6 we briefly describe 
the computa t iona l handl ing of data . 
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2.1 Samples and populations 

We shall now define a n u m b e r of impor t an t terms necessary for an under-
s tanding of biological da ta . The data in biostatistics are generally based on 
individual observations. They are observations or measurements taken on the 
smallest sampling unit. These smallest sampling units frequently, bu t not neces-
sarily, are also individuals in the ordinary biological sense. If we measure weight 
in 100 rats, then the weight of each rat is an individual observat ion; the hundred 
rat weights together represent the sample of observations, defined as a collection 
of individual observations selected by a specified procedure. In this instance, one 
individual observat ion (an item) is based on one individual in a biological 
sense—that is, one rat. However , if we had studied weight in a single rat over 
a period of time, the sample of individual observat ions would be the weights 
recorded on one rat at successive times. If we wish to measure tempera ture 
in a study of ant colonies, where each colony is a basic sampl ing unit, each 
tempera ture reading for one colony is an individual observat ion, and the sample 
of observat ions is the tempera tures for all the colonies considered. If we consider 
an est imate of the D N A content of a single mammal i an sperm cell to be an 
individual observat ion, the sample of observat ions may be the est imates of D N A 
content of all the sperm cells studied in one individual mammal . 

We have carefully avoided so far specifying what par t icular variable was 
being studied, because the terms "individual observat ion" and "sample of ob-
servations" as used above define only the s t ructure but not the na ture of the 
da ta in a study. The actual property measured by the individual observat ions 
is the character, or variable. The more c o m m o n term employed in general sta-
tistics is "variable." However , in biology the word "charac ter" is frequently used 
synonymously. M o r e than one variable can be measured on each smallest 
sampling unit. Thus , in a g roup of 25 mice we might measure the blood pH 
and the erythrocyte count . Each mouse (a biological individual) is the smallest 
sampling unit, blood pH and red cell count would be the two variables studied, 
the ρ Η readings and cell counts are individual observat ions, and two samples 
of 25 observat ions (on ρ Η and on erythrocyte count) would result. Or we might 
speak of a bivariate sample of 25 observat ions, each referring to a />H reading 
paired with an erythrocyte count . 

Next we define population. The biological definition of this term is well 
known. It refers to all the individuals of a given species (perhaps of a given 
life-history stage or sex) found in a circumscribed area at a given time. In 
statistics, popula t ion always means the totality of individual observations about 
which inferences are to he made, existing anywhere in the world or at least within 
a definitely specified sampling area limited in space and time. If you take five 
men and study the n u m b e r of leucocytes in their peripheral blood and you 
are prepared to d raw conclusions about all men from this sample of five, then 
the popula t ion f rom which the sample has been d rawn represents the leucocyte 
counts of all extant males of the species Homo sapiens. If, on the other hand, 
you restrict yourself to a more narrowly specified sample, such as live male 
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Chinese, aged 20, and you are restricling your conclusions to this par t icular 
g roup , then the popula t ion f rom which you are sampling will be leucocyte 
number s of all Chinese males of age 20. 

A c o m m o n misuse of statistical me thods is to fail to define the statistical 
popu la t ion about which inferences can be made. A report on the analysis of 
a sample f rom a restricted popula t ion should not imply that the results hold 
in general. The popula t ion in this statistical sense is sometimes referred to as 
the universe. 

A popula t ion may represent variables of a concrete collection of objects or 
creatures, such as the tail lengths of all the white mice in the world, the leucocyte 
counts of all the Chinese men in the world of age 20, or the D N A conten t of 
all the hamster sperm cells in existence: or it may represent the ou tcomes of 
experiments , such as all the hear tbeat frequencies produced in guinea pigs by 
injections of adrenal in. In cases of the first kind the popula t ion is generally 
finite. Al though in practice it would be impossible to collect, count , and examine 
all hamster sperm cells, all Chinese men of age 20, or all white mice in the world, 
these popula t ions are in fact finite. Certa in smaller populat ions , such as all the 
whoop ing cranes in N o r t h America or all the recorded cases of a rare but easily 
d iagnosed disease X, may well lie within reach of a total census. By contras t , 
an experiment can be repeated an infinite number of times (at least in theory). 
A given experiment , such as the adminis t ra t ion of adrenal in to guinea pigs, 
could be repealed as long as the exper imenter could obtain material and his 
or her health and pat ience held out . The sample of experiments actually per-
formed is a sample f rom an infinite number that could be performed. 

Some of the statistical methods to be developed later make a dist inction 
between sampling from finite and f rom infinite populat ions . However, though 
popula t ions are theoretically finite in most appl icat ions in biology, they are 
generally so much larger than samples drawn from them that they can be con-
sidered de facto infinite-sized populat ions. 

2.2 Variables in biostatisties 

Each biological discipline has its own set of variables, which may include con-
ventional morphological measurements ; concent ra t ions of chemicals in body 
fluids; rates of certain biological processes; frequencies of certain events, as in 
genetics, epidemiology, and radiat ion biology; physical readings of optical or 
electronic machinery used in biological research; and many more. 

We have already referred to biological variables in a general way, but we 
have not yet defined them. We shall define a variable as a properly with respect 
to which individuals in a sample d i f f e r in some ascertainable way. If t h e p r o p e r t y 

does not differ within a sample at hand or at least a m o n g the samples being 
studied, it cannot be of statistical interest. Length, height, weight, number of 
teeth, vitamin ( ' content , and genotypes are examples of variables in ordinary , 
genetically and phcnotypically diverse groups of organisms. Warm-b loodedness 
in a g roup of m a m m a l s is not, since m a m m a l s are all alike in this regard. 
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al though body t empera tu re of individual m a m m a l s would, of course, be a 
variable. 

We can divide variables as follows: 

Variables 

Measurement variables 
Continuous variables 
Discontinuous variables 

Ranked variables 
Attributes 

Measurement variables are those measurements and counts that are expressed 
numerically. Measurement variables are of two kinds. The first kind consists of 
continuous variables, which at least theoretically can assume an infinite number 
of values between any two fixed points. For example, between the two length 
measurements 1.5 and 1.6 cm there are an infinite number of lengths that could 
be measured if one were so inclined and had a precise enough method of 
cal ibrat ion. Any given reading of a con t inuous variable, such as a length of 
1.57 mm, is therefore an approx imat ion to the exact reading, which in practice 
is unknowable . M a n y of the variables studied in biology arc cont inuous vari-
ables. Examples are lengths, areas, volumes, weights, angles, temperatures , 
periods of time, percentages, concentra t ions , and rates. 

Cont ras ted with cont inuous variables are the discontinuous variables, also 
known as meristic or discrete variables. These are variables that have only cer-
tain fixed numerical values, with no intermediate values possible in between. 
Thus the number of segments in a certain insect appendage may be 4 or 5 or 
6 but never 5l or 4.3. Examples of d iscont inuous variables are numbers of a 
given s t ructure (such as segments, bristles, leel h, or glands), numbers of offspring, 
numbers of colonics of microorganisms or animals, or numbers of plants in a 
given quadra t . 

Some variables cannot be measured but at least can be ordered or ranked 
by their magni tude. Thus, in an experiment one might record the rank order 
of emergence o f t e n pupae without specifying the exact time at which each pupa 
emerged. In such cases we code the da ta as a ranked variable. I he order of 
emergence. Special methods for dealing with such variables have been devel-
oped, and several arc furnished in this book. By expressing a variable as a series 
of ranks, such as 1,2, 3, 4. 5, we do not imply that the difference in magni tude 
between, say, ranks I and 2 is identical lo or even propor t iona l to the dif-
ference between ranks 2 and 3. 

Variables that cannot be measured but must be expressed qualitatively are 
called attributes, or nominal variables. These are all properties, such as black 
or white, pregnant or not pregnant , dead or alive, male or female. When such 
at t r ibutes are combined with frequencies, they can be treated statistically. Of 
80 mice, we may, for instance, state that four were black, two agouti , and the 
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rest gray. When at t r ibutes are combined with frequencies into tables sui table 
for statistical analysis, they are referred to as enumeration data. Thus the enu-
mera t ion da t a on color in mice would be a r ranged as follows: 

Color Frequency 

B l a c k 4 
A g o u t i 2 
G r a y 74 

T o t a l n u m b e r of m i c e 8 0 

In some cases a t t r ibutes can be changed into measurement variables if this is 
desired. Thus colors can be changed into wavelengths or color-char t values. 
Cer ta in other a t t r ibutes that can be ranked or ordered can be coded to be-
come ranked variables. F o r example, three a t t r ibutes referring to a s t ruc ture 
as "poor ly developed," "well developed," and "hyper t roph ied" could be coded 
1, 2, and 3. 

A term that has not yet been explained is variate. In this book we shall use 
it as a single reading, score, or observat ion of a given variable. Thus, if we have 
measurements of the length of the tails of five mice, tail length will be a con-
t inuous variable, and each of the five readings of length will be a variate. In 
this text we identify variables by capital letters, the most c o m m o n symbol being 
Y. Thus V may s tand for tail length of mice. A variate will refer to a given 
length measurement ; Yt is the measurement of tail length of the /'th mouse, and 
y4 is the measurement of tail length of the four th mouse in our sample. 

2.3 Accuracy and precision of data 

"Accuracy" and "precision" are used synonymously in everyday speech, but in 
statistics we define them more rigorously. Accuracy is the closeness of a measured 
or computed value to its true value. Precision is the closeness of repeated measure-

ments. A biased but sensitive scale might yield inaccurate but precise weight. By 
chance, an insensitive scale might result in an accura te reading, which would, 
however, be imprecise, since a repeated weighing would be unlikely to yield an 
equally accurate weight. Unless there is bias in a measur ing ins t rument , precision 
will lead to accuracy. We need therefore mainly be concerned with the former. 

Precise variates arc usually, but not necessarily, whole numbers . Thus , when 
we count four eggs in a nest, there is no doub t abou t the exact number of eggs 
in the nest if we have counted correctly; it is 4, not 3 or 5, and clearly it could 
not be 4 plus or minus a fract ional part . Meristic, or discont inuous, variables are 
generally measured as exact numbers . Seemingly, con t inuous variables derived 
from mcristic ones can under certain condi t ions also be exact numbers . For 
instance, ratios between exact numbers arc themselves also exact. If in a colony 
of animals there are 18 females and 12 males, the rat io of females to males (a 
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Most con t inuous variables, however, are approximate . W e mean by this 
that the exact value of the single measurement , the variate, is u n k n o w n and 
probably unknowable . The last digit of the measurement stated should imply 
precision; that is, it should indicate the limits on the measurement scale between 
which we believe the t rue measurement to lie. Thus, a length measurement of 
12.3 m m implies that the t rue length of the s t ructure lies somewhere between 
12.25 and 12.35 mm. Exactly where between these implied limits the real length 
is we do not know. But where would a t rue measurement of 12.25 fall? Would 
it not equally likely fall in either of the two classes 12.2 and 12.3—clearly an 
unsatisfactory state of affairs? Such an a rgument is correct, bu t when we record 
a number as either 12.2 or 12.3, we imply that the decision whether to put it 
into the higher or lower class has already been taken. This decision was not 
taken arbitrari ly, bu t presumably was based on the best available measurement . 
If the scale of measurement is so precise that a value of 12.25 would clearly 
have been recognized, then the measurement should have been recorded 
originally to four significant figures. Implied limits, therefore, always carry one 
more figure beyond the last significant one measured by the observer. 

Hence, it follows tha t if we record the measurement as 12.32, we are implying 
that the true value lies between 12.315 and 12.325. Unless this is wha t we mean, 
there would be no point in adding the last decimal figure to our original mea-
surements. If we d o add ano the r figure, we must imply an increase in precision. 
We see, therefore, tha t accuracy and precision in numbers are not absolute con-
cepts, but are relative. Assuming there is no bias, a number becomes increasingly 
more accurate as we are able to write more significant figures for it (increase its 
precision). To illustrate this concept of the relativity of accuracy, consider the 
following three numbers : 

Implied limits 

193 192.5 193.5 
192.8 192.75 192 .85 
192.76 192 .755 192 .765 

We may imagine these numbers to be recorded measurements of the same struc-
ture. Let us assume that we had e x t r a m u n d a n e knowledge that the true length 
of the given s t ructure was 192.758 units. If tha t were so, the three measurements 
would increase in accuracy f rom the t op down, as the interval between their 
implied limits decreased. You will note that the implied limits of the topmost 
measurement are wider than those of the one below it, which in turn are wider 
than those of the third measurement . 

Meristic variates, though ordinari ly exact, may be recorded approximate ly 
when large numbers are involved. T h u s when counts are reported to the nearest 
thousand , a count of 36,000 insects in a cubic meter of soil, for example, implies 
that the true n u m b e r varies somewhere f rom 35,500 to 36,500 insects. 

T o how many significant figures should we record measurements? If we array 
t l l r» f «» m r-vl i> K i ; ο r /-»f t-v-i <» n m l ι ι / ί rv Γι-ί-> ι-νι 1 U . i otrv ο 11 η ο i ι η / ί ι \ ; < / 1 ι ΐ ' > 1 1 a I l-> α l < i r i » n i ' f 
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one, an easy rule to remember is that the number of unit steps from the smallest 
to the largest measurement in an array should usually be between 30 and 300. 
Thus, if we are measuring a series of shells to the nearest millimeter and the 
largest is 8 mm and the smallest is 4 mm wide, there are only four unit steps 
between the largest and the smallest measurement . Hence, we should measure 
our shells to one more significant decimal place. Then the two extreme measure-
ments might be 8.2 mm and 4.1 mm, with 41 unit steps between them (counting 
the last significant digit as the unit); this would be an adequate number of unit 
steps. The reason for such a rule is that an error of 1 in the last significant digit 
of a reading of 4 mm would constitute an inadmissible error of 25%, but an error 
of 1 in the last digit of 4.1 is less than 2.5%. Similarly, if we measured the height 
of the tallest of a series of plants as 173.2 cm and that of the shortest of these 
plants as 26.6 cm, the difference between these limits would comprise 1466 unit 
steps (of 0.1 cm), which are far too many. It would therefore be advisable to 
record the heights to the nearest centimeter, as follows: 173 cm for the tallest 
and 27 cm for the shortest. This would yield 146 unit steps. Using the rule we 
have stated for the number of unit steps, we shall record two or three digits for 
most measurements. 

The last digit should always be significant; that is, it should imply a range 
for the true measurement of from half a "unit step" below to half a "unit step" 
above the recorded score, as illustrated earlier. This applies to all digits, zero 
included. Zeros should therefore not be written at the end of approximate num-
bers to the right of the decimal point unless they are meant to be significant 
digits. Thus 7.80 must imply the limits 7.795 to 7.805. If 7.75 to 7.85 is implied, 
the measurement should be recorded as 7.8. 

When the number of significant digits is to be reduced, we carry out the 
process of rounding off numbers. The rules for rounding off are very simple. A 
digit to be rounded off is not changed if it is followed by a digit less than 5. If 
the digit to be rounded off is followed by a digit greater than 5 or by 5 followed 
by other nonzero digits, it is increased by 1. When the digit to be rounded off 
is followed by a 5 s tanding alone or a 5 followed by zeros, it is unchanged if it 
is even but increased by 1 if it is odd. The reason for this last rule is that when 
such numbers are summed in a long series, we should have as many digits 
raised as arc being lowered, on the average; these changes should therefore 
balance out. Practice the above rules by rounding off the following numbers to 
the indicated number of significant digits: 

Number Significant digits desired Answer 

26 .58 
133.71 37 

0 . 0 3 7 2 5 
0 . 0 3 7 1 5 

2 
5 
3 
3 

2 7 
133.71 

0 . 0 3 7 2 
0 . 0 3 7 2 

8.000 
17.3 

18 ,316 
17 .3476 

2 

3 
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Most pocket calculators or larger compute r s round off their displays using 
a different rule: they increase the preceding digit when the following digit is a 
5 s tanding alone or with trailing zeros. However , since most of the machines 
usable for statistics also retain eight or ten significant figures internally, the 
accumulat ion of round ing errors is minimized. Incidentally, if two calculators 
give answers with slight differences in the final (least significant) digits, suspect 
a different number of significant digits in memory as a cause of the disagreement . 

2.4 Derived variables 

The major i ty of variables in biometr ic work are observat ions recorded as direct 
measurements or coun t s of biological material or as readings that are the ou tpu t 
of various types of instruments . However , there is an impor tan t class of variables 
in biological research that we may call the derived or computed variables. These 
are generally based on two or more independently measured variables whose 
relations are expressed in a certain way. We are referring to ratios, percentages, 
concentrat ions, indices, rates, and the like. 

A ratio expresses as a single value the relation that two variables have, one 
to the other. In its simplest form, a rat io is expressed as in 64:24, which may 
represent the number of wild-type versus mutan t individuals, the number of 
males versus females, a count of parasitized individuals versus those not para-
sitized, and so on. These examples imply ratios based on counts . A rat io based 
on a con t inuous variable might be similarly expressed as 1.2:1.8, which may 
represent the rat io of width to length in a sclerite of an insect or the rat io 
between the concent ra t ions of two minerals contained in water or soil. Ratios 
may also be expressed as fractions; thus, the two ratios above could be expressed 
as f | and f^- . However , for computa t iona l purposes it is more useful to express 
the rat io as a quot ient . The two rat ios cited would therefore be 2.666 . . . and 
0.666 . . . , respectively. These are pure numbers , not expressed in measurement 
units of any kind. It is this form for rat ios that we shall consider further . 
Percentages are also a type of ratio. Ratios, percentages, and concentra t ions 
are basic quant i t ies in much biological research, widely used and generally 
familiar. 

An index is the ratio of the value of one variable to the value of a so-called 
standard one. A well-known example of an index in this sense is the cephalic 
index in physical an thropology . Conceived in the wide sense, an index could 
be the average of two measurements—ei ther simply, such as {(length of A + 
length of β), or in weighted fashion, such as ^[(2 χ length of A) + length of B\. 

Rates are impor tan t in many experimental fields of biology. The a m o u n t 
of a substance liberated per unit weight or volume of biological material , weight 
gain per unit time, reproduct ive rates per unit populat ion size and time (birth 
rates), and dea th rates would fall in this category. 

The use of rat ios and percentages is deeply ingrained in scientific thought . 
Often rat ios may be the only meaningful way to interpret and unders tand cer-
tain types of biological problems. If the biological process being investigated 
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opera tes on the rat io of the variables studied, one must examine this ra t io to 
unders tand the process. Thus, Sinnot t and H a m m o n d (1935) found that inheri-
tance of the shapes of squashes of the species Cucurbita pepo could be inter-
preted th rough a form index based on a length-width ratio, bu t no t t h rough 
the independent d imensions of shape. By similar me thods of investigation, we 
should be able to find selection affecting body p ropor t ions to exist in the evolu-
tion of almost any organism. 

There are several d isadvantages to using ratios. First, they are relatively 
inaccurate. Let us return to the rat io ment ioned above and recall f rom the 
previous section that a measurement of 1.2 implies a true range of measu remen t 
of the variable f rom 1.15 to 1.25; similarly, a measurement of 1.8 implies a range 
f rom 1.75 to 1.85. We realize, therefore, that the true ratio may vary anywhere 
f rom -f^J- to -Hi", or f rom 0.622 to 0.714. We note a possible maximal er ror of 
4.2% if 1.2 is an original measurement : (1.25 — 1.2)/1.2; the cor responding maxi-
mal er ror for the ra t io is 7.0%: (0.714 - 0.667)/0.667. Fur the rmore , the best 
es t imate of a rat io is no t usually the midpoin t between its possible ranges. Thus , 
in ou r example the midpoin t between the implied limits is 0.668 and the ra t io 
based on 4τ§~ is 0.666 . . . ; while this is only a slight difference, the discrepancy 
may be greater in other instances. 

A second d isadvantage to rat ios and percentages is that they may not be 
approximate ly normal ly dis t r ibuted (see C h a p t e r 5) as required by many statis-
tical tests. This difficulty can frequently be overcome by t ransformat ion of the 
variable (as discussed in Chap t e r 10). A third d isadvantage of rat ios is that 
in using them one loses informat ion about the relat ionships between the two 
variables except for the informat ion about the rat io itself. 

2.5 Frequency distributions 

If we were to sample a popula t ion of birth weights of infants, we could represent 
each sampled measurement by a point a long an axis denot ing magn i tude of 
birth weight. This is illustrated in Figure 2.1 A, for a sample of 25 birth weights. 
If we sample repeatedly from the popula t ion and obtain 100 birth weights, we 
shall probably have to place some of these points on top of o ther points in 
order to record them all correctly (Figure 2.1 B). As we cont inue sampl ing ad-
dit ional hundreds and thousands of birth weights (Figure 2.1C and D), the 
assemblage of points will cont inue to increase in size but will assume a fairly 
definite shape. The outl ine of the m o u n d of points approx imates the dis t r ibut ion 
of the variable. Remember thai a con t inuous variable such as birth weight can 
assume an infinity of values between any two poinls on the abscissa. The refine-
ment of our measurements will de termine how fine the number of recorded 
divisions between any two points a long the axis will be. 

The distr ibution of a variable is of considerable biological interest. If we 
find thai the disl r ibution is asymmetrical and d rawn out in one direction, it tells 
us that there is. perhaps, selection that causes organisms to fall preferentially 
in one of the tails of the distr ibut ion, or possibly that the scale of measurement 
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chosen is such as to bring about a dis tor t ion of the distr ibution. If, in a sample 
of immatu re insects, we discover that the measurements are bimodal ly distr ib-
uted (with two peaks), this would indicate that the popula t ion is d imorphic . 
This means that different species or races may have become intermingled in 
our sample. O r the d imorph i sm could have arisen f rom the presence of both 
sexes or of different instars. 

There are several characterist ic shapes of frequency distr ibutions. The most 
c o m m o n is the symmetrical bell shape (approximated by the b o t t o m graph in 
Figure 2.1), which is the shape of the normal frequency dis tr ibut ion discussed 
in Chap t e r 5. There are also skewed dis t r ibut ions (drawn out more at one tail 
than the other), L-shaped dis t r ibut ions as in Figure 2.2, U-shaped dis tr ibut ions, 
and others, all of which impart significant informat ion about the relat ionships 
they represent. We shall have more to say abou t the implicat ions of var ious 
types of dis t r ibut ions in later chapters and sections. 

After researchers have obtained da ta in a given study, they must a r range 
the data in a form suitable for compu ta t ion and interpretat ion. We may assume 
that variates arc randomly ordered initially or are in the order in which the 
measurements have been taken. A simple a r rangement would be an array of 
the da ta by order of magni tude. Thus, for example, the variates 7, 6, 5, 7, 8, 9, 
6, 7, 4, 6, 7 could be arrayed in order of decreasing magni tude as follows: 9. 8, 
7, 7, 7, 7, 6, 6, 6, 5, 4. Where there are some variates of the same value, such as 
the 6's and 7's in this Fictitious example, a time-saving device might immediately 
have occurred to you namely, to list a frequency for each of the recurring 
variates; thus: 9, 8, 7(4 χ ). 6(3 χ ), 5, 4. Such a shor thand nota t ion is one way to 
represent a frcqucncy distribution, which is simply an a r rangement of the classes 
of variates with the frequency of each class indicated. Convent ional ly , a fre-
quency distr ibution is stated in tabular form; for our example, this is done as 
follows: 
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Variable Frequency 
V / 

9 I 
8 1 
7 4 
6 3 
5 1 
4 1 

The above is an example of a quantitative frequency distribution, since Y is 
clearly a measurement variable. However , a r rays and frequency dis t r ibut ions 
need not be limited to such variables. W e can make frequency dis t r ibut ions of 
attr ibutes, called qualitative frequency distributions. In these, the var ious classes 
are listed in some logical or arbi t rary order. F o r example, in genetics we might 
have a quali tat ive f requency distr ibution as follows: 

Phenolype J 

A- 86 
an 32 

This tells us that there are two classes of individuals, those identifed by the A -
phenotype, of which 86 were found, and those compris ing the honiozygote re-
cessive aa, of which 32 were seen in the sample. 

An example of a more extensive quali tat ive frequency dis t r ibut ion is given 
in Table 2.1, which shows the distr ibution of me lanoma (a type of skin cancer) 
over body regions in men and women. This table tells us that the t runk and 
limbs are the most frequent sites for me lanomas and that the buccal cavity, the 
rest of the gastrointest inal tract, and the genital tract are rarely afflicted by this 

Τ Λ Β Ι Κ 2 . 1 

Two qualitative frequency distributions. N u m b e r of cases of 
skin cancer (melanomal dis t r ibuted over body regions of 
4599 men and 47X6 women. 

Anatomic site 

OhseiVi 
Men 

J 

ϊ<1 frequency 
Women 

( 

M e a d a n d n e c k 9 4 9 6 4 5 
T r u n k a n d l i m b s 3 2 4 3 3 6 4 5 
B u c c a l c a v i t y 8 11 
R e s t of g a s t r o i n t e s t i n a l t r a c t 5 21 
G e n i t a l t r a c t 12 9 3 
F.ye 382 371 

T o t a l c a s e s 4 5 9 9 4 7 8 6 

Snune. Oiilii from I cc 
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TABI.E 2.2 
A meristic frequency distribution. 
N u m b e r of p lants of the sedge Carex 
flacca found in 500 q u a d r a t s . 

No. of plants Observed 
per quadrat frequency 

Y f 

0 181 
1 118 
2 9 7 
3 54 
4 32 
5 9 
6 5 
7 3 
8 1 

T o t a l 5 0 0 

Source: Data from Archibald (1950). 

type of cancer. We often encounter o ther examples of qual i tat ive f requency 
dis t r ibut ions in ecology in the form of tables, or species lists, of the inhab i tan t s 
of a sampled ecological area. Such tables ca ta log the inhabi tants by species or 
at a higher t axonomic level and record the n u m b e r of specimens observed for 
each. The a r rangement of such tables is usually alphabetical , or it may follow 
a special convent ion, as in some botanical species lists. 

A quant i ta t ive frequency dis tr ibut ion based on meristic variates is shown 
in Table 2.2. This is an example f rom plant ecology: the number of plants per 
quadra t sampled is listed at the left in the variable column; the observed fre-
quency is shown at the right. 

Quant i t a t ive frequency dis t r ibut ions based on a con t inuous variable are 
the most commonly employed frequency distr ibutions; you should become 
thoroughly familiar with them. An example is shown in Box 2.1. It is based on 
25 femur lengths measured in an aphid popula t ion . The 25 readings are shown 
at the top of Box 2.1 in the order in which they were obtained as measurements . 
(They could have been arrayed according to their magnitude.) The d a t a arc 
next set up in a frequency distr ibution. The variates increase in magn i tude by 
unit steps of 0.1. The frequency dis tr ibut ion is prepared by enter ing each variate 
in turn on the scale and indicating a count by a convent ional tally mark . When 
all of (lie items have been tallied in the cor responding class, the tallies are con-
verted into numerals indicating frequencies in the next column. Their sum is 
indicated by Σ / . 

What have we achieved in summar iz ing our da ta? The original 25 variates 
are now represented by only 15 classes. We find that variates 3.6, 3.8, and 4.3 
have the highest frequencies. However, wc also note that there arc several classes, 
such as 3.4 or 3.7, that are not represented by a single aphid. This gives the 
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entire frequency dis tr ibut ion a d rawn-out and scattered appearance . The reason 
for this is that we have only 25 aphids, too few to put into a f requency distr ibu-
tion with 15 classes. T o obtain a more cohesive and smooth- look ing distr ibu-
tion, we have to condense our da ta into fewer classes. This process is known 
as grouping of classes of frequency distr ibutions; it is i l lustrated in Box 2.1 and 
described in the following paragraphs . 

We should realize that grouping individual variates into classes of wider 
range is only an extension of the same process that took place when we obtained 
the initial measurement . Thus , as we have seen in Section 2.3, when we measure 
an aphid and record its femur length as 3.3 units, we imply thereby that the 
true measurement lies between 3.25 and 3.35 units, but that we were unable to 
measure to the second decimal place. In recording the measurement initially as 
3.3 units, we est imated that it fell within this range. Had we est imated that it 
exceeded the value of 3.35, for example, we would have given it the next higher 
score, 3.4. Therefore, all the measurements between 3.25 and 3.35 were in fact 
grouped into the class identified by the class mark 3.3. O u r class interval was 
0.1 units. If we now wish to make wider class intervals, we are doing nothing 
but extending the range within which measurements are placed into one class. 

Reference to Box 2.1 will make this process clear. We g r o u p the da ta twice 
in order to impress upon the reader the flexibility of the process. In the first 
example of grouping, the class interval has been doubled in width; that is, it 
has been made to equal 0.2 units. If we start at the lower end, the implied class 
limits will now be f rom 3.25 to 3.45, the limits for the next class from 3.45 to 
3.65, and so forth. 

O u r next task is to find the class marks. This was quite simple in the fre-
quency distr ibution shown at the left side of Box 2.1, in which the original mea-
surements were used as class marks. However , now we are using a class interval 
twice as wide as before, and the class marks arc calculated by tak ing the mid-
point of the new class intervals. Thus, to find the class mark of the first class, 
we lake the midpoint between 3.25 and 3.45. which turns out to be 3.35. We 
note that the class mark has one more decimal place than the original measure-
ments. We should not now be led to believe that we have suddenly achieved 
greater precision. Whenever we designate a class interval whose last significant 
digit is even (0.2 in this case), the class mark will carry one more decimal place 
than the original measurements . O n the right side of the table in Box 2.1 the 
data are grouped once again, using a class interval of 0.3. Because of the odd 
last significant digit, the class mark now shows as many decimal places as the 
original variates, the midpoint between 3.25 and 3.55 being 3.4. 

Once the implied class limits and the class mark for the first class have 
been correctly found, the others can be written down bv inspection without 
any special computa t ion . Simply add the class interval repeatedly to each of 
the values. Thus, s tar t ing with the lower limit 3.25, by adding 0.2 wc obtain 
3.45. 3.65, 3.X5, and so forth; similarly, for the class marks, we obtain 3.35, 3.55, 
3.75, and so forth. It should be obvious that the wider the class intervals, the 
more compact the da ta become but also the less precise. However, looking at 



BOX 2.1 
Preparation of frequency distribution and grouping into fewer classes with wider class intervals. 

Twenty-five femur lengths of the aphid Pemphigus. Measurements are in mm χ 10~ \ 

Original measurements 

3.8 3.6 4.3 3.5 4.3 
3.3 4.3 3.9 4.3 3.8 
3.9 4.4 3.8 4.7 3.6 
4.1 4.4 4.5 3.6 3.8 
4.4 4.1 3.6 4.2 3.9 

Original frequency distribution 
Grouping into 8 classes 

of interval 0.2 
Grouping into S classes 

of intend 0.3 

Implied 
limits 

Tally 
marks 

Implied 
limits 

Class Tally 
mark marks 

Implied Class Tally 
limits mark marks f 

3.25-3.35 
3.35-3.45 
3.45-3.55 
3.55-3.65 
3.65-3.75 
3.75-3.85 
3.85-3.95 
3.95-4.05 
4.05-4.15 
4.15-4.25 

3.3 
3.4 
3.5 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 

1 
0 
1 
4 
0 
4 
3 
0 
2 

1 

3.25-3.45 

3.45-3.65 

3.65-3.85 

3.85-4.05 

4.05-4.25 

3.35 | 

3.55 M 

3.75 m i 

3.95 (Κ 

4.15 III 

1 

5 

4 

3 

3 

3.25-3.55 3.4 

3.55-3.85 3.7 J f f | | | 8 

3.85-4.15 4.0 j^ff 5 

4.15-4.45 4.3 J | f f | | | 8 

425 -4 .35 
4.35-4.45 
4.45-4.55 
4.55-4.65 
4.65-4.75 

If 

4.3 
4.4 
4.5 
4.6 
4.7 

4 4.25-4.45 4.35 7 

3 
1 4.45-4.65 4.55 | 1 
0 
1 4.65-4.85 4.75 | _1 

25 25 

4.45-4.75 4.6 

25 

Source: Data from R, R. Sokal. 

Histogram of the original frequency distribution shown above and of the grouped distribution with 5 classes. Line below 
abscissa shows class marks for the grouped frequency distribution. Shaded bars represent original frequency distribution; 
hollow bars represent grouped distribution. 

10 r 

_] I 1 1 i— 
3.4 3.7 4.0 4.3 4.6 

Y (femur length, in units of 0.1 mm) 

For a detailed account of the process of grouping, see Section 2.5. 
J i 
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the frequency dis t r ibut ion of aphid femur lengths in Box 2.1, we notice that the 
initial ra ther chaot ic s t ructure is being simplified by grouping. When we g r o u p 
the frequency dis t r ibut ion into five classes with a class interval of 0.3 units, it 
becomes notably b imodal (that is, it possesses two peaks of frequencies). 

In setting up frequency distr ibutions, f rom 12 to 20 classes should be estab-
lished. This rule need not be slavishly adhered to, but it should be employed 
with some of the c o m m o n sense that comes f rom experience in handl ing statis-
tical da ta . The n u m b e r of classes depends largely on the size of the sample 
studied. Samples of less than 40 or 50 should rarely be given as many as 12 
classes, since that would provide too few frequencies per class. O n the other 
hand , samples of several thousand may profi tably be grouped into more than 
20 classes. If the aphid da t a of Box 2.1 need to be grouped, they should probably 
not be grouped into more than 6 classes. 

If the original da ta provide us with fewer classes than we think we should 
have, then noth ing can be done if the variable is meristic, since this is the na tu re 
of the da t a in quest ion. However , with a con t inuous variable a scarcity of classes 
would indicate that we probably had not made our measurements with sufficient 
precision. If we had followed the rules on number of significant digits for mea-
surements stated in Section 2.3, this could not have happened. 

Whenever we come u p with more than the desired number of classes, g roup-
ing should be under taken . When the da t a are meristic, the implied limits of 
con t inuous variables are meaningless. Yet with many meristic variables, such 
as a bristle number varying f rom a low of 13 to a high of 81, it would p robab ly 
be wise to g roup the variates into classes, each conta ining several counts . This 
can best be done by using an odd number as a class interval so that the class 
mark representing the da ta will be a whole rather than a fractional number . 
Thus, if we were to g r o u p the bristle numbers 13, 14, 15, and 16 into one class, 
the class mark would have to be 14.5, a meaningless value in terms of bristle 
number . It would therefore be better to use a class ranging over 3 bristles or 
5 bristles, giving the integral value 14 or 15 as a class mark . 

G r o u p i n g data into frequency dis t r ibut ions was necessary when compu-
tat ions were done by pencil and paper. Nowadays even thousands of variatcs 
can be processed efficiently by compute r without prior grouping. However, fre-
quency dis t r ibut ions are still extremely useful as a tool for da ta analysis. This 
is especially true in an age in which it is all loo easy for a researcher to obta in 
a numerical result f rom a compute r p rogram without ever really examining the 
data for outliers or for other ways in which the sample may not conform to 
the assumpt ions of the statistical methods . 

Rather than using tally marks to set u p a frequency distr ibut ion, as was 
done in Box 2.1, we can employ Tukey 's stem-and-leaf display. This technique 
is an improvement , since it not only results in a frequency dis tr ibut ion of the 
variates of a sample but also permits easy checking of the variates and order ing 
them into an array (neither of which is possible with tally marks). This technique 
will therefore be useful in compu t ing the median of a sample (see Section 3.3) 
and in comput ing various tests that require ordered arrays of the sample variates 

c . . , . ι Ι Ο Ί . .ηΛ t Ί 
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To learn how to construct a stem-and-leaf display, let us look ahead to 
Table 3.1 in the next chapter , which lists 15 b lood neutrophi l counts . The un-
ordered measurements are as follows: 4.9, 4.6, 5.5, 9.1, 16.3, 12.7, 6.4, 7.1, 2.3, 
3.6, 18.0, 3.7, 7.3, 4.4, and 9.8. To prepare a stem-and-leaf display, we scan the 
variates in the sample to discover the lowest and highest leading digit or digits. 
Next, we write down the entire range of leading digits in unit increments to 
the left of a vertical line (the "stem"), as shown in the accompany ing il lustration. 
We then put the next digit of the first variate (a "leaf") at that level of the stem 
corresponding to its leading digit(s). The first observat ion in our sample is 4.9. 
We therefore place a 9 next to the 4. T h e next variate is 4.6. It is entered by 
finding the stem level for the leading digit 4 and recording a 6 next to the 9 
that is already there. Similarly, for the third variate, 5.5, we record a 5 next to 
the leading digit 5. We cont inue in this way until all 15 variates have been 
entered (as "leaves") in sequence a long the appropr ia t e leading digits of the stem. 
The completed array is the equivalent of a frequency dis tr ibut ion and has the 
appearance of a his togram or bar d iagram (see the illustration). Moreover , it 
permits the efficient order ing of the variates. Thus, f rom the completed array 
it becomes obvious that the appropr ia te order ing of the 15 variates is 2.3, 3.6, 

3.7, 4.4, 4.6, 4.9, 5.5, 6.4, 7.1, 7.3, 9.1, 9.8, 12.7, 16.3, 18.0. The median can easily 
be read off the stem-and-leaf display. It is clearly 6.4. F o r very large samples, 
stem-and-leaf displays may become awkward . In such cases a convent ional 
frequency dis tr ibut ion as in Box 2.1 would be preferable. 

Completed array 
Step I Step 2 . . . Step 7 .. . (Step ) 

Ί Ί 7 3 
3 3 3 3 6 7 
4 9 4 9 6 4 9 6 4 9 6 4 
5 5 5 5 5 5 
6 6 6 4 6 4 
7 7 7 7 13 
X X X X 
9 9 9 1 9 IX 

10 10 10 10 
11 1 1 1 1 1 1 
12 12 12 7 12 7 
13 13 13 13 
14 14 14 14 
15 15 15 15 
16 16 16 3 16 3 
17 17 17 17 
IX IX 18 IX 0 

When the shape of a frequency dis tr ibut ion is of part icular interest, wc may 
wish to present the dis t r ibut ion in graphic form when discussing the results. 
This is generally done by means of frequency diagrams, of which there are two 
common types. For a distr ibution of meristic da ta we employ a bar diagram. 
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FIGURE 2 . 3 

Frequency polygon. Birth weights of 9465 
males infants. Chinese third-class pa t ien ts in 
Singapore , 1950 a n d 1951. D a t a f rom Millis 
and Seng (1954). 

the variable (in our case, the number of plants per quadrat ) , and the o rd ina te 
represents the frequencies. The impor tan t point abou t such a d iag ram is that 
the bars do not touch each other, which indicates that the variable is not con-
t inuous. By contrast , con t inuous variables, such as the frequency dis t r ibut ion 
of the femur lengths of aphid stem mothers , are graphed as a histogram. In a 
h is togram the width of each bar a long the abscissa represents a class interval 
of the frequency dis tr ibut ion and the bars touch each other to show that the 
actual limits of the classes are cont iguous. The midpoint of the bar cor responds 
to the class mark. At the bo t tom of Box 2.! are shown his tograms of the fre-
quency dis tr ibut ion of the aphid data, ungrouped and grouped. The height of 
each bar represents the frequency of the cor responding class. 

T o illustrate that h is tograms are appropr ia t e approx imat ions to the con-
t inuous dis t r ibut ions found in nature, we may take a his togram and make the 
class intervals more nar row, producing more classes. The his togram would then 
clearly have a closer fit to a con t inuous dis tr ibut ion. We can cont inue this pro-
cess until the class intervals become infinitesimal in width. At this point the 
h is togram becomes the con t inuous dis t r ibut ion of the variable. 

Occasionally the class intervals of a grouped con t inuous frequency distri-
but ion are unequal . For instance, in a frequency distr ibution of ages we might 
have more detail on the different ages of young individuals and less accura te 
identification of the ages of old individuals. In such cases, the class intervals 
lor the older age groups would be wider, those lor the younger age groups, nar-
rower. In representing such data , the bars of the his togram are d rawn with 
different widths. 

f igure 2.3 shows ano ther graphical mode of representat ion of a frequency 
distr ibution of a con t inuous variable (in this case, birth weight in infants). As 
we shall see later the shapes of dis t r ibut ions seen in such frequency polygons 
can reveal much about the biological s i tuat ions affecting the given variable. 

2.6 The handling of data 

Data must be handled skillfully and expeditiously so that statistics can be prac-
ticed successfully. Readers should therefore acquaint themselves with (he var-
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In this book we ignore "penci l -and-paper" short-cut me thods for compu ta -
tions, found in earlier tex tbooks of statistics, since we assume that the s tudent 
has access to a calculator or a computer . Some statistical me thods are very 
easy to use because special tables exist that provide answers for s tandard sta-
tistical problems; thus, almost no computa t ion is involved. An example is 
Finney's table, a 2-by-2 contingency table conta ining small frequencies that is 
used for the test of independence (Pearson and Hart ley, 1958, Table 38). For 
small problems, Finney's table can be used in place of Fisher 's me thod of finding 
exact probabili t ies, which is very tedious. O the r statistical techniques are so 
easy to carry out that no mechanical aids are needed. Some are inherently 
simple, such as the sign test (Section 10.3). O the r me thods are only approx ima te 
but can often serve the purpose adequately; for example, we may sometimes 
substitute an casy-to-evaluate median (defined in Section 3.3) for the mean 
(described in Sections 3.1 and 3.2) which requires computa t ion . 

We can use many new types of equipment to perform statistical compu ta -
t i ons—many more than we could have when Introduction to Biostalistics was 
first published. The once-s tandard electrically driven mechanical desk calculator 
has completely d isappeared. Many new electronic devices, f rom small pocket 
calculators to larger desk- top computers , have replaced it. Such dcvices are so 
diverse that we will not try to survey the field here. Even if we did, the rate of 
advance in (his area would be so rapid that whatever we might say would soon 
become obsolete. 

We cannot really draw the line between the more sophisticated electronic 
calculators, on the one hand, and digital computers . There is no abrup t increase 
in capabilities between the more versatile p rog rammable calculators and the 
simpler microcomputers , just as there is none as we progress f rom microcom-
puters to minicomputers and so on up to the large computers that one associates 
with the central compu ta t ion center of a large university or research laboratory. 
All can perform computa t ions automatical ly and be controlled by a set of 
detailed instructions prepared by the user. Most of these devices, including pro-
grammable small calculators, are adequa te for all of the compu ta t ions described 
in this book, even for large sets of data . 

T h e mater ia l in this book cons i s t s of re la t ively s t andard s tat is t ical 
c o m p u t a t i o n s that arc ava i lab le in many stat is t ical p r o g r a m s . BI ( )Mstat : , : is 
a s ta t is t ical s o f t w a r e p a c k a g e that inc ludes most of the s ta t is t ical m e t h o d s 
cove red in this book . 

The ti.se of modern data processing procedures has one inherent danger. 
One can all too easily cither feed in e r roneous data or choose an inappropr ia te 
program. Users must select p rograms carefully to ensure that those programs 
perform the desired computa t ions , give numerically reliable results, and are as 
free from error as possible. When using a program for the first time, one should 
test it using da ta f rom textbooks with which one is familiar. Some programs 

* Ι·'οι· information or l<> order, contact Hxcter Sof tware . Websile:hUp://www.cxelcrM>ilwaa\com. li-mail: 
siilcs(«'cxctcrsoflwai'e.com. ' these programs are compatible with Windows XI' and Vista. 
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are no to r ious because the p r o g r a m m e r has failed to guard against excessive 
round ing er rors or other problems. Users of a p rog ram should carefully check 
the da t a being analyzed so that typing errors are not present. In addi t ion, pro-
grams should help users identify and remove bad da ta values and should provide 
them with t r ans format ions so that they can make sure that their da ta satisfy 
the assumpt ions of var ious analyses. 

Exercises 

2.1 R o u n d t h e f o l l o w i n g n u m b e r s t o t h r e e s i g n i f i c a n t figures: 1 0 6 . 5 5 , 0 . 0 6 8 1 9 , 3 . 0 4 9 5 , 
7815 .01 , 2 . 9 1 4 9 , a n d 2 0 . 1 5 0 0 . W h a t a r e t h e i m p l i e d l i m i t s b e f o r e a n d a f t e r r o u n d -
i n g ? R o u n d t h e s e s a m e n u m b e r s t o o n e d e c i m a l p l a c e . 
A N S . F o r t h e first v a l u e : 107; 106 .545 106 .555; 1 0 6 . 5 - 1 0 7 . 5 ; 106 .6 

2 .2 D i f f e r e n t i a t e b e t w e e n t h e f o l l o w i n g p a i r s of t e r m s a n d g ive a n e x a m p l e of e a c h , 
(a) S t a t i s t i c a l a n d b i o l o g i c a l p o p u l a t i o n s , (b) V a n a l e a n d i n d i v i d u a l , (c) A c c u r a c y 
a n d p r e c i s i o n ( r e p e a t a b i l i t y ) , (d) C l a s s i n t e r v a l a n d c l a s s m a r k , (e) B a r d i a g r a m 
a n d h i s t o g r a m , (f) A b s c i s s a a n d o r d i n a t e . 

2 .3 G i v e n 2 0 0 m e a s u r e m e n t s r a n g i n g f r o m 1.32 t o 2 .95 m m , h o w w o u l d y o u g r o u p 
t h e m i n t o a f r e q u e n c y d i s t r i b u t i o n ? G i v e c l a s s l i m i t s a s wel l a s c l a s s m a r k s . 

2.4 G r o u p t h e f o l l o w i n g 4 0 m e a s u r e m e n t s of i n t e r o r b i t a l w i d t h of a s a m p l e of d o -
m e s t i c p i g e o n s i n t o a f r e q u e n c y d i s t r i b u t i o n a n d d r a w its h i s t o g r a m ( d a t a f r o m 
O l s o n a n d M i l l e r , 1958). M e a s u r e m e n t s a r e in m i l l i m e t e r s . 

12.2 12.9 11.8 11.9 11.6 11.1 12.3 12.2 11.8 11.8 
10.7 1 1.5 1 1.3 11.2 1 1.6 11.9 13.3 11.2 10.5 11.1 
12.1 11.9 10.4 10.7 10.8 11.0 11.9 10.2 10.9 11.6 
10.8 11.6 10.4 10.7 12.0 12.4 11.7 11.8 1 1.3 11.1 

2.5 H o w p r e c i s e l y s h o u l d y o u m e a s u r e t h e w i n g l e n g t h of a s p e c i e s of m o s q u i t o e s 
in a s t u d y of g e o g r a p h i c v a r i a t i o n if t h e s m a l l e s t s p c c i m c n h a s a l e n g t h of a b o u t 
2.8 m m a n d t h e l a r g e s t a l e n g t h of a b o u t 3.5 mm'.1 

2.6 T r a n s f o r m t h e 4 0 m e a s u r e m e n t s in E x e r c i s e 2.4 i n l o c o m m o n l o g a r i t h m s ( u s e a 
t a b i c o r c a l c u l a t o r ) a n d m a k e a f r e q u e n c y d i s t r i b u t i o n of t h e s e t r a n s f o r m e d 
v a r i a t e s . C o m m e n t o n t h e r e s u l t i n g c h a n g e in t h e p a t t e r n of t h e f r e q u e n c y d i s -
t r i b u t i o n f r o m t h a t f o u n d b e f o r e 

2.7 f o r t h e d a t a of T a h l e s 2.1 a n d 2.2 i d e n t i f y t h e ind iv idua l o b s e r v a t i o n s , s a m p l e s , 
p o p u l a t i o n s , a n d v a r i a b l e s . 

2.8 M a k e a s t e m - a n d - l c a f d i s p l a y of t h e d a t a g i v e n in E x c r c i s c 2.4. 
2 .9 T h e d i s t r i b u t i o n of a g e s of s t r i p e d b a s s c a p t u r e d by h o o k a n d l ine f r o m t h e E a s t 

R i v e r a n d t h e H u d s o n R i v e r d u r i n g 1980 w e r e r e p o r t e d a s f o l l o w s ( Y o u n g , 1981): 

A<tc I 

1 13 
2 4 9 
3 9 6 
4 28 
5 16 
6 X 

S h o w th i s d i s t r i b u t i o n in t h e f o r m of a b a r d i a g r a m . 



CHAPTER 

Descriptive Statistics 

An early and fundamen ta l stage in any seienec is the descriptive stage. Until 
phenomena can be accurately described, an analysis of their causes is premature . 
The quest ion "Wha t? " comes before " H o w ? " Unless we know someth ing about 
the usual dis t r ibut ion of the sugar content of blood in a popula t ion of guinea 
pigs, as well as its fluctuations f rom day to day and within days, we shall be 
unable to ascertain the effect of a given dose of a d rug upon this variable. In 
a sizable sample it would be tedious to obta in our knowledge of the material 
by con templa t ing each individual observat ion. We need some form of summary 
to permit us to deal with the da t a in manageab le form, as well as to be able 
to share our findings with others in scientific talks and publicat ions. A his-
togram or bar d iag ram of the frequency distr ibution would be one type of 
summary . However , for most purposes, a numerical summary is needed to 
describe concisely, yet accurately, the propert ies of the observed frequency 
dis tr ibut ion. Quant i t ies providing such a summary are called descriptive sta-
tistics. This chapte r will in t roduce you to some of them and show how they 
arc computed . 

Two kinds of descriptive statistics will be discussed in this chapter : statistics 
of location and statistics of dispersion. The statistics of location (also known as 
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measures of central tendency) describe the position of a sample along a given 
dimension representing a variable. F o r example, after we measure the length of 
the an imals within a sample, we will then want to know whether the an imals 
are closer, say, to 2 cm or to 20 cm. T o express a representat ive value for the 
sample of obse rva t ions—for the length of the an ima l s—we use a statistic of 
location. But statistics of locat ion will no t describe the shape of a f requency 
dis tr ibut ion. The shape may be long or very nar row, may be h u m p e d or U-
shaped, may conta in two humps , or may be markedly asymmetrical . Quan t i -
tative measures of such aspects of frequency dis tr ibut ions are required. T o this 
end we need to define and s tudy the statistics of dispersion. 

The ar i thmet ic mean, described in Section 3.1, is undoubted ly the most 
impor t an t single statistic of location, but others (the geometric mean, the 
ha rmon ic mean, the median, and the mode) are briefly ment ioned in Sections 
3.2, 3.3, and 3.4. A simple statistic of dispersion (the range) is briefly noted in 
Section 3.5, and the s t andard deviat ion, the most c o m m o n statistic for describing 
dispersion, is explained in Section 3.6. O u r first encounter with cont ras ts be-
tween sample statistics and popula t ion parameters occurs in Section 3.7, in 
connect ion with statistics of location and dispersion. In Section 3.8 there is a 
descript ion of practical me thods for comput ing the mean and s t anda rd devia-
tion. The coefficient of variat ion (a statistic that permits us to c o m p a r e the 
relative a m o u n t of dispersion in different samples) is explained in the last section 
(Section 3.9). 

The techniques that will be at your disposal after you have mastered this 
chapte r will not be very powerful in solving biological problems, but they will 
be indispensable tools for any further work in biostatistics. O the r descriptive 
statistics, of both location and dispersion, will be taken up in later chapters . 

An important note: We shall first encounter the use of logar i thms in this 
chapter . T o avoid confusion, c o m m o n logar i thms have been consistently ab-
breviated as log, and natura l logar i thms as In. Thus, log \ means l o g , 0 χ and 
In v means log,, x. 

3.1 The arithmetic mean 

The most c o m m o n statistic of location is familiar to everyone. It is the arithmetic 
mean, commonly called the mean or average. The mean is calculated by summing 
all the individual observat ions or items of a sample and dividing this sum by 
the number of items in the sample. For instance, as the result of a gas analysis 
in a respirometer an investigator obta ins the following four readings of oxygen 
percentages and sums them: 

14.9 
10.8 
12.3 
23.3 

S u m =- 6 1 7 3 
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The investigator calculates the mean oxygen percentage as the sum of the four 
items divided by the n u m b e r of items. Thus the average oxygen percentage is 

M e a n = 15.325% 

Calculat ing a m e a n presents us with the oppor tun i ty for learning statistical 
symbolism. We have already seen (Section 2.2) tha t an individual observat ion 
is symbolized by Y|·, which s tands for the ith observat ion in the sample. F o u r 
observat ions could be wri t ten symbolically as follows: 

Υ» v2, Y 3 , ^ 

We shall define n, the sample size, as the number of items in a sample. In this 
part icular instance, the sample size η is 4. Thus , in a large sample, we can 
symbolize the ar ray f r o m the first to the nth item as follows: 

Yl, Υ2,.·.,Υη 

When we wish to sum items, we use the following nota t ion: 

Σ" Yi = y> + y2 + · · · + η 
i = 1 

The capital Greek sigma, Σ, simply means the sum of the items indicated. The 
i = 1 means that the items should be summed, s tar t ing with the first one and 
ending with the nth one, as indicated by the i = η above the Σ. The subscript 
and superscript are necessary to indicate how many items should be summed. 
The "/ = " in the superscript is usually omit ted as superfluous. For instance, if 
we had wished to sum only the first three items, we would have writ ten Σ?=, Y{. 
O n the other hand , had we wished to sum all of them except the first one, we 
would have written Σ " = 2 ν;. With some exceptions (which will appea r in later 
chapters), it is desirable to omit subscripts and superscripts, which generally 
add to the apparen t complexity of the formula and, when they are unnecessary, 
distract the s tudent ' s a t ten t ion f rom the impor tan t relations expressed by the 
formula. Below are seen increasing simplifications of the complete summat ion 
nota t ion shown at the extreme left: 

Σ Yi = Σ γί = Σγ< = Σ γ = Σ γ 

! 1 ι 1 ; 

The third symbol might be interpreted as meaning, "Sum the Y t 's over all 
available values of /." This is a frequently used nota t ion, a l though we shall 
not employ it in this book. The next, with η as a superscript , tells us to sum η 
items of V; note (hat the i subscript of the Y has been d ropped as unneces-
sary. Finally, the simplest nota t ion is shown at the right. It merely says sum 
the Vs. This will be the form we shall use most frequently: if a summat ion sign 
precedes a variable, the summat ion will be unders tood to be over η items (all 
the items in the sample) unless subscripts or superscripts specifically tell us 
otherwise. 
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We shall use the symbol Y for the ar i thmet ic mean of the variable Y. Its 
fo rmula is ^written as follows: 

- y y L 
Y = = ~YY (3.1) 

η η"" 

This formula tells us, "Sum all the («) items and divide the sum by n." 
The mean of a sample is the center of gravity of the obsen'ations in the sample. 

If you were to d raw a h i s togram of an observed frequency dis t r ibut ion on a 
sheet of c a r d b o a r d and then cut out the h is togram and lay it flat against a 
b lackboard , suppor t ing it with a pencil beneath, chances are that it would be 
out of balance, toppl ing to either the left or the right. If you moved the sup-
por t ing pencil point to a posi t ion a b o u t which the h is togram would exactly 
balance, this point of balance would cor respond to the ar i thmet ic mean. 

We often must c o m p u t e averages of means or of other statistics that may 
differ in their reliabilities because they are based on different sample sizes. At 
o ther times we may wish the individual items to be averaged to have different 
weights or a m o u n t s of influence. In all such cases we compute a weighted 
average. A general fo rmula for calculat ing the weighted average of a set of 
values Yt is as follows: 

t = (3.2) 
Σ »·.-

where η variates, each weighted by a factor w„ are being averaged. The values 
of Yi in such cases are unlikely to represent variates. They are more likely to 
be sample means Yt or some other statistics of different reliabilities. 

The simplest case in which this arises is when the V, are not individual 
variates but are means. Thus , if the following three means are based on differing 
sample sizes, as shown, 

>; n, 

3 .85 12 
5.21 25 
4 . 7 0 Η 

their weighted average will be 

- = (12)(3.85) + (25)(5.2I | + (8X4.70) = 214.05 
1 2 T 2 5 1 S 45 

Note that in this example, compu ta t ion of Ihc weighted mean is exactly equiv-
alent to adding up all the original measurements and dividing the sum by the 
total number of the measurements . Thus, the sample with 25 observat ions, 
having the highest mean, will influence the weighted average in p ropor t ion to 
ils size. 
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3.2 Other means 

W e shall see in Chap te r s 10 and 11 tha t variables are somet imes t ransformed 
into their logar i thms or reciprocals. If we calculate the means of such trans-
formed variables and then change the means back into the original scale, these 
means will not be the same as if we had compu ted the ar i thmetic means of the 
original variables. The result ing means have received special names in statistics. 
The back- t ransformed m e a n of the logarithmically t ransformed variables is 
called the geometric mean. It is computed as follows: 

GMv = ant i log - Υ log Y (3.3) 
η 

which indicates that the geometr ic mean GMr is the ant i logar i thm of the mean 
of the logar i thms of variable Y. Since addi t ion of logar i thms is equivalent to 
mult ipl icat ion of their ant i logar i thms, there is ano the r way of represent ing this 
quanti ty; it is 

GMY = ^Y^Yi
T77Yn (3.4) 

The geometric mean permits us to become familiar with ano the r opera to r 
symbol: capital pi, Π , which may be read as "product . " Just as Σ symbolizes 
summat ion of the items that follow it, so Π symbolizes the mult ipl icat ion of 
the items that follow it. The subscripts and superscripts have exactly the same 
meaning as in the summat ion case. Thus, Expression (3.4) for the geometric 
mean can be rewritten more compact ly as follows: 

GMr=nY\Yi (3.4a) 
I 

The computa t ion of the geometric mean by Expression (3.4a) is quite tedious. 
In practice, the geometr ic mean has to be computed by t ransforming the variates 
into logarithms. 

The reciprocal of the ar i thmetic mean of reciprocals is called the harmonic 
mean. If we symbolize it by HY, the formula for the ha rmonic mean can be 
written in concise form (without subscripts and superscripts) as 

1 1 „ 1 

You may wish to convince yourself that the geometr ic mean and the ha rmonic 
mean of the four oxygen percentages are 14.65% and 14.09%, respectively. Un-
less the individual items do not vary, the geometric mean is a lways less than 
the ar i thmetic mean, and the ha rmonic mean is always less than the geometric 
mean. 

Some beginners in statistics have difficulty in accepting the fact that mea-
sures of location or central tendency other t han the ar i thmetic mean are per-
missible or even desirable. They feel that the ar i thmetic mean is the "logical" 
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average, and that any o ther mean would be a dis tort ion. This whole p rob lem 
relates to the proper scale of measurement for representing data ; this scale is 
not always the linear scale familiar to everyone, but is sometimes by preference 
a logari thmic or reciprocal scale. If you have doub t s abou t this quest ion, we 
shall try to allay them in C h a p t e r 10, where we discuss the reasons for t rans-
forming variables. 

3.3 The median 

The median Μ is a statistic of location occasionally useful in biological research. 
It is defined as that value of the variable (in an ordered array) that has an equal 
number of items on either side of it. Thus, the median divides a frequency dis-
t r ibut ion into two halves. In the following sample of five measurements , 

14, 15, 16, 19, 23 

Μ ~ 16, since the third observat ion has an equal number of observa t ions on 
both sides of it. We can visualize the median easily if we think of an a r ray 
f rom largest to smal les t—for example, a row of men lined u p by their heights. 
The median individual will then be that m a n having an equal n u m b e r of men 
on his right and left sides. His height will be the median height of the sam-
ple considered. This quantity is easily evaluated f rom a sample a r ray with 
an odd number of individuals. When the number in the sample is even, the 
median is convent ional ly calculated as the midpoint between the (n/2)th and 
the [(«/2) + 1 j t h variate. Thus , for the sample of four measurements 

14, 15, 16, 19 

the median would be the midpoint between the second and third items, or 15.5. 
Whenever any one value of a variatc occurs more than once, p roblems may 

develop in locat ing the median. C o m p u t a t i o n of the median item becomes more 
involved because all the members of a given class in which the median item is 
located will have the same class mark . The median then is the {n/2)lh variate 
in the frequency dis t r ibut ion. It is usually computed as that point between the 
class limits of the median class where the median individual would be located 
(assuming the individuals in the class were evenly distributed). 

The median is just one of a family of statistics dividing a frequency dis-
t r ibut ion into equal areas. It divides the dis t r ibut ion into two halves. The three 
quartiles cut the dis t r ibut ion at the 25, 50, and 75% po in t s—tha t is, at points 
dividing the dis t r ibut ion into first, second, third, and four th quar te r s by area 
(and frequencies). The second quarl i le is, of course, the median. (There are also 
quintiles, deciles, and percentiles, dividing the distr ibution into 5. 10, and 100 
equal port ions, respectively.) 

Medians arc most often used for d is t r ibut ions that do not confo rm to the 
s t andard probabil i ty models, so that nonparamet r i c methods (sec Chap te r 10) 
must be used. Sometimes (he median is a more representative measure of loca-
tion than the ar i thmet ic mean. Such instances almost always involve asymmetr ic 
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distr ibutions. An often quoted example f rom economics would be a suitable 
measure of locat ion for the "typical" salary of an employee of a corpora t ion . 
The very high salaries of the few senior executives would shift the ar i thmetic 
mean, the center of gravity, toward a completely unrepresentat ive value. The 
median, on the other hand, would be little affected by a few high salaries; it 
would give the par t icular point on the salary scale above which lie 50% of the 
salaries in the corpora t ion , the other half being lower than this figure. 

In biology an example of the preferred applicat ion of a median over the 
ar i thmetic mean may be in popula t ions showing skewed distr ibut ion, such as 
weights. Thus a median weight of American males 50 years old may be a more 
meaningful statistic than the average weight. The median is also of impor tance 
in cases where it may be difficult or impossible to obtain and measure all the 
items of a sample. For example, suppose an animal behaviorist is s tudying 
the time it takes for a sample of animals to perform a certain behavioral step. 
The variable he is measur ing is the time from the beginning of the experiment 
until each individual has performed. What he wants to obta in is an average 
time of performance. Such an average time, however, can be calculated only 
after records have been obtained on all the individuals. It may take a long lime 
for the slowest animals to complete their performance, longer than the observer 
wishes to spend. (Some of them may never respond appropr ia te ly , making the 
computa t ion of a mean impossible.) Therefore, a convenient statistic of location 
to describe these animals may be the median time of performance. Thus, so 
long as the observer knows what the total sample size is, he need not have 
measurements for the r ight-hand tail of his distr ibution. Similar examples would 
be the responses to a d rug or poison in a g roup of individuals (the median 
lethal or effective dose. LD 5 ( I or F.DS0) or the median time for a muta t ion to 
appear in a number of lines of a species. 

3.4 The mode 

T h e mode r e f e r s t o the value represented by the greatest number of individuals. 

When seen on a frequency distr ibut ion, the mode is the value of the variable 
at which the curve peaks. In grouped frequency dis tr ibut ions the mode as a 
point has little meaning. It usually sulliccs It) identify the modal class. In biology, 
the mode does not have many applicat ions. 

Distr ibut ions having two peaks (equal or unequal in height) are called 
bimodal; those with more than two peaks are multimodal. In those rare dis-
tr ibutions that are U-shaped, we refer to the low point at the middle of the 
d i s t r i b u t i o n as a n antimode. 

In evaluat ing the relative merits of the ar i thmetic mean, the median, and 
the mode, a number of considerat ions have to be kept in mind. The mean is 
generally preferred in statistics, since it has a smaller s tandard er ror than other 
statistics of location (see Section 6.2), it is easier to work with mathematical ly, 
and it has an addi t ional desirablc proper ty (explained in Section 6.1): it will 
tend to be normally distributed even if the original data are not. The mean is 
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An a symmet r i ca l f r equency d i s t r i bu t i on (skewed to the right) s h o w i n g loca t ion of the m e a n , m e d i a n , 
and m o d e . Percent bu t t e r fa t in 120 s amp le s of milk ( f rom a C a n a d i a n ca t t le b reeders ' r ecord book) . 

markedly affected by out lying observat ions; the median and m o d e are not. The 
mean is generally more sensitive to changes in the shape of a frequency distri-
but ion, and if it is desired to have a statistic reflecting such changes, the mean 
may be preferred. 

In symmetrical , un imoda l dis t r ibut ions the mean, the median, and the m o d e 
are all identical. A prime example of this is the well-known normal dis t r ibut ion 
of Chap te r 5. In a typical asymmetr ical dis t r ibut ion, such as the one shown in 
Figure 3.1, the relative positions of the mode, median, and mean are generally 
these: the mean is closest to the d rawn-out tail of the distr ibution, the mode is 
farthest, and the median is between these. An easy way to remember this se-
quence is to recall that they occur in alphabet ical order from the longer tail of 
the distr ibution. 

3.5 The ran}>e 

We now turn to measures of dispersion, f igure 3.2 demons t ra tes that radically 
different- looking dis t r ibut ions may possess the identical ar i thmetic mean. It is 
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Three frequency d is t r ibu t ions having identical m e a n s and sample si/.es but differ ing in dispersion 
pat tern. 

One simple measure of dispersion is the range, which is defined as the 
difference between the largest and the smallest items in a sample. T h u s , t h e r a n g e 

of the four oxygen percentages listed earlier (Section 3.1) is 

Range = 23.3 - 10.8 = 12.5";, 

and the range of the aphid femur lengths (Box 2.1) is 

Range = 4.7 - 3.3 = 1.4 units of 0.1 mm 

Since the range is a measure of the span of the variates a long the scale of the 
variable, it is in the same units as the original measurements . The range is 
clearly affected by even a single outlying value and for this reason is only a 
rnuoh est imate of the dtsriersion of all the items in the samtnle. 
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3.6 The standard deviation 

W e desire tha t a measure of dispersion take all i tems of a d is t r ibut ion in to 
considerat ion, weighting each i tem by its dis tance f rom the center of the distri-
but ion . W e shall now try t o cons t ruc t such a statistic. In Tab le 3.1 we show a 
sample of 15 b lood neut rophi l coun t s f rom pat ients with tumors . C o l u m n (1) 
shows the variates in the o rder in which they were reported. The c o m p u t a t i o n 
of the mean is shown below the table. The mean neutrophi l count tu rns out to 
be 7.713. 

The distance of each var iate f rom the m e a n is computed as the fol lowing 
deviat ion: 

y = Y - Y 

Each individual deviat ion, or deviate, is by convent ion computed as the indi-
vidual observat ion minus the mean, Υ — Ϋ, ra ther than the reverse, Ϋ — Y. 
Deviates are symbolized by lowercase letters cor responding to the capital letters 
of the variables. C o l u m n (2) in Table 3.1 gives the deviates computed in this 
manner . 

We now wish to calculate an average deviat ion that will sum all the deviates 
and divide them by the n u m b e r of deviates in the sample. But note that when 

T A B L E 3 . 1 

The standard deviation. L o n g me thod , not r ecommended for 
hand or ca lcula tor c o m p u t a t i o n s but shown here to illus-
t ra te the mean ing of the s t anda rd deviat ion. T h e d a t a are 
b lood neut rophi l coun t s (divided by 1000) per microliter, in 
15 pa t ien ts with nonhemato log ica l t umors . 

( / ) (2) (i) 
Y y = Υ - Y y2 

T o t a l 

4 .9 - 2 . 8 1 7 . 9 1 4 8 
4 .6 - 3 . 1 1 9 . 6 9 2 8 
5.5 - 2 . 2 1 4 . 8 9 8 8 
9.1 1.39 1 .9228 

16.3 8 .59 7 3 . 7 3 0 8 
12.7 4 . 9 9 2 4 . 8 6 6 8 

6 .4 - 1 . 3 1 1 .7248 
7.1 - 0 . 6 1 0 . 3 7 6 2 
2.3 - 5 . 4 1 2 9 . 3 0 4 2 
3 .6 - 4 . 1 1 16 .9195 

18.0 10.29 1 0 5 . 8 1 5 5 
3.7 - 4 . 0 1 16 .1068 
7.3 - 0 . 4 1 0 . 1 7 0 8 
4 .4 - 3 . 3 1 10 .9782 
9 .8 2 .09 4 . 3 5 4 2 

15.7 0 . 0 5 3 0 8 . 7 7 7 0 

M e a n Y Σ Υ I Is.7 
- 7 .713 
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we sum our deviates, negative and positive deviates cancel out , as is shown 
by the sum at the b o t t o m of co lumn (2); this sum appears to be unequal to 
zero only because of a round ing error . Devia t ions f rom the ar i thmet ic mean 
always sum to zero because the mean is the center of gravity. Consequent ly , 
an average based on the sum of deviat ions would also always equal zero. You 
are urged to s tudy Appendix A l . l , which demons t ra tes that the sum of deviat ions 
a round the mean of a sample is equal to zero. 

Squar ing the deviates gives us co lumn (3) of Table 3.1 and enables us to 
reach a result o ther t han zero. (Squaring the deviates also holds o ther mathe-
matical advantages , which we shall take u p in Sections 7.5 and 11.3.) The sum 
of the squared deviates (in this case, 308.7770) is a very impor t an t quant i ty in 
statistics. It is called the sum of squares and is identified symbolically as Σγ2. 
Another c o m m o n symbol for the sum of squares is SS. 

The next step is to obta in the average of the η squared deviations. The 
resulting quant i ty is k n o w n as the variance, or the mean square'. 

The variance is a measure of fundamenta l impor tance in statistics, and we 
shall employ it t h roughou t this book. At the moment , we need only remember 
that because of the squar ing of the deviations, the variance is expressed in 
squared units. T o u n d o the effect of the squaring, we now take the positive 
square root of the variance and obta in the standard deviation: 

Thus, s tandard deviation is again expressed in the original units of measure-
ment, since it is a square root of the squared units of the variance. 

An important note: The technique just learned and illustrated in Table 3.1 
is not the simplest for direct compu ta t ion of a variance and s t andard deviation. 
However, it is often used in compute r programs, where accuracy of computa -
tions is an impor tan t considerat ion. Alternative and simpler computa t iona l 
methods are given in Section 3.8. 

The observant reader may have noticed that we have avoided assigning 
any symbol to either the variance or the s tandard deviation. We shall explain 
why in the next section. 

3.7 Sample statistics and parameters 

U p to now we have calculated statistics f rom samples without giving too much 
thought to what these statistics represent. When correctly calculated, a mean 
and s tandard deviation will always be absolutely true measures of locat ion and 
dispersion for the samples on which they are based. Thus, the true mean of the 
four oxygen percentage readings in Section 3.1 is 15.325".",. The s tandard devia-
tion of the 15 neutrophi l counts is 4.537. However, only rarely in biology (or 

Variance = 
X>·2 __ 308.7770 

= 20.5851 
15 

f ι ,Λ,-,ιί^,Λ .,,-,,ι , ι ; . . 
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only as descriptive summar ies of the samples we have studied. Almost a lways we 
are interested in the populations f rom which the samples have been taken. W h a t 
we want to know is not the mean of the par t icular four oxygen precentages, 
but ra ther the t rue oxgyen percentage of the universe of readings f r o m which 
the four readings have been sampled. Similarly, we would like to k n o w the t rue 
mean neutrophi l coun t of the popula t ion of patients with nonhemato log ica l 
tumors , no t merely the mean of the 15 individuals measured. When s tudying 
dispersion we generally wish to learn the true s t andard deviat ions of the popu-
lat ions and not those of the samples. These popula t ion statistics, however , are 
u n k n o w n and (generally speaking) are unknowable . W h o would be able to col-
lect all the pat ients with this par t icular disease and measure their neut rophi l 
counts? T h u s we need to use sample statistics as es t imators of population statis-
tics or parameters. 

It is convent ional in statistics to use Greek letters for popula t ion pa ramete r s 
and R o m a n letters for sample statistics. Thus , the sample mean Ϋ es t imates μ, 
the pa ramet r i c mean of the popula t ion . Similarly, a sample variance, symbolized 
by s 2 , es t imates a paramet r ic variance, symbolized by a 2 . Such es t imators should 
be unbiased. By this we mean that samples (regardless of the sample size) taken 
f rom a popula t ion with a known paramete r should give sample statistics that , 
when averaged, will give the parametr ic value. An est imator that does not do 
so is called biased. 

The sample mean Ϋ is an unbiased es t imator of the paramet r ic mean μ. 
However , the sample var iance as computed in Section 3.6 is not unbiased. O n 
the average, it will underes t imate the magni tude of the popula t ion variance a 1 . 
To overcome this bias, mathemat ica l statisticians have shoWn that when sums 
of squares are divided by π — 1 rather than by η the resulting sample variances 
will be unbiased est imators of the popula t ion variance. For this reason, it is 
cus tomary to c o m p u t e variances by dividing the sum of squares by η — 1. The 
formula for the s t andard deviat ion is therefore customari ly given as follows: 

In the neutrophi l -count da ta the s tandard deviat ion would thus be computed as 

We note that this value is slightly larger than our previous est imate of 4.537. 
Of course, the greater the sample size, the less difference there will be between 
division by η and by n I. However, regardless of sample size, it is good 
practice to divide a sum of squares by η — 1 when comput ing a variance or 
s tandard deviation. It may be assumed that when the symbol s2 is encountered , 
it refers to a variance obta ined by division of the sum of squares by the degrees 
of freedom, as the quant i ty η — 1 is generally referred to. 

Division of the sum of squares by η is appropr i a t e only when the interest 
of the investigator is limited to the sample at hand and to its variance and 

(3.6) 
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s tandard deviat ion as descriptive statistics of the sample. This would be in 
contras t to using these as est imates of the popula t ion parameters . There are 
also the rare cases in which the investigator possesses da ta on the entire popu-
lation; in such cases division by η is perfectly justified, because then the inves-
t igator is not es t imat ing a paramete r but is in fact evaluat ing it. Thus the 
variance of the wing lengths of all adul t whoop ing cranes would be a pa ramet r i c 
value; similarly, if the heights of all winners of the Nobel Prize in physics had 
been measured, their variance would be a paramete r since it would be based 
on the entire popula t ion . 

3.8 Practical methods for computing mean and standard deviation 

Three steps are necessary for comput ing the s t andard deviat ion: (1) find Σ>>2, 
the sum of squares; (2) divide by η — 1 to give the variance; and (3) take the 
square root of the var iance to obtain the s t andard deviation. The procedure 
used to compu te the sum of squares in Section 3.6 can be expressed by the 
following formula: 

£ y 2 = X < y - y ) 2 (3.7) 

This formula t ion explains most clearly the mean ing of the sum of squares, al-
though it may be inconvenient for compu ta t ion by hand or calculator , since 
one must first compu te the mean before one can square and sum the deviations. 
A quicker computa t iona l formula for this quant i ty is 

v r V > " (3.8) 
11 

Let us see exactly wha t this formula represents. The first term on the right side 
of the equat ion , Σ Υ 2 , is the sum of all individual Y's, each squared, as follows: 

£ y 2 - Y2 + >1 + >1 + · • • + Y2„ 

When referred to by name, Σ Υ 2 should be called the "sum of Y squared" and 
should be carefully distinguished f rom Σ>>2, " the sum of squares of Y." These 
names are unfor tunate , but they are too well established to think of amending 
them. The other quant i ty in Expression (3.8) is (ΣΥ)2/>ι. It is often called the 
correction term (CT). The numera to r of this term is the square of the sum of the 
Y's; tha t is, all the Y's are first summed, and this sum is then squared. In general, 
this quant i ty is different f rom Σ Υ 2 , which first squares the y ' s and then sums 
them. These two terms arc identical only if all the Y's arc equal. If you arc not 
certain about this, you can convince yourself of this fact by calculat ing these 
two quanti t ies for a few numbers . 

The d isadvantage of Expression (3.8) is that the quanti t ies Σ Y2 and (Σ Y)2hi 
may bo th be quite large, so that accuracy may be lost in comput ing their dif-
ference unless one takes the precaut ion of carrying sufficient significant figures. 

Why is Expression (3.8) identical with Expression (3.7)? The proof of this 
identity is very simple and is given in Appendix A 1.2. You are urged to work 
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t h rough it to build up your confidence in handl ing statistical symbols and 
formulas . 

It is somet imes possible to simplify compu ta t i ons by recoding variates into 
simpler form. We shall use the term additive coding for the addi t ion or sub-
t ract ion of a cons tant (since subt rac t ion is only addi t ion of a negative number) . 
W e shall similarly use multiplicative coding to refer to the mult ipl icat ion or 
division by a cons tan t (since division is mult ipl icat ion by the reciprocal of the 
divisor). We shall use the te rm combination coding to mean the appl icat ion of 
bo th addit ive and multiplicative coding to the same set of data . In Appendix 
A 1.3 we examine the consequences of the three types of coding in the com-
puta t ion of means, variances, and s t andard deviations. 

F o r the case of means, the fo rmula for combina t ion coding and decoding is 
the most generally applicable one. If the coded variable is Yc = D(Y + C), then 

where C is an addit ive code and D is a multiplicative code. 
O n considering the effects of coding variates on the values of variances and 

standard deviations, we find that addit ive codes have no effect on the sums of 
squares, variances, or s t anda rd deviations. The mathemat ica l proof is given in 
Appendix A 1.3, but we can see this intuitively, because an addit ive code has 
no effect on the distance of an item f rom its mean. The distance f rom an item 
of 15 to its mean of 10 would be 5. If we were to code the variates by sub-
tract ing a constant of 10, the item would now be 5 and the mean zero. The 
difference between them would still be 5. Thus, if only addit ive coding is em-
ployed, the only statistic in need of decoding is the mean. But multiplicative 
coding does have an effect on sums of squares, variances, and s tandard devia-
tions. The s tandard deviat ions have to be divided by the multiplicative code, 
just as had to be done for the mean. However , the sums of squares or variances 
have to be divided by the multiplicative codes squared, because they are squared 
terms, and the multiplicative factor becomcs squared dur ing the operat ions . In 
combina t ion coding the addit ive code can be ignored. 

When the data are unordered , the computa t ion of the mean and s tandard 
deviat ion proceeds as in Box 3.1, which is based on the unordered neutrophi l -
count da ta shown in Table 3.1. We chose not to apply coding to these da ta , 
since it would not have simplified the compu ta t ions appreciably. 

When the da ta are arrayed in a frequency distr ibution, the compu ta t i ons 
can be made much simpler. When comput ing the statistics, you can often avoid 
the need for manua l entry of large numbers of individual variatcs if you first 
set up a frequency dis tr ibut ion. Sometimes the data will come to you already 
in the form of a frequency dis t r ibut ion, having been grouped by the researcher. 

The computa t ion of Ϋ and s f rom a frequency distr ibution is illustrated in 
Box 3.2. The da ta are the birth weights of male Chinese children, first encountered 
in Figure 2.3. The calculat ion is simplified by coding to remove the awkward 
class marks . This is d ime bv subt rac t ing 59.5. the lowest class mark of the arrav. 
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BOX 3.1 
Calculation of Ϋ and s from unordered data. 

Neutrophil counts, unordered as shown in Table 3.1. 

Computation 

n = 15 

£ 7 = 115.7 

y = - T y = 7.713 
η 

Σ Υ 2 = 1201.21 

= 308.7773 

Σ / , 308.7773 
S ~ η - 1 ~ 14 

= 22.056 

s = V22.056 = 4.696 

The resulting class m a r k s are values such as 0, 8, 16, 24, 32, and so on. They 
are then divided by 8, which changes them to 0, 1, 2, 3, 4, and so on, which is 
the desired format . The details of the computa t ion can be learned f rom the box. 

When checking the results of calculations, it is frequently useful to have 
an approx imate me thod for es t imat ing statistics so that gross errors in compu-
tation can be detected. A simple method for es t imat ing the mean is to average 
the largest and smallest observat ion to obtain the so-called miJrunye. For the 
neutrophi l counts of Table 3.1, this value is (2.3 + 18.0J/2 = 10.15 (not a very 
good estimate). S tandard deviat ions can be est imated f rom ranges by app ro -
priate division of the range, as follows: 

/•'or samples of Divide the range by 

10 
3 0 

100 
5 0 0 

1000 

3 
4 
5 
6 
6 



4 2 CHAPTER 3 /' DESCRIPTIVE STATISTICS 

BOX 3.2 
Calculation of F, s, and Κ from a frequency distribution. 

Birth weights of male Chinese in ounces. 

(/) (2) 
Class mark Coifei c/iJM mark y 

/ 

59.5 2 0 
67.5 6 1 
75.5 39 2 
83.5 385 3 
91.5 888 4 
99.5 1729 5 

107.5 2240 6 
115.5 2007 7 
123.5 1233 8 
131.5 641 9 
139.5 201 10 
147.5 74 11 
155.5 14 12 
163.5 5 13 
171.5 1 

9465 = η 
14 

Source: Millis and Seng (1954). 

Computation Coding and decoding 

v Y — 59 5 
Σ JX = 59,629 Code: Yc = -

Ϋ, = 6.300 To decode y = 8 f r + 5 9 . 5 

^ /Yf
2 = 402,987 = 50-4 + 59.5 

= 109.9 oz 
CT = = 375,659.550 

η 

Z / > ' c = Z / n 2 - C T = 27,327.450 

s? = = 2.888 
η — 1 

sc = 1.6991 To decode sf: s = 8sc = 13.593 oz 

V = i X 100 - ^ ^ X 100 = 12.369% 
Y 109.9 
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The range of the neutrophi l counts is 15.7. When this value is divided by 4, we 
get an est imate for the s t anda rd deviat ion of 3.925, which compares with the 
calculated value of 4.696 in Box 3.1. However , when we est imate mean and 
s tandard deviat ion of the aphid femur lengths of Box 2.1 in this manner , we 
obta in 4.0 and 0.35, respectively. These are good estimates of the ac tual values 
of 4.004 and 0.3656, the sample mean and s t andard deviation. 

3.9 The coefficient of variation 

Having obta ined the s t anda rd deviat ion as a measure of the a m o u n t of var ia t ion 
in the da ta , you may be led to ask, " N o w what?" At this stage in our com-
prehension of statistical theory, no th ing really useful comes of the compu ta t ions 
we have carried out . However , the skills jus t learned are basic to all later statis-
tical work . So far, the only use that we might have for the s t anda rd deviation 
is as an est imate of the a m o u n t of variat ion in a popula t ion . Thus , we may 
wish to compare the magni tudes of the s tandard deviat ions of similar popula-
tions and see whether popula t ion A is more or less variable than popula t ion B. 

When popula t ions differ appreciably in their means, the direct compar i son 
of their variances or s t andard deviat ions is less useful, since larger organisms 
usually vary more than smaller one. F o r instance, the s tandard deviation of 
the tail lengths of e lephants is obviously much greater than the entire tail length 
of a mouse. To compare the relative a m o u n t s of variat ion in popula t ions having 
different means, the coefficient of variation, symbolized by V (or occasionally 
CV), has been developed. This is simply the s t andard deviat ion expressed as a 
percentage of the mean. Its formula is 

For example, the coefficient of variat ion of the birth weights in Box 3.2 is 
12.37%, as shown at the bo t tom of that box. The coefficient of variat ion is 
independent of the unit of measurement and is expressed as a percentage. 

Coefficients of variat ion are used when one wishes to compare the variat ion 
of two popula t ions without considering the magni tude of their means. (It is 
p robably of little interest to discover whether the birth weights of the Chinese 
children are more or less variable than the femur lengths of the aphid stem 
mothers . However, we can calculate V for the latter as (0.3656 χ Ι00)/4.004 = 
9.13%, which would suggest that the birth weights arc more variable.) Often, 
we shall wish to test whether a given biological sample is more variable for one 
character than for another . Thus, for a sample of rats, is body weight more 
variable than blood sugar content? A second, frequent type of compar i son , 
especially in systcmatics, is a m o n g different popula t ions for the same character . 
Thus, we may have measured wing length in samples of birds f rom several 
localities. We wish to know whether any one of these popula t ions is more vari-
able than the others. An answer to this quest ion can be obtained by examining 
the coefficients of variat ion of wing length in these samples. 
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Exercises 

3.1 F i n d f , s, V, a n d t h e m e d i a n f o r t h e f o l l o w i n g d a t a ( m g of g l y c i n e p e r m g of 
c r e a t i n i n e in t h e u r i n e of 3 7 c h i m p a n z e e s ; f r o m G a r t l e r , F i r s c h e i n , a n d D o b -
z h a n s k y , 1956). A N S . Y = 0 . 1 1 5 , s = 0 . 1 0 4 0 4 . 

.008 . 018 . 0 5 6 . 0 5 5 . 1 3 5 .052 .077 .026 . 4 4 0 . 3 0 0 

.025 .036 .043 .100 .120 .110 .100 .350 . 1 0 0 . 3 0 0 

.011 . 0 6 0 . 0 7 0 . 0 5 0 . 0 8 0 . 1 1 0 . 1 1 0 . 1 2 0 . 1 3 3 . 1 0 0 

. 1 0 0 . 1 5 5 . 3 7 0 .019 . 1 0 0 . 1 0 0 .116 

3 .2 F i n d t h e m e a n , s t a n d a r d d e v i a t i o n , a n d c o e f f i c i e n t of v a r i a t i o n f o r t h e p i g e o n 
d a t a g i v e n in E x e r c i s e 2.4. G r o u p t h e d a t a i n t o t en c l a s se s , r e c o m p u t e Ϋ a n d s, 
a n d c o m p a r e t h e m w i t h t h e r e s u l t s o b t a i n e d f r o m u n g r o u p e d d a t a . C o m p u t e 
t h e m e d i a n f o r t h e g r o u p e d d a t a . 

3 . 3 T h e f o l l o w i n g a r e p e r c e n t a g e s of b u t t e r f a t f r o m 120 r e g i s t e r e d t h r e e - y e a r - o l d 
A y r s h i r e c o w s s e l e c t e d a t r a n d o m f r o m a C a n a d i a n s t o c k r e c o r d b o o k . 
(a) C a l c u l a t e Y, s, a n d V d i r e c t l y f r o m t h e d a t a . 
(b) G r o u p t h e d a t a in a f r e q u e n c y d i s t r i b u t i o n a n d a g a i n c a l c u l a t e Y, s, a n d V. 

C o m p a r e t h e r e s u l t s w i t h t h o s e of (a). H o w m u c h p r e c i s i o n h a s b e e n l o s t b y 
g r o u p i n g ? A l s o c a l c u l a t e t h e m e d i a n . 

4 . 3 2 4 . 2 4 4 . 2 9 4 . 0 0 
3 .96 4 . 4 8 3 .89 4 . 0 2 
3 .74 4 . 4 2 4 . 2 0 3 .87 
4 . 1 0 4 . 0 0 4 . 3 3 3 .81 
4 . 3 3 4 . 1 6 3 .88 4 .81 
4 . 2 3 4 . 6 7 3 . 7 4 4 . 2 5 
4 .28 4 . 0 3 4 . 4 2 4 . 0 9 
4 . 1 5 4 . 2 9 4 . 2 7 4 . 3 8 
4 . 4 9 4 . 0 5 3 .97 4 . 3 2 
4 . 6 7 4 .11 4 . 2 4 5 .00 
4 . 6 0 4 . 3 8 3 .72 3 .99 
4 . 0 0 4 . 4 6 4 . 8 2 3.91 
4 .71 3 .96 3 . 6 6 4 . 1 0 
4 . 3 8 4 . 1 6 3 .77 4 . 4 0 
4 . 0 6 4 .08 3 .66 4 . 7 0 
3 .97 3 .97 4 . 2 0 4 .41 
4 .31 3 .70 3 .83 4 . 2 4 
4 . 3 0 4 . 1 7 3 .97 4 . 2 0 
4 .51 3 .86 4 . 3 6 4 . 1 8 
4 . 2 4 4 . 0 5 4 . 0 5 3 .56 
3 .94 3 .89 4 . 5 8 3 .99 
4 .17 3 .82 3 .70 4 . 3 3 
4 . 0 6 3 .89 4 . 0 7 3 .58 
3 .93 4 . 2 0 3 .89 4 . 6 0 
4 . 3 8 4 . 1 4 4 . 6 6 3 .97 
4 . 2 2 3 .47 3 .92 4 .91 
3 .95 4 .38 4 . 1 2 4 . 5 2 
4 . 3 5 3.91 4 . 1 0 4 . 0 9 
4 . 0 9 4 . 3 4 4 . 0 9 4 . 8 8 
4 .28 3.98 3 .86 4 . 5 8 

3 .4 W h a t c l fec t w o u l d a d d i n g a c o n s t a n t 5.2 t o all o b s e r v a t i o n s h a v e u p o n t h e 
n u m e r i c a l v a l u e s of t h e f o l l o w i n g s t a t i s t i c s : Υ, .s, V, a v e r a g e d e v i a t i o n , m e d i a n . 
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mode, range? What would be the effect of adding 5.2 and then multiplying the 
sums by 8.0? Would it make any difference in the above statistics if we multiplied 
by 8.0 first and then added 5.2? 

3.5 Estimate μ and σ using the midrange and the range (see Section 3.8) for the data 
in Exercises 3.1, _3.2, and 3.3. How well do these estimates agree with the esti-
mates given by Y and s? ANS. Estimates of μ and σ for Exercise 3.2 are 0.224 
and 0.1014. 

3.6 Show that the equation for the variance can also be written as 

, ΤΥ2-ηΫ2 
s2 = ^ 

η — 1 

3.7 Using the striped _bass age distribution given in Exercise 2.9, compute the fol-
lowing statistics: Y, s2, s, V, median, and mode. ANS. 7 = 3.043, s2 = 1.2661, 
s = 1.125, V = 36.98%, median = 2.948, mode = 3. 

3.8 Use a calculator and compare the results of using Equations 3.7 and 3.8 to 
compute s2 for the following artificial data sets: 
(a) 1 , 2 , 3 , 4 , 5 
(b) 9001, 9002, 9003, 9004, 9005 
(c) 90001, 90002, 90003, 90004, 90005 
(d) 900001, 900002, 900003, 900004, 900005 
Compare your results with those of one or more computer programs. What is 
the correct answer? Explain your results. 



C H A P T E R 

Introduction to Probability 
Distributions: The Binomial and 
Poisson Distributions 

In Section 2.5 we first encountered frequency distr ibutions. For example, Table 
2.2 shows a dis t r ibut ion for a meristic, or discrete (discontinuous), variable, the 
n u m b e r of sedge p lants per quadra t . Examples of dis t r ibut ions for con t inuous 
variables are the femur lengths of aphids in Box 2.1 and the h u m a n birth weights 
in Box 3.2. Each of these dis t r ibut ions informs us abou t the absolute f requency 
of any given class and permits us to c o m p u t a t e the relative frequencies of any 
class of variable. Thus, most of the quad ra t s conta ined either no sedges or one 
or two plants. In the 139.5-oz class of birth weights, we find only 201 out of 
the total of 9465 babies recorded; that is, approximate ly only 2.1% of the infants 
are in that bir th weight class. 

We realize, of course, that these f requency dis t r ibut ions are only samples 
f rom given populat ions . The birth weights, for example, represent a popula t ion 
of male Chinese infants f rom a given geographical area. But if we knew our 
sample to be representat ive of that popula t ion , we could make all sorts of pre-
dict ions based upon the sample f requency dis t r ibut ion. F o r instance, we could 
say that approximate ly 2.1% of male Chinese babies born in this popula t ion 
should weigh between 135.5 and 143.5 oz at birth. Similarly, we might say that 
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the probabi l i ty that the weight at bir th of any one baby in this popula t ion will 
be in the 139.5-oz bi r th class is qui te low. If all of the 9465 weights were mixed 
up in a ha t and a single one pulled out , the probabi l i ty that we would pull out 
one of the 201 in the 139.5-oz class would be very low indeed—only 2.1%. It 
would be much m o r e p robable tha t we would sample an infant of 107.5 or 
115.5 oz, since the infants in these classes are represented by frequencies 2240 
and 2007, respectively. Finally, if we were to sample f rom an u n k n o w n popula-
tion of babies and find that the very first individual sampled had a bi r th weight 
of 170 oz, we would p robab ly reject any hypothesis that the u n k n o w n popula t ion 
was the same as tha t sampled in Box 3.2. W e would arrive at this conclusion 
because in the dis t r ibut ion in Box 3.2 only one out of a lmost 10,000 infants 
had a birth weight tha t high. T h o u g h it is possible that we could have sampled 
f rom the popula t ion of male Chinese babies and obtained a birth weight of 170 
oz, the probabi l i ty tha t the first individual sampled would have such a value 
is very low indeed. It seems much more reasonable to suppose that the u n k n o w n 
popula t ion f rom which we are sampling has a larger mean that the one sampled 
in Box 3.2. 

W e have used this empirical frequency distr ibution to make certain predic-
tions (with what frequency a given event will occur) or to m a k e j udgmen t s and 
decisions (is it likely that an infant of a given birth weight belongs to this 
population?). In m a n y cases in biology, however, we shall make such predict ions 
not f rom empirical distr ibutions, bu t on the basis of theoretical considera t ions 
that in our j udgmen t are pert inent . We may feel that the da t a should be distrib-
uted in a certain way because of basic assumpt ions about the na tu re of the 
forces act ing on the example at hand. If our actually observed da t a do not 
conform sufficiently to the values expected on the basis of these assumpt ions , 
we shall have serious d o u b t s about our assumptions . This is a c o m m o n use of 
frequency dis t r ibut ions in biology. The assumpt ions being tested generally lead 
to a theoretical f requency distr ibution known also as a probability distribution. 
This may be a simple two-valued distr ibut ion, such as the 3:1 rat io in a 
Mendel ian cross; or it may be a more complicated funct ion, as it would be if 
we were trying to predict the n u m b e r of plants in a quadra t . If we find that 
the observed da t a do not fit the expectat ions on the basis of theory, we are 
often led to the discovery of some biological mechanism causing this deviation 
f rom expectation. The phenomena of linkage in genetics, of preferential mat ing 
between different phenotypes in animal behavior, of congregat ion of animals 
at certain favored places or, conversely, their territorial dispersion are cases in 
point. We shall thus make use of probabi l i ty theory to test our assumpt ions 
about the laws of occurrence of certain biological phenomena . Wc should point 
out to the reader, however, tha t probabil i ty theory underlies the entire s t ructure 
of statistics, since, owing to the nonmathemat ica l or ienta t ion of this book, this 
may not be entirely obvious. 

In this chapte r we shall first discuss probabil i ty, in Section 4.1, but only to 
the extent necessary for comprehens ion of the sections that follow at the intended 
level of mathemat ica l sophist icat ion. Next, in Section 4.2, we shall take up the 
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binomia l f requency distr ibut ion, which is not only impor tan t in cer ta in types 
of studies, such as genetics, but also fundamenta l to an unders t and ing of the 
var ious k inds of probabi l i ty dis t r ibut ions to be discussed in this book . 

The Poisson dis t r ibut ion, which follows in Section 4.3, is of wide applicabil i ty 
in biology, especially for tests of r andomness of occurrence of certain events. 
Both the b inomial and Poisson dis t r ibut ions are discrete probabi l i ty dis t r ibu-
tions. The most c o m m o n con t inuous probabi l i ty dis t r ibut ion is the no rma l 
frequency dis t r ibut ion, discussed in Chap te r 5. 

4.1 Probability, random sampling, and hypothesis testing 

W e shall start this discussion with an example that is no t biometr ical or 
biological in the strict sense. W e have of ten found it pedagogically effective to 
in t roduce new concepts th rough s i tuat ions thoroughly familiar to the s tudent , 
even if the example is no t relevant to the general subject mat te r of biostatistics. 

Let us be take ourselves to Matchless University, a state inst i tut ion 
somewhere between the Appalachians and the Rockies. Looking at its enrol lment 
figures, we notice the following b reakdown of the student body: 70% of the 
s tudents are American undergradua tes (AU) and 26% are American g radua te 
s tudents (AG); the remaining 4% are f rom abroad . Of these, 1% are foreign 
undergradua tes (FU) and 3% are foreign g radua te s tudents (FG). In much of 
our work we shall use p ropor t ions ra ther than percentages as a useful convent ion. 
Thus the enrol lment consists of 0.70 AU's, 0.26 AG's, 0.01 FU's , and 0.03 FG's . 
The total s tudent body, cor responding to 100%, is therefore represented by the 
figure 1.0. 

If we were to assemble all the s tudents and sample 100 of them at r andom, 
we would intuitively expect that , on the average, 3 would be foreign g radua te 
s tudents . The actual ou tcome might vary. There might not be a single F G 
s tudent a m o n g the 100 sampled, or there might be quite a few more than 3. 
The ratio of the n u m b e r of foreign g radua te s tudents sampled divided by the 
total number of s tudents sampled might therefore vary f rom zero to considerably 
greater than 0.03. If we increased our sample size to 500 or 1000, it is less likely 
that the rat io would fluctuate widely a round 0.03. The greater the sample taken, 
the closer the ra t io of F G s tudents sampled to the total s tudents sampled will 
app roach 0.03. In fact, the probability of sampl ing a foreign s tudent can be 
defined as the limit as sample size keeps increasing of the rat io of foreign s tudents 
to the total number of s tudents sampled. Thus, we may formally summarize 
the si tuat ion by s tat ing that the probabi l i ty that a s tudent at Matchless 
University will be a foreign g radua te s tudent is P [ F G ] = 0.03. Similarly, the 
probabil i ty of sampling a foreign unde rg radua te is P [ F U ] = 0 . 0 1 , that of 
sampling an American unde rg radua te is /-"[AUJ = 0.70, and that for American 
g radua te students, P [ A G ] = 0.26. 

N o w let us imagine the following experiment: We try to sample a s tudent 
at r a n d o m from a m o n g the s tudent body at Matchless University. This is not 
as easy a task as might be imagined. If we wanted to do this opera t ion physically, 
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we would have to set u p a collection or t r app ing s ta t ion somewhere on campus . 
And to m a k e certain that the sample was truly r a n d o m with respect t o the 
entire s tudent popula t ion , we would have to know the ecology of s tudents on 
campus very thoroughly . W e should try to locate our t r ap a t some s ta t ion 
where each s tudent had an equal probabi l i ty of passing. Few, if any, such places 
can be found in a university. The s tudent un ion facilities are likely to be 
frequented m o r e by independent a n d foreign students , less by those living in 
organized houses a n d dormitor ies . Fewer foreign and g radua te s tudents might 
be found along fraterni ty row. Clearly, we would not wish to place our t r ap 
near the In terna t ional C lub or House , because our probabi l i ty of sampl ing a 
foreign s tudent would be greatly enhanced. In f ront of the bursar ' s window we 
might sample s tudents paying tuit ion. But those on scholarships might no t be 
found there. W e d o not know whether the p ropor t ion of scholarships a m o n g 
foreign or g radua te s tudents is the same as or different f rom that a m o n g the 
American or unde rg radua t e students. Athletic events, political rallies, dances, 
and the like would all d r aw a differential spec t rum of the s tudent body; indeed, 
no easy solut ion seems in sight. The t ime of sampl ing is equally impor tan t , in 
the seasonal as well as the d iurnal cycle. 

Those a m o n g the readers w h o are interested in sampling organisms f rom 
na ture will a lready have perceived parallel p roblems in their work . If we were 
to sample only s tudents wearing tu rbans or saris, their probabi l i ty of being 
foreign s tudents would be a lmost 1. W e could no longer speak of a r a n d o m 
sample. In the familiar ecosystem of the university these violat ions of p roper 
sampling procedure are obvious to all of us, bu t they are not nearly so obvious 
in real biological instances where we are unfamil iar with the t rue na tu re of the 
environment . H o w should we proceed to obtain a r a n d o m sample of leaves 
f rom a tree, of insects f rom a field, or of mu ta t ions in a culture? In sampl ing 
at r andom, we are a t t empt ing to permit the frequencies of var ious events 
occurring in na tu re to be reproduced unalteredly in our records; that is, we 
hope that on the average the frequencies of these events in our sample will be 
the same as they are in the na tura l s i tuat ion. Another way of saying this is that 
in a r a n d o m sample every individual in the popula t ion being sampled has an 
equal probabi l i ty of being included in the sample. 

We might go a b o u t obta in ing a r a n d o m sample by using records repre-
senting the s tudent body, such as the s tudent directory, selecting a page f rom 
it at r a n d o m and a name at r a n d o m f rom the page. O r we could assign an 
an arbi t rary n u m b e r to each s tudent , write each on a chip or disk, put these 
in a large container , stir well, and then pull out a number . 

Imagine now that we sample a single s tudent physically by the t r app ing 
method , after carefully p lanning the placement of the t rap in such a way as to 
make sampling r andom. W h a t are the possible outcomes? Clearly, the s tudent 
could be either an AU, AG, F U or F G . The set of these four possible ou tcomes 
exhausts the possibilities of this experiment . This set, which we can represent 
as {AU, AG, F U , F G } is called the sample space. Any single trial of the experiment 
described above would result in only one of the four possible ou tcomes (elements) 
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in the set. A single element in a sample space is called a simple event. It is 
dist inguished f rom an event, which is any subset of the sample-space. Thus , in 
the sample space defined above {AU}, {AG}, {FU}, and {FG} are each sim-
ple events. The following sampl ing results are some of the possible events: 
{AU, AG, FU}, {AU, AG, FG} , {AG, FG}, {AU, F G } , . . . By the definit ion of 
"event," simple events as well as the entire sample space are also events. The 
mean ing of these events should be clarified. T h u s {AU, AG, F U } implies being 
either an American or an undergradua te , or bo th . 

Given the sampl ing space described above, the event A = {AU, AG} en-
compasses all possible ou tcomes in the space yielding an American s tudent . 
Similarly, the event Β = {AG, F G } summarizes the possibilities for ob ta in ing 
a g radua te s tudent . The intersection of events A and B, writ ten Α η Β, describes 
only those events tha t are shared by A a n d B. Clearly only A G qualifies, as 
can be seen below: 

A = {AU, AG} 

Β = {AG, F G } 

Thus , Α η Β is that event in the sample space giving rise to the sampl ing of an 
American g radua te s tudent . W h e n the intersection of two events is empty, as 
in Β η C, where C = {AU, FU}, events Β and C are mutual ly exclusive. T h u s 
there is no c o m m o n element in these two events in the sampl ing space. 

W e may also define events that are unions of two other events in the s i m p l e 
space. T h u s Α υ Β indicates tha t A or Β or bo th A and Β occur. As defined 
above, A u Β would describe all s tudents who are either American s tudents , 
g radua te s tudents , or American g radua te s tudents . 

Why are we concerned with defining sample spaces and events? Because 
these concepts lead us to useful definit ions and opera t ions regarding the 
probabi l i ty of various outcomes. If we can assign a n u m b e r p, where 0 < ρ < 1, 
to each simple event in a sample space such tha t the sum of these p's over all 
s imple events in the space equals unity, then the space becomes a (finite) 
probability space. In our example above, the following numbers were associated 
with the appropr i a t e simple events in the sample space: 

{AU, AG, F U , F G } 

{0.70,0.26, 0.01,0.03} 

Given this probabi l i ty space, we are now able to make s ta tements regarding 
the probabil i ty of given events. F o r example, what is the probabi l i ty that a 
s tudent sampled at r a n d o m will be an American g radua te s tudent? Clearly, it 
is P [ { A G } ] = 0.26. W h a t is the probabi l i ty that a s tudent is either American 
or a g radua te s tudent? In terms of the events defined earlier, this is 

PLAuBj = P[{AU,AG}] + P[{AG, FG]] - P[{AG]] 

= 0.96 + 0.29 0.26 

= 0.99 
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We subtrac t P [ { A G } ] f r o m the sum on the right-hand side of the equa t ion 
because if we did no t do so it would be included twice, once in P [ A ] and once 
in P [B] , and would lead to the absurd result of a probabi l i ty greater t han 1. 

N o w let us assume that we have sampled our single s tudent f r o m the s tudent 
body of Matchless Universi ty and tha t s tudent tu rns out to be a foreign g radua te 
student. W h a t can we conclude f rom this? By chance alone, this result would 
happen 0.03, or 3%, of the t ime—not very frequently. The as sumpt ion that 
we have sampled at r a n d o m should p robab ly be rejected, since if we accept the 
hypothesis of r a n d o m sampling, the ou tcome of the experiment is improbable . 
Please note that we said improbable, no t impossible. It is obvious that we could 
have chanced upon an F G as the very first one to be sampled. However , it is 
not very likely. The probabi l i ty is 0.97 that a single s tudent sampled will be a 
n o n - F G . If we could be certain that our sampl ing m e t h o d was r a n d o m (as 
when drawing s tudent number s out of a container), we would have to decide 
that an improbab le event has occurred. The decisions of this pa r ag raph are all 
based on our definite knowledge that the p ropor t ion of s tudents at Matchless 
University is indeed as specified by the probabi l i ty space. If we were uncertain 
abou t this, we would be led to assume a higher p ropor t ion of foreign gradua te 
s tudents as a consequence of the ou tcome of ou r sampling experiment . 

We shall now extend our experiment and sample two s tudents ra ther than 
just one. W h a t are the possible ou tcomes of this sampling experiment? The new 
sampling space can best be depicted by a d iagram (Figure 4.1) tha t shows the 
set of the 16 possible simple events as points in a lattice. The simple events are 
the following possible combinat ions . Ignor ing which s tudent was sampled first, 
they are (AU, AU), (AU, AG), (AU, FU), (AU, FG), (AG, AG), (AG, FU), 
(AG, FG), (FU, FU), (FU, FG), and (FG, FG). 
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W h a t are the expected probabil i t ies of these outcomes? W e k n o w the 
expected ou tcomes for sampl ing one s tudent f rom the former probabi l i ty space, 
bu t wha t will be the probabi l i ty space cor responding to the new sampl ing space 
of 16 elements? N o w the na tu re of the sampl ing procedure becomes qui te im-
por tan t . W e may sample with or wi thou t replacement: we may re tu rn the first 
s tudent sampled to the popu la t ion (that is, replace the first student), or we may 
keep him or her out of the pool of the individuals to be sampled. If we do not 
replace the first individual sampled, the probabi l i ty of sampl ing a foreign 
g radua te s tudent will no longer be exactly 0.03. This is easily seen. Let us assume 
that Matchless Universi ty has 10,000 students . Then, since 3% are foreign 
g r adua t e s tudents , there mus t be 300 F G s tudents at the university. After 
sampl ing a foreign g radua te s tudent first, this n u m b e r is reduced to 299 out of 
9999 students . Consequent ly , the probabi l i ty of sampling an F G s tudent now 
becomes 299/9999 = 0.0299, a slightly lower probabi l i ty than the value of 
0.03 for sampl ing the first F G student . If, on the other hand , we re turn the 
original foreign s tudent to the s tudent popu la t ion and make certain that the 
popu la t ion is thoroughly randomized before being sampled again (that is, give 
the s tudent a chance to lose him- or herself a m o n g the campus crowd or, in 
d rawing s tudent number s out of a container , mix u p the disks with the n u m b e r s 
on them), the probabi l i ty of sampl ing a second F G student is the same as 
before—0.03. In fact, if we keep on replacing the sampled individuals in the 
original popula t ion , we can sample from it as though it were an infinite-sized 
popula t ion . 

Biological popula t ions are, of course, finite, but they are frequent ly so large 
that for purposes of sampl ing exper iments we can consider them effectively 
infinite whether we replace sampled individuals or not. After all, even in this 
relatively small popula t ion of 10,000 students, the probabil i ty of sampl ing a 
second foreign g radua te s tudent (without replacement) is only minutely different 
f rom 0.03. F o r the rest of this section we shall consider sampl ing to be with 
replacement , so that the probabi l i ty level of obta in ing a foreign s tudent does 
not change. 

There is a second potent ia l source of difficulty in this design. W e have to 
assume not only that the probabi l i ty of sampling a second foreign s tudent is 
equal to that of the first, but also that it is independent of it. By independence 
of events we mean that the probability that one event will occur is not affected 
by whether or not another event has or has not occurred. In the case of the 
students, if we have sampled one foreign s tudent , is it more or less likely that a 
second s tudent sampled in the same m a n n e r will also be a foreign s tudent? Inde-
pendence of the events may depend on where we sample the s tudents or on the 
me thod of sampling. If we have sampled s tudents on campus , it is qui te likely that 
the events are not independent ; that is, if one foreign student has been sampled, 
the probabi l i ty that the second s tudent will be foreign is increased, since foreign 
s tudents tend to congregate. Thus, at Matchless University the probabi l i ty that 
a s tudent walking with a foreign g radua te s tudent is also an F G will be greater 
than 0.03. 
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Events D and Ε in a sample space will be defined as independent whenever 
P [ D η E ] = P [ D ] P [ E ] , The probabi l i ty values assigned to the sixteen points 
in the sample-space lattice of Figure 4.1 have been computed to satisfy the 
above condi t ion. Thus , lett ing P [ D ] equal the probabi l i ty tha t the first s tudent 
will be an AU, tha t is, P ^ A ^ A U ^ A U X A G 2 , A U ^ U , , A U ^ G , } ] , and letting 
P [ E ] equal the probabi l i ty that the second s tudent will be an F G , that is, 
P [ { A U ! F G 2 , A G j F G j , F U 1 F G 2 , F G 1 F G 2 } ] , we note that the intersection 
D n E is { A U , F G 2 } · This has a value of 0.0210 in the probabi l i ty space of 
Figure 4.1. W e find that this value is the p roduc t P [ { A U } ] P [ { F G } ] = 0.70 χ 
0.03 = 0.0210. These mutua l ly independent relat ions have been deliberately 
imposed upon all po in ts in the probabi l i ty space. Therefore, if the sampling 
probabili t ies for the second s tudent are independent of the type of s tudent 
sampled first, we can c o m p u t e the probabil i t ies of the ou tcomes simply as the 
product of the independent probabili t ies. Thus the probabil i ty of ob ta in ing two 
F G students is P [ { F G } ] P [ { F G } ] = 0.03 χ 0.03 = 0.0009. 

The probabi l i ty of obta in ing one A U and one F G student in the sample 
should be the p roduc t 0.70 χ 0.03. However , it is in fact twice that p roba-
bility. It is easy to see why. There is only one way of ob ta in ing two F G 
students, namely, by sampl ing first one F G and then again ano the r F G . Sim-
ilarly, there is only one way to sample two AU students. However , sampling 
one of each type of s tudent can be done by sampling first an A U and then an 
F G or by sampl ing first an F G and then an AU. Thus the probabi l i ty is 
2 P [ { A U } ] P [ { F G } ] = 2 χ 0.70 χ 0.03 = 0.0420. 

If we conducted such an experiment and obta in a sample of two F G students, 
we would be led to the following conclusions. Only 0.0009 of the samples 
of 1% or 9 out of 10,000 cases) would be expected to consist of two foreign 
graduate students. It is qui te improbable to ob ta in such a result by chance 
alone. Given P [ { F G } ] = 0.03 as a fact, we would therefore suspect that sampling 
was not r a n d o m or that the events were not independent (or that both as-
sumpt ions r a n d o m sampling and independence of events—were incorrect). 

R a n d o m sampling is sometimes confused with randomness in nature. The 
former is the faithful representat ion in the sample of the dis t r ibut ion of the 
events in nature; the latter is the independence of the events in nature . The first 
of these generally is or should be under the control of the exper imenter and is 
related to the strategy of good sampling. The second generally describes an 
innate proper ty of the objects being sampled and thus is of greater biological 
interest. The confusion between r a n d o m sampling and independence of events 
arises because lack of either can yield observed frequencies of events differing 
f rom expectat ion. We have already seen how lack of independence in samples 
of foreign s tudents can be interpreted f rom both points of view in our illustrative 
example f rom Matchless University. 

The above account of probabi l i ty is adequa te for our present purposes but 
far too sketchy to convey an unders tand ing of the field. Readers interested in 
extending their knowledge of the subject are referred to M o s i m a n n (1968) for 
a simple in t roduct ion. 
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4.2 The binomial distribution 

F o r purposes of the discussion to follow we shall simplify our sample space to 
consist of only two elements, foreign and American students, and ignore whether 
the s tudents are underg radua tes or graduates ; we shall represent the sample 
space by the set {F, A}. Let us symbolize the probabi l i ty space by {p, q}, where 
ρ — .P[F], the probabi l i ty tha t the s tudent is foreign, and q = P [ A ] , the p rob-
ability that the s tudent is American. As before, we can compu te the probabi l i ty 
space of samples of two s tudents as follows: 

{FF, FA, AA} 

{ P2, 2pq, q2 } 

If we were to sample three s tudents independent ly, the probabi l i ty space of 
samples of three s tudents would be as follows: 

{ F F F , F F A , FAA, AAA} 

{ p \ 3p2q, 3pq2, q3 } 

Samples of three foreign or three American s tudents can again be obta ined in 
only one way, and their probabil i t ies are p3 and q3, respectively. However , in 
samples of three there are three ways of ob ta in ing two s tudents of one kind 
and one s tudent of the other. As before, if A s tands for American and F s tands 
for foreign, then the sampl ing sequence can be A F F , F A F , F F A for two foreign 
s tudents and one American. Thus the probabi l i ty of this ou tcome will be 3p 2q. 
Similarly, the probabi l i ty for two Americans and one foreign s tudent is 3pq 2 . 

A convenient way to summar ize these results is by means of the b inomial 
expansion, which is applicable to samples of any size f rom popula t ions in which 
objects occur independent ly in only two c lasses—students who may be foreign 
or American, or individuals who may be dead or alive, male or female, black 
or white, rough or smooth , and so forth. This is accomplished by expanding 
the binomial term (p + q f , where k equals sample size, ρ equals the probabi l i ty 
of occurrence of the first class, and q equals the probabil i ty of occurrence of 
the second class. By definit ion, ρ + q = 1; hence q is a funct ion of p: q = 1 — p. 
W e shall expand the expression for samples of k f rom 1 to 3: 

F o r samples of 1, (p + q)1 = ρ + q 
F o r samples of 2, (p + q)2 = p2 + 2pq + q2 

F o r samples of 3, (p + q)3 = p3 + 3p 2 q + 3pq2 + q3 

It will be seen that these expressions yield the same probabil i ty spaces 
discussed previously. The coefficients (the numbers before the powers of ρ and 
q) express the number of ways a par t icular ou tcome is obta ined. An easy me thod 
for evaluat ing the coefficients of the expanded terms of the binomial expression 
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is th rough the use of Pascal 's triangle: 

k 
1 1 1 
2 1 2 1 

3 1 3 3 1 
4 1 4 6 4 1 
5 1 5 10 10 5 1 

Pascal 's tr iangle provides the coefficients of the binomial express ion—tha t is, 
the n u m b e r of possible ou tcomes of the var ious combina t ions of events. For 
k = 1 the coefficients are 1 and 1. F o r the second line (k = 2), write 1 at the 
left-hand margin of the line. The 2 in the middle of this line is the sum of the 
values to the left and right of it in the line above. The line is concluded with a 
1. Similarly, the values at the beginning and end of the third line are 1, and 
the other numbers are sums of the values to their left and right in the line 
above; thus 3 is the sum of 1 and 2. This principle cont inues for every line. You 
can work out the coefficients for any size sample in this manner . The line for 
fc = 6 would consist of the following coefficients: 1, 6, 15, 20, 15, 6, 1. The ρ 
and q values bear powers in a consistent pat tern , which should be easy to 
imitate for any value of k. We give it here for k = 4: 

pV + pV + p V + pY + p°q4 

The power of ρ decreases f rom 4 to 0 (k to 0 in the general case) as the power 
of q increases f rom 0 to 4 (0 to k in the general case). Since any value to the 
power 0 is 1 and any term to the power 1 is simply itself, we can simplify this 
expression as shown below and at the same time provide it with the coefficients 
f rom Pascal 's tr iangle for the case k — 4: 

p 4 + 4p3<7 + 6 p V + 4pq3 + q4 

Thus we are able to write down almost by inspection the expansion of the 
binomial to any reasonable power. Let us now practice our newly learned ability 
to expand the binomial . 

Suppose we have a popula t ion of insects, exactly 40% of which are infected 
with a given virus X. If we take samples of k = 5 insects each and examine each 
insect separately for presence of the virus, wha t dis t r ibut ion of samples could 
we expect if the probabi l i ty of infection of each insect in a sample were 
independent of that of o ther insects in the sample? In this case ρ = 0.4, the 
p ropor t ion infected, and q = 0.6, the p ropor t ion not infected. It is assumed that 
the popula t ion is so large that the quest ion of whether sampling is with or 
wi thout replacement is irrelevant for practical purposes. The expected p ropor -
t ions would be the expansion of the binomial: 

(p + q)k = (0.4 + 0.6)5 
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With the aid of Pascal 's t r iangle this expans ion is 

{p5 + 5 p*q + 10 p3q2 + 1 0 p V + 5 pq4 + q5} 

or 

(0.4)5 + 5(0.4)4(0.6) + 10(0.4)3(0.6)2 + 10(0.4)2(0.6)3 + 5(0.4)(0.6)4 + (0.6)5 

represent ing the expected p ropor t ions of samples of five infected insects, four 
infected and one noninfected insects, three infected and two noninfected insects, 
and so on. 

The reader has p robab ly realized by now that the terms of the b inomial 
expansion actually yield a type of f requency dis t r ibut ion for these different 
outcomes. Associated with each outcome, such as "five infected insects," there 
is a probabi l i ty of occur rence—in this case (0.4)5 = 0.01024. This is a theoret ical 
f requency dis t r ibut ion or probability distribution of events that can occur in two 
classes. It describes the expected dis tr ibut ion of ou tcomes in r a n d o m samples 
of five insects f rom a popu la t ion in which 40% are infected. The probabi l i ty 
dis t r ibut ion described here is k n o w n as the binomial distribution, and the b ino-
mial expansion yields the expected frequencies of the classes of the b inomial 
dis t r ibut ion. 

A convenient layout for presenta t ion and computa t ion of a binomial 
d is t r ibut ion is shown in Tab le 4.1. The first co lumn lists the number of infected 
insects per sample, the second co lumn shows decreasing powers of ρ f r o m p s 

to p°, and the third co lumn shows increasing powers of q f rom q° to q5. The 
binomial coefficients f rom Pascal 's tr iangle are shown in co lumn (4). The relative 

TABLE 4 . 1 

Expected frequencies of infected insects in samples of 5 insects sampled from an infinitely large 
population with an assumed infection rate of 40",,. 

U) 
Number of (5) (6) 

infected (2) (3) Relative Absolute (7) 
insects Powers Powers Μ expected expected Observed 

per sample of of Binomial frequencies frequencies frequencies 
V ρ = 0.4 q = 0.6 coefficients L f f 

5 0 . 0 1 0 2 4 1 . 0 0 0 0 0 1 0 . 0 1 0 2 4 24 .8 2 9 
4 0 . 0 2 5 6 0 0 . 6 0 0 0 0 5 0 . 0 7 6 8 0 186.1 197 
3 0 . 0 6 4 0 0 0 . 3 6 0 0 0 10 0 . 2 3 0 4 0 5 5 8 . 3 5 3 5 
2 0 . 1 6 0 0 0 0 . 2 1 6 0 0 10 0 . 3 4 5 6 0 8 3 7 . 4 8 1 7 
1 0 . 4 0 0 0 0 0 . 1 2 9 6 0 5 0 . 2 5 9 2 0 6 2 8 . 0 6 4 3 
0 1 . 0 0 0 0 0 0 . 0 7 7 7 6 1 0 . 0 7 7 7 6 188.4 2 0 2 

Σ / o r £ / ( = « ) 1 .00000 2 4 2 3 . 0 2 4 2 3 Σ / 
Z y 2 . 0 0 0 0 0 4 8 4 6 . 1 4 8 1 5 

M e a n 2 . 0 0 0 0 0 2 . 0 0 0 0 4 1.98721 
S t a n d a r d d e v i a t i o n 1 .09545 1 .09543 1 .11934 
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expected frequencies, which a re the p robabi l i t i e s of the va r ious ou tcomes , a re 
s h o w n in c o l u m n (5). W e label such expecred f requencies / r e l . T h e y are s imply 
the p r o d u c t of c o l u m n s (2), (3), a n d (4). The i r s u m is equa l t o 1.0, since the 
events listed in c o l u m n (1) exhaus t the possible ou tcomes . W e see f r o m c o l u m n 
(5) in Tab l e 4.1 t h a t only a b o u t 1% of samples a re expected t o consis t of 5 
infected insects, a n d 25.9% are expected t o con ta in 1 infected a n d 4 non infec ted 
insects. W e shall test whe the r these p red ic t ions ho ld in a n ac tua l exper iment . 

Experiment 4.1. S i m u l a t e t h e s a m p l i n g of i n f e c t e d i n s e c t s b y u s i n g a t a b l e of r a n d o m 
n u m b e r s s u c h a s T a b l e I in A p p e n d i x A l . T h e s e a r e r a n d o m l y c h o s e n o n e - d i g i t n u m b e r s 
in w h i c h e a c h d i g i t 0 t h r o u g h 9 h a s a n e q u a l p r o b a b i l i t y of a p p e a r i n g . T h e n u m b e r s 
a r e g r o u p e d in b l o c k s of 2 5 f o r c o n v e n i e n c e . S u c h n u m b e r s c a n a l s o b e o b t a i n e d f r o m 
r a n d o m n u m b e r k e y s o n s o m e p o c k e t c a l c u l a t o r s a n d b y m e a n s of p s e u d o r a n d o m 
n u m b e r - g e n e r a t i n g a l g o r i t h m s in c o m p u t e r p r o g r a m s . ( In fac t , t h i s e n t i r e e x p e r i m e n t 
c a n b e p r o g r a m m e d a n d p e r f o r m e d a u t o m a t i c a l l y — e v e n o n a s m a l l c o m p u t e r . ) S i n c e 
t h e r e is a n e q u a l p r o b a b i l i t y f o r a n y o n e d i g i t t o a p p e a r , y o u c a n let a n y f o u r d i g i t s 
( say , 0 , 1, 2, 3) s t a n d f o r t h e i n f e c t e d i n s e c t s a n d t h e r e m a i n i n g d i g i t s (4, 5, 6 , 7, 8, 9) 
s t a n d f o r t h e n o n i n f e c t e d i n s e c t s . T h e p r o b a b i l i t y t h a t a n y o n e d i g i t s e l e c t e d f r o m t h e 
t a b l e wil l r e p r e s e n t a n i n f e c t e d i n s e c t ( t h a t is, will b e a 0, 1, 2, o r 3) is t h e r e f o r e 4 0 % , o r 
0.4, s i n c e t h e s e a r e f o u r of t h e t e n p o s s i b l e d i g i t s . A l s o , s u c c e s s i v e d i g i t s a r e a s s u m e d t o 
b e i n d e p e n d e n t of t h e v a l u e s of p r e v i o u s d ig i t s . T h u s t h e a s s u m p t i o n s of t h e b i n o m i a l 
d i s t r i b u t i o n s h o u l d b e m e t in t h i s e x p e r i m e n t . E n t e r t h e t a b l e of r a n d o m n u m b e r s a t 
a n a r b i t r a r y p o i n t ( n o t a l w a y s a t t h e b e g i n n i n g ! ) a n d l o o k a t s u c c e s s i v e g r o u p s of f ive 
d ig i t s , n o t i n g in e a c h g r o u p h o w m a n y of t h e d i g i t s a r e 0, 1, 2, o r 3. T a k e a s m a n y 
g r o u p s of five a s y o u c a n f i n d t i m e t o d o , b u t n o f e w e r t h a n 100 g r o u p s . 

C o l u m n (7) in T a b l e 4.1 shows the resul ts of one such expe r imen t d u r i n g 
one year by a bios ta t is t ics class. A total of 2423 samples of five n u m b e r s were 
ob ta ined f rom the tab le of r a n d o m numbers ; the d i s t r ibu t ion of the four digits 
s imula t ing the percen tage of infection is s h o w n in this c o l u m n . T h e observed 
f requencies a rc labeled / . T o ca lcula te the expectcd f requencies for this actual 
example we mul t ip l ied the relat ive f requencies / r c , of c o l u m n (5) t imes η = 2423, 
the n u m b e r of samples taken . This results in absolute expected frequencies, 
labeled / , s h o w n in c o l u m n (6). W h e n we c o m p a r e the obse rved f requencies in 
co lumn (7) with the expected f requencies in c o l u m n (6) we no te general ag reemen t 
be tween the t w o c o l u m n s of figures. T h e t w o d i s t r ibu t ions a re a l so i l lustrated 
in F igure 4.2. If the observed f requencies did not fit expected f requencies , we 
might believe tha t the lack of fit was d u e t o chance a lone. O r we might be led 
to reject one or m o r e of the fo l lowing hypotheses : (I) tha t the t rue p r o p o r t i o n 
of digits 0, 1 , 2 , and 3 is 0.4 (rejection of this hypothes i s wou ld no rma l ly not 
be reasonable , for we may rely on the fact tha t the p r o p o r t i o n of digits 0, 1. 2, 
and 3 in a table of r a n d o m n u m b e r s is 0.4 or very close to it); (2) tha t s ampl ing 
was at r a n d o m ; a n d (3) tha t events were independen t . 

These s t a t e m e n t s can be re in te rpre ted in t e rms of the or ig inal infect ion 
model with which we s ta r ted this d iscuss ion. If, ins tead of a s a m p l i n g expe r imen t 
of digits by a biostat is t ics class, this had been a real s ampl ing exper iment of 
insects, we would c o n c l u d e that the insects had indeed been r a n d o m l y sampled 



58 c h a p t e r 4 / i n t r o d u c t i o n t o p r o b a b i l i t y d i s t r i b u t i o n s 

900 

H00 

700 

C,' 

f ">00 
k 400 

: i o o 

'200 

100 

ο 

Observed f requenc ies 

Π Expec ted f requencies 

0 1 2 I 5 

N u m b e r of infected insects per sample 

FIGURE 4 . 2 

Bar d i a g r a m of observed a n d expected frequencies given in Tab le 4.1. 

and that we had no evidence to reject the hypothesis that the p ropo r t i on of 
infected insects was 40%. If the observed frequencies had not fitted the expected 
frequencies, the lack of fit might be a t t r ibuted to chance, or to the conclusion 
that the t rue p ropor t ion of infection was not 0.4; or we would have h a d to 
reject one or bo th of the following assumpt ions : (1) that sampling was at r a n d o m 
and (2) that the occurrence of infected insects in these samples was independent . 

Exper iment 4.1 was designed to yield r a n d o m samples and independent 
events. H o w could we s imulate a sampl ing procedure in which the occurrences 
of the digits 0, 1, 2, and 3 were not independent? We could, for example, instruct 
the sampler to sample as indicated previously, but , every time a 3 was found 
a m o n g the first four digits of a sample, to replace the fol lowing digit with 
ano the r one of the four digits s tanding for infected individuals. Thus , once a 3 
was found , the probabi l i ty would be 1.0 that ano the r one of the indicated digits 
would be included in the sample. After repeated samples, this would result in 
higher frequencies of samples of two or more indicated digits and in lower 
frequencies than expected (on the basis of the binomial distr ibution) of samples 
of one such digit. A variety of such different sampl ing schemes could be devised. 
It should be qui te clear to the reader that the probabi l i ty of the second event 's 
occurr ing would be different f rom that of the first and dependent on it. 

H o w would we interpret a large depa r tu re of the observed frequencies f rom 
expectat ion? We have not as yet learned techniques for testing whether observed 
frequencies differ f rom those expected by more than can be a t t r ibuted to chance 
alone. This will be taken u p in C h a p t e r 13. Assume that such a test has been 
carr ied out and that it has shown us that our observed frequencies are 
significantly different f rom expectat ion. T w o main types of depar tu re f rom ex-
pectat ion can be characterized: (1) clumping and (2) repulsion, shown in fictitious 
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TABLE 4 . 2 

Artificial distributions to illustrate clumping and repulsion. Expected frequencies f r o m T a b l e 4.1. 

(/) (2) <i) 
Number of Absolute Clumped (4) (5) «5) 

infected insects expected (contagious) Deviation Repulsed Deviation 
per sample frequencies frequencies from frequencies from 

Y f f expectation f expectation 

5 24.8 47 + 14 _ 
4 186.1 227 -Ι- 157 — 

3 558.3 558 Ο 548 -

2 837.4 663 — 943 + 
1 628.0 703 + 618 — 

0 188.4 225 + 143 -

Σ / o r η 2423.0 2423 2423.0 
Σγ 4846.1 4846 4846 

Mean 2.00004 2.00000 2.00000 
Standard deviation 1.09543 1.20074 1.01435 

examples in Table 4.2. In actual examples we would have no a priori not ions 
about the magni tude of p, the probabi l i ty of one of the two possible outcomes. 
In such cases it is cus tomary to ob ta in ρ f rom the observed sample and to 
calculate the expected frequencies, using the sample p. This would mean that 
the hypothesis that ρ is a given value canno t be tested, since by design the 
expected frequencies will have the same ρ value as the observed frequencies. 
Therefore, the hypotheses tested are whether the samples are r a n d o m and the 
events independent . 

The c lumped frequencies in Table 4.2 have an excess of observat ions at the 
tails of the frequency dis t r ibut ion and consequent ly a shor tage of observat ions 
at the center. Such a dis t r ibut ion is also said to be contagious. (Remember that 
the total number of i tems must be the same in bo th observed and expected fre-
quencies in order to m a k e them comparable . ) In the repulsed frequency distri-
but ion there are more observat ions than expected at the center of the dis t r ibut ion 
and fewer at the tails. These discrepancies are most easily seen in co lumns (4) 
and (6) of Table 4.2, where the deviat ions of observed f rom expected frequencies 
are shown as plus or minus signs. 

What d o these phenomena imply? In the c lumped frequencies, more samples 
were entirely infected (or largely infected), and similarly, more samples were en-
tirely noninfected (or largely noninfected) than you would expect if p roba-
bilities of infection were independent . This could be due to p o o r sampl ing design. 
If, for example, the investigator in collecting samples of five insects always 
tended to pick out like o n e s — t h a t is, infected ones or noninfected ones—then 
such a result would likely appear . But if the sampl ing design is sound, the 
results become more interesting. C lumping would then mean that the samples 
of five are in some way related, so that if one insect is infected, o thers in the 
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same sample are m o r e likely to be infected. This could be t rue if they come 
f r o m adjacent locat ions in a s i tuat ion in which ne ighbors are easily infected. 
O r they could be siblings jo int ly exposed to a source of infection. O r possibly 
the infection might spread a m o n g members of a sample between the t ime that 
the insects are sampled a n d the t ime they are examined. 

T h e opposi te p h e n o m e n o n , repulsion, is more difficult to interpret bio-
logically. There are fewer homogeneous g roups and more mixed g roups in such 
a distr ibution. This involves the idea of a compensa to ry phenomenon : if some 
of the insects in a sample are infected, the o thers in the sample are less likely 
to be. If the infected insects in the sample could in some way t ransmi t im-
muni ty to their associates in the sample, such a s i tuat ion could arise logically, 
bu t it is biologically improbable . A more reasonable in terpre ta t ion of such a 
finding is that for each sampl ing unit, there were only a limited n u m b e r of 
pa thogens available; then once several of the insects have become infected, the 
o thers go free of infection, simply because there is no more infectious agent . 
This is an unlikely s i tuat ion in microbial infections, but in s i tuat ions in which 
a limited n u m b e r of parasi tes enter the body of the host , repulsion may be 
m o r e reasonable. 

F r o m the expected and observed frequencies in Tab le 4.1, we may calculate 
the mean and s t andard deviat ion of the n u m b e r of infected insects per sample. 
These values are given at the bo t tom of co lumns (5), (6), and (7) in Tab le 4.1. 
We note that the means and s t anda rd deviat ions in co lumns (5) and (6) a re 
a lmost identical and differ only trivially because of round ing errors. C o l u m n (7), 
being a sample f rom a popula t ion whose parameters are the same as those of 
the expected frequency dis t r ibut ion in co lumn (5) or (6), differs somewhat . The 
mean is slightly smaller and the s tandard deviat ion is slightly greater than in 
the expected frequencies. If we wish to know the mean and s t anda rd deviat ion 
of expected binomial frequency dis tr ibut ions, we need not go th rough the com-
pu ta t ions shown in Table 4.1. The mean and s t andard deviation of a binomial 
f requency dis tr ibut ion are, respectively, 

μ = kp σ = \Jkpq 

Subst i tu t ing the values k = 5, ρ = 0.4, and q = 0.6 of the above example, we 
obta in μ = 2.0 and σ = 1.095,45, which are identical to the values compu ted 
f rom co lumn (5) in Tab le 4.1. No te that we use the Greek paramet r i c no ta t ion 
here because μ and a are pa ramete r s of an expected frequency dis t r ibut ion, not 
sample statistics, as are the mean and s t andard deviat ion in column (7). The 
p ropor t ions ρ and q are pa ramet r i c values also, and strictly speaking, they 
should be dist inguished from sample propor t ions . In fact, in later chapters we 
resort to ρ and q for paramet r ic p ropor t ions (rather than π, which convent ion-
ally is used as the rat io of the circumfcrence to the d iameter of a circle). Here, 
however, we prefer to keep our no ta t ion simple. If we wish to express our 
variable as a p ropor t ion ra ther than as a c o u n t — t h a t is, to indicate mean 
incidence of infection in the insccts as 0.4, ra ther than as 2 per sample of 5 we 
can use o ther formulas for the mean and s t anda rd deviation in a binomial 
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distr ibution: 

μ = ρ σ = 

It is interesting to look at the s t anda rd deviat ions of the c lumped and 
replused frequency dis t r ibut ions of Table 4.2. W e note that the c lumped distri-
but ion has a s t anda rd deviat ion greater than expected, and that of the repulsed 
one is less than expected. Compar i son of sample s tandard deviat ions with their 
expected values is a useful measure of dispersion in such instances. 

W e shall n o w employ the b inomial dis t r ibut ion to solve a biological p rob-
lem. O n the basis of ou r knowledge of the cytology and biology of species A, 
we expect the sex ra t io a m o n g its offspring to be 1:1. The s tudy of a litter in 
na ture reveals tha t of 17 offspring 14 were females and 3 were males. W h a t 
conclusions can we d raw f rom this evidence? Assuming that (the probabi l i ty 
of being a female offspring) = 0.5 and that this probabil i ty is independent a m o n g 
the members of the sample, the pert inent probabi l i ty dis t r ibut ion is the binomial 
for sample size k = 17. Expand ing the b inomial to the power 17 is a formidable 
task, which, as we shall see, for tunate ly need not be done in its entirety. H o w -
ever, we mus t have the b inomial coefficients, which can be obta ined either from 
an expansion of Pascal 's tr iangle (fairly tedious unless once obta ined and stored 
for fu ture use) or by work ing out the expected frequencies for any given class of 
Y f rom the general fo rmula for any term of the binomial dis t r ibut ion 

The expression C(/c, y ) s tands for the number of combina t ions that can be 
formed f rom k items taken Y at a time. This can be evaluated as kl/[ Y!(k — V)!], 
where ! means "factorial ." In mathemat ics k factorial is the p roduc t of all the 
integers from 1 u p to and including k. Thus, 5! = 1 χ 2 χ 3 χ 4 χ 5 = 120. By 
convent ion, 0! = 1. In work ing out f ract ions conta in ing factorials, note that any 
factorial will always cancel against a higher factorial . Thus 5!/3! = (5 χ 4 χ 3!)/ 
3! = 5 χ 4. For example, the binomial coefficient for the expected frequency 
of samples of 5 i tems conta in ing 2 infected insects is C(5, 2) = 5!/2!3! = 
(5 χ 4)/2 = 10. 

The se tup of the example is shown in Tab le 4.3. Decreasing powers of ρ 
f rom p,17 down and increasing powers of q . are computed (from power 0 to 
power 4). Since we require the probabil i ty of 14 females, we note that for the 
purposes of ou r problem, we need not proceed beyond the term for 13 females 
and 4 males. Calcula t ing the relative expected frequencies in co lumn (6), we 
note that the probabi l i ty of 14 females and 3 males is 0.005,188,40, a very small 
value. If we add to this value all "worse" o u t c o m e s — t h a t is, all ou tcomes that 
are even more unlikely than 14 females and 3 males on the assumpt ion of a 
1:1 hypothes i s—we obta in a probabil i ty of 0.006,363,42, still a very small value. 
(In statistics, we often need to calculate the probabi l i ty of observing a deviation 
as large as or larger than a given value.) 

C(k, Y)prqk Y (4.1) 
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TABLE 4 . 3 

Some expected frequencies of males and females for samples of 17 offspring on the assumption that 
the sex ratio is 1:1 [p v = 0.5, q. = 0.5; (p . + q-)k = (0.5 + 0 .5 ) ' 7 ] . 

(/) (2) (3) (4) (5) (6) 
Relative 
expected 

Binomial frequencies 

$$ Pi is coefficients L 
17 0.000,007,63 1 1 0.000,007,631 
16 1 0.000,015,26 0.5 17 0.000,129,711 
15 2 0.000,030,52 0.25 136 0.001,037,681 υ · υ υ 6 ' · 3 Μ ' 4 2 

14 3 0.000,061,04 0.125 680 0.005,188,40j 
13 4 0.000,122,07 0.0625 2380 0.018,157,91 

O n the basis of these findings one or more of the following assumpt ions is 
unlikely: (1) that the t rue sex ra t io in species A is 1:1, (2) that we have sampled 
at r a n d o m in the sense of obta in ing an unbiased sample, or (3) tha t the sexes 
of the offspring are independent of one another . Lack of independence of events 
may mean that a l though the average sex ra t io is 1:1, the individual sibships, or 
litters, are largely unisexual, so that the offspring f rom a given mat ing would 
tend to be all (or largely) females or all (or largely) males. T o conf i rm this 
hypothesis , we would need to have more samples and then examine the distri-
bu t ion of samples for clumping, which would indicate a tendency for unisexual 
sibships. 

We must be very precise about the quest ions we ask of ou r data . There 
are really two quest ions we could ask a b o u t the sex ratio. First, are the sexes 
unequal in frequency so that females will appea r more often than males? Second, 
are the sexes unequal in frequency? It may be that we know from past experience 
that in this par t icular g r o u p of organisms the males are never more f requent 
than females; in that case, we need be concerned only with the first of these 
two questions, and the reasoning followed above is appropr ia te . However , if we 
know very little a b o u t this g r o u p of organisms, and if our quest ion is simply 
whether the sexes a m o n g the offspring are unequal in frequency, then we have 
to consider bo th tails of the binomial f requency distr ibution; depar tu res f rom 
the 1:1 rat io could occur in either direction. We should then consider not only 
the probabi l i ty of samples with 14 females and 3 males (and all worse cases) but 
also the probabil i ty of samples of 14 males and 3 females (and all worse cases 
in that direction). Since this probabil i ty dis t r ibut ion is symmetrical (because 
p, = q . = 0.5), we simply doub le the cumulat ive probabi l i ty of 0.006,363,42 ob-
tained previously, which results in 0.012,726,84. This new value is still very small, 
mak ing it qui te unlikely that the true sex rat io is 1:1. 

This is your first experience with one of the most impor tan t appl ica t ions of 
statistics —hypothesis testing. A formal in t roduct ion to this field will be deferred 
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until Section 6.8. W e m a y simply point ou t here that the two approaches fol-
lowed above are k n o w n appropr ia te ly as one-tailed, tests and two-tailed tests, 
respectively. Students sometimes have difficulty knowing which of the two tests 
to apply. In future examples we shall try to point out in each case why a one-
tailed or a two-tailed test is being used. 

We have said tha t a tendency for unisexual sibships would result in a 
clumped dis t r ibut ion of observed frequencies. An actual case of this na tu re is a 
classic in the l i terature, the sex ra t io da t a obta ined by Geissler (1889) f rom 
hospital records in Saxony. Table 4.4 reproduces sex rat ios of 6115 sibships of 
12 children each f r o m the m o r e extensive s tudy by Geissler. All co lumns of the 
table should by now be familiar. The expected frequencies were not calculated 
on the basis of a 1:1 hypothesis , since it is k n o w n that in h u m a n popula t ions 
the sex rat io at b i r th is no t 1:1. As the sex ra t io varies in different h u m a n 
populat ions, the best es t imate of it for the popu la t ion in Saxony was simply 
obtained using the mean p ropor t ion of males in these data . This can be obta ined 
by calculating the average n u m b e r of males per sibship ( F = 6.230,58) for the 
6115 sibships and conver t ing this in to a p ropor t ion . This value turns out to be 
0.519,215. Consequent ly , the p ropor t ion of females = 0.480,785. In the devia-
tions of the observed frequencies f r o m the absolute expected frequencies shown 
in column (9) of Table 4.4, we notice considerable clumping. There are many 
more instances of families with all male or all female children (or nearly so) 
than independent probabil i t ies would indicate. The genetic basis for this is not 
clear, bu t it is evident tha t there are some families which " run to girls" and 
similarly those which " run to boys." Evidence of c lumping can also be seen f rom 
the fact tha t s2 is much larger than we would expect on the basis of the binomial 
distr ibution (σ2 = kpq = 12(0.519,215)0.480,785 = 2.995,57). 

There is a distinct cont ras t between the d a t a in Table 4.1 and those in 
Table 4.4. In the insect infection da t a of Table 4.1 we had a hypothet ical p ropor -
tion of infection based on outside knowledge. In the sex ra t io d a t a of Table 4.4 
we had no such knowledge; we used an empirical value of ρ obtained from the 
data, ra ther t han a hypothetical value external to the data. This is a distinction 
whose impor tance will become apparen t later. In the sex ra t io da t a of Table 4.3, 
as in much work in Mendel ian genetics, a hypothet ical value of ρ is used. 

4.3 The Poisson distribution 

In the typical appl icat ion of the binomial we had relatively small samples 
(2 students, 5 insects, 17 offspring, 12 siblings) in which two al ternat ive states 
occurred at varying frequencies (American and foreign, infected and nonin-
fected, male and female). Qui te frequently, however, we study cases in which 
sample size k is very large and one of the events (represented by probabi l i ty q) is 
very much more f requent than the o ther (represented by probabil i ty p). We have 
seen that the expans ion of the binomial (p + qf is qui te t i resome when k is 
large. Suppose you had to expand the expression (0.001 + 0.999) 1 0 0 0 . In such 
cases we are generally interested in one tail of the dis t r ibut ion only. This is the 
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tail represented by the terms 

p°q\ C(k, 1 ) / > Y ~ \ C(k, 2 ) p V " 2 , C(k, 3)p3qk~\ . -. 
The first term represents no rare events and k f requent events in a sample of k 
events. The second te rm represents one rare event and k — 1 f requent events. 
The third term represents two rare events and k — 2 f requent events, and so 
forth. The expressions of the form C(k, i) are the binomial coefficients, repre-
sented by the combina tor ia l terms discussed in the previous section. Al though 
the desired tail of the curve could be compu ted by this expression, as long as 
sufficient decimal accuracy is mainta ined, it is cus tomary in such cases to 
compute ano the r dis t r ibut ion, the Poisson distr ibut ion, which closely approxi -
mates the desired results. As a rule of t humb, we may use the Poisson distr ibu-
tion to app rox ima te the binomial dis t r ibut ion when the probabi l i ty of the rare 
event ρ is less t han 0.1 and the p roduc t kp (sample size χ probabil i ty) is less 
than 5. 

The Poisson distribution is also a discrete frequency dis t r ibut ion of the 
n u m b e r of times a rare event occurs. But, in contras t to the binomial distr ibu-
tion, the Poisson dis t r ibut ion applies to cases where the n u m b e r of t imes that 
an event does no t occur is infinitely large. F o r purposes of ou r t rea tment here, 
a Poisson variable will be studied in samples taken over space or time. An 
example of the first would be the number of moss plants in a sampling quad ra t 
on a hillside or the n u m b e r of parasi tes on an individual host; an example of a 
tempora l sample is the n u m b e r of muta t ions occurr ing in a genetic strain in the 
time interval of one m o n t h or the reported cases of influenza in one town 
dur ing one week. The Poisson variable Y will be the n u m b e r of events per 
sample. It can assume discrete values f rom 0 on up. T o be dis t r ibuted in Poisson 
fashion the variable must have two properties: (I) Its mean mus t be small relative 
to the m a x i m u m possible number of events per sampling unit. T h u s the event 
should be "rare." But this means that our sampling unit of space or t ime must 
be large enough to a c c o m m o d a t e a potential ly substantial n u m b e r of events. 
F o r example, a q u a d r a t in which moss plants are counted mus t be large enough 
that a substantial n u m b e r of moss plants could occur there physically if the 
biological condi t ions were such as to favor the development of numerous moss 
plants in the quadra t . A q u a d r a t consist ing of a 1-cm square would be far too 
small for mosses to be distr ibuted in Poisson fashion. Similarly, a t ime span 
of 1 minute would be unrealistic for repor t ing new influenza cases in a town, 
but within 1 week a great many such cases could occur. (2) An occurrence of the 
event must be independent of prior occurrences within the sampl ing unit. Thus, 
the presence of one moss plant in a q u a d r a t must not enhance or diminish the 
probabil i ty that o ther moss plants are developing in the quad ra t . Similarly, the 
fact that one influenza case has been reported must not affect the probabil i ty 
of repor t ing subsequent influenza cases. Events that meet these condi t ions (rare 
and random events) should be dis t r ibuted in Poisson fashion. 

The purpose of fitting a Poisson dis t r ibut ion to number s of rare events in 
na ture is to test whether the events occur independent ly with respect to each 
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other . If they do, they will follow the Poisson distr ibution. If the occurrence of 
one event enhances the probabi l i ty of a second such event, we obta in a c lumped, 
or contagious, dis t r ibut ion. If the occurrence of one event impedes that of a 
second such event in the sampl ing unit, we obta in a repulsed, o r spatially or 
temporal ly uniform, dis t r ibut ion. The Poisson can be used as a test for r a n d o m -
ness or independence of d is t r ibut ion not only spatially but also in time, as some 
examples below will show. 

The Poisson dis tr ibut ion is named after the French mathemat ic ian Poisson, 
who described it in 1837. It is an infinite series whose terms add to 1 (as mus t 
be t rue for any probabi l i ty distr ibution). The series can be represented as 

where the terms are the relative expected frequencies cor responding to the fol-
lowing counts of the rare event Y: 

Thus , the first of these terms represents the relative expected f requency of 
samples conta in ing no rare event; the second term, one rare event; the third 
term, two rare events; and so on. The d e n o m i n a t o r of each term conta ins e 
where e is the base of the na tura l , or Napier ian , logari thms, a cons tan t whose 
value, accura te to 5 decimal places, is 2.718,28. W e recognize μ as the pa ramet r i c 
mean of the distr ibution; it is a cons tan t for any given problem. The exclamat ion 
mark after the coefficient in the d e n o m i n a t o r means "factorial ," as explained 
in the previous section. 

O n e way to learn more a b o u t the Poisson dis t r ibut ion is to apply it to an 
actual case. At the top of Box 4.1 is a well-known result f rom the early statistical 
l i terature based on the dis t r ibut ion of yeast cells in 400 squares of a hemacyto-
meter, a count ing chamber such as is used in mak ing counts of b lood cells and 
o ther microscopic objects suspended in liquid. Co lumn (1) lists the n u m b e r of 
yeast cells observed in each hemacytomete r square, and co lumn (2) gives the 
observed f r equency—the number of squares conta in ing a given n u m b e r of yeast 
cells. We note that 75 squares conta ined no yeast cells, but that most squares 
held either 1 or 2 cells. Only 17 squares con ta ined 5 or more yeast cells. 

Why would we expect this frequency dis t r ibut ion to be dis t r ibuted in 
Poisson fashion? We have here a relatively rare event, the frequency of yeast 
cells per hemacytomete r square , the mean of which has been calculated and 
found to be 1.8. Tha t is, on the average there are 1.8 cells per square. Relative 
to the a m o u n t of space provided in each square and the number of cells that 
could have come to rest in any one square, the actual number found is low 
indeed. We might also expect that the occurrence of individual yeast cells in a 
square is independent of the occurrence of other yeast cells. This is a commonly 
encountered class of appl icat ion of the Poisson distr ibution. 

The mean of the rare event is the only quant i ty that we need to know to 
calculate the relative expected frequencies of a Poisson distr ibution. Since we do 

1 ! έ > " ' 2 ! ί > " ' 3 ! < > μ ' 4 ! ? " 
^ · (4.2) 

0 , 1 , 2 , 3 , 4 , 
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BOX 4 1 
Calculation of expected Poisson frequencies. 
Yeast cells in 400 squares of a hemacytometer: f = 1.8 cells per square; η - 400 
squares sampled. 

(/) 
Number of 

cells per square 

(2) 

Observed 
frequencies 

(3) 

Absolute 
expected frequencies 

Μ 
Deviation from 

expectation 
Y / / / - - / 

0 75 66.1 + 
1 103 119.0 — 

2 121 107.1 + 
3 54 64.3 — 

4 30 28.9 + 
5 13Ί 10.41 4-
6 2 3.1 — 

7 1 •17 0.8 •14.5 + • + 

8 0 0.2 — 

9 lj 0.0. + 
40) 399.9 

Source: "Student" (1907). 

Computational steps 

Flow of computation based on Expression (4.3) multiplied by n, since we wish 
to obtain absolute expected frequencies,/. 

1. Find e f in a table of exponentials or compute it using an exponential key: 
J _ „1.8 e* 

η 
2. f

0 

3 . / W o ? 

4. Λ 

6.0496 
400 

66.12 
6.0496 

66.12(1.8) =119.02 

/ -J t 2 
119.02 

^ Y 
5 . / 3 = / 2 3 

6 . / W 3 

7. Λ - A y 

= 107.1 

64.27 

28.92 

8 · / 6 = Λ 
; Y 

t ) = 
'(f)-

" (τ ) -

107.11 

64.27 

28.92 

10.41 

3.12 
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BOX 4.1 
Continued 

3 . 1 2 ^ - 0.80 

10. Λ - Λ I = 0.8θ(~^ = 0.18 
Total 39935 

A 

f
9
 and beyond 0.05 

At step 3 enter Ϋ as a constant multiplier. Then multiply it by n/er (quantity 2). 
At each subsequent step multiply the result of the previous step by ? and then 
divide by the appropriate integer. 

• 

not k n o w the pa ramet r i c mean of the yeast cells in this problem, we employ an 
es t imate (the sample mean) and calculate expected frequencies of a Poisson 
dis t r ibut ion with μ equal to the mean of the observed frequency dis t r ibut ion 
of Box 4.1. It is convenient for the purpose of compu ta t ion to rewrite Expres-
sion (4.2) as a recursion formula as follows: 

h = L , ( y ) for i = 1, 2, . . . , where / 0 = (4.3) 

N o t e first of all that the pa ramet r i c mean μ has been replaced by the sample 
mean Ϋ. Each term developed by this recursion formula is mathemat ica l ly 
exactly the same as its cor responding term in Expression (4.2). It is impor t an t 
to m a k e no computa t iona l error , since in such a chain mult ipl icat ion the cor-
rectness of each term depends on the accuracy of the term before it. Expression 
(4.3) yields relative expected frequencies. If, as is more usual, absolute expected 
frequencies are desired, simply set the first term / 0 to n/ey, where η is the number 
of samples, and then proceed with the computa t iona l steps as before. The actual 
c o m p u t a t i o n is illustrated in Box 4.1, and the expected frequencies so obta ined 
are listed in co lumn (3) of the frequency dis t r ibut ion. 

W h a t have we learned f rom this compu ta t ion? When we c o m p a r e the 
observed with the expected frequencies, we notice qui te a good fit of ou r ob-
served frequencies to a Poisson dis t r ibut ion of mean 1.8, a l though we have not 
as yet learned a statistical test for goodness of fit (this will be covered in C h a p -
ter 13). N o clear pat tern of deviat ions f rom expectat ion is shown. We cannot 
test a hypothesis abou t the mean, because the mean of the expected distr ibu-
tion was taken f rom the sample mean of the observed variates. As in the bino-
mial dis t r ibut ion, c lumping or aggregat ion would indicate that the probabi l i ty 
that a second yeast cell will be found in a square is not independent of the prcs-
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ence of the first one, bu t is higher than the probabi l i ty for the first cell. This 
would result in a c lumping of the i tems in the classes at the tails of the distri-
bu t ion so tha t there would be some squares with larger number s of cells than ex-
pected, o thers with fewer numbers . 

The biological in terpre ta t ion of the dispersion pa t t e rn varies with the 
problem. The yeast cells seem to be r andomly distributed in the coun t ing 
chamber , indicat ing t ho rough mixing of the suspension. Red blood cells, on the 
other hand , will of ten stick together because of an electrical charge unless the 
proper suspension fluid is used. This so-called rouleaux effect would be indi-
cated by c lumping of the observed frequencies. 

N o t e tha t in Box 4.1, as in the subsequent tables giving examples of the 
applicat ion of the Poisson distr ibut ion, we g roup the low frequencies at one 
tail of the curve, unit ing them by means of a bracket . This tends to simplify 
the pat terns of d is t r ibut ion somewhat . However , the main reason for this group-
ing is related to the G test for goodness of fit (of observed to expected f requen-
cies), which is discussed in Section 13.2. F o r purposes of this test, no expected 
frequency / should be less than 5. 

Before we tu rn to other examples, we need to learn a few more facts abou t 
the Poisson dis tr ibut ion. You probab ly noticed that in c o m p u t i n g expected 
frequencies, we needed to k n o w only one p a r a m e t e r — t h e m e a n of the distri-
bution. By compar i son , in the binomial dis t r ibut ion we needed two parameters , 
ρ and k. Thus, the mean completely defines the shape of a given Poisson distri-
but ion. F r o m this it follows that the variance is some funct ion of the mean. In 
a Poisson dis t r ibut ion, we have a very simple relat ionship between the two: 
μ = σ 2 , the variance being equal to the mean. The variance of the n u m b e r of 
yeast cells per square based on the observed frequencies in Box 4.1 equals 1.965, 
not much larger than the mean of 1.8, indicating again that the yeast cells are 
distributed in Poisson fashion, hence randomly. This re la t ionship between vari-
ance and mean suggests a rapid test of whether an observed frequency distr ibu-
tion is distr ibuted in Poisson fashion even wi thout fitting expected frequencies 
to the data . We simply c o m p u t e a coefficient of dispersion 

This value will be near 1 in dis t r ibut ions that are essentially Poisson distr ibu-
tions, will be > 1 in c lumped samples, and will be < 1 in cases of repulsion. In 
the yeast cell example, CD = 1.092. 

The shapes of five Poisson dis t r ibut ions of different means are shown in 
Figure 4.3 as frequency polygons (a frequency polygon is formed by the line 
connect ing successive midpoin ts in a bar diagram). We notice that for the low 
value of μ = 0.1 the frequency polygon is extremely L-shapcd, but with an 
increase in the value of μ the dis t r ibut ions become humped and eventually 
nearly symmetrical . 

We conclude our s tudy of the Poisson dis t r ibut ion with a considerat ion of 
two examples. The first example (Table 4.5) shows the dis t r ibut ion of a number 
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1.0 

L ^ i I ^ ^ t - ^ g c ^ — . ι I I I ι ι ι ι — I - ' ' 
0 2 4 6 8 10 12 14 16 18 

N u m b e r of rare e v e n t s per sample 

f i g u r e 4 . 3 

Frequency polygons of the Poisson d i s t r ibu t ion for var ious values of the mean . 

of accidents per w o m a n f rom an accident record of 647 women work ing in a 
muni t ions factory dur ing a five-week period. The sampling unit is one w o m a n 
dur ing this period. The rare event is the n u m b e r of accidents that happened 
to a w o m a n in this period. The coefficient of dispersion is 1.488, and this is 
clearly reflected in the observed frequencies, which are greater than expected in 
the tails and less than expected in the center. This relat ionship is easily seen in 
the deviat ions in the last co lumn (observed minus expected frequencies) and 
shows a characterist ic c lumped pat tern . The model assumes, of course, tha t the 
accidents are not fata! o r very serious and thus do not remove the individual 
f r o m fur ther exposure. T h e not iceable c lumping in these da t a p robab ly arises 

t a b l e 4 . 5 

Accidents in 5 weeks to 647 women working on high-explosive 
shells. 

Observed 
frequencies 

f 

Poisson 
expected 

frequencies 
f 

0 447 
132 
42 

406.3 
189.0 
44.0 

+ 

2 
3 
4 
5 + 

Total 647 647.0 

7 = 0.4652 = 0.692 CD = 1.488 

Source: Greenwood and Yule (1920). 
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t a b l e 4 . 6 

Azuki bean weevils (Callosobruchus chinensis) emerging from 
112 Azuki beans (Phaseolus radiatus). 

U) 
Number of (3) (4) 

weevils (2) Poisson Deviation 
emerging Observed expected from 
per bean frequencies frequencies expectation 

Y f f f - f 

0 61 70.4 
1 50 32.7 • 

2 η 7.6] - 1 
3 o i l 1.2}· 8.9 
4 0.1 J - J 

Total 112 112.0 

? = 0.4643 x2 = 0.269 CD = 0.579 

Source: Utida (1943). 

either because some women are accident-prone or because some women have 
more dangerous jobs than others. Using only information on the distributions 
of accidents, one cannot distinguish between the two alternatives, which sug-
gest very different changes that should be made to reduce the numbers of 
accidents. 

The second example (Table 4.6) is extracted f rom an experimental study 
of the effects of different densities of the Azuki bean weevil. Larvae of these 
weevils enter the beans, feed and pupate inside them, and then emerge through 
an emergence hole. Thus the number of holes per bean is a good measure of the 
number of adults that have emerged. The rare event in this case is the presence 
of the weevil in the bean. We note that the distribution is strongly repulsed. 
There are many more beans containing one weevil than the Poisson distribution 
would predict. A statistical finding of this sort leads us to investigate the biology 
of the phenomenon. In this case it was found that the adult female weevils tended 
to deposit their eggs evenly rather than randomly over the available beans. This 
prevented the placing of too many eggs on any one bean and precluded heavy 
competit ion a m o n g the developing larvae on any one bean. A contr ibut ing 
factor was competi t ion among remaining larvae feeding on the same bean, in 
which generally all but one were killed or driven out. Thus, it is easily under-
stood how the above biological phenomena would give rise to a repulsed 
distribution. 

Exercises 

4.1 The two columns below give fertility of eggs of the CP strain of Drosophila 
melanogaster raised in 100 vials of 10 eggs each (data from R. R. Sokal). Find 
the expected frequencies on the assumption of independence of mortality for 
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each egg in a vial. Use the observed mean. Calculate the expected variance and 
compare it with the observed variance. Interpret results, knowing that the eggs 
of each vial are siblings and that the different vials contain descendants from 
different parent pairs. ANS. σ2 = 2.417, s2 = 6.636. There is evidence that mor-
tality rates are different for different vials. 

Number of eggs 
hatched Number of vials 

Y f 

0 1 
1 3 
2 8 
3 10 
4 6 
5 15 
6 14 
7 12 
8 13 
9 9 

10 9 

4.2 In human beings the sex ratio of newborn infants is about 100?V': 105 J J . Were 
we to take 10,000 random samples of 6 newborn infants from the total population 
of such infants for one year, what would be the expected frequency of groups 
of 6 males, 5 males, 4 males, and so on? 

43 The Army Medical Corps is concerned over the intestinal disease X. From 
previous experience it knows that soldiers suffering from the disease invariably 
harbor the pathogenic organism in their feces and that to all practical purposes 
every stool specimen from a diseased person contains the organism. However, 
the organisms are never abundant, and thus only 20% of all slides prepared by 
the standard procedure will contain some. (We assume that if an organism is 
present on a slide it will be seen.) How many slides should laboratory technicians 
be directed to prepare and examine per stool specimen, so that in case a speci-
men is positive, it will be erroneously diagnosed negative in fewer than 1 % of 
the cases (on the average)? On the basis of your answer, would you recommend 
that the Corps attempt to improve its diagnostic methods? ANS. 21 slides. 

4.4 Calculate Poisson expected frequencies for the frequency distribution given in 
Table 2.2 (number of plants of the sedge Carex flacca found in 500 quadrats). 

4.5 A cross is made in a genetic experiment in Drosophila in which it is expected 
that { of the progeny will have white eyes and 5 will have the trait called "singed 
bristles." Assume that the two gene loci segregate independently, (a) What 
proportion of the progeny should exhibit both traits simultaneously? (b) If four 
flies are sampled at random, what is the probability that they will all be 
white-eyed? (c) What is the probability that none of the four flies will have either 
white eyes or "singed bristles?" (d) If two flies are sampled, what is the probability 
that at least one of the flies will have either white eyes or "singed bristles" or 
both traits? ANS. (a) (b) (i)4; (c) [(1 - i)(l - i)]4; (d) 1 - [(1 - i)(l -

4.6 Those readers who have had a semester or two of calculus may wish to try to 
prove that Expression (4.1) tends to Expression (4.2) as k becomes indefinitely 
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large (and ρ becomes infinitesimal, so that μ = kp remains constant). HINT: 

/ * Y 1 -» e x as η oo 
V "/ 

4.7 If the frequency of the gene A is ρ and the frequency of the gene a is q, what 
are the expected frequencies of the zygotes A A, Aa, and aa (assuming a diploid 
zygote represents a random sample of size 2)? What would the expected frequency 
be for an autotetraploid (for a locus close to the centromere a zygote can be 
thought of as a random sample of size 4)? ANS. P{AA} = p2, P{Aa} = 2pq, 
P{aa} = q2, f o r a d i p l o i d ; a n d P{AAAA} = p4, P{AAAa} = 4 p 3 q , P{AAaa} = 
6 p 2 q 2 , P{Aaaa} = 4 p q 3 , P{aaaa} = q4, f o r a t e t r a p l o i d . 

4.8 Summarize and compare the assumptions and parameters on which the binomial 
and Poisson distributions are based. 

4.9 A population consists of three types of individuals, A„ A2, and A3, with relative 
frequencies of 0.5,0.2, and 0.3, respectively, (a) What is the probability of obtaining 
only individuals of type Αλ in samples of size 1, 2, 3 , . . . , n? (b) What would be 
the probabilities of obtaining only individuals that were not of type Α γ or A2 
in a sample of size n? (c) What is the probability of obtaining a sample containing 
at least one representation of each type in samples of size 1, 2, 3, 4, 5 , . . . , n? 
ANS. (a) I i , I , . . . , 1/2". (b) (0.3)". (c) 0, 0, 0.18, 0.36, 0.507, 

for n: " f " £ ' " ' . |0.5|'(0.2Κ(0.3)" • ' 
.·=ι i= ι A j \ ( n - i - j ) \ 

4.10 If the average number of weed seeds found in a j o u n c e sample of grass seed is 
1.1429, what would you expect the frequency distribution of weed seeds lo be 
in ninety-eight 4-ounce samples? (Assume there is random distribution of the 
weed seeds.) 



CHAPTER 

The Normal 
Probability Distribution 

The theoretical frequency dis t r ibut ions in Chap t e r 4 were discrete. Their vari-
ables assumed values that changed in integral steps (that is, they were meristic 
variables). Thus , the n u m b e r of infected insects per sample could be 0 or 1 or 2 
but never an intermediate value between these. Similarly, the n u m b e r of yeast 
cells per hemacytomete r square is a meristic variable and requires a discrete 
probabi l i ty funct ion to describe it. However, most variables encounte red in 
biology either are con t inuous (such as the aphid femur lengths or the infant 
birth weights used as examples in Chap te r s 2 and 3) or can be treated as con-
t inuous variables for most practical purposes, even though they are inherently 
meristic (such as the neutrophi l counts encountered in the same chapters). 
Chap te r 5 will deal more extensively with the dis tr ibut ions of con t inuous 
variables. 

Section 5.1 introduces frequency dis t r ibut ions of con t inuous variables. In 
Section 5.2 we show one way of deriving the most c o m m o n such dis t r ibut ion, 
the normal probabil i ty dis t r ibut ion. Then we examine its propert ies in Section 
5.3. A few appl icat ions of the normal dis t r ibut ion are illustrated in Section 5.4. 
A graphic technique for point ing out depar tu res f rom normali ty and for cst imat-
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ing mean and s t andard deviation in approximate ly normal d is t r ibut ions is given 
in Section 5.5, as are some of the reasons for depar tu re f rom normal i ty in 
observed frequency distr ibutions. 

5.1 Frequency distributions of continuous variables 

F o r con t inuous variables, the theoretical probabi l i ty dis tr ibut ion, or probability 
density function, can be represented by a con t inuous curve, as shown in Figure 
5.1. The ord ina te of the curve gives the density for a given value of the variable 
shown along the abscissa. By density we mean the relative concent ra t ion of 
variates a long the Y axis (as indicated in Figure 2.1). In order to c o m p a r e the 
theoretical with the observed frequency distr ibut ion, it is necessary to divide 
the two into cor responding classes, as shown by the vertical lines in Figure 5.1. 
Probabi l i ty density funct ions are defined so that the expected frequency of ob-
servations between two class limits (vertical lines) is given by the area between 
these limits under the curve. The total area under the curve is therefore equal 
to the sum of the expected frequencies (1.0 or n, depending on whether relative 
or absolute expected frequencies have been calculated). 

When you form a frequency distr ibution of observat ions of a con t inuous 
variable, your choice of class limits is arbi t rary, because all values of a variable 
are theoretically possible. In a con t inuous dis t r ibut ion, one cannot evaluate the 
probabi l i ty that the variable will be exactly equal to a given value such as 3 
or 3.5. O n e can only est imate the frequency of observat ions falling between two 
limits. This is so because the area of the curve cor responding to any point a long 
the curve is an infinitesimal. Thus, to calculate expected frequencies for a con-
t inuous distr ibut ion, we have to calculate the area under the curve between the 
class limits. In Sections 5.3 and 5.4, we shall see how this is done for the normal 
frequency dis tr ibut ion. 

Con t inuous frequency dis t r ibut ions may start and terminate at finite points 
a long the Y axis, as shown in Figure 5.1, or one or both ends of the curve may 
extend indefinitely, as will be seen later in Figures 5.3 and 6.11. The idea of an 
area under a curve when one or both ends go to infinity may t rouble those of 
you not acquainted with calculus. For tunate ly , however, this is not a great con-
ceptual s tumbling block, since in all the cases that we shall encounter , the tail 

I KillKL 5.1 
A probab i l i t y d i s t r ibu t ion of ;i c o n t i n u o u s 
variable . 
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of the curve will app roach the Y axis rapidly enough that the po r t ion of the 
a rea beyond a certain point will for all practical purposes be zero and the fre-
quencies it represents will be infinitesimal. 

We may fit con t inuous frequency dis t r ibut ions to some sets of merist ic d a t a 
(for example, the n u m b e r of teeth in an organism). In such cases, we have reason 
to believe tha t under lying biological variables that cause differences in number s 
of the s t ructure are really cont inuous , even though expressed as a discrete 
variable. 

We shall now proceed to discuss the most impor tan t probabi l i ty density 
funct ion in statistics, the no rma l f requency dis tr ibut ion. 

5.2 Derivation of the normal distribution 

There are several ways of deriving the no rma l f requency dis t r ibut ion f r o m ele-
men ta ry assumpt ions . Mos t of these require more mathemat ics than we expect 
of ou r readers. W e shall therefore use a largely intuitive approach , which we 
have found of heuristic value. Some inherently meristic variables, such as counts 
of blood cells, range into the thousands . Such variables can, for practical pur-
poses, be treated as though they were cont inuous . 

Let us consider a binomial dis t r ibut ion of the familiar form (ρ + qf in which 
k becomes indefinitely large. W h a t type of biological s i tuat ion could give rise 
to such a binomial dis t r ibut ion? An example might be one in which many 
factors coopera te additively in p roduc ing a biological result. The following 
hypothet ical case is possibly not too far removed f rom reality. The intensity of 
skin p igmenta t ion in an an imal will be due to the summat ion of m a n y factors, 
some genetic, o thers envi ronmenta l . As a simplifying assumpt ion, let us state 
that every factor can occur in two states only: present or absent . When the factor 
is present, it contr ibutes one unit of p igmenta t ion to skin color, but it cont r ibu tes 
no th ing to p igmenta t ion when it is absent . Each factor, regardless of its na ture 
or origin, has the identical effect, and the effects are additive: if three out of five 
possible factors are present in an individual, the p igmenta t ion intensity will be 
three units, or the sum of three cont r ibu t ions of one unit each. O n e final a ssump-
tion: Each factor has an equal probabil i ty of being present or absent in a given 
individual. Thus , ρ = = 0.5, the probabil i ty that the factor is present; while 
q = P [ / ] = 0.5, the probabi l i ty that the factor is absent. 

With only one factor (k = 1), expansion of the binomial (p + </)' would yield 
two p igmenta t ion classes a m o n g the animals , as follows: 

{/% / } p igmenta t ion classes (probabil i ty space) 
{0.5, 0.5} expected frequency 
{I, 0 } p igmentat ion intensity 

Half the animals would have intensity I, the o ther half 0. With k = 2 factors 
present in the popula t ion (the factors arc assumed to occur independent ly of 
each other), the dis t r ibut ion of p igmenta t ion intensities would be represented by 
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FIGURE 5 . 2 

His tog ram based on relative expected frequencies result ing f r o m expans ion of b inomia l (0.5 + 0.5)1 0 . 
The 7 axis measures the n u m b e r of p igmenta t ion factors F. 

the expansion of the b inomial ( ρ + q)2'· 

{FF, F f , jf } p igmenta t ion classes (probabil i ty space) 
{0.25, 0.50, 0.25} expected frequency 
{2, 1, 0 } p igmenta t ion intensity 

One- four th of the individuals would have p igmenta t ion intensity 2; one-half, 
intensity 1; and the remaining four th , intensity 0. 

The n u m b e r of classes in the binomial increases with the n u m b e r of factors. 
The frequency dis t r ibut ions are symmetrical , and the expected frequencies at the 
tails become progressively less as k increases. The binomial d is t r ibut ion for 
k— 10 is graphed as a h is togram in Figure 5.2 (rather than as a ba r d iagram, 
as it should be drawn). We note that the graph approaches the familiar bell-
shaped outl ine of the no rma l frequency dis tr ibut ion (seen in Figures 5.3 and 5.4). 
Were we to expand the expression for k = 20, our his togram would be so close 
to a normal frequency dis tr ibut ion that we could not show the difference be-
tween the two on a g raph the size of this page. 

At the beginning of this procedure, we made a number of severe limiting 
assumpt ions for the sake of simplicity. What happens when these are removed? 
First, when ρ φ q, the dis t r ibut ion also approaches normal i ty as k approaches 
infinity. This is intuitively difficult to see, because when ρ / q, the his togram 
is at first asymmetrical . However , it can be shown that when k, ρ, and q are 
such that kpq > 3, the normal dis t r ibut ion will be closely approx imated . Second, 
in a more realistic s i tuat ion, factors would be permit ted to occur in more than 
two s ta tes—one state making a large contr ibut ion , a second state a smaller 
contr ibut ion, and so forth. However , it can also be shown that the mul t inomial 
(p + q + r + · · · + z)k approaches the normal frequency dis t r ibut ion as k ap-
proaches infinity. Thi rd , different factors may be present in different frequencies 
and may have different quant i ta t ive effects. As long as these are addit ive and 
independent , normal i ty is still approached as k approaches infinity. 

Lifting these restrictions makes the assumpt ions leading to a normal dis-
t r ibut ion compat ib le with innumerable biological si tuations. It is therefore 
not surprising that so many biological variables are approximate ly normally 
distr ibuted. 
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Let us summar ize the condi t ions tha t tend to produce no rma l f requency 
distr ibutions: (1) that there be m a n y factors; (2) that these factors be independent 
in occurrence; (3) tha t the factors be independent in ef fec t—that is, tha t their 
effects be additive; and (4) that they m a k e equal cont r ibut ions to the variance. 
The four th condi t ion we are not yet in a posi t ion to discuss; we men t ion it here 
only for completeness. It will be discussed in Chap t e r 7. 

5.3 Properties of the normal distribution 

Formal ly , the normal probability density function can be represented by the 
expression 

1 
Z = — = e 2 " (5.1) 

Here Ζ indicates the height of the ord ina te of the curve, which represents the 
density of the items. It is the dependent variable in the expression, being a func-
t ion of the variable Y. There are two cons tan ts in the equat ion: π, well k n o w n 
to be approximate ly 3.141,59, mak ing \/yj2n approximate ly 0.398,94, and e, 
the base of the na tura l logari thms, whose value approximates 2.718,28. 

There are two paramete r s in a normal probabi l i ty density funct ion. These 
are the paramet r ic mean μ and the pa ramet r i c s tandard deviat ion σ, which 
de termine the locat ion and shape of the dis t r ibut ion. Thus, there is not jus t one 
no rma l dis tr ibut ion, as might appear to the uninit iated who keep encounte r ing 
the same bell-shaped image in textbooks. Rather , there are an infinity of such 
curves, since these pa ramete r s can assume an infinity of values. This is i l lustrated 
by the three normal curves in Figure 5.3, represent ing the same total frequencies. 

FKil IKh 5.3 
I l lus t ra t ion of how c h a n g e s in the Iwo p a r a m e t e r s of the n o r m a l d i s t r ibu t ion alTecl t he s h a p e a n d 
loca t ion of Ihe n o r m a l p robab i l i t y dens i ty func t ion . (Α) μ = 4, <r = 1; (Β) μ = 8, a = I; (C) μ = 8, 
n - 0.5. 
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Curves A and Β differ in their locat ions and hence represent popu la t ions with 
different means . Curves Β and C represent popu la t ions that have identical means 
but different s t anda rd deviations. Since the s tandard deviat ion of curve C is only 
half tha t of curve B, it presents a much nar rower appearance . 

In theory, a no rma l frequency dis t r ibut ion extends f rom negative infinity 
to positive infinity a long the axis of the variable (labeled Y, a l though it is 
frequently the abscissa). This means that a normal ly dis t r ibuted variable can 
assume any value, however large or small, a l though values far ther f rom the 
mean than plus or minus three s t andard deviat ions are quite rare, their relative 
expected frequencies being very small. This can be seen f rom Expression (5.1). 
When 7 is very large or very small, the term (Υ — μ)2/2σ2 will necessarily 
become very large. Hence e raised to the negative power of that te rm will be very 
small, and Ζ will therefore be very small. 

The curve is symmetrical a r o u n d the mean. Therefore, the mean , median, 
and m o d e of the no rma l dis t r ibut ion are all at the same point . The following 
percentages of i tems in a no rma l frequency dis tr ibut ion lie within the indicated 
limits: 

μ ± σ conta ins 68.27% of the items 
μ ±2σ conta ins 95.45% of the items 
μ ± 3σ conta ins 99.73% of the i tems 

Conversely, 

50% of the items fall in the range μ ± 0.674σ 
95% of the items fall in the range μ + 1.960σ 
99% of the items fall in the range μ + 2.576σ 

These relat ions are shown in Figure 5.4. 
How have these percentages been calculated? The direct calculat ion of any 

por t ion of the area under the normal curve requires an integrat ion of the func-
tion shown as Expression (5.1). For tunate ly , for those of you who do not know 
calculus (and even for those of you who do) the integrat ion has already been 
carried out and is presented in an al ternat ive form of the normal distr ibution: 
the normal distribution function (the theoretical cumulative d is t r ibut ion funct ion 
of the normal probabi l i ty density function), also shown in Figure 5.4. It gives the 
total frequency f rom negative infinity u p to any point a long the abscissa. We can 
therefore look up directly the probabi l i ty that an observat ion will be less than 
a specified value of Y. For example, Figure 5.4 shows that the total frequency 
up to the mean is 50.00% and the f requency up to a point one s t anda rd deviat ion 
below the mean is 15.87%. These frequencies are found, graphically, by raising 
a vertical line f rom a point, such as — σ, until it intersects the cumulat ive distri-
but ion curve, and then reading the frequency (15.87%) off the ordinate . The 
probabil i ty that an observat ion will fall between two arb i t ra ry points can be 
found by subt rac t ing the probabil i ty that an observat ion will fall below the 
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f i g u r e 5 . 4 

Areas under the n o r m a l probabi l i ty density func t ion and the cumula t ive n o r m a ! d is t r ibut ion 
func t ion 

lower point f rom the probabi l i ty that an observa t ion will fall below the upper 
point . F o r example, we can see f rom Figure 5.4 that the probabi l i ty that an 
observat ion will fall between the mean and a point one s tandard deviat ion below 
the mean is 0.5000 - 0.1587 = 0.3413. 

The normal dis t r ibut ion funct ion is tabula ted in Table II in Appendix A2, 
"Areas of the normal curve," where, for convenience in later calculat ions, 0.5 
has been subtrac ted f rom all of the entries. This table therefore lists the p ropor -
tion of the area between the mean and any point a given number of s t anda rd 
deviat ions above it. Thus , for example, the area between the mean and the point 
0.50 s t andard deviat ions above the mean is 0.1915 of the total area of the curve. 
Similarly, the area between the mean and the point 2.64 s t andard deviat ions 
above the mean is 0.4959 of the curve. A point 4.0 s t andard deviat ions f r o m 
the mean includes 0.499,968 of the area between it and the mean. However , since 
the normal dis t r ibut ion extends f rom negative to positive infinity, one needs 
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t o go an inf ini te d i s t ance f r o m the m e a n t o reach a n a rea of 0.5. T h e use of the 
table of a r ea s of the n o r m a l curve will be i l lus t ra ted in the next sect ion. 

A s a m p l i n g expe r imen t will give you a "feel" for the d i s t r i bu t ion of i tems 
sampled f r o m a n o r m a l d i s t r ibu t ion . 

Experiment 5.1. You are asked to sample from two populations. The first one is an 
approximately normal frequency distribution of 100 wing lengths of houseflies. The 
second population deviates strongly from normality. It is a frequency distribution of the 
total annual milk yield of 100 Jersey cows. Both populations are shown in Table 5.1. 
You are asked to sample from them repeatedly in order to simulate sampling from an 
infinite population. Obtain samples of 35 items from each of the two populations. This 
can be done by obtaining two sets of 35 two-digit random numbers from the table of 
random numbers (Table I), with which you became familiar in Experiment 4.1. Write 
down the random numbers in blocks of five, and copy next to them the value of Y (for 
either wing length or milk yield) corresponding to the random number. An example of 
such a block of five numbers and the computations required for it are shown in the 

TABLE 5.1 
Populations of wing lengths and milk yields. Column I. Rank number . Column 2. Lengths (in 
m m χ 1 ( T ' ) of 100 wings of houseflies a r rayed in o rder of magn i tude ; / / = 45.5. σ2 = 15.21, σ = 3.90; 
d is t r ibut ion approx imate ly normal . Column 3. To ta l a n n u a l milk yield (in h u n d r e d s of pounds ) of 
100 two-year-old registered Jersey cows a r rayed in o rder of magni tude ; μ = 66.61, a 2 = 124.4779, 
ο = 11.1597; d is t r ibut ion depa r t s s t rongly f rom normal i ty . 

(/) (2) li) (/) (2) (3) (/) (2) « (0 (2) (3) ( ' ) (2) (3) 

01 36 51 21 42 58 41 45 61 61 47 67 81 49 76 
02 37 51 22 42 58 42 45 61 62 47 67 82 49 76 
03 38 51 23 42 58 43 45 61 63 47 68 83 49 79 
04 38 53 24 43 58 44 45 61 64 47 68 84 49 80 
05 39 53 25 43 58 45 45 61 65 47 69 85 50 80 
06 39 53 26 43 58 46 45 62 66 47 69 86 50 8! 
07 40 54 27 43 58 47 45 62 67 47 69 87 50 82 
08 40 55 28 43 58 48 45 62 68 47 69 88 50 82 
09 40 55 29 43 58 49 45 62 69 47 69 89 50 82 
10 40 56 30 43 58 50 45 63 70 48 69 90 50 82 

II 41 56 31 43 58 51 46 63 71 48 70 91 51 83 
12 41 56 32 44 59 52 46 63 72 48 72 92 51 85 
13 41 57 33 44 59 53 46 64 73 48 73 93 51 87 
14 41 57 34 44 59 54 46 65 74 48 73 94 51 88 
15 41 57 35 44 60 55 46 65 75 48 74 95 52 88 
16 41 57 36 44 60 56 46 65 76 48 74 96 52 89 
17 42 57 37 44 60 57 46 65 77 48 74 97 53 93 
18 42 57 38 44 60 58 46 65 78 49 74 98 53 94 
19 42 57 39 44 60 59 46 67 79 49 75 99 54 96 
20 42 57 40 44 61 60 46 67 80 49 76 00 55 98 

Source: Column 2—Data adapted from Soka] and Hunter (1955). Column 3 —Data from Canadian government 
records. 
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following listing, using the housefly wing lengths as an example: 

Wing 
Random length 
number Y 

16 41 
59 46 
99 54 
36 44 
21 42 

£ Y = 227 

£ Y 2 = 10,413 

y = 45.4 

Those with ready access to a computer may prefer to program this exercise and take 
many more samples. These samples and the computations carried out for each sample 
will be used in subsequent chapters. Therefore, preserve your data carefully! 

In this experiment , consider the 35 variates for each variable as a single 
sample, ra ther than break ing them down in to groups of five. Since the t rue mean 
and s t anda rd deviat ion (μ and a) of the two dis t r ibut ions are known, you can 
calculate the expression (Υ, — μ)/σ for each variate Y,. Thus, for the first housefly 
wing length sampled above, you compu te 

41 - 45.5 

- l 9 0 - = " : 1 1 5 3 8 

This means that the first wing length is 1.1538 s tandard deviat ions below the 
t rue mean of the popula t ion . The deviat ion f rom the mean measured in s t anda rd 
deviat ion units is called a standardized deviate or standard deviate. The argu-
ments of Tab le II, expressing distance f rom the mean in units of σ, are called 
standard normal deviates. G r o u p all 35 variates in a frequency dis t r ibut ion; then 
d o the same for milk yields. Since you know the parametr ic mean and s t anda rd 
deviat ion, you need not c o m p u t e each deviate separately, but can simply write 
down class limits in terms of the actual variable as well as in s tandard deviat ion 
form. The class limits for such a frequency dis tr ibut ion are shown in Table 
5.2. C o m b i n e the results of your sampling with those of your classmates and 
s tudy the percentage of the items in the dis t r ibut ion one, two, and three s t anda rd 
deviat ions to each side of the mean. Note the marked differences in dis t r ibut ion 
between the housefly wing lengths and the milk yields. 

5.4 Applications of the normal distribution 

The normal frequency dis t r ibut ion is the most widely used dis t r ibut ion in sta-
tistics, and time and again we shall have recourse to it in a variety of situa-
tions. For the moment , wc may subdivide its appl icat ions as follows. 
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t a b l e 5 . 2 

Table for recording frequency distributions of standard deviates (¥, — μ)]ο for samples of 
Experiment 5.1. 

Wing lengths Milk yields 

Variates Variates 
falling falling 
between between 

these these 
limits f limits 

— 00 

— 3σ 

- 2 k 

- 2 a 36, 37 

- i k 38, 39 

— a 4 0 , 4 1 

- k 42, 4 3 

μ = 4 5 . 5 44 , 4 5 

k 4 6 , 4 7 

a 4 8 , 4 9 

i k 50, 51 

2a 52, 53 

2 k 54, 55 

3σ 

+ GO 

— 00 

- 3 σ 

— 2(7 

- l k 

μ = 66.61 

I k 
2σ 

2 k 
3 σ 

+ GO 

5 1 - 5 5 

5 6 - 6 1 

6 2 - 6 6 

6 7 - 7 2 

7 3 - 7 7 

7 8 - 8 3 

8 4 - 8 8 

8 9 - 9 4 

9 5 9 8 

1. We sometimes have to know whether a given sample is normally distr ibuted 
before we can apply a certain test to it. To test whether a given sample is 
normally distr ibuted, we have to calculate expected frequencies for a normal 
curve of the same mean and s tandard deviat ion using the table of areas of 
the normal curve. In this book we shall employ only approx ima te graphic 
methods for testing normali ty. These are featured in the next section. 

2. Knowing whether a sample is normally distr ibuted may confirm or reject 
certain underlying hypotheses about the nature of the factors affecting the 
phenomenon studied. This is related to the condi t ions making for normal i ty 
in a frequency distr ibut ion, discusscd in Scction 5.2. Thus, if we find a given 
variable to be normally distr ibuted, we have no reason for rejecting the hy-
pothesis that the causal factors affecting the variable arc addit ive and inde-
pendent and of equal variance. O n the other hand, when we find depar ture 
from normali ty, this may indicate certain forces, such as selection, affecting 
the variable under study, f o r instance, bimodali ty may indicate a mixture 
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of observat ions f rom two popula t ions . Skewness of milk yield da t a m a y indi-
cate tha t these are records of selected cows and subs tandard milk cows have 
not been included in the record. 

3. If we assume a given dis t r ibut ion to be normal , we may m a k e predict ions 
and tests of given hypotheses based u p o n this assumpt ion. (An example of 
such an appl icat ion follows.) 

You will recall the bi r th weights of male Chinese children, i l lustrated in 
Box 3.2. The mean of this sample of 9465 bi r th weights is 109.9 oz, and its 
s t anda rd deviat ion is 13.593 oz. If you sample a t r a n d o m f r o m the bi r th records 
of this popula t ion , wha t is your chance of ob ta in ing a bir th weight of 151 oz or 
heavier? Such a bir th weight is considerably above the mean of ou r sample, the 
difference being 151 — 109.9 = 41.1 oz. However , we canno t consult the table 
of areas of the no rma l curve with a difference in ounces. We mus t express it in 
standardized un i t s—tha t is, divide it by the s t anda rd deviat ion to conver t it in to 
a s t anda rd deviate. W h e n we divide the difference by the s t anda rd deviat ion, 
we obta in 41.1/13.593 = 3.02. This means that a birth weight of 151 oz is 3.02 
s t anda rd deviat ion uni ts greater than the mean. Assuming tha t the bir th weights 
are normal ly dis tr ibuted, we may consult the table of areas of the no rma l curve 
(Table II), where we find a value of 0.4987 for 3.02 s tandard deviat ions. This 
means that 49.87% of the area of the curve lies between the mean and a point 
3.02 s t andard deviat ions f rom it. Conversely, 0.0013, or 0.13%, of the area lies 
beyond 3.02 s t anda rd deviat ion units above the mean. Thus, assuming a no rma l 
dis t r ibut ion of birth weights and a value of σ = 13.593, only 0.13%, or 13 out 
of 10,000, of the infants would have a bir th weight of 151 oz or farther f rom 
the mean. It is quite improbab le that a single sampled item f rom tha t popu la t ion 
would deviate by so much f rom the mean, and if such a r a n d o m sample of one 
weight were obta ined f rom the records of an unspecified popula t ion , we might 
be justified in doub t ing whether the observat ion did in fact come f rom the 
popu la t ion known to us. 

The above probabi l i ty was calculated f rom one tail of the dis t r ibut ion. W e 
found the probabil i ty that an individual would be greater t han the mean by 
3.02 or more s t anda rd deviations. If we are not concerned whether the indi-
vidual is either heavier or lighter than the mean but wish to know only how 
different the individual is f rom the popula t ion mean, an appropr i a t e quest ion 
would be: Assuming that the individual belongs to the populat ion, what is the 
probabi l i ty of observing a birth weight of an individual deviant by a certain 
a m o u n t f rom the mean in either direction? T h a t probabil i ty must be compu ted 
by using both tails of the dis t r ibut ion. The previous probabil i ty can be simply 
doubled , since the normal curve is symmetrical . Thus, 2 χ 0.0013 = 0.0026. 
This, too, is so small tha t we would conclude that a birth weight as deviant 
as 151 oz is unlikely to have come f rom the popula t ion represented by our 
sample of male Chinese children. 

We can learn one more impor t an t point f r o m this example. O u r assumpt ion 
has been that the birth weights are normal ly distr ibuted. Inspection of the 
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frequency dis t r ibut ion in Box 3.2, however, shows clearly that the dis t r ibut ion 
is asymmetrical , taper ing to the right. T h o u g h there are eight classes above 
the mean class, there are only six classes below the mean class. In view of this 
asymmetry, conclusions a b o u t one tail of the dis t r ibut ion would not neces-
sarily per ta in to the second tail. W e calculated tha t 0.13% of the items would 
be found beyond 3.02 s t anda rd deviat ions above the mean, which cor responds 
to 151 oz. In fact, ou r sample conta ins 20 items (14 + 5 + 1) beyond the 147.5-oz 
class, the upper limit of which is 151.5 oz, a lmost the same as the single bi r th 
weight. However , 20 i tems of the 9465 of the sample is approximate ly 0.21%, 
more than the 0.13% expected f rom the no rma l frequency dis tr ibut ion. Al though 
it would still be improbab le to find a single bir th weight as heavy as 151 oz in 
the sample, conclusions based on the assumpt ion of normal i ty might be in er ror 
if the exact probabi l i ty were critical for a given test. O u r statistical conclusions 
are only as valid as our assumpt ions abou t the popula t ion f r o m which the 
samples are drawn. 

5.5 Departures from normality: Graphic methods 

In many cases an observed frequency dis tr ibut ion will depar t obviously f rom 
normali ty. We shall emphasize two types of depar tu re f rom normali ty . One is 
skewness, which is ano the r name for asymmetry; skewness means that one tail 
of the curve is d rawn out more than the other. In such curves the mean and 
the median will not coincide. Curves are said to be skewed to the right or left, 
depending upon whether the right or left tail is d rawn out. 

The other type of depar tu re f rom normal i ty is kurtosis, or "peakedness" 
of a curve. A leptokurtic curve has more items near the mean and at the tails, 
with fewer items in the intermediate regions relative to a normal dis t r ibut ion 
with the same mean and variance. A platykurtic curve has fewer items at the 
mean and at the tails than the normal curvc but has more items in intermediate 
regions. A bimodal dis t r ibut ion is an extreme pla tykurt ic dis t r ibut ion. 

Graph ic me thods have been developed that examine the shape of an ob-
served dis tr ibut ion for depar tures f rom normali ty . These me thods also permit 
estimates of the mean and s tandard deviation of the dis t r ibut ion wi thout 
computa t ion . 

The graphic me thods are based on a cumulat ive frequency dis t r ibut ion. In 
Figure 5.4 we saw tha t a normal frequency dis tr ibut ion graphed in cumulat ive 
fashion describes an S-shaped curve, called a sigmoid curve. In Figure 5.5 the 
ord ina te of the sigmoid curve is given as relative frequencies expressed as 
percentages. The slope of the cumulat ive curve reflects changcs in height of the 
frequency dis t r ibut ion on which it is based. Thus the steep middle segment of 
the cumulat ive normal curve cor responds to the relatively greater height of the 
normal curvc a round its mean. 

The ord ina te in Figures 5.4 and 5.5 is in linear scale, as is the abscissa in 
Figure 5.4. Another possible scale is the normal probability scale (often simply 
called probability scale), which can be generated by d ropp ing perpendiculars 
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C u m u l a t i v e percent in probabi l i ty scale 

f i g u r e 5 . 5 

T r a n s f o r m a t i o n of cumula t ive percentages into no rma l probabi l i ty scale. 

f rom the cumulat ive normal curve, cor responding to given percentages on the 
ordinate , to the abscissa (as shown in Figure 5.5). The scale represented by the 
abscissa compensa tes for the nonl inear i ty of the cumulat ive normal curve. It 
cont rac t s the scale a r o u n d the median and expands it at the low and high 
cumulat ive percentages. This scale can be found on arithmetic or normal prob-
ability graph paper ( o r s i m p l y probability graph paper), w h i c h i s g e n e r a l l y a v a i l -

able. Such paper usually has the long edge graduated in probabi l i ty scale, while 
the short edge is in linear scale. No te that there are no 0% or 100% points on 
the ordinate . These points canno t be shown, since the normal f requency distri-
but ion extends f rom negative to positive infinity and thus however long we 
m a d e our line we would never reach the limiting values of 0% and 100%. 

If we graph a cumulat ive normal dis t r ibut ion with the o rd ina te in normal 
probabil i ty scale, it will lie exactly on a straight line. Figure 5.6A shows such a 
g raph d rawn on probabi l i ty paper , while the o ther par ts of Figure 5.6 show a 
series of frequency d is t r ibut ions variously depar t ing f rom normali ty . These are 
g raphed bo th as ord inary f requency dis t r ibut ions with density on a linear scale 
(ordinate not shown) and as cumulat ive dis t r ibut ions as they would appea r on 
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N o r m a l d i s t r i bu t ions 

f i g u r k 5 . 6 

Examples of some f requency d is t r ibut ions with their cumula t ive d i s t r ibu t ions plot ted with the 
o rd ina te in normal probabi l i ty scale. (See Box 5.1 for explanat ion. ) 

probabil i ty paper . They are useful as guidelines for examining the dis t r ibut ions 
of da ta on probabil i ty paper . 

Box 5.1 shows you how to use probabi l i ty paper to examine a frequency 
distr ibution for normal i ty and to obta in graphic est imates of its mean and 
s tandard deviation. T h e method works best for fairly large samples (η > 50). 
The method does not permit the plot t ing of the last cumulat ive frequency, 100%, 
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BOX 5.1 
Graphic test for normality of a frequency distribution and estimate of mean and 
standard deviation. Use of arithmetic probability paper. 

Birth weights of male Chinese in ounces, from Box 3.2. 

V ) (2) (β) (4) (5) 
Class Upper Cumulative Percent 
mark class frequencies cumulative 

Y limit f F frequencies 

59.5 63.5 2 2 0.02 
67.5 71.5 6 8 0.08 
75.5 79.5 39 47 0.50 
83.5 87.5 385 432 4.6 
91.5 95.5 888 1320 13.9 
99.5 103.5 1729 3049 32.2 

107.5 111.5 2240 5289 55.9 
115.5 119.5 2007 7296 77.1 
123.5 127.5 1233 8529 90.1 
131.5 135.5 641 9170 96.9 
139.5 143.5 201 9371 99.0 
147.5 151.5 74 9445 99.79 
155.5 159.5 14 9459 99.94 
163.5 167.5 5 9464 99.99 
171.5 175.5 1 

9465 
9465 100.0 

Computational steps 

1. Prepare a frequency distribution as shown in columns (1), (2), and (3). 

2. Form a cumulative frequency distribution as shown in column (4). It is obtained 
by successive summation of the frequency values. In column (5) express the 
cumulative frequencies as percentages of total sample size n, which is 9465 in 
this example. These percentages are 100 times the values of column (4) divided 
by 9465. 

3. Graph the upper class limit of each class along the abscissa (in linear scale) 
against percent cumulative frequency along the ordinate (in probability scale) 
on normal probability paper (see Figure 5.7). A straight line is fitted to the points 
by eye, preferably using a transparent plastic ruler, which permits all the points 
to be seen as the line is drawn. In drawing the line, most weight should be 
given to the points between cumulative frequencies of 25% to 75%. This is 
because a difference of a single item may make appreciable changes in the 
percentages at the tails. We notice that the upper frequencies deviate to the right 
of the straight line. This is typical of data that are skewed to the right (see 
Figure 5.6D). 

4. Such a graph permits the rapid estimation of the mean and standard deviation 
of a sample. The mean is approximated by a graphic estimation of the median. 
The more normal the distribution is, the closer the mean will be to the median. 
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BOX 5.1 
Continued 

The median is estimated by dropping a perpendicular from the intersection of 
the 50% point on the ordinate and the cumulative frequency curve to the 
abscissa (see Figure 5.7). The estimate of the mean of 110.7 oz is quite close to 
the computed mean of 109.9 oz. 

5. The standard deviation can be estimated by dropping similar perpendiculars 
from the intersections of the 15.9% and the 84.1% points with the cumulative 
curve, respectively. These points enclose the portion of a normal curve repre-
sented by μ ± σ. By measuring the difference between these perpendiculars and 
dividing this by 2, we obtain an estimate of one standard deviation. In this 
instance the estimate is s = 13.6, since the difference is 27.2 oz divided by 2. This 
is a close approximation to the computed value of 13.59 oz. 

<«.5 79.5 95.5 111.5 127.5 1 Ci.5 159.5 175.5 

Kirth weights (if mail- Chinese (in oz.) 

hg((r!·: 5.7 

G r a p h i c analysis of da t a f rom Box 5.1. 
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since that cor responds to an infinite distance f r o m the mean. If you are interested 
in plot t ing all observat ions, you can plot, instead of cumulat ive frequencies F, 
the quant i ty F — j expressed as a percentage of n. 

Often it is desirable to c o m p a r e observed frequency dis t r ibut ions with their 
expectat ions wi thout resort ing to cumulat ive f requency dis tr ibut ions. O n e 
method of do ing so would be to super impose a no rma l curve on the h i s togram 
of an observed frequency distr ibution. Fi t t ing a no rma l dis t r ibut ion as a curve 
super imposed u p o n an observed frequency dis tr ibut ion in the fo rm of a histo-
gram is usually d o n e only when graphic facilities (plotters) are available. Ord i -
nates are computed by modifying Expression (5.1) to conform to a f requency 
distribution: 

l /Υ-μ\ζ 

Z = (5.2) 
S y f l n 

In this expression η is the sample size and i is the class interval of the frequency 
distr ibution. If this needs to be done wi thout a compute r p rogram, a table of 
ordinates of the no rma l curve is useful. In Figure 5.8A we show the frequency 
distr ibution of b i r th weights of male Chinese f rom Box 5.1 with the ordinates 
of the normal curve super imposed. There is an excess of observed frequencies 
at the right tail due to the skewness of the distr ibution. 

You will p robably find it difficult to compare the heights of bars against 
the arch of a curve. F o r this reason, J o h n Tukey has suggested that the bars 
of the h is tograms be suspended f rom the curve. Their depar tures f rom expecta-
tion can then be easily observed against the straight-line abscissa of the graph. 
Such a hanging his togram is shown in Figure 5.8B for the birth weight data . 
The depar tu re f rom normal i ty is now much clearer. 

Becausc impor tan t depar tures are frequently noted in the tails of a curve, 
it has been suggested that square roots of expectcd frequencies should be com-
pared with the square roots of observed frequencies. Such a "hanging rooto-
g ram" is shown in Figure 5.8C for the Chinese birth weight data . No te the 
accentuat ion of the depar tu re f rom normali ty. Finally, one can also use an 
ana logous technique for compar ing expected with observed his tograms. Figure 
5.8D shows the same da ta plotted in this manner . Square roots of frequencies 
are again shown. The excess of observed over expected frequencies in the right 
tail of the dis t r ibut ion is qui te evident. 

Exercises 

5.1 U s i n g t h e i n f o r m a t i o n g i v e n in B o x 3.2, w h a t is t h e p r o b a b i l i t y o f o b t a i n i n g a n 
i n d i v i d u a l w i t h a n e g a t i v e b i r t h w e i g h t ? W h a t is t h i s p r o b a b i l i t y if w e a s s u m e 
t h a t b i r t h w e i g h t s a r e n o r m a l l y d i s t r i b u t e d ? A N S . T h e e m p i r i c a l e s t i m a t e is z e r o . 
If a n o r m a l d i s t r i b u t i o n c a n be a s s u m e d , it is t h e p r o b a b i l i t y t h a t a s t a n d a r d 
n o r m a l d e v i a t e is less t h a n (0 - 1 0 9 . 9 ) / 1 3 . 5 9 3 = - 8 . 0 8 5 . T h i s v a l u e is b e y o n d 
t h e r a n g e o f m o s t t a b l e s , a n d t h e p r o b a b i l i t y c a n b e c o n s i d e r e d z e r o f o r p r a c t i c a l 
p u r p o s e s . 
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5 . 2 C a r r y o u t t h e o p e r a t i o n s l i s t ed in E x e r c i s e 5.1 o n t h e t r a n s f o r m e d d a t a g e n e r a t e d 
in E x e r c i s e 2.6. 

5 . 3 A s s u m e y o u k n o w t h a t t h e p e t a l l e n g t h of a p o p u l a t i o n of p l a n t s of s p e c i e s X 
is n o r m a l l y d i s t r i b u t e d w i t h a m e a n of μ = 3.2 c m a n d a s t a n d a r d d e v i a t i o n of 
σ = 1.8. W h a t p r o p o r t i o n o f t h e p o p u l a t i o n w o u l d b e e x p e c t e d t o h a v e a p e t a l 
l e n g t h (a ) g r e a t e r t h a n 4 .5 c m ? (b) G r e a t e r t h a n 1.78 c m ? (c) B e t w e e n 2 .9 a n d 
3.6 c m ? A N S . (a) = 0 . 2 3 5 3 , (b) = 0 . 7 8 4 5 , a n d (c) = 0 .154 . 

5 .4 P e r f o r m a g r a p h i c a n a l y s i s o f t h e b u t t e r f a t d a t a g i v e n i n E x e r c i s e 3.3, u s i n g p r o b -
a b i l i t y p a p e r . I n a d d i t i o n , p l o t t h e d a t a o n p r o b a b i l i t y p a p e r w i t h t h e a b s c i s s a 
in l o g a r i t h m i c u n i t s . C o m p a r e t h e r e s u l t s of t h e t w o a n a l y s e s . 

5 .5 A s s u m e t h a t t r a i t s A a n d Β a r e i n d e p e n d e n t a n d n o r m a l l y d i s t r i b u t e d w i t h p a r a m -
e t e r s μΛ = 28 .6 , σΑ = 4 .8 , μΒ = 16.2, a n d σΒ = 4 .1 . Y o u s a m p l e t w o i n d i v i d u a l s 
a t r a n d o m (a) W h a t is t h e p r o b a b i l i t y o f o b t a i n i n g s a m p l e s i n w h i c h b o t h 
i n d i v i d u a l s m e a s u r e l e s s t h a n 2 0 f o r t h e t w o t r a i t s ? (b) W h a t is t h e p r o b a b i l i t y 
t h a t a t l e a s t o n e of t h e i n d i v i d u a l s is g r e a t e r t h a n 3 0 f o r t r a i t B ? A N S . 
(a) P{A < 20}P{B < 2 0 } = (0 .3654 ) (0 .082 ,38 ) = 0 .030 ; (b) 1 - (P{A < 30}) χ 
( Ρ { Β < 30}) = 1 - ( 0 . 6 1 4 7 ) ( 0 . 9 9 6 0 ) = 0 . 3 8 5 6 . 

5 .6 P e r f o r m t h e f o l l o w i n g o p e r a t i o n s o n t h e d a t a of E x e r c i s e 2.4. (a) If y o u h a v e 
n o t a l r e a d y d o n e s o , m a k e a f r e q u e n c y d i s t r i b u t i o n f r o m t h e d a t a a n d g r a p h t h e 
r e s u l t s in t h e f o r m of a h i s t o g r a m , (b) C o m p u t e t h e e x p e c t e d f r e q u e n c i e s f o r e a c h 
of t h e c l a s s e s b a s e d o n a n o r m a l d i s t r i b u t i o n w i t h μ = Ϋ a n d σ = s. (c) G r a p h 
t h e e x p e c t e d f r e q u e n c i e s in t h e f o r m of a h i s t o g r a m a n d c o m p a r e t h e m w i t h t h e 
o b s e r v e d f r e q u e n c i e s , (d) C o m m e n t o n t h e d e g r e e of a g r e e m e n t b e t w e e n o b s e r v e d 
a n d e x p e c t e d f r e q u e n c i e s . 

5 .7 L e t u s a p p r o x i m a t e t h e o b s e r v e d f r e q u e n c i e s in E x e r c i s e 2.9 w i t h a n o r m a l f r e -
q u e n c y d i s t r i b u t i o n . C o m p a r e t h e o b s e r v e d f r e q u e n c i e s w i t h t h o s e e x p e c t e d w h e n 
a n o r m a l d i s t r i b u t i o n is a s s u m e d . C o m p a r e t h e t w o d i s t r i b u t i o n s b y f o r m i n g 
a n d s u p e r i m p o s i n g t h e o b s e r v e d a n d t h e e x p e c t e d h i s t o g r a m s a n d b y u s i n g a 
h a n g i n g h i s t o g r a m . A N S . T h e e x p e c t e d f r e q u e n c i e s f o r t h e a g e c l a s s e s a r e : 17.9, 
48 .2 , 72.0 , 51.4 , 17.5, 3.0. T h i s is c l e a r e v i d e n c e fo r s k e w n e s s in t h e o b s e r v e d 
d i s t r i b u t i o n . 

5 . 8 P e r f o r m a g r a p h i c a n a l y s i s o n t h e f o l l o w i n g m e a s u r e m e n t s . A r e t h e y c o n s i s t e n t 
w i t h w h a t o n e w o u l d e x p e c t in s a m p l i n g f r o m a n o r m a l d i s t r i b u t i o n ? 

11.44 12.88 11 .06 7 .02 10.25 6 .26 7.92 12.53 6 . 7 4 
15.81 9 . 4 6 2 1 . 2 7 9 . 7 2 6 . 3 7 5 .40 3.21 6 . 5 0 3 . 4 0 

5 .60 14 .20 6 . 6 0 10.42 8 .18 11.09 8 .74 

T h e f o l l o w i n g d a t a a r e t o t a l l e n g t h s ( in c m ) of b a s s f r o m a s o u t h e r n laki 

29 .9 4 0 . 2 37 .8 19.7 30 .0 29 .7 19.4 39 .2 24.7 2 0 . 4 
19.1 34 .7 3 3 . 5 18.3 19.4 27 .3 38 .2 16.2 36.8 33.1 
4 1 . 4 13.6 32 .2 24 .3 19.1 37 .4 23 .8 33 .3 31 .6 20.1 
17.2 13.3 37 .7 12.6 39 .6 24 .6 18.6 18.0 33.7 38 .2 

C o m p u t e t h e m e a n , t h e s t a n d a r d d e v i a t i o n , a n d t h e c o e f f i c i e n t of v a r i a t i o n . M a k e 
a h i s t o g r a m of t h e d a t a . D o t h e d a t a s e e m c o n s i s t e n t w i t h a n o r m a l d i s t r i b u t i o n 
o n t h e b a s i s of a g r a p h i c a n a l y s i s ? If n o t , w h a t t y p e of d e p a r t u r e is s u g g e s t e d ? 
A N S . F = 2 7 . 4 4 7 5 , s = 8 . 9 0 3 5 , V = 32 .438 . T h e r e is a s u g g e s t i o n of b i m o d a l i t y . 



CHAPTER 

Estimation and 
Hypothesis Testing 

In this chapte r we provide me thods to answer two fundamenta l statistical ques-
tions that every biologist must ask repeatedly in the course of his or her work: 
(1) how reliable are the results I have obtained? and (2) how probable is it 
that the differences between observed results and those expected on the basis 
of a hypothesis have been produced by chance alone? The first quest ion, abou t 
reliability, is answered through the setting of confidencc limits to sample sta-
tistics. The second quest ion leads into hypothesis testing. Both subjects belong 
to the field of statistical inference. The subject mat te r in this chap te r is funda-
mental to an unders tand ing of any of the subsequent chapters . 

In Section 6.1 we consider the form of the dis t r ibut ion of means and their 
variance. In Section 6.2 we examine the dis t r ibut ions and variances of statistics 
other than the mean. This brings us to the general subject of s t andard errors, 
which a re statistics measur ing the reliability of an estimate. Conf idence limits 
provide bounds to our est imates of popu la t ion parameters . We develop the idea 
of a confidence limit in Section 6.3 and show its appl icat ion to samples where 
the true s tandard deviat ion is known. However , one usually deals with small, 
more or less normally distr ibuted samples with unknown s tandard deviations, 
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in which case the t d i s t r i bu t i on m u s t be used. W e shall i n t r o d u c e the t dis-
t r i b u t i o n in Sect ion 6.4. T h e app l i ca t ion of t t o the c o m p u t a t i o n of conf idence 
l imits for stat ist ics of smal l samples wi th u n k n o w n p o p u l a t i o n s t a n d a r d devia-
t ions is s h o w n in Sect ion 6.5. A n o t h e r i m p o r t a n t d i s t r ibu t ion , the ch i - squa re 
d i s t r ibu t ion , is exp la ined in Sect ion 6.6. T h e n it is appl ied to se t t ing conf idence 
limits for the var iance in Sect ion 6.7. T h e theo ry of hypothes i s tes t ing is in t ro -
duced in Sect ion 6.8 a n d is app l ied in Sect ion 6.9 to a variety of cases exhib i t ing 
the n o r m a l or t d i s t r ibu t ions . Final ly , Sect ion 6.10 i l lustrates hypo thes i s tes t ing 
for var iances by m e a n s of the ch i - squa re d i s t r ibu t ion . 

6.1 Distribution and variance of means 

W e c o m m e n c e o u r s t u d y of the d i s t r i bu t i on a n d var iance of m e a n s with a s am-
pl ing expe r imen t . 

Experiment 6.1 You were asked to retain from Experiment 5.1 the means of the seven 
samples of 5 housefly wing lengths and the seven similar means of milk yields. We 
can collect these means from every student in a class, possibly adding them to the sam-
pling results of previous classes, and construct a frequency distribution of these means. 
For each variable we can also obtain the mean of the seven means, which is a mean 
of a sample 35 items. Here again we shall make a frequency distribution of these means, 
although it takes a considerable number of samplers to accumulate a sufficient number 
of samples of 35 items for a meaningful frequency distribution. 

In T a b l e 6.1 we s h o w a f r equency d i s t r ibu t ion of 1400 m e a n s of s amples 
of 5 housef ly wing lengths. C o n s i d e r c o l u m n s (1) a n d (3) for the t ime being. 
Actual ly , these s a m p l e s were ob ta ined not by bios ta t is t ics classes but by a digi-
tal c o m p u t e r , enab l ing us t o collect these values with little elTort. The i r m e a n 
a n d s t a n d a r d dev ia t ion arc given at the foot of the table. These va lues are p lot -
ted on p robab i l i t y p a p e r in F igure 6.1. N o t e t ha t the d i s t r ibu t ion a p p e a r s qui te 
n o r m a l , as docs tha t of the m e a n s based on 200 samples of 35 wing lengths 
s h o w n in the s a m e figure. Th i s i l lus t ra tes a n i m p o r t a n t theorem: The means of 
samples from a normally distributed population are themselves normally distributed 
regardless of sample size n. Thus , we n o t e tha t the m e a n s of samples f rom the 
no rma l ly d i s t r ibu ted housefly wing l eng ths a re no rma l ly d is t r ibuted whe the r 
they a re based on 5 or 35 indiv idual readings . 

Similarly o b t a i n e d d i s t r i bu t ions of m e a n s of the heavily skewed milk yields, 
as s h o w n in F igure 6.2, a p p e a r to be close to n o r m a l d i s t r ibu t ions . However , 
the m e a n s based on five milk yields d o not agree with the n o r m a l nearly as 
well as d o the m e a n s of 35 items. This i l lustrates a n o t h e r t heo rem of f u n d a -
m e n t a l i m p o r t a n c e in statist ics: As sample size increases, the means of samples 
drawn from a population of any distribution will approach the normal distribution. 
T h i s t h e o r e m , w h e n r igorous ly s ta ted ( a b o u t s ampl ing f rom p o p u l a t i o n s wi th 
finite variances) , is k n o w n as the central limit theorem. T h e i m p o r t a n c e of this 
t h e o r e m is that if η is large e n o u g h , it pe rmi t s us t o use the n o r m a l distr i-
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TABLE 6 . 1 

Frequency distribution of means of 1400 random samples of 
5 housefly wing lengths. ( D a t a f r o m Tab le 5.1.) Class m a r k s 
chosen to give intervals of to each side of the pa rame t r i c 
m e a n μ. 

Class mark W 
Y Class mark (S) 

(in mm χ 10~ ') (in ffy units) f 

3 9 . 8 3 2 _ i l ->4 1 

4 0 . 7 0 4 z4 11 

4 1 . 5 7 6 4 19 

4 2 . 4 4 8 - U 6 4 

4 3 . 3 2 0 - U 128 

4 4 . 1 9 2 3 4 2 4 7 

, 4 5 . 0 6 4 1 4 2 2 6 
μ = 4 5 . 5 - » 

4 5 . 9 3 6 1 4 2 5 9 

4 6 . 8 0 8 3 4 231 

4 7 . 6 8 0 u 121 

4 8 . 5 5 2 |3 
* A 61 

4 9 . 4 2 4 2 1 2 3 

5 0 . 2 9 6 z4 6 

5 1 . 1 6 8 ->4 3 

1400 

F = 4 5 . 4 8 0 s = 1.778 ffy = 1.744 

but ion to make statistical inferences abou t means of popula t ions in which the 
items are not at all normal ly distr ibuted. The necessary size of η depends upon 
the dis t r ibut ion. (Skewed popula t ions require larger sample sizes.) 

The next fact of impor tance that we no te is that the range of the means is 
considerably less than that of the original items. Thus , the wing-length means 
range f rom 39.4 to 51.6 in samples of 5 and f rom 43.9 to 47.4 in samples of 
35, but the individual wing lengths range f rom 36 to 55. The milk-yield means 
range f rom 54.2 to 89.0 in samples of 5 and f rom 61.9 to 71.3 in samples of 35, 
but the individual milk yields range f rom 51 to 98. N o t only d o means show 
less scatter than the items upon which they are based (an easily unders tood 
phenomenon if you give some thought to it), but the range of the dis t r ibut ion 
of the means diminishes as the sample size upon which the means are based 
increases. 

The differences in ranges are reflected in differences in the s t andard devia-
tions of these distr ibutions. If we calculate the s tandard deviat ions of the means 



Samples of 5 

_ l 1 i i i . i i i i i i 1 i l 

- 3 - 2 - 1 0 1 2 3 4 

House f ly w i n g lengths in σ γ uni ts 

S a m p l e s of 35 

0.1 -

. 1 ι 1 I I I I I I—I I 1 I I I 
- 3 - 2 - 1 0 I 2 3 4 

House f ly w i n g lengths in (iv uni ts 

f i g u r e 6 . 1 

G r a p h i c analysis of means of 14(X) r a n d o m samples of 5 housefly wing lengths (from Tab le 6.1) 
and of means of 200 r a n d o m samples of 35 housefly wing lengths. 
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0.1 

- 3 - 2 - 1 0 1 2 3 

M i l k y ie lds in ιτ,7 uni ts 

S a m p l e s of 35 

9 9 . 9 

•S 9 9 

a 
£ - 9 5 
| 90 
1 8 0 

1 . 7 0 
r ft) 
s 5 0 

8 4 0 
X 30 
ω 20 
1 "0 
3 5 ε 3 
υ ι 

ο ι 

- 2 - 1 0 1 2 3 

Milk yie lds in <τν uni ts 

FIGURE 6.2 , , „ , „ , . . m 
G r a p h i e analysis of means of 1400 r a n d o m samples of 5 milk yields and of means of . 0 0 r a n d o m 

samples of 35 milk yields. 
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in the four dis t r ibut ions under considerat ion, we obta in the following values: 

Observed standard deviations 
of distributions of means 

η = 5 η = 3 5 

Wing lengths 1.778 0.584 
Milk yields 5.040 1.799 

N o t e tha t the s t andard deviat ions of the sample means based on 35 i tems are 
considerably less t han those based on 5 items. This is also intuitively obvious. 
M e a n s based on large samples should be close to the paramet r ic mean, and 
m e a n s based on large samples will not vary as much as will means based on 
small samples. The var iance of means is therefore part ly a funct ion of the sam-
ple size on which the m e a n s are based. It is also a funct ion of the variance of 
the items in the samples. Thus , in the text table above, the means of milk 
yields have a much greater s t andard deviat ion than means of wing lengths based 
on comparab l e sample size simply because the s t andard deviat ion of the indi-
vidual milk yields (11.1597) is considerably greater than that of individual wing 
lengths (3.90). 

It is possible ίο work out the expected value of the variance of sample 
means . By expected value we mean the average value to be obtained by infinitely 
repeated sampling. Thus , if we were to t ake samples of a means of η i tems 
repeatedly and were to calculate the var iance of these a means each time, the 
average of these variances would be the expected value. We can visualize the 
mean as a weighted average of the η independent ly sampled observat ions with 
cach weight w, equal to 1. F r o m Expression (3.2) we obtain 

v _ i > i i w n 

Σ Η', 
for the weighted mean. W c shall state wi thout proof that the variance of the 
weighted sum of independent i tems Σ" is 

V a r ( £ w , Y ^ = £ v v r a f (6.1) 

where nf is the variance of V̂ . It follows that 
η 

Since the weights u·, in this case equal 1. Σ" »ν( = η, and we can rewrite the above 
expression as 

η 
V 

σΐ 
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If we assume that the variances of are all equal to σ 2 , the expected variance 
of the m e a n is 

and consequently, the expected s t andard deviation of means is 

F r o m this formula it is clear that the s t anda rd deviat ion of means is a funct ion 
of the s t anda rd deviat ion of i tems as well as of sample size of means. The greater 
the sample size, the smaller will be the s t andard deviation of means. In fact, 
as sample size increases to a very large number , the s tandard deviat ion of means 
becomes vanishingly small. This makes good sense. Very large sample sizes, 
averaging many observat ions, should yield est imates of means closer to the 
popula t ion mean and less variable than those based on a few items. 

When working with samples f rom a popula t ion , we do not, of course, know 
its paramet r ic s tandard deviat ion σ, and we can obta in only a sample estimate 
s of the latter. Also, we would be unlikely to have numerous samples of size 
η f rom which to compu te the s t anda rd deviat ion of means directly. Customari ly , 
we therefore have to est imate the s tandard deviat ion of means f rom a single 
sample by using Expression (6.2a), subst i tut ing s for a: 

Thus, f rom the s tandard deviation of a single sample, we obtain , an est imate 
of the s tandard deviation of means we would expect were we to ob ta in a collec-
tion of means based on equal-sized samples of η items f rom the same populat ion. 
As we shall see, this est imate of the s tandard deviation of a mean is a very 
impor tan t and frequently used statistic. 

Table 6.2 illustrates some estimates of the s tandard deviat ions of means 
that might be obtained f rom r a n d o m samples of the two popula t ions that we 
have been discussing. The means of 5 samples of wing lengths based on 5 
individuals ranged f rom 43.6 to 46.8, their s tandard deviat ions f rom 1.095 to 
4.827, and the est imate of s tandard deviation of 1 he means f rom 0.490 to 2.159. 
Ranges for the other categories of samples in Table 6.2 similarly include the 
paramet r ic values of these statistics. The est imates of the s tandard deviat ions 
of the means of the milk yields cluster a round the expected value, sincc they 
are not dependent on normal i ty of the variates. However, in a par t icular sample 
in which by chancc the sample s t anda rd deviat ion is a poor est imate of the 
popula t ion s tandard deviat ion (as in the second sample of 5 milk yields), the 
est imate of the s t andard deviation of means is equally wide of the mark . 

We should emphasize one point of difference between the s tandard devia-
tion of items and the s t andard deviat ion of sample means. If we est imate a 
popula t ion s t andard deviat ion th rough the s tandard deviation of a sample, the 
magn i tude of the es t imate will not change as we increase our sample size. We 
m m η ν <->»/·) f l i i t i h i · p c i l r r i ' i i p u/itt i m n r n v p anrl will annroaeh the t rue s tandard 

σ 
(6.2a) 

(6.3) 
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t a b l e 6 . 2 

Means, standard deviations, and standard deviations of means 
(standard errors) of five random samples of 5 and 35 housefly 
wing lengths and Jersey cow milk yields, respectively. (Da ta 
f r o m Tab le 5.1.) Pa ramet r i c values for the statistics are given 
in the sixth line of each category. 

U) (2) (3) 
Υ s Sf 

Wing lengths 

45 .8 1 .095 0 . 4 9 0 
4 5 . 6 3 . 2 0 9 1 .435 

η = 5 4 3 . 6 4 . 8 2 7 2 . 1 5 9 
44 .8 4 . 7 6 4 2 .131 
4 6 . 8 1 .095 0 . 4 9 0 

μ = 4 5 . 5 σ = 3 .90 σ ρ = 1 .744 

4 5 . 3 7 3 . 8 1 2 0 . 6 4 4 
4 5 . 0 0 3 . 8 5 0 0 . 6 5 1 

η = 35 4 5 . 7 4 3 . 5 7 6 0 . 6 0 4 
4 5 . 2 9 4 . 1 9 8 0 . 7 1 0 
4 5 . 9 1 3 .958 0 . 6 6 9 

μ = 4 5 . 5 σ = 3 . 9 0 Of = 0 . 6 5 9 

Milk yields 

6 6 . 0 6 . 2 0 5 2 .775 
61 .6 4 . 2 7 8 1 .913 

η = 5 67 .6 16 .072 7 .188 
6 5 . 0 14 .195 6 . 3 4 8 
62 .2 5 . 2 1 5 2 .332 

= 66 .61 <τ = 11 .160 σγ = 4 .991 

6 5 . 4 2 9 11 .003 1.860 
64 .971 1 1.221 1.897 

η = 35 6 6 . 5 4 3 9 . 9 7 8 1 .687 
6 4 . 4 0 0 9 . 0 0 1 1.521 
6 8 . 9 1 4 1 2 . 4 1 5 2 . 0 9 9 

μ = 66.61 σ = 11 .160 πί = 1.886 

deviat ion of the popula t ion . However , its order of magni tude will be the same, 
whether the sample is based on 3, 30, or 3000 individuals. This can be seen 
clearly in Table 6.2. The values of s are closer to σ in the samples based on 
η = 35 than in samples of η = 5. Yet the general magni tude is the same in both 
instances. The s tandard deviat ion of means, however, decreases as sample size 
increases, as is obvious f rom Expression (6.3). Thus , means based on 3000 items 
will have a s tandard deviat ion only one- tenth that of means based on 30 items. 
This is obvious from 

.s .v ,s 

i~*r\/\/\ . . I i ί\ί\ / S n 1 A 
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6.2 Distribution and variance of other statistics 

Just as we obta ined a mean and a s t andard deviat ion f rom each sample of the 
wing lengths and milk yields, so we could also have obta ined o ther statistics 
f rom each sample, such as a variance, a median, or a coefficient of variat ion. 
After repeated sampling and computa t ion , we would have frequency distr ibu-
tions for these statistics a n d would be able to c o m p u t e their s t anda rd deviations, 
just as we did for the f requency dis tr ibut ion of means. In many cases the statistics 
are normal ly distr ibuted, as was t rue for the means. In other cases the statistics 
will be dis t r ibuted normal ly only if they are based on samples f rom a normal ly 
distr ibuted popula t ion , or if they are based on large samples, or if bo th these 
condi t ions hold. In some instances, as in variances, their dis t r ibut ion is never 
normal . An i l lustration is given in Figure 6.3, which shows a f requency distri-
but ion of the variances f rom the 1400 samples of 5 housefly wing lengths. We 
notice that the distr ibution is strongly skewed to the right, which is character-
istic of the dis t r ibut ion of variances. 

S tandard deviat ions of various statistics are generally known as standard 
errors. Beginners somet imes get confused by an imagined dist inction between 
s tandard deviat ions and s t andard errors. The s tandard er ror of a statistic such 
as the mean (or V) is the s t anda rd deviat ion of a dis t r ibut ion of means (or K's) 
for samples of a given sample size n. Thus, the terms " s t andard e r ror" and 
"s tandard devia t ion" are used synonymously, with the following exception: it is 
not cus tomary to use " s t andard e r ror" as a synonym of " s t andard devia t ion" 
for i tems in a sample or popula t ion . S tandard er ror or s t andard deviat ion has 
to be qualified by referring to a given statistic, such as the s t anda rd deviation 

100 

0 :s.80 II. II 10.02 2(>.(>2 ii 1.21! 11 ,S:i 10. 11 57.01 (vl.lifi 

1 
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f i g u r i : 6 . 3 

H i s t o g r a m of var iances based on 1400 samples of 5 housef ly wing lengths f rom T a b l e 5.1. Abscissa 
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of V, which is the same as the s t anda rd er ror of V. Used wi thout any qualif ica-
tion, the te rm "s tandard e r ro r" convent ional ly implies the s tandard er ror of the 
mean . "S tanda rd devia t ion" used wi thout qual if icat ion generally means s tan-
da rd deviat ion of i tems in a sample or popula t ion . Thus, when you read tha t 
means , s t andard deviations, s t anda rd errors, and coefficients of var ia t ion are 
shown in a table, this signifies that ar i thmet ic means , s t andard devia t ions of 
i tems in samples, s t anda rd deviat ions of their means ( = s t andard er rors of 
means), and coefficients of var ia t ion are displayed. The following s u m m a r y 
of terms may be helpful: 

S tandard deviat ion = s = jΣ}>2/(η — 1). 
S t a n d a r d deviat ion of a statistic St = s t anda rd er ror of a statistic St = 
Standa rd e r ror = s t andard e r ror of a mean 

= s t anda rd deviat ion of a m e a n = Sy. 

S t anda rd errors are usually not obta ined f rom a frequency d is t r ibut ion by 
repeated sampl ing but are es t imated f rom only a single sample a n d represent 
the expected s t andard deviat ion of the statistic in case a large n u m b e r of such 
samples had been obta ined . You will r emember that we est imated the s t anda rd 
er ror of a dis t r ibut ion of means f rom a single sample in this m a n n e r in the 
previous section. 

Box 6.1 lists the s t anda rd errors of four c o m m o n statistics. C o l u m n (1) lists 
the statistic whose s t anda rd er ror is described; co lumn (2) shows the fo rmula 

BOX 6.1 
Standard errors for common statistics. 

(1) 
Statistic 

(2) 
Estimate of standard error 

(3) 
df 

Μ 
Comments on applicability 

1 Ϋ 
S Sy Is? 

Sf Vn yfn V η 
η - 1 True for any population 

with finite variance 

2 Median smed « (1.2533)sy η - 1 Large samples from 
normal populations 

3 s s, = (0.7071068) j: 
V» 

η ~ 1 Samples from normal 
populations (n > 15) 

4 V 
φ.η V V l O O / 

η ~ 1 Samples from normal 
populations 

V 
Sy X - ~ r 

•Jin 
η - 1 Used when V < 15 
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for the es t imated s t anda rd error; co lumn (3) gives the degrees of f reedom on 
which the s t andard error is based (their use is explained in Section 6.5); and 
co lumn (4) provides commen t s on the range of appl icat ion of the s tandard 
error. T h e uses of these s t andard errors will be illustrated in subsequent sections. 

6.3 Introduction to confidence limits 

The var ious sample statistics we have been obtaining, such as means or s tandard 
deviations, are est imates of popula t ion parameters μ or σ, respectively. So far 
we have not discussed the reliability of these estimates. W e first of all wish to 
know whether the sample statistics are unbiased estimators of the popula t ion 
parameters , as discussed in Section 3.7. But knowing, for example, that Ϋ is an 
unbiased est imate of μ is not enough. We would like to find out how reliable 
a measure of μ it is. The t rue values of the parameters will a lmost always remain 
unknown, and we c o m m o n l y est imate reliability of a sample statistic by setting 
confidence limits to it. 

T o begin our discussion of this topic, let us start with the unusual case of 
a popula t ion whose paramet r i c mean and s t andard deviation are known to be 
μ and σ, respectively. The mean of a sample of η i tems is symbolized by Ϋ. The 
expected s tandard er ror of the mean is σ / s j n . As we have seen, the sample 
means will be normal ly distr ibuted. Therefore, f rom Section 5.3, the region f rom 
1 . 9 6 σ / y f n below μ to 1 . 9 6 a j ^ f n above μ includes 95% of the sample means of 
size n. Another way of stat ing this is to consider the rat io (Κ - μ)Κσ^η). This 
is the s t anda rd deviate of a sample mean f rom the paramctr ic mean. Since they 
are normal ly distr ibuted, 95% of such s tandard deviates will lie between — 1.96 
and + 1.96. We can express this s tatement symbolically as follows: 

This means that the probabil i ty Ρ that the sample means Y will dilfcr by no 
more than 1.96 s tandard errors σ/sjn f rom the parametr ic mean μ equals 0.95. 
The expression between the brackets is an inequality, all terms of which can be 
multiplied by aj\fn to yield 

We can rewrite this expression as 

because —a < b < a implies a > — b > —a, which can be writ ten as —a < 
— b < a. And finally, we can transfer — Ϋ across the inequality signs, just as in an 
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equa t ion it could be t ransferred across the equal sign. This yields the final desired 
expression: 

ί - 1.96σ - 1.96σ) 
P \ Y + = 0.95 (6.4) 

I \Jn \Jn ) 

or 

Ρ{ Ϋ - 1.96σ? < μ < Ϋ + 1.96σγ} = 0.95 (6.4a) 
This means that the probabi l i ty Ρ that the term Ρ - 1.96σ? is less than or equal 
to the paramet r ic mean μ and that the term Ϋ + 1.96σρ is greater than or equal 
to μ is 0.95. The two terms f — 1.96σ? and Ϋ + \9.6σγ we shall call Lx and L2, 
respectively, the lower and upper 95% confidence limits of the mean . 

Ano the r way of s tat ing the re la t ionship implied by Expression (6.4a) is that 
if we repeatedly obta ined samples of size η f rom the popula t ion and cons t ruc ted 
these limits for each, we could expect 95% of the intervals between these limits 
to conta in the true mean , and only 5% of the intervals would miss μ. The interval 
f rom L j to L2 is called a confidence interval. 

If you were not satisfied to have the confidence interval conta in the t rue 
mean only 95 times out of 100, you might employ 2.576 as a coefficient in place 
of 1.960. You may remember that 99% of the area of the no rma l curve lies in 
the range μ ± 2.576σ. Thus , to calculate 99% confidence limits, c o m p u t e the two 
quant i t ies L[ = Ϋ — 2 .576σ/ ν /« and L2 = Ϋ + 2 . 5 7 6 σ / y f n as lower and upper 
confidence limits, respectively. In this case 99 out of 100 confidence intervals 
ob ta ined in repeated sampl ing would conta in the true mean. The new confidence 
interval is wider than the 95% interval (since we have multiplied by a greater 
coefficient). If you were still no t satisfied with the reliability of the confidence 
limit, you could increase it, mult iplying the s t andard error of the mean by 3.291 
to obtain 99.9% confidence limits. This value could be found by inverse inter-
polat ion in a more extensive table of areas of the normal curve or directly in 
a table of the inverse of the normal probabil i ty distr ibution. The new coefficient 
would widen the interval fur ther . Notice that you can construct confidence 
intervals that will be cxpcctcd to conta in μ an increasingly greater percentage 
of the time. First you would expect to be right 95 times out of 100, then 99 times 
out of 100, finally 999 times out of 1000. But as your confidence increases, your 
s ta tement becomes vaguer and vaguer, since the confidence interval lengthens. 
Let us examine this by way of an actual sample. 

We obta in a sample of 35 housefly wing lengths from the popula t ion of 
Table 5.1 with known mean {μ = 45.5) and s t anda rd deviat ion (σ = 3.90). Let us 
assume that the sample mean is 44.8. We can expect the s tandard deviat ion 
of means based on samples of 35 items to be σγ = σ/yfn = 3.90/^/35 = 0.6592. 
W e compute ' confidence limits as follows: 

The lower limit is L, = 44.8 - (1.960)(0.6592) = 43.51. 
The upper limit is / . , = 44.8 + (L960)(0.6592) = 46.09. 
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Remember tha t this is an unusua l case in which we happen to k n o w the t rue 
mean of the popula t ion (μ = 45.5) and hence we k n o w that the confidence limits 
enclose the mean . W e expect 95% of such confidence intervals obta ined in 
repeated sampling to include the paramet r ic mean. W e could increase the reli-
ability of these limits by going to 99% confidence intervals, replacing 1.960 in 
the above expression by 2.576 and obta in ing Ll = 43.10 and L 2 = 46.50. We 
could have greater confidence that our interval covers the mean , but we could 
be much less certain a b o u t the true value of the mean because of the wider 
limits. By increasing the degree of confidence still fur ther , say, to 99.9%, we 
could be virtually certain that ou r confidence limits (L, = 42.63, L2 = 46.97) 
contain the popula t ion mean, but the b o u n d s enclosing the mean are now so 
wide as to make our predict ion far less useful t han previously. 

Experiment 6.2. For the seven samples of 5 housefly wing lengths and the seven similar 
samples of milk yields last worked with in Experiment 6.1 (Section 6.1), compute 95% 
confidence limits to the parametric mean for each sample and for the total sample based 
on 35 items. Base the standard errors of the means on the parametric standard deviations 
of these populations (housefly wing lengths σ = 3.90, milk yields σ = 11.1597). Record 
how many in each of the four classes of confidence limits (wing lengths and milk yields, 
η = 5 and η = 35) are correct—that is, contain the parametric mean of the population. 
Pool your results with those of other class members. 

We tried the experiment on a compute r for the 200 samples of 35 wing 
lengths each, comput ing confidence limits of the parametr ic mean by employing 
the parametr ic s t anda rd er ror of the mean, σγ = 0.6592. Of the 200 confidence 
intervals plotted parallel to the ordinate , 194 (97.0%) cross the paramet r ic mean 
of the popula t ion . 

To reduce the width of the confidence interval, we have to reduce the stan-
dard error of the mean. Since σγ = σ/^Jn, this can be done only by reducing 
the s tandard deviation of the items or by increasing the sample size. The first of 
these alternatives is not always available. If we are sampling f rom a popula t ion 
in nature, we ordinari ly have no way of reducing its s tandard deviation. How-
ever, in many experimental procedures we may be able to reduce the variance 
of the data . F o r example, if we are s tudying the effect of a d rug on heart weight 
in rats and find that its variance is ra ther large, we might be able to reduce this 
variance by taking rats of only one age group, in which the variat ion of heart 
weight would be considerably less. Thus, by control l ing one of the variables of 
the experiment, the variance of the response variable, heart weight, is reduced. 
Similarly, by keeping tempera ture or o ther envi ronmenta l variables cons tan t in 
a procedure, we can frequently reduce the variance of our response variable and 
hence obta in more prccisc est imates of popula t ion parameters . 

Λ c o m m o n way to reduce the s tandard error is to increase sample size. 
Obviously f rom Expression (6.2) as η increases, the s tandard error decreases; 
hence, as η approaches infinity, the s t andard er ror and the lengths of confidence 
intervals approach zero. This ties in with what we have learned: in samples 
whose size approaches infinity, (he sample mean would app roach the parametr ic 
mean. 
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We mus t guard against a c o m m o n mis take in expressing the mean ing of the 
confidence limits of a statistic. When we have set lower and upper limits ( L j and 
L 2 , respectively) to a statistic, we imply that the probabi l i ty tha t this interval 
covers the mean is, for example, 0.95, or, expressed in ano ther way, tha t on the 
average 95 out of 100 confidence intervals similarly obtained would cover the 
mean. We cannot state tha t there is a probabi l i ty of 0.95 tha t the t rue mean is 
conta ined within a given pai r of confidence limits, a l though this may seem to be 
saying the same thing. The latter s ta tement is incorrect because the t rue mean 
is a parameter ; hence it is a fixed value, and it is therefore either inside the interval 
or outs ide it. It cannot be inside the given interval 95% of the time. It is impor t an t , 
therefore, to learn the correct s ta tement and mean ing of confidence limits. 

So far we have considered only means based on normally dis t r ibuted sam-
ples with known paramet r ic s tandard deviations. We can, however, extend the 
me thods just learned to samples f rom popula t ions where the s tandard deviat ion 
is u n k n o w n but where the dis t r ibut ion is known to be normal and the samples 
are large, say, η > 100. In such cases we use the sample s t andard devia t ion for 
compu t ing the s t andard error of the mean. 

However , when the samples are small (n < 100) and we lack knowledge of 
the paramet r ic s tandard deviat ion, we must take into considerat ion the reli-
ability of our sample s t anda rd deviat ion. T o d o so, we must m a k e use of the 
so-callcd t or Student ' s dis t r ibut ion. We shall learn how to set confidence limits 
employing the t d is t r ibut ion in Section 6.5. Before that , however, we shall have 
to become familiar with this dis t r ibut ion in the next section. 

6.4 Student 's t distribution 

The deviat ions Υ — μ of sample means f rom the parametr ic mean of a no rma l 
dis t r ibut ion are themselves normally distr ibuted. If these deviat ions are divided 
by the parametr ic s t andard deviat ion, the resulting ratios, (Ϋ — μ)/σγ, are still 
normally distr ibuted, with μ — 0 and σ = 1. Subtrac t ing the cons tant μ f rom 
every Ϋ, is simply an addit ive code (Section 3.8) and will not change the form 
of the distr ibution of sample means, which is no rma l (Section 6.1). Dividing each 
deviat ion by the constant oY reduces the var iance to unity, but p ropor t iona te ly 
so for the entire dis t r ibut ion, so that its shape is not altered and a previously 
normal distr ibution remains so. 

If, on the other hand, we calculate the variance sf of each of the samples 
and calculate the deviat ion for each mean \\ as ( V· — /()/%,, where ,sy .stands for 
the est imate of the s t andard error of the mean of the f'th sample, we will find 
the distr ibution of the deviat ions wider and more peaked than the normal distri-
bution. This is illustrated in f i g u r e 6.4, which shows the ratio (Vi - μ)/*Υι for 
the 1400 samples of live housefly wing lengths o f T a b l e 6.1. The new dis t r ibut ion 
ranges wider than the cor responding normal dis tr ibut ion, because the denomi-
na tor is the sample s tandard e r ror ra ther than the parametr ic s tandard e r ror and 
will somet imes be smaller and sometimes greater than expected. This increased 
variat ion will he reflected in the greater variance of the rat io (Υ μ) 'sY. The 
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f. 

f i g u r e 6 . 4 

Dist r ibut ion of quant i ty f s = (Ϋ — μ)/Χγ a long abscissa c o m p u t e d for 1400 samples of 5 housefly wing 
lengths presented as a h is togram and as a cumula t ive frequency dis t r ibut ion. Right -hand ord ina te 
represents frequencies for the h is togram; lef t -hand o rd ina te is cumula t ive f requency in probabi l i ty 
scale. 

expected dis tr ibut ion of this rat io is called the f distr ibution, also known as 
"Student's' distribution, named after W. S. Gossct t , who first described it, pub-
lishing under the pseudonym "Student ." The t dis tr ibution is a function with a 
complicated mathemat ica l formula that need not be presented here. 

The t d is t r ibut ion shares with the normal the properties of being symmetric 
and of extending f rom negative to positive infinity. However, it differs f rom the 
normal in that it assumes different shapes depending on the number of degrees 
of f reedom. By "degrees of f reedom" we mean the quant i ty n I, where η is the 
sample size upon which a variance has been based. It will be remembered that 
η — 1 is the divisor in obta in ing an unbiased est imate of the variance f rom a sum 
of squares. The n u m b e r of degrees of f reedom pertinent to a given Student 's 
distr ibution is the same as the number of degrees of f reedom of the s tandard 
deviation in the rat io (Ϋ — μ)/χγ. Degrees of f reedom (abbreviated dj or some-
times v) can range f rom I to infinity. A t d is t r ibut ion for dj = 1 deviates most 
markedly f rom the normal . As the n u m b e r of degrees of f reedom increases. 
Student 's dis t r ibut ion approaches the shape of the s tandard normal distr ibution 
(μ = 0, σ = 1) ever more closcly, and in a graph the size of this page a t distri-
but ion of df — 30 is essentially indist inguishable f rom a normal distr ibution. At 
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df — co, the f d is t r ibut ion is the no rma l dis t r ibut ion. Thus, we can think of the 
t d is t r ibut ion as the general case, considering the normal to be a special case 
of Student ' s dis t r ibut ion with df = σο. Figure 6.5 shows t d is t r ibut ions for 1 and 
2 degrees of f reedom compared with a no rma l frequency dis tr ibut ion. 

We were able to employ a single table for the areas of the no rma l curve by 
coding the a rgument in s t andard deviat ion units. However , since the t distri-
but ions differ in shape for differing degrees of freedom, it will be necessary to 
have a separate t table, co r responding in s t ruc ture to the table of the areas of 
the normal curve, for each value of d f . Th i s would make for very cumber some 
and e labora te sets of tables. Conven t iona l t tables are therefore differently 
a r ranged. Table III shows degrees of f reedom and probabil i ty as a rgument s and 
the cor responding values of t as funct ions. The probabil i t ies indicate the percent 
of the area in bo th tails of the curve (to the right and left of the mean) beyond 
the indicated value of t. Thus, looking up the critical value of t at probabi l i ty 
Ρ = 0.05 and df = 5, we find t = 2.571 in Table III. Since this is a two-tailed 
table, the probabil i ty of 0.05 means that 0.025 of the area will fall to the left of 
a t value of - 2 . 5 7 1 and 0.025 will fall to the right of f = +2.571. You will recall 
that the cor responding value for infinite degrees of f reedom (for the normal curve) 
is 1.960. Only those probabil i t ies generally used are shown in Tab le III. 

You should become very familiar with looking up t values in this table. This 
is one of the most impor t an t tables to be consulted. A fairly convent iona l 
symbolism is ί ϊ [ ν ] , meaning the tabled t value for ν degrees of f reedom and 
p ropor t ion α in both tails (a/2 in each tail), which is equivalent to the t value for 
the cumulat ive probabi l i ty of 1 — (a/2). Try looking up some of these values 
to become familiar with the table. For example, convince yourself that fo.osnj ' 
'ο ο 113]' 'o.oziioi' a n d Vo5[ <x ι cor respond to 2.365, 5.841, 2.764, and 1.960, respec-
tively. 

We shall now employ the t d is t r ibut ion for the setting of confidence limits 
to means of small samples. 

/ 
N o r m a l = 

- ( ) - 5 - 4 - : i - 2 - 1 0 

I u n i t s 

2 3 4 5 

H<aiKi 6.5 
F r e q u e n c y cu rves of ί d i s t r i b u t i o n s for 1 a n d 2 degrees 
of f r eedom c o m p a r e d with the n o r m a l d i s t r ibu t ion . 
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6.5 Confidence limits based on sample statistics 

Armed with a knowledge of the t distr ibution, we are now able to set confidence 
limits to the means of samples f rom a normal frequency dis t r ibut ion whose 
paramet r ic s tandard deviat ion is unknown. The limits are computed as L, = 
Ϋ — ία(Μ_ ιjSy and L2 = Ϋ + tx[„^1]Sy for confidence limits of probabi l i ty Ρ — 
1 - α. Thus , for 95% confidence limits we use values of f 0 05[„ _ , v W e can rewrite 
Expression (6.4a) as 

P{L, < μ < L2} = P{ Ϋ - ίαίη_ n sy < μ < Υ + t ^ - u S r } = 1 - a (6.5) 

An example of the appl icat ion of this expression is shown in Box 6.2. W e can 

BOX 6.2 
Confidence limits for μ. 

Aphid stem mother femur lengths from Box 2.1: Ϋ = 4.004; s = 0.366; η = 25. 

Values for ιφ_,, from a two-tailed t table (Table ΠΙ), where 1 - α is the proportion 
expressing confidence and η — 1 are the degrees of freedom: 

«0.051241 = 2.064 t 0 . 01 [241 = 2 " 7 9 7 

The 95% confidence limits for the population mean μ are given by the equations 
s 

L, (lower limit) = Y - Vosi»- π 
Sn 

= 3.853 

L2 (upper hmit) = Y + to ost„- „ ~ 
s 

= 4.004 + 0.151 
= 4.155 

The 99% confidence limits are 

L t — Y to.01[24] 

= 3.799 

L2 — Y + 'o.01[24] r-
4n 

= 4.004 + 0.205 
= 4.209 
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convince ourselves of the appropr ia teness of the t d is t r ibut ion for sett ing con-
fidence limits to means of samples f rom a normal ly distr ibuted popu la t ion with 
u n k n o w n σ th rough a sampl ing experiment. 

Experiment 6.3. Repeat the computations and procedures of Experiment 6.2 (Section 6.3), 
but base standard errors of the means on the standard deviations computed for each 
sample and use the appropriate t value in place of a standard normal deviate. 

Figure 6.6 shows 95% confidence limits of 200 sampled means of 35 housefly 
wing lengths, compu ted with t and sf ra ther t han with the no rma l curve and 
σΫ. We note that 191 (95.5%) of the 200 confidence intervals cross the pa ra -
metr ic mean. 

We can use the same technique for setting confidence limits to any given 
statistic as long as it follows the no rma l dis t r ibut ion. This will apply in an 
app rox ima te way to all the statistics of Box 6.1. Thus, for example, we may set 
confidence limits to the coefficient of var ia t ion of the aphid femur lengths of 
Box 6.2. These a re compu ted as 

P{V - t,ln„usv < VP < V + ίφ,-^ν} = 1 - α 

1(10 

X u m b e r of t r ia l s 

101 150 

N u m b e r of t r i a l s 

200 

i k a JKf: 6.6 
Ninety- l ive percent con f idence in te rva ls of m e a n s of 20(1 s amp le s of 35 houselly wing lengths , based 
on s a m p l e s t a n d a r d e r r o r s s,. T h e heavy ho r i zon t a l line is the p a r a m e t r i c m e a n μ. T h e o r d i n a t e 
represen t s the var iab le 
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where VP s t a n d s for the p a r a m e t r i c value of the coefficient of va r ia t ion . Since 
the s t a n d a r d e r ro r of t he coefficient of va r i a t ion equa l s a p p r o x i m a t e l y = 
V/sJln, we p roceed as follows: 

, 100s 100(0.3656) 
Y 4.004 

= 9.13 

V ~ V ^ 2 5 7.0711 L 2 9 

L ι = V — l0.05[24]SF 

= 9.13 - ( 2 . 0 6 4 ) ( 1.29) 

= 9.13 - 2.66 

= 6.47 

L2 = V + io.05[24]SK 

= 9.13 + 2.66 

= 11.79 

W h e n sample size is very large or when σ is k n o w n , the d i s t r ibu t ion is effec-
tively n o r m a l . H o w e v e r , r a the r t h a n t u r n to the table of a reas of the no rma l 
curve, it is conven ien t to s imply use fa [oo ] , the f d i s t r ibu t ion with infini te degrees 
of f r eedom. 

A l though conf idence l imits a re a useful m e a s u r e of the reliability of a sam-
ple statistic, they a re not c o m m o n l y given in scientific publ ica t ions , the stat ist ic 
plus or m i n u s its s t a n d a r d e r r o r be ing cited in their place. Thus , you will fre-
quent ly see c o l u m n headings such as " M e a n + S.E." This indicates tha t the 
reader is free to use the s t a n d a r d e r r o r to set conf idence limits if so inclined. 

It should be o b v i o u s to you f rom your s tudy of the I d i s t r ibu t ion tha t you 
c a n n o t set conf idence l imits to a s tat is t ic w i thou t k n o w i n g the s ample size on 
which it is based, η being necessary to c o m p u t e the correct degrees of f reedom. 
Thus , the occas iona l ci t ing of m e a n s a n d s t a n d a r d e r ro rs wi thou t a lso s la t ing 
sample size η is to be s t rongly dep lo red . 

It is i m p o r t a n t to s ta te a s tat is t ic and its s t a n d a r d e r ro r to a sullicient 
n u m b e r of decimal places. T h e fol lowing rule of t h u m b helps. Divide the s tan-
d a r d e r ro r by 3, then no te the dec imal placc of the first n o n z e r o digit of the 
quot ient ; give the s tat is t ic s ignif icant to tha t dec imal placc and p rov ide one 
fu r ther decimal for the s t a n d a r d e r ror . Th is rule is qu i te simple, as an example 
will i l lustrate. If the m e a n a n d s t a n d a r d e r r o r of a sample a re c o m p u t e d as 
2.354 ± 0.363, wc divide 0.363 by 3, which yields 0.121. T h e r e f o r e the mean 
should be r epor ted to one decimal placc, a n d the s t a n d a r d e r r o r shou ld be 
repor ted t o t w o decimal places. Thus , we repor t this result as 2.4 ± 0.36. If, on 
the o t h e r h a n d , the s ame m e a n had a s t a n d a r d e r ro r of 0.243, d iv id ing this 
s t a n d a r d e r ro r by 3 would have yielded 0.081, and the first n o n z e r o digit would 
have been in the second decimal placc. T h u s the m e a n shou ld have been re-
por ted as 2.35 + 0.243. 
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6.6 The chi-square distribution 

Another cont inuous distr ibution of great importance in statistics is the distri-
but ion of χ1 (read chi-square). We need to learn it now in connect ion with the 
distr ibution and confidence limits of variances. 

The chi-square distr ibution is a probability density function whose values 
range f rom zero to positive infinity. Thus, unlike the normal distr ibution or 
i, the funct ion approaches the horizontal axis asymptotically only at the right-
hand tail of the curve, not at both tails. The funct ion describing the χ2 distribu-
tion is complicated and will not be given here. As in t, there is not merely 
one χ2 distribution, but there is one distribution for each number of degrees 
of freedom. Therefore, χ 2 is a funct ion of v, the number of degrees of freedom. 
Figure 6.7 shows probabil i ty density functions for the χ2 distributions for 1, 2, 
3, and 6 degrees of freedom. Notice that the curves are strongly skewed to the 
right, L-shaped at first, but more or less approaching symmetry for higher de-
grees of freedom. 

We can generate a χ2 distribution f rom a populat ion of s tandard normal 
deviates. You will recall that we standardize a variable X by subjecting it 
to the operat ion (Y t — μ)/σ. Let us symbolize a standardized variable as 
Y]• = (Yj — μ)/σ. N o w imagine repeated samples of η variates YJ f rom a normal 
popula t ion with mean μ and standard deviation σ. For each sample, we trans-
form every variate Yt to Y'h as defined above. The quantities Σ" Y'2 computed 
for each sample will be distributed as a χ2 distr ibution with η degrees of freedom. 

x'2 

FKiURE 6.7 
Frequency curves of χ 2 d i s t r ibut ion for I. 2, 3, and 6 degrees of f reedom. 
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Using the definit ion of Y'h we can rewrite Σ" Y'2 as -a 

π | y - u ) 2 1 " 
(6.6) 

When we change the parametr ic mean μ to a sample mean, this expression 
becomes 

which is simply the sum of squares of the variable divided by a cons tant , the 
parametr ic variance. Another c o m m o n way of s tat ing this expression is 

Here we have replaced the numera to r of Expression (6.7) with η — 1 times the 
sample variance, which, of course, yields the sum of squares. 

If we were to sample repeatedly η items f rom a normally dis t r ibuted popu-
lation, Expression (6.8) computed for each sample would yield a χ2 d is t r ibut ion 
with η — 1 degrees of f reedom. Not ice that , a l though we have samples of η 
items, we have lost a degree of f reedom because we are now employing a 
sample mean ra ther than the parametr ic mean. Figure 6.3, a sample dis t r ibut ion 
of variances, has a second scalc a long the abscissa, which is the first scalc 
multiplied by the cons tan t (η — 1)/σ2. This scale converts the sample variances 
s2 of the first scale into Expression (6.8). Since the second scale is propor t ional 
to s2, the dis t r ibut ion of the sample variance will serve to illustrate a sample 
distribution approx imat ing χ2. The distr ibution is strongly skewed to the right, 
as would be expected in a χ 2 dis tr ibution. 

Convent ional χ 2 tables as shown in Table IV give the probabil i ty levels 
customarily required and degrees of f reedom as a rguments and list the χ 2 cor-
responding to the probabil i ty and the df as the functions. Each chi-square in 
Tabic IV is the value of χ2 beyond which the area under the γ2 d is t r ibut ion 
for ν degrees of freedom represents the indicated probabil i ty. Just as we used 
subscripts to indicate the cumulat ive propor t ion of the area as well as the de-
grees of f reedom represented by a given value of f, wc shall subscript χ 2 as 
follows: indicates the χ 2 value to the right of which is found p ropor t ion 
α of the area under a χ 2 dis tr ibution for ν degrees of freedom. 

Let us learn how to use Tabic IV. Looking at the distr ibution of χ,2^, we 
note that 90% of all values of χ2 , , would be to the right of 0.211, but only 
5% of all values of χ2

2ί would be greater than 5.991. It can be shown that the 
expected value οΓ χ,2ν( (the mean of a y2 dis tr ibution) equals its degrees of freedom 
v. Thus the expected value of a χ(

2
5| dis tr ibution is 5. When wc examine 50% 

values (the medians) in the χ 2 table, we notice that they are generally lower 
than the expected value (the means). Thus , for χ(

2
51 the 50% point is 4.351. This 

Kiw- y? (6.7) 
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illustrates the asymmetry of the χ2 distribution, the mean being to the right of 
the median. 

O u r first application of the χ2 distribution will be in the next section. How-
ever, its most extensive use will be in connection with Chapter 13. 

6.7 Confidence limits for variances 

We saw in the last section that the ratio (η — 1 )s2/a2 is distributed as χ 2 with 
η — 1 degrees of freedom. We take advantage of this fact in setting confidence 
limits to variances. 

First, we can make the following statement about the ratio (η — 1 )s2/a2: 

P i 2 < ( - " ^ < y 2 \ ~ l - u J 1 - (a/2 ))[n - 1] — σ2 S /(α/·2)[η- 1] r ~ 1 a 

This expression is similar to those encountered in Section 6.3 and implies that 
the probabili ty Ρ that this ratio will be within the indicated boundary values 
of X[2„-1j is 1 — a. Simple algebraic manipulat ion of the quantities in the in-
equality within brackets yields 

- 2 < σ < τ > = 1 — α (6.9) 
( Χίν!2){ιι - 11 1 -(α/2))[π - 1 I J 

Since (η — l).s2 = Σ ν2, we can simplify Expression (6.9) to 

• f i ^ — < σ 2 < - J - - Σ ζ ! 1 - I 7 (6.10) 

This still looks like a formidable expression, but it simply means that if we 
divide the sum of squares Σ y2 by the two values of xf„ that cut off tails each 
amount ing to a/2 of the area of the _, ,-distribution, the two quotients will 
cnclose the true value of the variance σ1 with a probability of Ρ = I — a. 

An actual numerical example will make this clear. Suppose we have a sam-
ple of 5 housefly wing lengths with a sample variance of s 2 = 13.52. If we wish to 
set 95% confidcncc limits to the parametr ic variance, we evaluate Expression 
(6.10) for the sample variance .s-2. We first calculate the sum of squares for this 
sample: 4 x 13.52 = 54.08. Then we look up the values for xf, 0 2 a n d χο.<παι*ί· 
Since 95% confidence limits are required, a in this case is equal lo 0.05. These χ2 

values span between them 95% of the area under the χ2 curve. They correspond 
to 11.143 and 0.484, respectively, and the limits in Expression (6.10) then become 

54.08 54.08 
11.1-13 U n d /-·' 0.484 

or 

/., - -4 .85 and L2 = I 1 1 . 7 4 

This confidence interval is very wide, but we must not forget that the sample 
variance is, alter all, based on only 5 individuals. Note also that the interval 
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BOX 63 
Confidence limits for a2 . Method of shortest unbiased confide»» Intervals. 

Aphid stem mother femur lengths from Box 11: » = 25; s2 - 0.1337. 

The factors from Table VII for ν = π - 1 = 24 df and confidence coefficient 
(1 - a) = 0.95 are 

/ , = 0.5943 f2 = 1.876 

and for a confidence coefficient of 0.99 they are 

/ , = 0.5139 f2 = 2.351 

The 95% confidence limits for the population variance <r2 are given by the equa-
tions 

L, = (lower limit) = /,.s2 = 0.5943(0.1337) = 0.079,46 

L2 = (upper limit) = f2s2 = 1.876(0.1337) = 0.2508 

The 99% confidence limits are 

L, = / , s 2 = 0.5139(0.1337) = 0.068,71 

L2 - f2s2 = 2.351(0.1337) = 0.3143 

is asymmetrical a round 13.52, the sample variance. This is in contrast to the 
confidence intervals encountered earlier, which were symmetrical around the 
sample statistic. 

The method described above is called the equal-tuils method, because an 
equal amount of probability is placed in each tail (for example, 2\%). It can be 
shown that in view of the skewness of the distribution of variances, this method 
does not yield the shortest possible confidence intervals. O n e may wish the 
confidence interval to be "shortest" in the sense that the ratio L2/L^ be as small 
as possible. Box 6.3 shows how to obtain these shortest unbiased conlidence 
intervals for σ2 using Table VII, based on the method of Tate and Klett (1959). 
This table gives (η — \)/χ^η _,,, where ρ is an adjusted value of a/2 or 1 — (a/2) 
designed to yield the shortest unbiased confidence intervals. The computa t ion 
is very simple. 

6.8 Introduction to hypothesis testing 

The most frequent application of statistics in biological research is to lest 
some scientific hypothesis. Statistical methods arc important in biology because 
results of experiments are usually not clear-cut and therefore need statistical 
tests to support decisions between alternative hypotheses. A statistical test 
examines a set of sample data and, on the basis of an expected distribution of 
the data, leads to a decision on whether to accept the hypothesis underlying 
the expccted distribution or to reject that hypothesis and accept an alternative 
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one. The na ture of the tests varies with the da ta and the hypothesis, but the 
same general philosophy of hypothesis testing is common to all tests and will 
be discussed in this section. Study the material below very carefully, because it 
is fundamenta l to an unders tanding of every subsequent chapter in this book! 

We would like to refresh your memory on the sample of 17 animals of 
species A, 14 of which were females and 3 of which were males. These da t a were 
examined for their fit to the binomial frequency distribution presented in Sec-
tion 4.2, and their analysis was shown in Table 4.3. We concluded f rom Table 4.3 
that if the sex rat io in the popula t ion was 1:1 (ρς = qs = 0.5), the probabil i ty 
of obtaining a sample with 14 males and 3 females would be 0.005,188, making 
it very unlikely that such a result could be obtained by chance alone. We learned 
that it is conventional to include all "worse" ou tcomes—that is, all those that 
deviate even more f rom the outcome expected on the hypothesis p9 = qs = 0.5. 
Including all worse outcomes, the probabili ty is 0.006,363, still a very small 
value. The above computa t ion is based on the idea of a one-tailed test, in which 
we are interested only in departures f rom the 1:1 sex ratio that show a pre-
ponderance of females. If we have no preconception about the direction of the 
depar tures f rom expectation, we must calculate the probability of obtaining a 
sample as deviant as 14 females and 3 males in either direction f rom expectation. 
This requires the probabil i ty either of obtaining a sample of 3 females and 14 
males (and all worse samples) or of obtaining 14 females and 3 males (and all 
worse samples). Such a test is two-tailed, and since the distribution is symmet-
rical, we double the previously discussed probabili ty to yield 0.012,726. 

Wha t does this probabil i ty mean? It is our hypothesis that p.t = q , = 0.5. 
Let us call this hypothesis H0, the null hypothesis, which is the hypothesis under 
test. It is called the null hypothesis because it assumes that there is no real 
difference between the true value of ρ in the populat ion from which we sampled 
and the hypothesized value of ρ = 0.5. Applied to the present example, the null 
hypothesis implies that the only reason our sample does not exhibit a 1:1 sex 
rat io is because of sampling error. If the null hypothesis p.t = q; = 0.5 is true, 
then approximately 13 samples out of 1000 will be as deviant as or more deviant 
than this one in either direction by chance alone. Thus, it is quite possible to have 
arrived at a sample of 14 females and 3 males by chance, but it is not very 
probable, since so deviant an event would occur only about 13 out of 1000 times, 
or 1.3% of the time. If we actually obtain such a sample, we may make one 
of two decisions. We may decide that the null hypothesis is in fact true (that is, 
the sex ratio is 1:1) and that the sample obtained by us just happened to be one 
of those in the tail of the distribution, or we may decide that so deviant a sample 
is too improbable an event to justify acceptance of the null hypothesis. We may 
therefore decide that the hypothesis that the sex ratio is 1:1 is not true. Either 
of these decisions may be correct, depending upon the truth of the matter. If 
in fact the 1:1 hypothesis is correct, then the first decision (to accept the null 
hypothesis) will be correct. If we decide to reject the hypothesis under these 
circumstances, we commit an error. The rejection of a true null hypothesis is 
called a type I error. On the other hand, if in fact the true sex ratio of the pop-
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ulation is other than 1:1, the first decision (to accept the 1:1 hypothesis) is an 
error, a so-called type II error, which is the acceptance of a false null hypothesis. 
Finally, if the 1:1 hypothesis is not true and we do decide to reject it, then we 
again make the correct decision. Thus, there are two kinds of correct decisions: 
accepting a true null hypothesis and rejecting a false null hypothesis, and there 
are two kinds of errors: type I, rejecting a t rue null hypothesis, and type II, 
accepting a false null hypothesis. These relationships between hypotheses and 
decisions can be summarized in the following table: 

Statistical decision 

Actual situation 

Null hypothesis 

Actual situation Accepted Rejected 

Null hypothesis p ^ e Correct decision Type I error 
Type II error Correct decision 

Before we carry out a test, we have to decide what magni tude of type I 
error (rejection of true hypothesis) we are going to allow. Even when we sample 
from a populat ion of known parameters, there will always be some samples that 
by chance are very deviant. The most deviant of these are likely to mislead us 
into believing our hypothesis IIQ to be untrue. If we permit 5% of samples to 
lead us into a type I error, then we shall reject 5 out of 100 samples from the 
population, deciding that these are not samples from the given populat ion. In 
the distribution under study, this means that we would reject all samples of 17 
animals containing 13 of one sex plus 4 of the other sex. This can be seen by 
referring to column (3) of Table 6.3, where the expected frequencies of the various 
outcomes on the hypothesis ρ, = q; = 0.5 are shown. This table is an extension 
of the earlier Table 4.3, which showed only a tail of this distribution. Actually, 
you obtain a type I error slightly less than 5% if you sum relative expected 
frequencies for both tails start ing with the class of 13 of one sex and 4 of the 
other. From Table 6.3 it can be seen that the relative expccted frequency in the 
two tails will be 2 χ 0.024,520,9 = 0.049,041,8. In a discrete frequency distribu-
tion, such as the binomial, we cannot calculate errors of exactly 5% as we can 
in a continuous frequency distribution, where we can measure olf exactly 5% 
of the area. If wc decide on an approximate I % error, we will reject the hypoth-
esis p,. = </. for all samples of 17 animals having 14 or more of one sex. (From 
Table 6.3 we find the /rc, in the tails equals 2 χ 0.006,362,9 = 0.012,725,8.) Thus, 
the smaller (he type I error wc are prepared to accept, the more deviant a sample 
has to be for us to rejcct the null hypothesis H0. 

Your natural inclination might well be to have as little error as possible. 
You may decide to work with an extremely small type I error, such as 0.1% or 
even 0.01 %, accepting the null hypothesis unless the sample is extremely deviant. 
The difficulty with such an approach is that, al though guarding against a type 
I error, you might be falling into a type II error, accepting the null hypothesis 
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TABLE 6 . 3 

Relative expected frequencies for samples of 17 animals 
under two hypotheses. Binomial d is t r ibut ion. 

(•J) W 
(2) 
3? 1rel /rel 

17 0 0.0000076 0.0010150 
16 1 0.0001297 0.0086272 
15 2 0.0010376 0.0345086 
14 3 0.0051880 0.0862715 
13 4 0.0181580 0.1509752 
12 5 0.0472107 0.1962677 
11 6 0.0944214 0.1962677 
10 7 0.1483765 0.1542104 
9 8 0.1854706 0.0963815 
8 9 0.1854706 0.0481907 
7 10 0.1483765 0.0192763 
6 11 0.0944214 0.0061334 
5 12 0.0472107 0.0015333 
4 13 0.0181580 0.0002949 
3 14 0.0051880 0.0000421 
2 15 0.0010376 0.0000042 
1 16 0.0001297 0.0000002 
0 17 0.0000076 0.0000000 

Total 1.0000002 0.9999999 

when in fact it is not true and an alternative hypothesis H 1 is true. Presently, 
we shall show how this comes about . 

First, let us learn some more terminology. Type I error is most frequently 
expressed as a probabili ty and is symbolized by a. When a type I error is 
expressed as a percentage, it is also known as the significance level. Thus a type 
I error of a = 0.05 corresponds to a significance level of 5% for a given test. 
When we cut off on a frequency distribution those areas proport ional to a (the 
type 1 error), the port ion of the abscissa under the area that has been cut off 
is called the rejection region or critical region of a test. The port ion of the 
abscissa that would lead to acceptance of the null hypothesis is called the 
acceptance region. Figure 6.8A is a bar diagram showing the expected distri-
bution of outcomes in the sex ratio example, given H 0 . The dashed lines separate 
rejection regions from the 99% acceptance region. 

Now let us take a closer look at the type II error. This is the probabili ty 
of accepting the null hypothesis when in fact it is false. If you try to evaluate 
the probabili ty of type II error, you immediately run into a problem. If the null 
hypothesis H 0 is false, some other hypothesis Η γ must be true. But unless you 
can specify H u you are not in a position to calculate type II error. An example 
will make this clear immediately. Suppose in our sex ratio case we have only two 
reasonable possibilities: (I) our old hypothesis H 0 : ρ; = or (2) an alternative 
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FIGURE 6 . 8 
Expected d is t r ibut ions of ou tcomes when sampl ing 17 animals f rom two hypothet ical popula t ions . 
(A) //(>:./>, — 4 ; = 2- (B) / / , : p, = 2q; = J. Dashed lines separa te critical regions f rom acceptance 
region of the dis t r ibut ion of part A. Type I e r ror -x equals approximate ly 0.01. 

hypothesis H , : p . = 2q ,t, which states thai the sex rat io is 2:1 in favor of females 
so that p , = f and q ; = 3. We now have to calculate expected frequencies for 
the binomial dis t r ibut ion (p. + q .f = (5 + J,)17 to lind the probabil i t ies of the 
various ou tcomes under the al ternative hypothesis. These arc shown graphically 
in Figure 6.8B and are tabulated and compared with expectcd frequencies of the 
earlier distr ibution in Table 6.3. 

Suppose we had decided on a type I error of α 0.01 means "approxi -
mately equal to") as shown in Figure 6.8A. At this significance level we would 
accept (he / / 0 for all samples of 17 having 13 or fewer animals of one sex. 
Approximately 99% of all samples will fall into this category. However , what 
if H 0 is not t rue and H , is true? Clearly, f rom the popula t ion represented by 
hypothesis / i , we could also obta in ou tcomes in which one sex was represented 
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13 or fewer times in samples of 17. We have to calculate what propor t ion of the 
curve representing hypothesis H , will overlap the acceptance region of the dis-
tribution representing hypothesis H 0 . In this case we find that 0.8695 of the 
distribution representing Hl overlaps the acceptance region of H0 (see Figure 
6.8B). Thus, if Hl is really true (and H0 correspondingly false), we would errone-
ously accept the null hypothesis 86.95% of the time. This percentage corresponds 
to the propor t ion of samples from Hy that fall within the limits of the acceptance 
regions of H0. This proport ion is called β, the type II error expressed as a 
proport ion. In this example β is quite large. Clearly, a sample of 17 animals is 
unsatisfactory to discriminate between the two hypotheses. Though 99% of the 
samples under H 0 would fall in the acceptance region, fully 87% would do so 
under f / , . A single sample that falls in the acceptance region would not enable 
us to reach a decision between the hypotheses with a high degree of reliability. 
If the sample had 14 or more females, we would conclude that H 1 was correct. 
If it had 3 or fewer females, we might conclude that neither H0 nor H{ was true. 
As W, approached H 0 (as in / / , : ρ = 0.55, for example), the two distr ibutions 
would overlap more and more and the magnitude οί β would increase, making 
discrimination between the hypotheses even less likely. Conversely, if Η 1 repre-
sented p : = 0.9, the distr ibutions would be much farther apart and type II error 
β would be reduced. Clearly, then, the magni tude of β depends, among other 
things, on the parameters of (he alternative hypothesis H t and cannot be speci-
fied without knowledge of the latter. 

When the alternative hypothesis is fixed, as in the previous example ( / / , : 
ρ = 2 q . \ the magni tude of the type I error α we are prepared to tolerate will 
determine the magni tude of the type II error β. The smaller the rejection region 
ι in the distribution under / / 0 , the greater will be the acceptance region 1 — a 
in this distribution. The greater I — χ, however, the greater will be its overlap 
with the distribution representing W,, and hence the greater will be β. Convince 
yourself of this in Figure 6.8. By moving the dashed lines outward, we are 
reducing the critical regions representing type 1 error a in diagram A. But as the 
dashed lines move outward, more of the distribution of / / , in diagram Β will 
lie in the acceptance region of the null hypothesis. Thus, by decreasing a, we 
are increasing β and in a sense defeating our own purposes. 

In most applications, scientists would wish to keep both of these errors 
small, since they do not wish to reject a null hypothesis when it is true, nor 
do they wish to accept it when another hypothesis is correct. We shall see in 
the following whal steps can be taken to decrease β while holding α constant 
at a preset level. 

Although significance levels y. can be varied at will, investigators are fre-
quently limited because, for many tests, cumulative probabilities of the appro-
priate distributions have not been tabulated and so published probability levels 
must be used. These are commonly 0.05,0.01, and 0.001. al though several others 
arc occasionally encountered. When a null hypothesis has been rejected at a 
specified level of x we say that the sample is significantly different f rom the 
parametr ic or hypothetical populat ion at probability Ρ < a. Generally, values 
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of α greater than 0.05 are not considered to be statistically significant. A 
significance level of 5% (P = 0.05) corresponds to one type I error in 20 trials, 
a level of 1% (P = 0.01) to one error in 100 trials. Significance levels of 1% or 
less (Ρ < 0.01) are nearly always adjudged significant; those between 5% and 1 % 
may be considered significant at the discretion of the investigator. Since statis-
tical significance has a special technical meaning (H 0 rejected at Ρ < α), we shall 
use the adjective "significant" only in this sense; its use in scientific papers and 
reports, unless such a technical meaning is clearly implied, should be discour-
aged. Fo r general descriptive purposes synonyms such as important , meaning-
ful, marked, noticeable, and others can serve to underscore differences and 
effects. 

A brief remark on null hypotheses represented by asymmetrical probabili ty 
distributions is in order here. Suppose our null hypothesis in the sex ratio case 
had been H 0 : p , = §, as discussed above. The distribution of samples of 17 
offspring from such a populat ion is shown in Figure 6.8B. It is clearly asymmet-
rical, and for this reason the critical regions have to be defined independently. 
For a given two-tailed test we can either double the probabili ty Ρ of a deviation 
in the direction of the closer tail and compare 2Ρ with a, the conventional level 
of significance; or we can compare Ρ with a/2, half the conventional level of 
significance. In this latter case, 0.025 is the maximum value of Ρ conventionally 
considered significant. 

We shall review what we have learned by means of a second example, this 
time involving a cont inuous frequency dis t r ibut ion—the normally distributed 
housefly wing lengths—of parametr ic mean μ = 45.5 and variance σ2 = 15.21. 
Means based on 5 ilems sampled from these will also be normally distributed, 
as was demonstrated in Tabic 6.1 and Figure 6:1. Let us assume that someone 
presents you with a single sample of 5 housefly wing lengths and you wish to 
test whether they could belong to the specified populat ion. Your null hypothesis 
will be H0: μ = 45.5 or H0: μ = μ 0 , where μ is the true mean of the populat ion 
from which you have sampled and μ0 s tands for the hypothetical parametric 
mean of 45.5. We shall assume for the moment that we have no evidence that 
the variance of our sample is very much greater or smaller than the paramctric 
variance of the housefly wing lengths. If it were, it would be unreasonable to 
assume that our sample comes from the specified populat ion. There is a critical 
test of the assumption about the sample variance, which we shall take up later. 
The curve at the center of Figure 6.9 represents the expected distribution of 
means of samples of 5 housefly wing lengths f rom the specified populat ion. 
Acceptance and rejection regions for a type I error α = 0.05 are delimited along 
the abscissa. The boundaries of the critical regions arc computed as follows 
(remember that t.x. is equivalent to the normal distribution); 

Lt = μ0 - t0.0ii„.pr = 4 5 - 5 " (1.96)0.744) = 42.08 

and 

L2 = μα + ' „ . „ „ , = 45.5 + (1,96)(1.744) = 48.92 
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Η,: μ = 37 H„: μ = 4o.o Η,: μ = 5-1 

FIGURE 6 . 9 

Expected d is t r ibut ion of means of samples of 5 housefly wing lengths f rom no rma l popu la t i ons 
specified by μ as shown above curves and a j = 1.744. Center curve represents null hypothes is , 
H0: μ = 45.5; curves at sides represent a l ternat ive hypotheses , μ = 37 or μ = 54. Vertical lines delimit 
5% rejection regions for the null hypothes is (2i°7> in each tail, shaded). 

Thus, we would consider it improbable for means less than 42.08 or greater than 
48.92 to have been sampled from this populat ion. For such sample means we 
would therefore reject the null hypothesis. The test we are proposing is two-tailed 
because we have no a priori assumption about the possible alternatives to our 
null hypothesis. If we could assume that the true mean of the populat ion from 
which the sample was taken could only be equal to or greater than 45.5, the test 
would be one-tailed. 

Now let us examine various alternative hypotheses. One alternative hypoth-
esis might be that the true mean of the populat ion from which our sample stems 
is 54.0, but that the variance is the same as before. We can express this assump-
tion as Η,: μ — 54,0 or / / , : μ = μ , , where μ, stands for the alternative parametr ic 
mean 54.0. From Table II ("Areas of the normal curve") and our knowledge of the 
variance of the means, wc can calculate the propor t ion of the distribution implied 
by W, that would overlap the acceptance region implied by f / 0 . We find that 
54.0 is 5.08 measurement units from 48.92, the upper boundary of the acceptance 
region of II0. This corresponds to 5.08/1.744 = 2.9ίσγ units. F rom Table II we 
find that 0.0018 of the area will lie beyond 2.91 σ at one tail of the curve. Thus, 
under this alternative hypothesis, 0.0018 of the distribution of H , will overlap 
the acceptance region of W„. This is β, the type II error under this alternative 
hypothesis. Actually, this is not entirely correct. Since the left tail of (he / / , 
distribution goes all the way to negative infinity, it will leave the acceptance 
region and cross over into the left-hand rejection region of H0. However, this 
represents only an infinitesimal amount of the area of Η i (the lower critical 
boundary of H ( ), 42.08, is 6.83σ, units from μ, = 54.0) and can be ignored. 

Our alternative hypothesis Η t specified that μ, is 8.5 units greater than μ 0 . 
However, as said before, we may have no a priori reason to believe that the true 
mean of our sample is either greater or less than μ. Therefore, wc may simply 
assume thai it is 8.5 measurement units away from 45.5. In such a case we must 
similarly calculate β for the alternative hypothesis that μ ι — μ 0 8.5. Thus the 
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alternative hypothesis becomes H{. μ = 54.0 or 37.0, or Η μ = μ1, where 
represents either 54.0 or 37.0, the alternative parametr ic means. Since the distri-
butions are symmetrical, β is the same for both alternative hypotheses. Type II 
error for hypothesis H 1 is therefore 0.0018, regardless of which of the two alter-
native hypotheses is correct. If H l is really true, 18 out of 10,000 samples will 
lead to an incorrect acceptance of H 0 , a very low propor t ion of error. These 
relations are shown in Figure 6.9. 

You may rightly ask what reason we have to believe that the alternative 
parametr ic value for the mean is 8.5 measurement units to either side of μ 0 = 
45.5. It would be quite unusual if we had any justification for such a belief. As 
a mat ter of fact, the true mean may just as well be 7.5 or 6.0 or any number of 
units to either side of μ 0 . If we draw curves for Η^ μ = μ0 ± 7.5, we find that 
β has increased considerably, the curves for H0 and H , now being closer together. 
Thus, the magni tude of β will depend on how far the alternative parametr ic 
mean is from the parametr ic mean of the null hypothesis. As the alternative mean 
approaches the parametr ic mean, β increases up to a maximum value of 1 — a, 
which is the area of the acceptance region under the null hypothesis. At this maxi-
mum, the two distributions would be superimposed upon each other. Figure 6.10 
illustrates the increase in β as μ , approaches μ, starting with the test illustrated 
in Figure 6.9. T o simplify the graph, the alternative distributions are shown for 
one tail only. Thus, we clearly see that β is not a fixed value but varies with the 
nature of the alternative hypothesis. 

An important concept in connection with hypothesis testing is the power of 
a test. It is 1 — β, the complement of β, and is the probability of rejecting the 
null hypothesis when in fact it is false and the alternative hypothesis is correct. 
Obviously, for any given test we would like the quanti ty 1 - β to be as large as 
possible and the quanti ty β as small as possible. Since we generally cannot specify 
a given alternative hypothesis, we have to describe β or 1 — β for a cont inuum 
of alternative values. When 1 — β is graphed in this manner , the result is called 
a power curve for the test under consideration. Figure 6.11 shows the power curve 
for the housefly wing length example just discussed. This figure can be compared 
with Figure 6.10, f rom which it is directly derived. Figure 6.10 emphasizes the 
type II error β, and Figure 6.11 graphs the complement of this value, 1 β. We 
note that the power of the test falls off sharply as the alternative hypothesis 
approaches the null hypothesis. C o m m o n sense confirms these conclusions: we 
can make clear and firm decisions about whether our sample comes from a popu-
lation of mean 45.5 or 60.0. The power is essentially 1. But if the alternative 
hypothesis is that μι = 45.6, differing only by 0.1 from the value assumed under 
the null hypothesis, it will be difficult to decide which of these hypotheses is 
true, and the power will be very low. 

To improve the power of a given test (or decrease β) while keeping a constant 
for a stated null hypothesis, wc must increase sample size. If instead of sampling 
5 wing lengths we had sampled 35, the distribution of means would be much 
narrower. Thus, rejection regions for the identical type I error would now com-
mence at 44.21 and 46.79. Although the acceptance and rejection regions have 
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Diagram to illustrate increases in type II error β as alternative hypothesis H , approaches null 
hypothesis / / „ — t h a t is, μ , approaches μ. Shading represents β. Vertical lines mark off 5% critical 
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remained the same propor t ionate ly , the acceptance region has become much 
nar rower in absolute value. Previously, we could not , with confidence, reject the 
null hypothesis for a sample mean of 48.0. Now, when based on 35 individuals, 
a mean as deviant as 48.0 would occur only 15 times out of 100,000 and the 
hypothesis would, therefore, be rejected. 

W h a t has happened to type II error? Since the dis t r ibut ion curves are not 
as wide as before, there is less over lap between them; if the al ternat ive hypoth-
esis H{. μ = 54.0 or 37.0 is true, the probabi l i ty that the null hypothesis could 
be accepted by mis take (type II error) is infinitesimally small. If we let μ j 
approach μ0, β will increase, of course, but it will always be smaller than 
the cor responding value for sample size η = 5. This compar i son is shown in 
Figure 6.11, where the power for the test with η = 35 is much higher than that 
for η = 5. If we were to increase our sample size to 100 or 1000, the power 
would be still fur ther increased. Thus, we reach an impor tan t conclusion: If a 
given test is not sensitive enough, we can increase its sensitivity ( = power) by 
increasing sample size. 

There is yet ano the r way of increasing the power of a test. If we canno t 
increase sample size, the power may be raised by changing the na tu re of the test. 
Different statistical techniques testing roughly the same hypothesis may differ 
substantially both in the actual magni tude and in the slopes of their power 
curves. Tests that main ta in higher power levels over substantial ranges of alter-
native hypotheses are clearly to be preferred. The popular i ty of the various 
nonparamet r ic tests, ment ioned in several places in this book, has grown not only 
because of their computa t iona l simplicity but also bccause their power curves are 
less affected by failure of assumpt ions than are those of the parametr ic methods . 
However, it is also t rue that nonparamet r i c tests have lower overall power than 
parametr ic ones, when all the assumpt ions of the parametr ic test are met. 

Let us briefly look at a one-tailed test. The null hypothesis is H0: μ0 = 45.5, 
as before. However , the al ternative hypothesis assumes that we have reason to 
believe that the paramet r ic mean of the popula t ion from which our sample has 
been taken cannot possibly be less than /;„ = 45.5: if it is different from that 
value, it can only be greater than 45.5. We might have two g rounds for such 
a hypothesis. First, we might have some biological reason for such a belief. O u r 
parametr ic flies might be a dwarf popula t ion, so that any other popula t ion f rom 
which our sample could come must be bigger. A second reason might be that 
we are interested in only one direction of difference. For example, we may be 
testing the effect of a chemical in the larval food intended to increase the size of 
the flies in the sample. Therefore, we would expect that μ , > μ(), and wc would 
not be interested in testing for any /(, that is less than //„, because such an effect 
is the exact opposi te of what we expect. Similarly, if we are investigating the effect 
of a certain d rug as a cure for cancer, we might wish to compare the untreated 
populat ion that has a mean fatality rate θ (from cancer) with the treated popula-
tion, whose rate is 0{. O u r al ternat ive hypotheses will be / / , : 0t < 0. That is, 
we arc not interested in any 0{ that is greater than 0, bccause if o u r d rug will 
increase mortal i ty f rom cancer, it certainly is not much of a prospect for a cure. 
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FIGURE 6 . 1 2 

One- ta i led significance test for the d is t r ibut ion of F igure 6.9. Vertical line now cuts off 5% rejection 
region f rom one tail of the d is t r ibut ion (cor responding area of curve has been shaded). 

When such a one-tailed test is performed, the rejection region along the 
abscissa is under only one tail of the curve representing the null hypothesis. 
Thus, for our housefly data (distribution of means of sample size η = 5), the 
rejection region will be in one tail of the curve only and for a 5% type I error 
will appear as shown in Figure 6.12. We compute the critical boundary as 
45.5 + (1.645)( 1.744) = 48.37. The 1.645 is i 0 I O f i r , , which corresponds to the 5% 
value for a one-tailed test. Compare this rejection region, which rejects the null 
hypothesis for all means greater than 48.37, with the two rejection regions in 
Figure 6.10, which reject the null hypothesis for means lower than 42.08 and 
greater than 48.92. The alternative hypothesis is considered for one tail of the 
distribution only, and the power curve of the test is not symmetrical but is drawn 
out with respect to one side of the distr ibution only. 

6.9 Tests of simple hypotheses employing the t distribution 

We shall proceed lo apply our newly won knowledge of hypothesis testing to 
a simple example involving the ι distribution. 

Government regulations prescribe that the standard dosage in a certain 
biological preparat ion should be 600 activity units per cubic centimeter. We 
prepare 10 samples of this preparat ion and test each for potency. We find that 
the mean number of activity units per sample is 592.5 units per cc and the 
s tandard deviation of the samples is 11.2. Docs our sample conform to the 
government s tandard? Stated more precisely, our null hypothesis is H(>: μ - μ0. 
The alternative hypothesis is that the dosage is not equal to 600, or / / , : μ / μ0. 
Wc proceed to calculate the significance of the deviation Ϋ — μ0 expressed in 
standard deviation units. The appropr ia te s tandard deviation is that of means 
(the s tandard error of the mean), nol the s tandard deviation of items, because 
the deviation is that of a sample mean a round a parametr ic mean. Wc therefore 
calculate sY = s/yj'n = 11.2/^10 -= 3.542. We next test the deviation (Ϋ - μ0)/χγ. 
We have seen earlier, in Scction 6.4, that a deviation divided by an estimated 
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s tandard deviation will be distributed according to the t distribution with η — 1 
degrees of freedom. We therefore write 

= (6-1U 
Sy 

This indicates that we would expect this deviation to be distributed as a t vari-
ate. No te that in Expression (6.11) we wrote f s . In most textbooks you will find 
this ratio simply identified as t, but in fact the t distribution is a parametr ic and 
theoretical distribution that generally is only approached, but never equaled, 
by observed, sampled data. This may seem a minor distinction, but readers 
should be quite clear that in any hypothesis testing of samples we are only as-
suming that the distributions of the tested variables follow certain theoretical 
probability distributions. To conform with general statistical practice, the t dis-
tribution should really have a Greek letter (such as τ), with t serving as the 
sample statistic. Since this would violate long-standing practice, we prefer to 
use the subscript s to indicate the sample value. 

The actual test is very simple. We calculate Expression (6.11), 

592.5 - 600 - 7 . 5 „ , ft 
i = = = — 2 . 1 2 d j = n - 1 = 9 

3.542 3.542 J 

and compare it with the expected values for t at 9 degrees of freedom. Since 
the t distribution is symmetrical, we shall ignore the sign of f, and always look 
up its positive value in Table III. The two values on cither side of f s are ta (1514| = 
2.26 and t0 1 0 ( 9 ] = 1.83. These are f values for two-tailed tests, appropr ia te in 
this instance because the alternative hypothesis is that μ φ 600: that is. it can 
be smaller or greater. It appears that the significance level of our value of iv is 
between 5% and 10%; if the null hypothesis is actually true, the probability of 
obtaining a deviation as great as or greater than 7.5 is somewhere between 0.05 
and 0.10. By customary levels of significance, this is insufficient for declaring 
the sample mean significantly different from the s tandard. We consequently 
accept the null hypothesis. In conventional language, we would report the re-
sults of the statistical analysis as follows: " The sample mean is not significantly 
different from the accepted s tandard." Such a statement in a scientific report 
should always be backed up by a probability value, and the proper way of pre-
senting this is to write "0.10 > Ρ > 0.05." This means that the probability of 
such a deviation is between 0.05 and 0.10. Another way of saying this is that 
the value of is is not significant (frequently abbreviated as ns). 

A convention often encountered is the use of asterisks after the computed 
value of the significance test, as in ts = 2.86**. The symbols generally represent 
the following probability ranges: 

* = 0.05 > Ρ > 0.01 ** = 0.01 > Ρ > 0.001 *** = ρ < 0.001 

However, since some authors occasionally imply other ranges by these aster-
isks, the meaning of the symbols has to be specified in each scientific report. 



128 c h a p t e r 6 /' e s t i m a t i o n a n d h y p o t h e s i s t e s t i n g 

It might be argued that in a biological preparat ion the concern of the tester 
should not be whether the sample differs significantly from a s tandard, but 
whether it is significantly below the s tandard. This may be one of those bio-
logical preparat ions in which an excess of the active component is of no harm 
but a shortage would make the preparat ion ineffective at the conventional 
dosage. Then the test becomes one-tailed, performed in exactly the same manner 
except that the critical values of t for a one-tailed test are at half the prob-
abilities of the two-tailed test. Thus 2.26, the former 0.05 value, becomes 
io.o25[9]> a r"d 1-83, the former 0.10 value, becomes ?0.05[<>]< making our observed 
ts value of 2.12 "significant at the 5T> level" or. more precisely stated, sig-
nificant at 0.05 > Ρ > 0.025. If we are prepared to accept a 5% significance level, 
we would consider the preparat ion significantly below the s tandard. 

You may be surprised that the same example, employing the same data 
and significance tests, should lead to two different conclusions, and you may 
begin to wonder whether some of the things you hear about statistics and 
statisticians are not, after all, correct. The explanation lies in the fact that the 
two results are answers to different questions. If we test whether our sample 
is significantly different from the s tandard in either direction, we must conclude 
that it is not different enough for us to reject the null hypothesis. If, on the 
other hand, we exclude from consideration the fact that the true sample mean 
μ could be greater than the established s tandard μ0, the difference as found by 
us is clearly significant. It is obvious from this example that in any statistical 
test one must clearly state whether a one-tailed or a two-tailed test has been 
performed if the nature of the example is such that there could be any doubt 
about the matter. We should also point out that such a difference in the out-
come of the results is not necessarily typical. It is only because the outcome in 
this case is in a borderline area between clear significance and nonsignilicance. 
Had the difference between sample and s tandard been 10.5 activity units, the 
sample would have been unquestionably significantly different from the stan-
dard by the one-tailed or the two-tailed test. 

The promulgat ion of a s tandard mean is generally insufficient for the estab-
lishment of a rigid s tandard for a product. If the variance among the samples 
is sufficiently large, it will never be possible to establish a significant difference 
between the s tandard and the sample mean. This is an important point that 
should be quite clear to you. Remember that the s tandard error can be in-
creased in two ways by lowering sample size or by increasing the s tandard 
deviation of the replicates. Both of these are undesirable aspects of any experi-
mental setup. 

The test described above for the biological preparat ion leads us to a general 
test for the significance of any statistic that is. for the significance of a devia-
tion of any statistic from a parametric value, which is outlined in Box 6.4. Such 
a test applies whenever the statistics arc expected to be normally distributed. 
When the s tandard error is estimated from the sample, the t distribution is used. 
However, since the normal distribution is just a special case /,,„, of the I dis-
tribution, most statisticians uniformly apply the I distribution with the appro-
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BOX 6.4 
Testing the significance of a statistic—that is, the significance of a deviation of a 
sample statistic from a parametric value. For normally distributed statistics. 

Computational steps 

I. Compute t„ as the following ratio: 

St — Si . 
t β r. 

ss< 
where St is a sample statistic, Sip is the parametric value against which the 
sample statistic is to be tested, and ss, is its estimated standard error, obtained 
from Box 6.1, or elsewhere in this book. 

Ζ The pertinent hypotheses are 

H0: St — Stp 

for a two-tailed test, and 

Hq'. St" Stp 

or 

H0: St — Stp 

for a one-tailed test. 

3. In the two-tailed test, look up the critical value of t,(v), where α is the type I 
error agreed upon and ν is the degrees of freedom pertinent to the standard 
error employed (see Box 6.1). In the one-tailed test look up the critical value 
of for a significance level of a. 

4. Accept or reject the appropriate hypothesis in 2 on the basis of the ts value 
in 1 compared with critical values of t in 3. 

Hi-· St Φ St„ 

Ht: St > St„ 

Ht·. St < St, 

priatc degrees of freedom from 1 to infinity. An example of such a test is the f 
test for the significance of a regression coefficient shown in step 2 of Box 11.4. 

6.10 Testing the hypothesis H„: σζ = σ,2, 

The method of Box 6.4 can be used only if the statistic is normally distributed. 
In the case of the variance, this is not so. As we have seen, in Section 6.6, sums 
of squares divided by <τ2 follow the χ 2 distribution. Therefore, for testing the 
hypothesis that a sample variance is different from a parametric variance, we 
must employ the χ2 distribution. 

Let us use the biological preparat ion of the last section as an example. 
Wc were told that the s tandard deviation was 11.2 based on 10 samples. There-
fore, the variance must have been 125.44. Suppose the government postulates 
that the variance of samples from the preparat ion should be no greater than 
100.0. Is our sample variance significantly above 100.0? Remembering from 
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Expression (6.8) that (n — l)s2/a2 is distributed as χ2„_ i], we proceed as follows. 
We first calculate 

γ ζ J " ~ I)*2 

a 2 

_ (9)125.44 
~ 100 

= 11.290 

No te that we call the quant i ty X 2 rather than χ 2 . This is done to emphasize 
that we are obtaining a sample statistic that we shall compare with the para-
metric distribution. 

Following the general outline of Box 6.4, we next establish our null and 
alternative hypotheses, which are H0: σ2 = σ2

0 and Η a~ > <Tq; that is, we 
are to perform a one-tailed test. The critical value of y2 is found next as χ2

1ν,, 
where α is the propor t ion of the χ1 distribution to the right of the critical value, 
as described in Section 6.6, and ν is the pertinent degrees of freedom. You see 
now why we used the symbol α for that port ion of the area. It corresponds 
to the probability of a type I error. For ν = 9 degrees of freedom, we find in 
Table IV that 

Xlosm = 16.919 χ 2 . 1 0 ( 9 ] = 14.684 j& S 0 , 9 ] = 8.343 

We notice that the probabili ty of getting a χ 2 as large as 11.290 is therefore 
less than 0.50 but higher than 0.10, assuming that the null hypothesis is true. 
Thus X 2 is not significant at the 5"ό level, we have no basis for rejecting the 
null hypothesis, and wc must conclude that the variance of the 10 samples 
of the biological preparat ion may be no greater than the s tandard permitted by 
the government. If wc had decided to test whether the variance is different from 
the s tandard, permitt ing it to deviate in either direction, the hypotheses for this 
two-tailed test would have been H 0 : ο 2 = σ,2 and Η σ 2 Φ and a 5'7, type 
I error would have yielded the following critical values for the two-tailed test: 

Xo.47S[9] = 2.700 Χι).025(y| = 19.023 

The values represent chi-squarcs at points cutt ing off 2\'Z rejection regions 
at each tail of the χ 2 distribution. Λ value of X 2 < 2.700 or > 19.023 would 
have been evidence that the sample variance did not belong to this populat ion. 
O u r value of X 2 = 11.290 would again have led to an acceptance of the null 
hypothesis. 

In the next chapter we shall see that there is another significance test avail-
able to test the hypotheses about variances of the present section. This is the 
mathematically equivalent F test, which is, however, a more general test, allow-
ing us to test the hypothesis that two sample variances come from populat ions 
with equal variances 
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Exercises 

6.1 Since it is possible to test a statistical hypothesis with any size sample, why 
are larger sample sizes preferred? ANS. When the null hypothesis is false, the 
probability of a type II error decreases as η increases. 

6.2 Differentiate between type I and type II errors. What do we mean by the power 
of a statistical test? 

6.3 Set 99% confidence limits to the mean, median, coefficient of variation, and vari-
ance for the birth weight data given in Box 3.2. ANS. The lower limits are 
109.540, 109.060, 12.136, and 178.698, respectively. 

6.4 The 95% confidence limits for μ as obtained in a given sample were 4.91 and 
5.67 g. Is it correct to say that 95 times out of 100 the population mean, //, falls 
inside the interval from 4.91 to 5.67 g? If not, what would the correct state-
ment be? 

6.5 In a study of mating calls in the tree toad Hyla ewingi, Littlejohn (1965) found 
the note duration of the call in a sample of 39 observations from Tasmania to 
have a mean of 189 msec and a standard deviation of 32 msec. Set 95% confi-
dence intervals to the mean and to the variance. ANS. The 95% confidence limits 
for the mean are from 178.6 to 199.4. The 95% shortest unbiased limits for the 
variance are from 679.5 to 1646.6. 

6.6 Set 95% confidence limits to the means listed in Table 6.2. Arc these limits all 
correct? (That is, do they contain μ?) 

6.7 In Section 4.3 the coefficient of dispersion was given as an index of whether or 
not data agreed with a Poisson distribution. Since in a true Poisson distribution, 
the mean μ equals the parametric variance σ \ the coefficient of dispersion is anal-
ogous to Expression (6.8). Using the mite data from Table 4.5, test the hypoth-
esis that the true variance is equal to the sample mean — in other words, that 
we have sampled from a Poisson distribution (in which the coefficient of disper-
sion should equal unity). Note that in these examples the chi-squarc tabic is not 
adequate, so that approximate critical values must be computed using the method 
given with Tabic IV. In Section 7.3 an alternative significance test that avoids 
this problem will be presented. ANS. A'2 — (η — 1) χ CD = 1308.30, χΐ ~ 
645.708. 

6.8 Using the method described in Exercise 6.7, test the agreement of the observed 
distribution with a Poisson distribution by testing the hypothesis that the true 
coefficient of dispersion equals unity for the data of Tabic 4.6. 

6.9 In a study of bill measurements of the dusky flycatcher, Johnson (1966) found 
that the bill length for the males had a mean of 8.14 + 0.021 and a coefficient 
of variation of 4.67%. On the basis of this information, infer how many specimens 
must have been used? ANS. Since V = lOOs/F and .s, = s/sjn, -Jit = K^F/IOO. 
Thus η 328. 

6.10 In direct klinokinctic behavior relating to temperature, animals turn more often 
in the warm end of a gradient and less often in the colder end, the direction of 
turning being at random, however. In a computer simulation of such behavior, 
the following results were found. The mean position along a temperature gra-
dient was found to be — 1.352. The standard deviation was 12.267, and ti equaled 
500 individuals. The gradient was marked olTin units: zero corresponded to the 
middle of the gradient, the initial starting point of the animals; minus corre-
sponded to the cold end; and plus corresponded to the warmer end. Pest the 
hypothesis that direct klinokinetic behavior did not result in a tendency toward 
aggregation in either the warmer or colder end; that is, test the hypothesis that 
/<, the mean position along the gradient, was zero. 
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6.11 In an experiment comparing yields of three new varieties of corn, the following 
results were obtained. 

Variety 

1 2 3 

y 22.86 43.21 38.56 
η 20 20 20 

To compare the three varieties the investigator computed a weighted mean of the 
three means using the weights 2, — 1, — 1. Compute the weighted mean and its 
95% confidence limits, assuming that the variance of each value for the weighted 
mean is zero. ANS. Yw = —36.05, = 34.458, the 95% confidence limits are 
— 47.555 to —24.545, and the weighted mean is significantly different from zero 
even at the Ρ < 0.001 level. 



CHAPTER 

Introduction to Analysis 
of Variance 

We now proceed to a study of the analysis of variance. This method , developed 
by R. A. F isher, is fundamenta l to much of the applicat ion of statistics in biology 
and especially to experimental design. O n e use of the analysis of variance is to 
test whether two or more sample means have been obta ined f rom popula t ions 
with the same parametr ic mean. Where only two samples are involved, the I test 
can also be used. However , the analysis of variance is a more general test, which 
permits testing two samples as well as many, and we arc therefore in t roducing 
it at this early stage in order to equip you with this powerful weapon for your 
statistical arsenal. Wc shall discuss the / test for two samples as a special ease 
in Section 8.4. 

In Section 7.1 wc shall app roach the subject on familiar g round , the sampl ing 
experiment of the housefly wing lengths. F rom these samples we shall obtain 
two independent est imates of the popula t ion variance. Wc digress in Scction 7.2 
to int roduce yet ano ther con t inuous dis t r ibut ion, the /·' d is t r ibut ion, needed lor 
the significance test in analysis of variance. Section 7.3 is ano the r digression; 
here we show how the F d is t r ibut ion can be used to test whether two samples 
may reasonably have been drawn f rom popula t ions with the same variance. Wc 
are now ready for Scction 7.4, in which we examine the effects of subjecting the 
samples to different t reatments . In Section 7.5, we describe the par t i t ioning of 
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sums of squares and of degrees of freedom, the actual analysis of variance. The 
last two sections (7.6 and 7.7) take up in a more formal way the two scientific 
models for which the analysis of variance is appropriate , the so-called fixed 
treatment effects model (Model I) and the variance component model (Model II). 

Except for Section 7.3, the entire chapter is largely theoretical. We shall 
postpone the practical details of computa t ion to Chapter 8. However, a thorough 
understanding of the material in Chapter 7 is necessary for working out actual 
examples of analysis of variance in Chapter 8. 

O n e final comment . We shall use J. W. Tukey's acronym "anova" inter-
changeably with "analysis of variance" throughout the text. 

7.1 The variances of samples and their means 

We shall approach analysis of variance through the familiar sampling experi-
ment of housefly wing lengths (Experiment 5.1 and Table 5.1), in which we 
combined seven samples of 5 wing lengths to form samples of 35. We have 
reproduced one such sample in Table 7.1. The seven samples of 5, here called 
groups, are listed vertically in the upper half of the table. 

Before we proceed to explain Table 7.1 further, we must become familiar 
with added terminology and symbolism for dealing with this kind of problem. 
We call our samples groups; they are sometimes called classes or are known 
by yet other terms we shall learn later. In any analysis of variance we shall have 
two or more such samples or groups, and we shall use the symbol a for the 
number of groups. Thus, in the present example a = 7. Each group or sample 
is based on η items, as before; in Table 7.1, η = 5. The total number of items 
in the table is a times n, which in this case equals 7 χ 5 or 35. 

The sums of the items in the respective groups are shown in the row under-
neath the horizontal dividing line. In an anova, summation signs can no longer 
be as simple as heretofore. We can sum either the items of one group only or 
the items of the entire table. We therefore have to use superscripts with the 
summation symbol. In line with our policy of using the simplest possible nota-
tion, whenever this is not likely to lead to misunderstanding, we shall use Σ"Υ 
to indicate the sum of the items of a group and Σ"ηΥ to indicate the sum of all 
the items in the table. The sum of the items of each group is shown in the first 
row under the horizontal line. The mean of each group, symbolized by V', is 
in the next row and is computed simply as Σ"Υ/>!. The remaining two rows in 
that portion of Table 7.1 list Σ"Υ1 and Σ" y1, separately for each group. These 
are the familiar quantities, the sum of the squared V's and the sum of squares 
of Y. 

From the sum of squares for each group we can obtain an estimate of the 
populat ion variance of housefly wing length. Thus, in the first g roup = 
29.2. Therefore, our estimate of the populat ion variance is 
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a rather low estimate compared with those obtained in the other samples. Since 
we have a sum of squares for each group, we could obtain an estimate of the 
popula t ion variance f rom each of these. However, it stands to reason that we 
would get a better estimate if we averaged these separate variance estimates in 
some way. This is done by comput ing the weighted average of the variances by 
Expression (3.2) in Section 3.1. Actually, in this instance a simple average would 
suffice, since all estimates of the variance are based on samples of the same size. 
However, we prefer to give the general formula, which works equally well for 
this case as well as for instances of unequal sample sizes, where the weighted 
average is necessary. In this case each sample variance sf is weighted by its 
degrees of freedom, w\ = n ; — 1, resulting in a sum of squares ( Z y f ) , since 
(«,· — l)s2 = Σ y f . Thus, the numera tor of Expression (3.2) is the sum of the sums 
of squares. The denomina tor is Σ"(π, — 1) = 7 χ 4, the sum of the degrees of 
freedom of each group. The average variance, therefore, is 

7 29.2 + 12.0 + 75.2 + 45.2 + 98.8 + 81.2 + 107.2 448.8 
s2 = = = 6.029 

28 28 

This quanti ty is an estimate of 15.21, the parametr ic variance of housefly 
wing lengths. This estimate, based on 7 independent estimates of variances of 
groups, is called the average variance within groups or simply variance within 
groups. Note that we use the expression within groups, a l though in previous 
chapters we used the term variance of groups. The reason we do this is that the 
variance estimates used for comput ing the average variance have so far all come 
from sums of squares measuring the variation within one column. As wc shall 
see in what follows, one can also compute variances among groups, cutt ing 
across g roup boundaries. 

To obtain a sccond estimate of the populat ion variance, we treat the seven 
g roup means Ϋ as though they were a sample of seven observations. The resulting 
statistics arc shown in the lower right part of Tabic 7.1, headed "Computa t ion 
of sum of squares of means." There arc seven means in this example; in the 
general case there will be a means. We first compute Σ"Ϋ, the sum of the means. 
Note thai this is rather sloppy symbolism. To be entirely proper, we should 
identify this quant i ty as Σ; ^" Yh summing the means of group 1 through group 
a. The next quanti ty computed is Ϋ, the grand mean of the group means, com-
puted as Υ = Σ"Ϋ/α. The sum of the seven means is Σ"Ϋ = 317.4, and the grand 
mean is Ϋ = 45.34, a fairly close approximat ion to the parametric mean μ — 45.5. 
The sum of squares represents the deviations of the group means from the grand 
mean, Σ"(>' — >7)2. For this wc first need the quanti ty Σ"Κ2, which equals 
14,417.24. The customary computat ional formula for sum of squares applied 
to these means is Σ"Ϋ2 - [(Σ"Υ)2/ciJ = 25.417. From the sum of squares of the 
means we obtain a variance among the means in the conventional way as follows: 
Σ" (Ϋ Y)2/(a I). Wc divide by a 1 rather than η — 1 because the sum 
of squares was based on a items (means). Thus, variance of the means s2· — 
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25.417/6 = 4.2362. We learned in Chapter 6, Expression (6.1), that when we 
randomly sample f rom a single populat ion, 

and hence 

Thus, we can estimate a variance of items by multiplying the variance of means 
by the sample size on which the means are based (assuming we have sampled 
at random from a c o m m o n population). When we do this for our present ex-
ample, we obtain s2 = 5 χ 4.2362 = 21.181. This is a second estimate of the 
parametr ic variance 15.21. It is not as close to the true value as the previous 
estimate based on the average variance within groups, but this is to be expected, 
since it is based on only 7 "observations." We need a name describing this 
variance to distinguish it f rom the variance of means from which it has been 
computed, as well as from the variance within groups with which it will be 
compared. We shall call it the variance among groups; it is η times the variance 
of means and is an independent estimate of the parametr ic variance σ2 of the 
housefly wing lengths. It may not be clear at this stage why the two estimates 
of a 2 that we have obtained, the variance within groups and the variance among 
groups, are independent. We ask you to take on faith that they are. 

Let us review what we have done so far by expressing it in a more formal 
way. Table 7.2 represents a generalized table for da ta such as the samples of 
housefly wing lengths. Each individual wing length is represented by Y, sub-
scripted to indicate the position of the quanti ty in the data table. The wing length 
of the j t h fly from the /th sample or group is given by Y .̂ Thus, you will notice 
that (he first subscript changes with each column representing a g roup in the 

tabi.K 7.2 
Data arranged for simple analysis of variance, single classification, completely 
randomized. 

(/roups 
a 

I >0 ).-, >«, · >,. >., 

" > : „ >; , , > , . ••• >;„ ••• >;. x, 

sums £γ Σγ. ty2 iy3 • iy, •·· i n 

Means Ϋ Υ, Y2 Υ, ' V, V, 
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table, and the second subscript changes with each row representing an individual 
item. Using this notat ion, we can compute the variance of sample 1 as 

1 i = " 

— r Σ ( y u - y i ) 2 
η - 1 i = ι 

The variance within groups, which is the average variance of the samples, 
is computed as 

1 i = a j — η 

Γ> Σ Σ ( Y i j -α ( η - 1) , = ι j= ι 

No te the double summation. It means that we start with the first group, setting 
i = 1 (i being the index of the outer Σ). We sum the squared deviations of all 
items from the mean of the first group, changing index j of the inner Σ f rom 1 
to η in the process. We then return to the outer summation, set i = 2, and sum 
the squared deviations for g roup 2 from j = 1 toj = n. This process is continued 
until i, the index of the outer Σ, is set to a. In other words, we sum all the 
squared deviations within one group first and add this sum to similar sums f rom 
all the other groups. 

The variance among groups is computed as 

n i = a 

- ^ - r l i Y . - Y ) 2 

a - 1 Μ 

Now that we have two independent estimates of the populat ion variance, 
what shall we do with them? We might wish to find out whether they do in fact 
estimate the same parameter . To test this hypothesis, we need a statistical test 
that will evaluate the probabili ty that the two sample variances are from the same 
populat ion. Such a test employs the F distribution, which is taken up next. 

7.2 The F distribution 

Let us devise yet another sampling experiment. This is quite a tedious one with-
out the use of computers , so we will not ask you to carry it out. Assume that 
you are sampling at r andom from a normally distributed populat ion, such as the 
housefly wing lengths with mean μ and variance σ2. The sampling procedure 
consists of first sampling n l items and calculating their variance .vf, followed by 
sampling n2 items and calculating their variance .s2. Sample sizes n, and n2 may 
or may not be equal to each other, but are fixed for any one sampling experiment. 
Thus, for example, wc might always sample 8 wing lengths for the first sample 
(n,) and 6 wing lengths for the second sample (n2). After each pair of values (sf 
and has been obtained, wc calculate 

This will be a ratio near 1, because these variances arc estimates of the same 
quantity. Its actual value will depend on the relative magnitudes of variances 
..- ι „> i r ι.. 1 r ., , . . , i . . . , i . , < i i , „ 
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Fs of their variances, the average of these ratios will in fact approach the quanti ty 
(n2 — l)/(«2 — 3), which is close to 1.0 when n2 is large. 

The distr ibution of this statistic is called the F distribution, in honor of 
R. A. Fisher. This is another distribution described by a complicated mathe-
matical function that need not concern us here. Unlike the t and χ2 distributions, 
the shape of the F distribution is determined by two values for degrees of freedom, 
Vj and v2 (corresponding to the degrees of freedom of the variance in the 
numerator and the variance in the denominator , respectively). Thus, for every 
possible combinat ion of values v l5 v2, each ν ranging from 1 to infinity, there 
exists a separate F distribution. Remember that the F distribution is a theoretical 
probability distribution, like the t distribution and the χ2 distribution. Variance 
ratios s f / s f , based on sample variances are sample statistics that may or may 
not follow the F distribution. We have therefore distinguished the sample vari-
ance ratio by calling it Fs, conforming to our convention of separate symbols 
for sample statistics as distinct f rom probability distributions (such as ts and 
X2 contrasted with t and χ2). 

We have discussed how to generate an F distribution by repeatedly taking 
two samples from the same normal distribution. We could also have generated 
it by sampling from two separate normal distributions differing in their mean 
but identical in their parametr ic variances; that is, with μ, φ μ 2 but σ\ = σ\. 
Thus, we obtain an F distribution whether the samples come from the same 
normal populat ion or from different ones, so long as their variances arc identical. 

Figure 7.1 shows several representative F distributions. F or very low degrees 
of freedom the distribution is l - shapcd , but it becomes humped and strongly 
skewed to the right as both degrees of freedom increase. Table V in Appendix 

n o r m 7. ι 
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A2 shows the cumulat ive probabi l i ty dis t r ibut ion of F for three selected p rob-
ability values. The values in the table represent F a ( v i v j ] , where a is the p ropor t ion 
of the F dis t r ibut ion to the right of the given F value (in one tail) and \'j, v2 are 
the degrees of f reedom per ta ining to the variances in the numera to r and the 
d e n o m i n a t o r of the ratio, respectively. The table is a r ranged so that across the 
t op one reads v l 5 the degrees of f reedom per ta in ing to the upper (numera tor ) 
variance, and a long the left margin one reads v2 , the degrees of f reedom per-
taining to the lower (denominator ) variance. At each intersection of degree of 
f reedom values we list three values of F decreasing in magn i tude of a. F o r 
example, an F dis t r ibut ion with v, = 6, v2 = 24 is 2.51 at a = 0.05. By that 
we mean that 0.05 of the area under the curve lies to the right of F = 2.51. 
Figure 7.2 illustrates this. Only 0.01 of the area under the curve lies to the right 
of F = 3.67. Thus, if we have a null hypothesis H0: σ\ = σ\, with the al ternat ive 
hypothesis Ηx: σ\ > we use a one-tailed F test, as illustrated by Figure 7.2. 

We can now test the two variances obta ined in the sampling exper iment 
of Section 7.1 and Table 7.1. The variance a m o n g groups based on 7 means was 
21.180, and the variance within 7 groups of 5 individuals was 16.029. O u r null 
hypothesis is that the two variances est imate the same paramet r ic variance; the 
al ternat ive hypothesis in an anova is always that the paramet r ic var iance esti-
mated by the variance a m o n g groups is greater than that est imated by the 
variance within groups. The reason for this restrictive al ternative hypothesis, 
which leads to a one-tailed test, will be explained in Section 7.4. We calculate 
the variance rat io F s = s\js\ = 21.181/16.029 = 1.32. Before we can inspect the 

FKHJRE 7 . 2 

Frequency curve of the /· d i s t r ibut ion for (> and 24 degrees of f reedom, respectively. A one-tai led 
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F table, we have to know the appropr ia te degrees of freedom for this variance 
ratio. We shall learn simple formulas for degrees of freedom in an anova later, 
but at the moment let us reason it out for ourselves. The upper variance 
(among groups) was based on the variance of 7 means; hence it should have 
α — 1 = 6 degrees of freedom. The lower variance was based on an average of 
7 variances, each of them based on 5 individuals yielding 4 degrees of freedom 
per variance: a(n — 1) = 7 χ 4 = 28 degrees of freedom. Thus, the upper variance 
has 6, the lower variance 28 degrees of freedom. If we check Table V for ν 1 = 6 , 
v2 = 24, the closest arguments in the table, we find that F0 0 5 [ 6 24] = 2.51. For 
F = 1.32, corresponding to the Fs value actually obtained, α is clearly >0.05. 
Thus, we may expect more than 5% of all variance ratios of samples based on 
6 and 28 degrees of freedom, respectively, to have Fs values greater than 1.32. 
We have no evidence to reject the null hypothesis and conclude that the two 
sample variances estimate the same parametr ic variance. This corresponds, of 
course, to what we knew anyway f rom our sampling experiment. Since the seven 
samples were taken from the same population, the estimate using the variance 
of their means is expected to yield another estimate of the parametr ic variance 
of housefly wing length. 

Whenever the alternative hypothesis is that the two parametric variances are 
unequal (rather than the restrictive hypothesis Η { . σ \ > σ2), the sample variance 
s j can be smaller as well as greater than s2. This leads to a two-tailed test, and 
in such cases a 5% type I error means that rejection regions of 2j% will occur 
at each tail of the curve. In such a case it is necessary to obtain F values for 
ot > 0.5 (that is, in the left half of the F distribution). Since these values arc rarely 
tabulated, they can be obtained by using the simple relationship 

' I I K)[V2. Vl] 

For example, F(1 „ 5 ( 5 2 4 , = 2.62. If we wish to obtain F 0 4 5 [ 5 241 (the F value to 
the right of which lies 95% of the area of the F distribution with 5 and 24 degrees 
of freedom, respectively), we first have to find F(1 0 5 1 2 4 = 4.53. Then F0 4515 241 

is the reciprocal of 4.53, which equals 0.221. Thus 95% of an F distribution with 
5 and 24 degrees of freedom lies to the right of 0.221. 

There is an important relationship between the F distribution and the χ2 

distribution. You may remember that the ratio X2 = Σ\>2/σ2 was distributed as 
a χ2 with η — I degrees of freedom. If you divide the numerator of this expression 
by n — 1, you obtain the ratio F, = ,ν2/σ2, which is a variance ratio with an 
expected distribution of F,,,- , , The upper degrees of freedom arc η — I (the 
degrees of freedom of the sum of squares or sample variance). The lower degrees 
of freedom are infinite, because only on the basis of an infinite number of items 
can we obtain the true, parametr ic variance of a populat ion. Therefore, by 
dividing a value of X 2 by η — 1 degrees of freedom, we obtain an Fs value with 
η - 1 and 

co d f , respectively. In general, χ2^\!ν ~ *]· Wc can convince our-
selves of this by inspecting the F and χ2 tables. F rom the χ2 tabic (Table IV) 
we find that χ(

2,.05[ΐοι ^ 18.307. Dividing this value by 10 dj\ we obtain 1.8307. 
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Thus, the two statistics of significance are closely related and, lacking a χ 2 table, 
we could make do with an F table alone, using the values of vF[v ^ in place 

°f*2v,· 
Before we return to analysis of variance, we shall first apply our newly won 

knowledge of the F distribution to testing a hypothesis about two sample 
variances. 

BOX 7.1 
Testing the significance of differences between two variances. 
Survival in days of the cockroach Blattella vaga when kept without food or water. 

Females n, = 10 Y, = 8.5 days = 3.6 
Males n2 = 1 0 P2 = 4.8 days s\ = 0.9 

H0: <xf = σ | Η^.σίΦσΙ 

Source: Data modified from Willis and Lewis (1957). 

The alternative hypothesis is that the two variances are unequal. We have 
no reason to suppose that one sex should be more variable than the other. 
In view of the alternative hypothesis this is a two-tailed test. Since only 
the right tail of the F distribution is tabled extensively in Table V and in 
most other tables, we calculate F s as the ratio of the greater variance over 
the lesser one: 

Because the test is two-tailed, we look up the critical value Fa/2|vi,»2)> where 
α is the type I error accepted and v, = ri1 — 1 and v2 = n, — 1 are the 
degrees of freedom for the upper and lower variance, respectively. Whether 
we look up ^<χ/2ΐν,.ν2] o r Fx/up,vi] depends on whether sample 1 or sample 
2 has the greater variance and has been placed in the numerator. 

From Table V we find F0.02519,9] = 4.03 and F 0 0 5 l 9 i 9 J = 3.18. Be-
cause this is a two-tailed test, we double these probabilities. Thus, the F 
value of 4.03 represents a probability of α = 0.05, since the right-hand tail 
area of α = 0.025 is matched by a similar left-hand area to the left of 
^o.975[9.9i = '/f0.025(9,9] = 0.248. Therefore, assuming the null hypothesis 
is true, the probability of observing an F value greater than 4.00 and 
smaller than 1/4.00 = 0.25 is 0.10 > Ρ > 0.05. Strictly speaking, the two 
sample variances are not significantly different—the two sexes are equally 
variable in their duration of survival. However, the outcome is close 
enough to the 5% significance level to make us suspicious that possibly 
the variances are in fact different. It would be desirable to repeat this 
experiment with larger sample sizes in the hope that more decisive results 
would emerge. 
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7.3 The hypothesis H0: σ\ = σ\ 

A test of the null hypothesis that two normal populat ions represented by two 
samples have the same variance is illustrated in Box 7.1. As will be seen later, 
some tests leading to a decision about whether two samples come f rom popula-
tions with the same mean assume that the populat ion variances are equal. How-
ever, this test is of interest in its own right. We will repeatedly have to test whether 
two samples have the same variance. In genetics wc may need to know whether 
an offspring generation is more variable for a character than the parent genera-
tion. In systematics we might like to find out whether two local populat ions are 
equally variable. In experimental biology we may wish to demonstra te under 
which of two experimental setups the readings will be more variable. In general, 
the less variable setup would be preferred; if both setups were equally variable, 
the experimenter would pursue the one that was simpler or less costly to 
undertake. 

7.4 Heterogeneity among sample means 

We shall now modify the data of Table 7.1, discussed in Section 7.1. Suppose 
the seven groups of houseflies did not represent random samples from the same 
population but resulted from the following experiment. Each sample was reared 
in a separate culture jar , and the medium in each of the culture jars was prepared 
in a different way. Some had more water added, others more sugar, yet others 
more solid matter. Let us assume that sample 7 represents the s tandard medium 
against which we propose to compare the other samples. The various changes 
in the medium affect the sizes of the flies that emerge from it; this in turn affects 
the wing lengths we have been measuring. 

We shall assume the following effects resulting from treatment of the 
medium: 

Medium 1 decreases average wing length of a sample by 5 units 
2 -decreases average wing length of a sample by 2 units 
3—does not change average wing length of a sample 
4 increases average wing length of a sample by 1 unit 
5 -increases average wing length of a sample by 1 unit 
6 increases average wing length of a sample by 5 units 
7—(control) does not change average wing length of a sample 

The effect of treatment / is usually symbolized as a,. (Please note that this use 
of α is not related to its use as a symbol for the probability of a type I error.) 
Thus a, assumes the following values for the above treatment effects. 

α, - - 5 α 4 =• I 

α . = - 2 « 5 = 1 

«Λ = 0 α6 = 5 

/ν — η 
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N o t e that the α,-'s have been defined so that Σ" a,· = 0; that is, the effects cancel 
out. This is a convenient proper ty that is generally postulated, but it is unneces-
sary for our a rgument . W e can now modify Table 7.1 by adding the appropr ia t e 
values of a t to each sample. In sample 1 the value of a 1 is —5; therefore, the 
first wing length, which was 41 (see Table 7.1), now becomes 36; the second 
wing length, formerly 44, becomes 39; and so on. F o r the second sample a 2 > s 

— 2, changing the first wing length f rom 48 to 46. Where a, is 0, the wing 
lengths do not change; where a{ is positive, they are increased by the magn i tude 
indicated. The changed values can be inspected in Table 7.3, which is a r ranged 
identically to Table 7.1. 

We now repeat our previous computa t ions . W e first calculate the sum of 
squares of the first sample to find it to be 29.2. If you compare this value 
with the sum of squares of the first sample in Table 7.1, you find the two 
values to be identical. Similarly, all o ther values of Σ" y2, the sum of squares of 
each group, are identical to their previous values. Why is this so? The effect of 
adding a, to each g roup is simply that of an addit ive code, since a, is cons tant 
for any one group. F r o m Appendix A 1.2 we can see that addit ive codes do not 
affect sums of squares or variances. Therefore, not only is each separa te sum of 
squares the same as before, but the average variance within groups is still 16.029. 
N o w let us compute the variance of the means. It is 100.617/6 = 16.770, which 
is a value much higher than the variance of means found before, 4.236. When we 
multiply by η = 5 to get an est imate of σ 2 , we obtain the variance of groups, 
which now is 83.848 and is no longer even close to an estimate of σ2. We repeat 
the I·' test with the new variances and find that Fs = 83.848/16.029 = 5.23, which 
is much greater than the closest critical value of F 0 0 S | h 24| = 2.51. In fact, the 
observed F s is greater than F„ 0 l | ( 1 , 4 ] = 3.67. Clearly, the upper variance, repre-
senting the variance a m o n g groups, has become significantly larger. The two 
variances are most unlikely to represent the same parametr ic variance. 

What has happened? We can easily explain it by means of Tab le 7.4, which 
represents Table 7.3 symbolically in the manner that Table 7.2 represented 
Table 7.1. We note that each g roup has a constant a, added and that this 
constant changes the sums of the g roups by na, and the means of these g roups 
by <Xj. In Section 7.1 we computed the variance within groups as 

When wc try to repeat this, our formula becomes more complicated, because to 
each Y:j and each V, there has now been added a,·. We therefore write 

J u j ~ π 

Σ Σ ( V >'.,· 
,2 

a(n - I ) ι , - ι Σ Σ l ' y u · Α) ι>, · ·Λ)| 
2 

Then we open the parentheses inside the square brackets , so that the second a, 
changes sign and the α,-'s cancel out , leaving the expression exactly as before. 
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TABLE 7 . 4 

Data of Table 7.3 arranged in the manner of Table 7.2. 

a Groups 
I 2 3 i a 

ΙΛ 1 r , , + «1 Yll + «2 Yil + «3 ' • Yn + a, · · Y.I + «« t 2 y22 + *2 + «3 • Yi 2 + a. • Y.2 + 
3 + Yli + «2 y33 + «3 · • ^3 + «, · • • Yal + «„ 

J Yxj y^ + >:«; + «3 • • · Yij+ "A · • • Y.J + 

η + a, + *2 Yin + «3 • • ' Yin + Oti •• Ym + »„ 

Sums 
η 

+ HOC, 
η 

Σ Y2 + " a 2 
π 

Σ y 3 + »a3 • •• tYi + n*i • 

η 
• Σκ + ny 

Means ΫΙ + a, F , +<χ2 y 3 + * 3 • fi + ti • · · η + »„ 

subs tant ia t ing our earlier observat ion that the variance within groups does nol 
change despite the t rea tment effects. 

The variance of means was previously calculated by the formula 

ι ; - a 

a — 1 ;=1 

However , f rom Table 7.4 we see that the new grand mean equals 

I i = a ι ι = <i _ ι • = <. — 
- χ (>;• + « , • ) = Σ ϋ< + - Σ a ' = * 

a i^i a i = ι a , ι 

When we subst i tute the new values for the g roup means and the grand mean 
the formula appears as 

-—τ'ς π»;·+ «,)-(y+<*)]2 
a - ι ζ - ι 

which in turn yields 

-- Σ - V) + («,• - a ) l 2 

a - I , = ι 

Squar ing (he expression in the square brackets, vvc obtain the terms 

1 , ς ' < > ; > ) ' + 1 , Σ ^ - ·<)·' + - 2 , Σ - m « ) 
a - 1 ,-v , a - 1 , ι a - 1 , = ι 

The first of these terms we immediately recognize as the previous variance el 
the means, Sy. The second is a new quant i ty , but is familiar by general appeal 
ancc; it clearly is a variance or at least a quant i ty akin to a variance. The tliiM 
expression is a new type; it is a so-called covariance. which we have not wi 
encountered. We shall not be concerned with it at this stage except to say th.n 
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in cases such as the present one, where the magni tude of the t reatment effects 
a,· is assumed to be independent of the X to which they are added, the expected 
value of this quant i ty is zero; hence it does not contr ibute to the new variance 
of means. 

The independence of the treatments effects and the sample means is an 
important concept that we must unders tand clearly. If we had not applied dif-
ferent treatments to the medium jars, but simply treated all jars as controls, 
we would still have obtained differences among the wing length means. Those 
are the differences found in Table 7.1 with r andom sampling from the same 
population. By chance, some of these means are greater, some are smaller. In 
our planning of the experiment we had no way of predicting which sample 
means would be small and which would be large. Therefore, in planning our 
treatments, we had no way of matching up a large treatment effect, such as that 
of medium 6, with the mean that by chance would be the greatest, as that for 
sample 2. Also, the smallest sample mean (sample 4) is not associated with the 
smallest treatment effect. Only if the magni tude of the treatment effects were 
deliberately correlated with the sample means (this would be difficult to do in 
the experiment designed here) would the third term in the expression, the co-
variance, have an expected value other than zero. 

The second term in the expression for the new variance of means is clearly 
added as a result of the treatment effects. It is analogous to a variance, but it 
cannot be called a variance, since it is not based on a r andom variable, but 
rather on deliberately chosen treatments largely under our control. By changing 
the magni tude and nature of the treatments, wc can more or less alter the 
variancelike quanti ty at will. We shall therefore call it the added component due 
to treatment effects. Since the α,-'s are arranged so that a = 0, we can rewrite 
the middle term as 

In analysis of variance we multiply the variance of the means by η in order 
to estimate the parametr ic variance of the items. As you know, we call the 
quantity so obtained the variance of groups. When wc do this for the ease in 
which treatment effects are present, we obtain 

Thus we see that the estimate of the parametr ic variance of the populat ion is 
increased by the quanti ty 

which is η times the added component due to treatment effects. We found the 
variance ratio f\. to be significantly greater than could be reconciled with the 
null hypothesis. It is now obvious why this is so. We were testing the variance 

a 
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rat io expecting to find F approximate ly equal to σ2/σ2 = 1. In fact, however, 
we have 

η " 

a — ι 

It is clear f rom this formula (deliberately displayed in this lopsided manner ) 
that the F test is sensitive to the presence of the added componen t due to treat-
ment effects. 

At this point, you have an addi t ional insight into the analysis of variance. 
It permits us to test whether there are added t rea tment effects—that is, whether 
a g r o u p of means can simply be considered r a n d o m samples f rom the same 
popula t ion , or whether t rea tments that have affected each g r o u p separately 
have resulted in shift ing these means so much that they can no longer be 
considered samples from the same popula t ion . If the latter is so, an added com-
ponent due to t rea tment effects will be present and may be detected by an F test 
in the significance test of the analysis of variance. In such a study, we are 
generally not interested in the magni tude of 

but we are interested in the magni tude of the separate values of In our 
example these arc the effects of different formula t ions of the medium on wing 
length. If, instead of housefly wing length, we were measur ing blood pressure 
in samples of rats and the different groups had been subjected to different drugs 
or different doses of the same drug, the quant i t ies a, would represent the effects 
of drugs on the blood pressure, which is clearly the issue of interest to the 
investigator. We may also be interested in s tudying differences of the type 
a , — x 2 , leading us to the quest ion of the significance of the differences between 
the effects of any two types of medium or any two drugs. But we are a little 
ahead of our story. 

When analysis of variance involves t rea tment effects of the type just studied, 
we call it a Model 1 tmovu. Later in this chapter (Section 7.6), Model I will 
be defined precisely. There is ano ther model, called a Model 11 anova, in which 
the added effects for cach g r o u p arc not fixed t rea tments but are r a n d o m effects. 
By this we mean that we have not deliberately planned or fixed the t rea tment 
for any one group, but that the actual effects on each g roup are r a n d o m and 
only partly under our control . Suppose that the seven samples of houscflies in 
Table 7.3 represented the offspring of seven randomly selected females f rom a 
popula t ion reared on a uniform medium. There would be gcnctic differences 
a m o n g these females, and their seven b roods would reflect this. The exact na ture 
of these differences is unclear and unpredictable. Before actually measur ing 
them, we have no way of knowing whether b rood 1 will have longer wings than 
brood 2, nor have we any way of control l ing this experiment so that b rood 1 
will in fact grow longer wings. So far as we can ascertain, the genctic factors 
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for wing length are dis t r ibuted in an u n k n o w n m a n n e r in the popu la t ion of 
houseflies (we might hope that they are normal ly distributed), and our sample 
of seven is a r a n d o m sample of these factors. 

In ano ther example for a Model II anova, suppose that instead of mak ing 
up our seven cultures f rom a single batch of medium, we have prepared seven 
batches separately, one right after the other , and are now analyzing the var ia t ion 
a m o n g the batches. We would not be interested in the exact differences f rom 
batch to batch. Even if these were measured, we would not be in a posit ion to 
interpret them. No t having deliberately varied batch 3, we have no idea why, 
for example, it should p roducc longer wings than batch 2. W e would, however, 
be interested in the magni tude of the variance of the added effects. Thus, if we 
used seven ja r s of medium derived f rom one batch, we could expect the variance 
of the ja r means to be σ 2 /5 , since there were 5 flies per jar . But when based on 
different batches of medium, the variance could be expected to be greater, be-
cause all the imponderab le accidents of formula t ion and envi ronmenta l dif-
ferences dur ing medium prepara t ion that make one batch of medium different 
f rom another would come into play. Interest would focus on the added variance 
component arising f rom differences a m o n g batches. Similarly, in the other 
example we would be interested in the added variance componen t arising f rom 
genetic differences a m o n g the females. 

We shall now take a rapid look at the algebraic formula t ion of (he anova 
in the case of Model II. In Table 7.3 the second row at the head of the da ta 
columns shows not only a, but also Ah which is the symbol we shall use for 
a r andom group effect. We use a capital letter to indicate that the effect is a 
variable. The algebra of calculating the two estimates of the popula t ion vari-
ance is the same as in Model I, except that in place of a, we imagine /I, sub-
stituted in Table 7.4. The est imate of the variance a m o n g means now represents 
the quant i ty 

- 1 . Σ Ο ' , - > >' + ' . ' Σ <··'. ·"·' · 2 , Σ · - π κ - η 
a I ,· , a I ,·-1 α 1 ,· - , 

The first term is the variance of means ,Sy, as before, and the last term is the 
covariance between the g roup means and (he r andom effects Ah the expected 
value of which is zero (as before), because the r andom effects are independent 
of (he magni tude of the means. The middle term is a true variance, since .4, 
is a random variable. We symbolize it by .ŝ  and call it the added variance 
component amoiui (/roups. It would represent the added variance componen t 
among females or a m o n g medium batches, depending on which of the designs 
discussed above we were thinking of. The existence of this added variance com-
ponent is demons t ra ted by the /·' test. If the g roups are r andom samples, we 
may expect I- to approx imate σ1/σ1 - I; but with an added variance compo-
nent, the expected ratio, again displayed lopsidcdly, is 

η2 + ησ\ 
X a 2 " 
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N o t e that σΑ, the parametr ic value of sA, is multiplied by η, since we have to 
multiply the variance of means by η to obtain an independent estimate of the 
variance of the populat ion. In a Model II anova we are interested not in the 
magni tude of any At or in differences such as Al — A2, but in the magni tude 
of σΑ and its relative magni tude with respect to σ2 , which is generally expressed 
as the percentage 100s^/(s2 + sA). Since the variance among groups estimates 
σ2 + ησ\, we can calculate s2

A as 

- (variance among groups — variance within groups) 
η 

J-[(s2+ ns2
A)-s2]=i-(ns2

A) = s2
A 

For the present example, s2
A = | (83.848 - 16.029) = 13.56. This added vari-

ance component among groups is 

100 x 13.56 = J 3 5 6 _ % 

16.029 + 13.56 29.589 

of the sum of the variances among and within groups. Model II will be formally 
discussed at the end of this chapter (Section 7.7); the methods of estimating 
variance components are treated in detail in the next chapter. 

7.5 Partitioning the total sum of squares and degrees of freedom 

So far we have ignored one other variance that can be computed from the 
da ta in Table 7.1. If we remove the classification into groups, we can consider 
the housefly da ta to be a single sample of an = 35 wing lengths and calculate 
the mean and variance of these items in the conventional manner. The various 
quantit ies necessary for this computa t ion are shown in the last column at the 
right in Tables 7.1 and 7.3, headed "Computa t ion of total sum of squares." We 
obtain a mean of F = 45.34 for the sample in Table 7.1, which is, of course, 
the same as the quanti ty Ϋ computed previously from the seven group means. 
The sum of squares of the 35 items is 575.886, which gives a variance of 16.938 
when divided by 34 degrees of freedom. Repeating these computa t ions for the 
da ta in Table 7.3, we obtain ? = 45.34 (the same as in Table 7.1 because 
Σ" a, = 0) and .v2 = 27.997, which is considerably greater than the correspond-
ing variance from Table 7.1. The total variance computed from all an items is 
another estimate of σ2 . It is a good estimate in the first case, but in the second 
sample (Table 7.3), where added components due to treatment effects or added 
variance components are present, it is a poor estimate of the populat ion variance. 

However, the purpose of calculating the total variance in an anova is not 
for using it as yet another estimate of σ2 , but for introducing an impor tant 
mathematical relationship between it and the other variances. This is best seen 
when we arrange our results in a conventional analysis of variance table, as 
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TABLE 7 . 5 

Anova table for data in Table 7.1. 

(i) (41 
Sum Mean 

U) (2) of squares square 
Source of variation dj SS MS 

Y - Y Among groups 6 127.086 21.181 
Y - Y Within groups 28 448.800 16.029 
Y - Y Total 34 575.886 16.938 

shown in Table 7.5. Such a table is divided into four columns. The first iden-
tifies the source of variation as among groups, within groups, and total (groups 
amalgamated to form a single sample). The column headed df gives the degrees 
of freedom by which the sums of squares pertinent to each source of variation 
must be divided in order to yield the corresponding variance. The degrees of 
freedom for variation among groups is a — 1, that for variation within groups 
is a (η — 1), and that for the total variation is an — 1. The next two columns 
show sums of squares and variances, respectively. Notice that the sums of 
squares entered in the anova table are the sum of squares among groups, the 
sum of squares within groups, and the sum of squares of the total sample of 
an items. You will note that variances arc not referred to by that term in anova, 
but are generally called mean squares, since, in a Model I anova, they do not 
estimate a populat ion variance. These quantities arc not true mean squares, 
because the sums of squares are divided by the degrees of freedom rather than 
sample size. The sum of squares and mean square arc frequently abbreviated 
SS and MS, respectively. 

The sums of squares and mean squares in Table 7.5 are the same as those 
obtained previously, except for minute rounding errors. Note, however, an 
important property of the sums of squares. They have been obtained indepen-
dently of each other, but when we add the SS among groups to the SS within 
groups we obtain the total SS. The sums of squares are additive! Another way of 
saying this is that wc can decompose the total sum of squares into a port ion 
due to variation among groups and another port ion due to variation within 
groups. Observe that the degrees of freedom are also additive and that the total 
of 34 df can be decomposed into 6 df among groups and 28 df within groups. 
Thus, if we know any two of the sums of squares (and their appropr ia te degrees 
of freedom), we can compute the third and complete our analysis of variance. 
Note that the mean squares arc not additive. This is obvious, since generally 
(a + b)f(c + d) Φ a/c + b/d. 

Wc shall use the computat ional formula for sum of squares (Expression 
(3.8)) to demonstra te why these sums of squares are additive. Although it is an 
algebraic derivation, it is placed here rather than in the Appendix because 
these formulas will also lead us to some common computat ional formulas for 
analysis of variance. Depending on computat ional equipment, the formulas wc 
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have used so far to obtain the sums of squares may not be the most rapid pro-
cedure. 

The sum of squares of means in simplified notat ion is 

SS„ 
Σ Y 

=ς (- Σ y y - -
\n / a 

Σ Ι -„tr 
1 a l η \ ί 1 / a η = Ση - i ΣΣ̂  an* 

N o t e that the deviation of means from the grand mean is first rearranged to 
fit the computa t ional formula (Expression (3.8)), and then each mean is written 
in terms of its consti tuent variates. Collection of denominators outside the sum-
mat ion signs yields the final desired form. To obtain the sum of squares of 
groups, we multiply SSmcans by n, as before. This yields 

1 " / " V 1 / ο " 
SSgroups = η X SSm e a n s = - Σ ί Σ Π - - ( Σ Σ r 

Next we evaluate the sum of squares within groups: 

ssw h W i n = l X ( Y - η 2 = Σ 

α π t u / π 

= ς ς > - 2 - „ Σ ( Σ ^ 

The total sum of squares represents 

ssuniύ = Σ Σ ( γ - η 2 

u η 1 / a η 

= ΣΣ γ 2 - - [ Σ Σ γ 
an \ 

We now copy the formulas for these sums of squares, slightly rearranged as 
follows: 

SS. 

ss,. 

Σ Σ Y 
1 / " " 

- Σ Σ y an \ 

^ Σ ( Σ y ) + Σ Σ y 2 

a n 1 ( a n 
η 1 ΣΣ an ΣΣγ 
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Adding the expression for SSgroaps to that for SSwi th in , we obta in a quant i ty that 
is identical to the one we have jus t developed as SStotal. This demonstra t ion 
explains why the sums of squares are additive. 

We shall not go through any derivation, but simply state that the degrees 
of freedom pertaining to the sums of squares are also additive. The total degrees 
of freedom are split up into the degrees of freedom corresponding to variation 
among groups and those of variation of items within groups. 

Before we continue, let us review the meaning of the three mean squares 
in the anova. The total MS is a statistic of dispersion of the 35 (an) items a round 
their mean, the grand mean 45.34. It describes the variance in the entire sample 
due to all the sundry causes and estimates σ2 when there are no added treatment 
effects or variance components among groups. The within-group MS, also 
known as the individual or intragroup or error mean square, gives the average 
dispersion of the 5 (η) items in each g roup a round the g roup means. If the a 
groups are r andom samples f rom a common homogeneous populat ion, the 
within-group MS should estimate a1. The MS among groups is based on the 
variance of group means, which describes the dispersion of the 7 (a) g roup 
means a round the grand mean. If the groups are r andom samples from a homo-
geneous populat ion, the expected variance of their mean will be σ2/η. Therefore, 
in order to have all three variances of the same order of magnitude, we multiply 
the variance of means by η to obtain the variance among groups. If there are 
no added treatment effects or variance components , the MS a m o n g groups is 
an estimate of σ2 . Otherwise, it is an estimate of 

η a 
1 \—' ^ Ί J σ -1 > o r or σ + ησΑ 

a — ι 

depending on whether the anova at hand is Model I or II. 
The additivity relations we have just learned are independent of the presence 

of added treatment or r andom effects. We could show this algebraically, but 
it is simpler to inspect Table 7.6, which summarizes the anova of Table 7.3 in 
which a, or /t, is added to each sample. The additivity relation still holds, 
although the values for group SS and the total SS are different from those of 
Table 7.5. 

TABLE 7.6 
Anova table for data in Table 7.3. 

W (4) 
Sum Μ can 

U) C) af squares square 
Source of variation df SS MS 

Y - y Among groups 6 503.086 83.848 
Y - y Within groups 28 448.800 16.029 
y - y Total 34 951.886 27.997 
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Another way of looking at the part i t ioning of the variation is to study the 
deviation f rom means in a particular case. Referring to Table 7.1, we can look 
at the wing length of the first individual in the seventh group, which happens 
to be 41. Its deviation from its g roup mean is 

y7 1 _ y7 = 41 - 45.4 = - 4 . 4 

The deviation of the g roup mean from the grand mean is 

F7 - F = 45.4 - 45.34 = 0.06 

and the deviation of the individual wing length from the grand mean is 

γΊι - y = 4 i — 45.34 = - 4 . 3 4 

N o t e that these deviations are additive. The deviation of the item from the group 
mean and that of the g roup mean from the grand mean add to the total devia-
tion of the item from the g r a n d j n e a n . These deviations are stated algebraically 
as ( 7 — F) + ( F - F) = (Y - F). Squaring and summing these deviations for an 
i tems will result in 

a n _ a _ _ an 

Before squaring, the deviations were in the relationship a + b = c. After squar-
ing, we would expect them to take the form a2 4- b2 + lab = c2. W h a t happened 
to the cross-product term corresponding to 2ab'l This is 

απ _ _ ^ a — = " _ 
2 Σ ( y - F h y - f ) = 2 Ϊ [ ( ? - Ϋ ) Σ ι υ - ?>] 

a covariance-type term that is always zero, sincc ( Y — F) = 0 for each of the 
a groups (proof in Appendix A 1.1). 

We identify the deviations represented by each level of variation at the left 
margins of the tables giving the analysis of variance results (Tables 7.5 and 7.6). 
Note that the deviations add up correctly: the deviation among groups plus 
the deviation within groups equals the total deviation of items in the analysis 
of variance, ( F - F) + ( Y - F) = ( Y - F). 

7.6 Model I anova 

An important point to remember is that the basic setup of data, as well as the 
actual computa t ion and significance test, in most cases is the same for both 
models. The purposes of analysis of variance differ for the two models. So do 
some of the supplementary tests and computa t ions following the initial signifi-
cance test. 

Let us now fry to resolve the variation found in an analysis of variance 
case. This will not only lead us to a more formal interpretation of anova but 
will also give us a deeper unders tanding of the nature of variation itself. For 
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purposes of discussion, we re turn to the housefly wing lengths of Table 7.3. We 
ask the question, W h a t makes any given housefly wing length assume the value 
it does? The third wing length of the first sample of flies is recorded as 43 units. 
H o w can we explain such a reading? 

If we knew noth ing else abou t this individual housefly, our best guess of 
its wing length would be the grand mean of the populat ion, which we know 
to be μ = 45.5. However , we have addi t ional informat ion about this fly. It is a 
member of g roup 1, which has undergone a t rea tment shifting the mean of the 
group downward by 5 units. Therefore, a . 1 = —5, and we would expect our 
individual V13 (the third individual of g r o u p 1) to measure 45.5 - 5 = 40.5 units. 
In fact, however, it is 43 units, which is 2.5 units above this latest expectation. 
To what can we ascribe this deviation? It is individual variat ion of the flies 
within a g roup because of the variance of individuals in the popula t ion 
(σ2 = 15.21). All the genetic and environmental effects that m a k e one housefly 
different f rom another housefly come into play to produce this variance. 

By means of carefully designed experiments, we might learn something 
about the causat ion of this variance and a t t r ibute it to certain specific genetic 
or environmental factors. We might also be able to eliminate some of the vari-
ance. For instance, by using only full sibs (brothers and sisters) in any one 
culture jar , we would decrease the genetic variat ion in individuals, and un-
doubtedly the variance within groups would be smaller. However, it is hopeless 
to try to eliminate all variance completely. Even if we could remove all genetic 
variance, there would still be environmental variance. And even in the most 
improbable case in which we could remove both types of variance, measurement 
error would remain, so that we would never obtain exactly the same reading 
even on the same individual fly. The within-groups MS always remains as a 
residual, greater or smaller f rom experiment to exper iment—par t of the na ture 
of things. This is why the within-groups variance is also called the error variance 
or error mean square. It is not an error in the sense of our making a mistake, 
but in the sense of a measure of the variation you have to contend with when 
trying to est imate significant differences among the groups. The error variance 
is composed of individual deviations for each individual, symbolized by the 
random componen t of the j t h individual variatc in the /th group. In our case, 
e 1 3 = 2.5, since the actual observed value is 2.5 units above its expectat ion 
of 40.5. 

We shall now state this relat ionship more formally. In a Model I analysis 
of variance we assume that the differences a m o n g group means, if any, are due 
to the fixed treatment effects determined by the experimenter. The purpose of 
the analysis of variance is to estimate the true differences a m o n g the g roup 
means. Any single variate can be decomposed as follows: 

Yij = μ + α,· + €y (7.2) 

where i — 1 , . . . , a, j = 1 , . . . , « ; and e(J represents an independent , normally 
distributed variable with mean €,j = 0 and variance σ2 = a1. Therefore, a given 
reading is composed of the grand mean μ of the populat ion, a fixed deviation 
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of the mean of group i f rom the grand mean μ, and a random deviation eis 

of the /th individual of group i f rom its expectation, which is (μ + α,). Remember 
that both a,· and can be positive as well as negative. The expected value (mean) 
of the e^-'s is zero, and their variance is the parametric variance of the popula-
tion, σ2 . For all the assumptions of the analysis of variance to hold, the dis-
tribution of £ u must be normal. 

In a Model I anova we test for differences of the type <xl — i 2 among the 
group means by testing for the presence of an added component due to treat-
ments. If we find that such a component is present, we reject the null hypothesis 
that the groups come f rom the same populat ion and accept the alternative 
hypothesis that at least some of the g roup means are different from each other, 
which indicates that at least some of the a,"s are unequal in magnitude. Next, 
we generally wish to test which a,'s are different from each other. This is done 
by significance tests, with alternative hypotheses such as Hl:ctl > α2

 or H\-
+ a 2) > a 3 . In words, these test whether the mean of group 1 is greater 

than the mean of g roup 2, or whether the mean of group 3 is smaller than the 
average of the means of groups I and 2. 

Some examples of Model I analyses of variance in various biological 
disciplines follow. An experiment in which we try the effects of different drugs 
on batches of animals results in a Model I anova. We arc interested in the results 
of the t reatments and the differences between them. The t reatments arc fixed 
and determined by the experimenter. This is true also when we test the effects 
of different doses of a given f a c t o r - a chemical or the amount of light to which 
a plant has been exposed or temperatures at which culture bottles of insects have 
been reared. The treatment does not have to be entirely understood and manip-
ulated by the experimenter. So long as it is fixed and rcpcatable. Model I will 
apply. 

If wc wanted to compare the birth weights of the Chinese children in the 
hospital in Singapore with weights of Chinese children born in a hospital in 
China, our analysis would also be a Model I anova. The treatment effects then 
would be "China versus Singapore," which sums up a whole series of different 
factors, genetic and environmental —some known to us but most of them not 
understood. However, this is a definite treatment wc can describe and also 
repeat: we can, if we wish, again sample birth weights of infants in Singapore 
as well as in China. 

Another example of Model 1 anova would be a study of body weights for 
animals of several age groups. The treatments would be the ages, which are 
fixed. If we find that there arc significant differences in weight among the ages, 
wc might proceed with the question of whether there is a difference from age 2 to 
age 3 or only from age I to age 2. 

To a very large extent. Model I anovas are the result of an experiment and 
of deliberate manipulat ion of factors by the experimenter. However, the study 
of differences such as the comparison of birth weights from two countries, while 
not an experiment proper, also falls into this category. 
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7.7 Model II anova 

The s tructure of variat ion in a Model II anova is quite similar to tha t in 
Model I: 

YtJ = μ + Al + € υ (7.3) 

where i = 1 , . . . , a; j = 1 , . . . , n; eu represents an independent , normally dis-
tributed variable with mean ei;- = 0 and variance σ 2 = σ2 ; and A-t j e p r e s e n t s 
a normally distr ibuted variable, independent of all e's, with mean At = 0 and 
variance σ\. The main distinction is that in place of fixed-treatment effects a,·, 
we now consider r a n d o m effects At that differ f rom group to group. Since the 
effects are r andom, it is uninteresting to est imate the magni tude of these r andom 
effects on a group, or the differences f rom group to group. But we can estimate 
their variance, the added variance componen t among groups σ \ . We test for its 
presence and estimate its magni tude s^, as well as its percentage cont r ibut ion to 
the variation in a Model II analysis of variance. 

Some examples will illustrate the applicat ions of Model II anova. Suppose 
we wish to determine the D N A content of rat liver cells. We take five rats and 
make three prepara t ions f rom each of the five livers obtained. The assay read-
ings will be for a — 5 groups with η = 3 readings per group. The five rats pre-
sumably are sampled at r andom f rom the colony available to the experimenter. 
They must be different in various ways, genetically and environmentally, but we 
have no definite informat ion about the nature of the differences. Thus, if wc learn 
that rat 2 has slightly more D N A in its liver cells than rat 3, we can do little 
with this informat ion, because we are unlikely to have any basis for following 
up this problem. We will, however, be interested in estimating the variance of 
the three replicates within any one liver and the variance a m o n g the five rats; 
that is, does variance σ2

Λ exist among rats in addit ion to the variance σ2 cxpcctcd 
on the basis of the three replicates? The variance among the three prepara t ions 
presumably arises only from differences in technique and possibly f rom differ-
ences in D N A content in different parts of the liver (unlikely in a homogenate). 
Added variance among rats, if it existed, might be due to differences in ploidy 
or related phenomena . The relative amoun t s of variation a m o n g rats and 
"within" rats ( = a m o n g preparat ions) would guide us in designing further 
studies of this sort. If there was little variance among tlic prepara t ions and 
relatively more variat ion among the rats, wc would need fewer preparat ions and 
more rats. O n the other hand, if the variance among rats was proport ionately 
smaller, we would use fewer rats and more prepara t ions per rat. 

In a study of the amount of variation in skin pigment in human populat ions, 
we might wish to study different families within a homogeneous ethnic or racial 
group and brothers and sisters within cach family. The variance within families 
would be the error mean square, and we would test for an added variance 
component among families. Wc would expect an added variance component 
σ2

Α because there arc genctic differences among families that determine amount 
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of skin p igmenta t ion . W e would be especially interested in the relative p r o p o r -
t ions of the two variances σ2 and σ\, because they would provide us with 
i m p o r t a n t genetic in format ion . F r o m our knowledge of genetic theory, we 
would expect the var iance a m o n g families to be greater than the var iance a m o n g 
bro thers and sisters within a family. 

The above examples i l lustrate the two types of problems involving Mode l 
II analysis of var iance tha t are most likely to arise in biological work . O n e is 
concerned with the general problem of the design of an exper iment and the 
magn i tude of the exper imental error at different levels of replication, such as 
er ror a m o n g replicates within rat livers and a m o n g rats, e r ror a m o n g batches, 
experiments , and so for th . The other relates to variat ion a m o n g and within 
families, a m o n g and within females, a m o n g and within popula t ions , and so 
for th . Such problems are concerned with the general problem of the relation 
between genetic and pheno typ ic variat ion. 

Exercises 

7.1 In a study comparing the chemical composition of the urine of chimpanzees 
and gorillas (Gartler, Firschein, and Dobzhansky, 1956), the following results 
were obtained. For 37 chimpanzees the variance for the amount of glutamic acid 
in milligrams per milligram of creatinine was 0.01069. A similar study based on 
six gorillas yielded a variance of 0.12442. Is there a significant difference be-
tween the variability in chimpanzees and that in gorillas? ANS. Fs = 11.639, 

025[5.36] ~ 2.90. 
7.2 The following data are from an experiment by Sewall Wright. He crossed Polish 

and Flemish giant rabbits and obtained 27 F, rabbits. These were inbred and 
112 F2 rabbits were obtained. We have extracted the following data on femur 
length of these rabbits. 

η y s 

F, 27 83.39 1.65 
Fi 112 80.5 3.81 

Is there a significantly greater amount of variability in femur lengths among the 
F2 than among the Fx rabbits? What well-known genetic phenomenon is illus-
trated by these data? 

7.3 For the following data obtained by a physiologist, estimate a 2 (the variance 
within groups), a, (the fixed treatment effects), the variance among the groups, 
and the added component due to treatment Σ α2/(a — 1), and test the hypothesis 
that the last quantity is zero. 

A 

Treatment 

Β C D 

V 6.12 4.34 5.12 7.28 
.v2 2.85 6.70 4.06 2.03 
η 10 10 10 10 
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ANS. s2 = 3.91, a, = 0.405, &2 = 1.375, ά3 = 0.595, ά4 = 1.565, MS among 
groups = 124.517, and F, = 31.846 (which is significant beyond the 0.01 level). 

7.4 For the data in Table 7.3, make tables to represent partitioning of the value of 
each variate into its three components, Ϋ, (Ϋ — Ϋ),(Υυ — Yj). The first table would 
then consist of 35 values, all equal to the grand mean. In the second table all 
entries in a given column would be equal to the difference between the mean of 
that column and the grand mean. And the last table would consist of the devia-
tions of the individual variates from their column means. These tables represent 
estimates of the individual components of Expression (7.3). Compute the mean 
and sum of squares for each table. 

7.5 A geneticist recorded the following measurements taken on two-week-old mice 
of a particular strain. Is there evidence that the variance among mice in different 
litters is larger than one would expect on the basis of the variability found within 
each litter? 

Litters 

1 2 3 4 5 6 7 

19.49 22.94 23.06 15.90 16.72 20.00 21.52 
20.62 22.15 20.05 21.48 19.22 19.79 20.37 
19.51 19.16 21.47 22.48 26.62 21.15 21.93 
18.09 20.98 14.90 18.79 20.74 14.88 20.14 
22.75 23.13 19.72 19.70 21.82 19.79 22.28 

ANS. .r = 5.987, MSamong = 4.416, s2
A = 0, and Fs = 0.7375, which is clearly not 

significant at the 5% level. 
7.6 Show that it is possible to represent the value of an individual variate as follows: 

y = (>') + (>',— V') + (Vj; — Y). What docs each of the terms in parentheses 
estimate in a Model 1 anova and in a Model II anova? 



CHAPTER 

Single-Classification 
Analysis of Variance 

We are now ready to study actual eases of analysis of variance in a variety of 
applications and designs. The present chapter deals with the simplest kind of 
anova, single-classification analysis of variance. By this we mean an analysis in 
which the groups (samples) are classified by only a single criterion. Either inter-
pretat ions of the seven samples of housefly wing lengths (studied in the last 
chapter), different medium formulat ions (Model I), or progenies of different fe-
males (Model II) would represent a single criterion for classification. Other 
examples would be different temperatures at which groups of animals were 
raised or different soils in which samples of plants have been grown. 

We shall start in Section 8.1 by staling the basic computat ional formulas 
for analysis of variance, based on the topics covered in the previous chapter. 
Section 8.2 gives an example of the c o m m o n case with equal sample sizes. We 
shall illustrate this case by means of a Model I anova. Since the basic com-
putations for the analysis of var iance -are the same in either model, it is not 
necessary to repeat the illustration with a Model II anova. The latter model is 
featured in Section 8.3, which shows the minor computat ional complicat ions 
resulting from unequal sample sizes, since all groups in the anova need not 
necessarily have the same sample size. Some computa t ions unique to a Model 
II anova are also shown; these estimate variance components . Formulas be-
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come especially simple for the two-sample case, as explained in Section 8.4. 
In Model I of this case, the mathematically equivalent t test can be applied 
as well. 

When a Model I analysis of variance has been found to be significant, 
leading to the conclusion that the means are not f rom the same populat ion, 
we will usually wish to test the means in a variety of ways to discover which 
pairs of means are different f rom each other and whether the means can be 
divided into groups that are significantly different from each other. T o this end, 
Section 8.5 deals with so-called planned comparisons designed before the test 
is run; and Section 8.6, with unplanned mult iple-comparison tests tha t suggest 
themselves to the experimenter as a result of the analysis. 

8.1 Computational formulas 

We saw in Section 7.5 that the total sum of squares and degrees of freedom 
can be additively parti t ioned into those pertaining to variation among groups 
and those to variation within groups. For the analysis of variance proper, we 
need only the sum of squares among groups and the sum of squares within 
groups. But when the computa t ion is not carried out by computer , it is sim-
pler to calculate the total sum of squares and the sum of squares among groups, 
leaving the sum of squares within groups to be obtained by the subtraction 
SSiotai — SSgroups. However, it is a good idea to compute the individual vari-
ances so we can check for heterogeneity among them (sec Section 10.1). This will 
also permit an independent computa t ion of SSwilh in as a check. In Section 7.5 
we arrived at the following computat ional formulas for the total and among-
groups sums of squares: 

These formulas assume equal sample size η for each group and will be modified 
in Section 8.3 for unequal sample sizes. However, they suffice in their present 
form to illustrate some general points about computat ional procedures in 
analysis of variance. 

We note that the second, subtracted term is the same in both sums of 
squares. This term can be obtained by summing all the variates in the anova 
(this is the grand total), squaring the sum, and dividing the result by the total 
number of variates. It is comparable to the second term in the computat ional 
formula for the ordinary sum of squares (Expression (3.8)). This term is often 
called the correction term (abbreviated CT). 

The first term for the total sum of squares is simple. It is the sum of all 
squared variatcs in the anova table. Thus the total sum of squares, which 
describes the variation of a single unstructured sample of an items, is simply 
the familiar sum-of-squares formula of Expression (3.8). 
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The first term of the sum of squares a m o n g groups is obtained by squaring 
the sum of the items of each group, dividing each square by its sample size, 
and summing the quotients from this operat ion for each group. Since the 
sample size of each g roup is equal in the above formulas, we can first sum all 
the squares of the group sums and then divide their sum by the constant n. 

From the formula for the sum of squares among groups emerges an impor-
tant computat ional rule of analysis of variance: To find the sum of squares 
among any set of groups, square the sum of each group and divide by the sample 
size of the group·, sum the quotients of these operations and subtract from the sum 
a correction term. To find this correction term, sum all the items in the set, square 
the sum, and divide it by the number of items on which this sum is based. 

8.2 Equal η 

We shall illustrate a single-classification anova with equal sample sizes by a 
Model I example. The computa t ion up to and including the first test of signifi-
cance is identical for both models. Thus, the computa t ion of Box 8.1 could also 
serve for a Model II anova with equal sample sizes. 

The da ta are f rom an experiment in plant physiology. They are the lengths 
in coded units of pea sections grown in tissue culture with auxin present. The 
purpose of the experiment was to test the effects of the addit ion of various 
sugars on growth as measured by length. Four experimental groups, represent-
ing three different sugars and one mixture of sugars, were used, plus one control 
without sugar. Ten_observations (replicates) were made for each treatment. The 
term "trejitmenj_" already implies a_Mmlel I anova. It is obvious that the five 
groups do not represent r andom samples from all possible experimental condi-
tions but were deliberately designed to legt^the effects of certain sugars o n J h £ 
growth rate. We arc interested in the effect of the sugars on length, and our null 
hypothesis will be that there is no added component due to t reatment effects 
among the five groups; that is, t hcpopu la j i on means are all assumed to be equal. 

The computa t ion is illustrated in Box 8.1. After quantities 1 through 7 have 
been calculated, they are entered into an analysis-of-variance table, as shown 
in the box. General formulas for such a tabic arc shown first; these arc followed 
by a table filled in for the specific example. We note 4 degrees of freedom among 
groups, there being five treatments, and 45 df within groups, representing 5 
times (10 — 1) degrees of freedom. We find that the mean square among groups 
is considerably greater than the error mean square, giving rise to a suspicion 
that an added component due to treatment effects is present. If the MSg r o u p s is 
equal to or less than the M5w i l h i n , we do not bother going on with the analysis, 
for we would not have evidence for the presence of an added component . You 
may wonder how it could be possible for the MSg r o u p s to be less than the 
MSwuhin· You must remember that these two are independent estimates. If there 
is no added component due to treatment or variance component among groups, 
the estimate of the variance a m o n g groups is as likely to be less as it is to be 
greater than the variance within groups. 
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Expressions for the expected values of the mean squares are also shown 
in the first anova table of Box 8.1. They are the expressions you learned in the 
previous chapter for a Model I anova. 

BOX 8.1 
Single-classification anova with equal sample sizes. 

The effect of the addition of different sugars on length, in ocular units 
( x 0.114 = mm), of pea sections grown in tissue culture with auxin present: η = 10 
(replications per group). This is a Model I anova. 

Treatments (a = 5) 

Observations, 
i.e., replications Control 

2% 
Glucose 
added 

2% 
Fructose 

added 

17. Glucose + 
/% Fructose 

added 

2% 
Sucrose 
added 

1 75 57 58 58 62 
2 67 58 61 59 66 
3 70 60 56 58 65 
4 75 59 58 61 63 
5 65 62 57 57 64 
6 71 60 56 56 62 
7 67 60 61 58 65 
8 67 57 60 57 65 
9 76 59 57 57 62 

10 68 61 58 59 67 
It 
Σϊ Y 

701 
70.1 

593 
59.3 

582 
58.2 

580 
58X> 

641 
64.1 

Source: Data by W. Purves. 

Preliminary computations 

1. Grand total = £ £ Y = 701 + 593 + · · · + 641 = 3097 

2. Sum of the squared observations 
α η 

**ΣΣγ2 

*= 752 + 67* + · · · + 682 + 572 + · • · + 672 = 193,151 

3. Sum of the squared group totals divided by η 

= J Σ ( l y J - A(7012 + 5932 + · · · + 6412) 

= (1,929,055) = 192,905.50 

4. Grand total squared and divided by total sample size = correction term 

CP M i ΣΥY - - ^ - 191,828.18 
e»V y 5 x 1 0 5 0 
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BOX 8,1 
Continued 

S. sstotal = i i r 2 ~ C T 

= quantity 2 - quantity 4 - 193,151 - 191,828.18 - 1322.82 

« quantity 3 - quantity 4 « 192,905.50 - 191,828.18 = 1077.32 

7. SSwjthin =s SS(orai — SSgreap; 
« quanti ty 5 - quanti ty 6 « 1322.82 - 1077.32 = 245.50 

The anova table is constructed as follows. 

Expected 
Source of variation df SS MS F, MS 

f - Y Among groups a - 1 6 - i - ^ + 
(β - 1 ) MSwi thi„ a - 1 

7 
F - y Within groups a(n - 1) 7 — a 2 

a(n - 1) 
y - Y Total an - 1 5 

Substituting the computed values into the above table, we obtain the fol 
lowing: 

Anova table 

Source of variation df SS MS Fs 

Ϋ - - Y Among groups 
(among treatments) 4 1077.32 269.33 49.33** 

Y - - f Within groups 
(error, replicates) 45 245.50 5.46 

Y - - Ϋ Total 49 1322.82 

^0.05(4,4-51 = 2.58 ^ 0 . 0 1 ( 4 , 4 5 ] = 3.77 

* - 0.01 < Ρ 5 0.05. 
* * - P S 0.01. 

These conventions will be followed throughout the text and will no longer be explained in subsequent 
boxes and tables. 

Conclusions. There is a highly significant (P « 0.01) added component due to 
treatment effects in the mean square among groups (treatments). The different 
sugar treatments clearly have a significant effect on growth of the pea sections. 

See Sections 8.5 and 8.6 for the completion of a Model I analysis of variance: 
that is, the method for determining which means are significantly different from 
each other. 
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It may seem that we are carrying an unnecessary number of digits in the 
computa t ions in Box 8.1. This is often necessary to ensure that the error sum 
of squares, quanti ty 7, has sufficient accuracy. 

Since v2 is relatively large, the critical values of F have been computed by 
harmonic interpolat ion in Table V (see footnote to Table III for harmonic 
interpolation). The critical values have been given here only to present a com-
plete record of the analysis. Ordinarily, when confronted with this example, you 
would not bother working out these values of F. Compar ison of the observed 
variance ratio Fs = 49.33 with F 0 0 1 [ 4 4 0 ] = 3.83, the conservative critical value 
(the next tabled F with fewer degrees of freedom), would convince you that the 
null hypothesis should be rejected. The probability that the five groups differ as 
much as they do by chance is almost infinitesimally small. Clearly, the sugars 
produce an added treatment effect, apparently inhibiting growth and conse-
quently reducing the length of the pea sections. 

At this stage we are not in a position to say whether each treatment is 
different from every other treatment, or whether the sugars are different f rom the 
control but not different f rom each other. Such tests are necessary to complete 
a Model I analysis, but we defer their discussion until Sections 8.5 and 8.6. 

8.3 Unequal η 

This time we shall use a Model II analysis of variance for an example. Remember 
that up to and including the F test for significance, the computa t ions are exactly 
the same whether the anova is based on Model I or Model II. We shall point 
out the stage in the computa t ions at which there would be a divergence of 
operations depending on the model. 

The example is shown in Table 8.1. It concerns a series of morphological 
measurements of the width of the scutum (dorsal shield) of samples of tick 
larvae obtained from four different host individuals of the cottontail rabbit. 
These four hosts were obtained at random from one locality. We know nothing 
about their origins or their genetic constitution. They represent a random 
sample of the populat ion of host individuals from the given locality. We would 
not be in a position to interpret differences between larvae from different hosts, 
since we know nothing of the origins of the individual rabbits. Populat ion 
biologists arc nevertheless interested in such analyses because they provide an 
answer to the following question: Are (he variances of means of larval characters 
among hosts greater than expected on the basis of variances of the characters 
within hosts? We can calculate the average variance of width of larval scutum 
on a host. This will be our "error" term in the analysis of variance. We then 
test the observed mean square among groups and sec if it contains an added 
component of variance. What would such an added component of variance 
represent? The mean square within host individuals (that is, of larvae on any 
one host) represents genetic differences among larvae and differences in environ-
mental experiences of these larvae. Added variance among hosts demonstrates 
significant differentiation among the larvae possibly due to differences among 
t In, l-wiclt.' -ilTivf inn ill.· I·.™·!,. Il -ilcr» mau ke> rllwa Ι.· ΛΙΙΪ,· r,.|i Ίηι,,η.ι 
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TABLE 8 . 1 

Data and anova table for a single classification anova with unequal sample sizes. W i d t h of s cu tum 
(dorsal shield) of larvae of the tick Haemaphysalis leporispalustris in samples f r o m 4 co t ton ta i l 
rabbi t s . M e a s u r e m e n t s in microns . This is a M o d e l II anova . 

Hosts (a = 4) 

1 2 3 4 

380 350 354 376 
376 356 360 344 
360 358 362 342 
368 376 352 372 
372 338 366 374 
366 342 372 360 
374 366 362 
382 350 344 

344 342 
364 358 

351 
348 
348 

ΣΥ 2978 3544 4619 2168 

8 10 13 6 

Σ γ 2 1,108,940 1,257,272 1,642,121 784,536 

s2 54.21 142.04 79.56 233.07 

Source: Data by P. A. Thomas. 

Anova table 

Source of variation df SS MS Fs 

Y - y Among groups (among hosts) 3 1808.7 602.6 5.26** 
Y - y Within groups (error; among 

larvae on a host) 33 3778.0 114.5 

y - y Total 36 5586.7 

Fq.05[3.331 = 2.89 Fq.01[3.33] ~ 4.44 

Conclusion. T h e r e is a s ignif icant (Ρ < 0.01) a d d e d var iance c o m p o n e n t a m o n g 
hos ts for wid th of s c u t u m in larval ticks. 

the larvae, shou ld each hos t ca r ry a family of ticks, or a t least a p o p u l a t i o n 
w h o s e ind iv idua ls a re m o r e related to each o t h e r t h a n they a re to tick l a rvae 
on o the r hos t individuals . 

T h e e m p h a s i s in this e x a m p l e is on the m a g n i t u d e s of the var iances . In view 
of the r a n d o m choice of hos t s this is a clear case of a M o d e l II a n o v a . Because 
this is a M o d e l 11 a n o v a , the m e a n s for each hos t have been o m i t t e d f rom 
T a b l e 8.1. W e are not in teres ted in the indiv idual m e a n s or possible differences 
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among them. A possible reason for looking at the means would be at the begin-
ning of the analysis. One might wish to look at the group means to spot outliers, 
which might represent readings that for a variety of reasons could be in error. 

The computa t ion follows the outline furnished in Box 8.1, except that the 
symbol Σ" now needs to be written Σ"', since sample sizes differ for each group. 
Steps 1, 2, and 4 through 7 are carried out as before. Only step 3 needs to be 
modified appreciably. It is: 

3. Sum of the squared group totals, each divided by its sample size, 

The critical 5% and 1% values of F are shown below the anova table in 
Table 8.1 (2.89 and 4.44, respectively). You should confirm them for yourself 
in Table V. No te that the argument v2 = 33 is not given. You therefore have 
to interpolate between arguments representing 30 to 40 degrees of freedom, 
respectively. The values shown were computed using harmonic interpolation. 
However, again, it was not necessary to carry out such an interpolation. The 
conservative value of F, Fal3i30], is 2.92 and 4.51, for α = 0.05 and a = 0.01, 
respectively. The observed value Fs is 5.26, considerably above the interpolated 
as well as the conservative value of F0 0l. We therefore reject the null hypothesis 
(H0: a\ = 0) that there is no added variance component among groups and that 
the two mean squares estimate the same variance, allowing a type I error of less 
than \ X . We accept, instead, the alternative hypothesis of the existence of an 
added variance component σ2

Λ. 

What is the biological meaning of this conclusion? For some reason, the 
ticks on different host individuals dilfer more from each other than do individual 
ticks on any one host. This may be due to some modifying influence of individ-
ual hosts on the ticks (biochemical differences in blood, differences in the skin, 
differences in the environment of the host individual—all of them rather un-
likely in this case), or it may be due to genetic diflcrcnces among the ticks. 
Possibly the ticks on each host represent a sibship (that is, are descendants of a 
single pair of parents) and the differences in the ticks among host individuals 
represent genetic differences among families; or perhaps selection has acted dif-
ferently on the tick populat ions on each host, or the hosts have migrated to the 
collection locality from different geographic areas in which the licks differ in 
width of scutum. Of these various possibilities, genetic differences among sib-
ships seem most reasonable, in view of the biology of the organism. 

The computa t ions up to this point would have been identical in a Model 1 
anova. If this had been Model I, the conclusion would have been that there 
is a significant treatment effect rather than an added variance component . Now, 
however, we must complete the computa t ions appropr ia te to a Model II anova. 
These will includc the estimation of the added variance component and the 
calculation of percentage variation at the two levels. 

= Σ 
a 
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Since sample size n, differs a m o n g groups in this example, we canno t write 
σ2 + ησ2

Α for the expected MS g r o u p s . It is obvious that no single value of η would 
be appropr i a t e in the formula . W e therefore use an average n; this, however , 
is no t simply n, the ar i thmet ic mean of the «,·'s, but is 

1 
«η = V Σ>?\ Σ n i ~ a 

Σ " · / 

(8.1) 

which is an average usually close to but always less t han n, unless sample sizes 
are equal, in which case n0 = n. In this example, 

1 
4 -

(8 + 10 + 13 + 6) -
+ 102 + 132 + 6 2 

~ 8 + 10 + 13 + 
= 9.009 

Since the Model II expected MS g r o u p s is a2 + ησ2
Λ and the expected M5 w i l h i n is 

σ 2 , it is obvious how the variance componen t a m o n g groups a2
A and the error 

var iance σ 2 are obta ined. Of course, the values that we obtain are sample esti-
mates and therefore are written as .s2

t and s2. The added variance c o m p o n e n t s\ 
is est imated as (JVfSgrouph — MSw i l h i n) /«. Whenever sample sizes are unequal , the 
d e n o m i n a t o r becomcs n 0 . In this example, (602.7 - 114.5)/9.009 = 54.190. We 
are frequently not so much interested in the actual values of these variance com-
ponents as in their relative magnitudes. For this purpose we sum the compo-
nents and express each as a percentage of the resulting sum. Thus s2 + s2, = 
114.5 + 54.190 168.690, and ,v2 and .v2 arc 67.9% and 32.1% of this sum, re-
spectively; relatively more variat ion occurs within groups (larvae on a host) 
than a m o n g groups (larvae on different hosts). 

8.4 Two groups 

Λ frequent test in statistics is to establish the siynijicancc of the difference 
between two means. This can easily be done by means of an analysis of variance 
for two (jroups. Box 8.2 shows this procedure for a Model I anova, the c o m m o n 
case. 

The example in Box 8.2 conccrns the onset of reproduct ive matur i ty in 
water fleas, Daphnia loiu/ispina. This is measured as the average age (in days) 
at beginning of reproduct ion. Hacli variate in the table is in fact an average, 
and a possible Haw in the analysis might be that the averages arc not based 
on equal sample sizes. However, we arc not given this informat ion and have 
to proceed on the assumpt ion that each reading in the tabic is an equally 
reliable variate. The two scries represent different genetic crosses, and the seven 
replicates in each series arc clones derived f rom the same genetic cross. This 
example is clcarly a Model 1 anova . since the quest ion to be answered is whether 
series I differs from series II in average age at the beginning of reproduct ion . 
Inspection of the da ta shows thai the mean age at beginning of reproduct ion 
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BOX 8 J 
Testing the difference in means between two groups. 

Average age (in days) at beginning of reproduction in Daphnia longispina (each 
variate is a mean based on approximately similar numbers of females). Two series 
derived from different genetic crosses and containing seven clones each are 
compared; η = 7 clones per series. This is a Model I anova. 

Series (a = 2) 

I 11 

7.2 8.8 
7.1 7.5 
9.1 7.7 
7.2 7.6 
7.3 7.4 
7.2 6.7 
7.5 7.2 

η 
Σγ 52.6 52.9 
Υ 7.5143 7.5571 

Σ γ Ζ 398.28 402.23 
s2 0.5047 0.4095 

Source: Data by Ordway, from Banta (1939). 

Single classification anova with two groups with equal sample sizes 

Anova table 

Source of variation df ss MS 

y - y Between groups (series) 1 0.00643 0.00643 0.0141 
y - y Within groups (error; 

clones within series) 12 5.48571 0.45714 
Y- Υ Total 13 5.49214 

FO.OJ(l. 121 ~ 4.75 

Conclusions. Since Fs « F 0 05 (1 | 2 |, the null hypothesis is accepted. The means 
of the two series are not significantly different; that is, the two series do not differ 
in average age at beginning of reproduction. 

A t test of the hypothesis that two sample means come from a population with 
equal μ; also confidence limits of the difference between two means 

This test assumes that the variances in the populations from which the two 
samples were taken are identical. If in doubt about this hypothesis, test by method 
of Box 7.1, Section 7.3. 
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BOX 8.2 
Continued 

The appropriate formula for fs is one of the following: 

Expression (8.2), when sample sizes are unequal and n, or nz or both sample 
sizes are small ( < 30): df = n, + n2 — 2 

Expression (8.3), when sample sizes are identical (regardless of size): df = 
2(« - 1) 

Expression (8.4), when n1 and n2 are unequal but both are large ( > 30): df ~ 
tts -+ rt2 — 2 

For the present data, since sample sizes are equal, we choose Expression (8.3): 

t __ ( ή - VVl - (μ. - μι) 

We are testing the null hypothesis that μι — μ2 = 0. Therefore we replace this 
quantity by zero in this example. Then 

7.5143 - 7.5571 -0.0428 -0.0428 Λ 1 1 ή , 
t % = = -0 .1184 

V(a5047 + 0.4095)/7 ^09142/7 0-3614 

The degrees of freedom for this example are 2(n — 1) = 2 χ 6 = 12. The criti-
cal value of f0.oMi2j = 2-179. Since the absolute value of our observed f, is less than 
the critical t value, the means are found to be not significantly different, which is 
the same result as was obtained by the anova. 

Confidence limits of the difference between two means 

= (^l — ^2) ~~ '«[vjSFi-Fz 

L2 = (Yi — Y2) + ta[V]Sp, -γ. 

In this case F, - f 2 = --0.0428, t„.05„2, = 2.179, and s ? , = 0.3614, as com-
puted earlier for the denominator of the t test. Therefore 

L, = —0.0428 - (2.179)(0.3614) = -0 .8303 

L2 = -0 .0428 + (2.179X0.3614) = 0.7447 

The 95% confidence limits contain the zero point (no difference), as was to be 
expected, since the difference V, - Y2 was found to be not significant. 

• 

is very similar for the two series. It would surprise us, therefore, to find that 
tlicy arc significantly different. However, we shall carry out a test anyway. As 
you realize by now, one cannot tell from the magni tude of a difference whether 
i( is significant. This depends on the magni tude of (he error mean square, rep-
resenting the variance within scries. 

The computa t ions for the analysis of variance are not shown. They would 
be the same as in Box 8.1. With equal sample sizes and only two groups, there 
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is one further computat ional shortcut. Quant i ty 6, SSgroups, can be directly com-
puted by the following simple formula: 

( Σ ^ - Σ ^ ) (526 - 529)2 

= ^ 2 n - = - 1 4 = 0 0 0 6 4 3 

There is only 1 degree of freedom between the two groups. The critical value of 
F0,05[i,i2] >s given underneath the anova table, but it is really not necessary to 
consult it. Inspection of the mean squares in the anova shows that MSg r o u p s 

is much smaller than MS„U h i n ; therefore the value of F s is far below unity, 
and there cannot possibly be an added component due to t reatment effects 
between the series. In cases where A/Sgroups < MSw i t h i n , we do not usually bother 
to calculate Fs, because the analysis of variance could not possibly be sig-
nificant. 

There is another method of solving a Model I two-sample analysis of vari-
ance. This is a t test of the differences between two means. This t test is the 
traditional method of solving such a problem; it may already be familiar to you 
from previous acquaintance with statistical work. It has no real advantage in 
either ease of computa t ion or understanding, and as you will see, it is mathe-
matically equivalent to the anova in Box 8.2. It is presented here mainly for 
the sake of completeness. It would seem too much of a break with tradition 
not to have the t test in a biostatistics text. 

In Section 6.4 we learned about the t distribution and saw that a t dis-
tribution of η — 1 degree of freedom could be obtained from a distribution of 
the term (F( — μ)/χ? ι , where sy_ has η — 1 degrees of freedom and Ϋ is normally 
distributed. The numera tor of this term represents a deviation of a sample mean 
from a parametric mean, and the denominator represents a s tandard error for 
such a deviation. We now learn that the expression 

i, = 
(% - Y2) - (μ, - μ2) 

"(η. ; 1 Mf i (>i2 - 1 >sl 
η. + η2 - 2 

"ι 
n ,n 7 

(8.2) 

is also distributed as t. Expression (8.2) looks complicated, but it really has 
the same structure as the simpler term for t. The numera tor is a deviation, 
this time, not between a single sample mean and the parametr ic mean, but 
between a single difference between two sample means, F, and Ϋ2, and the 
true difference between the means of the populat ions represented by these 
means. In a test of this sort our null hypothesis is that the two samples come 
from the same populat ion; that is, they must have the same parametr ic mean. 
Thus, the difference μ, — μ2 is assumed to be zero. We therefore test the devia-
tion of the difference V, — F2 from zero. The denomina tor of Expression (8.2) 
is a s tandard error, the s tandard error of the difference between two means 
•«F,-Fi· Tfie left por t ion of the expression, which is in square brackets, is a 
weighted average of the variances of the two samples, .v2 and .v2. computed 
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in the m a n n e r of Section 7.1. The right term of the s tandard error is the com-
puta t ional ly easier fo rm of ( l / n j ) + ( l /n 2 ) , which is the factor by which the 
average variance within g roups must be multiplied in order to convert it in to 
a variance of the difference of means . The analogy with the mul t ip l ica t ion of 
a sample variance s2 by 1 jn to t rans form it into a var iance of a mean sy should 
be obvious. 

The test as outl ined here assumes equal variances in the two popu la t ions 
sampled. This is also an assumpt ion of the analyses of variance carried out so 
far, a l though we have not stressed this. With only two variances, equal i ty may 
be tested by the procedure in Box 7.1. 

When sample sizes are equal in a two-sample test, Expression (8.2) simplifies 
to the expression 

which is wha t is applied in the present example in Box 8.2. When the sample 
sizes are unequal but ra ther large, so that the differences between a n d — 1 
are relatively trivial, Expression (8.2) reduces to the simpler form 

The simplification of Expression (8.2) to Expressions (8.3) and (8.4) is shown in 
Appendix A 1.3. The per t inent degrees of f reedom for Expressions (8.2) and (8.4) 
are nl + n2 2, and for Expression (8.3) ilf is 2(η — I). 

The test of significance for differences between means using the f test is 
shown in Box 8.2. This is a two-tailed test because our al ternative hypothesis 
is / / , : μ , Φ μ2. The results of this test are identical to those of the anova in the 
same box: the two means are not significantly different. We can demons t r a t e 
this mathemat ica l equivalence by squar ing the value for ts. The result should 
be identical to the Fs value of the cor responding analysis of variance. Since 
ts = - 0 . 1 1 8 4 in Box 8.2, t2 = 0.0140. Within round ing error , this is equal to 
the Fs obta ined in the anova (Fx = 0.0141). Why is this so? We learned that 
f |vi = (Ϋ — μ )/*>·, where ν is the degrees of f reedom of the variance of the mean 
s t h e r e f o r e = (Υ — μ)2Is] , However , this expression can be regarded as a 
variance ratio. The d e n o m i n a t o r is clearly a variance with ν degrees of f reedom. 
The numera to r is also a variance. It is a single deviation squared , which 
represents a sum of squares possessing 1 ra ther than zero degrees of f reedom 
(since it is a deviat ion f rom the true mean μ ra ther than a sample mean). Λ 
sum of squares based on I degree of f reedom is at the same time a variance. 
Thus , t2 is a variance ratio, since i[2

v, = ,_vj, as we have seen. In Appendix 
A 1.4 wc demons t ra te algebraically that the t2 and the /·'„ value obtained in 
Box 8.2 are identical quanti t ies. Since ι approaches the normal dis t r ibut ion as 

(Υ, - Υ,) - (μι - μ , ) 
(8.3) 

(V, - Υ 2 ) - ( μ , - μ 2 ) 
(8.4) 
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the square of the no rma l deviate as ν -» oo. W e also know (from Section 7.2) 
that rfv.j/Vi = Flvuao]. Therefore, when νί = 1 and v2 = oo, x f u = F [ l ao] = f j ^ , 
(this can be demons t ra ted f rom Tables IV, V, and III, respectively): 

2 
Z0.0511 ] = 3.841 

^0.05[1 ,x] = 3.84 

= 1.960 fo.os[*i = 3-8416 

The t test for differences between two means is useful when we wish to set 
confidence limits to such a difference. Box 8.2 shows how to calculate 95% 
confidence limits to the difference between the series means in the Daphnia 
example. The appropr i a t e s tandard error and degrees of f reedom depend on 
whether Expression (8.2), (8.3), or (8.4) is chosen for ts. It does not surprise us 
to find that the confidence limits of the difference in this case enclose the value 
of zero, ranging f rom ^ 0 . 8 3 0 3 to +0.7447. This must be so when a difference 
is found to be not significantly different from zero. We can interpret this by 
saying that we canno t exclude zero as the true value of the difference between 
the means of the two series. 

Another instance when you might prefer to compu te the t test for differences 
between two means rather than use analysis of variance is when you are lacking 
the original variates and have only published means and s tandard er rors avail-
able for the statistical test. Such an example is furnished in Exercise 8.4. 

8.5 Comparisons among means: Planned comparisons 

We have seen that after the initial significance test, a Model II analysis of 
variance is completed by est imation of the added variance components . We 
usually complete a Model 1 anova of more than two groups by examining the 
da ta in greater detail, testing which means are different f rom which other ones 
or which groups of means arc different from other such groups or from single 
means. Let us look again at the Model I anovas treated so far in this chapter . 
We can dispose right away of the two-sample ease in Box 8.2, the average age 
of water fleas at beginning of reproduct ion. As you will recall, there was no 
significant difference in age between the two genetic scries. Bui even if there 
had been such a difference, no fur ther tests arc possible. However, the da t a on 
lenglh of pea sections given in Box 8.1 show a significant difference a m o n g (he 
five t reatments (based on 4 degrees of freedom). Although we know that the 
means are not all equal , we do nol know which ones differ from which other 
ones. This leads us to the subject of tests a m o n g pairs and groups of means. 
Thus, for example, we might test the control against the 4 experimental treat-
ments representing added sugars. The question to be lested would be, Does the 
addit ion of sugars have an effect on length of pea sections? We might also test 
for differences a m o n g the sugar t reatments . A reasonable test might be pure 
sugars (glucose, fructose, and sucrose) versus the mixed sugar t reatment (1% 
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An impor t an t point a b o u t such tests is that they are designed and chosen 
independent ly of the results of the experiment . They should be p lanned before 
the experiment has been carried out and the results obta ined. Such compar i sons 
are called planned or a priori comparisons. Such tests are applied regardless of 
the results of the prel iminary overall anova . By contras t , after the exper iment 
has been carried out, we might wish to c o m p a r e certain means that we notice 
to be markedly different. F o r instance, sucrose, with a mean of 64.1, appea r s 
to have had less of a growth- inhibi t ing effect than fructose, with a mean of 58.2. 
We might therefore wish to test whether there is in fact a significant difference 
between the effects of fructose and sucrose. Such compar isons , which suggest 
themselves as a result of the completed experiment , are called unplanned or a 
posteriori comparisons. These tests are per formed only if the prel iminary overall 
anova is significant. They include tests of the compar i sons between all possible 
pairs of means. W h e n there are a means, there can, of course, be a(a — l ) /2 
possible compar i sons between pairs of means. The reason we m a k e this distinc-
tion between a priori and a posteriori compar i sons is that the tests of signifi-
cance appropr ia t e for the two compar i sons are different. A simple example will 
show why this is so. 

Let us assume we have sampled f rom an approximate ly normal popula t ion 
of heights on men. We have computed their mean and s tandard deviat ion. If 
we sample two men at a t ime f rom this popula t ion , we can predict the dif-
ference between them on the basis of ord inary statistical theory. Some men will 
be very similar, o thers relatively very different. Their differences will be distr ib-
uted normally with a mean of 0 and an expected variance of 2a 2 , for reasons 
that will be learned in Section 12.2. Thus, if we obtain a large difference between 
two randomly sampled men, it will have to be a sufficient number of s t anda rd 
deviat ions greater than zero for us to reject our null hypothesis that the two 
men comc from the specified popula t ion . If, on the other hand, we were to look 
at the heights of the men before sampling them and then take pairs of men 
who seemed to be very different from each other , it is obvious that we would 
repeatedly obtain differences within pairs of men that were several s tandard 
deviat ions apar t . Such differences would be outliers in the expected frequency 
dis t r ibuton of differences, and time and again wc would reject ou r null hy-
pothesis when in fact it was true. The men would be sampled f rom the same 
popula t ion , but because they were not being sampled at r andom but being 
inspected before being sampled, the probabil i ty distr ibution on which our 
hypothesis testing rested would no longer be valid. It is obvious that the tails 
in a large sample f rom a normal dis t r ibut ion will be anywhere f rom 5 to 7 
s t andard deviat ions apar t . If we deliberately take individuals f rom each tail and 
compare them, they will appea r to be highly significantly different f rom each 
other, according to the me thods described in the present section, even though 
they belong to the same popula t ion . 

When we compare means differing greatly f rom each other as the result of 
some t reatment in the analysis of variance, we are doing exactly the same thing 
as taking the tallest and the shortest men f rom the frequency dis t r ibut ion of 
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heights. If we wish to k n o w whe the r these a re significantly different f r o m each 
o ther , we c a n n o t use the o r d i n a r y p robab i l i ty d i s t r ibu t ion on which the analysis 
of va r iance rests, bu t we have to use special tests of significance. These un-
p lanned tests will be discussed in the next sect ion. T h e present sect ion conce rns 
itself with the ca r ry ing o u t of those c o m p a r i s i o n s p l anned before the execut ion 
of the exper iment . 

T h e general rule for m a k i n g a p l anned c o m p a r i s o n is ex t remely simple; it 
is related to the rule for o b t a i n i n g the s u m of squa re s for a n y set of g r o u p s 
(discussed at the end of Sect ion 8.1). T o c o m p a r e k g r o u p s of a n y size nh t ake 
the sum of each g roup , s q u a r e it, d ivide the result by the s a m p l e size nh and 
sum the k quo t i en t s so ob ta ined . F r o m the sum of these quo t i en t s , sub t r ac t a 
cor rec t ion te rm, which you de t e rmine by t ak ing the g r and sum of all the g r o u p s 
in this c o m p a r i s o n , squa r ing it, and d iv id ing the result by the n u m b e r of i tems 
in the g rand sum. If the c o m p a r i s o n includes all the g r o u p s in the anova , the 
cor rec t ion term will be the m a i n CT of the s tudy. If, however , the c o m p a r i s o n 
includes only s o m e of the g r o u p s of the anova , the CT will be different , being 
restr icted only to these g roups . 

These rules can best be learned by m e a n s of an example . T a b l e 8.2 lists the 
means , g r o u p sums, and s ample sizes of the exper iment with the pea sect ions 
f r o m Box 8.1. You will recall tha t there were highly significant dif ferences a m o n g 
the g roups . W e n o w wish to test whe the r the m e a n of the con t ro l differs f r om 
tha t of the four t r e a t m e n t s represent ing add i t i on of sugar . T h e r e will t hus be two 
groups , one the con t ro l g r o u p and the o ther the " sugars" g roups , the lat ter with 
a sum of 2396 and a sample size of 40. W e therefore c o m p u t e 

SS (control versus sugars) 

_ (701 )2 (593 + 582 + 580 + 641)2 (701 + 593 + 582 + 580 + 641)2 

10 4 40 ~ 50 

(701)2 (2396)2 (3097)-
= — + - = 8^2.12 

10 40 50 

In this case the cor rec t ion term is the s ame as for the anova , because it involves 
all the g r o u p s of the s tudy . T h e result is a sum of squa res for the c o m p a r i s o n 

TABLE 8.2 
Means, group sums, and sample sizes from the data in Box 8.1. l ength of pea sections grown in 
tissue cul ture (in ocular units). 

('onirol yhtcost' 

1" 

Jructosc 

/ ".i illliCOSi' 
+ 

Γ'~„ fructose siurosc Σ 

Y 70.1 593 58.2 58.0 64.1 (61.94 - F) 

I y 701 593 582 580 641 3097 

η 10 10 10 10 10 50 
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be tween these t w o g roups . Since a c o m p a r i s o n be tween two g r o u p s has on ly 1 
degree of f r eedom, the sum of squa res is at the s a m e t ime a m e a n square . T h i s 
m e a n s q u a r e is tested over the e r ro r m e a n s q u a r e of the a n o v a to give the 
fo l lowing c o m p a r i s o n : 

MS ( cont ro l versus sugars) 832.32 1 5 9 4 4 
F s = M 5 ^ t h , „ = ~5A6~ = 

^0.05[1,45] = 4.05, F 0.0 1 [ 1 .4 5] = ^.23 

Th i s c o m p a r i s o n is highly significant , showing tha t the add i t i ons of suga r s have 
signif icantly r e t a rded the g r o w t h of the pea sections. 

Nex t we test w h e t h e r t h e mix tu r e of suga r s is significantly d i f ferent f r o m 
the p u r e sugars . Us ing the s a m e technique , we ca lcu la te 

SS (mixed sugars versus pu re sugars) 

- <„580i2 ( 5 9 3 ^ 5 8 2 j f J > 4 1 )2 _ (593 + 582_+ 580 + 641)2 

_ 40 

(580)2 (1816)2 (2396)2 

~ K) 30 40 = 48.13 

H e r e the CT is different , since it is based on the sum of the sugars only. T h e 
a p p r o p r i a t e test s tat is t ic is 

MS (mixed sugars versus pu re sugars) 48.13 
/ , = — — ~ 8.8^ 

MS w i l h i n 5.46 

Th i s is significant in view of the critical values of 4 5 | given in the p reced ing 
p a r a g r a p h . 

A final test is a m o n g the three sugars . Th is mean square has 2 degrees 
of f r eedom, since it is based on three means . T h u s we c o m p u t e 

, <593)2 <582)2 (641 )2 (1816)2 

SS ( a m o n g pure sugars) = | ( ) + ( ( ) + ) ( | , ( ) = 196.87 

SS ( a m o n g pure sugars) 196.87 
MS ( a m o n g p u r e sugars) --= — — -- = 98.433 

d) 2 

MS ( a m o n g pure sugars ! 98.433 
I \ = = - — 18.03 

A/Swilh,„ 5.46 

This Fx is highly signif icant , since even /·',, 0112.401 = 5· '^· 
We conc lude that the add i t i on of the three sugars re ta rds g r o w t h in the pea 

sections, that mixed sugars affect (lie sect ions differently f rom pure sugars , and 
that the pu re sugars a re signil icanlly different a m o n g themselves, p r o b a b l y be-
cause the sucrose lias a far higher mean . We c a n n o t test the sucrose agains t 
the o t h e r two, because that would be an u n p l a n n e d test, which suggests itself 
to us al ter we have looked at the results. T o carry out such a test, we need the 
mi- thnik ( i l ' lhc next sect ion. 
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O u r a pr ior i tests might have been qui te different , depend ing ent i rely on o u r 
initial hypotheses . T h u s , we could have tested con t ro l versus sugars initially, 
fol lowed by d i sacchar ides (sucrose) versus m o n o s a c c h a r i d e s (glucose, f ructose , 
glucose + fructose), fo l lowed by mixed versus p u r e m o n o s a c c h a r i d e s a n d finally 
by glucose versus f ructose . 

T h e p a t t e r n a n d n u m b e r of p l a n n e d tests a r e de t e rmined by one ' s h y p o t h -
eses a b o u t the da t a . However , there are cer ta in restr ict ions. It w o u l d clearly 
be a misuse of stat ist ical m e t h o d s to decide a pr ior i tha t one wished to c o m -
pare every m e a n aga ins t every o the r m e a n (a(a — l ) /2 compar i sons ) . F o r a 
groups , t he sum of the degrees of f r e e d o m of the sepa ra t e p l anned tests shou ld 
not exceed a — 1. In add i t ion , it is des i rable to s t ruc tu re the tests in such a 
way tha t each one tests an i ndependen t r e l a t ionsh ip a m o n g the m e a n s (as was 
d o n e in the example above). F o r example , we would prefer no t to lest if m e a n s 
1, 2, and 3 differed if we had a l ready f o u n d tha t m e a n 1 differed f rom m e a n 3, 
since significance of the la t ter suggests significance of the fo rmer . 

Since these tests a re independen t , the three sums of squares we have so far 
ob ta ined , based on 1, 1, and 2 d f , respectively, toge ther a d d u p to the sum of 
squares a m o n g t r ea tmen t s of the original analysis of var iance based on 4 de-
grees of f r eedom. Thus : 

df 
SS (control versus sugars) = 832.32 1 
SS (mixed versus pu re sugars) = 48.13 1 
SS ( a m o n g pure sugars) = 196.87 2 
SS ( a m o n g t r ea tmen t s ) = 1 0 7 7 . 3 2 4 

This again i l lustrates the elegance of analysis of var iance. T h e t r ea tmen t sums 
of squares can be d e c o m p o s e d in to sepa ra te pa r t s that are s u m s of squa res 
in their own right, with degrees of f reedom per ta in ing to them. O n e sum of 
squares measures the difference between the con t ro l s and the sugars , the second 
tha t be tween the mixed sugars and the pure sugars , and the third the r ema in ing 
var ia t ion a m o n g the three sugars . We can present all of these resul ts as an 
a n o v a table, as s h o w n in Tab le 8.3. 

TAHI.F 8 . 3 

Anova table from Box K.I, with treatment sum of squares decomposed into 
planned comparisons. 

Source of I'tiriulioii <H .S'.V MS 

Treatments 4 1077.32 269.33 49.33** 
Control vs. sugars 1 832.32 832.32 152.44** 
Mixed vs. pure sugars 1 48.13 48.13 8.82** 
Among pure sugars 7 196.87 98.43 18.03** 

Within 45 245.50 5.46 
Total 49 1322.82 
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When the planned compar i sons are not independent , and when the n u m b e r 
of compar i sons planned is less than the total n u m b e r of compar i sons possible 
between all pairs of means, which is a(a — 1)/2, we carry out the tests as jus t 
shown but we adjus t the critical values of the type 1 error a. In compar i sons 
that are not independent , if the ou tcome of a single compar ison is significant, 
the outcomes of subsequent compar i sons are more likely to be significant as 
well, so that decisions based on convent ional levels of significance might be in 
doubt . For this reason, we employ a conservat ive approach , lowering the type 
I error of the statistic of significance for each compar i son so that the p r o b a -
bility of making any type I e r ror at all in the entire series of tests does not 
exceed a predetermined value a. This value is called the experimentwise error 
rate. Assuming that the investigator plans a number of compar isons , add ing 
up to k degrees of f reedom, the appropr ia t e critical values will be obta ined if 
the probabil i ty x' is used for any one compar i son , where 

y 
7 k 

The approach using this relation is called the Bonferroni method; it assures us 
of an experimentwise error rate < r. 

Applying this approach to the pea section data , as discussed above, let us 
assume that the investigator has good reason to test the following compar i sons 
between and a m o n g treatments , given here in abbreviated form: (C) versus (G, 
F. S, G + F); (G, K, S) versus (G t F); and (G) versus (F) versus (S); as well 
as (G, F) versus (G + F) The 5 degrees of f reedom in these tests require that 
each individual test be adjusted to a significance level of 

a 0.05 
a' = ^ - ^ - 0.01 

for an experimentwise critical α — 0.05. Thus , (lie critical value for the [·\ rat ios 
of these compar i sons is /·„ l ) ] M 4 S | or /·'„ <>,| > 4 5 ] , as appropr ia te . The first three 
tests arc carried out as shown above. The last test is computed in a similar 
manner : 

SS 

I average of glucose a n d \ ( 5 9 3 + 5 8 , ) 2 ( 5 8 ( ) ) 2 ( 5 9 3 + 5 g 2 + 5 8 Q ) 2 

fructose vs. glucose 
\ and fructose mixed 20 10 30 

(I 175)2 (580)2 _ (1755)2 _ 
20 + 10 Ή) 

In spite of the change in critical value, the conclusions concerning the 
first three tests are unchanged. The last test, the average of glucose and fructose 
versus a mixture of the two, is not significant, since F s = i l l 0.687. Adjus t -
ing the critical value is a conservative procedure: individual compar i sons using 
this approach are less likely to be significant. 
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T h e Bonfe r ron i m e t h o d general ly will no t e m p l o y the s t a n d a r d , tabled 
a r g u m e n t s of α for the F d i s t r ibu t ion . Thus , if we were to p lan tests involving 
a l toge ther 6 degrees of f r eedom, the value of a ' w o u l d be 0.0083. Exac t tables 
for Bonfe r ron i critical values are avai lable for the special case of single degree 
of f r e e d o m tests. Al ternat ively, we can c o m p u t e the desired critical va lue by 
means of a c o m p u t e r p r o g r a m . A conserva t ive a l te rna t ive is t o use the next 
smaller tabled value of a. F o r details, consul t Sokal a n d Rohlf (1981), sect ion 9.6. 

T h e Bonfer ron i m e t h o d (or a m o r e recent re f inement , the D u n n - S i d a k 
me thod ) should a lso be emp loyed when you are r epo r t i ng conf idence l imits for 
m o r e than one g r o u p m e a n resul t ing f r o m an analysis of var iance . Thus , if you 
wan ted to publ ish the m e a n s a n d 1 — a conf idence limits of all live t r ea tmen t s 
in the pea section example , you would not set conf idence l imits to each m e a n 
as t hough it were an i ndependen t sample , bu t you would employ t„.[v], where 
ν is the degrees of f r e e d o m of the ent i re s tudy and a ' is the ad jus t ed type I e r ro r 
expla ined earlier. Deta i l s of such a p r o c e d u r e can be learned in Sokal and 
Rohlf (1981), Section 14.10. 

8.6 Comparisons among means: Unplanned comparisons 

A single-classif ication a n o v a is said to be significant if 

MS 

^^wilhin 
— ' > F j h , | „(„•!)] (8.5) 

Since M S g r o u p J M S „ i t h i n = SS g r o u p s / [ (« - 1) M S w i l h i n J , we can rewri te Express ion 
(8.5) as 

g r o u p s ^ (" " Π MSw i l h i„ /·'„!„ !.„,„ 1,| (8.6) 

F o r example , in Box 8.1, where the a n o v a is s ignificant , SSBr„ — 1077.32. Sub-
s t i tu t ing into Express ion (8.6), we ob ta in 

1077.32 > (5 - 1)(5.46)(2.58) - 56.35 for a = 0.05 

It is therefore possible to c o m p u t e a critical λ\ν value for a test of significance 
of an anova . Thus, a n o t h e r way of ca lcu la t ing overall s ignif icance would be to 
sec whe ther the S.VKI„ups is grea ter t han this critical SS. It is of interest to inves-
t igate why the SSvt>Ui,s is as large as it is and to test for the signif icance of 
the var ious c o n t r i b u t i o n s m a d e to this SS by di lfercnccs a m o n g the sample 
means . This was discussed in the previous scction, where sepa ra t e sums of 
squares were c o m p u t e d based on c o m p a r i s o n s a m o n g m e a n s p lanned before 
the d a t a were examined . A c o m p a r i s o n was called significant if its /·', ra t io was 
> I''iik !.«(»• πι· where k is the n u m b e r of m e a n s being c o m p a r e d . W e can now 
also s ta te this in t e rms of sums of squares : An SS is significant if it is grea ter 
than {k I) MS w i l h i n Fxlk ,.„,„ n]. 

T h e a b o v e tests were a priori compa r i sons . O n e p r o c e d u r e for testing a 
poster ior i c o m p a r i s o n s would be to set k — a in this last f o rmula , no ma t t e r 
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how many means we compare ; thus the critical value of the SS will be larger 
than in the previous me thod , making it more difficult to demons t r a t e the sig-
nificance of a sample SS. Setting k = a allows for the fact that we choose for 
testing those differences between g roup means that appear to be cont r ibu t ing 
substantial ly to the significance of the overall anova . 

For an example, let us re turn to the effects of sugars on growth in pea 
sections (Box 8.1). We write down the means in ascending order of magni tude : 
58.0 (glucose + fructose), 58.2 (fructose), 59.3 (glucose), 64.1 (sucrose), 70.1 
(control). We notice that the first three t rea tments have quite similar means and 
suspect that they do not differ significantly a m o n g themselves and hence d o not 
cont r ibu te substantial ly to the significance of the SSgroups. 

T o test this, wc c o m p u t e the SS a m o n g these three means by the usual 
formula: 

(593)2 + (582)2 + (580)2 _ (593 + 582 + 580)2 
_ __ _ _ 

- 102,677.3 - 102,667.5 = 9.8 

The dilfcrcnccs a m o n g these means are not significant, because this SS is less 
than the critical SS (56.35) calculated above. 

The sucrose mean looks suspiciously different from the means of the o ther 
sugars. T o test this wc compute 

(641)2 (593 + 582 + 580)2 (641 + 593 + 582 + 580)2 

k ~ 10 + 30 κ Γ + 3 0 

= 41,088.1 + 102,667.5 - 143,520.4 = 235.2 

which is greater than the critical SS. Wc conclude, therefore, that sucrosc re-
tards growth significantly less than the other sugars tested. We may cont inue 
in this fashion, testing all the differences that look suspicious or even testing 
all possible sets of means, considering them 2, 3, 4, and 5 at a time. This latter 
app roach may require a compute r if there are more than 5 means to be com-
pared, since there arc very many possible tests that could be made. This 
procedure was proposed by Gabriel (1964), who called it a sum of squares simul-
taneous test procedure (SS-S'l'P). 

In the SS-S I I' and in the original anova, the chancc of making any type I 
e r ror at all is a, the probabil i ty selected for the critical I· value f rom Table V. 
By "making any type I error at all" we mean mak ing such an error in the overall 
test of significance of the anova and in any of the subsidiary compar i sons a m o n g 
means or sets of means needed to complete the analysis of the experiment. Phis 
probabi l i ty a therefore is an experimentwise e r ror rate. Note that though the 
probabil i ty of any error at all is a, the probabi l i ty of error for any par t icular 
test of some subset, such as a test of the difference a m o n g three or between two 
means, will always be less than χ Thus, for the test of each subset one is really 
using a significance level a \ which may be much less than the cxperimcntwisc 
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α, a n d if there a re m a n y m e a n s in the a n o v a , this ac tua l e r r o r r a te a ' m a y be 
one- ten th , one o n e - h u n d r e d t h , or even one o n e - t h o u s a n d t h of the exper imen t -
wise α (Gabr ie l , 1964). F o r this reason , the u n p l a n n e d tests d iscussed a b o v e 
a n d the overal l a n o v a are n o t very sensit ive to differences be tween indiv idual 
m e a n s or differences wi th in small subsets . Obvious ly , n o t m a n y differences a re 
going to be cons idered significant if a ' is minu te . Th is is the price we p a y for 
no t p l a n n i n g o u r c o m p a r i s o n s before we examine the da ta : if we were to m a k e 
p lanned tests, the e r ro r r a te of each w o u l d be greater , hence less conserva t ive . 

T h e SS-STP p r o c e d u r e is only o n e of n u m e r o u s t echn iques for mul t ip le 
u n p l a n n e d compar i sons . It is t he m o s t conservat ive , since it a l lows a large 
n u m b e r of possible c o m p a r i s o n s . Differences s h o w n to be signif icant by this 
m e t h o d can be rel iably r epo r t ed as significant differences. Howeve r , m o r e sen-
sitive a n d powerfu l c o m p a r i s o n s exist w h e n the n u m b e r of possible c o m p a r i s o n s 
is c i rcumscr ibed by the user. Th is is a complex subject , to which a m o r e comple t e 
in t roduc t ion is given in Soka l a n d Rohlf (1981), Section 9.7. 

Exercises 

8.1 The following is an example with easy numbers to help you become familiar 
with the analysis of variance. A plant ecologist wishes to test the hypothesis 
that the height of plant species X depends on the type of soil it grows in. He has 
measured the height of three plants in each of four plots representing different 
soil types, all four plots being contained in an area of two miles square. His 
results are tabulated below. (Height is given in centimeters.) Does your anal-
ysis support this hypothesis? ANS. Yes, since F, = 6.951 is larger than 
'θ <I5|J.H| — 4 .07 . 

Observation 
number / 

Loetilil 
2 

ies 
.i 4 

1 15 25 17 10 
2 9 21 23 13 
3 14 19 20 16 

8.2 The following are measurements (in coded micrometer units) of the thorax length 
of the aphid Pemphigus populitransversus. The aphids were collected in 28 galls 
on the cottonwood I'opulas delloides. Four alate (winged) aphids were randomly 
selected from each gall and measured. The alate aphids of each gall are isogenic 
(identical twins), being descended parthcnogenetieally from one stem mother. 
Thus, any variance within galls can be due to environment only. Variance be-
tween galls may be due to differences in genotype and also to environmental 
differences between galls. If this character, thorax length, is affected by genetic 
variation, significant intergall variance must be present. The converse is not nec-
essarily true: significant variance between galls need not indicate genetic varia-
tion; it could as well be due to environmental differences between galls (data by 
Sokal, 1952). Analyze the variance of thorax length. Is there significant intergall 
variance present? (Jive estimates of the added component of intergall variance, 
if present. What percentage of the variance is controlled by intragall and what 
percentage by intergall factors? Discuss your results. 
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Gall no. Gall no. 

1. 6.1, 6.0, 5.7. 6.0 15. 6.3, 6.5, 6.1, 6.3 
2. 6.2, 5.1, 6.1. 5.3 16. 5.9, 6.1, 6.1, 6.0 
3. 6.2, 6.2, 5.3, 6.3 17. 5.8, 6.0, 5.9, 5.7 
4. 5.1, 6.0, 5.8, 5.9 18. 6.5, 6.3, 6.5, 7.0 
5. 4.4, 4.9, 4.7, 4.8 19. 5.9, 5.2, 5.7, 5.7 
6. 5.7, 5.1, 5.8, 5.5 20. 5.2, 5.3, 5.4, 5.3 
7. 6.3, 6.6, 6.4, 6.3 21. 5.4, 5.5, 5.2, 6.3 
8. 4.5, 4.5, 4.0, 3.7 22. 4.3, 4.7, 4.5, 4.4 
9. 6.3, 6.2, 5.9, 6.2 23. 6.0, 5.8, 5.7, 5.9 

10. 5.4, 5.3, 5.0, 5.3 24. 5.5, 6.1, 5.5, 6.1 
11. 5.9, 5.8, 6.3, 5.7 25. 4.0, 4.2, 4.3, 4.4 
12. 5.9, 5.9, 5.5, 5.5 26. 5.8, 5.6, 5.6, 6.1 
13. 5.8, 5.9, 5.4, 5.5 27. 4.3, 4.0, 4.4, 4.6 
14. 5.6, 6.4, 6.4, 6.1 28. 6.1, 6.0, 5.6, 6.5 

8.3 VI ill is and Seng (1954) published a study on the relation of birth order to the 
birth weights οΓ infants. The data below on first-born and eighth-born infants are 
extracted from a table of birth weights of male infants of Chinese third-class 
patients at the Kandang Kerbau Maternity Hospital in Singapore in 1950 and 
1951. 

Birth weight Birth order 
(Ih: : oz ) I ti 

3:0 3: 7 . -
3:8 3: 15 1 
4 :0 4: :7 3 
4:8 •4: : 15 7 4 
5:0 5: :7 111 5 
5:8 5 : 15 267 19 
6:0 6: : 7 457 52 
6:8 6 : 15 485 55 
7:0 7 : 7 363 61 
7:8 7 : 15 162 48 
8:0 8 : 7 64 39 
8:8 8 : 1 5 6 19 
9:0 9 :7 5 4 
9:8 9 :15 

10:0 10:7 1 
10:8 10:15 

1932 307 

Which birth order appears to be accompanied by heavier infants? Is this differ 
ence significant? Can you conclude that birth order causes differences in birth 
weight? (Computational note: The variable should be coded as simply as pos-
sible.) Reanalyze, using the I test, and verify that ff = F s . ANS. ls ^ 11.016 and 
/·;=- 121.352 " 

8.4 The following cytochrome oxidase assessments of male Pcriplaneta roaches in 
cubic millimeters per ten minutes per milligram were taken IVom a larger study 
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η y Sy 

24 hours after 
methoxychlor injection 5 24.8 0.9 

Control 3 19.7 1.4 

Are the two means significantly different? 
8.5 P. E. Hunter (1959. detailed data unpublished) selected two strains of D. melano-

iicisler, one for short larval period (SL) and one for long larval period (LL). A 
nonselected control strain (CS) was also maintained. At generation 42 these data 
were obtained for the larval period (measured in hours). Analyze and interpret. 

Strain 
SL CS LL 

tii 80 69 33 

8070 7291 3640 
3 "ι 

Σ Σ γ 2 = 1,994.650 

Note that part of the computation has already been performed for you. Perform 
unplanned tests among the three means (short vs. long larval periods and each 
against the control). Set 95% confidence limits to the observed differences of 
means for which these comparisons are made. ANS. MS | S L v s 1L) = 2076.6697. 

8.6 These data are measurements of live random samples of domestic· pigeons col-
lected during January, February, and March in Chicago in 1955. The variable-
is the length from the anterior end of the narial opening to the lip of the bony 
beak and is recorded in millimeters. Data from Olson and Miller (1958). 

Samples 
1 1 3 4 s 

5.4 5.2 5.5 5.1 5.1 
5.3 5.1 4.7 4.6 5.5 
5.2 4.7 4.8 5.4 5.9 
4.5 5.0 4.9 5.5 6.1 
5.0 5.9 5.9 5.2 5.2 
.5.4 5.3 5.2 5.0 5.0 
3.8 6.0 4.8 4.8 5.9 
5.9 5.2 4.9 5.1 5.0 
5.4 6.6 6.4 4.4 4.9 
5.1 5.6 5.1 6.5 5.3 
5.4 5.1 5.1 4.8 5.3 
4.1 5.7 4.5 4.9 5.1 
5.2 5.1 5.3 6.0 4.9 
4.8 4.7 4.8 4.8 5.8 
4.6 6.5 5.3 5.7 5.0 
5.7 5.1 5.4 5.5 5.6 
5.9 5.4 4.9 5.8 6.1 
5.8 5.8 4.7 5.6 5.1 
5.0 5.8 4.8 5.5 4.8 
5.0 5.9 5.0 5.0 4.9 
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The following data were taken from a study of blood protein variations in deer 
(Cowan and Johnston, 1962). The variable is the mobility of serum protein frac-
tion II expressed as 1(T5 cm2/volt-seconds. 

Y ST 

Sitka 2.8 0.07 
California blacktail 2.5 0.05 
Vancouver Island blacktail 2.9 0.05 
Mule deer 2.5 0.05 
Whitetail 2.8 0.07 

η = 12 for each mean. Perform an analysis of variance and a multiple-comparison 
test, using the sums of squares STP procedure. ANS. MSwithin = 0.0416; maximal 
nonsignificant sets (at Ρ = 0.05) are samples 1, 3, 5 and 2, 4 (numbered in the 
order given). 

8.8 For the data from Exercise 7.3 use the Bonferroni method to test for differences 
between the following 5 pairs of treatment means: 

A, Β 
A, C 
A, D 
A, (B + C + D)/3 
B, (C + D)/2 



CHAPTER 

Two-Way Analysis 
of Variance 

F r o m the single-classif icat ion a n o v a of C h a p t e r 8 we p rogress t o the two-way 
a n o v a of the p resen t c h a p t e r by a single logical step. Ind iv idua l i tems m a y be 
g r o u p e d in to classes represen t ing the different possible c o m b i n a t i o n s of t w o 
t r e a t m e n t s or factors . Thus , the housef ly wing lengths s tudied in ear l ier chapte rs , 
which yielded samples represen t ing different m e d i u m fo rmula t ions , might also 
be divided in to males and females. S u p p o s e we w a n t e d to k n o w not only whe the r 
m e d i u m 1 induced a different wing length than m e d i u m 2 bu t a l so whe the r 
male housefi ies differed in wing length f rom females. Obv ious ly , each combi -
na t ion of factors shou ld be represented by a sample of flies. T h u s , for seven 
med ia and t w o sexes we need at least 7 x 2 = 1 4 samples . Similarly, the ex-
per iment test ing five sugar t r e a t m e n t s on pea sect ions (Box 8.1) might have 
been carr ied out at three different t empera tu re s . Th i s would have resul ted in a 
two-way analysis of variance of the effects of sugars as well as of t empera tu re s . 

It is the a s s u m p t i o n of this two-way m e t h o d of a n o v a tha t a given temper -
a tu re and a given sugar each c o n t r i b u t e a cer ta in a m o u n t to the g r o w t h of a pea 
section, a n d tha t these t w o c o n t r i b u t i o n s a d d their effects w i thou t inf luencing 
each o ther . In Sect ion 9.1 wc shall see h o w d e p a r t u r e s f rom the a s s u m p t i o n 
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are measured; we shall also consider the expression for decompos ing variates 
in a two-way anova. 

The two factors in the present design may represent either Mode l I or 
Model II effects or one of each, in which case we talk of a mixed model. 

The compu ta t i on of a two-way anova for replicated subclasses (more than 
one variate per subclass or factor combina t ion) is shown in Section 9.1, which 
also contains a discussion of the meaning of interaction as used in statistics. 
Significance testing in a two-way anova is the subject of Section 9.2. This is 
followed by Section 9.3, on two-way anova without replication, or with only a 
single variate per subclass. The well-known method of paired compar i sons is a 
special ease of a two-way anova without replication. 

We will now proceed to illustrate the computa t ion of a two-way anova . 
You will obta in closer insight into the s t ructure of this design as we explain 
the computa t ions . 

9.1 Two-way anova with replication 

We illustrate the compu ta t i on of a two-way anova in a study of oxygen con-
sumpt ion by two species of limpets at three concentra t ions of seawater. Eight 
replicate readings were obta ined for each combina t ion of species and seawater 
concentra t ion. We have cont inued to call the n u m b e r of co lumns and are 
calling the number of rows b. The sample size for each cell (row and co lumn 
combina t ion) of the table is n. The cells are also called subgroups or subclasses. 

The da ta arc featured in Box 9.1. The computa t iona l steps labeled Pre-
liminary computations provide an efficient procedure for the analysis of variance, 
but we shall under take several digressions to ensure that the concepts under-
lying this design arc apprecia ted by the reader. We commence by consider ing 
the six subclasses as though they were six g roups in a single-classification anova. 
liach subgroup or subclass represents eight oxygen consumpt ion readings. If 
we had no fur ther classification of these six subgroups by species or salinity, 
such an anova would test whether there was any variat ion a m o n g the six sub-
groups over and above the variance within (he subgroups . But since we have the 
subdivision by species and salinity, our only purpose here is to c o m p u t e some 
quant i t ies necessary for the fur ther analysis. Steps I through 3 in Box 9.1 cor-
respond to the identical steps in Box 8.1, a l though the symbolism has changed 
slightly, since in place of a g roups we now have ab subgroups. T o comple te 
the anova, we need a correct ion term, which is labeled step 6 in Box 9.1. F rom 
these quanti t ies we obtain SSu„ah and .S\S\vilhlll in steps 7, 8, and 12, cor respond-
ing to steps 5, 6, and 7 in the layout of Box 8.1. The results of this preliminary 
anova arc featured in l able 9.1. 

The computa t ion is cont inued by finding the sums of squares for rows and 
co lumns of the table. This is dime by the general formula stated at the end of 
Section 8.1. Thus, for columns, we square the co lumn sums, sum the resulting 
squares, and divide the result by 24. the number of items per row. This is step 
4 in Box 9.1. Λ similar quant i ty is computed for rows (step 5). F rom these 
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BOX 9.1 
Continued 

Preliminary computations 

a b π 
1. Grand total = Σ Σ Σ Υ = 461.74 

2. Sum of the squared observations = Σ Σ Σ γ 2 = + ••• + (12.30)2 = 5065.1530 

3. Sum of the squared subgroup (cell) totals, divided by the sample size of the subgroups 
" b / η 

Σ Σ \ Σ γ 

2 

ν / (84.49)2 + •·• + (98.61)2 

= 4663.6317 « 8 
« f b η \2 t Ϋ f y ι 

4. Sum of the squared column totals divided by the sample size of a column = - A / = (2«.00)2 + (216.74)2 _ 
bn ~~ (3 χ 8) ~ 4438.3S44 

b/a η \2 

Σ Ϊ Σ Σ Υ 
5. Sum of the squared row totals divided by the sample size of a row = ^ .... 1 

an 
η2 (143.92)2 + (121.82)2 + (196.00)2 

( 2 ^ 8 ) = 4 6 2 3 0 6 7 4 

6. Grand total squared and divided by the total sample size = correction term CT 
b it \2 

Σ Σ γ ) , / „. (qua , , „ , 
abn abn ( 2 x 3 x 8 ) " 4 4 4 1 ' 7 4 6 4 

/ a b it \2 
ΣΣΣΠ 

\ / (quantity l)2 (461.74)2 

7- SS,„,ai = Σ Σ Σ γ 1 ~ C T = quantity 2 - quantity 6 = 5065.1530 - 4441.7464 = 623.4066 

a b / η \ 2 

ΣΣΙΣ 
8. SSsubgr = ^ - C T = quantity 3 - quantity 6 = 4663.6317 - 4441.7464 = 221.8853 

a ( b it V 
ς ( ς ς ^ ) 

9. SSA (SS of columns) = — CT = quantity 4 - quantity 6 = 4458.3844 - 4441.7464 = 16.6380 
bn 

b f a η \2 
Σ ( Σ Σ γ Ι 

10. SSB (SS of rows) = — ^ '— - CT = quantity 5 - quantity 6 = 4623.0674 - 4441.7464 = 181.3210 
an 

11. SSA „ B (interaction SS) = SSsubgr - SSA - SS„ = quantity 8 - quantity 9 - quantity 10 
= 221.8853 - 16.6380 - 181.3210 = 23.9263 

12. SSwUhin (within subgroups; error SS) = SSloltll — SSsllbgr = quantity 7 - quantity 8 
= 623.4066 - 221.8853 = 401.5213 

As a check on your computations, ascertain that the following relations hold for some of the above quantities: 2 S 3 S 4 i 6; 
3 > 5 > 6. 

Explicit formulas for these sums of squares suitable for computer programs are as follows: 

9 a . SSA = n b t ( Y A - Y)2 

10a. SSB = n a £ ( f B - Y ? 

11a. SSAB = n £ i ( Y - ? A - ? B + f ) 2 

12a. SSwithin = n t i ^ - ? ) 2 



BOX 9.1 
Continued 

Now fill in the anova table. 

Source of variation jf 
"J >« MS 

Ϋ Α - ? A (columns) a - 1 9 9 

( a - I ) 

Y B - Y Β (rows) h - 1 10 10 10 
ib - 1) 

Υ - Ϋ Α - Υ β + Ϋ Α χ Β (interaction) (a - 1 Kb - 1) 11 11 

(a - m - 1) 
Y - Y Within subgroups ab(n - 1) 12 12 

Y - f Total abn — I 1 

ab(n - 1) 

Expected MS (Model Γ) 

2 , n b « 
<r2 + — — V a

2 

a - ώ 

b 

(a - W - 1) 

Λ 

Z w ) 2 

e x p i r n f f o S r m o S 1 6 * 3 ^ 1 ^ f M b o t h f a C t o r s > t h e e x ? e c t e d ^ o v e are eorreet Below are the corresponding 

Mixed model 
Source of variation Model II (.4 fixed, β random) 

A 

Β 

Α χ Β 

Within subgroups 

Anova table 
Source of variation df SS MS F, 

σ2 + ησζΒ + nbai σ2 + ησ\Β + 

σ2 + π<72
β + naog 

σ + ηα 
ι 

π-

ι 
Α Β 

nb ° 

α — I 
2 α" -I- ηασ| 

σ2 + ησ" 

σ2 
ΑΒ 

A (columns; species) 1 16.6380 16.638 1.740 ns 
β (rows: salinities) 1 181.3210 90.660 9.483** 
Α χ B (interaction) Ί 23.9263 11.963 1.251 ns 
Within subgroups (error) 42 401.5213 9.560 
Total 47 623.4066 

fd.0511.4.2] = 4.07 Fo.05E2.4 2] = 3.22 Fo.01(2,42] = 5.15 

Since this is a Model I anova, all mean squares are tested over the error MS. For a discussion of significance tests, see Section 
9.2. 

Conclusions.—Oxygen consumption does not differ significantly between the two species of limpets but differs with the sa!in:r· 
At 50% seawater, the O , consumption is increased. Salinity appears to affect the two species equally, for there is insufficient evidir.:; 
of a species χ salinity interaction. 

I 
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T A B L E 9 . 1 

Preliminary anova of subgroups in two-way anova. D a t a f rom Box 9.1. 

Source of variation df SS MS 

Y - Ϋ Among subgroups 5 ab - 1 221.8853 44.377** 
Y - Υ Within subgroups 42 ab(n - 1) 401.5213 9.560 
Y - Τ Total 47 abn — 623.4066 

quo t i en t s we sub t r ac t the cor rec t ion term, c o m p u t e d as q u a n t i t y 6. These sub-
t r ac t i ons a re carr ied ou t as s teps 9 and 10, respectively. Since the rows a n d 
c o l u m n s are based on equa l s ample sizes, we d o n o t have to o b t a i n a s epa ra t e 
q u o t i e n t for the s q u a r e of each row or c o l u m n sum bu t car ry ou t a single divi-
sion af ter a c c u m u l a t i n g the squa res of the sums. 

Let us re tu rn for a m o m e n t to the p re l iminary analysis of va r iance in 
T a b l e 9.1, which divided the to ta l sum of squa res in to t w o par ts : the s u m of 
s q u a r e s a m o n g the six subg roups ; a n d tha t wi thin the s u b g r o u p s , t he e r r o r sum 
of squares . T h e new s u m s of squa re s pe r ta in ing to row a n d c o l u m n effects clearly 
are not pa r t of the e r ror , but mus t c o n t r i b u t e to the differences tha t compr i s e 
the sum of squares a m o n g the four s u b g r o u p s . W e therefore s u b t r a c t row and 
col u m n SS f r o m the s u b g r o u p SS. T h e lat ter is 221.8853. T h e row SS is 181.3210, 
and the c o l u m n SS is 16.6380. T o g e t h e r they a d d u p to 197.9590, a lmos t bu t 
no t qu i t e the value of the s u b g r o u p sum of squares . T h e difference represen ts 
a th i rd sum of squares , called the interaction sum of squares, whose value in 
this case is 23.9263. 

W c shall discuss the m e a n i n g of this new sum of squares presently. At the 
m o m e n t let us say only tha t it is a lmos t a lways present (but no t necessari ly 
significant) and general ly t ha t it need not be independen t ly c o m p u t e d but may 
be o b t a i n e d as i l lustrated a b o v e by the sub t r ac t i on of the row .SS a n d the col-
u m n SS f r om the s u b g r o u p SS. Th is p r o c e d u r e is s h o w n graphica l ly in F igure 
9.1, which i l lustrates the d e c o m p o s i t i o n of the total sum of squa res in to the sub-
g r o u p SS and e r ro r SS. T h e fo rmer is subdiv ided into the row SS, c o l u m n SS, 
and in te rac t ion SS. T h e relative m a g n i t u d e s of these sums of squa res will differ 
f rom exper iment to exper iment . In F igure 9.1 they a re not s h o w n p r o p o r t i o n a l 
to their ac tua l values in the l impet exper iment ; o therwise the a rea represen t ing 
the row SS wou ld have to be a b o u t 11 t imes tha t a l lot ted to the c o l u m n SS. 

Before we can intell igently test for s ignif icance in this a n o v a we mus t under -
s tand the m e a n i n g of interaction. We can best expla in in te rac t ion in a two-way 
a n o v a by m e a n s of an artificial i l lus t ra t ion based on the l impet d a t a wc have 
just s tudied. If we in t e rchange the read ings for 75% and 50'7, for A. d'uiitulis 
only, we ob ta in the d a t a tabic s h o w n in T a b i c 9.2. Only the sums of the sub-
g roups , rows, and c o l u m n s a re shown . W e comple te the analysis of var iance 
in the m a n n e r presented a b o v e and no te the results at the fool of f a b l e 9.2. 
T h e lotal and e r ro r SS are the s ame as before (Table 9.1). Th i s should not be 
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T o t a l SS = 77,570.25 "S 

Row SS = 181.3210 

Co lumn SS = 10.6380 

In te rac t ion S',S* = 23.02(53 

• S u b g r o u p SS = 211.8803 

E r r o r AS = 401.5213 

F I G U R E 9 . 1 

D i a g r a m m a t i c representa t ion of the par t i t ioning of the total sums of squares in a two-way o r thogona l 
anova . The areas of the subdivis ions are not shown p ropor t iona l to the magni tudes of the sums 
of squares. 

surpr is ing, since we a re us ing the same da t a . All t ha t we have d o n e is to inter-
change the c o n t e n t s of the lower t w o cells in the r i gh t -hand c o l u m n of the 
table. W h e n we par t i t ion the s u b g r o u p SS, we d o find s o m e differences. W e 
no te t ha t the SS be tween species (between co lumns) is u n c h a n g e d . Since the 
change we m a d e was within one co lumn, the to ta l for tha t c o l u m n was not 
a l tered a n d consequen t ly the c o l u m n SS d id not change . However , t he sums 

TABl.F. 9 . 2 

An artificial example to illustrate the meaning of interaction. The readings 
for 75'7, and 50% seawater concen t ra t ions of Acmaea digitalis in Box 9.1 
have been in terchanged. Only s u b g r o u p a n d marginal totals are given 
below. 

Seawater 
concentration 

100";, 
75",; 
so",; 

Σ 

Species 

A. scahra A digitalis £ 

84.49 
63.12 
97.39 

245.00 

59.43 
98.61 
58.70 

216.74 

143.92 
161.73 
156.09 
461/74 

Completed anova 

Sintrce of variation df 

Species 1 
Salinities 2 
Sp χ Sal 2 
Error 42 
Total 47 

SS MS 

16.6380 16.638 ns 
10.3566 5.178 m 

194.8907 97.445** 
401.5213 9.560 
623.4066 
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of the second and third rows have been altered appreciably as a result of the 
interchange of the readings for 75% and 50% salinity in A. digitalis. The sum 
for 75% salinity is now very close to that for 50% salinity, and the difference 
between the salinities, previously quite marked, is now no longer so. By con-
trast, the interaction SS, obtained by subtracting the sums of squares of rows 
and columns from the subgroup SS, is now a large quantity. Remember that 
the subgroup SS is the same in the two examples. In the first example we sub-
tracted sums of squares due to the effects of both species and salinities, leaving 
only a tiny residual representing the interaction. In the second example these 
two main effects (species and salinities) account only for little of the subgroup 
sum of squares, leaving the interaction sum of squares as a substantial residual. 
What is the essential difference between these two examples? 

In Table 9.3 we have shown the subgroup and marginal means for the 
original da ta from Table 9.1 and for the altered data of Table 9.2. The original 
results are quite clear: at 75% salinity, oxygen consumption is lower than at 
the other two salinities, and this is true for both species. We note further that 
A. scabra consumes more oxygen than A. digitalis at two of the salinities. Thus 
our statements about differences due to species or to salinity can be made 
largely independent of each other. However, if we had to interpret the artificial 
data (lower half of Table 9.3), we would note that a l though A. scabra still con-
sumes more oxygen than A. digitalis (since column sums have not changed), this 
difference depends greatly on the salinity. At 100% and 50%, A. scabra con-
sumes considerably more oxygen than A. digitalis, but at 75% this relationship 
is reversed. Thus, we are no longer able to make an unequivocal statement 
about the amount of oxygen taken up by the two species. We have to qualify 
our statement by the seawater concentrat ion at which they are kept. At 100% 

ι M i l ι 9.3 
Comparison of means of the data in Box 9.1 and Table 9.2. 

Spa ies 
Seawiiter - -

ianccniraiion A. scabra .·). (lii/italis Μ can 

Oruftnui ilalu from Box V./ 

ion",; 10.56 7.43 9.00 
75".; 7.89 7.34 7.61 
50",; 12.17 12.33 12.25 

Mean 10.21 9.03 9.62 

Artificial data from Table 

loo",; 10.56 7.43 9.00 
75",; 7.89 12.33 10.1 1 
50",; 12.17 7.34 9.76 

Mean 10.21 9.03 9.62 
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and 50%, Yscabra > y d i g i , a l i ! ^but at 75%, Tscabri l < Kd,Bilali,. If we examine the 
effects of salinity in the artificial example, we notice a mild increase in oxygen 
consumpt ion at 75%. However , again we have to qualify this s ta tement by the 
species of the consuming limpet; scabra consumes least at 75%, while digitalis 
consumes most at this concentra t ion. 

This dependence of the effect of one factor on the level of ano the r factor 
is called interaction. It is a c o m m o n and fundamenta l scientific idea. It indicates 
that the effects of the two factors are not simply additive but that any given 
combina t ion of levels of factors, such as salinity combined with any one species, 
contr ibutes a positive or negative increment to the level of expression of the 
variable. In c o m m o n biological terminology a large positive increment of this 
sort is called synergism. When drugs act synergistically, the result of the inter-
action of the two drugs may be above and beyond the sum of the separate effects 
of each drug. When levels of two factors in combina t ion inhibit each other 's 
effects, wc call it interference. (Note that "levels" in anova is customari ly used 
in a loose sense to include not only con t inuous factors, such as the salinity in 
the present example, but also quali tat ive factors, such as the two species of 
limpets.) Synergism and interference will both tend to magnify the interaction 
SS. 

Testing for interaction is an impor tant procedure in analysis of variance. 
If the artificial da t a of Table 9.2 were real, it would be of little value to state 
that 75% salinity led to slightly greater consumpt ion of oxygen. This s tatement 
would cover up the impor tan t differences in the data , which are that scabra 
consumes least at this concent ra t ion , while digitalis consumes most . 

Wc are now able to write an expression symbolizing the decomposi t ion of 
a single variatc in a two-way analysis of variance in the manner of Expres-
sion (7.2) for single-classification anova. The expression below assumes that 
both factors represent fixed t reatment effects. Model I. This would seem rea-
sonable, since species as well as salinity are fixed t reatments . Variatc Yiik is 
the Alh item in the subgroup representing the /th g roup οΓ t reatment A and 
the /th g r o u p οΓ t rea tment B. It is decomposed as follows: 

Yijk = /< + «, + / i , + (=r/i),7 + (9.1) 

where μ equals the parametr ic mean of the populat ion, is the fixed treat-
ment effect for the ;th g roup of t reatment Α, β, is the fixed t reatment effect 
of the /th g roup of t rea tment β, (of/0,,· is the interaction effect in the subgroup 
representing the /th g roup of factor A and the /lh g r o u p of factor B, and t,jk 

is the error term of the fctli item in subgroup ij. We make the usual assumpt ion 
that ej;Jl is normally distr ibuted with a mean of 0 and a variance of a 2 . If one 
or both of the factors represent Model II effects, we replace the a, and /or ftj in 
Ihe formula by A, and/ο ι ΰ, . 

In previous chapters we have seen that each sum of squares represents a 
sum of squared deviations. What actual deviat ions does an interact ion SS repre-
sent? Wc can see this easily by referring back to t h e j u i o v a s of Table 9.1. The 
variat ion a m o n g subgroups is represented by ( F — V), where V s tands for the 
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s u b g r o u p mean, and F for the grand mean. When we subtract the deviat ions 
due to rows (R — F) and those due to co lumns (C — F) f rom those due to sub-
groups , we obta in 

( F - P ) - ( « - ? ) - ( C - y ) = F - y - K + ? - c + F 
= F - κ - c + F 

This somewhat involved expression is the deviat ion due to interact ion. W h e n 
we evaluate one such expression for each subgroup, square it, sum the squares, 
and mult iply the sum by n, we ob ta in the interact ion SS. This par t i t ion of the 
devia t ions also holds for their squares. This is so because the sums of the p rod-
ucts of the separate terms cancel out . 

A simple method for revealing the na ture of the interaction present in the 
da t a is to inspect the means of the original d a t a table. We can do this in Tab le 
9.3. The original da ta , showing no interact ion, yield the following pa t te rn of 
relative magni tudes: 

Scahra Digitalis 

100% 
ν ν 

75% 
Λ Λ 

50% 

The relative magni tudes of the means in the lower part of Table 9.3 can be sum-
marized as follows: 

Scuhru Digitalis 

100% 
V Λ 

75% 
Λ V 

50% 

When the pat tern of signs expressing relative magni tudes is not uniform as in 
this latter table, interaction is indicated. As long as the pat tern of means is 
consistent, as in the former table, interaction may not be present. However , 
interact ion is often present without change in the direction of the differences; 
sometimes only the relative magni tudes are alTected. In any case, the statistical 
test needs to be performed to test whether the deviat ions arc larger than can 
be expected f rom chance alone. 

In summary , when the effect of two t rea tments applied together cannot be 
predicted from the average responses of the separate factors, statisticians call 
this phenomenon interaction and test its significance by means of an interact ion 
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mean square. This is a very c o m m o n phenomenon . If we say that the effect of 
density on the fecundity or weight of a beetle depends on its genotype, we 
imply that a genotype χ density interaction is present. If the success of several 
al ternative surgical procedures depends on the na tu re of the pos topera t ive 
t rea tment , we speak of a p rocedure χ t rea tment interact ion. O r if the effect of 
t empera ture on a metabol ic process is independent of the effect of oxygen 
concentra t ion, we say tha t t empera ture χ oxygen interact ion is absent . 

Significance testing in a two-way anova will be deferred until the next 
section. However , we should point ou t that the computa t iona l steps 4 and 9 
of Box 9.1 could have been shor tened by employing the simplified fo rmula for 
a sum of squares between two groups, i l lustrated in Section 8.4. In an analysis 
with only two rows and two columns the interact ion SS can be compu ted 
directly as 

(Sum of one diagonal - sum of o ther diagonal) 2 

abn 

9.2 Two-way anova: Significance testing 

Before we can test hypotheses abou t the sources of variat ion isolated in Box 9.1, 
we must become familiar with the expected mean squares for this design. In 
the anova table of Box 9.1 we first show the expected-mean squares for Modei 
I, both species differences and seawater concent ra t ions being fixed t rea tment 
effects. The terms should be familiar in the context of your experience in the 
previous chapter . The quant i t ies Σ " α 2 , Σ ' / ? 2 , and Σ ^ α β ) 2 represent added 
componen t s due to t rea tment for columns, rows, and interact ion, respectively. 
Note that the wi th in-subgroups or error MS again est imates the pa ramet r i c 
variance of the items, σ2 . 

The most impor tan t fact to remember abou t a Model 1 anova is that the 
mean square at each level of variat ion carries only the added effect due to that 
level of t rea tment . Hxccp! for the parametr ic variance of the items, it does not 
contain any term from a lower line. Thus, the expected M S o f f a c l o r A conta ins 
only the parametr ic variance of the items plus the added term due to factor A, 
but does nol also include interaction effects. In Model 1, the significance test 
is therefore simple and s t ra ight forward. Any source of variat ion is tested by the 
variance ratio of the appropr ia t e mean square over the error MS Thus , for the 
appropr ia t e tests we employ variance ratios Λ/Error, β/Error and ( Α χ β)/ 
Error, where each boldface term signifies a mean square. Thus A — MSA, 
Error = MSwilhiI1. 

When we do this in the example of Box 9.1, we find only factor ΰ, salinity, 
significant. Nei ther factor A nor the interaction is significant. We conclude that 
the differences in oxygen consumpt ion are induced by varying salinities (O z 

consumpt ion responds in a V-shaped manner) , and there does not appea r to be 
sufficient evidence for species differences in oxygen consumpt ion . The tabula t ion 
of the relative magni tudes of the means in the previous section shows that the 
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p a t t e r n of signs in the t w o lines is identical . Howeve r , this m a y be mis leading , 
since the m e a n of A. scabra is far higher a t 100% seawate r t h a n a t 75%, bu t tha t 
of A. digitalis is only very slightly higher. A l t h o u g h the oxygen c o n s u m p t i o n 
curves of the t w o species w h e n g r a p h e d a p p e a r far f r o m paral le l (see F i g u r e 
9.2), this suggest ion of a species χ salinity in t e rac t ion c a n n o t be s h o w n t o be 
signif icant w h e n c o m p a r e d wi th the w i t h i n - s u b g r o u p s var iance . F i n d i n g a signi-
ficant difference a m o n g salinities does no t conc lude the analysis . T h e d a t a sug-
gest tha t at 75% salini ty there is a real r educ t ion in oxygen c o n s u m p t i o n . 
W h e t h e r this is really so cou ld be tested by the m e t h o d s of Sect ion 8.6. 

W h e n we ana lyze the resul ts of the artificial example in T a b l e 9.2, we find 
only the in te rac t ion MS s ignificant . Thus , we wou ld conc lude t h a t the r e sponse 
to salinity differs in the t w o species. Th i s is b r o u g h t ou t by inspec t ion of the 
da t a , which s h o w tha t at 75% salinity A. scabra c o n s u m e s least oxygen a n d 
A. digitalis c o n s u m e s mos t . 

In the last (artificial) e x a m p l e the m e a n squa res of the two fac tors (main 
effects) a re not significant , in any ease. However , m a n y s ta t is t ic ians w o u l d not 
even test t hem once they f o u n d the in te rac t ion m e a n squa re to be signif icant , 
since in such a case an overal l s t a t emen t for each fac to r would have little m e a n -
ing. A s imple s t a t emen t of response to salinity wou ld be unclear . T h e presence 
of in te rac t ion m a k e s us qual i fy o u r s t a tements : "The p a t t e r n of response to 
c h a n g e s in sal ini ty differed in the two species." We would consequen t ly have 
t o descr ibe separa te , nonpara l l e l r e sponse curves for the two species. O c c a -
sionally, it becomes i m p o r t a n t to test for overal l s ignificance in a M o d e l 1 
a n o v a in spite of the presence of in terac t ion . W e m a y wish t o d e m o n s t r a t e 
the significance of the effect of a drug , regardless of its significant in te rac t ion 
with age of the pa t ien t . T o s u p p o r t this con t en t i on , we might wish to test the 
m e a n s q u a r e a m o n g d r u g c o n c e n t r a t i o n s (over the e r r o r MS), regardless of 
whe the r the in te rac t ion MS is significant. 

.1. digitalis 

50 75 

% Seawatrr 
100 

I 'KiURE 9 . 2 

O x y g e n c o n s u m p t i o n by t w o species of 
l impets at th ree salinities. D a t a f r o m Box 9.1. 
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Box 9.1 also lists expected mean squares for a Model II anova and a mixed-
model two-way anova. Here, variance componen t s for co lumns (factor A), for 
rows (factor B), and for interaction make their appearance, and they are desig-
nated σΑ, σ | , and σ2

ΑΒ, respectively. In the Model II anova note that the two 
main effects conta in the variance componen t of the interact ion as well as their 
own variance componen t . In a Model II anova we first test (A χ 6)/Error. If 
the interaction is significant, we cont inue testing Aj(A χ Β) and B/(A χ Β). But 
when Α χ Β is no t significant, some au thors suggest compu ta t i on of a pooled 
error MS = (SSAxB + S S w i t h i n ) / ( ^ x B + i//within) to test the significance of the 
main effects. The conservative posit ion is to cont inue to test the main effects 
over the interact ion MS, and we shall follow this procedure in this book. Only 
one type of mixed model is shown in Box 9.1, in which factor A is assumed 
to be fixed and factor Β to be r andom. If the si tuation is reversed, the expected 
mean squares change accordingly. In the mixed model, it is the mean square 
representing the fixed t rea tment that carries with it the variance componen t of 
the interaction, while the mean square representing the r a n d o m factor conta ins 
only the error variance and its own variance componen t and does not includc 
the interaction componen t . We therefore test the MS of the r a n d o m main effect 
over the error , but test the fixed t reatment MS over the interaction. 

9.3 Two-way anova without replication 

In many experiments there will be no replication for each combina t ion of factors 
represented by a cell in the data lable. In such cases we canno t easily talk of 
"subgroups ," since each ccll contains a single reading only. Frequent ly it may 
be too difficult or too expensive to obtain more than one reading per cell, 
or the measurements may be known to be so repeatable that there is little 
point in est imating their error. As we shall see in the following, a two-way anova 
without replication can be properly applied only with certain assumptions. 
For some models and tests in anova wc must assume that there is no interaction 
present. 

O u r illustration for this design is from a study in metabol ic physiology. 
In Box 9.2 wc show levels of a chemical, S -PI .P , in the blood scrum of eight 
s tudents before, immediately after, and 12 hours after the adminis t ra t ion of an 
alcohol dose. Each studcnl has been measured only once al each lime. What 
is (he appropr ia t e model for this a n o v a 7 

Clearly, the times arc Model I. The eight individuals, however, are not likely 
to be of specific interest. It is improbable that an investigator would try to ask 
why student 4 has an S - P E P level so much higher than that of s tudent 3. Wc 
would draw more meaningful conclusions from this problem if wc considered 
the eight individuals to be randomly sampled. Wc could then est imate the varia-
tion a m o n g individuals with respect to the effect of alcohol over time. 

The computa t ions arc shown in Box 9.2. They arc the same as those in Box 
9.1 except that the expressions to be evaluated are considerably simpler. Since 
ι i = l , much of the summat ion can be omit ted. The subgroup sum of squares 



BOX 9.2 
Two-way anova without replication. 
Serum-pyridoxal-t-phosphate (S-PLP) content (ng per ml of serum) of blood serum before and after ingestion of alcohol in eight sub-
jects. This is a mixed-model anova. 

Factor A: Time 
(a = 3) 

Factor B: Before 
Individuals alcohol Immediately 12 hours 

Φ = 8) ingestion after ingestion later Σ 

1 20.00 12.34 17.45 49.79 
2 17.62 16.72 18.25 52.59 
3 11.77 9.84 11.45 33.06 
4 30.78 20.25 28.70 79.73 
5 11.25 9.70 12.50 33.45 
6 19.17 15.67 20.04 54.88 
7 9.33 8.06 10.00 27.39 
8 32.96 19.10 30.45 82.51 

Σ 152.88 111.68 148.84 413.40 

Source: Data from Leinert et aL (1983). 

The eight sets of three readings are treated as replications (blocks) in this analysis. Time is a fixed treatment effect, while differ-
ences between individuals are considered to be random effects. Hence, this is a mixed-model anova. 

Preliminary computations 

a b 
1. Grand total = Σ Σ y = 4 1 3 · 4 0 

α b 
2. Sum of the squared observations = Σ Σ y 2 = (20.00)2 + - · · + (30.45)2 = 8349.4138 

-» c r Λ ι . . ι .»· Μ u ι · r ι Σ ( Σ 7 (152.88)2 + (111.68)2 + (148.84)2 
3. Sum of squared column totals divided by sample size of a column = — 7 = — — = 7249.7578 

b 8 
b f a \ 2 
y τ y] 

\ / (49 79)2 -t- • · • -j- (82 51 )2 

4. Sum of squared row totals divided by sample size of a row = — — = — ' —-—— = 8127.8059 
a 3 

a b \2 

Σ Σ η 
5. Grand total squared and divided by the total sample size = correction term CT •-

ab 

= (quantity I)2
 = ( 4 1 3 : 4 0 ) ! = 7 1 2 0 8 1 5 0 

ab 24 

6· SSu»ai = Σ Σ γ 2 ~ C T = quantity 2 - quantity 5 = 8349.4138 - 7120.8150 = 1228.5988 

Σ(ςυ)2 

7. SSA (SS of columns) = — \ 1 - C T = quantity 3 - quantity 5 = 7249.7578 - 7120.8150 = 128.9428 
b 

Σ(ςυ)2 

8. SSB (SS of rows) = — ^ J— - CT= quantity 4 - quantity 5 = 8127.8059 - 7120.8150 = 1006.9909 
a 

9. SSerror (remainder; discrepance) = SSlota) - SSA - SSB = quantity 6 — quantity 7 - quantity 8 
= 1228.5988 - 128.9428 - 1006.9909 = 92.6651 
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Tota l SS = 1228.5988 < 

R o w SS = 1006.9909 

C o l u m n .S'.S = 128.9428 

In t e r ac t i on SS = 92.6651 = r e m a i n d e r 

>- S u b g r o u p = 122S.5988 

£ E r r o r .S'.V = 0 

F I G U R F . 9 . 3 

D i a g r a m m a t i c r ep resen ta t ion of the pa r t i t i on ing of the total sums of squa res in a two-way o r t h o -
gona l a n o v a wi thou t rep l ica t ion . T h e a reas of the subd iv i s ions are not s h o w n p r o p o r t i o n a l to the 
m a g n i t u d e s of the s u m s of squares . 

in this example is the same as the total sum of squares. If this is not immediately 
apparent , consult Figure 9.3, which, when compared with Figure 9.1, illustrates 
that the er ror sum of squares based on variat ion within subgroups is missing 
in this example. Thus , after we subtrac t the sum of squares for co lumns (factor 
A) and for rows (factor B) f rom the total SS, we are left with only a single sum 
of squares, which is the equivalent of the previous interaction SS but which is 
now the only source for an er ror term in the anova. This SS is k n o w n as the 
remainder SS or the discrepance. 

If you refer to the expected mean squares for the two-way anova in Box 9.1, 
you will discover why we made the s ta tement earlier that for some models and 
tests in a two-way anova wi thout replication we must assume that the inter-
action is not significant. If interact ion is present, only a Model II anova can 
be entirely tested, while in a mixed model only the fixed level can be tested 
over the remainder mean square. But in a pure Model I anova, or for the 
random factor in a mixed model, it would be improper to test the main effects 
over the remainder unless we could reliably assume that no added effect due 
to interaction is present. Genera l inspection of the da t a in Box 9.2 convinces 
us that the t rends with time for any one individual are faithfully reproduced 
for the other individuals. Thus, interact ion is unlikely to be present. If, for 
example, some individuals had not responded with a lowering of their S - P L P 
levels after ingestion of alcohol, interact ion would have been apparen t , and the 
test of the mean square a m o n g individuals carricd out in Box 9.2 would not 
have been legitimate. 

Since we assume no interaction, the row and co lumn mean squares arc 
tested over the er ror MS. The results are not surprising; casual inspection of 
the da ta would have predicted our findings. Differences with time are highly 
significant, yielding an F„ value of 9.741. The added variance a m o n g individuals 
is also highly significant, assuming there is no interaction. 

A c o m m o n appl icat ion of two-way anova wi thout replication is the repeated 
testing of the same individuals. By this we mean that the same g roup of individuals 
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is tested repeatedly over a period of time. The individuals are one factor (usually 
considered as r a n d o m and serving as replication), and the time dimension is 
the second factor, a fixed t rea tment effect. F o r example, we might measure 
growth of a s t ructure in ten individuals at regular intervals. When we test for 
the presence of an added variance componen t (due to the r a n d o m factor), we 
again must assume that there is no interact ion between time and the individuals; 
that is, the responses of the several individuals are parallel t h rough time. An-
o ther use of this design is found in various physiological and psychological 
experiments in which we test the same g roup of individuals for the appea rance 
of some response after t rea tment . Examples include increasing immuni ty after 
antigen inoculations, altered responses after condit ioning, and measures of 
learning after a n u m b e r of trials. Thus, we may study the speed with which ten 
rats, repeatedly tested on the same maze, reach the end point . The fixed-
t rea tment effect would be the successive trials to which the rats have been 
subjected. The second factor, the ten rats, is r andom, presumably represent ing 
a r a n d o m sample of rats f rom the labora tory popula t ion . 

O n e special case, c o m m o n enough to merit separate discussion, is repeated 
testing of the same individuals in which only two t reatments (a = 2) are giv-
en. This case is also known as paired comparisons, because each observat ion 
for one t rea tment is paired with one for the other t reatment . This pair is com-
posed of the same individuals tested twice or of two individuals with com-
m o n experiences, so that we can legitimately a r range the da t a as a two-way 
anova . 

Let us e labora te on this point. Suppose we test the muscle tone of a g r o u p 
of individuals, subject them to severe physical exercise, and measure their muscle 
tone once more. Since the same g roup of individuals will have been tested twice, 
we can a r range our muscle tone readings in pairs, each pair representing readings 
on one individual (before and after exercise). Such data are appropr ia te ly treated 
by a two-way anova without replication, which in this case would be a paircd-
compar i sons test because there are only two t rea tment classes. This "before and 
after t r ea tment" compar i son is a very frequent design leading to paired com-
parisons. Another design simply measures two stages in the development of a 
g r o u p of organisms, time being the t reatment intervening between the Iwo 
stages. The example in Box 9.3 is of this nature. It measures lower face width 
in a g roup of girls at age five and in the same g r o u p of girls when they are six 
years old. The paired compar i son is for each individual girl, between her face 
width when she is five years old and her face width at six years. 

Paired compar i sons often result f rom dividing an organism or o ther in-
dividual unit so that half receives t rea tment I and the other half t rea tment 2, 
which may be the control . Thus, if we wish to test the strength of two ant igens 
or allergens we might inject one into each a rm of a single individual and mea-
sure the diameter of the red area produced. It would not be wise, f rom the 
point of view of experimental design, to test antigen 1 on individual I and 
antigen 2 on individual 2. These individuals may be differentially susceptible 
to these antigens, and we may learn little abou t the relative potency of the 
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BOX 9.3 
Paired comparisons (randomized Mocks with β = 2). 

Lower face width (skeletal bigoniai diameter in cm) for 15 North American white 
girls measured when 5 and again when 6 years old. 

M> 
w (2) (i) » = r i 2 - r ( I 

Individuals 5-year-olds 6-year-olds Σ (difference) 

1 7.33 7.53 14.86 0.20 
2 7.49 7.70 15.19 .21 
3 7.27 7.46 14.73 .19 
4 7.93 8.21 16.14 .28 
5 7.56 7.81 15.37 .25 
6 7.81 8.01 15.82 .20 
7 7.46 7.72 15.18 .26 
8 6.94 7.13 14.07 .19 
9 7.49 7.68 15.17 .19 

10 7.44 7.66 15.10 .22 
11 7.95 8.11 16.06 .16 
12 7.47 7.66 15.13 .19 
13 7.04 7.20 14.24 .16 
14 7.10 7.25 14.35 .15 
15 7.64 7.79 15.43 .15 

E r 111.92 114.92 226.84 3.00 

Σγ1 836.3300 881.8304 3435.6992 0.6216 

Source: From a larger study by Newman and Meredith (1956). 

Two-way anova without replication 

Anova table 

Source of 
variation df SS MS F. Expected MS 

Ages (columns; 
factor A) 1 0.3000 0.3000 388.89** <r2 + o2AB + -b-τΣ"2 

<3—1 

σ2 + ασί 

Individuals 
(rows; factor Β) 14 2.6367 0.188,34 (244.14)** 

<r2 + o2AB + -b-τΣ"2 

<3—1 

σ2 + ασί Remainder 14 0.0108 0.000,771,43 <r2 + tTab 
Total 29 2.9475 

^o.oi|i.i4] = 8.86 ^0.01(12.12] = (Conservative tabled value) 

Conclusions.—The variance ratio for ages is highly significant. We conclude 
that faces of 6-year-old girls are wider than those of 5-year-olds. If we are willing 
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BOX 9.3 
Continued 
to assume that the interaction o \ B is zero, we may test for an added variance 
component among individual girls and would find it significant. 

The t test for paired comparisons 

._ D ~ (μ ι~μ2) 
«Β 

where D is the mean difference between the paired observations. 

_ το 3.oo
 Λ D = _ _ — _ _ _ ο 20 

and sg = sD/v'fo is the standard error of D calculated from the observed differences 
in column (4): 

- ( ^ D f j b _ jO.6216 - (3.002/fS) _ /0.0216 
Sj> -1 b — I 14 ~ y j 14 

• 0.010,141,9 

= V0S")T,542,86 = 0.039,279,2 

and thus 

_ s„ _ 0.039,279,2 

We assume that the true difference between the means of the two groups, pt — μ2, 
equals zero: 

D - 0 0.20 - 0 

^ " " 0Ό10,14Ι,9 " 1 9 7 2 0 3 W i t h " ' = 

This yields Ρ « 0.0L Also tj = 388.89, which equals the previous F„, 

antigens, since this would be confounded by the differential responses of the 
subjects. A much better design would be lirst to injcct antigen 1 into the left a rm 
and antigen 2 into the right arm of a g roup of n individuals and then to analyze 
the da ta as a two-way anova without replication, with η rows (individuals) and 
2 co lumns (treatments). It is p robably immaterial whether an ant igen is injected 
into the right or left a rm, but if wc were designing such an exper iment and 
knew little abou t the reaction of h u m a n s to antigens, we might, as a precaut ion, 
r andomly allocate antigen 1 to the left or right a rm for different subjects, antigen 
2 being injccted into the oppos i te arm. A similar example is the testing of ccrtain 
plant viruses by rubbing a concent ra t ion of the virus over the surfacc of a leaf 
and count ing the resulting lesions. Since different leaves are susceptible in dif-
ferent degrees, a convent ional way of measur ing the strength of the virus is to 
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wipe it over the half of the leaf on one side of the midrib, rubbing the other 
half of the leaf with a control or s tandard solution. 

Another design leading to paired compar i sons is to apply the t rea tment to 
two individuals shar ing a c o m m o n experience, be this genetic or environmenta l . 
Thus, a d rug or a psychological test might be given to g roups of twins or sibs. 
one of each pair receiving the t reatment , the o ther one not. 

Finally, the pa i red-compar i sens technique may be used when the two in-
dividuals to be compared share a single experimental unit and are thus subjected 
to c o m m o n envi ronmenta l experiences. If we have a set of rat cages, each of 
which holds two rats, and we are trying to compare the effect of a ho rmone 
injection with a control , we might inject one of each pair of rats with the 
ho rmone and use its cage mate as a control . This would yield a 2 χ η anova 
for η cages. 

O n e reason for fea tur ing the pa i red-compar isons test separately is tha t it 
alone a m o n g the two-way anovas wi thout replication has an equivalent , alter-
native me thod of ana lys is—the t test for paired comparisons , which is the 
t radi t ional me thod of analyzing it. 

The pa i red-compar isons ease shown in Box 9.3 analyzes face widths of five-
and six-year-old girls, as already ment ioned. The quest ion being asked is 
whether the faces of six-year-old girls are significantly wider than those of five-
year-old girls. The da t a are shown in co lumns (1) and (2) for 15 individual girls. 
Co lumn (3) features the row sums that are necessary for the analysis of variance. 
The computa t ions for the two-way anova wi thout replication are the same as 
those already shown for Box 9.2 and thus arc not shown in detail. The anova 
table shows that there is a highly significant difference in face width between 
the two age groups. If interaction is assumed to be zero, there is a large added 
variance componen t a m o n g the individual girls, undoubted ly representing 
genetic as well as envi ronmenta l differences. 

The other method of analyzing pa i red-compar isons designs is the well-
known t test for paired comparisons. It is qui te simple to apply and is illustrated 
in the second half of Box 9.3. It tests whether the mean of sample differences 
between pairs of readings in the two columns is significantly different from a 
hypothetical mean, which the null hypothesis puts at zero. The s tandard error 
over which this is tested is the s tandard er ror of the mean difference. The dif-
ference column has to be calculated and is shown in column (4) of the data 
tabic in Box 9.3. The compu ta t i ons arc quite s t ra ightforward, and the conclu-
sions arc the same as for the two-way anova. This is ano the r instance in which 
we obtain the value of F s when we square the value of /,. 

Al though the pa i red-compar i sons t test is the tradit ional method of solving 
this type of problem, we prefer the two-way anova. Its compu ta t ion is no more 
t ime-consuming and has the advan tage of providing a measure of the variance 
component a m o n g the rows (blocks). This is useful knowledge, because if there-
is no significant added variance componen t a m o n g blocks, one might simplify 
the analysis and design of future, similar studies by employing single classifi-
cation anova . 
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Exercises 

9.1 Swanson, Latshaw, and Tague (1921) determined soil pH electrometrically for 
various soil samples from Kansas. An extract of their data (acid soils) is 
shown below. D o subsoils differ in pH from surface soils (assume that there is 
no interaction between localities and depth for pH reading)? 

County Soil type Surface ρ Η Subsoil pH 

Finney Richfield silt loam 6.57 8.34 
Montgomery Summit silty clay loam 6.77 6.13 
Doniphan Brown silt loam 6.53 6.32 
Jewell Jewell silt loam 6.71 8.30 
Jewell Colby silt loam 6.72 8.44 
Shawnee Crawford silty clay loam 6.01 6.80 
Cherokee Oswego silty clay loam 4.99 4.42 
Greenwood Summit silty clay loam 5.49 7.90 
Montgomery Cherokee silt loam 5.56 5.20 
Montgomery Oswego silt loam 5.32 5.32 
Cherokee Bates silt loam 5.92 5.21 
Cherokee Cherokee silt loam 6.55 5.66 
Cherokee Neosho silt loam 6.53 5.66 

ANS. MS between surface and subsoils = 0.6246, MS r e s idua l = 0.6985, Fs = 0.849 
which is clearly not significant at the 5% level. 

9.2 The following data were extracted from a Canadian record book of purebred 
dairy cattle. Random samples of 10 mature (five-year-old and older) and 10 
two-year-old cows were taken from each of five breeds (honor roll, 305-day 
class). The average butterfat percentages of these cows were recorded. This 
gave us a total of 100 butterfat percentages, broken down into five breeds 
and into two age classes. The 100 butterfat percentages are given below. 
Analyze and discuss your results. You will note that the tedious part of 
the calculation has been done for you. 

Ayshire Canadian Guernsey Holstein-Friesian Jersey 
Mature 2-yr Mature 2-yr Mature 2-yr Mature 2-vr Mature 2-yr 

3.74 4.44 3.92 4.29 4.54 5.30 3.40 3.79 4.80 5.75 
4.01 4.37 4.95 5.24 5.18 4.50 3.55 3.66 6.45 5.14 
3.77 4.25 4.47 4.43 5.75 4.59 3.83 3.58 5.18 5.25 
3.78 3.71 4.28 4.00 5.04 5.04 3.95 3.38 4.49 4.76 
4.10 4.08 4.07 4.62 4.64 4.83 4.43 3.71 5.24 5.18 
4.06 3.90 4.10 4.29 4.79 4.55 3.70 3.94 5.70 4.22 
4.27 4.41 4.38 4.85 4.72 4.97 3.30 3.59 5.41 5.98 
3.94 4.1 1 3.98 4.66 3.88 5.38 3.93 3.55 4.77 4.85 
4.1 1 4.37 4.46 4.40 5.28 5.39 3.58 3.55 5.18 6.55 
4.25 3.53 5.05 4.33 4.66 5.97 3.54 343 5.23 5.72 

40.03 41.17 43.66 45.11 48.48 50.52 37.21 36.18 52.45 53.40 

4.003 4.1 17 4.366 4.51 1 4.848 5.052 3.721 3.618 5.245 5.340 
iihit 
X Y2 = 2059.6109 
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9.3 Blakeslee (1921) studied length-width ratios of second seedling leaves of two 
types of Jimson weed called globe (G) and nominal (TV). Three seeds of each 
type were planted in 16 pots. Is there sufficient evidence to conclude that globe 
and nominal differ in length-width ratio? 

Pot 
identification 

number 

Types Pot 
identification 

number G Ν 

16533 1.67 1.53 1.61 2.18 2.23 2.32 
16534 1.68 1.70 1.49 2.00 2.12 2.18 
16550 1.38 1.76 1.52 2.41 2.11 2.60 
16668 1.66 1.48 1.69 1.93 2.00 2.00 
16767 1.38 1.61 1.64 2.32 2.23 1.90 
16768 1.70 1.71 1.71 2.48 2.11 2.00 
16770 1.58 1.59 1.38 2.00 2.18 2.16 
16771 1.49 1.52 1.68 1.94 2.13 2.29 
16773 1.48 1.44 1.58 1.93 1.95 2.10 
16775 1.28 1.45 1.50 1.77 2.03 2.08 
16776 1.55 1.45 1.44 2.06 1.85 1.92 
16777 1.29 1.57 1.44 2.00 1.94 1.80 
16780 1.36 1.22 1.41 1.87 1.87 2.26 
16781 1.47 1.43 1.61 2.24 2.00 2.23 
16787 1.52 1.56 1.56 1.79 2.08 1.89 
16789 1.37 1.38 1.40 1.85 2.10 2.00 

ANS. AFVwilhin — 0.0177, MS, x,, = 0.0203, MSiy)^ = 7.3206 (1·\ = 360.62**), 
MSiMs = 0.0598 (F, = 3.378**). The cllect of pots is considered to be a Model 11 
factor, and types, a Model 1 factor. 

9.4 The following data were extracted from a more cntensive study by Sokal and 
Kartcn (1964). The data represent mean dry weights (in mg) of three genotypes 
of beetles, 'I'riholiimi castaneum, reared at a density of 20 beetles per gram of 
flour. The four scries of experiments represent replications. 

Series ι + 

1 0.958 
2 0.971 
3 0.927 
4 0.971 

(ienol ι 

+ b bb 

0.986 0.925 
1.051 0.952 
0.891 0.829 
1.010 0.955 

Test whether the genotypes differ in mean dry weight. 
9.5 The mean length of developmental period (in days) for three strains of house-

flies at seven densities is given. (Data by Sullivan and Sokal, 1963.) Do these 
Hies differ in development period with density and among strains? You may 
assume absence of strain χ density interaction. 
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Strains 

Dt'/i.si'/ V 
per container O L BF.LL b w b 

6 0 9 .6 9 .3 9 .3 
8 0 10.6 9.1 9 .2 

160 9.8 9 .3 9 .5 
3 2 0 10.7 9.1 10.0 
6 4 0 n . i 11.1 10.4 

1280 10.9 11.8 10.8 
2 5 6 0 12.8 10.6 10.7 

ANS. MS r„1( iual = 0.3426, MSMrain, = 1.3943 (F, = 4.070*), MS„cn, l ty = 2.0905 
(F„ = 6.1019**). 

9.6 The following data are extracted from those of French (1976), who carried out 
a study of energy utilization in the pocket mouse I'eroynathus longimembris 
during hibernation at different temperatures. Is there evidence that the amount 
of food available affects the amount of energy consumed at different tempera-
tures during hibernation? 

Restricted food Ad-libit um footl 

,v C IS C s c IS C 

I'jicriiv hnenjv hncrii r Enerij 
Animal used Animal used •1 nnnal used Animal used 

no ike id ·/) int. 1 kcal !l) no. (/«•«/,>/) no. \kcal;g\ 

1 62 .69 5 72 .60 13 9 5 . 7 3 17 101.19 
ρ .54.07 6 70 .97 14 63 .95 18 76.8 (S 
3 6 5 . 7 3 7 74 .32 15 144.30 19 7 4 . 0 8 
4 62 .98 8 53 .02 16 144.30 2 0 8 1 . 4 0 



CHAPTER 

Assumptions of 
Analysis of Variance 

W c shall n o w e x a m i n e the under ly ing a s s u m p t i o n s of the analys is of var iance, 
m e t h o d s for test ing whe the r these a s s u m p t i o n s a re valid, the consequences for 
an a n o v a if the a s s u m p t i o n s a re violated, and s teps to be t aken if the a s s u m p -
t ions c a n n o t be met. W c should stress t ha t before you car ry out any a n o v a 
on an ac tua l research p r o b l e m , you shou ld assure yourself tha t the a s s u m p -
t ions listed in this c h a p t e r seem reasonab le . If they arc not , you shou ld ca r ry 
out one of several poss ible a l te rna t ive s teps to r emedy the s i tua t ion . 

In Scct ion 10.1 wc briefly list the va r ious a s s u m p t i o n s of ana lys i s of vari-
ance. W c descr ibe p rocedu re s for tes t ing s o m e of t hem and briefly s ta te the 
consequences if the a s s u m p t i o n s d o no t hold , and we give in s t ruc t ions on how 
to proceed if they d o not . T h e a s s u m p t i o n s inc lude r a n d o m sampl ing , inde-
pendence, homogene i t y of var iances , normal i ty , and addi t iv i ty . 

In m a n y cases, d e p a r t u r e f r o m the a s s u m p t i o n s of analysis of var iance 
can be rectified by t r a n s f o r m i n g the or ig inal d a t a by using a new scale. T h e 
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ra t ionale behind this is given in Section 10.2, together with some of the c o m m o n 
t ransformat ions . 

When t rans format ions are unable to m a k e the da t a conform to the assump-
tions of analysis of variance, we mus t use other techniques of analysis, ana logous 
to the intended anova . These are the nonpa rame t r i c or dis t r ibut ion-free tech-
niques, which are somet imes used by preference even when the pa ramet r i c 
method (anova in this case) can be legitimately employed. Researchers often 
like to use the nonpa rame t r i c me thods because the assumpt ions underlying 
them are generally simple and because they lend themselves to rapid compu-
tat ion on a small calculator . However, when the assumpt ions of anova are 
met, these me thods are less efficient than anova . Section 10.3 examines three 
nonpa rame t r i c me thods in lieu of anova for two-sample cases only. 

10.1 The assumptions of anova 

Randomness. All anovas require that sampl ing of individuals be at r andom. 
Thus, in a s tudy of the effects of three doses of a d rug (plus a control) on five 
rats each, the five rats al located to each t rea tment must be selected at r a n d o m . 
If the five rats employed as controls are either the youngest or the smallest 
or the heaviest rats while those allocated to some other t rea tment are selected 
in some other way, it is clear that the results are not apt to yield an unbiased 
est imate of the true t rea tment effects. N o n r a n d o m n c s s of sample selection may 
well be reflected in lack of independence of the items, in heterogeneity of vari-
ances, or in n o n n o r m a l dis t r ibut ion —all discussed in this section. Adequa te 
safeguards to ensure r a n d o m sampling dur ing the design of an experiment , or 
dur ing sampling from natural populat ions, are essential. 

Independence. An assumpt ion stated in each explicit expression for the ex-
pected value of a variatc (for example. Expression (7.2) was Yit = μ + a i + e : j) 
is that the error term e,, is a r a n d o m normal variable. In addi t ion, for com-
pleteness we should also add the s tatement that it is assumed that the e's 
are independent ly and identically (as explained below under "Homogene i ty of 
variances") distr ibuted. 

Thus, if you ar ranged the variates within any one group in some logical 
order independent of their magni tude (such as the order in which the measure-
ments were obtained), you would expect the e . / s to succeed each other in a 
r andom sequence. Consequent ly , you would assume a long sequence of large 
positive values followed by an equally long sequence of negative values to be 
qui te unlikely. You would also not cxpcct positive and negative values to alter-
nate with regularity. 

How could depar tures from independence arise? An obvious example would 
be an experiment in which the experimental units were pints of ground laid out 
in a field. In such a case it is often found that adjacent plots of g round give 
rather similar yields. It would thus be impor tan t not to g roup all the plots 
conta in ing the same t reatment into an adjacent series of plots but ra ther to 
randomize the allocation of t rea tments a m o n g the experimental plots. The phys-
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ical process of r a n d o m l y a l loca t ing the t r e a t m e n t s to the expe r imen ta l p lo ts 
ensures t ha t the e's will be independen t . 

Lack of i n d e p e n d e n c e of the e's c an resul t f r o m cor re la t ion in t ime r a the r 
t h a n space. In a n expe r imen t we migh t m e a s u r e the effect of a t r e a t m e n t by 
record ing weights of ten individuals . O u r ba l ance m a y suffer f rom a m a l a d -
j u s t m e n t t ha t resul ts in giving successive underes t imates , c o m p e n s a t e d for by 
several overes t imates . Converse ly , c o m p e n s a t i o n by the o p e r a t o r of the ba l ance 
m a y result in regular ly a l t e rna t ing over- a n d unde re s t ima te s of the t rue weight . 
H e r e again , r a n d o m i z a t i o n m a y o v e r c o m e the p r o b l e m of n o n i n d e p e n d e n c e of 
er rors . F o r example , we m a y de t e rmine the sequence in which ind iv idua l s of 
the var ious g r o u p s a re weighed acco rd ing to s o m e r a n d o m p rocedure . 

The re is n o s imple a d j u s t m e n t or t r a n s f o r m a t i o n t o o v e r c o m e the lack of 
independence of er rors . T h e bas ic design of the exper imen t o r the way in which 
it is pe r fo rmed m u s t be changed . If the e's a re no t i ndependen t , the validi ty 
of the usual F test of s ignif icance can be seriously impa i red . 

Homogeneity of variances. In Sect ion 8.4 a n d Box 8.2, in which we de-
scribed the t test for the difference between t w o means , you were told t ha t 
the stat ist ical test was valid only if we could a s sume tha t the var iances of the 
t w o samples were equal . A l t h o u g h we have n o t stressed it so far , this a s s u m p -
tion tha t the e ; / s have identical var iances a lso under l ies the equ iva len t a n o v a 
test for t w o s a m p l e s — a n d in fact any type of anova . Equality of variances in 
a set of samples is an i m p o r t a n t p recond i t ion for several s tat is t ical tests. Syn-
o n y m s for this cond i t i on a re homogeneity of variances and homoscedasticity. 
This lat ter te rm is co ined f rom Greek r o o t s m e a n i n g equa l scat ter ; t he converse 
condi t ion ( inequal i ty of var iances a m o n g samples) is called heteroscedasticity. 
Because we a s sume tha t each s a m p l e var iance is an e s t ima te of the s a m e p a r a -
metr ic e r ro r var iance, the a s s u m p t i o n of homogene i t y of var iances m a k e s in-
tuitive sense. 

W e have a l ready seen how to test whe the r two samples arc homoscedas t i c 
pr ior to a t test of the differences be tween t w o m e a n s (or the ma themat i ca l ly 
equivalent two- samp le analys is of variance): we use an F test for the hypo theses 
H n : a \ = o \ a n d Η , : σ ] Φ σ \ , as i l lustrated in Scct ion 7.3 a n d Box 7.1. F o r 
m o r e than t w o samples there is a "qu ick and d i r ty" m e t h o d , preferred by m a n y 
because of its simplicity. Th is is the Fm. lx lest. Th is test relies on the tabled 
cumula t ive probabi l i ty d i s t r ibu t ion of a stat ist ic that is the var iance ra t io of the 
largest to the smallest of several sample var iances . Th i s d i s t r ibu t ion is s h o w n in 
Tab l e VI. Let us a s s u m e tha t we have six a n t h r o p o l o g i c a l samples of 10 bone 
lengths each, for which we wish to car ry out an anova . T h e var iances of the 
six samples r ange f rom 1.2 to 10.8. W e c o m p u t e the m a x i m u m var iance ra t io 
'sn>axAs'min = Ύ.'ι~ = 9.0 a n d c o m p a r e it with f ' m . u l l J „|, critical values of which a re 
found in T a b l e VI. F o r a = 6 and ν = η - 1 = 9, /·'„„„ is 7.80 and 12.1 at the 
5% and Γ'ό levels, respectively. We conc lude tha t the var iances of the six sam-
ples a rc significantly he te rogeneous . 

W h a t m a y cause such he terogenei ty? In this case, we suspect that some of 
the p o p u l a t i o n s are inherent ly m o r e var iab le t h a n o thers . S o m e races or species 
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are relatively uniform for one character , while others are quite variable for the 
same character . In an a n o v a representing the results of an experiment , it may 
well be that one sample has been obta ined under less s tandardized condi t ions 
than the others and hence has a greater variance. There are also m a n y cases 
in which the heterogeneity of variances is a funct ion of an improper choice of 
measurement scale. With some measurement scales, variances vary as funct ions 
of means. Thus, differences a m o n g means br ing about he terogeneous variances. 
F o r example, in variables following the Poisson dis tr ibut ion the variance is in 
fact equal to the mean, and popula t ions with greater means will therefore have 
greater variances. Such depar tures f rom the assumpt ion of homoscedast ic i ty 
can often be easily corrected by a suitable t ransformat ion , as discussed later in 
this chapter . 

A rapid first inspection for hetcroscedasticity is to check for corre la t ion 
between the means and variances or between the means and the ranges of the 
samples. If the variances increase with the means (as in a Poisson distribution), 
the rat ios s2/Y or s/Ϋ = V will be approximate ly constant for the samples. 
If means and variances are independent , these rat ios will vary widely. 

The consequences of modera t e heterogeneity of variances are not too seri-
ous for the overall test of significance, but single degree of f reedom compar i -
sons may be far f rom accurate. 

If t r ans format ion canno t cope with heteroscedasticity, nonparamet r i c 
me thods (Section 10.3) may have to be resorted to. 

Normality. We have assumed that the error terms e ; j of the variates in each 
sample will be independent , that the variances of the error terms of the several 
samples will be equal , and, finally, tha t the error terms will be normal ly dis-
tr ibuted. If there is serious quest ion abou t the normali ty of the data , a graphic 
test, as illustrated in Section 5.5, might be applied to each sample separately. 

The consequences of nonnormal i ty of error are not too serious. Only very 
skewed dis tr ibut ion would have a marked effect on the significance level of 
the F test or on the efficiency of the design. The best way to correct for lack 
of normal i ty is to carry out a t rans format ion that will make the data normal ly 
dis tr ibuted, as explained in the next section. If no simple t ransformat ion is satis-
factory, a nonpa rame t r i c test, as carried out in Section 10.3, should be sub-
sti tuted for the analysis of variance. 

Additivitv· In two-way anova without replication it is necessary to assume 
that interaction is not present if one is to make tests of the main effects in a 
Model I anova . This assumpt ion of no interaction in a two-way anova is some-
times also referred to as the assumpt ion of additivity of the main effects. By this 
we mean that any single observed variate can be decomposed into addit ive 
componen t s representing the t rea tment effects of a part icular row and co lumn 
as well as a r a n d o m term special to it. If interaction is actually present, then 
the F test will be very inefficient, and possibly misleading if the effect of the 
interaction is very large. A check of this assumpt ion requires either more than 
a single observat ion per cell (so that an error mean square can be computed) 
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or an i n d e p e n d e n t e s t ima te of the e r ro r m e a n squa re f rom prev ious comparable 
exper iments . 

In te rac t ion can be d u e to a variety of causes. M o s t f requen t ly it m e a n s 
t ha t a given t r e a t m e n t c o m b i n a t i o n , such as level 2 of fac to r A when c o m -
bined with level 3 of fac to r B, m a k e s a var ia te devia te f r om the expec ted value. 
Such a devia t ion is r ega rded as a n inheren t p r o p e r t y of the n a t u r a l system 
unde r s tudy, as in examples of synergism o r interference. Similar effects occur 
when a given repl icate is qu i t e a b e r r a n t , as m a y h a p p e n if an except iona l p lo t 
is included in an agr icu l tu ra l exper iment , if a diseased individual is included in 
a physiological exper iment , or if by mi s t ake an indiv idual f r om a different species 
is included in a b iomet r i c s tudy. Final ly , an in te rac t ion term will result if the 
effects of the t w o fac to rs A a n d Β o n the r e sponse var iab le Y are mul t ip l ica t ive 
r a the r t h a n addi t ive. An example will m a k e this clear. 

In T a b l e 10.1 we s h o w the addi t ive a n d mul t ip l ica t ive t r e a t m e n t effects 
in a hypothe t ica l two-way anova . Let us a s s u m e tha t the expected p o p u l a t i o n 
mean μ is zero. T h e n the mean of the sample subjected to t r e a t m e n t I of fac-
tor A a n d t r e a t m e n t 1 of fac to r Β shou ld be 2, by the conven t iona l add i t ive 
model . Th is is so because each fac tor at level 1 con t r ibu te s uni ty to the mean . 
Similarly, the expected s u b g r o u p m e a n subjec ted to level 3 for fac to r A and 
level 2 for fac to r Β is 8, the respective c o n t r i b u t i o n s to the m e a n be ing 3 and 5. 
However , if the process is mult ipl icat ive ra ther than addit ive, as occurs in a 
variety of phys icochemica l and biological p h e n o m e n a , the expected values will 
be qui te different . F o r t r ea tmen t AlBt< the expected value equa l s 1, which is 
the p roduc t of 1 and 1. Fo r t rea tment A 3 B 2 , the expected value is 15, the p rod-
uct of 3 and 5. If we were to ana lyze mul t ip l ica t ive d a t a of this sort by a 
conven t iona l anova , we would find that the in te rac t ion sum of squa res would 
be greatly a u g m e n t e d because of the nonadd i t iv i ty of the t r e a t m e n t effects. In 
this case, there is a s imple remedy. By t r a n s f o r m i n g the var iable in to loga r i thms 
(Table 10.1), we a rc able to res tore the addi t ivi ty of the da t a . T h e third item 
in each cell gives the logar i thm of (he expected value, a s s u m i n g mul t ip l icat ive 

ί ' λ ι ι ι κ κ ι . ι 
Illustration of additive and multiplicative elfects. 

h'tu tor A 

h acKir Η a, - 1 os = 2 a, - 3 

"> 3 4 Additive effects 
/'. - ι 1 2 3 Multiplicative effects 

0 0.30 0.48 Log of multiplicative effect: 

() 7 8 Additive effects 
II2 - 5 s 10 15 Multiplicative effects 

0.70 1.00 1.18 Log of multiplicative effect: 
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relations. Not ice that the increments are strictly addit ive again (SS^ x B — 0). 
As a mat te r of fact, on a logar i thmic scale we could simply write a t = 0, 
a 2 = 0.30, a 3 = 0.48, = 0 , β 2 = 0.70. Here is a good i l lustration of h o w t rans-
fo rma t ion of scale, discussed in detail in Section 10.2, helps us meet the assump-
t ions of analysis of variance. 

10.2 Transformat ions 

If the evidence indicates tha t the assumpt ions for an analysis of var iance or for 
a t test canno t be main ta ined , two courses of act ion are open to us. W e may 
carry out a different test no t requir ing the rejected assumpt ions , such as one 
of the dis tr ibut ion-free tests in lieu of anova , discussed in the next section. A 
second a p p r o a c h would be to t ransform the variable to be analyzed in such a 
m a n n e r that the resulting t ransformed variates meet the assumpt ions of the 
analysis. 

Let us look at a simple example of wha t t rans format ion will do. A single 
variate of the simplest kind of anova (completely randomized , single-classifica-
tion, Model I) decomposes as follows: Y{j = μ + a{ + In this mode l the com-
ponen t s are additive, with the error term normally distr ibuted. However , 
we might encounter a s i tuat ion in which the componen t s were multiplicative 
in effect, so that Ŷ · = which is the produc t of the three terms. In such 
a case the assumpt ions of normal i ty and of homoscedastici ty would break 
down. In any one anova, the paramct r ic mean μ is constant but the t rea tment 
elfcct a; differs f rom group to group. Clearly, the scatter a m o n g the variates 
Ytj would double in a g roup in which a, is twicc as great as in another . As-
sume that μ = I, the smallest = 1, and the greatest, 3; then if a, = 1, the range 
of the Y's will be 3 — 1 = 2. However, when a, = 4, the cor responding range 
will be four times as wide, f rom 4 χ 1 = 4 to 4 χ 3 = 12, a range of 8. Such 
da t a will be heterosccdastic. We can correct this s i tuat ion simply by t r ans fo rm-
ing our model into logarithms. Wc would therefore obtain log Y-j = log μ + 
log a, + log e,y, which is addit ive and homoscedast ic . The entire analysis of 
var iance would then be carried out on the t ransformed variates. 

At this point many of you will feel more or less uncomfor tab le a b o u t what 
wc have done. T rans fo rma t ion seems too much like "da ta grinding." When you 
learn that often a statistical test may be m a d e significant after t r ans format ion 
of a set of da ta , though it would not be so wi thout such a t r ans format ion , 
you may feel even more suspicious. W h a t is the just if ication for t r ans fo rming 
the data? It takes some gett ing used to the idea, but there is really no scien-
tific necessity to employ the c o m m o n linear or ar i thmetic scale to which wc 
arc accustomed. You arc probably aware that teaching of the "new m a t h " in 
e lementary schools has done much to dispel the naive not ion that the decimal 
system of numbers is the only "na tu ra l " one. In a similar way, with some ex-
perience in science and in the handl ing of statistical da ta , you will apprecia te 
the fact that the linear scale, so familiar to all of us f rom our earliest expe-
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rience, occupies a similar posit ion with relation to other scales of meas im nu ni 
as does the decimal system of number s with respect to the binary and o c t a l 

number ing systems and others. If a system is multiplicative on a linear scale, 
it may be m u c h more convenient to think of it as an addit ive system on a 
logari thmic scale. Another f requent t r ans format ion is the square roo t of a vari-
able. T h e square root of the surface area of an organism is often a more 
appropr ia te measure of the fundamen ta l biological variable subjected to phys-
iological and evolut ionary forces t han is the area. This is reflected in the normal 
dis t r ibut ion of the square roo t of the variable as compared to the skewed dis-
t r ibut ion of areas. In m a n y cases experience has t augh t us to express experi-
mental variables not in linear scale bu t as logar i thms, square roots , reciprocals, 
or angles. Thus, pH values are logar i thms and dilution series in microbiological 
t i t rat ions are expressed as reciprocals. As soon as you are ready to accept the 
idea that the scale of measurement is arbi t rary , you simply have to look at the 
dis tr ibut ions of t ransformed variates to decide which t rans format ion most 
closely satisfies the assumpt ions of the analysis of variance before carrying out 
an anova. 

A for tuna te fact a b o u t t r ans format ions is that very often several depar tures 
f rom the assumpt ions of anova are s imultaneously cured by the same trans-
format ion to a new scale. Thus, simply by making the da ta homoscedast ic , we 
also make them approach normal i ty and ensure additivity of the t rea tment 
effects. 

When a t r ans format ion is applied, tests of significance arc performed on 
the t ransformed data , but est imates of means are usually given in the familiar 
unt ransformed scale. Since the t r ans format ions discussed in this chapter are 
nonlinear, confidence limits computed in the t ransformed scale and changed 
back to the original scale would be asymmetr ical . Stating the s tandard error 
in the original scale would therefore be misleading. In report ing results of re-
search with variables that require t rans format ion , furnish means in the back-
t ransformed scale followed by their (asymmetrical) confidence limits ra ther than 
by their s tandard errors. 

An easy way to find out whether a given t rans format ion will yield a dis-
t r ibut ion satisfying the assumpt ions of anova is to plot the cumulat ive distribu-
tions of the several samples on probabil i ty paper . By changing the scale of the 
sccond coord ina te axis f rom linear to logari thmic, square root, or any other one, 
we can see whether a previously curved line, indicating skewness, s t ra ightens 
out to indicate normal i ty (you may wish to refresh your memory on these 
graphic techniques studied in Section 5.5). We can look up upper class limits 
on t ransformed scales or employ a variety of available probabil i ty graph papers 
whose second axis is in logari thmic, angular , or other scale. Thus , we not only 
test whether the da t a become more normal th rough t r ans fo rmat ion , but wc can 
also get an est imate of the s t anda rd deviat ion under t r ans format ion as mea-
sured by the slope of the lilted line. The assumpt ion of homosccdast ici ty implies 
that the slopes for the several samples should be the same. If the slopes are very 
heterogeneous, homoscedast ici ty has not been achieved. Alternatively, wc can 
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examine goodness of fit tests for normal i ty (see Chap te r 13) for the samples 
under var ious t ransformat ions . Tha t t rans format ion yielding the best fit over 
all samples will be chosen for the anova. It is impor t an t that the t r ans fo rmat ion 
not be selected on the basis of giving the best anova results, since such a proce-
dure would distort the significance level. 

The logarithmic transformation. The most c o m m o n t rans format ion applied 
is conversion of all variates into logari thms, usually c o m m o n logari thms. When-
ever the mean is positively correlated with the variance (greater means are ac-
compan ied by greater variances), the logari thmic t rans format ion is quite likely 
to remedy the si tuat ion and make the variance independent of the mean . Fre-
quency dis t r ibut ions skewed to the right are often made more symmetr ical by 
t r ans fo rmat ion to a logar i thmic scale. We saw in the previous section and in 
Table 10.1 that logari thmic t rans format ion is also called for when effects are 
multiplicative. 

The square root transformation. We shall use a square root t r ans format ion 
as a detailed i l lustration of t r ans format ion of scale. When the da t a are counts , 
as of insects on a leaf or blood cells in a hemacytometer , we frequently find 
the square root t rans format ion of value. You will remember that such distri-
but ions are likely to be Poisson-dis t r ibuted rather than normally dis t r ibuted 
and that in a Poisson dis t r ibut ion the variance is the same as the mean. There-
fore, the mean and variance cannot be independent but will vary identically. 
T rans fo rming the variates to square roots will generally make the variances 
independent of the means. When the counts include zero values, it has been 
found desirable to code all variates by add ing 0.5. The t ransformat ion then is 
v ' v + i 

Table 10.2 shows an appl icat ion of the square root t ransformat ion . The 
sample with the greater mean has a significantly greater variance prior to t rans-
format ion . After t rans format ion the variances arc not significantly different. For 
repor t ing means the t ransformed means arc squared again and confidence limits 
arc reported in lieu of s tandard errors. 

The arcsine transformation This t ransformat ion (also known as the angular 
transformation) is especially appropr i a t e to percentages and propor t ions . You 
may remember from Section 4.2 that the s tandard deviation of a binomial 
dis t r ibut ion is σ = \Jpq/k. Sincc μ = />, </ = I p, and k is constant for any one 
problem, it is clear that in a binomial distr ibution the variance would be a func-
tion of the mean. The arcsine t ransformat ion preserves the independence of 
the two. 

The t rans format ion finds 0 = arcsin >//>, where ρ is a propor t ion . The term 
"arcsin" is synonymous with inverse sine or sin which stands for "Ihe angle 
whose sine is" the given quant i ty . Thus, if we compute or look up arcsin 
v '0 .431 — 0.6565, we find 41.03", the angle whose sine is 0.6565. The arcsine trans-
format ion stretches out both tails of a dis t r ibut ion of percentages or p ropor -
tions and compresses the middle. When the percentages in the original da t a fall 
between 30",', and 70",'., it is generally not neccssary to apply the arcsinc trans-
format ion . 
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An application of the square root transformation. T h e d a t a represent the n u m b e r of adul t Drosophila 
emerging f r o m single-pair cul tures for two different med ium fo rmula t ions (medium A con ta ined 
D D T ) . 

(1) (2) 
Number of Square root of (3) (4) 

flies emerging number of flies Medium A Medium Β 

y J y / f 

0 0.00 1 — 

1 1.00 5 — 

2 1.41 6 — 

3 1.73 — — 

4 2.00 3 — 

5 2.24 — — 

6 2.45 — — 

7 2.65 2 
8 2.83 — 1 
9 3.00 — 2 

10 3.16 — 3 
11 3.32 — 1 
12 3.46 — 1 
13 3.61 1 
14 3.74 — 1 
15 3.87 — 1 
16 4.00 

15 
2 

75 

Untransformed variable 

Ϋ 
s2 

Square root transformation 

' J y 

1.933 
1.495 

1.299 
0.2634 

11.133 
9.410 

3.307 
0.2099 

Tests of equality of variances 

V ntransformed 

f \ = 
s2, 9.410 

1.495 
6.294** F — ~> 9>i r0.()2S[l 4, 1 4| — — / ' = 

•Wl 

transformed 

0.2634 _ 
0.2099 ~ 

1.255 ns 

Back-transformed (squared) means 

( 7 
95% confidence limits 

— sjt — 'o.os-Vy 

Medium A 

1.687 

1.297 - 2.145 V 0 ' 2 " 4 

= 1.015 

L2 = JY f i0.0S.Vr '-583 
Back-transformed (squared) confidence limits 

I.] 1.030 
l.\ 2.507 

Medium li 

10.937 

3.307 - 2.145 N " iT" 

^ 3.053 

3.561 

9.324 
12.681 
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10.3 Nonparametric methods in lieu of anova 

If none of the above t r ans format ions m a n a g e to make our da t a meet the as-
sumpt ions of analysis of variance, we may resort to an ana logous n o n p a r a -
metric method . These techniques are also called distribution-free methods, since 
they are not dependent on a given dis t r ibut ion (such as the no rma l in anova), 
but usually will work for a wide range of different distr ibutions. They are called 
nonparamet r i c me thods because their null hypothesis is not concerned with spe-
cific parameters (such as the mean in analysis of variance) but only with the 
dis t r ibut ion of the variates. In recent years, nonparamet r i c analysis of vari-
ance has become quite popular because it is simple to compute and permits 
f reedom from worry a b o u t the distr ibutional assumpt ions of an anova . Yet we 
should point out that in cases where those assumpt ions hold entirely or even 
approximate ly , the analysis of variance is generally the more efficient statis-
tical test for detecting depar tures f rom the null hypothesis. 

We shall discuss only nonpa ramc t r i c tests for two samples in this section. 
For a design that would give rise to a t test or anova with two classes, we 
employ the nonparamet r i c Mann-Whitney U test (Box 10.1). The null hypothesis 
is that the two samples come f rom popula t ions having the same dis tr ibut ion. 
The da ta in Box 10.1 are measurements of heart (ventricular) funct ion in two 
groups of pat ients that have been allocated to their respective groups on the 
basis of other criteria of ventricular dysfunct ion. The Mann-Whi tney U test 
as illustrated in Box 10.1 is a semigraphical test and is quite simple to apply. 
It will be cspccially convenient when the data arc already graphed and there 
are not too many items in each sample. 

Note that this method docs not really require that each individual observa-
tion represent a precise measurement . So long as you can order the observa-
tions. you are able to perform these tests. Thus , for example, suppose you 
placcd some meat out in the open and studied the arrival limes of individuals 
of Iwo species of blowflies. You could record exactly the lime of arrival of 
each individual fly, s tar t ing f rom a point zero in time when the meat was scl 
out . O n the other hand, you might simply rank arrival times of the two species, 
not ing that individual 1 of species Β came first, 2 individuals f rom species .4 
next, then 3 individuals of B, followed by the s imul taneous arrival of one of 
each of the Iwo species (a lie), and so forth. While such ranked or ordered 
data could not be analyzed by the parametr ic me thods studied earlier, the 
techniques of Box 10.1 are entirely applicable. 

The method of calculat ing the sample statistic U s for the Mann-Whi tney 
test is s t ra ight forward, as shown in Box 10.1. It is desirable to obtain an intuitive 
unders tanding of the rat ionale behind this test. In the Mann-Whi lney test we 
can conceive of two extreme situations: in one case the two samples over lap 
and coincide entirely: in the other they are qui te separate. In the lallcr ease, if 
we take the sample with the lower-valued variates. there will be no points of the 
cont ras t ing sample below it; that is, we can go th rough every observat ion in the 
lower-valued sample without having any items of the higher-valued one below 
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BOX 10.1 
Mann-Whitney V test for two samples, ranked observations, not paired. 
A measure of heart function (left ventricle ejection fraction) measured in two 
samples of patients admitted to the hospital under suspicion of heart attack. The 
patients were classified on the basis of physical examinations during admission 
into different so-called Killip classes of ventricular dysfunction. We compare the 
left ventricle ejection fraction for patients classified as Killip classes I and III. The 
higher Killip class signifies patients with more severe symptons. The findings were 
already graphed in the source publication, and step 1 illustrates that only a graph 
of the data is required for the Mann-Whitney U test. Designate the sample size of 
the larger sample as nl and that of the smaller sample as n2. In this case, n, = 29, 
n2 = 8. When the two samples are of equal size it does not matter which is desig-
nated as n,. 

1. Graph the two samples as shown below. Indicate the ties by placing dots at the 
same level. 

0.8 

0.7 r- * 
• 

0.6 

0.5 ; ι 
» 
ft— 

bu 
ω 0.4 -

• • • * 
• 

0.3 -

« % 
• 
• 

0.2 - • 

0.1 -
0.49 + 0.13 

η = 29 

ι 

0.28 + 0.08 
n = 8 

1 
1 m 

Killip class 

2. For each observation in one sample (it is convenient to use the smaller sample), 
count the number of observations in the other sample which are lower in value 
(below it in this graph). Count \ for each tied observation. For example, there 
are l j observations in class I below the first observation in class III. The half 
is introduced because of the variate in class I tied with the lowest variate in 
class III. There are 2f observations below the tied second and third observa-
tions in class III. There are 3 observations below the fourth and fifth variates 
in class III, 4 observations below the sixth variate, and 6 and 7 observations, 
respectively, below the seventh and eight variates in class III. The sum of these 
counts C = 29{. The Mann-Whitney statistic Vs is the greater of the two 
quantities C and (n,n2 - C), in this case 29| and [(29 χ 8) - 29|] = 202 .̂ 
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Box 10.1 
Continued 
Testing the significance of V, 
No tied variates in samples (or variates tied within samples only). When n, £ 20, 
compare U, with critical value for ί/φ,,„2] in Table XI. The null hypothesis is 
rejected if the observed value is too large. 

In cases where nt > 20, calculate the following quantity 

t U s ~ n ' n ^ 2 

/"ι"ζ("ι + n t + 1) 

V 12 
which is approximately normally distributed. The denominator 12 is a constant. 
Look up the significance of ts in Table III against critical values of for a one-
tailed or two-tailed test as required by the hypothesis. In our case this would yield 

t 202.5 ~(29)(8)/2 ^ 86.5 = ^ 
/(29)(8)(29 + 8TT) V734.667 

V 12 

A further complication arises from observations tied between the two groups. 
Our example is a case in point. There is no exact test. For sample sizes n, < 20, 
use Table XI, which will then be conservative. Larger sample sizes require a more 
elaborate formula. But it takes a substantial number of ties to affect the outcome 
of the test appreciably. Corrections for ties increase the t„ value slightly; hence 
the uncorrected formula is more conservative. We may conclude that the two 
samples with a t, value of 3.191 by the uncorrected formula are significantly dif-
ferent at Ρ < 0.01. 

it. Conversely, all the points of the lower-valued sample would be below every 
point of the higher-valued one if we started out with the latter. O u r total count 
would therefore be the total count of one sample multiplied by every observat ion 
in the second sample, which yields nx t i2 . Thus , since we are told to take the 
greater of the two values, the sum of the counts C or n,n2 — C, our result in 
this ease would be n x n 2 . O n the o ther hand, if the two samples coincided com-
pletely, then for each point in one sample we would have those points below it 
plus a half point for the tied value represent ing that observat ion in the second 
sample which is at exactly the same level as the observat ion under considerat ion. 
A little exper imenta t ion will show this value to be [n(n — l ) /2] + (n/2) = n2/l. 
Clearly, the range of possible U values must be between this and n{rt2 , and the 
critical value must be somewhere within this range. 

O u r conclusion as a result of the tests in Box 10.1 is that (he two admission 
classes characterized by physical examinat ion differ in their ventricular dysfunc-
tion as measured by left ventricular ejection fract ion. The sample characterized 
as more severely ill has a lower ejection fract ion than the sample characterized 
.. . ι : Μ 
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The Mann-Whi tney V test is based on ranks, and it measures differences in 
location. A nonpa rame t r i c test tha t tests differences between two dis tr ibut ions 
is the Kolmogorov-Smirnov two-sample test. Its null hypothesis is identi ty in dis-
tr ibution for the two samples, and thus the test is sensitive to differences in 
location, dispersion, skewness, and so for th . This test is qui te simple to carry out . 
It is based on the unsigned differences between the relative cumulat ive frequency 
distr ibutions of the two samples. Expected critical values can be looked up in a 
table or evaluated approximate ly . Compar i son between observed and expected 
values leads to decisions whether the m a x i m u m difference between the two 
cumulat ive frequency dis t r ibut ions is significant. 

Box 10.2 shows the applicat ion of the method to samples in which both 
n1 and n2 < 25. The example in this box features morphologica l measurements 

BOX 10.2 
Kolmogorov-Smirnov two-sample test, testing differences in distributions of two 
samples of continuous observations. (Both n, and n2 <, 25.) 
Two samples of nymphs of the ehigger Trombicuia lipovskyi. Variate measured is 
length of cheliceral base stated as micrometer units. The sample sizes are rij = 16, 
« 2 = 10. 

Sample A Sample Β 
Y Y 

104 100 
109 105 
112 107 
114 107 
116 108 
118 111 
118 116 
119 120 
121 121 
123 123 
125 
126 
126 
128 
128 
128 

Sourer' Data by D. A. Crossiey 

Computational steps 

1. Form cumulative frequencies F of the items in samples 1 and 2. Thus in col-
umn (2) we note that there are 3 measurements in sample A at or below 112.5 
micrometer units. By contrast there are 6 such measurements in sample Β 
(column (3)). 

2. Compute relative cumulative frequencies by dividing frequencies in columns (2) 
and (3) by η, and n2, respectively, and enter in columns (4) and (5). 
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Box 10.2 
Continued 
3. Compute d, the absolute value of the difference between the relative cumulative 

frequencies in columns (4) and (5), and enteT in column (6). 
4. Locate the largest unsigned difference D. It is 0.475. 
5. Multiply D by »,n2. We obtain (16)(10J(0.475) «= 76. 
6. Compare ntn2D with its critical value in Table XIII, where we obtain a value 

of 84 for Ρ = 0.05. We accept the null hypothesis that the two samples have 
been taken from populations with the same distribution. The Kolmogorov-
Smirnov test is less powerful than the Mann-Whitney U test shown in Box 10.1 
with respect to the alternative hypothesis of the latter, i.e., differences in location. 
However, Kolmogorov-Smirnov tests differences in both shape and location 
of the distributions and is thus a more comprehensive test 

(') ( 2 ) ( J ) (4) W {6) 

Sample A Sample Β F j . 
d** £»_£2 

Y Λ F t " l « 2 >>1 » 2 

1 0 0 1 0 . 1 0 0 0 . 1 0 0 

1 0 1 0 1 0 0 . 1 0 0 0 . 1 0 0 

1 0 2 0 1 0 0 . 1 0 0 0 . 1 0 0 

1 0 3 0 1 0 0 . 1 0 0 0 . 1 0 0 

1 0 4 1 1 0 . 0 6 2 0 . 1 0 0 0 . 0 3 8 

1 0 5 1 2 0 . 0 6 2 0 . 2 0 0 0 . 1 3 8 

1 0 6 1 2 0 . 0 6 2 0 . 2 0 0 0 . 1 3 8 

1 0 7 1 4 0 . 0 6 2 0 . 4 0 0 0 . 3 3 8 

1 0 8 1 5 0 . 0 6 2 0 . 5 0 0 0 . 4 3 8 

1 0 9 2 5 0 . 1 2 5 0 . 5 0 0 0 . 3 7 5 

1 1 0 2 5 0 . 1 2 5 0 . 5 0 0 0 . 3 7 5 

1 1 1 2 6 0 . 1 2 5 0 . 6 0 0 0 . 4 7 5 « - D 

1 1 2 3 6 0 . 1 8 8 0 . 6 0 0 0 . 4 1 2 

1 1 3 3 6 0 . 1 8 8 0 . 6 0 0 0 . 4 1 2 

1 1 4 4 6 0 . 2 5 0 0 . 6 0 0 0 . 3 5 0 

1 1 5 4 6 0 . 2 5 0 0 . 6 0 0 0 . 3 5 0 

1 1 6 5 7 0 . 3 1 2 0 . 7 0 0 0 . 3 8 8 

1 1 7 5 7 0 . 3 1 2 0 . 7 0 0 0 . 3 8 8 

1 1 8 7 7 0 . 4 3 8 0 . 7 0 0 0 . 2 6 2 

1 1 9 8 7 0 . 5 0 0 0 . 7 0 0 0 . 2 0 0 

1 2 0 8 8 0 . 5 0 0 0 . 8 0 0 0 . 3 0 0 

1 2 1 9 9 0 . 5 6 2 0 . 9 0 0 0 . 3 3 8 

1 2 2 9 9 0 . 5 6 2 0 . 9 0 0 0 . 3 3 8 

1 2 3 L 0 1 0 0 . 6 2 5 1 . 0 0 0 0 . 3 7 5 

1 2 4 1 0 1 0 0 . 6 2 5 1 . 0 0 0 0 . 3 7 5 

1 2 5 1 1 1 0 0 . 6 8 8 1 . 0 0 0 0 . 3 1 2 

1 2 6 1 3 1 0 0 . 8 1 2 1 . 0 0 0 0 . 1 8 8 

1 2 7 1 3 1 0 0 . 8 1 2 1 . 0 0 0 0 . 1 8 8 

1 2 8 1 6 1 0 1 . 0 0 0 1 . 0 0 0 0 
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of two samples of chigger nymphs . We use the symbol F for cumula t ive f requen-
cies, which are s u m m e d with respect to the class m a r k s s h o w n in c o l u m n (1), 
and we give the cumula t ive f requencies of the t w o samples in c o l u m n s (2) and 
(3). Relative expected frequencies are ob ta ined in co lumns (4) a n d (5) by dividing 
by the respective sample sizes, while c o l u m n (6) fea tures the uns igned difference 
between relative cumula t ive frequencies. T h e m a x i m u m unsigned difference is 
D = 0.475. It is mult ipl ied by ntn2 t o yield 76. T h e critical value for this statistic 
can be found in T a b l e XIII, which furnishes crit ical values for the two-ta i led two-
sample K o l m o g o r o v - S m i r n o v test. W e ob ta in nin2D0A0

 = 76 a n d «IH2 /)0 .05 = 
84. Thus , there is a 10% probabi l i ty of ob t a in ing the observed difference by 
chance alone, and we conc lude tha t the two samples d o no t differ significantly 
in their d is t r ibut ions . 

W h e n these d a t a are subjected to the M a n n - W h i t n e y U test, however , one 
finds tha t the two samples are significantly different at 0.05 > Ρ > 0.02. Th is 
cont rad ic t s the findings of the K o l m o g o r o v - S m i r n o v test in Box 10.2. But tha t 
is because the two tests differ in their sensitivities to different a l te rna t ive hy-
p o t h e s e s — t h e M a n n - W h i t n e y V test is sensitive to the n u m b e r of in te rchanges 
in rank (shifts in locat ion) necessary to separa te the two samples , whereas the 
K o l m o g o r o v - S m i r n o v test measures differences in the entire d i s t r ibu t ions of the 
two samples a n d is t hus less sensitive to differences in loca t ion only. 

It is an under ly ing a s sumpt ion of all K o l m o g o r o v - S m i r n o v tests that the 
variables s tudied are con t inuous . G o o d n e s s of fit tests by m e a n s of this statistic 
are t reated in C h a p t e r 13. 

Finally, we shall present a n o n p a r a m e t r i c m e t h o d for the pa i r ed -compar i -
sons design, discussed in Scction 9.3 and i l lustrated in Box. 9.3. T h e mos t widely 
used m e t h o d is tha t of Wilcoxon's signed-ranks test, i l lustrated in Box 10.3. T h e 
example to which it is appl ied has not yet been encounte red in this book. It 
records mean litter size in two strains of guinea pigs kept in large colonies 
dur ing the years 1916 t h r o u g h 1924. Bach of these values is the average of a 
large n u m b e r of litters. N o t e the paral lel ism in the changes in the variable in 
the two strains. Dur ing 1917 and 1918 (war years for the Uni ted States), a 
shor tage of ca re takers and of food resulted in a decrease in the n u m b e r of 
offspr ing per litter. As soon as bet ter cond i t ions re turned , the mean litter size 
increased. Not ice tha t a subsequent d r o p in 1922 is again mir rored in b o t h 
lines, suggest ing tha t these f luc tua t ions arc env i ronmenta l ly caused. It is 
therefore qui te a p p r o p r i a t e that the d a t a be t rea ted as paired compar i sons , with 
years as repl icat ions and the s t ra in differences as the fixed t r ea tmen t s to be 
tested. 

C o l u m n (3) in Box 10.3 lists the differences on which a conven t iona l pai red-
compar i sons t test could be pe r fo rmed . F o r Wi lcoxon ' s test these differences 
are ranked without regard to sign in co lumn (4), so tha t the smallest abso lu te 
difference is r anked 1 and the largest abso lu te difference (of the nine differences) 
is r anked 9. Tied r a n k s are c o m p u t e d as averages of the ranks ; t hus if the four th 
and fifth difference have the same abso lu te m a g n i t u d e they will bo th be assigned 
rank 4.5. After the r anks have been c o m p u t e d , the original sign of each differcncc 
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BOX 10.3 
Wilcoxon's signed-ranks test for two groups, arranged as paired observations. 
Mean litter size of two strains of guinea pigs, compared over η — 9 years. 

m (2) m w 
Year Strain Β Strain 13 D Rank(R) 

1916 2.68 2.36 + 0.32 + 9 
1917 2.60 2.41 +0.19 + 8 
1918 2.43 2.39 +0.04 + 2 
1919 2.90 2.85 + 0.05 + 3 
1920 2.94 2.82 + 0.12 + 7 
1921 2.70 2.73 - 0 . 0 3 
1922 2.68 2.58 + 0.10 + 6 
1923 2.98 2.89 + 0.09 + 5 
1924 2.85 2.78 +0.07 + 4 

Absolute sum of negative ranks 1 
Sum of positive ranks 44 

Source: Data by S. Wright. 

Procedure 

1. Compute the differences between the η pairs of observations. These are entered 
in column (3), labeled D. 

2. Rank these differences from the smallest to the largest without regard to siyn. 

3. Assign to the ranks the original signs of the differences. 

4. Sum the positive and negative ranks separately. The sum that is smaller in 
absolute value, Ts, is compared with the values in Table XII for η = 9. 

Since T, = 1, which is equal to or less than the entry for one-tailed α = 0.005 
in the table, our observed difference is significant at the 1% level. Litter size in 
strain Β is significantly different from that of strain 13. 

For large samples (η > 50) compute 

4 

rnn + xK" + i) 
V 12 

where T, is as defined in step 4 above. Compare the computed value with 
in Table III. 
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is ass igned to the c o r r e s p o n d i n g rank . T h e s u m of the posi t ive or of the negat ive 
ranks , whichever o n e is smal ler in ab so lu t e value, is then c o m p u t e d (it is labeled 
Ts) a n d is c o m p a r e d wi th the crit ical va lue Τ in T a b l e XII fo r t he cor re -
s p o n d i n g s ample size. In view of the signif icance of the r an k sum, it is clear 
t ha t s t ra in Β has a litter size different f r o m tha t of s t ra in 13. 

This is a very s imple test to car ry out , bu t it is, of course , n o t as efficient 
as the c o r r e s p o n d i n g p a r a m e t r i c t test, which shou ld be prefer red if the necessary 
a s s u m p t i o n s hold. N o t e t ha t one needs min imal ly six differences in o rde r to 
car ry o u t Wi lcoxon ' s s igned- ranks test. W i t h only six pa i red c o m p a r i s o n s , all 
differences m u s t be of like sign for the test to be significant a t t he 5% level. 

F o r a large s ample an a p p r o x i m a t i o n using the n o r m a l curve is avai lable , 
which is given in Box 10.3. N o t e tha t the abso lu t e m a g n i t u d e s of the differences 
play a role only insofar as they affect the r anks of the differences. 

A still s impler test is the sign test, in which we c o u n t the n u m b e r of positive 
a n d negat ive signs a m o n g the differences (omi t t ing all differences of zero). W c 
then test the hypo thes i s t ha t the η plus a n d m i n u s signs are s a m p l e d f r o m a 
p o p u l a t i o n in which the two k inds of signs a re present in equal p ropor t ions , 
as might be expected if there were n o t rue difference between the t w o pai red 
samples. Such s a m p l i n g should fol low the b inomia l d i s t r ibu t ion , a n d the test 
of the hypothes i s tha t the p a r a m e t r i c f requency of the plus signs is ρ = 0.5 can 
be m a d e in a n u m b e r of ways. Let us learn these by app ly ing the sign test to 
the guinea pig d a t a of Box 10.3. The re a rc nine differences, of which eight a rc 
posi t ive and one is negat ive. W e could fol low the m e t h o d s of Section 4.2 
(il lustrated in Tab l e 4.3) in which we ca lcu la te the cxpectcd p robab i l i ty of 
sampl ing one m i n u s sign in a sample of nine on the a s s u m p t i o n of β = q = 0.5. 
T h e probabi l i ty of such an occur rence and all "worse" o u t c o m e s equa l s 0.0195. 
Since we have no a pr ior i no t ions tha t one s t rain should have a grea ter litter 
size than the o ther , this is a two-tai led test, a n d wc d o u b l e the probabi l i ty to 
0.0390. Clear ly , this is an i m p r o b a b l e o u t c o m c , a n d wc reject the null hypothes i s 
that ρ — q = 0.5. 

Since the c o m p u t a t i o n of the cxact probabi l i t ies may be qui te ted ious if no 
table of cumula t ive b inomia l probabi l i t ies is at hand , we m a y t ake a second 
a p p r o a c h , using T a b i c IX, which furn ishes conf idence limits for ρ for var ious 
sample sizes and sampl ing ou t comes . L o o k i n g u p sample size 9 and Υ = 1 
( n u m b e r showing the proper ty) , we find the 95% conf idence limits to be 0.0028 
and 0.4751 by in t e rpo la t ion , t hus exc luding the value ρ = q = 0 5 pos tu la ted 
by the null hypothesis . At least at the 5% significance level wc can conc lude 
that it is unlikely tha t the n u m b e r of p lus and m i n u s signs is equal . T h e con-
fidence limits imply a two- ta i led d i s t r ibu t ion ; if we in tend a one- ta i led test, wc 
can infer a 0.025 s ignif icance level f r o m the 95% conf idence limits and a 0.005 
level f rom the 99% limits. Obv ious ly , such a one- ta i led test would be carried 
out only if the results were in the d i rec t ion of the a l te rna t ive hypothes is . Thus , 
if the a l te rna t ive hypo thes i s were t ha t s t ra in 13 in Box 10.3 had grea te r litter 
size than s t rain B, wc w o u l d not b o t h e r tes t ing this example at all, sincc the 
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obse rved p r o p o r t i o n of years showing this r e l a t ion is less t h a n half. F o r la rger 
samples , we can use the n o r m a l a p p r o x i m a t i o n to the b inomia l d i s t r i bu t ion as 
fol lows: ts = (Υ — μ)/σγ = (Y — kp)/y/kpq, where we subs t i tu te the m e a n a n d 
s t a n d a r d dev ia t ion of the b i n o m i a l d i s t r i bu t i on learned in Sect ion 4.2. In 
o u r case, we let η s t a n d for k a n d a s s u m e tha t ρ = q = 0.5. There fo re , ts = 
( F — = ( 7 — T h e value of ts is t hen c o m p a r e d wi th Γα[αο) in 
T a b l e III, us ing o n e tail or t w o tails of the d i s t r ibu t ion as w a r r a n t e d . W h e n the 
s a m p l e size η > 12, this is a sa t i s fac tory a p p r o x i m a t i o n . 

A th i rd a p p r o a c h we can use is to test the d e p a r t u r e f rom the expec t a t i on 
tha t ρ = q = 0.5 by o n e of the m e t h o d s of C h a p t e r 13. 

Exercises 

10.1 Allee and Bowen (1932) studied survival time of goldfish (in minutes) when placed 
in colloidal silver suspensions. Experiment no. 9 involved 5 replications, and 
experiment no. 10 involved 10 replicates. Do the results of the two experiments 
differ? Addition of urea, NaCl, and Na 2 S to a third series of suspensions ap-
parently prolonged the life of the fish. 

Colloidal silver 

Experiment no. 9 Experiment no. 10 
Urea and 

salts added 

210 150 330 
180 180 300 
240 210 300 
210 240 420 
210 240 360 

120 270 
180 360 
240 360 
120 300 
150 120 

Analyze and interpret. Test equality of variances. Compare anova results with 
those obtained using the Mann-Whitney U test for the two comparisons under 
study. To test the effect of urea it might be best to pool Experiments 9 and 10, 
if they prove not to differ significantly. ANS. Test for homogeneity of Experi-
ments 9 and 10, Us = 33. us. For the comparison of Experiments 9 and 10 versus 
urea and salts, 136, Ρ < 0.001. 

10.2 In a study of flower color in Butterflywced (Asc/epias tuherosa), Woodson (1964) 
obtained the following results: 

Cieoi/raphie 
region Y η .V 

CI 29.3 226 4.59 
SW2 15.8 94 10.15 
SW3 6.3 23 1.22 
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The variable recorded was a color score (ranging from 1 for pure yellow to 40 
for deep orange-red) obtained by matching flower petals to sample colors in 
Maerz and Paul's Dictionary of Color. Test whether the samples are homo-
scedastic. 

10.3 Test for a difference in surface and subsoil pH in the data of Exercise 9.1, using 
Wilcoxon's signed-ranks test. ANS. Ts = 38; Ρ > 0.10. 

10.4 Number of bacteria in 1 cc of milk from three cows counted at three periods 
(data from Park, Williams, and Krumwiede, 1924): 

Cow no. At time of milking After 24 hours After 48 hours 

1 12,000 14,000 57,000 
2 13,000 20,000 65,000 
3 21,500 31,000 (06,000 

(a) Calculate means and variances for the three periods and examine the relation 
between these two statistics. Transform the variates to logarithms and com-
pare means and variances based on the transformed data. Discuss. 

(b) Carry out an anova on transformed and untransformed data. Discuss your 
results. 

10.5 Analyze the measurements of the two samples of chigger nymphs in Box 10.2 
by the Mann-Whitney U test. Compare the results with those shown in Box 10.2 
for the Kolmogorov-Smirnov test. ANS. V„ = 123.5, Ρ < 0.05. 

10.6 Allee et al. (1934) studied the rate of growth of Ameiurus melas in conditioned 
and unconditioned well water and obtained the following results for the gain in 
average length of a sample fish. Although the original variates are not available, 
we may still test for differences between the two treatment classes. Use the sign 
test to test for differences in the paired replicates. 

Ai crtu/r gain in length 
(in millimeters) 

Conditioned Unconditioned 
Replicate water water 

1 2.20 1.06 
2 1.05 0.06 
3 3.25 3.55 
4 2.60 1.00 
5 1.90 1.10 
6 1.50 0.60 
7 2.25 1.30 
8 1.00 0.90 
9 — 0.09 - 0 . 5 9 

10 0.83 0.58 



CHAPTER 

Regression 

We now turn to the s imul taneous analysis of two variables. F.vcn though we 
may have considered more than one variable at a time in our studies so far 
(for example, seawatcr concent ra t ion and oxygen consumpt ion in Box 9.1, or 
age of girls and their face widths in Box 9.3), ou r actual analyses were of only 
one variable. However , we frequently measure two or more variables on each 
individual, and we consequent ly would like to be able to express more precisely 
the na ture of the relat ionships between these variables. This brings us to the 
subjects of regression and correlation. In regression we est imate the re la t ionship 
of one variable with ano the r by expressing the one in terms of a linear (or a 
more complex) funct ion of the other. We also use regression to predict values 
of one variable in terms of the other. In correlat ion analysis, which is somet imes 
confused with regression, we est imate the degree to which two variables vary 
together. Chap t e r 12 deals with correlat ion, and we shall pos tpone our effort 
to clarify the relation and dist inction between regression and correlat ion until 
then. The variables involved in regression and correlat ion are either con t inuous 
or meristic; if meristic, they are treated as though they were cont inuous . When 
variables are quali tat ive (that is, when they are attributes), the me thods οΓ 
regression and correlat ion cannot be used. 
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In Section 11.1 we review the not ion of mathemat ica l funct ions and in-
t roduce the new terminology required for regression analysis. This is followed 
in Section 11.2 by a discussion of the appropr ia t e statistical models for regres-
sion analysis. The basic computa t ions in simple linear regression are shown in 
Section 11.3 for the case of one dependent variate for each independent variate. 
The case with several dependent variates for each independent variate is treated 
in Section 11.4. Tests of significance and computa t ion of confidence intervals 
for regression problems are discussed in Section 11.5. 

Section 11.6 serves as a summary of regression and discusses the various 
uses of regression analysis in biology. H o w t ransformat ion of scale can straighten 
out curvilinear relat ionships for ease of analysis is shown in Section 11.7. When 
t ransformat ion canno t linearize the relation between variables, an alternative 
app roach is by a nonpa rame t r i c test for regression. Such a test is i l lustrated in 
Section 11.8. 

11.1 Introduction to regression 

Much scientific though t concerns the relations between pairs of variables hy-
pothesized to be in a cause-and-effect relationship. We shall be content with 
establishing the form and significance of functional relationships between two 
variables, leaving the demons t ra t ion of cause-and-effect relat ionships to the 
established procedures of the scientific method . A function is a mathemat ica l 
relat ionship enabling us to predict what values of a variable Y correspond to 
given values of a variable X. Such a relat ionship , generally writ ten as Y = j\X\ 
is familiar to all of us. 

A typical linear regression is of the form shown in Figure 11.1, which 
illustrates the effect of two drugs on the blood pressure of two species of 

V = a + i>\ 

V 
= 20 4 15Λ" D r u g Λ on an imal 1' 

' = 40 + 7.5.Y l ) ru K li on an imal (J 

' = 20 + 7.5.Y D r u g Η on an imal Ρ 

.V 
0 1 2 3 4 5 6 7 8 

Mic rog rams of d rug /cc blood 

Ι ICURI: I I I 

Blood pressure of an animal in m m H g as a func t ion of d r u g concen t ra t ion in mi per ec of b lood. 
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animals. The relat ionships depicted in this graph can be expressed by the 
fo rmula Y = a + bX. Clearly, Y is a funct ion of X. W e call the variable Y the 
dependent variable, while X is called the independent variable. The magn i tude 
of b lood pressure Y depends on the a m o u n t of the drug X and can therefore 
be predicted f rom the independent variable, which presumably is free to vary. 
Al though a cause would always be considered an independent variable and an 
effect a dependent variable, a funct ional relat ionship observed in na tu re may 
actually be someth ing o ther t han a cause-and-effect relationship. The highest 
line is of the re la t ionship Y — 20 + 15X, which represents the effect of d rug 
A on animal P. The quan t i ty of d rug is measured in micrograms, the blood 
pressure in millimeters of mercury. Thus, after 4 pg of the drug have been given, 
the blood pressure would be Y = 20 + (15)(4) = 80 m m H g . The independent 
variable X is multiplied by a coefficient b, the slope factor. In the example 
chosen, b = 15; that is, for an increase of one microgram of the drug, the blood 
pressure is raised by 15 mm. 

In biology, such a relat ionship can clearly be appropr ia te over only a limited 
range of values of A'. Negat ive values of X are meaningless in this case; it is 
also unlikely that the blood pressure will cont inue to increase at a uniform rate. 
Qui te probably the slope of the funct ional relat ionship will flatten out as the 
d rug level rises. But, for a limited port ion of the range of variable X (micrograms 
of the drug), the linear relat ionship Y = a + bX may be an adequa te descript ion 
of the funct ional dependence of Von A". 

By this formula, when the independent variable equals zero, the dependent 
variable equals a. This point is the intcresection of the function line with the 
Y axis. It is called the Y intercept. In Figure 11.1, when A = 0, the funct ion 

just studied will yield a blood pressure of 20 m m H g , which is the no rma l blood 
pressure of animal Ρ in the absence of the drug. 

The two other funct ions in Figure 11.1 show the effects of varying both 
a, the Y intercept, and />, the slope. In the lowest line, Y = 20 + 7.5.Y, the Y 
intercept remains the same but the slope has been halved. We visualize this as 
the effect of a different drug, B, on the same organism P. Obviously, when no 
d rug is administered, the blood pressure should be at the same V intercept, 
since the identical organism is being studied. However, a different d rug is likely 
to exert a different hypertensive effect, as reflcctcd by the different slope. The 
third relat ionship also describes the effect of d rug B, which is assumed to remain 
the same, but the experiment is carried out on a different species, Q, whose 
normal blood pressure is assumed to be 40 m m H g . Thus, the equat ion for the 
effect of d rug Β on species Q is written as Y = 40 + 7.5.Y. This line is parallel 
to that cor responding to the second equat ion. 

F rom your knowledge of analytical geometry you will have recognizcd the 
slope factor b as the slope of the function Y = a + bX, generally symbolized 
by m. In calculus, b is the derivative of that same function (dY/dX = b). In 
biostatistics, b is called the regression coefficient, and the funct ion is called a 
regression equation. When wc wish to stress that the regression coefficient is of 
variable Y on variable X, wc write />,·. v. 
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11.2 Models in regression 

In any real example, observat ions would not lie perfectly a long a regression line 
but would scatter a long bo th sides of the line. This scatter is usually due to 
inherent , na tura l var ia t ion of the items (genetically and environmental ly caused) 
and also due to measurement error. Thus , in regression a funct ional re la t ionship 
does not mean that given an X the value of Υ must be a + bX, bu t ra ther tha t 
the mean (or expected value) of Y is a + bX. 

The appropr ia t e compu ta t ions and significance tests in regression relate to 
the following two models. The more c o m m o n of these, Model I regression, is 
especially suitable in experimental si tuations. It is based on four assumpt ions . 

1. The independent variable X is measured without error. W e therefore say 
that the A"s are "fixed." W e mean by this that whereas Y, the dependent 
variable, is a r a n d o m variable, A' does not vary at r andom but is under the 
control of the investigator. Thus, in the example of Figure 11.1 we have 
varied dose of d rug at will and studied the response of the r a n d o m 
variable blood presssure. We can manipula te .V in the same way that we 
were able to manipu la te the t rea tment effect in a Model I anova . As a 
mat te r of fact, as you shall see later, there is a very close re la t ionship 
between Model 1 anova and Model I regression. 

2. The expected value for the variable y for any given value. X is described 
by the linear funct ion μγ = α + βΧ. This is the same relation we have just 
encountered, but we use Greek letters instead of a and b, since we are 
describing a parametr ic relationship. Another way of stal ing this 
assumpt ion is that the parametr ic means μγ of the values of Y are a 
function of X and lie on a straight line described by this equat ion . 

3. For any given value A', of A, the Y\ are independently and normally 
distributed. This can be represented by the equat ion ^ = α + /(A, + t , , 
where the t , 's arc assumed to be normally distr ibuted er ror terms with a 
mean of zero. Figure I 1.2 illustrates (his concept with a regression line 
similar to the ones in Figure 11.1. A given experiment can be repeated 
several times. Thus , for instance, wc could adminis ter 2. 4, (), 8, and 10 /<g 
of the drug to each of 20 individuals ol an animal species and obta in a 

BUHKI p r e s s u r e of a n a n i m a l 
in m m l l g as a (unci ion of d r u g 
c o n c e n t r a t i o n in /ig pe r cc of 
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a g iven d r u g c o n c e n t r a t i o n . 
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f requency dis t r ibut ion of b lood pressure responses Y to the independent 
variates X = 2, 4, 6, 8, and 10 /^g. In view of the inherent variabili ty of 
biological material , the responses to each dosage would not be the same in 
every individual; you would obta in a f requency dis tr ibut ion of values of Y 
(blood pressure) a r o u n d the expected value. Assumpt ion 3 states tha t these 
sample values would be independent ly and normal ly distr ibuted. This is 
indicated by the n o r m a l curves which are super imposed a b o u t several 
points in the regression line in Figure 11.2. A few are shown to give you an 
idea of the scatter abou t the regression line. In actuali ty there is, of course, 
a con t inuous scatter, as though these separa te normal dis t r ibut ions were 
stacked right next to each other, there being, after all, an infinity of 
possible in termediate values of X between any two dosages. In those rare 
cases in which the independent variable is discont inuous, the d is t r ibut ions 
of y would be physically separate f rom each o ther and would occur only 
a long those points of the abscissa cor responding to independent variates. 
An example of such a case would be weight of offspring (Y) as a funct ion 
of n u m b e r of offspring (X) in litters of mice. There may be three or 
four offspring per litter but there would be no intermediate value of X 
representing 3.25 mice per litter. 

Not every experiment will have more than one reading of Y for each 
value of X. In fact, the basic compu ta t i ons we shall learn in the next 
section are for only one value of Y per value of X, this being the more 
c o m m o n case. However , you should realize that even in such instances the 
basic assumpt ion of Model I regression is that the single variate of Y 
cor responding to the given value of A" is a sample f rom a popula t ion of 
independent ly and normally dis t r ibuted variatcs. 

4. The final assumpt ion is a familiar one. We assume that these samples 
a long the regression line are homosccdast ic ; that is, that they have a 
c o m m o n variance σ 2 , which is the variance of the e's in the expression in 
item 3. Thus, we assume that the variance a round the regression line is 
cons tant and independent of the magni tude of X or Y. 

M a n y regression analyses in biology do not meet the assumpt ions of Model 
I regression. Frequent ly both X and Y are subject to natural variat ion a n d / o r 
measurement error. Also, the variable X is sometimes not fixed, that is, under 
control of the investigator. Suppose wc sample a popula t ion of female flics and 
measure wing length and total weight of each individual. We might be interested 
in s tudying wing length as a funct ion of weight or we might wish to predict 
wing length for a given weight. In this case the weight, which we treat as an 
independent variable, is not fixed and certainly not the "cause" of differences 
in wing length. The weights of the flies will vary for genetic and envi ronmenta l 
reasons and will also be subject to measurement error. The general case where 
both variables show r a n d o m variat ion is called Model 11 regression. Al though, 
as will be discussed in the next chapter , cases of this sort are much better 
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analyzed by the me thods of correlat ion analysis, we sometimes wish to describe 
the funct ional re la t ionship between such variables. T o do so, we need to resort 
to the special techniques of Model II regression. In this book we shall limit 
ourselves to a t rea tment of Model I regression. 

11.3 The linear regression equation 

T o learn the basic compu ta t i ons necessary to carry out a Mode l I l inear regres-
sion, we shall choose an example with only one Y value per independent variate 
X, since this is computa t iona l ly simpler. The extension to a sample of values 
of Y for each X is shown in Section 11.4. Just as in the case of the previous 
analyses, there are also simple computa t iona l formulas , which will be presented 
at the end of this section. 

The da t a on which we shall learn regression come f rom a s tudy of water loss 
in Tribolium confusum, the confused flour beetle. Nine batches of 25 beetles were 
weighed (individual beetles could not be weighed with available equipment) , 
kept at different relative humidities, and weighed again after six days of s tarva-
tion. Weight loss in mill igrams was computed for each batch. This is clearly a 
Model I regression, in which the weight loss is the dependent variable Y and 
the relative humidi ty is the independent variable X, a fixed t rea tment effect 
under the control of the experimenter . The purpose of the analysis is to estab-
lish whether the relat ionship between relative humidity and weight loss can be 
adequately described by a linear regression of the general form Y = a + bX. 

The original da t a are shown in co lumns (1) and (2) of Tabic I I .I . They are 
plotted in Figure 11.3, f rom which it appears that a negative relat ionship exists 
between weight loss and humidity; as the humidity increases, the weight loss 
decreases. The means of weight loss and relative humidity, Ϋ and X, respectively, 
are marked along the coord ina te axes. The average humidity is 50.39%, and the 
average weight loss is 6.022 mg. How can wc fit a regression line to these da ta , 
permitt ing us to est imate a value of Y for a given value of ΧΊ Unless the actual 
observat ions lie exactly on a straight line, we will need a criterion for deter-
mining the best possible placing of the regression line. Statisticians have gen-
erally followed the principle of least squares, which wc first encountered in 
Chap te r 3 when learning abou t the ar i thmet ic mean and the variance. If we 
were to draw a hor izonta l line th rough Χ, Ϋ (that is, a line parallel to the X 
axis at the level of F), then deviat ions to that line drawn parallel to the Y 
axis would represent the deviat ions f rom the mean for these observat ions with 
respect to variable Y (see Figure 11.4). We learned in Chap t e r 3 that the sum of 
these observat ions Σ ( Τ Τ) = Σ>> = 0. The sum of squares of these deviat ions, 
Σ ( Τ — Ϋ)2 = Σ>'2, is less than that f rom any other hor izontal line. Another 
way of saying this is that the ar i thmet ic mean of Y represents the least squares 
horizontal line. Any hor izontal line d rawn th rough the da ta at a point other 
than Ϋ would yield a sum of deviat ions other than zero and a sum of deviat ions 
squared greater than Σ>>2. Therefore, a mathemat ica l ly correct but impractical 
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a 
FIGURE 1 1 . 3 

Weight loss (in mg) of nine batches of 25 
Tribolium beetles after six days of starva-
t ion at nine different relative humidities. 
D a t a f rom Tab le 1 I .I , after Nelson (1964). 
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method for finding the mean of Y would be to d r aw a series of horizontal lines 
across a graph, calculate the sum of squares of deviat ions f rom it, and choose 
that line yielding the smallest sum of squares. 

In linear regression, we still d raw a straight line th rough our observations, 
but it is no longer necessarily horizontal . A sloped regression line will indicate 
for each value of the independent variable AT, an est imated value of the de-
pendent variable. W e should distinguish the est imated value of Yh which we 
shall hereafter designate as Yh (read: Y-hat or 7-caret), and the observed values, 
conventionally designated as Y,. The regression equa t ion therefore should read 

Y = a + hX (11.1) 

it 

ο FIGURE 1 1.4 

Devia t ions f rom the mean (of Y) f» r 'he 
da t a of F igure 11.3. 
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which indicates that for given values of X, this equation calculates estimated 
values Y (as distinct f rom the observed values Y in any actual case). The devia-
tion of an observation Yj f rom the regression line is ( ^ — f ; ) and is generally 
symbolized as d Y x . These deviations can still be drawn parallel to the Y axis, 
but they meet the sloped regression line at an angle (see Figure 11.5). The sum 
of these deviations is again zero ( Σ ά γ . χ = 0), and the sum of their squares yields 
a quanti ty Σ(Υ — Υ)2 — ΣάΥ.χ analogous to the sum of squares Σγ2. Fo r rea-
sons that will become clear later, Σ ά Υ Χ \ & called the unexplained sum of squares. 
The least squares linear regression line through a set of points is defined as that 
straight line which results in the smallest value of Σ ά Υ χ . Geometrically, the 
basic idea is that one would prefer using a line that is in some sense close to 
as many points as possible. Fo r purposes of ordinary Model I regression analy-
sis, it is most useful to define closeness in terms of the vertical distances from 
the points to a line, and to use the line that makes the sum of the squares 
of these deviations as small as possible. A convenient consequence of this cri-
terion is that the line must pass through the point Χ, Ϋ. Again, it would be 
possible but impractical to calculate the correct regression slope by pivoting 
a ruler a round the point Χ, Ϋ and calculating the unexplained sum of squares 
Σ ά \ . χ for each of the innumerable possible positions. Whichever position gave 
the smallest value of ΣιΙ2 ,A. would be the least squares regression line. 

The formula for the slope of a line based on the minimum value of Σ d Y . x 

is obtained by means of the calculus. It is 

y xv 
, Π1.2) 

I · * * 

Let us calculate h = Σ.νν'/Σ.ν2 for our weight loss data. 
We first compute the deviations from the respective means of λ' and Y, 

as shown in columns (.3) and (4) of Tabic 11.1. The sums of these deviations. 

Relative Iniiniilitv 

MOURE 1 1.5 
D e v i a t i o n s f r o m t h e r e g r e s s i o n l ine for Ihe 
d a t a of F i g u r e 11.3. 
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Σ χ and Σ>>, are slightly different from their expected value of zero because of 
rounding errors. The squares of these deviations yield sums of squares and 
variances in columns (5) and (7). In column (6) we have computed the products 
xy, which in this example are all negative because the deviations are of unlike 
sign. An increase in humidity results in a decrease in weight loss. The sum of 
these products Σ" xy is a new quantity, called the sum of products. This is a poor 
but well-established term, referring to Σ xy, the sum of the products of the devia-
tions rather than ΣΧΥ, the sum of the products of the variates. You will 
recall that Σ ν 2 is called the sum of squares, while ΣΥ2 is the sum of the squared 
variates. The sum of products is analogous to the sum of squares. When divided 
by the degrees of freedom, it yields the covariance, by analogy with the vari-
ance resulting from a similar division of the sum of squares. You may recall first 
having encountered covariances in Section 7.4. Note that the sum of products 
can be negative as well as positive. If it is negative, this indicates a negative 
slope of the regression line: as X increases, Y decreases. In this respect it differs 
from a sum of squares, which can only be positive. From Table 11.1 we find that 
Σ.χ}' = -441 .8176 , Σ .γ2 = 8301.3889, and b = Σχγ/Σχ2 = -0 .053,22 . Thus, 
for a one-unit increase in X, there is a decrease of 0.053,22 units of Y. Relating 
it to our actual example, we can say that for a 1% increase in relative humidity, 
there is a reduction of 0.053,22 mg in weight loss. 

You may wish to convincc yourself that the formula for the regression 
coefficient is intuitively reasonable. It is the ratio of the sum of products of 
deviations for X and Y to the sum of squares of deviations for X. If we look 
at the product for A",, a single value of X, we obtain x,y,. Similarly, (he squared 
deviation for X, would be x 2 , or x,x,. Thus the ratio \,y, .ν,.ν, reduces to y ;/x 
Although Σ v y / Σ χ 2 only approximates the average of y,/x ; for (he η values of 
X h the latter ratio indicates the direction and magnitude of the change in Y 
for a unit change in X. Thus, if y, on the average equals ,v,. b will equal 1. When 
y, = — .ν,, b — 1. Also, when |y,| > |.x,|, /> > |l|; and conversely, when jy,| < 
jx,|, b < \ \ \ . 

How can we complete the equation Y = a -+ bX'J We have stated that the 
regression line will go through the point ,Ϋ, Y. At V 50.39, Ϋ ^ 6.022; that is, 
we use Ϋ, the observed mean of Y, as an estimate Ϋ of the mean. We can sub-
stitute these means into Fxpression (11.1): 

Y = a + bX 

Y = a + bX 

a = Ϋ - bX 

a = 6.022 - (-0.053,22)50.39 

= 8.7038 

Therefore, 

Ϋ - 8.7038 - 0.053,22X 
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This is the equa t ion that relates weight loss to relative humidity. No te that when 
X is zero (humidity zero), the es t imated weight loss is greatest. It is then equal 
to a = 8.7038 mg. But as X increases to a m a x i m u m of 100, the weight loss de-
creases to 3.3818 mg. 

We can use the regression formula to d raw the regression line: simply esti-
mate y at two convenient points of X, such as X = 0 and X = 100, a n d d raw 
a straight line between them. This line has been added to the observed da ta 
and is shown in F igure 11.6. N o t e that it goes th rough the poin t Χ, Ϋ. In 
fact, for d rawing the regression line, we frequent ly use the intersection of the two 
means and one o ther point . 

where p is defined as the deviat ion y — y. Next, using Expression (11.1), we 
est imate Y for every one of ou r given values of X. The est imated values Y are 
shown in co lumn (8) of Table 11.1. C o m p a r e them with the observed values 

we can write Expression (11.1), Ϋ = a + bX, as 

Ϋ = (Ϋ - bX) + bX 

= Ϋ + b(X - X) 

Ϋ - Y = bx 

y = bx (11.3) 

9 

FIGURE 1 1.6 
L i n e a r r eg res s ion l i l ted t o d a t a of 
F i g u r e 11.3. 
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of Y in column (2). Overall agreement between the two columns of values is 
good. No te that except for rounding errors. Σ Υ = ΣΥ and hence Υ = Ϋ. How-
ever, our actual Y values usually are different from the estimated values Y. This 
is due to individual variation around the regression line. Yet, the regression line 
is a better base f rom which to compute deviations than the ari thmetic average 
7, since the value of X has been taken into account in constructing it. 

When we compute deviations of each observed Y value f rom its estimated 
value ( y — Ϋ) = dY. χ and list these in column (9), we notice that these deviations 
exhibit one of the properties of deviations f rom a mean: they sum to zero except 
for rounding errors. Thus Σ ά γ χ = 0, just as Σ}> = 0. Next, we compute in 
column (10) the squares of these deviations and sum them to give a new sum 
of squares, Σά2

γχ = 0.6160. When we compare Σ ( Υ — Ϋ)2 = Σ y 2 = 24.1307 
with Σ ( Υ — Ϋ)2 = Σ dj χ = 0.6160, we note that the new sum of squares is 
much less than the previous old one. What has caused this reduction? Allowing 
for different magnitudes of X has eliminated most of the variance of Y from 
the sample. Remaining is the unexplained sum of squares Σ dY. x, which expresses 
that port ion of the total SS of Y that is not accounted for by differences in X. 
It is unexplained with respect to X. The difference between the total SS, Σ y 2 , 
and the unexplained SS, XdY.x, is not surprisingly called the explained sum of 
squares, Σ$2, and is based on the deviations y = Ϋ — Y. The computa t ion of 
these deviations and their squares is shown in columns (11) and (12). Note that 
Σγ approximates zero and that Σ v2 = 23.5130. Add the unexplained SS (0.6160) 
to this and you obtain Σ y 2 = Σ ν2 + Σ d γ v = 24.1290, which is equal (except 
for rounding errors) to the independently calculated value of 24.1307 in column 
(7). We shall return to the meaning of the unexplained and explained sums of 
squares in later sections. 

We conclude this section with a discussion of calculator formulas for com-
puting the regression equation in cases where there is a single value of y for 
each value of X. The regression coefficient Σ χ \ > / Σ χ 2 can be rewritten as 

The denominator of this expression is the sum of squares of X. Its computat ional 
formula, as first encountered in Section 3.9, is Σ ν2 = Σ λ'2 (Σ Χ)2/η. We shall 
now learn an analogous formula for the numerator of Expression (11.4), the sum 
of products. The customary formula is 

η 
Σ ( χ χ κ υ - ϋ) 

(11.4) η 
Σ ( χ γ ι ' 

η 

The quanti ty Σ Χ Υ is simply the accumulated product of the two variables. 
Expression (11.5) is derived in Appendix A1.5. The actual computa t ions for a 
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regression equat ion (single value of Y per value of X) are illustrated in Box 11.1, 
employing the weight loss da ta of Table 11.1. 

To compute regression statistics, we need six quantities initially. These are 
η,ΣΧ,Σ Χ2, Σ Υ, Σ Y2, and Σ Χ Υ. F rom these the regression equat ion is calcu-
lated as shown in Box 11.1, which also illustrates how to compute the explained 

B O X 1 1 . 1 

C o m p u t a t i o n o f r e g r e s s i o n s t a t i s t i c s . S i n g l e v a l u e o f Y f o r e a c h v a l u e o f X . 

Data from Table 11.1. 

Weight loss 
in mg(Y) 8.98 8.14 6.67 6.08 5.90 5.83 4.68 4.20 3.72 
Percent relative 

humidity (A") 0 12.0 29.5 43.0 53.0 62.5 75.5 85.0 93.0 

Basic computations 
1. Compute sample size, sums, sums of the squared observations, and the sum of 

the X K's. 

n = 9 453.5 £ Y = 54.20 

Σ A2 = 31,152.75 £ Y2 = 350.5350 £ XY = 2289.260 

2. The means, sums of squares, and sum of products are 

X = 50.389 Υ = 6.022 

X x 2 = 8301.3889 ^ y 2 = 24.1306 
^ n 

= 2289.260 ^ 4 5 3 : 5 f - 2 0 ) ^ 4 4 L 8 , 7 8 

3. The regression coefficient is 

_ -441.8178 
£ > J ~ 8301.3889" 

4. The Y intercept is 

a = Ϋ — by. x X -- 6.022 - (-0.053,22)(50.389) = 8.7037 

5. The explained sum of squares is 

( V x > r J : . 4 4 « . 8 1 7 8 r 
8301.3889 

6. The unexplained sum of squares is 

= χ .ν 2 - £j>2 = 24.1306 - 23.5145 = 0.6161 

by χ = = - = -0.053,22 
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sum of squares Σ y2 = Σ (Ϋ — Y)2 and the unexplained sum of squares Σ dj . x = 
Σ ( Υ - f ) 2 . That 

is demonstra ted in Appendix A 1.6. The term subtracted from Σ γ 2 is obviously 
the explained sum of squares, as shown in Expression (11.7) below: 

Σ ί 2 = Σ ^ 2 = ^ 2 Σ * 2 = § ^ Σ * 2 ( " - τ ) 

v - 2 ( Σ * ? ) 2 

L y -
Σ * 2 

1 1 . 4 M o r e t h a n o n e v a l u e o f Y f o r e a c h v a l u e o f X 

We now take up Model I regression as originally defined in Section 11.2 and 
illustrated by Figure 11.2. For each value of the treatment X we sample Y 
repeatedly, obtaining a sample distribution of Y values at each of the chosen 
points of A'. We have selected an experiment from the laboratory of one of us 
(Sokal) in which Tribolium beetles were reared from eggs to adul thood at four 
different densities. The percentage survival to adul thood was calculated for 
varying numbers of replicates at these densities. Following Section 10.2, these 
percentages were given arcsine transformations, which are listed in Box I 1.2. 
These transformed values are more likely to be normal and homosccdastic than 
are percentages. The arrangement of these da ta is very much like that of a single-
classification model 1 anova. There are four different densities and several sur-
vival values at each density. We now would like to determine whether there 
are differences in survival among the four groups, and also whether we can 
establish a regression of survival on density. 

A first approach, therefore, is to carry out an analysis of variance, using 
the methods of Section 8.3 and Table 8.1. Our aim in doing this is illustrated 
in Figure 1 1.7 (sec page 247). If the analysis of variance were not significant, this 
would indicate, as shown in Figure 11.7A, that the means are not significantly 
dilferent from each other, and it would be unlikely that a regression line fitted 
to these data would have a slope significantly different from zero. However, 
al though both the analysis of variance and linear regression test the same null 
hypothesis equality of means the regression test is more powerful (less type 
II error; sec Section 6.8) against the alternative hypothesis that there is a linear 
relationship between the group means and the independent variable X. Thus, 
when the means increase or decrease slightly as X increases it may be that they 
are not different enough for the mean square among groups to be significant by 
anova but that a significant regression can still be found. When we find a marked 
regression of the means on A", as shown in Figure 11.7B, wc usually will lind 
a significant difference among the means by an anova. However, we cannot turn 
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B O X 1 1 . 2 

C o m p u t a t i o n o f r e g r e s s i o n w i t h m o r e t h a n o n e v a l u e o f Y p e r v a l u e o f X . 

The variates Y are arcsine transformations of the percentage survival of the 
bettle Tribolium castaneum at 4 densities (X = number of eggs per gram of flour 
medium). 

Density = X 
(a = 4) 

5/g 20/g 50/g 100/g 

61.68 68.21 58.69 53.13 
58.37 66.72 58.37 49.89 

Survival; in degrees 69.30 63.44 58.37 49.82 
61.68 60.84 
69.30 

£ y 320.33 259.21 175.43 152.84 
«i 5 4 3 3 
% 64.07 64.80 58.48 50.95 

Σ «. = 15 

Σ Σ y = 907.81 

Source: Data by Sokai (1967). 

The anova computations are carried out as in Table 8.1. 

Anova table 

Source of variation df SS MS F , 

Ϋ - Ϋ Among groups 3 423.7016 141.2339 11.20** 
Υ-Ϋ Within groups Η 138.6867 12.6079 
Y - Ϋ Total Ϊ4 562J883 

The groups differ significantly with respect to survival. 

We proceed to test whether the differences among the survival values can be 
accounted for by linear regression on density. If F„ < [l/(« — l)j Fa(i Σ„„, „,, it 
is impossible for regression to be significant. 

Computation for regression analysis 

1. Sum of X weighted by sample size = ntX 

= 5(5) + 4{20) + 3(50) + 3(100) 

= 555 
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BOX 11.2 
Continued 

a 
2. Sam of X 2 weighted by sample size — £ n,X2 

= %Sf + 4(20? + 3(50)2 + 3(100)2 

= 39.225 

3. Sum of products of X and Ϋ weighted by sample size 

= Σ η,ΧΫ = i x ( f , Y j = 5(320.33) + · · + 100(152.84) 

= 30,841.35 

4. Correction term for X = CTX a «* 
Σ » ! 

_ (quantity I)2 (555)2 

A 15 
Σ»< 

: 20,535.00 

5. Sum of squares of X = Σ x 2 = Σ η<χ1 ~ CTx 

= quantity 2 - quantity 4 = 39,225 - 20,535 

= 18,690 

6. Sum of products = Σ x>' 
(a \ ( a Η 

| Σ > * ) ( ς ς 

Σ » « 

quantity 1 
quantity 3 

, 30,841.35 j m & L · . _ 2 7 4 7 . 6 2 
1 5 

( T xv)2 

7. Explained sum of squares = Σ .P2 = - -
Σ χ 2 

2 / ΊΊΛΊ 

quantity 5 18,690 

8. Unexplained sum of squares = Σ ^ ΐ ' χ = ® W P 8 ~~ Σ ί ' 2 

= SSgromPS ~ quantity 7 

= 423.7016 - 403.9281 = 19.7735 
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BOX 11.2 
Continued 

Completed anova table with regression 

Source of variation if SS MS F, 

f - y Among densities (groups) 3 423.7016 141.2339 11.20** 
y - y Linear regression 1 403.9281 403.9281 40.86* 
Y - y Deviations from regression 2 19.7735 9.8868 < 1 ns 
y - y Within groups 11 138.6867 12.6079 

y - y Total 14 562.3883 

In addition to the familiar mean squares, MSgroups and MSwlIh ln , we now have 
the mean square due to linear regression, MS γ, and the mean square for deviations 
from regression, MSy .x( = s$. v). To test if the deviations from linear regression are 
significant, compare the ratio Fs = MSr. */MS„ i Ih i„ with i°m-ay Since we 
find Fs < 1, we accept the null hypothesis that the deviations from linear regression 
are zero. 

To test for the presence of linear regression, we therefore tested MSy over the 
mean square of deviations from regression s j . x and, since Fs = 403.9281/9.8868 = 
40.86 is greater than /* 0 0 5 [ 1 2 J = 18.5, we clearly reject the null hypothesis that 
there is no regression, or that β = 0. 

9. Regression coefficient (slope of regression line) 

r Λ Σ χ quantity 5 18,690 

10. Y intercept = a = f -bY .xX 
a Rj 

_ Σ Σ Y quantity 9 χ quantity 1 

Σ "< Σ »« 

907.81 (-0.147,01)555 
15 15 

Hence, the regression equation is Ϋ = 65.9601 — 0.147,01 A". 

60.5207 + 5.4394 = 65.9601 

this a r g u m e n t a r o u n d and say tha t a s ignif icant difference a m o n g m e a n s as 
shown by an a n o v a necessari ly indicates t ha t a significant l inear regression can 
be fitted to these da t a . In F igure I I.7C, the m e a n s fol low a U - shaped func t ion 
(a parabola) . T h o u g h the m e a n s would likely be significantly different f r om each 
o ther , clearly a s t ra ight line fitted to these d a t a would be a ho r i zon ta l line 
ha l fway be tween the uppe r and the lower points . In such a set of d a t a , linear 
regression can explain only little of the va r i a t ion of the d e p e n d e n t var iable . 
However , a curvi l inear pa rabo l i c regression w o u l d fit these d a t a and r emove 
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FIGURE 1 1.7 
Differences a m o n g means a n d l inear regression. G e n e r a l ( rends only are indicated by these figures. 
Signif icance of any of these wou ld depend on (he o u t c o m e s of a p p r o p r i a t e tests. 

most of the variance of Y. A similar ease is shown in Figure I I.7D, in which 
the means describe a periodically changing phenomenon , rising and falling al-
ternatingly. Again the regression line for these da ta has slope zero. A curvilinear 
(cyclical) regression could also be fitted to such data , but our main purpose in 
showing this example is to indicate that there could be heterogeneity a m o n g 
the means of Y apparent ly unrelated to (he magni tude of X. Remember that 
in real examples you will rarely ever get a regression as clcar-cut as the linear 
case in 11,7B, or the curvilinear one in I 1.7C, not will you necessarily get hetero-
geneity of the type shown in I I.7D, in which any straight I inc fitted to the data 
would be horizontal . You are more likely to get da ta in which linear regression 
can be demons t ra ted , but which will not fit a straight line well. Sometimes the 
residual deviat ions of the means a r o u n d linear regression can be removed bv 
changing from linear to curvil inear regression (as is suggested by the pat tern of 
points in f igure 1 I.7E), and sometimes they may remain as inexplicable residual 
heterogeneity a round the regression line, as indicated in Figure I I.7F. 

We carry out the compu ta t ions following the by now familiar outline for 
analysis of variance and obtain the anova table shown in Box 11.2. The three 
degrees of f reedom a m o n g the four g roups yield a mean square dial would be 
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highly significant if tested over the wi th in-groups mean square. The addi t iona l 
steps for the regression analysis follow in Box 11.2. W e compu te the sum of 
squares of X, the sum of p roduc t s of X and Y, the explained sum of squares 
of Τ, and the unexplained sum of squares of Y. The formulas will look unfamil iar 
because of the complicat ion of the several Y's per value of X. The c o m p u t a t i o n s 
for the sum of squares of X involve the mult ipl icat ion of X by the n u m b e r of 
i tems in the study. Thus , though there may appea r to be only four densities, 
there are, in fact, as m a n y densities (al though of only four magni tudes) as there 
are values of Y in the study. Having completed the computa t ions , we again 
present the results in the form of an anova table, as shown in Box 11.2. N o t e 
that the m a j o r quant i t ies in this table are the same as in a single-classification 
anova , bu t in addi t ion we n o w have a sum of squares representing linear re-
gression, which is always based on one degree of f reedom. This sum of squares 
is subt rac ted f rom the SS a m o n g groups, leaving a residual sum of squares 
(of two degrees of f reedom in this case) representing the deviat ions f rom linear 
regression. 

W e should unders tand what these sources of variat ion represent. The linear 
model for regression with replicated Y per X is derived directly f rom Expression 
(7.2), which is 

Yi, = μ + <*,· + c.j 

The t rea tment effect a ; = /ix, + Dh where fix is the componen t due to linear 
regression and D ; is the deviat ion of the mean Ϋ{ f rom regression, which is 
assumed to have a mean of zero and a variance of σ2

υ. Thus we can write 

Yij = μ + /ix, + O, + Cy 

The SS due to linear regression represents that por t ion of the SS a m o n g groups 
that is explained by linear regression on A'. The SS due to deviat ions f rom 
regression represents the residual variat ion or scatter a round the regression line 
as illustrated by the var ious examples in Figure 11.7. The SS within g roups is a 
measure of the variat ion of the items a round each g roup mean. 

We first test whether the mean square for deviat ions f rom regression 
(MSγ Y = sY. χ) is significant by comput ing the variance rat io of MSY. x over 
the wi thin-groups MS. In ou r case, the deviat ions from regression are clearly 
not significant, since the mean square for deviat ions is less than that within 
groups. We now test the mean square for regression, MSY, over the mean 
square for deviat ions from regression and find it to be significant. T h u s linear 
regression on density has clearly removed a significant por t ion of the variat ion 
of survival values. Significance of the mean square for deviat ions f rom regression 
could mean either that Y is a curvilinear funct ion of X or that there is a large 
a m o u n t of r andom heterogeneity a round the regression line (as already discussed 
in connect ion with Figure 11.7; actually a mixture of both condi t ions may 
prevail). 

Some workers, when analyzing regression examples with several Y variatcs 
at each value of A", proceed as follows when the deviat ions from regression are 
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not significant. They add the sum of squares for deviat ions and ili.ii wni.n, 
groups as well as their degrees of freedom. Then they calculate a pooled 
mean square by dividing the pooled sums of squares by the pooled degree·. .»ι 
freedom. The mean square for regression is then tested over the pooled 
mean square, which, since it is based on more degrees of f reedom, will be a 
better es t imator of the error variance and should permit more sensitive tests. 
O the r workers prefer never to pool, arguing that pool ing the two sums of 
squares confounds the pseudorepl icat ion of having several Y variates at each 
value of X with the t rue replication of having m o r e X points to determine the 
slope of the regression line. Thus if we had only three X points but one hundred 
Υ variates at each, we would be able to est imate the mean value of F f o r each 
of the three X values very well, bu t we would be est imating the slope of the 
line on the basis of only three points, a risky procedure. The second at t i tude, 
forgoing pooling, is m o r e conservative and will decrease the likelihood that a 
nonexistent regression will be declared significant. 

We complete the compu ta t i on of the regression coefficient and regression 
equat ion as shown at the end of Box 11.2. O u r conclusions are that as density 
increases, survival decreases, and that this relat ionship can be expressed by a 
significant linear regression of the form Y = 65.9601 — 0.147,01 X, where X is 
density per g ram and Y is the arcsine t ransformat ion of percentage survival. 
This relation is graphed in Figure 11.8. 

The sums of p roduc t s and regression slopes of both examples discussed so 
far have been negative, and you may begin to believe that this is always so. 
However, it is only an accident of choice of these two examples. In the exercises 
at the end of this chaptc r a positive regression cocfficicnt will be encountered. 

When we have equal sample sizes of Y values for each value of X, the com-
puta t ions bccome simpler. First we carry out the anova in the manner of Box 
8.1. Steps 1 through 8 in Box 11.2 bccome simplified bccause the unequal sample 
sizes «, are replaced by a constant sample size n, which can generally be factored 
out of the various expressions. Also, = an. Significance tests applied to such 
cases are also simplified. 

D e n s i t y ( n u m b e r of e^Rs/i i of m e d i u m ) 

f i g l j r r 1 1 . 8 

L i n e a r r eg re s s ion f i t ted to d a t a of Box 11.2. 
S a m p l e m e a n s a r e iden t i f i ed by p l u s s igns . 
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1 1 . 5 T e s t s o f s i g n i f i c a n c e i n r e g r e s s i o n 

We have so far interpreted regression as a m e t h o d for providing an estimate, 
V\, given a value of X v Another in terpre ta t ion is as a method for explaining 
some of the var ia t ion of the dependent variable Y in terms of the var ia t ion of 
the independent variable X. The SS of a sample of Y values, Σ ^ 2 , is compu ted 
by summing and squar ing deviat ions y = Υ - Ϋ. In Figure 11.9 we can see tha t 
the deviat ion y can be decomposed into two parts , y and dy x. It is also clear 
f rom Figure 11.9 that the deviat ion y = Ϋ — Ϋ represents the deviat ion of the 
est imated value Y from the mean of Y. The height of y is clearly a funct ion 
of ,x. We have already seen that y = bx (Expression (11.3)). In analyt ical ge-
ometry this is callcd the point-s lope form of the equat ion. If b, the slope of the 
regression line, were steeper, ν would be relatively larger for a given value of 
x. The remaining por t ion of the deviat ion y is dy. χ. It represents the residual 
variat ion of the variable Y after the explained variat ion has been subtracted. 
We can sec that y = y dy x by writ ing out these deviat ions explicity as 

For each of these deviat ions we can compu te a cor responding sum of 
squares. Appendix A 1.6 gives the calculator formula for the unexplained sum 
of squares, 

γ ν = (Υ — γ ) + {Y — y). 

Transposed, this yields 

„ , (V a t ) 2 ^ r 
Σ>'" = y v2 ' Σ<'> 

Of course, Σ r cor responds to y, Σ ι . v to dy Y, and 

1 

V ' v ' ' y 

'/.'•Λ 
ι KiURi: 11.9 

S t h c m a l i c d i a g r a m to s h o w r e l a t i o n s in-
volved in p a r t i t i o n i n g ihe s u m of s q u a r e s of 
the d e p e n d e n t va r i ab le . 

0 - Λ 
Λ' 
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cor responds to y (as shown in the previous section). Thus we are able lo pa ι η 
tion the sum of squares of the dependent variable in regression in a wa\ 
ana logous to the par t i t ion of the total SS in analysis of variance. You may 
wonder how the addit ive relation of the deviat ions can be matched by an 
additive relation of their squares wi thout the presence of any cross products . 
Some simple algebra in Appendix A 1.7 will show that the cross p roduc t s cancel 
out. The magni tude of the unexplained deviat ion d y . x is independent of the 
magni tude of the explained deviation y, just as in anova the magni tude of the 
deviation of an item f rom the sample mean is independent of the magni tude of 
the deviat ion of the sample mean f rom the g rand mean. This relat ionship 
between regression and analysis of variance can be carried fur ther . We can 
under take an analysis of variance of the par t i t ioned sums of squares as follows: 

Source of variation tIf SS MS Expected MS 

_ E x p l a i n e d _ ( £ *v) 2
 2 2 ? ν 1 

Y ~ Y (estimated Y from 1 L>' = y-pT ·νί σ>· χ + Is' Σ χ~ 
m e a n of Κ) 

Unexplained, error 
V - V (observed Y from η - 2 £ . x = V r - Σ f s'f .* σ ϊ χ 

estimated V) 

Ϋ Total (observed Y n _ , £ v2 = £ γ ι _ { Σ s i 
from mean of F) ' η 

T h e explained mean square, o r mean square due lo linear regression, m e a s -

ures the a m o u n t of variat ion in Y accounted for by variation of X. It is tested 
over the unexplained mean square, which measures the residual variat ion and 
is used as an error MS. The mean square due to linear regression, sf, is based 
on one degree of freedom, and consequent ly (n - 2) df remain for the er ror M S 
sincc the total sum of squares possesses η - I degrees of f reedom. The test is of 
the null hypothesis H 0 : β = 0. When we carry out such an anova on the weight 
loss da ta of Box I I.I, we obta in the following results: 

Source of variation df 

E x p l a i n e d - d u e t o l i n e a r 
r e g r e s s i o n 1 
U n e x p l a i n e d e r r o r a r o u n d 
r e g r e s s i o n l ine 7 

T o t a l '8~ 

SS MS l\ 

2 3 . 5 1 4 5 2 3 . 5 1 4 5 2 6 7 . 1 8 * * 

0.6161 0.08801 
141306 

The significance test is /-'s = s$/sy.x. It is clear f rom the observed value of /·', 
that a large and significant por t ion of the variance of V has been explained 
by regression on A'. 
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We n o w proceed to the s tandard errors for various regression statistics, 
their employment in tests of hypotheses, and the computa t ion of confidence 
limits. Box 11.3 lists these s tandard errors in two columns. The r ight-hand 
column is for the case with a single Y value for each value of X. The first row 
of the table gives the standard error of the regression coefficient, which is simply 
the square roo t of the ra t io of the unexplained variance to the sum of squares 
of X. N o t e tha t the unexplained variance Sy .A is a fundamen ta l quant i ty that 
is a par t of all s t anda rd errors in regression. The s t andard er ror of the regres-
sion coefficient permits us to test various hypotheses and to set confidence limits 
to our sample est imate of b. The computa t ion of sb is illustrated in step 1 of Box 
11.4, using the weight loss example of Box 11.1. 

BOX 11.4 
S i g n i f i c a n c e t e s t s a n d c o m p u t a t i o n o f c o n f i d e n c e l i m i t s o f r e g r e s s i o n s t a t i s t i c s . S i n g l e 

v a l u e o f Y f o r e a c h v a l u e o f X . 

Based on standard errors and degrees of freedom of Box 11.3; using example of 
Box 11.1. 

η = 9 X = 50.389 ? = 6.022 

by.x = - 0.053,22 £ x2 = 8301.3889 

0.088,01 

(ft - 2) 7 

1, Standard error of the regression coefficient: 

V^nib = ^ ^ 0 I 0 ' 6 0 2 = 0-003,256,1 

2. Testing significance of the regression coefficent: 

b - 0 -0.053.22 

ίο.οοιρι = 5.408 Ρ < 0.001 

3. 95% confidence limits for regression coefficient: 

fo.osm*!. = 2.365(0.003,256,1) = 0.007,70 

L! = 6 - i0 „5r71s6 = -0.053,22 - 0.007,70 = -0.060.92 

L j = b + to.ospjSi = -0.053,22 + 0.007,70 = -0.045,52 

4. Standard error of the sampled mean F (at X): 

= ^ 1 = 0.098,888,3 
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BOX 11.4 
C o n t i n u e d 

5. 95% confidence limits for the mean μγ corresponding to Χ(Ϋ - 6.022): 
fo.o5f7isf = 2.365(0.098,888,3) = 0.233,871 

L j = Ϋ - t0.05i7ff = 6,022 - 0.2339 = 5.7881 

L 2 = Ϋ + t0 .0 5 [ 7JSY = 6.022 + 0.2339 = 6.2559 

6. Standard error of Yh an estimated Y for a given value of JV,: 

7. 95% confidence limits for μΥί corresponding to the estimate Yt ~ 3.3817 at 
A", = 100% relative humidity: 

The significance lest illustrated in step 2 tests the "significance" of the regres-
sion coefficient; that is, it tests the null hypothesis that the sample value of h 
comes from a popula t ion with a parametr ic value β = 0 for the regression 
coefficient. This is a t test, the appropr i a t e degrees of f reedom being η — 2 = 7. 
If wc cannot reject the null hypothesis, there is no evidence that the regression 
is significantly deviant f rom zero in cither the positive or negative direction. 
O u r conclusions Tor the weight loss da ta are that a highly significant negative 
regression is present. Wc saw earlier (Section 8.4) that r = /·'. When wc square 
ty = -- 16.345 f rom Box I 1.4, wc obtain 267.16, which (within round ing error) 
equals the value of Fv found in the anova earlier in this section. The signifi-
cance test in step 2 of Box I 1.4 could, of course, also be used to test whether 
h is significantly different from a parametr ic value β other than zero. 

Setting confidence limits to the regression coefficient p r e s e n t s n o n e w f e a t u r e s , 

since h is normally dis t r ibuted. The computa t ion is shown in step 3 of Box 
11.4. In view of the small magn i tude of sh, the confidence interval is qui te 
nar row. The confidence limits arc shown in Figure 11.10 as dashed lines repre-
senting the 95% bounds of the slope. Note that the regression line as well as its 

For example, for Xt = 100% relative humidity 

= v ® 8 W 0 4 0 7 ^ 0 ) = %/α035,873 = 0.189,40 

to.osmSf = 2.365(0.189,40) = 0.447,93 

L, = Ϋ, - i0.o5(7]AV- = 3.3817 - 0.4479 = 2.9338 

L2 = + t0 .0S n isi = 3.3817 + 0.4479 = 3.8296 
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FIGURE 1 1.10 
95% confidence limits to regression line of 
F igure 11.6. 
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confidence limits passes through the means of X and Y. Variat ion in b therefore 
rotates the regression line about the point ,Ϋ, Ϋ. 

N e x t , w e c a l c u l a t e a standard error for the observed sample mean Y. Y o u 

will recall f rom Section 6.1 that .sf = sj/n. However, now that we have regressed 
Y on X, we are able to account for (that is, hold constant) some of the varia-
tion of Y in terms of the variat ion of X. The variance of Y a round the point 
Χ, Y on the regression line is less than s}; it is Sy.x. At A" we may therefore 
compute confidence limits of Ϋ, using as a s tandard error of the mean sr = 
\ J s l . x / n with η - 2 degrees of freedom. This s tandard error is compu ted in step 
4 of Box 11.4, and 95% confidence limits for the sampled mean Ϋ at X arc 
calculated in step 5. These limits (5.7881 6.2559) are considerably nar rower 
than the confidence limits for the mean based on the convent ional s tandard 
error s), which would be from 4.687 to 7.357. Thus, knowing the relative humi-
dity greatly reduces much of the uncertainty in weight loss. 

The s tandard error for Ϋ is only a special ease of the standard error for 
any estimated value Y alone) the regression line. A n e w f a c t o r , w h o s e m a g n i t u d e 

is in part a funct ion of the distance of a given value .V, from its mean X, now 
enters the error variance. Thus, the far ther away ,Y, is from its mean, the greater 
will be the error of estimate. This factor is seen in the third row of Box 1 1.3 
as the deviation A,- A", squared and divided by the sum of squares of X. 
The s tandard error for an est imate Y, for a relative humidity A', — 100*7, is 
given in step 6 of Box 11.4. The 95% confidence limits for /(,., the parametr ic 
value cor responding to the est imate Y,·. are shown in step 7 o f l h a t box. N o t e 
that the width of the confidence interval is 3.8296 2.9338 = 0.8958, consid-
erably wider than the confidence interval at X calculated in step 5. which was 
6.2559 5.7881 = 0.4678. If we calculate a series of confidence limits for dif-
ferent values of X w c obta in a biconcave confidence belt as shown in Figure 
11.11. The farther wc get away from the mean, the less reliable are our estimates 
of Y. because of the uncertainty about the true slope, β, of I he regression line. 
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v 

FIGURE 11.11 
95% confidence limits to regression es t imates 
for d a t a of Figure 11.6. 
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Fur the rmore , the linear regressions that we fit are often only rough approx-
imat ions to the more complicated funct ional relat ionships between biological 
variables. Very often there is an approximate ly linear relat ion a long a cer-
tain range of the independent variable, beyond which range the slope changes 
rapidly. F o r example, hear tbeat of a poiki lothermic animal will be directly pro-
por t ional to t empera ture over a range of tolerable temperatures , but benea th 
and above this range the hear tbeat will eventually decrease as the animal freezes 
or suffers heat pros t ra t ion . Hence c o m m o n sense indicates that one should be 
very caut ious abou t ext rapola t ing from a regression equat ion if one has any 
doub t s abou t the linearity of the relationship. 

The confidence limits for a, the parametr ic value of a, are a special case of 
those for at A", = 0, and the s tandard er ror of a is therefore 

Tests of significance in regression analyses where there is more than one 
variate V per value of X are carried out in a manner similar to that of Box 
11.4, except that the s tandard errors in the left-hand column of Box 11.3 are 
employed. 

Another significance test in regression is a test of the differences between 
two regression lines. Why would we be interested in testing differences between 
regression slopes? We might find that different toxicants yield different dosage-
mortal i ty curves or that different drugs yield different relat ionships between 
dosage and response (sec, for example, Figure 11.1). O r genetically differing 
cultures might yield different responses to increasing density, vvhich would be 
impor tan t for unders tanding the cffcct of na tura l selection in these cultures. The 
regression slope of one variable on ano the r is as fundamenta l a statistic of a 
sample as is the mean or the s t andard deviat ion, and in c o m p a r i n g samples 
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it may be as impor tan t to compare regression coefficients as it is to compare 
these o ther statistics. 

The test for the difference between two regression coefficients can be carried 
out as an F test. W e compu te 

ρ = J M l L _ s YA±M,2 
(Σ*1)(Σ4) y x 

where .s2. x is the weighted average sj. x of the two groups. Its formula is 

V: 

For one Y per value of X, v2 = nl + n2 - 4, but when there is more than one 
variate Y per value of X, v2 = ai + a2 - 4. C o m p a r e Fs with V2,. 

1 1 . 6 T h e u s e s o f r e g r e s s i o n 

We have been so busy learning the mechanics of regression analysis that we 
have not had time to give much thought to the various appl icat ions of re-
gression. We shall take up four more or less distinct appl icat ions in this section. 
All are discussed in terms of Model I regression. 

First, we might ment ion the study of causation. If we wish to know whether 
variat ion in a variable V is caused by changes in ano ther variable X, we 
manipula te -V in an experiment and see whether we can obta in a significant 
regression of Y on X. The idea of causat ion is a complex, philosophical one 
that we shall not go into here. You have undoubted ly been caut ioned f rom 
your earliest scientific experience not to confuse concomi tan t variat ion with 
causat ion. Variables may vary together, yet this covar ia t ion may be accidental 
or both may be funct ions of a c o m m o n cause affecting them. The latter cases 
arc usually examples of Model II regression with both variables varying freely. 
When we manipula te one variable and lind that such manipula t ions affect a 
sccond variable, we generally arc satisfied that the variat ion of the independent 
variable A' is the cause of the variat ion of the dependent variable V (not Ihe 
cause of the variable!). However , even here it is best to be cautious. When we 
find that hear tbeat rale in a cold-blooded animal is a funct ion of ambient 
temperature , wc may conclude that t empera ture is one of the causes of dif-
ferences in hearheat rate There may well be other factors affccting rate of 
heartbeat . A possible mistake is to invert the cause-and-effect relationship. It 
is unlikely that anyone would suppose that hearbeat rate affects the tempera ture 
of the general envi ronment , but we might be mistaken abou t the causc-and-
clfect relat ionships between two chemical substances in the blood, for instance. 
Despite these caut ions, regression analysis is a commonly used device for 
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screening out causal relat ionships. While a significant regression of Υ on X does 
not prove that changes in X are the cause of variat ions in Y, the converse state-
ment is true. When we find no significant regression of Y on X, we can in all 
but the most complex cases infer quite safely (allowing for the possibility of 
type II error) that deviat ions of X do not affect Y. 

The description of scientific laws and prediction are a second general area 
of appl icat ion of regression analysis. Science aims at mathemat ica l descript ion 
of relat ions between variables in nature, and Model I regression analysis permits 
us to est imate funct ional relat ionships between variables, one of which is sub-
ject to error. These funct ional relat ionships do not always have clearly inter-
pretable biological meaning. Thus, in many cases it may be difficult to assign 
a biological in terpre ta t ion to the statistics a and b, or their cor responding 
parameters α and β. When we can do so, we speak of a structural mathematical 
model, one whose componen t par ts have clear scientific meaning. However , 
mathemat ica l curves that are not s t ructural models arc also of value in science. 
Mos t regression lines are empirically fitted curves, in which the funct ions simply 
represent the best mathemat ica l fit (by a criterion such as least squares) to an 
observed set of da ta . 

Comparison of dependent rariates is ano ther applicat ion of regression. As 
soon as it is established that a given variable is a function of ano the r one, as 
in Box 11.2, where we found survival of beetles to be a funct ion of density, one 
is bound to ask to what degree any observed difference in survival between two 
samples of beetles is a funct ion of the density at which they have been raised. 
It would be unfair to compare beetles raised at very high density (and expected 
to have low survival) with those raised under opt imal condi t ions of low density. 
This is the same point of view that makes us disinclined to compare the mathe-
matical knowledge of a fifth-grader with that of a college student. Since we 
could undoubted ly obtain a regression of mathemat ical knowledge on years of 
schooling in mathemat ics , we should be compar ing how far a given individual 
deviates from his or her cxpcctcd value based on such a regression. Thus , relative 
to his or her classmates and age group, the fif th-grader may be far better than 
is the collcge student relative to his or her peer group. This suggests that wc 
calculate adjusted Y values that allow for the magni tude of the independent 
variable X. A convent ional way of calculat ing such adjusted Y values is to 
est imate the Y value one would expect if the independent variable were equal 
to its mean X and the observat ion retained its observed deviation {dy v) f rom 
the regression line. Since = Ϋ when λ' = X, the adjusted Y value can be com-
puted as 

η , ϋ = t dy.x = Y - bx (11.8) 

Statistical control is an appl icat ion of regression that is not widely known 
a m o n g biologists and represents a scientific phi losophy that is not well estab-
lished in biology outside agricultural circles. Biologists frequently categorize 
work as either descriptive or experimental , with the implication that only the 
latter can be analytical. However, statistical approaches applied to descriptive' 
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work can, in a number of instances, take the place of experimental techniques 
quite adequately—occasionally they are even to be preferred. These approaches 
are a t tempts to substitute statistical manipulat ion of a concomitant variable 
for control of the variable by experimental means. An example will clarify this 
technique. 

Let us assume that we are studying the effects of various diets on blood 
pressure in rats. We find that the variability of blood pressure in our rat pop-
ulation is considerable, even before we introduce differences in diet. Further 
study reveals that the variability is largely due to differences in age a m o n g the 
rats of the experimental population. This can be demonstra ted by a significant 
linear regression of blood pressure on age. To reduce the variability of blood 
pressure in the populat ion, we should keep the age of the rats constant. The 
reaction of most biologists at this point will be to repeat the experiment using 
rats of only one age group; this is a valid, commonsense approach, which is 
part of the experimental method. An alternative approach is superior in some 
cases, when it is impractical or too costly to hold the variable constant . We 
might continue to use rats of variable ages and simply record the age of each 
rat as well as its blood pressure. Then we regress blood pressure on age and 
use an adjusted mean as the basic blood pressure reading for each individual. 
We can now evaluate the effect of differences in diet on these adjusted means. 
O r we can analyze the effects of diet on unexplained deviations, dr . A , after the 
experimental blood pressures have been regressed on age (which amounts to 
the same thing). 

What are the advantages of such an approach? Often it will be impossible 
to secure adequate numbers of individuals all of the same age. By using regression 
we are able to utilize all the individuals in the populat ion. The use of statistical 
control assumes that it is relatively easy to record the independent variable X 
and, of course, that this variable can be measured without error, which would 
be generally (rue of such a variable as age of a laboratory animal. Statistical 
control may also be preferable because we obtain information over a wider 
range of both >' and Y and also because we obtain added knowledge about 
the relations between these (wo variables, which would not be so if we re-
stricted ourselves (o a single age group. 

1 1 . 7 R e s i d u a l s a n d t r a n s f o r m a t i o n s i n r e g r e s s i o n 

An examination of regression residuals, dy. x, may detect outliers in a sample. 
Such outliers may reveal systematic departures from regression that can be 
adjusted by t ransformation of scale, or by the fitting of a curvilinear regression 
line. When it is believed that an outlier is due lo an observational or recording 
error, or to contaminat ion of the sample studied, removal of such an outlier 
may improve the regression fit considerably. In examining the magni tude of 
residuals, we should also allow for the corresponding deviation from Λ . Outly-
ing values of Yt (hat correspond to deviant variates .¥, will have a greater 
influence in determining the slope of the regression line than will variates close 
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to X. We can examine the residuals in co lumn (9) of Table 11.1 for the weight 
loss da ta . Al though several residuals are qui te large, they tend to be relatively 
close to Y. Only the residual for 0% relative humidi ty is suspiciously large and, 
at the same time, is the single mos t deviant observat ion f rom X. P e r h a p s the 
read ing at this extreme relative humidi ty does not fit into the generally linear 
relat ions described by the rest of the data . 

In t ransforming either or both variables in regression, we aim at simplifying 
a curvilinear re la t ionship to a linear one. Such a procedure generally increases 
the p ropor t ion of the var iance of the dependent variable explained by the 
independent variable, and the dis t r ibut ion of the deviat ions of points a round 
the regression line tends to become normal and homoscedast ic . Ra the r t han fit 
a compl ica ted curvilinear regression to points plot ted on an ar i thmet ic scale, 
it is far more expedient to c o m p u t e a simple linear regression for variates plot ted 
on a t rans formed scale. A general test of whether t rans format ion will improve 
linear regression is to graph the points to be fitted on ord inary graph pape r as 
well as on o ther graph paper in a scale suspected to improve the relat ionship. 
If the funct ion s t raightens out and the systematic deviation of points a r o u n d a 
visually fitted line is reduced, the t rans format ion is worthwhile. 

Wc shall briefly discuss a few of the t ransformat ions commonly applied in 
regression analysis. Square root and arcsine t ransformat ions (Section 10.2) are 
not ment ioned below, but they arc also effective in regression cases involving 
da ta suited to such t ransformat ions . 

The logarithmic transformation is the most frequently used. Anyone doing 
statistical work is therefore well advised to keep a supply of semilog paper 
handy. Most frequently wc t ransform the dependent variable Y. This trans-
format ion is indicated when percentage changcs in the dependent variable vary 
directly with changcs in the independent variable. Such a relat ionship is in-
dicated by the equat ion Y = aehx, where a and h are cons tants and e is the 
base of the natural logari thm. After the t ransformat ion , wc obta in log Y = 
log a + />(log c)A. In this expression log e is a constant which when multiplied 
by h yields a new constant factor h' which is equivalent to a regression coeffi-
cient. Similarly, log a is a new Y intercept, a'. Wc can then simply regress log Y 
on X to obtain the funct ion log Y = a' + h'X and obta in all ou r prediction 
equa t ions and confidcncc intervals in this form. Figure 11.12 shows an example 
of t ransforming the dependent variate to logari thmic form, which results in 
considerable s traightening of the response curve. 

A logari thmic t rans format ion of the independent variable in regression is 
effective when propor t iona l changes in the independent variable p roduce linear 
responses in the dependent variable. An example might be the declinc in weight 
of an organism as density increases, where the successive increases in density 
need to be in a constant rat io in order to effect equal decreases in weight. This 
belongs to a well-known class of biological phenomena , ano the r example οΓ 
which is the Weber-Fechncr law in physiology and psychology, which states 
that a s t imulus has to be increased by a cons tant p ropor t ion in order to p roduce 
a constant increment in response. Figure 11.13 illustrates how logari thmic 
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L o g a r i t h m i c t r a n s f o r m a t i o n of a d e p e n d e n t v a r i a b l e in r e g r e s s i o n . C h i r p - r a t e as a f u n c t i o n of t e m -
p e r a t u r e in m a l e s of t h e t r ee c r i cke t Oecanthus fultoni. E a c h p o i n t r e p r e s e n t s t h e m e a n c h i r p r a t e / m i n 
f o r all o b s e r v a t i o n s a t a g iven t e m p e r a t u r e in "C. O r i g i n a l d a t a in left p a n e l , Y p l o t t e d o n l o g a r i t h m i c 
scale in r igh t p a n e l . ( D a t a f r o m Block , 1966.) 
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L o g a r i t h m i c t r a n s f o r m a t i o n of t h e i n d e p e n d e n t v a r i a b l e in r eg res s ion . T h i s i l l u s t r a t e s s i / e of elec-
t r ical r e s p o n s e lo i l l u m i n a t i o n in the c e p h a l o p o d eye. O r d i n a t e , mi l l ivol t s ; a b s c i s s a , re la t ive b r i g h t -
ness of i l l u m i n a t i o n . A p r o p o r t i o n a l i n c r e a s e in Λ' ( re la t ive b r i g h t n e s s ) p r o d u c e s a l inea r e lec t r ica l 
r e s p o n s e V. ( D a t a in l ' r b h l i c h , 1 9 2 1 . ) 
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t r ans format ion of the independent variable results in the s traightening of the 
regression line. For compu ta t ions one would t ransform X into logari thms. 

Logar i thmic t rans format ion for both variables is applicable in s i tuat ions 
in which the true relat ionship can be described by the formula Y = aXb. The re-
gression equat ion is rewritten as log Y = log a + b log X and the compu ta t i on 
is done in the convent ional manner . Examples are the greatly d i sp ropor t iona te 
growth of var ious organs in some organisms, such as the sizes of antlers of deer 
or horns of stage beetles, with respect to their general body sizes. A double 
logari thmic t rans format ion is indicated when a plot on log-log graph paper 
results in a straight-line graph. 

Reciprocal transformation. Many rate phenomena (a given per formance per 
unit of time or per unit of populat ion) , such as wing beats per second or num-
ber of eggs laid per female, will yield hyperbolic curves when plot ted in original 
measurement scale. Thus, they form curves described by the general m a t h e m a t -
ical equa t ions bXY = 1 or + hX)Y = 1. F r o m these we can derive 1/Y = 
bX or 1/Y = a + bX. By t ransforming the dependent variable into its reciprocal, 
wc can frequently obta in straight-line regressions. 

Finally, some cumulat ive curves can be straightened by the prohit trans-
formation. Refresh your memory on the cumulat ive normal curve shown in 
Figure 5.5. Remember that by changing the ordinate of the cumulat ive normal 
into probabil i ty scale we were able to straighten out this curve. We do the 
same thing here except that we gradua te the probabil i ty scale in s tandard 
deviat ion units. Thus, the 50% point becomes 0 s tandard deviations, the 84.13% 
point becomes -f 1 s t andard deviation, and the 2.27% point becomes 2 stan-
dard deviations. Such s t andard deviations, cor responding to a cumula t ive per-
c e n t a g e , a r c cal led normal equivalent deviates (NEI)). If we use o r d i n a r y g r a p h 
paper and mark the ordinate in NED units, we obtain a straight line when 
plott ing the cumulat ive normal curve against it. Probits arc simply normal 
equivalent deviates coded by the addi t ion of 5.0, which will avoid negative 
values for most deviates. Thus, the probit value 5.0 corresponds to a cumula t ive 
frequency of 50%, the probit value 6.0 cor responds to a cumulat ive frequency of 
84.13"„, and the probit value 3.0 cor responds to a cumulat ive frequency of 
2 . 2 7 " , , . 

Figure 11.14 shows an example of mortal i ty percentages for increasing doses 
of an insecticide. These represent differing points of a cumulat ive frequency 
distr ibution. With increasing dosages an ever greater propor t ion of the sample 
dies until at a high enough dose the entire sample is killed. It is often found 
that if the doses of toxicants arc t ransformed into logarithms, the tolerances 
of many organisms to these poisons arc approximate ly normally distr ibuted. 
These t ransformed doses arc often called dosages. Increasing dosages lead to 
cumulat ive normal dis tr ibut ions of mortali t ies, often called dosage-mortalit ν 
curves. These curves are the subject mat ter of an entire field of biometric 
analysis, bioassav, to which wc can refer only in passing here. The most c o m m o n 
technique in this licld is probil analysis. Graph ic approximat ions can be ea rned 
out on so-called probil paper, winch is probabil i ty graph paper in which the 
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Dosage mortal i ly da ta i l lustrating an appl icat ion of the probit t r ans format ion . D a t a are mean 
mortal i t ies for two replicates. Twenty Drosophila melanogaster per replicate were subjected to seven 
doses of an " u n k n o w n " insecticide in a class experiment . The point at dose 0.1 which yielded 0",', 
mortal i ty has been assigned a probi t value of 2.5 in lieu of x , which canno t be plot ted. 

abscissa has been t ransformed into logari thmic scale. A regression line is fitted 
to dosage-mortal i ty da ta graphed on probit paper (see Figure 11.14). Prom 
the regression line the 50"ό lethal does is est imated by a process of inverse 
prediction, that is, we est imate the value of λ' (dosage) cor responding to a kill 
of probit 5.0, which is equivalent to 50"'.. 

1 1 . 8 A n o n p a r a m e t r i c t e s t f o r r e g r e s s i o n 

When t ransformat ions are unable to linearize the relat ionship between the 
dependent and independent variables, the research worker may wish to carry 
out a simpler, nonparamet r i c test in lieu of regression analysis. Such a test 
furnishes neither a prediction equat ion nor a functional relationship, but it does 
test whether the dependent variable Y is a monotonical ly increasing (or de-
creasing) function of the independent variable ,Y. The simplest such test is the 
ordering lest, which is equivalent to comput ing Kendall 's rank correlat ion co-
efficient (see Box 12.3) and can be carried out most easily as such. In fact, in 
such a case the distinction between regression and correlat ion, which will be 
discussed in detail in Section 12.1, breaks down. The test is carried out as follows. 

Rank variates λ' and V. Arrange the independent variable .V in increasing 
order of ranks and calculate the Kendal l rank correlat ion of Y with Λ. The 
computa t iona l steps for the procedure are shown in Box 12.3. If we carry out 
this compu ta t ion for the weight loss da ta of Box 11.1 (reversing the order of 
percent relative humidity, X. which is negatively related to weight loss, V), we 
obtain a quant i ty Ν — 72, which is significant at Ρ < 0.01 when looked up in 
'I'able XIV. There is thus a significant t rend of weight loss as a function of 
relative humidity. The ranks of the weight losses are a perfect mono ton ic function 
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on the ranks of the relative humidities. The m i n i m u m number of points required 
for significance by the rank correlat ion me thod is 5. 

Exercises 

11.1 T h e f o l l o w i n g t e m p e r a t u r e s (Y) w e r e r e c o r d e d in a r a b b i t a t v a r i o u s t i m e s ( Z ) 
a f t e r it w a s i n o c u l a t e d w i th r i n d e r p e s t v i ru s ( d a t a f r o m C a r t e r a n d M i t c h e l l , 1958). 

Time after 
injection Temperature 

(h) CF) 

24 102.8 
32 104.5 
4 8 106.5 
56 107.0 
72 103.9 
80 103.2 
96 103.1 

G r a p h t h e d a t a . C l e a r l y , t h e last t h r e e d a t a p o i n t s r e p r e s e n t a d i f f e ren t p h e n o m -
e n o n f r o m t h e first four pairs. For the first four points: (a) C a l c u l a t e b. (b) 
C a l c u l a t e t h e r eg re s s ion e q u a t i o n a n d d r a w in the r eg re s s ion line, (c) T e s t t h e 
h y p o t h e s i s t h a t β = 0 a n d set 95% c o n f i d e n c e l imits , (d) Set 9 5 % c o n f i d e n c e 
l imi t s t o y o u r e s t i m a t e of t h e r a b b i t ' s t e m p e r a t u r e 50 h o u r s a f t e r t h e i n j e c t i o n . 
A N S . α = 100, b = 0 .1300, F, = 59 .4288, Ρ < 0 .05, Ϋ50 = 106.5. 

11.2 T h e f o l l o w i n g t a b i c is e x t r a c t e d f r o m d a t a by S o k o l o f f (1955). A d u l t w e i g h t s 
of f e m a l e Drosophihi persimilis r e a r e d at 2 4 " C a r c a f fec ted by the i r d e n s i t y as 
l a rvae . C a r r y o u t a n a n o v a a m o n g dens i t i e s . T h e n c a l c u l a t e t h e r e g r e s s i o n of 
we igh t o n d e n s i t y a n d p a r t i t i o n the s u m s οΓ s q u a r e s a m o n g g r o u p s i n t o t h a t 
e x p l a i n e d a n d u n e x p l a i n e d by l inea r r eg re s s ion . G r a p h t h e d a t a wi th t h e regres -
s ion l ine f i t ted t o t h e m e a n s . In t e rp re f y o u r resul ts . 

Mean weight 
Larval of adults \ of wciifhts 
density (in mg) (not \ , l η 

1 1.356 0 .180 9 
3 1.356 0 .133 34 
5 1.284 0 .130 50 
6 1.252 0 .105 63 

10 0 .989 0 .130 83 
20 0 .664 0.141 144 
4 0 0 .475 0 .083 24 

11.3 D a v i s (1955) r e p o r l e d t h e f o l l o w i n g resu l t s in a s t u d y of the a m o u n t of e n e r g y 
m e t a b o l i z e d by the F n g / i s h s p a r r o w . Passer domesticus, u n d e r v a r i o u s c o n s t a n t 
t e m p e r a t u r e c o n d i t i o n s a n d a t e n - h o u r p h o t o p e r i o d . A n a l y z e a n d i n t e r p r e t 
A N S . MSy = 657 .5043 . MS, , - 8.2186, A-/.Swjlhin = 3.9330. d e v i a t i o n s a r c no t 
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Temperature 
CO 

Calories 
Y η s 

0 24.9 6 1.77 
4 23.4 4 1.99 

10 24.2 4 2.07 
18 18.7 5 1.43 
26 15.2 7 1.52 
34 13.7 7 2 .70 

11.4 Using the complete data given in Exercise J 1.1, calculate the regression equa-
tion and compare it with the one you obtained for the first four points. Discuss 
the effect of the inclusion of the last three points in the analysis. Compute the 
residuals from regression. 

11.5 The following results were obtained in a study of oxygen consumption (micro-
liters/mg dry weight per hour) in Heliothis zea by Phillips and Newsom (1966) 
under controlled temperatures and photoperiods. 

Temperature Photoperiod 
CC) (h) 

10 14 

18 0.51 1.61 
21 0 .53 1.64 
24 0 .89 1.73 

C o m p u t e r eg re s s ion for e a c h p h o t o p e r i o d s e p a r a t e l y a n d test f o r h o m o g e n e i t y 
of s lopes . A N S . F o r 10 h o u r s : b =• 0 .0633 , . s j . K = 0 .019,267. F o r 14 h o u r s : b = 
0.020,00, s2

Y. j = 0.000,60. 
11.6 L e n g t h of d e v e l o p m e n t a l p e r i o d (in d a y s j of the p o t a t o l e a f h o p p e r , Empousca 

labile, f r o m egg t o a d u l t a t v a r i o u s c o n s t a n t t e m p e r a t u r e s ( K o u s k o l e k a s a n d 
D e c k e r , 1966). T h e o r ig ina l d a t a w e r e w e i g h t e d m e a n s , bu t fo r p u r p o s e s of th i s 
a n a l y s i s we shal l c o n s i d e r t h e m a s t h o u g h they were s ingle o b s e r v e d va lues . 

Mean length of 
developmental 

Icmpt'ralun' period in days 
( F) Y 

59.8 58.1 
67.6 27.3 
70.0 26.8 
70.4 26.3 
74.0 19.1 
75.3 19.0 
78.0 16.5 
80.4 15.9 
81.4 14.8 
83.2 14.2 
88.4 14.4 
91.4 14.6 
m c 1 < "3 
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Analyze and interpret. Compute deviations from the regression line (yf — 
and plot against temperature. 

11.7 The experiment cited in Exercise 11.3 was repeated using a 15-hour photoperiod, 
and the following results were obtained: 

Temperuiure 
CO 

Calories 
Ϋ η s 

0 24.3 6 1.93 
10 25.1 7 1.98 
18 22.2 8 3.67 
26 13.8 10 4.01 
34 16.4 6 2.92 

Test for the equality of slopes of the regression lines for the 10-hour and 15-hour 
photoperiod. ANS. Fs = 0.003. 

11.8 Carry out a nonparametric test for regression in Exercises 11.1 and 11.6. 
11.9 Water temperature was recorded at various depths in Rot Lake on August 1,1952, 

by Vollenweider and Frei (1953). 

Depth (m) 0 1 2 3 4 5 6 9 12 15.5 
Temperature ("C) 24.8 23.2 22.2 21.2 18.8 13.8 9.6 6.3 5.8 5.6 

Plot the data and then compute the regression line. Compute the deviations 
from regression. Does temperature varv as a linear function of depth? What do 
the residuals suggest? ANS. a = 23.384, h = - 1.435, F, = 45.2398, Ρ < 0.01. 



C H A P T E R 

Correlation 

In this chapte r we cont inue our discussion of bivariate statistics. In Chap t e r 
11, on regression, we dealt with the funct ional relation of one variable upon 
the other; in the present chapter , wc treat the measurement of the a m o u n t of 
association between two variables. This general topic is called correlation 
analysis. 

It is not always obvious which type of analysis regression or correlat ion -
one should employ in a given problem. There has been considerable confu-
sion in the minds of investigators and also in the l i terature on this topic. Wc 
shall try to m a k e the distinction between these two approaches clear at the 
outset in Section 12.1. In Scction 12.2 you will be introduced lo the product -
moment correlat ion coefficient, the c o m m o n correlat ion coefficient οΓ the lit-
erature. Wc shall derive a formula for this coefficient and give you something 
of its theoretical background . The close mathemat ica l re lat ionship between 
regression and correlat ion analysis will be examined in this section. We shall 
also compu tc a p roduc t -moment correlat ion coefficient in this scction. In Sec-
tion 12.3 we will talk abou t various tests of significance involving correlat ion 
coefficients. Then, in Section 12.4, we will in t roduce some of the appl icat ions of 
correlation coefficients. 
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Section 12.5 contains a nonpa rame t r i c me thod that tests for associat ion. 
It is to be used in those cases in which the necessary assumpt ions for tests in-
volving correlat ion coefficients do not hold, or where quick but less t han fully 
efficient tests are preferred for reasons of speed in computa t ion or for con-
venience. 

1 2 . 1 C o r r e l a t i o n a n d r e g r e s s i o n 

There has been much confus ion on the subject mat te r of correlat ion and re-
gression. Qui te frequently correlat ion problems are treated as regression p rob-
lems in the scientific literature, and the converse is equally true. There are 
several reasons for this confusion. First of all, the mathemat ica l relat ions be-
tween the two me thods of analysis are qui te close, and mathemat ical ly one can 
easily move f rom one to the other. Hence, the tempta t ion to do so is great. Sec-
ond , earlier texts did not make the dist inction between the two approaches 
sufficiently clear, and this p rob lem has still no t been entirely overcome. At least 
one textbook synonymizes the two, a step that we feel can only c o m p o u n d 
the confusion. Finally, while an investigator may with good reason intend to 
use one of the two approaches , the na ture of the da ta may be such as to make 
only the o ther app roach appropr ia te . 

Let us examine these points at some length. The many and close mathe-
matical relations between regression and correla t ion will be detailed in Section 
12.2. It suffices for now to state that for any given problem, the major i ty of 
the computa t iona l steps are the same whether one carries out a regression or a 
correlat ion analysis. You will recall that the fundamenta l quant i ty required 
for regression analysis is the sum of products . This is the very same quant i ty 
that serves as the base for the computa t ion of the correlat ion coefficient. There 
arc some simple mathemat ica l relations between regression coefficients and 
correlat ion coefficients for the same data . T h u s the tempta t ion exists to com-
pute a correlat ion coefficient cor responding to a given regression coefficient. 
Yel, as we shall see shortly, this would be wrong unless our intention at the 
outset were to study associat ion and the da ta were appropr ia t e for such a com-
putat ion. 

Let us then look at the intentions or purposes behind the two types of 
analyses. In regression we intend to describe the dependence of a variable Y 
on an independent variable X. As wc have seen, we employ regression equa t ions 
for purposes of lending suppor t to hypotheses regarding the possible causat ion 
of changes in V by changes in X\ for purposes of prediction, of variable Y 
given a value of variable X\ and for purposes of explaining some of the varia-
tion of Y by X, bv using the latter variable as a statistical control . Studies 
of the effects of t empera tu re on hear tbeat rate, ni trogen content of soil on 
growth rale in a plant, age of an animal on blood pressure, or dose of an 
insecticide on mortal i ty of the insect popula t ion are all typical examples of 
regression for the purposes named above. 
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In cor re la t ion , by cont ras t , we are conce rned largely whe the r t w o vari-
ables a re i n t e rdependen t , or covary—that is, vary together . W e d o n o t express 
one as a func t i on of the o ther . T h e r e is n o dis t inct ion be tween i n d e p e n d e n t 
a n d d e p e n d e n t var iables . It m a y well be t ha t of the pa i r of var iab les w h o s e 
cor re la t ion is s tudied , one is the cause of the o ther , but we ne i ther k n o w n o r 
a s sume this. A m o r e typical (but n o t essential) a s s u m p t i o n is t ha t the t w o vari-
ables a re b o t h effects of a c o m m o n cause. W h a t we wish to es t imate is t he degree 
to which these var iables vary together . T h u s we might be in teres ted in the cor-
re la t ion between a m o u n t of fat in diet a n d incidence of hear t a t t a cks in h u m a n 
popu la t ions , be tween foreleg length a n d h ind leg length in a p o p u l a t i o n of m a m -
mals, be tween b o d y weight a n d egg p r o d u c t i o n in female blowflies, or between 
age a n d n u m b e r of seeds in a weed. Reasons why we would wish t o d e m o n -
s t ra te a n d m e a s u r e assoc ia t ion be tween pai rs of var iables need n o t conce rn us 
yet. W e shall t ake this u p in Sect ion 12.4. It suffices for n o w to s ta te t h a t w h e n 
we wish to establ ish the degree of assoc ia t ion be tween pai rs of var iab les in a 
p o p u l a t i o n sample , co r re l a t ion analysis is the p r o p e r a p p r o a c h . 

T h u s a cor re la t ion coefficient c o m p u t e d f rom d a t a that have been p rope r ly 
analyzed by M o d e l 1 regression is meaningless as an es t imate of a n y p o p u l a -
t ion cor re la t ion coefficient. Converse ly , suppose we were to eva lua te a regres-
sion coefficient of one var iab le on a n o t h e r in d a t a tha t had been proper ly 
c o m p u t e d as cor re la t ions . N o t only would cons t ruc t ion of such a func t iona l 
dependence for these var iables not meet o u r in tent ions , bu t we shou ld poin t 
ou t tha t a conven t iona l regression coefficient c o m p u t e d f rom d a t a in which 
both var iables are measu red with e r ro r - a s is the case in co r re la t ion ana lys i s— 
furnishes biased es t imates of the func t iona l re lat ion. 

Even if we a t t e m p t the correct m e t h o d in line with o u r p u r p o s e s we may 
run afoul of the n a t u r e of the da ta . T h u s we m a y wish to es tabl ish cholesterol 
contcn t of b lood id a func t ion of weight , and to d o so we may t ake a r a n d o m 
sample of men of the same age g roup , o b t a i n each individual ' s choles terol con-
tent and weight, and regress the fo rmer on the latter . However , bo th these 
var iables will have been measured with er ror . Indiv idual var ia tes of the sup-
posedly independen t var iable Λ' will no t have been del iberately chosen or con-
trolled by the exper imente r . T h e under ly ing a s s u m p t i o n s of Model I regression 
d o not hold, a n d fit t ing a M o d e l I regression to the d a t a is not legit imate, 
a l t hough you will have no difficulty f inding ins tances of such i m p r o p e r prac-
tices in the publ i shed research l i terature. If it is really an e q u a t i o n descr ib ing 
the depen d en ce of Y on X that we are af ter , we should car ry ou t a M o d e l II 
regression. However , if it is the degree of associa t ion between the var iables 
( in te rdependence) tha t is of interest , then we shou ld car ry ou t a cor re la t ion 
analysis, for which these d a t a a rc sui table. T h e converse dill iculty is t ry ing to 
ob ta in a cor re la t ion coefficient f r o m d a t a tha t are proper ly c o m p u t e d as a re-
gression tha t is, a re c o m p u t e d when X is fixed. An example wou ld be hear t -
beats of a po ik i lo thc rm as a func t ion of t empe ra tu r e , where several t e m p e r a t u r e s 
have been appl ied in an exper iment . Such a cor re la t ion coeflicient is easily ob-
tained ma themat i ca l ly but would s imply be a numer ica l value, not an es t imate 



270 CHAPTER 1 2 / CORRELATION 

TABLE 12 .1 

The relations between correlation and regression. This table indicates the correct computat ion for 
any combinat ion of purposes and variables, as shown. 

Nature of the two variables 

Purpose of investigator Y random, X fixed Yt, Y2 both random 

Establish and estimate 
dependence of one variable 
upon another. (Describe 
functional relationship 
and/or predict one in terms 
of the other.) 

Model I regression. Model II regression. 
(Not treated in this 
book.) 

Establish and estimate 
association (interdependence) 
between two variables. 

Meaningless for this 
case. If desired, an 
estimate of the 
proportion of the 
variation of Y explained 
by X can be obtained 
as the square of the 
correlation coefficient 

between X and Y. 

Correlation coefficient. 
(Significance tests 
entirely appropriate only 
if y t, Y2 are distributed 
as bivariate normal 
variables.) 

of a paramet r ic measure of correlat ion. There is an interpretat ion tha t can be 
given to the square of the correlat ion coefficient that has some relevance to a 
regression problem. However , it is not in any way an estimate of a parametr ic 
correlat ion. 

This discussion is summarized in Table 12.1, which shows the relat ions 
between correlat ion and regression. The two columns of the table indicate the 
two condi t ions of the pair of variables: in one case one r a n d o m and measured 
with error , the other variable lixed; in the other ease, both variables r andom. 
In this text we depart f rom the usual convent ion of labeling the pair of vari-
ables Y and X or X2 for both correlat ion and regression analysis. In re-
gression we cont inue the use of Y for the dependent variable and X for the 
independent variable, but in correlat ion both of the variables are in fact r a n d o m 
variables, which we have th roughou t the text designated as V. We therefore 
refer to the two variables as V, and Y2. The rows of the table indicate the 
intention of the investigator in carrying out the analysis, and the four quad-
rants of the table indicate the appropr ia t e procedures for a given combina t ion 
of intention of investigator and nature of the pair of variables. 

1 2 . 2 T h e p r o d u c t - m o m e n t c o r r e l a t i o n c o e f f i c i e n t 

There arc numerous correlat ion coefficients in statistics. The most c o m m o n 
of these is called the product-moment correlation coefficient, which in its current 
formula t ion is due to Karl Pearson. Wc shall derive its formula through an 
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You have seen that the sum of products is a measure of covariation, and 
it is therefore likely that this will be the basic quanti ty f rom which to obtain 
a formula for the correlation coefficient. We shall label the variables whose 
correlation is to be estimated as Υλ and Y2. Their sum of products will therefore 
be Σ y \ y 2 and their covariance [1 j(n — 1)] Σ y 1 y 2 = s 1 2 . The latter quanti ty is 
analogous to a variance, that is, a sum of squares divided by its degrees of 
freedom. 

A s tandard deviation is expressed in original measurement units such as 
inches, grams, or cubic centimeters. Similarly, a regression coefficient is ex-
pressed as so many units of Y per unit of X, such as 5.2 grams/day. However, 
a measure of association should be independent of the original scale of measure-
ment, so that we can compare the degree of association in one pair of variables 
with that in another . One way to accomplish this is to divide the covariance 
by the s tandard deviations of variables Yt and Y2. This results in dividing each 
deviation yl and y2 by its proper s tandard deviation and making it into a 
standardized deviate. The expression now becomes the sum of the products of 
standardized deviates divided by η — 1: 

= l - " f · 2 - C 2 - 1 ) (n - l).syi.s>2 

This is the formula for the product-moment correlation coefficient rYiY, between 
variables Yt and Y2. We shall simplify the symbolism to 

<·:.. = * 1 2 (12.2) 

Expression (12.2) can be rewritten in another common form. Since 

I = j s 2 ( n 1) = (« - I ) = V X . v 2 

Expression (12.2) can be rewritten as 

Γ 1 2 = , 

V X - v r l - v i 
(12.3) 

To slate Expression (12.2) more generally for variables Yt and Yk, we can write 
it as 

(η - 1 )SjSk 

The correlation coefficient rjk can range from + 1 for perfect association 
to — 1 for perfect negative association. This is intuitively obvious when we 
consider the correlation of a variable Yj with itself. Expression (12.4) would then 
yield r^ = Σ y^y,/\/Σ>'2 Σ = Σ ^ / Σ } ' ? = 1, which yields a perfect correla-
tion of + I. If deviations in one variable were paired with opposite but equal 
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because the sum of products in the numera tor would be negative. Proof that the 
correlat ion coefficient is bounded by + 1 and — 1 will be given shortly. 

If the variates follow a specified distribution, the bivariate normal distribu-
tion, the correlation coefficient rjk will estimate a parameter of that distr ibution 
symbolized by pjk. 

Let us approach the distribution empirically. Suppose you have sampled 
a hundred items and measured two variables on each item, obtaining two 
samples of 100 variates in this manner. If you plot these 100 items on a graph 
in which the variables and Y2 are the coordinates, you will obtain a scatter-
gram of points as in Figure 12.3 A. Let us assume that both variables, Yl and Y2, 
are normally distributed and that they are quite independent of each other, 
so that the fact that one individual happens to be greater than the mean in 
character Y1 has no effect whatsoever on its value for variable Y2. Thus this 
same individual may be greater or less than the mean for variable Y2. If there 
is absolutely no relation between and Y2 and if the two variables are stan-
dardized to make their scales comparable, you will find that the outline of the 
scat tergram is roughly circular. Of course, for a sample of 100 items, the circle 
will be only imperfectly outlined; but the larger the sample, the more clearly 
you will be able to discern a circle with the central area around the intersec-
tion Y2 heavily darkened because of the aggregation there of many points. If 
you keep sampling, you will have to superimpose new points upon previous 
points, and if you visualize these points in a physical sense, such as grains of 
sand, a mound peaked in a bell-shaped fashion will gradually accumulate. This 
is a three-dimensional realization of a normal distribution, shown in perspective 
in Figure 12.1. Regarded from cither coordinate axis, the mound will present 
a two-dimensional appearance, and its outline will be that of a normal distribu-
tion curvc, the two perspectives giving the distributions of V, and Y2, respec-
tively. 

If we assume that the two variables and Y2 are not independent but are 
positively correlated to some degree, then if a given individual has a large value 
of V,, it is more likely than not to have a large value of Y2 as well. Similarly, 
a small value of V, will likely be associated with a small value of Y2. Were you 
to sample items from such a population, the resulting scattergram (shown in 

iKi i 'Ri : 12.1 
B i v a r i a t e norm;·I f r e q u e n c y d i s t r i b u t i o n . T h e p a r a m e t r i c c o r r e l a t i o n ρ b e t w e e n v a r i a b l e s V, a n d 
e q u a l s ze ro . T h e f r e q u e n c y d i s t r i b u t i o n m a y be v i sua l ized a s a b e l l - s h a p e d m o u n d . 
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FIGURE 12.2 
B i v a r i a t e n o r m a l f r e q u e n c y d i s t r i b u t i o n . T h e p a r a m e t r i c c o r r e l a t i o n μ b e t w e e n v a r i a b l e s F, a n d Y2 

e q u a l s 0.9. T h e b e l l - s h a p e d m o u n d of F i g u r e 12.1 has b e c o m e e l o n g a t e d . 

Figure 12.3D) would become elongated in the form of an ellipse. This is so 
because those par ts of the circlc that formerly included individuals high for one 
variable and low for the other (and vice versa), are now scarcely represented. 
Cont inued sampling (with Ihc sand grain model) yields a three-dimensional 
elliptic mound , shown in Figure 12.2. If correlat ion is perfect, all the da t a will 
fall a long a single regression line (the identical line would describe the regression 
of Y, on Y2 and of Y2 on Y,), and if we let them pile up in a physical model, 
they will result in a flat, essentially two-dimensional normal curve lying on this 
regression line. 

The circular or elliptical shape of the outl ine of the scat tergram and of the 
resulting mound is clearly a funct ion of the degree of correlat ion between the 
two variables, and this is the parameter />jk of the bivariate normal distr ibution. 
By analogy with Fxprcssion (12.2), the parameter f>jk can be defined as 

where ajk is the parametr ic covariance of variables V( and Yk and at and ak arc 
the parametr ic s tandard deviat ions of variables Yf and Yk, as before. When two 
variables are distr ibuted according to the bivariatc normal , a sample correlat ion 
cocflicicnt rjk est imates the parametr ic correlat ion coefficient pjk. We can make 
some s ta tements about the sampling distr ibution of (>ik and set confidence limits 
to it. 

Regrettably, the elliptical shape of scat tergrams of correlated variables is 
not usually very clear unless either very large samples have been taken or the 
parametr ic correlat ion (>jk is very high. To illustrate this point, we show in 
Figure 12.3 several graphs illustrating scat tcrgrams resulting from samples of 
100 items from bivariatc normal popula t ions with differing values of (>jk. Note 
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tha t in the first g raph (Figure 12.3A), with pJk = 0, the circular dis t r ibut ion is 
only very vaguely outl ined. A far greater sample is required to demons t r a t e the 
circular shape of the distr ibution more clearly. N o substant ial difference is noted 
in Figure 12.3B, based on pjk = 0.3. Knowing that this depicts a positive correla-
tion, one can visualize a positive slope in the scat tergram; but wi thout prior 
knowledge this would be difficult to detect visually. The next g raph (Figure 
12.3C, based on pjk = 0.5) is somewhat clearer, but still does not exhibit an 
unequivocal trend. In general, correlat ion canno t be inferred f rom inspection 
of scat tergrams based on samples f rom popula t ions with pjk between —0.5 and 
+ 0.5 unless there are numerous sample points. This point is i l lustrated in the 
last graph (Figure 12.3G), also sampled f rom a popula t ion with pjk — 0.5 but 
based on a sample of 500. Here, the positive slope and elliptical outl ine of the 
scat tergram are quite evident. Figure 12.3D, based on pjk = 0.7 and η = 100, 
shows the trend more clearly than the first three graphs. N o t e tha t the next 
graph (Figure 12.3E), based on the same magni tude of pJk bu t representing 
negative correlat ion, also shows the t rend but is more s t rung out than Figure 
12.3D. The difference in shape of the ellipse has no relation to the negative 
nature of the correlation; it is simply a funct ion of sampling error , and the com-
parison of these two figures should give you some idea of the variability to be 
expected on r a n d o m sampling f rom a bivariate normal distr ibution. Finally, 
Figure 12.3F, representing a correlat ion of pjk = 0.9, shows a tight association 
between the variables and a reasonable approx imat ion to an ellipse of points. 

Now let us re turn to the expression for the sample correlat ion coefficient 
shown in Expression (12.3). Squar ing this expression results in 

( Σ J ^ 
\2 

21 
12 Σ νί V π 

_ ( Σ >'.>'2)2. 

Σ ^ Σ > Ί 

Look at the left term of the last expression. It is the square of the sum of 
products of variables Y, and Y2, divided by the sum of squares of Y,. If this 
were a regression problem, this would be the formula for the explained sum of 
squares of variable Y2 on variable Y,, E y 2 . In the symbolism of Chap te r 11, 
on regression, it would be E y 2 = (E .xy) 2 /Ex 2 . Thus , we can write 

Σ j5 
(12.6) 

The square of the correlat ion coefficient, therefore, is the rat io formed by the 
explained sum of squares of variable Y2 divided by the total sum of squares 
of variable Y2. Equivalently, 

I z i 
Z r i • 1 2 - ^ 2 (!2·6ί1) 
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which can be derived just as easily. (Remember that since we are not really 
regressing one variable on the other, it is just as legitimate to have Yt explained 
by Y2 as the other way around.) The ratio symbolized by Expressions (12.6) and 
(12.6a) is a propor t ion ranging f rom 0 to 1. This becomes obvious after a little 
contemplat ion of the meaning of this formula. The explained sum of squares 
of any variable must be smaller than its total sum of squares or, maximally, if 
all the variation of a variable has been explained, it can be as great as the total 
sum of squares, but certainly no greater. Minimally, it will be zero if none of the 
variable can be explained by the other variable with which the covariance has 
been computed. Thus, we obtain an impor tant measure of the p ropor t ion of 
the variation of one variable determined by the variation of the other. This 
quanti ty, the square of the correlation coefficient, r\2, is called the coefficient 
of determination. It ranges from zero to 1 and must be positive regardless of 
whether the correlation coefficient is negative or positive. Incidentally, here is 
proof that the correlation coefficient cannot vary beyond - 1 and + 1 . Since 
its square is the coefficient of determinat ion and we have just shown that the 
bounds of the latter are zero to 1, it is obvious that the bounds of its square 
root will be ± 1. 

The coefficient of determinat ion is useful also when one is considering the 
relative importance of correlations of different magnitudes. As can be seen by a 
reexamination of Figure 12.3, the rate at which the scatter diagrams go f rom a 
distr ibution with a circular outline to one resembling an ellipse seems to be 
more directly proport ional to r2 than to r itself. Thus, in Figure 12.3B, with 
ρ 2 = 0.09, it is difficult to detect the correlation visually. However, by the time 
we reach Figure 12.3D, with μ 2 = 0 . 4 9 , the presence of correlation is very 
apparent . 

The coefficient of determinat ion is a quanti ty that may be useful in regres-
sion analysis also. You will recall that in a regression we used anova to part i t ion 
the total sum of squares into explained and unexplained sums of squares. Once 
such an analysis of variance has been carried out, one can obtain the ratio of 
the explained sums of squares over the total SS as a measure of the propor t ion 
of the total variation that has been explained by the regression. However, as 
already discusscd in Section 12.1, it would not be meaningful to take the square 
root of such a coefficient of determinat ion and consider it as an estimate of the 
parametr ic correlation of these variables. 

We shall now take up a mathematical relation between the coefficients of 
correlation and regression. At the risk of being repetitious, we should stress 
again that though we can easily convert one coefficient into the other, this docs 
not mean that the two types of coefficients can be used interchangeably on the 
same sort of data. One important relationship between the correlation coeffi-
cient and the regression coefficient can be derived as follows from Expression 
(12.3): 

J > i > ' 2 = Σ yi>'2 

χ Σ ν τ x l v i 
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Mult iplying n u m e r a t o r and denomina to r of this expression by V Z y f , w e 

obta in 

. >1ΫΜ _ Σ y ^ i . V Z y i 
v r a I f ? 7 Σ y\ 

Dividing n u m e r a t o r a n d d e n o m i n a t o r of the right te rm of this expression by 
sjn — 1, we obta in 

/Σ 
Σ μ » ν " ~ 1 

Σ . Γ / Σ y i 
= — (12-7) 

' η — 1 

Similarly, we could demons t r a t e that 

r \ i = • ζ — (12.7a) 

and hence 

b , . 2 = r l 2 ^ (12.7b) 
s, s2 

In these expressions b2., is the regression coefficient for variable Y2 on Y,. We 
see, therefore, tha t the correlat ion coefficient is the regression slope multiplied 
by the rat io of the s tandard deviat ions of the variables. The correla t ion coeffi-
cient may thus be regarded as a s tandardized regression coefficient. If the two 
s tandard deviat ions are identical, both regression coefficients and the correla-
tion coefficient will be identical in value. 

N o w that we know abou t the coclficicnt of correlat ion, some of the earlier 
work on paired compar i sons (see Section 9.3) can be put into p roper perspective. 
In Appendix A 1.8 we show for the cor responding parametr ic expressions that 
the variance of a sum of two variables is 

•\>Ί + i"2) = sf + si + 2r12s,.v2 (12.8) 

where s, and .s2 are s tandard deviat ions of Y, and Y2, respectively, and ri2 is 
the correlat ion coefficient between these variables. Similarly, for a difference 
between two variables, we obta in 

= si + s2 ~~ 2rl2sls2 (12.9) 

Wha t Expression (12.8) indicates is that if we make a new composi te 
variable that is the sum of two other variables, the variance of this new variable 
will be the sum of the variances of the variables of which it is composed plus 
an added term, which is a funct ion of the s tandard deviat ions of these two 
variables and of the correla t ion between them. It is shown in Appendix A 1.8 that 
this added term is twicc the covariance of Yl and Y2. When the two variables 
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BOX 12.1 
C o m p u t a t i o n o f t h e p r o d u c t - m o m e n t c o r r e l a t i o n c o e f f i c i e n t . 

Relationships between gill weight and body weight in the crab Pachygrapsus 
crassipes. η — 12. 

V) (2) 
r, Y2 

Gi It Body 
weight in weight 

milligrams in grams 

159 14.40 
179 15.20 
100 11.30 
45 2.50 

384 22.70 
230 14.90 
100 1.41 
320 15.81 

80 4.19 
220 15.39 
320 17.25 
210 9.52 

Source: Unpublished data by L. Miller. 

Computation 

1. £ Y l = 159 + ••• + 210 = 2347 

2. = I592 + · · · + 2102 = 583,403 

3. £Y 2 = 14.40 + · · · + 9.52 = 144.57 

4. γ γ \ = (I4.40)2 + · · · + (9.52)2 = 2204.1853 

5· Σ γ ι γ2 = 14.40(159) + • · • + 9.52(210) = 34,837.10 

6. Sum of squares of Y, = = £ Y 2 -
η 

. „ (quantity l)2 (2347)2 

quantity 2 - — = 583,403 v 

12 
124,368.9167 

7. Sum of squares of Yz = = - —1— 

. . (quantity 3)2 (144.57)2 

= quantity 4 - ~ - = 2204.1853 - - — — - i 
η 12 

= 462.4782 
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BOX 12.1 
C o n t i n u e d 

8. Sum of products = £ y:y2 = £ V", Y2 
η 

. . quantity 1 χ quantity 3 
quantity 5 — 

η 

- 34.837.10 - - 6561.6175 
12 

9. Product-moment correlation coefficient (by Expression (12.3)): 

r = = quantity 8 

V X y2i Σ χ/quantity 6 χ quantity 7 

6561.6175 6561.6175 
7(124,368.9167)(462.4782) ^577517,912.7314 

6561.6175 
7584.0565 

: 0.8652 « 0.87 

being summed are u n c o r r e c t e d , this added covariance term will be zero, and 
the variance of the sum will simply be the sum of variances of the two variables. 
This is the reason why, in an anova or in a t test of the ditference between the 
two means, we had to assume 1 he independence of the two variables to permit 
us to add their variances. Otherwise we would have had to allow for a covari-
ance term. By contrast , in the pa i red-compar isons technique we expect corre-
lation between the variables, since the members in each pair share a c o m m o n 
experience. The pai red-compar isons test automatical ly subtracts a covariance 
term, resulting in a smaller s tandard error and consequently in a larger value 
of is. since the numera to r of the ratio remains the same. Thus, whenever corre-
lation between two variables is positive, the variance of their differences will 
be considerably smaller than the sum of their variances; (his is (he reason why 
the pai red-compar isons test has to be used in place of (he / test for difference of 
means. These considera t ions are equally true for the cor responding analyses 
of variance, singlc-classilication and two-way anova. 

The computa t ion of a p roduc t -momen t correlat ion coefficient is quite 
simple. The basic quant i t ies needed are the same six required for computa t ion 
of the regression coefficient (Section 11.3). Box 12.1 illustrates how the coeffi-
cient should be computed . The example is based on a sample of 12 crabs in 
which gill weight V, and body weight Y2 have been recorded. We wish to know 
whether there is a correlat ion between the weight of the gill and that of the body, 
the latter representing a measure of overall size. The existence of a positive 
correlation might lead you to conclude that a bigger-bodied crab with its re-
sulting greater amoun t of metabol ism would require larger gills in order to 
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γ· 4 0 0 r 

10 15 20 25 30 

H o d y w e i g h t in g r a m s 

f i g u r e 12.4 
S c a t t e r d i a g r a m f o r c r a b d a t a of Box 12.1. 

provide the necessary oxygen. The computations a re illustrated in Box 12.1. The 
corre la t ion coefficient of 0.87 agrees with the clear slope and na r row elliptical 
outl ine of the scat tergram for these data in Figure 12.4. 

1 2 . 3 S i g n i f i c a n c e t e s t s i n c o r r e l a t i o n 

The most c o m m o n significance test is whether it is possible for a sample cor-
relation coefficient to have come from a popula t ion with a paramet r ic correla-
tion coefficient of zero. The null hypothesis is therefore H n : ρ = 0. This implies 
that the two variables are u n c o r r e c t e d . If the sample comes from a bivariate 
no rma l dis t r ibut ion and ρ = 0, the s tandard er ror of the correla t ion coefficient 
is sr = v<( I — r2)/(n — 2). The hypothesis is tested as a / test with η — 2 degrees 
of f reedom, t „. = (r - 0) N (I r ' l l i i - 2) = r s In 2) (I r). We should em-
phasize thai this s tandard er ror applies only when ρ = 0, so that it canno t be 
applied to testing a hypothesis that ρ is a specific value other than zero. The I 
test for the significance of r is mathemat ical ly equivalent to the f test for the 
significance of b, in either case measur ing the strength of the association between 
the two variables being tested. This is somewhat ana logous to the s i tuat ion 
in Model I and Model II single-classification anova, where the same h test es-
tablishes the significance regardless of Hie model . 

Significance tests following this formula have been carried out system-
atically and arc tabulated in Tabic VIII, which permits the direct inspection 
of a sample correlat ion coefficient for significance without further compu la t ion . 
Box 12.2 illustrates tests of the hypothesis H 0 : ρ = 0, using Table VIII as well 
as the t lest discussed at lirst. 
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BOX 12.2 
Tests of significance and confidence limits for correlation coefficients. 
Test of the null hypothesis H0: ρ =* 0 versus Hxi ρ ψ 0 

T h e s i m p l e s t p r o c e d u r e i s t o c o n s u l t T a b l e V I I I , w h e r e t h e c r i t i c a l v a l u e s o l »· 

a r e t a b u l a t e d f o r d f = η - 2 f r o m I t o 1 0 0 0 . I f t h e a b s o l u t e v a l u e o f t h e o b s e r v e d 

r i s g r e a t e r t h a n t h e t a b u l a t e d v a l u e i n t h e c o l u m n f o r t w o v a r i a b l e s , w e r e j e c t 

t h e n u l l h y p o t h e s i s . 

Examples. I n B o x 1 2 . 1 w e f o u n d t h e c o r r e l a t i o n b e t w e e n b o d y w e i g h t a n d 

g i l l w e i g h t t o b e 0 . 8 6 5 2 , b a s e d o n a s a m p l e o f η = 1 2 . F o r 1 0 d e g r e e s o f f r e e d o m 

t h e c r i t i c a l v a l u e s a r e 0 . 5 7 6 a t t h e 5 % l e v e l a n d 0 . 7 0 8 a t t h e 1 % l e v e l o f s i g n i f i -

c a n c e . S i n c e t h e o b s e r v e d c o r r e l a t i o n i s g r e a t e r t h a n b o t h o f t h e s e , w e c a n r e j e c t 

t h e n u l l h y p o t h e s i s , H0: p~0,atP< 0 . 0 1 . 

T a b l e VIII i s b a s e d u p o n t h e f o l l o w i n g t e s t , w h i c h m a y b e c a r r i e d o u t w h e n 

t h e t a b l e i s n o t a v a i l a b l e o r w h e n a n e x a c t t e s t i s n e e d e d a t s i g n i f i c a n c e l e v e l s o r 

a t d e g r e e s o f f r e e d o m o t h e r t h a n t h o s e f u r n i s h e d i n t h e t a b l e . T h e n u l l h y p o t h e s i s 

i s t e s t e d b y m e a n s o f t h e t d i s t r i b u t i o n ( w i t h η - 2 d f ) b y u s i n g t h e s t a n d a r d e r r o r 

o f r . W h e n ρ = 0 , 

E 3 
S r 2 ) 

T h e r e f o r e , 

t
 {r~0)

 =r [ΕΞΆ 
s ^ r ^ w ^ W d - ' · 2 ) 

F o r t h e d a t a o f B o x 1 2 . 1 , t h i s w o u l d b e 

i s = 0 . 8 6 5 2 7 ( 1 2 - 2 ) / { T - 0 . 8 6 5 2 2 ) = 0 . 8 6 5 2 ^ 1 0 / 0 2 5 1 4 3 

= 0 . 8 6 5 2 ^ 3 9 / 7 7 2 5 = 0 . 8 6 5 2 ( 6 . 3 0 6 5 ) = 5 . 4 5 6 4 > t0,00nm 
F o r a o n e - t a i l e d t e s t t h e 0 . 1 0 a n d 0 . 0 2 v a l u e s o f t s h o u l d b e u s e d f o r 5 % 

a n d 1 % s i g n i f i c a n c e t e s t s , r e s p e c t i v e l y . S u c h t e s t s w o u l d a p p l y i f t h e a l t e r n a t i v e 

h y p o t h e s i s w e r e Η , : ρ > 0 o r H t : ρ < 0 , r a t h e r t h a n Η , : ρ Φ 0 . 

W h e n η i s g r e a t e r t h a n 5 0 , w e c a n _ a l s o m a k e u s e o f t h e ζ t r a n s f o r m a t i o n 

d e s c r i b e d i n t h e t e x t . S i n c e <r, = \ f - J n ~ 3 , w e t e s t 

ζ — 0 r—— 
t - _ — = 2 v « - 3 

S i n c e ζ i s n o r m a l l y d i s t r i b u t e d a n d w e a r e u s i n g a p a r a m e t r i c s t a n d a r d d e v i a t i o n , 

w e c o m p a r e i , w i t h o r e m p l o y T a b l e U , " A r e a s o f t h e n o r m a l c u r v e . " I f w e 

h a d a s a m p l e c o r r e l a t i o n o f r = 0 . 8 3 7 b e t w e e n l e n g t h o f right- a n d l e f t - w i n g v e i n s 

o f b e e s b a s e d o n η =» 5 0 0 , w e w o u l d find ζ — 1 . 2 1 1 1 i n T a b l e X . T h e n 

t s = 1 . 2 1 1 1 7 4 9 7 = 2 6 . 9 9 7 

T h i s v a l u e , w h e n l o o k e d u p i n T a b l e Π , y i e l d s a v e r y s m a l l p r o b a b i l i t y ( < 1 0 - 6 ) . 

Test of the null hypothesis H0: ρ = p%, where pt Φ 0 

T o t e s t t h i s h y p o t h e s i s w e c a n n o t u s e T a b l e VHI o r t h e t t e s t g i v e n a b o v e , b u t 

m u s t m a k e u s e o f t h e ζ t r a n s f o r m a t i o n . 
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B O X 1 2 . 2 

C o n t i n u e d 

Suppose we wish to test the null hypothesis ΗΌ: ρ «= +0.5 versus Η γ. ρ * 
+ 0.5 tor the case just considered. We would use the following expression: 

h = at (z - ζ ) ν " - 3 
l / V f T - 3 

where ζ and ζ are the ζ transformations of r and p, respectively. Again we com-
pare ts with fatool or look it up in Table I I . From Table V I I I we find 

For r = 0.837 2 = 1.2111 

For ρ = 0.500 ζ = 0.5493 

Therefore 

t, = (1.2111 - 0.5493)(V?97) = 14.7538 

The probability of obtaining such a value of r, by random sampling is Ρ < 10" 6 

(see Table II). It is most unlikely that the parametric correlation between right-
and left-wing veins is 0.5. 

Confidence limits 

If η > 50, we can set confidence limits to r using the ζ transformation. We first 
convert the sample r to z, set confidence limits to this z, and then transform these 
limits back to the r scale. We shall find 95% confidence limits for the above wing 
vein length data. 

For r = 0.837, r = 1.2111, α = 0.05. 

1 - 2 t « - - ί ° 0 5 " ) - 1 7 1 1 1 1 , 9 6 0 
- - - - 1 . 2 1 1 1 

1.2111 - 0 . 0 8 7 9 = 1.1232 

L2 = ζ + 1 = 1.2111 + 0.0879 = 1.2990 
V" - 3 

We retransform these ζ values to the r scale by finding the corresponding argu-
ments for the ζ function in Table X. 

L , «0 .808 and L2 « 0.862 

are the 95% confidence limits around r = 0.837. 

Test of the difference between two correlation coefficients 

For two correlation coefficients we may test H0: p{ = p2 versus / / , : pt Φ p2 as 
follows: 

1 
• + 

3 n , 
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BOX 12.2 
Continued 
S i n c e z t - zz i s n o r m a l l y d i s t r i b u t e d a n d w e a r e u s i n g a p a r a m e t r i c s t a n d a r d 

d e v i a t i o n , w e c o m p a r e ts w i t h r I [ 3 D ] o r e m p l o y T a b l e Π , " A r e a s o f t h e n o r m a l 

c u r v e . " 

F o r e x a m p l e , t h e c o r r e l a t i o n b e t w e e n b o d y w e i g h t a n d w i n g l e n g t h i n Dro-

sophila pseudoobscura w a s f o u n d b y S o k o l o f f ( 1 9 6 6 ) t o b e 0 . 5 5 2 i n a s a m p l e o f 

= 3 9 a t t h e G r a n d C a n y o n a n d 0 . 6 6 5 i n a s a m p l e o f n 2 = 2 0 a t F l a g s t a f f , 

A r i z o n a . 

G r a n d C a n y o n : Z j = 0 . 6 2 1 3 F l a g s t a f f : z 2 = 0 . 8 0 1 7 

0 . 6 2 1 3 — 0 . 8 0 1 7 _ - 0 . 1 8 0 4 - 0 . 1 8 0 4 _ _ 0 6 n Q 

~ v ' 0 . 0 8 6 , 6 0 1 ~ 0 . 2 9 4 , 2 8 " ' 

B y l i n e a r i n t e r p o l a t i o n i n T a b l e Π , w e find t h e p r o b a b i l i t y t h a t a v a l u e o f t , w i l l 

b e b e t w e e n ± 0 . 6 1 3 0 t o b e a b o u t 2 ( 0 . 2 2 9 , 4 1 ) = 0 . 4 5 8 , 8 2 , s o w e c l e a r l y h a v e n o 

e v i d e n c e o n w h i c h t o r e j e c t t h e n u l l h y p o t h e s i s . 

W h e n ρ is close t o + 1.0, the d i s t r ibu t ion of sample values of r is m a rk ed ly 
asymmetr ica l , and , a l t h o u g h a s t a n d a r d e r r o r is ava i lab le for r in such cases, 
it should not be appl ied unless the sample is very large (n > 500), a most in-
f requent case of little interest . T o ove rcome this difficulty, we t r a n s f o r m r to a 
funct ion z, deve loped by Fisher . T h e fo rmula for ζ is 

You m a y recognize this as ζ = t a n h ' r, the fo rmula for the inverse hy-
perbol ic tangent of r. Th is func t ion has been t abu la t ed in T a b l e X, where values 
of ζ c o r r e s p o n d i n g to abso lu t e values of r a rc given. Inspec t ion of Express ion 
(12.10) will show that when r = 0, ζ will also equa l zero, since i ' n I equa l s 
zero. However , as r a p p r o a c h e s ± 1 , (1 + /•)/(! - r) a p p r o a c h e s / and 0; 
consequent ly , ζ a p p r o a c h e s + infinity. There fo re , subs tan t i a l differences be-
tween r and ζ occur at the higher values for r. Thus, when r is 0.115, ζ = 0.1 I 55. 
Fo r r = - 0 . 5 3 1 , wc o b t a i n ζ = - 0 . 5 9 1 5 ; r = 0.972 yields ζ = 2.1273. N o t e by-
how m u c h ζ exceeds r in this last pa i r of values. By f inding a given value of ζ in 
Tabic X, we can also o b t a i n the c o r r e s p o n d i n g value of r. Inverse in te rpo la t ion 
may be necessary. T h u s , ζ = 0.70 c o r r e s p o n d s to r = 0.604, and a value of 
ζ = - 2 . 7 6 c o r r e s p o n d s to r = —0.992. S o m e pockc t ca lcu la to r s have built-in 
hyperbol ic and inverse hyperbo l i c func t ions . Keys for such func t ions would 
obvia te the need for Tab l e X. 

T h e a d v a n t a g e of the ζ t r a n s f o r m a t i o n is tha t while co r re la t ion coefficients 
arc d i s t r ibu ted in skewed fashion for values of ρ φ 0. the values of ζ are ap-

(12.10) 
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ζ (zeta), following the usual convent ion. The expected variance of ζ is 

This is an approx ima t ion adequa te for sample sizes η > 50 and a tolerable 
app rox ima t ion even when η > 25. An interesting aspect of the var iance of ζ 
evident f rom Expression (12.11) is that it is independent of the magn i tude of r, 
but is simply a funct ion of sample size n. 

As shown in Box 12.2, for sample sizes greater than 50 we can also use 
the ζ t r ans format ion to test the significance of a sample r employing the hy-
pothesis H0: ρ = 0. In the second section of Box 12.2 we show the test of a null 
hypothesis that ρ φ 0. We may have a hypothesis that the t rue correla t ion 
between two variables is a given value ρ different f rom zero. Such hypotheses 
a b o u t the expected correla t ion between two variables are f requent in genetic 
work, and we may wish to test observed da t a against such a hypothesis . Al-
though there is no a priori reason to assume that the t rue correla t ion be-
tween right and left sides of the bee wing vein lengths in Box 12.2 is 0.5, we 
show the test of such a hypothesis to illustrate the method . Cor re spond ing to 
ρ = 0.5, there is ζ, the paramet r ic value of z. It is the ζ t r ans format ion of p. 
We note that the probabi l i ty that the sample r of 0.837 could have been sampled 
f rom a popula t ion with ρ = 0.5 is vanishingly small. 

Next, in Box 12.2 we see how to set confidence limits to a sample cor-
relat ion coefficient r. This is done by means of the ζ t ransformat ion; it will 
result in asymmetr ical confidence limits when these are re t ransformed to the 
r scale, as when setting confidence limits with variables subjected to square 
root or logari thmic t ransformat ions . 

A test for the significance of the difference between two sample correlat ion 
coefficients is the final example illustrated in Box 12.2. A s tandard error for the 
difference is computed and tested against a table of areas of the normal curvc. 
In the example the correla t ion between body weight and wing length in two 
Drosopliila popula t ions was tested, and the difference in correlat ion cocfficicnts 
between the two popula t ions was found not significant. The formula given is 
an acceptable approx ima t ion when the smaller of the two samples is greater 
than 25. It is frequently used with even smaller sample sizes, as shown in our 
example in Box 12.2. 

1 2 . 4 A p p l i c a t i o n s o f c o r r e l a t i o n 

The purpose of correlat ion analysis is to measure the intensity of associat ion 
observed between any pair of variables and to test whether it is greater than 
could be cxpcctcd by chance alone. Once established, such an associat ion is 
likely to lead to reasoning abou t causal relat ionships between the variables. 
S tudents of statistics are told at an early stage not to confuse significant cor-
relation with causat ion. Wc arc also warned a b o u t so-called nonsense corrcla-
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tions, a well-known case being the positive correla t ion between the n u m b e r of 
Baptist ministers and the per capi ta l iquor consumpt ion in cities with popula -
t ions of over 10,000 in the Uni ted States. Individual cases of correlat ion must 
be carefully analyzed before inferences are d rawn f rom them. It is useful to 
distinguish correlat ions in which one variable is the entire or, more likely, the 
part ial cause of ano the r f rom others in which the two correlated variables have 
a c o m m o n cause and f rom more complicated si tuat ions involving bo th direct 
influence and c o m m o n causes. The establ ishment of a significant corre la t ion 
does not tell us which of many possible s t ructural models is appropr ia te . Fu r the r 
analysis is needed to discriminate between the var ious models. 

The t radi t ional dist inction of real versus nonsense or illusory correla t ion 
is of little use. In supposedly legitimate correlat ions, causal connect ions are 
known or at least believed to be clearly unders tood. In so-called illusory cor-
relations, no reasonable connect ion between the variables can be found; or if 
one is demons t ra ted , it is of no real interest or may be shown to be an arti-
fact of the sampling procedure . Thus, the correlat ion between Baptist ministers 
and l iquor consumpt ion is simply a consequence of city size. The larger the city, 
the more Baptist ministers it will conta in on the average and the greater will be 
the l iquor consumpt ion . The correlat ion is of little interest to anyone studying 
either the dis t r ibut ion of Baptist ministers or the consumpt ion of alcohol. Some 
correlat ions have time as the c o m m o n factor, and processes that change with 
time are frequently likely to be correlated, not because of any funct ional bio-
logical reasons but simply because the change with time in the two variables 
under considerat ion happens to be in the same direction. Thus, size of an insect 
popula t ion building up th rough the summer may be correlated with the height 
of some weeds, but this may simply be a funct ion of the passage of time. There 
may be no ecological relation between the plant and the insects. Another situa-
tion in which the correlat ion might be considered an artifact is when one of 
the variables is in part a mathemat ica l funct ion of the other. Thus, for example, 
if Y = Z / A and we compu te the correlat ion of A' with Y, the existing rela-
tion will tend to produce a negative correlat ion. 

Perhaps the only correlat ions properly called nonsense or illusory arc those 
assumed by popular belief or scientific intuition which, when tested by proper 
statistical methodology using adequa te sample sizes, are found to be not sig-
nificant. Thus, if we can show that there is no significant correlat ion between 
a m o u n t of sa tura ted fats eaten and the degree of atherosclerosis, we can consider 
this to be an illusory correlat ion. Remember also that when testing significance 
of correlat ions at convent ional levels of significance, you must allow for type I 
error, which will lead to your judging a certain percentage of correla t ions sig-
nificant when in fact the paramet r ic value of ρ = 0. 

Corre la t ion coefficients have a history of extensive use and applicat ion 
dat ing back to the English biometric school at the beginning of the twentieth 
century. Recent years have seen somewhat less applicat ion of this technique as 
increasing segments of biological research have become experimental . In experi-
ments in which one factor is varied and the response of ano ther variable to the 
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deliberate var ia t ion of the first is examined, the me thod of regression is more 
appropr ia te , as has already been discussed. However , large areas of biology and 
of o ther sciences remain where the experimental me thod is not suitable because 
variables cannot be b rough t under control of the investigator. There are many 
areas of medicine, ecology, systematics, evolution, and other fields in which 
experimental me thods are difficult to apply. As yet, the weather canno t be con-
trolled, nor can historical evolut ionary factors be altered. Epidemiological vari-
ables are generally not subject to experimental manipula t ion . Nevertheless, we 
need an unders tanding of the scientific mechanisms underlying these p h e n o m -
ena as much as of those in biochemistry or experimental embryology. In such 
cases, correlat ion analysis serves as a first descriptive technique es t imat ing the 
degrees of associat ion a m o n g the variables involved. 

1 2 . 5 K e n d a l l ' s c o e f f i c i e n t o f r a n k c o r r e l a t i o n 

Occasional ly da t a are k n o w n not to follow the bivariate no rma l dis t r ibut ion, 
yet we wish to test for the significance of associat ion between the two variables. 
O n e m e t h o d of analyzing such da t a is by rank ing the variates and calculat ing 
a coefficient of rank correlat ion. This app roach belongs to the general family of 
nonpa rame l r i c me thods we encountered in Chap t e r 10. where we learned 
m e t h o d s for analyses of ranked variates paralleling anova. In o the r cases es-
pecially suited to ranking methods, we canno t measure the variable on an 
absolute scale, but only on an ordinal scale. This is typical of da t a in which 
we est imate relative performance , as in assigning positions in a class. We can 
say that A is the best s tudent , Β is the second-best s tudent , C and D are equal 
to each o ther and next-best, and so on. If two instructors independent ly rank 
a g roup of students, wc can then test whether the two sets of rankings are 
independent (which we would not expect if the j udgmen t s of the instructors arc 
based on objective evidence). Of greater biological and mcdical interest arc the 
following examples. We might wish to correlate order of emergence in a sample 
of insects with a ranking in size, or order of germinat ion in a sample of plants 
with rank order of flowering. An epidemiologist may wish to associate rank 
order of occurrcncc (by time) of an infectious disease within a communi ty , on 
the one hand, with its severity as measured by an objective criterion, on the 
other. 

Wc present in Box 12.3 Kendall's coefficient of rank correlation, generally 
symbolized by τ (tau), a l though it is a sample statistic, not a parameter . The 
formula for Kendall 's coefficient of rank correlat ion is τ = N/n(n — I), where η 
is the convent ional sample size and Ν is a count of ranks, which can be ob-
tained in a variety of ways. A second variable Y2, if it is perfectly correlated 
with the first variable V,. should be in the same order as the V, variatcs. However , 
if the correlat ion is less than perfect, the order of the variates T, will not entirely 
cor respond to that of V,. The quant i ty Ν measures how well the second variable 
cor responds to the order of the first. It has a maximal value of n{n 1) and 
a minimal value of —n{n 1). The following small example will make this clear. 
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BOX 113 
K e n d a l l ' s c o e f f i c i e n t o f r a n k c o r r e l a t i o n , τ . 

Computation of a rank correlation coefficient between the blood neutrophil <. .urn ·. 
(y,; χ 10"3 per μ]) and total marrow neutrophil mass (Y2: x 10''per kg) m ι ·> 
patients with nonhematological tumors; η = 15 pairs of observations. 

(i) <J) (4) U) (2) (i) Μ 
Patient r . V, Rz Patient Yt Ri Y2 

1 4.9 6 4.34 1 8 7.1 9 7.12 5 
2 4.6 5 9.64 9 9 2.3 1 9.75 10 
3 5.5 7 7.39 6 10 3.6 2 8.65 8 
4 9.1 11 13.97 12 11 18.0 15 15.34 14 
5 16.3 14 20.12 15 12 3.7 3 12.33 11 
6 12.7 13 15,01 13 13 7.3 10 5.99 2 
7 6.4 8 6.93 4 14 4.4 4 7.66 7 

15 9.8 12 6.07 3 

Source: Data extracted from Liu, Kesfeld. and Koo (1983). 

Computational steps 

1. Rank variables Y, and Y2 separately and then replace the original variates with 
the ranks (assign tied ranks if necessary so that for both variables you will 
always have η ranks for η variates). These ranks are listed in columns (3) and 
(5) above. 

2. Write down the η ranks of one of the two variables in order, paired with the 
rank values assigned for the other variable (as shown below). If only one vari-
able has ties, order the pairs by the variable without ties. If both variables have 
ties, it does not matter which of the variables is ordered. 

3. Obtain a sum of the counts C i( as follows. Examine the first value in the column 
of ranks paired with the ordered column. In our case, this is rank 10. Count 
all ranks subsequent to it which are higher than the rank being considered. 
Thus, in this case, count all ranks greater than 10. There are fourteen ranks 
following the 10 and five of them are greater than 10. Therefore, we count a 
score of C, = 5. Now we look at the next rank (rank 8) and find that six of 
the thirteen subsequent ranks are greater than it; therefore, C2 is equal to 6. 
The third rank is 11, and four following ranks are higher than it. Hence, C 3 = 4. 
Continue in this manner, taking each rank of the variable in turn and counting 
the number of higher ranks subsequent to it. This can usually be done in one's 
head, but we show it explicitly below so that the method will be entirely clear. 
Whenever a subsequent rank is tied in value with the pivotal rank Rlt count 
| instead of 1. 
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BOX J 2.3 
Continued 

Subsequent ranks greater 
*« Ri than pivotal rank R2 Counts Cj 

1 10 11,12,13,15,14 5 
2 8 11,9,12,13,15,14 6 
3 11 12,13, 15,14 4 
4 7 9,12,13,15,14 5 
5 9 12,13,15,14 4 
6 1 6,4, 5,2,12, 3,13,15,14 9 
7 6 12, 13, 15, 14 4 
8 4 5,12,13,15,14 5 
9 5 12,13,15,14 4 

10 2 12, 3,13,15,14 5 
11 12 13,15, 14 3 
12 3 13, 15, 14 3 
13 13 15, 14 2 
14 15 0 
15 14 0 

£ C ( = 59 

We then need the following quantity: 

Ν = 4 Σ C ; - Φ - 1 ) = 4 ( 5 9 ) - 1 5 ( 1 4 ) : 236 - 210 = 26 

4. The Kendall coefficient of rank correlation, τ, can be found as follows: 
Ν __ 26 

n(n 
: 0 . 1 2 4 

1) 1 5 ( 1 4 ) 

When there are ties, the coefficient is computed as follows: 
Ν 

n(n - 1) - Σ Τ, n(n - 1) - £ Γ* 

where Σ"1 Τ, and Σ"1 Τ2 are the sums of correction terms for ties in the ranks of 
variable Yl and Y2, respectively, defined as follows. A Τ value equal to t(t — 1) 
is computed for each group of t tied variates and summed over m such groups. 
Thus if variable Y2 had had two sets of ties, one involving t = 2 variates 
and a second involving t = 3 variates, one would have computed Σ™ T2 = 
2(2 - 1) + 3(3 - 1) = 8. It has been suggested that if the ties are due to lack 
of precision rather than being real, the coefficient should be computed by the 
simpler formula. 
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BOX 12.3 
Continued 

5 . T o t e s t s i g n i f i c a n c e f o r s a m p l e s i z e s > 4 0 , w e c a n m a k e u s e o f a n o r m a l a p -

p r o x i m a t i o n t o t e s t t h e n u l l h y p o t h e s i s t h a t t h e t r u e v a l u e o f τ = 0 : 

= — = = = = = L = = = c o m p a r e d w i t h 
v / 2 ( 2 « + 5 ) / 9 φ · = ! ) 

W h e n η < , 4 0 , t h i s a p p r o x i m a t i o n i s n o t a c c u r a t e , a n d T a b l e X I V m u s t b e 

c o n s u l t e d T h e t a b l e g i v e s v a r i o u s ( t w o - t a i l e d ) c r i t i c a l v a l u e s o f τ f o r η = 4 t o 

4 0 . T h e m i n i m a l s i g n i f i c a n t v a l u e o f t h e c o e f f i c i e n t a t Ρ = 0 . 0 5 i s 0 . 3 9 0 . H e n c e 

t h e o b s e r v e d v a l u e o f τ i s n o t s i g n i f i c a n t l y d i f f e r e n t f r o m z e r o . 

Suppose we have a sample of five individuals tha t have been arrayed by rank 
of variable Y{ and whose rankings for a second variable Y2 are entered paired 
with the ranks for Y .̂ 

Y, 1 2 3 4 5 

Y2 1 3 2 5 4 

Note that the ranking by variable Y2 is not totally concordan t with that by Y^ 
The technique employed in Box 12.3 is to count the number of higher ranks 
following any given rank, sum this quant i ty for all ranks, multiply the sum Σ" C, 
by 4, and subtract f rom the result a corrcct ion factor n(n — 1) to obta in a statistic 
N. If, for purposes of i l lustration, we under take to calculate the correlat ion of 
variable Y, with itself, we will find Σ" C, = 4 + 3 + 2 + 1 + 0 = 10. Then we 
compute Ν = 4 Σ" C, — n(n — 1) = 40 — 5(4) — 20, to obta in the maximum 
possible score Ν = n(n — 1) = 20. Obviously, Y,, being ordered, is always per-
fectly concordant with itself. However, for Y2 we obtain only Σ" C, = 4 + 2 + 
2 + 0 + 0 = 8, and so Ν = 4(8) - 5(4) = 12. Since the max imum score of Ν for 
Y, (the score we would have if the correlat ion were perfect) is n(n — I) = 20 and 
the observed score 12, an obvious coefficient suggests itself as N/n(n 1) = 
[4 Σ" C, - n(n - I ]\/n(n - 1) = 12/20 = 0.6. Ties between individuals in the 
ranking proccss present minor complicat ions that arc dealt with in Box 12.3. 
The correlat ion in (hat box is between blood neutrophil counts and total 
mar row neutrophi l mass in 15 cancer patients. The au thors note that there is 
a p roduc t -moment correlat ion of 0.69 between these two variables, but when 
the da ta arc analyzed by Kendall 's rank correlat ion cocfiicicnt, the association 
between the two variables is low and nonsignificant. Examina t ion of the data 
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reveals tha t there is marked skewness in bo th variables. The da t a cannot , there-
fore, meet the assumpt ions of bivariate normal i ty . Al though there is little evi-
dence of correlat ion a m o n g most of the variates, the three largest variates for 
each variable are correlated, and this induces the misleadingly high p roduc t -
m o m e n t correlat ion coefficient. 

The significance of τ for sample sizes greater than 40 can easily be tested 
by a s t andard er ror shown in Box 12.3. F o r sample sizes up to 40, look up 
critical values of τ in Table XIV. 

Exercises 

12.1 G r a p h t h e f o l l o w i n g d a t a in t h e f o r m of a b i v a r i a t e s c a t t e r d i a g r a m . C o m p u t e 
t h e c o r r e l a t i o n coef f i c ien t a n d set 9 5 % c o n f i d e n c e i n t e r v a l s t o p. T h e d a t a w e r e 
co l l e c t ed fo r a s t u d y of g e o g r a p h i c v a r i a t i o n in t h e a p h i d Pemphigus populi-
transversus. T h e v a l u e s in t h e t a b l e r e p r e s e n t loca l i ty m e a n s b a s e d o n e q u a l 
s a m p l e sizes f o r 23 loca l i t i es in e a s t e r n N o r t h A m e r i c a . T h e va r i ab l e s , e x t r a c t e d 
f r o m S o k a l a n d T h o m a s (1965), a r e e x p r e s s e d in mi l l ime te r s . F, = t i b i a l e n g t h , 
Y2 = t a r s u s l eng th . T h e c o r r e l a t i o n coef f i c ien t will e s t i m a t e c o r r e l a t i o n of t he se 
t w o v a r i a b l e s o v e r loca l i t ies . A N S . r = 0 .910, Ρ < 0.01. 

Locality code number v. 

1 0.631 0 .140 
2 0 .644 0 .139 
3 0 .612 0 .140 
4 0 .632 0.141 
5 0 .675 0 .155 
6 0 .653 0 .148 
7 0 .655 0 .146 
8 0 .615 0 .136 
9 0 .712 0.159 

10 0 .626 0 .140 
1 1 0 .597 0 .133 
12 0 .625 0 .144 
13 0 .657 0 .147 
14 0 .586 0 .134 
15 0 .574 0 .134 
16 0.551 0.127 
17 0 .556 0 .130 
18 0 .665 0 .147 
19 0 .585 0 .138 
20 0 .629 0 .150 
21 0.671 0 .148 
22 0 .703 0.151 
23 0 .662 0.142 

12.2 The f o l l o w i n g d a t a were e x t r a c t e d f r o m a l a rge r s t u d y by B r o w e r (1959) o n s p e c i a -
t ion in a g r o u p of s w a l l o w t a i l bu t te r f l i es . M o r p h o l o g i c a l m e a s u r e m e n t s a r e in 
m i l l i m e t e r s c o d e d χ 8. 
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η η 
Specimen Length of Length of 

Species number 8th tergile superuncus 

Papilio 1 24.0 14.0 
multicaudatus 2 21.0 15.0 

3 20.0 17.5 
4 21.5 16.5 
5 21.5 16.0 
6 25 .5 16.0 
7 25.5 17.5 
8 28.5 16.5 
9 23.5 15.0 

10 22.0 15.5 
11 22.5 17.5 
12 20.5 19.0 
13 21.0 13.5 
14 19.5 19.0 
15 26.0 18.0 
16 23.0 17.0 
17 21.0 18.0 
18 21.0 17.0 
19 20.5 16.0 
20 22.5 15.5 

Papilio 21 20.0 11.5 
rutulus 22 21.5 1 1.0 

23 18.5 10.0 
24 20.0 11.0 
25 19.0 1 1.0 
26 20.5 1 1.0 
27 19.5 11.0 
28 19.0 10.5 
29 21.5 1 1.0 
30 20.0 11.5 
31 21.5 10.0 
32 20.5 12.0 
33 20.0 10.5 
34 21.5 12.5 
35 17.5 12.0 
36 21.0 12.5 
37 21 .0 1 1.5 
38 21.0 12.0 
39 19.5 10.5 
4 0 19.0 1 1.0 
41 18.0 11.5 
42 21.5 10.5 
43 23.0 11.0 
4 4 22.5 11.5 
4 5 19.0 13.0 
4 6 22.5 14.0 
47 21.0 12.5 
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Compute the correlation coefficient separately for each species and test signifi-
cance of each. Test whether the two correlation coefficients differ significantly. 

12.3 A pathologist measured the concentration of a toxic substance in the liver and 
in the peripheral blood (in /ig/kg) in order to ascertain if the liver concentration 
is related to the blood concentration. Calculate τ and test its significance. 

Liver Blood 

0.296 0 .283 
0 .315 0 .323 
0 .022 0 .159 
0.361 0.381 
0 .202 0 .208 
0 .444 0.411 
0 .252 0 .254 
0.371 0 .352 
0 .329 0 .319 
0 .183 0 .177 
0 .369 0 .315 
0 .199 0 .259 
0 .353 0 .353 
0 .251 0 .303 
0 .346 0 .293 

ANS. τ = 0.733. 
12.4 The following tabic of data is from an unpublished morphometric study of the 

cottonwood Populus deltoides by T. J. Crovello. Twenty-six leaves from one 
tree were measured when fresh and again after drying. The variables shown are 
fresh-leaf width (V,) and dry-leaf width (y2), both in millimeters. Calculate r 
and test its significance. 

y, Y, Y, 

90 88 100 97 
88 87 110 105 
55 52 95 90 

100 95 99 98 
86 83 92 92 
9 0 88 80 82 
82 77 i 10 106 
78 75 105 97 

115 109 101 98 
100 95 95 91 
110 105 80 76 

84 78 103 97 
76 71 



EXERCISES 293 

12.5 Brown and Comstock (1952) found the following correlations between the length 
of the wing and the width of a band on the wing of females of two samples 
of t h e b u t t e r f l y Heliconius charitonius: 

Sample η r 

1 100 0.29 
2 46 0.70 

Test whether the samples were drawn from populations with the same value of 
p. ANS. No, is = -3.104, Ρ < 0.01. 

12.6 Test for the presence of association between tibia length and tarsus length in 
the data of Exercise 12.1 using Kendall's coefficient of rank correlation. 



CHAPTER 

Analysis of Frequencies 

Almost all our work so far has dealt with estimation of parameters and tests 
of hypotheses for cont inuous variables. The present chapter treats an important 
class of cases, tests of hypotheses about frequencies. Biological variables may 
be distributed into two or more classes, depending on some criterion such as 
arbitrary class limits in a cont inuous variable or a set of mutually exclusive 
attributes. An example of the former would be a frequency distribution of birth 
weights (a cont inuous variable arbitrarily divided into a number of cont iguous 
classes); one of the latter would be a qualitative frequency distribution such as 
the frequency of individuals of ten different species obtained from a soil sample. 
For any such distribution wc may hypothesize that it has been sampled f rom 
a populat ion in which the frequencies of the various classes represent certain 
parametr ic propor t ions of the total frequency. We need a test of goodness of fit 
for our observed frequency distribution to the expected frequency distr ibution 
representing our hypothesis. You may recall that we first realized the need for 
such a test in Chapters 4 and 5, where we calculated expected binomial. Poisson, 
and normal frequency distr ibutions but were unable to decide whether an ob-
served sample distribution departed significantly f rom the theoretical one. 
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In Section 13.1 we introduce the idea of goodness of fit, discuss the types 
of significance tests that are appropriate , explain the basic rat ionale behind such 
tests, and develop general computat ional formulas for these tests. 

Section 13.2 illustrates the actual computa t ions for goodness of fit when 
the da ta are ar ranged by a single criterion of classification, as in a one-way 
quanti tat ive or qualitative frequency distribution. This design applies to cases 
expected to follow one of the well-known frequency distributions such as the 
binomial, Poisson, or normal distribution. It applies as well to expected distri-
butions following some other law suggested by the scientific subject matter 
under investigation, such as, for example, tests of goodness of fit of observed 
genetic ratios against expected Mendelian frequencies. 

In Section 13.3 we proceed to significance tests of frequencies in two-way 
classifications—called tests of independence. We shall discuss the c o m m o n tests 
of 2 χ 2 tables in which each of two criteria of classification divides the fre-
quencies into two classes, yielding a four-cell table, as well as R χ C tables with 
more rows and columns. 

Throughou t this chapter we carry out goodness of fit tests by the G statistic. 
We briefly mention chi-squarc tests, which are the traditional way of analyzing 
such cases. But as is explained at various places throughout the text, G tests 
have general theoretical advantages over chi-square tests, as well as being 
computat ional ly simpler, not only by computer , but also on most pocket or 
tabletop calculators. 

1 3 . 1 T e s t s f o r g o o d n e s s o f f i t : I n t r o d u c t i o n 

The basic idea of a goodness of fit test is easily understood, given the extensive 
experience you now have with statistical hypothesis testing. Let us assume that 
a geneticist has carried out a crossing experiment between two F, hybrids and 
obtains an F 2 progeny of 90 offspring, 80 of which appear to be wild type and 
10 of which are the mutant phenotypc. The geneticist assumes dominance and 
expects a 3:1 ratio of the phenotypes. When we calculate the actual ratios, 
however, we observe that the data are in a rat io 80/10 = 8:1. Expected values 
for ρ and q are ρ = 0.75 and ij = 0.25 for the wild type and mutant , respectively. 
Note that we use the caret (generally called "ha t" in statistics) to indicate hypo-
thetical or expected values of the binomial proport ions. However, the observed 
propor t ions of these two classes are ρ = 0.89 and q = 0.11, respectively. Yet 
another way of noting the contrast between observation and expectation is to 
state it in frequencies: the observed frequencies are J\ = 80 and f2 = 10 for the 
two phenotypes. Expccted frequencies should be (\ = pn = 0.75(90) = 67.5 and 
/ , = qn = 0.25(90) = 22.5, respectively, where η refers to the sample size of 
offspring from the cross. Note that when we sum the expected frequencies they 
yield 67.5 + 22.5 = η = 90, as they should. 

The obvious question that comes to mind is whether the deviation from the 
3:1 hypothesis observed in our sample is of such a magni tude as to be im-
probable. In other words, do the observed da ta differ enough from the expected 
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values to cause us to reject the null hypothesis? F o r the case jus t considered, you 
already know two m e t h o d s for coming to a decision abou t the null hypothesis . 
Clearly, this is a b inomial dis t r ibut ion in which ρ is the probabi l i ty of be ing 
a wild type and q is the probabi l i ty of being a mutan t . It is possible to work 
out the probabi l i ty of ob ta in ing an ou tcome of 80 wild type and 10 m u t a n t s 
as well as all "worse" cases for ρ = 0.75 and q = 0.25, and a sample of η = 90 
offspring. W e use the convent ional b inomial expression here (p + q)n except tha t 
ρ and q are hypothesized, and we replace the symbol k by n, which we adop ted 
in Chap t e r 4 as the appropr i a t e symbol for the sum of all the frequencies in a 
f requency dis t r ibut ion. In this example, we have only one sample, so what would 
ordinar i ly be labeled k in the binomial is, at the same time, n. Such an example 
was il lustrated in Tab le 4.3 and Section 4.2, and we can compu te the cumulat ive 
probabi l i ty of the tail of the binomial distr ibution. When this is done, we obta in 
a probabi l i ty of 0.000,849 for all ou tcomes as deviant or more deviant f rom the 
hypothesis . N o t e that this is a one-tailed test, the al ternative hypothesis being 
tha t there are, in fact, m o r e wild-type offspring than the Mendel ian hypothesis 
would postulate . Assuming ρ = 0.75 and q = 0.25, the observed sample is, con-
sequently, a very unusual outcome, and we conclude tha t there is a significant 
deviat ion f rom expectat ion. 

A less t ime-consuming a p p r o a c h based on the same principle is to look u p 
confidence limits for the binomial p ropor t ions , as was done for the sign test in 
Section 10.3. In te rpola t ion in Table IX shows that for a sample of η = 90, an 
observed percentage of 89% would yield app rox ima te 99% confidence limits of 
78 and 96 for the t rue percentage of wild-type individuals. Clearly, the hy-
pothesized value for ρ — 0.75 is beyond the 99% confidence bounds . 

Now, let us develop a third app roach by a goodness of fit test. Table 13.1 
illustrates how we might proceed. The first co lumn gives the observed f requen-
cies / represent ing the ou tcome of the experiment. Co lumn (2) shows the ob-
served frequencies as (observed) p ropor t ions ρ and q computed as J\/n and f2/n, 
respectively. C o l u m n (3) lists the expected p ropor t ions for the par t icular null 
hypothesis being tested. In this case, (he hypothesis is a 3:1 ratio, co r responding 
to expected p ropor t ions ρ = 0.75 and q = 0.25, as we have seen. In co lumn (4) 
we show the cxpected frequencies, which we have already calculated for these 
p ropo r t i ons as / , = pn = 0.75(90) = 67.5 and f2 = qn = 0.25(90) = 22.5. 

The log likelihood rat io test for goodness of fit may be developed as follows. 
Using Expression (4.1) for the expected relative frequencies in a binomial dis-
tr ibution, we c o m p u t e two quant i t ies of interest to us here: 

C(90, 8 0 ) ( ^ Γ ( ^ ) " ' - 0.132,683,8 

C(9(), ' 0 = 0.000,551,754,9 

The first quant i ty is the probabil i ty of observing the sampled results (80 wild 
type and 10 mutants ) on the hypothesis that ρ = ρ — t h a t is, thai the popula t ion 
paramete r equals the observed sample p ropor t ion . The second is the probabi l i ty 
of observing the sampled results assuming that ρ = f , as per the Mendel ian null 
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hypothesis. No te that these expressions yield the probabilities for the observed 
outcomes only, not for observed and all worse outcomes. Thus, Ρ = 0.000,551,8 
is less than the earlier computed Ρ = 0.000,849, which is the probabil i ty of 10 
and fewer mutants , assuming ρ = f , q = 

The first probabili ty (0.132,683,8) is greater than the second (0.000,551,754,9), 
since the hypothesis is based on the observed data. If the observed propor t ion 
ρ is in fact equal to the propor t ion ρ postulated under the null hypothesis, then 
the two computed probabilities will be equal and their ratio, L, will equal 1.0. 
The greater the difference between ρ and ρ (the expected proport ion under the 
null hypothesis), the higher the ratio will be (the probability based on ρ is 
divided by the probabili ty based on ρ or defined by the null hypothesis). This 
indicates that the ratio of these two probabilities or likelihoods can be used as 
a statistic to measure the degree of agreement between sampled and expected 
frequencies. A test based on such a ratio is called a likelihood ratio test. In our 
case, L = 0.132,683,8/0.000,551,754,9 = 240.4761. 

It has been shown that the distribution of 

can be approximated by the χ 2 distribution when sample sizes are large (for a 
definition of "large" in this case, see Section 13.2). The appropr ia te number of 
degrees of freedom in Table 13.1 is 1 because the frequencies in the two cells 
for these data add to a constant sample size, 90. The outcome of the sampling 
experiment could have been any number of mutants from 0 to 90, but the 
number of wild type consequently would have to be constrained so that the 
total would add up to 90. One of the cells in the tabic is free to vary, the other 
is constrained. Hence, there is one degree of freedom, 

fn our ease, 

If wc compare this observed value with a χ 2 distribution with one degree of 
freedom, we find that the result is significant (P < 0.001). Clearly, we reject the 
3:1 hypothesis and conclude that the proport ion of wild type is greater than 
0.75. The gencticist must, consequently, look for a mechanism explaining (his 
depar ture from expectation. 

Wc shall now develop a simple computat ional formula for G. Referring 
back to Expression (4.1), we can rewrite the two probabilities computed earlier 
as 

G = 2 In L (13.1) 

G — 2\nL — 2(5.482,62) = 10.9652 

C(n,J\)pr<q (13.2) 

and 

C(n,j\)pf'q Af,A/2 (13.2a) 

But 
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L = / / l V ' / / 2 

Since f = np and f\ = np and similarly f2 = nq and / , = nq, 

JW 
and 

/ Λ , , , J f l l n L = / , l n ^ j + / 2 l n ^ J (13.3) 

The computa t ional steps implied by Expression (13.3) are shown in columns 
(5) and (6) of Table 13.1. In column (5) are given the ratios of observed over 
expected frequencies. These ratios would be 1 in the unlikely case of a perfect 
fit of observations to the hypothesis. In such a case, the logari thms of these 
ratios entered in column (6) would be 0, as would their sum. Consequently, G, 
which is twice the natural logari thm of L, would be 0, indicating a perfect fit 
of the observations to the expectations. 

It has been shown that the distribution of G follows a χ2 distribution. In 
the particular case we have been s tudying—the two phenotype classes—the 
appropr ia te χ2 distribution would be the one for one degree of freedom. We 
can appreciate the reason for the single degree of freedom when we consider 
the frequencies in the two classes of Table 13.1 and their sum: 80 + 10 = 90. 
In such an example, the total frequency is fixed. Therefore, if we were to vary 
the frequency of any one class, the other class would have to compensate for 
changes in the first class to retain a correct total. Here the meaning of one 
degree of freedom becomes quite clear. O n e of the classes is free to vary; the 
other is not. 

The test for goodness of fit can be applied to a distribution with more than 
two classes. If we designate the number of frequency classes in the Table as a, 
the operat ion can be expressed by the following general computa t ional formula, 
whose derivation, based on the mult inominal expectations (for more than two 
classes), is shown in Appendix A 1.9: 

G = 2 X . / ; i n ^ ) (13.4) 

Thus the formula can be seen as the sum of the independent contr ibut ions 
of departures from expectation (In [ f / f ] ) ) weighted by the frequency of the 
particular class ( f ) . If the expected values are given as a propor t ion , a conve-
nient computa t ional formula for G, also derived in Appendix A 1.9, is 

Σ / > η In η (13.5) 

To evaluate the outcome of our test of goodness of fit, we need to know the 
appropr ia te number of degrees of freedom to be applied to the χ2 distribution, 
f or a classes, the niimher of deorees of freedom is η — 1 Since the sum of 
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frequencies in any problem is fixed, this means that a — 1 classes are free to 
vary, whereas the ath class must constitute the difference between the total sum 
and the sum of the previous a — 1 classes. 

In some goodness of fit tests involving more than two classes, we subtract 
more than one degree of freedom from the number of classes, a. These are 
instances where the parameters for the null hypothesis have been extracted from 
the sample data themselves, in contrast with the null hypotheses encountered 
in Table 13.1. In the latter case, the hypothesis to be tested was generated on 
the basis of the investigator's general knowledge of the specific problem and of 
Mendelian genetics. The values of ρ = 0.75 and q = 0.25 were dictated by the 
3:1 hypothesis and were not estimated from the sampled data. For this reason, 
the expected frequencies are said to have been based on an extrinsic hypothesis, 
a hypothesis external to the data. By contrast, consider the expected Poisson 
frequencies of yeast cells in a hemacytometer (Box 4.1). You will recall that to 
compute these frequencies, you needed values for μ, which you estimated from 
the sample mean Ύ. Therefore, the parameter of the computed Poisson distri-
bution came from the sampled observations themselves. The expected Poisson 
frequencies represent an intrinsic hypothesis. In such a case, to obtain the correct 
number of degrees of freedom for the test of goodness of fit, we would subtract 
from a, the number of classes into which the data had been grouped, not only 
one degree of freedom for n, the sum of the frequencies, but also one further 
degree of freedom for the estimate of the mean. Thus, in such a case, a sample 
statistic G would be compared with chi-square for a — 2 degrees of freedom. 

Now let us introduce you to an alternative technique. This is the traditional 
approach with which we must acquaint you because you will see it applied in 
the earlier literature and in a substantial proportion of current research publi-
cations. We turn once more to the genetic cross with 80 wild-type and 10 
mutant individuals. The computations are laid out in columns (7), (8), and (9) 
in Table 13.1. 

We first measure / — / , the deviation of observed from expected frequen-
cies. Note that the sum of these deviations equals zero, for reasons very similar 
to those causing the sum of deviations from a mean to add to zero. Following 
our previous approach of making all deviations positive by squaring them, we 
square ( / — / ) in column (8) to yield a measure of the magnitude of the devia-
tion from expectation. This quantity must be expressed as a proportion of the 
expected frequency. After all, if the expected frequency were 13.0, a deviation of 
12.5 would be an extremely large one, comprising almost 100% of f , but such 
a deviation would represent only 10% of an cxpected frequency of 125.0. Thus, 
we obtain column (9) as the quotient of division of the quantity in column (8) 
by that in column (4). Note that the magnitude of the quotient is greater for 
the second line, in which the / is smaller. Our next step in developing our test 
statistic is to sum the quotients, which is done at the foot of column (9), yielding 
a value of 9.259,26. 

This test is called the chi-square test because the resultant statistic, X2, is 
distributed as chi-square with a 1 degrees of freedom. Many persons inap-
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propriately call the statistic obtained as the sum of column (9) a chi-square. 
However, since the sample statistic is not a chi-square, we have followed the 
increasingly prevalent convention of labeling the sample statistic X2 rather than 
χ2. The value of X2 = 9.259,26 from Table 13.1, when compared with the critical 
value of χ2 (Table IV), is highly significant (P < 0.005). The chi-square test is 
always one-tailed. Since the deviations are squared, negative and positive devia-
tions both result in positive values of X2. Clearly, we reject the 3:1 hypothesis 
and conclude that the proportion of wild type is greater than 0.75. The geneticist 
must, consequently, look for a mechanism explaining this departure from ex-
pectation. Our conclusions are the same as with the G test. In general, X2 will 
be numerically similar to G. 

We can apply the chi-square test for goodness of fit to a distribution with 
more than two classes as well. The operation can be described by the formula 

a ( f - f·)2 

Χ 2 = Σ (13.6) 
f i 

which is a generalization of the computations carried out in columns (7), (8), 
and (9) of Table 13.1. The pertinent degrees of freedom are again a — 1 in the 
case of an extrinsic hypothesis and vary in the case of an intrinsic hypothesis. 
The formula is straightforward and can be applied to any of the examples we 
show in the next section, although we carry these out by means of the G test. 

13.2 Single-classification goodness of fit tests 

Before we discuss in detail the computational steps involved in tests of good-
ness of fit of single-classification frequency distributions, some remarks on the 
choice of a test statistic are in order. We have already stated that the traditional 
method for such a test is the chi-square lest for goodness of fit. However, the 
newer approach by the G test has been recommended on theoretical grounds. 
The major advantage of the G test is that it is computationally simpler, espe-
cially in more complicated designs. Earlier reservations regarding G when desk 
calculators are used no longer apply. The common presence of natural logarithm 
keys on pocket and tabletop calculators makes G as easy to compute as X2. 

The G tests of goodness of fit for single-classification frequency distributions 
are given in Box 13.1. Expected frequencies in three or more classes can be 
based on either extrinsic or intrinsic hypotheses, as discussed in the previous 
section. Examples of goodness of fit tests with more than two classes might be 
as follows: A genetic cross with four phenotypic classes might be tested against 
an expected ratio of 9 :3 :3 :1 for these classes. A phenomenon that occurs over 
various time periods could be tested for uniform frequency of occurrence—for 
example, number of births in a city over 12 months: Is the frequency of births 
equal in each month? In such a case the expected frequencies are computed as 
being equally likely in each class. Thus, for a classes, the expected frequency 
for any one class would be η/α. 
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BOX 13.1 
G Test for Goodness of Fi t Single Classification. 

1. Frequencies divided into a 2: 2 classes: Sex ratio in 6115 sibships of 12 in Saxony. 
The fourth column gives the expected frequencies, assuming a binomial distri-
bution. These were first computed in Table 4,4 but are here given to five-
decimal-place precision to give sufficient accuracy to the computation of G. 

(J) 
Deviation 

V) w 
/ 

from 
cic? 99 / 

w 
/ expectation 

12 
11 

0 
1 •52 2.347,27) 

26.082,46] 28.429,73 + 
10 2 181 132.835,70 + 
9 3 478 410.012,56 + 
8 4 829 854.246,65 — 

7 5 1112 1265.630,31 — 

6 6 1343 1367.279,36 — 

5 7 1033 1085.210,70 _ 
4 8 670 628.055,01 + 
3 9 286 258.475,13 + 
2 10 104. 71.803,17 + 
1 
0 

11 
12 

6115 = 

•27 

= η 

12.088,84) 
0.932,84 ( 

6115.000,00 
>13.021,68 + 

Since expected frequencies ft < 3 for a = 13 classes should be avoided, we lump 
the classes at both tails with the adjacent classes to create classes of adequate 
size. Corresponding classes of observed frequencies / ( should be lumped to 
match. The number of classes after lumping is a = 11. 

Compute G by Expression (13.4): 

( U\ 

\jlJ 

= K52 K^)+181 +·' ·+ 27 ln (ηέ̂ )) 
= 94.871,55 

Since there are a = 11 classes remaining, the degrees of freedom would be 
α — 1 == 10, if this were an example tested against expected frequencies based 
on an extrinsic hypothesis. However, because the expected frequencies are based 
on a binomial distribution with mean pg estimated from the p , of the sample, 
a further degree of freedom is removed, and the sample value of G is compared 
with a χ2 distribution with a - 2 = 11 — 2 = 9 degrees of freedom. We applied 
Williams' correction to G, to obtain a better approximation to χ2. In the for-
mula computed below, ν symbolizes the pertinent degrees of freedom of the 
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BOX 13.1 
Continued 

problem. We obtain 

G^ = 94.837,09 > xi00im = 27,877 

The null hypothesis—that the sample data follow a binomial distribu-
tion—is therefore rejected decisively. 

Typically, the following degrees of freedom will pertain to G tests for 
goodness of fit with expected frequencies based on a hypothesis intrinsic to the 
sample data (a is the number of classes after lumping, if any): 

When the parameters for such distributions are estimated from hypotheses 
extrinsic to the sampled data, the degrees of freedom are uniformly a — 1. 

2. Special case of frequencies divided in a = 2 classes: In an Fz cross in dro-
sophila, the following 176 progeny were obtained, of which 130 were wild-type 
flies and 46 ebony mutants. Assuming that the mutant is an autosomal recessive, 
one would expect a ratio of 3 wild-type flies to each mutant fly. To test whether 
the observed results are consistent with this 3:1 hypothesis, we set up the data 
as follows. 

Flies f Hypothesis f 

Wild type / , = 130 ρ = 0.75 pn = 132.0 
Ebony mutant f2 = 4 6 q = 0.25 qn = 44.0 

Parameters estimated 
Distribution from sample df 

Binomial 
Normal 
Poisson 

Ρ 
μ, a 

μ 

a —2 
a-3 
a-2 

η = 176 176.0 

Computing G from Expression (13.4), we obtain 

= 2[130In (Ηδ + 46 In iff)] * < ί ' ' + ' ' ' 
= 0.120,02 
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BOX 13.1 
Continued 

Williams* correction for the two-cell case is <? = 1 +·1/2», which is 

1 + 2 m r l M 2 ' u 

in this example. 

G 0.120,02 
0 1 1 9 7 

Since Ga < J j« Xo.osm β 3.841, we clearly do not have sufficient evidence to 
reject our null hypothesis. 

• 

The case presented in Box 13.1, however, is one in which the expected 
frequencies are based on an intrinsic hypothesis. We use the sex ratio data in 
sibships of 12, first introduced in Table 4.4, Section 4.2. As you will recall, the 
expected frequencies in these data are based on the binomial distribution, with 
the parametric proportion of males p . estimated from the observed frequencies 
of the sample (p , = 0.519,215). The computation of this case is outlined fully 
in Box 13.1. 

The G test does not yield very accurate probabilities for small f{. The cells 
with J] < 3 (when a > 5) or f , < 5 (when a < 5) are generally lumped with 
adjacent classes so that the new / are large enough. The lumping of classes 
results in a less powerful test with respect to alternative hypotheses. By these 
criteria the classes of /· at both tails of the distribution are too small. We lump 
them by adding their frequencies to those in contiguous classes, as shown in 
Box 13.1. Clearly, the observed frequencies must be lumped to match. The 
number of classes a is the number after lumping has taken place. In our case, 
α = 11. 

Because the actual type I error of G tests tends to be higher than the 
intended level, a correction for G to obtain a better approximation to the chi-
square distribution has been suggested by Williams (1976). He divides G by a 
correction factor q (not to be confused with a proportion) to be computed as 
q = 1 + (a2 — l)/6m>. In this formula, ν is the number of degrees of freedom 
appropriate to the G test. The effect of this correction is to reduce the observed 
value of G slightly. 

Since this is an example with expected frequencies based on an intrinsic 
hypothesis, we have to subtract more than one degree of freedom from a for 
the significance test. In this case, we estimated p.· from the sample, and therefore 
a second degree of freedom is subtracted from a, making the final number of 
degrees of freedom a — 2 = II 2 9. Comparing the corrected sample value 
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of 
^adj — 94.837,09 with the critical value of χ2 at 9 degrees of freedom, we find 

it highly significant (Ρ « 0.001, assuming that the null hypothesis is correct). 
We therefore reject this hypothesis and conclude that the sex ratios are not 
binomially distributed. As is evident from the pattern of deviations, there is an 
excess of sibships in which one sex or the other predominates. Had we applied 
the chi-square test to these data, the critical value would have been the same (Xa[9])· 

Next we consider the case for a = 2 cells. The computation is carried out 
by means of Expression (13.4), as before. In tests of goodness of fit involving 
only two classes, the value of G as computed from this expression will typically 
result in type I errors at a level higher than the intended one. Williams' correction 
reduces the value of G and results in a more conservative test. An alternative 
correction that has been widely applied is the correction for continuity, usually 
applied in order to make the value of G or X2 approximate the χ2 distribution 
more closely. We have found the continuity correction too conservative and 
therefore recommend that Williams' correction be applied routinely, although 
it will have little elfect when sample sizes are large. For sample sizes of 25 or 
less, work out the exact probabilities as shown in Table 4.3, Section 4.2. 

The example of the two cell case in Box 13.1 is a genetic cross with an 
expected 3:1 ratio. The G test is adjusted by Williams' correction. The expected 
frequencies differ very little from the observed frequencies, and it is no surprise, 
therefore, that the resulting value of Gadj is far less than the critical value of χ2 

at one degree of freedom. Inspection of the chi-square table reveals that roughly 
80% of all samples from a population with the expected ratio would show 
greater deviations than the sample at hand. 

13.3 Tests of independence: Two-way tables 

The notion of statistical or probabilistic independence was first introduced in 
Section 4.1, where it was shown that if two events were independent, the prob-
ability of their occurring together could be computed as the product of their 
separate probabilities. Thus, if among the progeny of a certain genetic cross 
the probability that a kernel of corn will be red is \ and the probability that 
the kernel will be dented is 5, the probability of obtaining a kernel both dented 
and red will be j χ ^ = if the joint occurrences of these two characteristics 
are statistically independent. 

The appropriate statistical test for this genetic problem would be to test 
the frequencies for goodness of fit to the expected ratios of 2 (red, not dented):2 
(not red, not dented): 1 (red, dented): 1 (not red, dented). This would be a simul-
taneous test of two null hypotheses: that the expected proportions are j and j 
for red and dented, respectively, and that these two properties are independent. 
The first null hypothesis tests the Mendelian model in general. The second tests 
whether these characters assort independently—that is, whether they are deter-
mined by genes located in different linkage groups. If the second hypothesis 
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must be rejected, this is taken as evidence that the characters are linked—that 
is, located on the same chromosome. 

There are numerous instances in biology in which the second hypothesis, 
concerning the independence of two properties, is of great interest and the first 
hypothesis, regarding the true proportion of one or both properties, is of little 
interest. In fact, often no hypothesis regarding the parametric values p{ can be 
formulated by the investigator. We shall cite several examples of such situations, 
which lead to the test of independence to be learned in this section. We employ 
this test whenever we wish to test whether two different properties, each occurring 
in two states, are dependent on each other. For instance, specimens of a certain 
moth may occur in two color phases—light and dark. Fifty specimens of each 
phase may be exposed in the open, subject to predation by birds. The number 
of surviving moths is counted after a fixed interval of time. The proportion 
predated may differ in the two color phases. The two properties in this example 
are color and survival. We can divide our sample into four classes: light-colored 
survivors, light-colored prey, dark survivors, and dark prey. If the probability 
of being preyed upon is independent of the color of the moth, the expected 
frequencies of these four classes can be simply computed as independent prod-
ucts of the proportion of each color (in our experiment, 5) and the overall 
proportion preyed upon in the entire sample. Should the statistical test of inde-
pendence explained below show that the two properties are not independent, 
we are led to conclude that one of the color phases is more susceptible to 
predation than the other. In this example, this is the issue of biological impor-
tance; the exact proportions of the two properties are of little interest here. The 
proportion of the color phases is arbitrary, and the proportion of survivors is 
of interest only insofar as it differs for the two phases. 

A second example might relate to a sampling experiment carricd out by a 
plant ecologist. A random sample is obtained of 100 individuals of a fairly rare 
species of tree distributed over an area of 400 square miles. For each tree the 
ecologist notes whether it is rooted in a serpentine soil or not, and whether the 
leaves arc pubcsccnt or smooth. Thus the sample of η = 100 trees can be divided 
into four groups: serpentine-pubescent, serpentine-smooth, nonserpentine-
pubescent, and nonserpentine-smooth. If the probability that a tree is or is not 
pubesccnt is independent of its location, our null hypothesis of the independence 
of these properties will be upheld. If, on the other hand, the proportion of 
pubcscencc differs for the two types of soils, our statistical test will most prob-
ably result in rejection of the null hypothesis of independence. Again, the ex-
pected frequencies will simply be products of the independent proportions of 
the two properties- serpentine versus nonserpentine, and pubesccnt versus 
smooth. In this instance the proportions may themselves be of interest to the 
investigator. 

An analogous example may occur in medicine. Among 10,000 patients ad-
mitted to a hospital, a certain proportion may be diagnosed as exhibiting disease 
X. At the same time, all patients admitted are tested for several blood groups. 
A certain proportion of these arc members of blood group Y. Is there some 
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association between membership in blood group Y and susceptibility to the 
disease X? 

The example we shall work out in detail is from immunology. A sample of 
111 mice was divided into two groups: 57 that received a standard dose of 
pathogenic bacteria followed by an antiserum, and a control group of 54 that 
received the bacteria but no antiserum. After sufficient time had elapsed for 
an incubation period and for the disease to run its course, 38 dead mice and 
73 survivors were counted. Of those that died, 13 had received bacteria and 
antiserum while 25 had received bacteria only. A question of interest is whether 
the antiserum had in any way protected the mice so that there were propor-
tionally more survivors in that group. Here again the proportions of these 
properties are of no more interest than in the first example (predation on moths). 

Such data are conveniently displayed in the form of a two-way table as 
shown below. Two-way and multiway tables (more than two criteria) are often 
known as contingency tables. This type of two-way table, in which each of the 
two criteria is divided into two classes, is known as a 2 χ 2 table. 

Dead Alive Σ 
Bacteria and antiserum 13 44 57 
Bacteria only 25 29 54 

oo 
r-1 73 111 

Thus 13 mice received bacteria and antiserum but died, as seen in the table. 
The marginal totals give the number of mice exhibiting any one property: 57 
mice received bacteria and antiserum; 73 mice survived the experiment. Alto-
gether 111 mice were involved in the experiment and constitute the total sample. 

In discussing such a table it is convenient to label the cells of the table and 
the row and column sums as follows: 

a b a + b 
c d c + d 

a + c b + d η 

From a two-way table one can systematically computc the cxpcctcd fre-
quencies (based on the null hypothesis of independence) and compare them 
with the observed frequencies. For example, the expected frequency for cell d 
(bacteria, alive) would be 

. Λ A {c + d \ f b + d\ (c + d)(b + d) 
Jbacl.alv ~ nPbacl.alv ~ nPbad X Palv — " I 

which in our case would be (54)(73)/l 11 = 35.514, a higher value than the 
observed frequency of 29. We can proceed similarly to compute the expected 
frequencies for each cell in the table by multiplying a row total by a column total, 
and dividing the product by the grand total. The expected frequencies can be 
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conveniently displayed in the form of a two-way table: 

Dead Alive Σ 
Bacteria and antiserum 
Bacteria only 

19.514 37.486 57.000 
18.486 35.514 54.000 

Σ 38.000 73.000 111.000 

You will note that the row and column sums of this table are identical to those 
in the table of observed frequencies, which should not surprise you, since the 
expected frequencies were computed on the basis of these row and column 
totals. It should therefore be clear that a test of independence will not test 
whether any property occurs at a given proportion but can only test whether 
or not the two properties are manifested independently. 

The statistical test appropriate to a given 2 x 2 table depends on the under-
lying model that it represents. There has been considerable confusion on this 
subject in the statistical literature. For our purposes here it is not necessary to 
distinguish among the three models of contingency tables. The G test illustrated 
in Box 13.2 will give at least approximately correct results with moderate- to 
large-sized samples regardless of the underlying model. When the test is applied 
to the above immunology example, using the formulas given in Box 13.2, one 
obtains Gadj = 6.7732. One could also carry out a chi-square test on the devia-
tions of the observed from the expected frequencies using Expression (13.2). 
This would yield χ2 = 6.7966, using the expected frequencies in the table above. 
Let us state without explanation that the observed G or X 2 should be compared 
with χ2 for one degree of freedom. We shall examine the reasons for this at the 
end of this section. The probability of finding a fit as bad, or worse, to these 
data is 0.005 < Ρ < 0.01. We conclude, therefore, that mortality in these mice 
is not independent of the presence of antiserum. We note that the percentage 
mortality among those animals given bacteria and antiserum is (13)(100)/57 = 
22.8%, considerably lower than the mortality of (25)(100)/54 = 46.3% among 
the mice to whom only bacteria had been administered. Clearly, the antiserum 
has been effective in reducing mortality. 

In Box 13.2 we illustrate the G test applied to the sampling experiment in 
plant ecology, dealing with trees rooted in two different soils and possessing 
two types of leaves. With small sample sizes (n < 200), it is desirable to apply 
Williams' correction, the application of which is shown in the box. The result 
of the analysis shows clearly that we cannot reject the null hypothesis of inde-
pendence between soil type and leaf type. The presence of pubescent leaves is 
independent of whether the tree is rooted in serpentine soils or not. 

Tests of independence need not be restricted to 2 χ 2 tables. In the two-way 
cases considered in this section, we are concerned with only two properties, 
but each of these properties may be divided into any number of classes. Thus 
organisms may occur in four color classes and be sampled at five different times 
during the year, yielding a 4 χ 5 test of independence. Such a test would ex-
amine whether the color proportions exhibited by the marginal totals are inde-
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BOX 13.2 
2 x 2 test of independence. 
A plant ecologist samples 100 trees of a rare species from a 400-square-mile area. 
He records for each tree whether it is rooted in serpentine soils or not, and whether 
its leaves are pubescent or smooth. 

Soil Pubescent Smooth Totals 

Serpentine 12 22 34 
Not Serpentine 16 50 66 
Totals 28 72 100»η 

The conventional algebraic representation of this table is as follows: 

Σ 
a b a + b 
c d c + d 

£ a + c b + d a + b + c + d<=n 

Compute the following quantities. 

1. X / In / for the cell frequencies = 12 In 12 + 22 In 22 + 16 In 16 + 50 In 50 
= 337.784,38 

2. £ / for the row and column totals = 34 In 34 + 66 In 66 + 28 In 28 + 72 In 72 
= 797.635,16 

3. η In « = 100 In 100 = 460.517,02 
4. Compute G as follows: 

G = 2(quantity 1 - quantity 2 + quantity 3) 
= 2(337.784,38 - 797.635,16 + 460.517,02) 
= 2(0.666,24) = 1.332,49 

Williams' correction for a 2 χ 2 table is 

\a + b c + d J\a + c b + d ) 
q = l + ± ^ L 

6 η 
For these data we obtain 

, , (W + W - W W + W - t ) a = 1 Η 
H 6(100) 

= 1.022,81 

G 1.332,49 _ 
1 3 0 2 8 

Compare GadJ with critical value of χζ for one degree of freedom. Since our 
observed Gadj is much less than Zo.ostu = 3.841, we accept the null hypothesis 
that the leaf type is independent of the type of soil in which the tree is rooted. 
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BOX 13.3 
If χ C test of independence using the G test. 

Frequencies for the Μ and Ν blood groups in six populations from Lebanon. 

Genotypes (a = 3) 
Populations ———... .••.••, 

( b - 6) MM MN NN Totals %MM 7.MN SNN 

Druse 59 100 44 203 29.06 49.26 21.67 
Greek Catholic 64 98 41 203 31.53 48.28 20.20 
Greek Orthodox 44 94 49 187 23.53 50.27 26.20 
Maronites 342 435 165 942 36.31 46.18 17.52 
Shiites 140 259 104 503 27.83 51.49 20.68 
Sunni Moslems 169 168 91 428 39.49 39.25 21.03 

Totals 818 1154 494 2466 

Source: Ruffle and Taleb (1965). 

Compute the following quantities. 

1. Sum of transforms of the frequencies in the body of the contingency table 

- t t f t J ^ f i j = 591η 59 + 100 In 100 4- · · · + 91 In 91 

= 240.575 + 460.517 + · · - + 40.488 = 12,752.715 

2. Sum of transforms of the row totals 

= Σ (Σ/,·)'" (έ/«) 
= 203 In 203 + • • · + 428 In 428 « 1078.581 + • · • + 2593.305 

= 15,308.461 

3. Sum of the transforms of the column totals 

=Σ(Σ /„Ηςλ) 
= 818 In 818 + · • + 494 In 494 = 5486.213 + · · · + 3064.053 = 

4. Transform of the grand total = η In η = 2466 In 2466 = 19,260.330 

5. G = 2(quantity 1 - quantity 2 — quantity 3 + quantity 4) 
= 2(12,752.715 - 15,308.46 - 16,687.108 + 19,260.330) =- 2(17.475) = 34.951 

6. The lower bound estimate of q using Williams' correction for an a χ b table 
is 
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BOX 13.3 
Continued 

(a + 1 )(b + I) 
qmln _ ι + - _ _ 

(3 + 1)(6 + 1) 
~ 6(2466) 
= 1.001,892 

Thus Gm = G/qmin = 34.951/1.001,892 = 34.885. 
This value is to be compared with a χ2 distribution with (a - 1 ){b - 1) 

degrees of freedom, where a is the number of columns and b the number of 
rows in the table. In our case, df -{3 - 1)(6 - 1) = 10. 

Since χ£.οοΐ[ΐοι = 29.588, our G value is significant at Ρ < 0.001, and we 
must reject our null hypothesis that genotype frequency is independent of the 
population sampled. 

are often called RxC tests of independence, R and C standing for the number 
of rows and columns in the frequency table. Another case, examined in detail 
in Box 13.3, concerns the MN blood groups which occur in human populations 
in three genotypes—MM, MN, and NN. Frequencies of these blood groups 
can be obtained in samples of human populations and the samples compared 
for differences in these frequencies. In Box 13.3 we feature frequencies from six 
Lebanese populations and test whether the proportions of the three groups arc 
independent of the populations sampled, or in other words, whether the fre-
quencies of the three genotypes differ among these six populations. 

As shown in Box 13.3, the following is a simple general rule for computation 
of the G test of independence: 

G = 2 [ ( £ / In / for the cell frequencies) 

— ( £ / In / for the row and column totals) ϊ η In η] 

The transformations can be computed using the natural logarithm function 
found on most calculators. In the formulas in Box 13.3 we employ a double 
subscript to refer to entries in a two-way table, as in the structurally similar 
case of two-way anova. The quantity fu in Box 13.3 refers to the observed 
frequency in row i and column j of the table. Williams' correction is now more 
complicated. We feature a lower bound estimate of its correct value. The adjust-
ment will be minor when sample size is large, as in this example, and need be 
carried out only when the sample size is small and the observed G value is of 
marginal significance. 

The results in Box 13.3 show clearly that the frequency of the three genotypes 
is dependent upon the population sampled. We note the lower frequency of the 
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Μ Μ genotypes in the third population (Greek Orthodox) and the much lower 
frequency of the MN heterozygotes in the last population (Sunni Moslems). 

The degrees of freedom for tests of independence are always the same and 
can be computed using the rules given earlier (Section 13.2). There are k cells 
in the table but we must subtract one degree of freedom for each independent 
parameter we have estimated from the data. We must, of course, subtract one 
degree of freedom for the observed total sample size, n. We have also estimated 
a — 1 row probabilities and b — 1 column probabilities, where a and b are 
the number of rows and columns in the table, respectively. Thus, there are 
k — (a — 1) — (b — 1)— 1 = fc — a — b + I degrees of freedom for the test. 
But since k = a χ b, this expression becomes {a χ b) — a — b + 1 = (a — 1) χ 
(b — 1), the conventional expression for the degrees of freedom in a two-way 
test of independence. Thus, the degrees of freedom in the example of Box 13.3, 
a 6 χ 3 case, was (6 - 1) χ (3 — 1) = 10. In all 2 χ 2 cases there is clearly only 
(2 — 1) χ (2 — 1) = 1 degree of freedom. 

Another name for test of independence is test of association. If two prop-
erties are not independent of each other they are associated. Thus, in the ex-
ample testing relative frequency of two leaf types on two different soils, we 
can speak of an association between leaf types and soils. In the immunology 
experiment there is a negative association between presence of antiserum and 
mortality. Association is thus similar to correlation, but it is a more general 
term, applying to attributes as well as continuous variables. In the 2 x 2 tests 
of independence of this section, one way of looking for suspected lack of 
independence was to examine the percentage occurrence of one of the prop-
erties in the two classes based on the other property. Thus we compared the 
percentage of smooth leaves on the two types of soils, or we studied the per-
centage mortality with or without antiserum. This way of looking at a test of 
independence suggests another interpretation of these tests as tests for the 
significance of differences between two percentages. 

Exercises 

13.1 In an experiment to determine the mode of inheritance of a green mutant, 146 
wild-type and 30 mutant offspring were obtained when F, generation houseflics 
were crosscd. Test whether the data agree with the hypothesis that the ratio of 
wild type of mutants is 3:1. ANS. G = 6.4624, Gad j = 6.441, 1 d f , xg 0 5 [ 1 , = 3.841. 

13.2 Locality A has been exhaustively collected for snakes of species S. An ex-
amination of the 167 adult males that have been collected reveals that 35 of 
these have pale-colored bands around their necks. From locality B, 90 miles 
away, we obtain a sample of 27 adult males of the same species, 6 of which show 
the bands. What is the chance that both samples are from the same statistical 
population with respect to frequency of bands? 

13.3 Of 445 specimens of the butterfly Erebia epipsodea from mountainous areas, 
2.5",", have light color patches on their wings. Of 65 specimens from the prairie, 
70.8'T, have such patches (unpublished data by P. R. Ehrlich). Is this difference 
significant? llinv First work backwards to obtain original frequencies. ANS. 
G - 175.5163, I dj\ G.Mll = 171.4533. 
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13.4 Test whether the percentage of nymphs of the aphid Myzus persicae that de-
veloped into winged forms depends on the type of diet provided. Stem mothers 
had been placed on the diets one day before the birth of the nymphs (data by 
Mittler and Dadd, 1966). 

Type of diet % winged forms η 

Synthetic diet 100 216 
Cotyledon "sandwich" 92 230 
Free cotyledon 36 75 

13.5 In a study of polymorphism of chromosomal inversions in the grasshopper 
Moraba scurra, Lewontin and White (1960) gave the following results for the 
composition of a population at Royalla "B" in 1958. 

St/St 

Chromosome C D 

St/Bl Bl/Bl 

Chromosome E F Td/Td 22 96 75 
St/Td 8 56 64 
St/St 0 6 6 

Are the frequencies of the three different combinations of chromosome EK in-
dependent of those of the frequencies of the three combinations of chromosome 
CD? ANS. G = 7.396. 

13.6 Test agreement of observed frequencies with those expected on the basis of a 
binomial distribution for the data given in Tables 4.1 and 4.2. 

13.7 Test agreement of observed frequencies with those expected on the basis of a 
Poisson distribution for the data given in Table 4.5 and '["able 4 6. ANS For 
Tabic 4.5: G = 49.9557, 3 df\ Gad) = 49.8914. f or Table 4.6: G = 20.6077, 2 J f . 
Ga d j = 20.4858. 

13.8 In clinical tests of the drug Nimesulide, Pfanilner (1984) reports the following 
results. The drug was given, together with an antibiotic, to 20 persons. A control 
group of 20 persons with urinary infections were given the antibiotic and a 
placebo. The results, edited for purposes of this exercise, are as follows: 

Antibiotic Antibiotic 
+ Ninwstilith' + placebo 

Negative opinion 1 16 
Positive opinion 19 4 

Analyze and interpret the results. 
13.9 Refer to the distributions of melanoma over body regions shown in Table 2.1. 

Is there evidence for differential susceptibility to melanoma of differing body 
regions in males and females? ANS. G = 160.2366, 5 dj\ G\„M = 158.6083. 
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Mathematical Appendix 

A l . l D e m o n s t r a t i o n t h a t t h e s u m of t h e d e v i a t i o n s f r o m t h e m e a n is e q u a l 
t o ze ro . 

W e h a v e to l ea rn t w o c o m m o n ru les of s ta t i s t i ca l a l g e b r a . W e c a n o p e n a 
p a i r of p a r e n t h e s e s w i t h a Σ s ign in f r o n t of t h e m by t r e a t i n g t h e Σ a s t h o u g h 
it w e r e a c o m m o n fac to r . W e h a v e 

f B,) = 1 . 4 , + B , ) + (A 2 + H 2 ) + • + M „ + B„) 
1 

= (, 4 , + A2 + · • · + / ! „ ) + ( β , + Bz + • • • + B„) 

T h e r e f o r e , 

£ (A, + B,) = £ A 1 + £ β . 
i-l • ι = 1 

Also, w h e n Σ " _ , C is d e v e l o p e d d u r i n g a n a l g e b r a i c o p e r a t i o n , w h e r e C is 
a c o n s t a n t , t h i s c a n be c o m p u t e d as fo l lows: 

η 

Σ C = C + C + · • • + Γ (η t e rms ) 
i 1 

- nC 
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Since in a given problem a mean is a constant value, Σ"Ϋ = ηΫ. If you wish, you 
may check these rules, using simple numbers. In the subsequent demonstration 
and others to follow, whenever all summations are over η items, we have simpli-
fied the notation by dropping subscripts for variables and superscripts above 
summation signs. 

We wish to prove that Σ y = 0. By definition, 

= Σ Υ ~ " Υ 

= Σ ^ η 

= Σ Υ ~ Σ Υ 

isince Υ = - -

Therefore, Σ }' = 0. 

Α1.2 Demonstration that Expression (3.8), the computational formula for the 
sum of squares, equals Expression (3.7), the expression originally developed for 
this statistic. 

We wish to prove that Σ(Υ - Υ)2 = Σ Υ2 - ( ( Σ Υ ) » . We have 

£ ( Y - Ϋ)2 = Σ ( ^ 2 - 2ΥΫ + Ϋ2) 
= Σ ^ 2 ~ 2 ϋ ς υ +ηγ2 

(since Υ 
η 

= Σ γ 1 
Ά Σ γ ) 2 , ( Σ γ ) + 

Hence, 

Σ ( γ Σ γ 1 
( Σ η 2 

η 

Α1.3 Simplified formulas for standard error of the difference between two 
means. 

The standard error squared from Expression (8.2) is 

"(η, - 1 )s\ + (w2 - 1 ).s2 

n] + n2 — 2 

When η ι — η, = n, this simplifies to 

n, + >n 

n, η , 

{η lb·; · I» 1 )s[ 
^ri — i. 

(η - l)(sf + s|)(2) 
2 ( n - l)(n) = (sf + s\) 

η 

which is the standard error squared of Expression (8.3). 
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When ti1 φ n2 but each is large, so that (r^ — 1) ά nl and (n2 — 1) « n2, the 
standard error squared of Expression (8.2) simplifies to 

rtjSf + n 2 s j 

n, + n2 

η, + η-
η , η . 

n i s i , n2sl _ s j s\ 
1 — 1 

n1n2 n1n2 n2 « j 

which is the standard error squared of Expression (8.4). 

A1.4 Demonstration that i2 obtained from a test of significance of the differ-
ence between two means (as in Box 8.2) is identical to the Fs value obtained in 
a single-classification anova of two equal-sized groups (in the same box). 

ts (from Box 8.2) Yi Yi 

1 

r<2=-

(sl + s l ) 

( Ϋ ι -

1 
φ - 1) 

1 
n(n - 1) 

ΣνΙ + Σ ή 

n(n - 1)(F, - Y, 
η η \ Π η 

ΣνΙ + Σ ν ΐ ) Σy' + Σy22 

In the two-sample anova, 

1 m - ^ 2 
2 - I 

= ( F , - Ϋ ) 2 + ( Ϋ 2 ~ Υ Ϊ 2 

= Κ 
Υι + Υ ι Υ . ί * Yi + Υ2^2 

+ γ . 

Γ , - Υ Λ 2 

2 
Υ 2 - Τ, 

Ϋζ)2 

(since Υ = + Ϋ2)β) 

since the squares of the numerators are identical. Then 

MS„ = η χ MSm c a m = «[ i (F , - F 2) 2] 

η -

~ 2 
y2)2 

Z y i + Z ^ 
MS. 
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F.= 
1 ( Ά - Ϋ 2 ) 2 

Σ ύ + Σ ή ) Ι Ά η - i)] 

Φ - i)(Fx - ?2)2 

= Σ Χ Υ ~ ηΧ 

Σ ή + Σ ή 

= tl 

Α1.5 Demonstration that Expression (11.5), the computational formula for 
the sum of products, equals Σ ( Χ — X)(Y— Y), the expression originally de-
veloped for this quantity. 

All summations are over η items. We have 

Σ > = Σ ( * - χ ) ( γ - γ ) 

= Σ Χ Υ - Χ Σ γ - γ Σ χ + η Χ Υ ( s i n c e Σ Χ Υ = Υ ) 

= Σ Χ Υ - ΧηΫ - ΫηΧ + ηΧΫ (since Σ Υ/η = Υ, 
Σ γ = ηΥ: similarly, Σ Χ = ηΧ) 

= Σ Χ γ - ηΧΫ 

ΪΣ 
η 

= Σ χ γ - χ Σ γ 

Similarly, 

Σχν = Σ™~ 
and 

Σ χ ν = Σ Χ Υ - ^ Σ Χ 1 (" ·5 , 
η 

ΑΙ.6 Derivation of computational formula for Σ^υ Λ = Σ *'2 ~ 

( ( Σ ^ ) 2 / Σ - ) · . 
By definition, dY.. x — Υ — Y. Since Υ = Ϋ, we can subtract Y from both Y 

and Y to obtain 

d y . γ = y — y = y — bx (since y - bx) 

Therefore, 

Σ </?·* = Σ (.ν - /'V)2 = Σ >-2 - Σ + b2 Σ χ2 

Σ>' 2 - 2 + Μ Σ ^ 2 = Σ Γ - 2 + 
2 

Σ - ν 2 ^ " ( Σ * 2 ) 2 ^ ^ Σ * 2 Σ χ2 
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or 

l d r x = l y 2 -
( Σ ^ ) 2 

Σ*2 
(11.6) 

A1.7 Demonstration that the sum of squares of the dependent variable in 
regression can be partitioned exactly into explained and unexplained sums of 
squares, the cross products canceling out. 

By definition (Section 11.5), 

y = y + άγ χ 

Σ>·2 = Σ(9 + Ίυ.χ)2 = Σ Ϊ 2 + Σ<ΙΙΧ + 2 ς yd*, Χ 

If we can show that Σ ydr x = 0, then we have demonstrated the required 
identity. We have 

Σϊ'^γ χ = Σ My — bx) [since y = bx from Expression (11.3) and 
dy χ = v — bx from Appendix A 1.6] 

= b Y x y - b ^ x 2 

= *>Σ*>· ~ h T x y 
= ο 

since b = 
Σ χ 2 

Therefore, Σ>'2 = Σ y2 + ΣίΙ; v, or, written out in terms of variates, 

Σ ( υ - Υ)2 = Σ ( ϊ - f>2 + 

A1.8 Proof that the variance of the sum of two variables is 

= σ ί + σ2 + 2f>i2^l^2 

where σ, and σ2 are standard deviations of Yj and Y2, respectively, and ρλ2 is 
the paramctric correlation cocfficicnt between Y, and Y2. 

If Ζ = Υ, + Y2, then 

(y, + v2) 
ι 

'. - 12' Σ ( η + Y l ) η 

ζ Σ 

= Σ 

(ν, + Υ2) - Σ ν , - ' Σ η η η 
X [ ( y , + γ2) Ϋι - Ϋ2]2 

( Ν , - Ϋ ,Ι + ( Υ , - Y 2 ) 
ι = Σο-. +y 2)2 

1 1 1 2 
£(y\ + y\ + 2y,y2) = £ r f + Χ y \ + - £ y , y 2 

η η η η 

σΐ + σί + -σι; 
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But, since p l 2 = σιι/σισ2> w e h a v e 

σl 2 = Ρ 12σ1σ2 

Therefore 

σΐ = = σι + σ2
2 + 2 p 1 2 f f t f f 2 

Similarly, 

σέ = = σ ι + σ2 - 2ρ1 2σ,σ2 

The analogous expressions apply to sample statistics. Thus 

(̂Ti + yz) = si + s i + 2r 1 2 s 1 s 2 

s f y 1-Ϊ2) = si + s2 ~ 2r12sj.s;2 

A1.9 Proof that the general expression for the G test can be simplified to Ex-
pressions (13.4) and (13.5). 

In general, G is twice the natural logarithm of the ratio of the probability 
of the sample with all parameters estimated from the data and the probability 
of the sample assuming the null hypothesis is true. Assuming a multinomial 
distribution, this ratio is 

(12.8) 

(12.9) 

L = 
Pa 

n'. 
ρ{·ρ{ 2 Pa 

Π 
Pi 

ι \Pi 

where /, is the observed frequency, pt is the observed proportion, and the 
expected proportion of class /, while η is sample size, the sum of the observed 
frequencies over the a classes. 

G = 2 In L 

Σ./> 
Since /• = npt and / , = nph 

If we now replace /', by nph 

G = 2 V /; In 

G = 2 £ . / ; i n ( 4 (13.4) 

= 2 Σ./> 

A 
npi 

L 
Pi 

Σ / . I" 
Pi 

Σ . / ; 1 · 1 " 

η In η (13.5) 
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I 
»-tive hundred random digits. 

1 2 3 4 5 6 7 8 9 10 

48461 14952 72619 73689 52059 37086 60050 86192 67049 64739 
76534 38149 49692 31366 52093 15422 20498 33901 10319 43397 
70437 25861 38504 14752 23757 59660 67844 78815 23758 86814 
59584 0 3 3 7 0 42806 11393 71722 93804 09095 07856 55589 46020 
04285 58554 16085 51555 27501 73883 33427 33343 45507 50063 

77340 10412 69189 85171 29082 44785 83638 02583 96483 76553 
59183 62687 91778 80354 23512 97219 65921 02035 59847 91403 
91800 04281 39979 03927 82564 28777 59049 97532 54540 79472 
12066 24817 81099 48940 69554 55925 48379 12866 51232 21580 
69907 91751 53512 23748 65906 91385 84983 27915 48491 91068 

80467 0 4 8 7 3 54053 25955 48518 13815 37707 68687 15570 08890 
78057 67835 28302 45048 56761 97725 58438 91528 24645 18544 
05648 39387 78191 88415 60269 94880 58812 42931 71898 61534 
22304 39246 01350 99451 61862 78688 30339 60222 74052 25740 
61346 50269 67005 40442 33100 16742 61640 21046 31909 72641 

66793 37696 27965 30459 91011 51426 31006 77468 61029 57108 
86411 48809 36698 42453 83061 43769 39948 87031 30767 13953 
62098 12825 81744 28882 27369 88183 65846 92545 09065 22655 
68775 06261 54265 16203 23340 84750 16317 88686 86842 00879 
52679 19595 13687 74872 89181 01939 18447 10787 76246 80072 

84096 87152 20719 25215 04349 54434 72344 93008 83282 31670 
63964 55937 21417 49944 38356 98404 14850 17994 17161 98981 
31191 75131 72386 11689 95727 05414 88727 45583 22568 77700 
30545 6 8 5 2 3 29850 67833 05622 89975 79042 27142 99257 32349 
52573 91001 52315 26430 54175 30122 31796 98842 37600 26025 

1658ft 81842 01076 99414 31574 94719 34656 80018 86988 79234 
81841 88481 61191 25013 30272 23388 22463 65774 10029 58376 
43563 66829 72838 08074 57080 15446 11034 98143 74989 26885 
19945 84193 57581 77252 85604 45412 43556 27518 90572 00563 
79374 23796 16919 99691 80276 32818 62953 78831 54395 30705 

48503 26615 43980 09810 38289 66679 73799 48418 12647 40044 
32049 65541 37937 41105 70106 89706 40829 40789 59547 (X>783 
18547 71562 95493 34112 76895 46766 96395 31718 48302 45893 
03180 96742 61486 43305 34183 99605 67803 13491 09243 29557 
94822 24738 67749 83748 59799 25210 31093 62925 72061 69991 

34330 60599 85828 19152 68499 27977 35611 96240 62747 89529 
43770 81537 .59527 95674 76692 86420 69930 1(X)20 72881 12532 
56908 77192 50623 41215 14311 42834 80651 93750 59957 31211 
32787 07189 80539 75927 75475 73965 11796 72140 48944 74156 
52441 78392 11733 57703 29133 71164 55355 31006 25526 55790 

22377 54723 18227 28449 04570 18882 00023 67101 06895 08915 
18376 73460 88841 39602 34049 20589 05701 08249 74213 25220 
53201 28610 87957 21497 64729 64983 71551 99016 87903 63875 
34919 78901 59710 27396 02593 05665 11964 44134 0 0 2 7 3 76358 
33617 92159 21971 16901 57383 34262 41744 60891 57624 06962 

70010 40964 98780 72418 52571 18415 64362 90636 38034 04909 
19282 68447 35665 31530 59832 49181 21914 65742 89815 39231 
91429 73328 13266 54898 68795 40948 80808 63887 89939 47938 
97637 78393 33021 05867 86520 45363 43066 00988 64040 09803 
95150 0 7 6 2 5 05255 83254 93943 52325 93230 62668 79529 65964 
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y/σ 0 . 0 0 0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8 0 . 0 9 y/σ 
0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359 0.0 
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753 0.1 
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141 0.2 
0 .3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517 0.3 
0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879 0.4 

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224 0.5 
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549 0.6 
0.7 .2580 .2611 .2642 .2673 .2704 .2734 .2764 .2794 .2823 .2852 0.7 
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133 0.8 
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389 0.9 

1 .0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621 1.0 
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830 1.1 
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015 1.2 
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177 1.3 
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319 1.4 

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441 1.5 
1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545 1.6 
1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633 1.7 
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706 1.8 
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767 1.9 

2.Ί .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817 2.0 
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857 2.1 
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890 2.2 
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916 2.3 
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936 2.4 

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952 2.5 
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964 2.6 
2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974 2.7 
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981 2.8 
2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986 2.9 

3.0 .4987 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990 3.0 
3.1 .4990 .4991 .4991 .4991 .4992 .4992 .4992 .4992 .4993 .4993 3.1 
3.2 .4993 .4993 .4994 .4994 .4994 .4994 .4994 .4995 .4995 .4995 3.2 
3.3 .4995 .4995 .4995 .4996 .4996 .4996 .4996 .4996 .4996 .4997 3.3 
3.4 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4997 .4998 3.4 

.499767 

.499841 

.499892 

.499928 
.499952 

.499968 

.499979 

.499987 

.499991 

.499995 

.499997 

.499998 

.499999 

.499999 

.StMXMX) 

T a b l e d a r e a 

Nit tc The quantity given is the area under the standard norma! density function between the mean 
and the critical point. The area is generally labeled J - α (as shown in the figure). By inverse inter-
polation one can lind the number of standard deviations corresponding to a given area. 
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t a b l e I I I 

Critical values of Student's t distribution 

α 

V 0.9 0.5 0.4 0.2 0.1 0.05 0.02 0.01 0.001 I> 

1 .158 1.000 1.376 3.078 6.314 12.706 31.821 63.657 636.619 1 
2 .142 .816 1.061 1.886 2.920 4.303 6.965 9.925 31.598 2 
3 .137 .765 .978 1.638 2.353 3.182 4.541 5.841 12.924 3 
4 .134 .741 .941 1.533 2.132 2.776 3.747 4.604 8.610 4 
5 .132 .727 .920 1.476 2.015 2.571 3.365 4.032 6.869 5 

6 .131 .718 .906 1.440 1.943 2.447 3.143 3.707 5.959 6 
7 .130 .711 .896 1.415 1.895 2.365 2.998 3.499 5.408 7 
8 .130 .706 .889 1.397 1.860 {2306} 2.896 3.355 5.041 8 
9 .129 .703 .883 1.383 1.833 2.262 2.821 3.250 4.781 9 

10 .129 .700 .879 1.372 1.812 2.228 2.764 3.169 4.587 10 

11 .129 .697 .876 1.363 1.796 2.201 2.718 3.106 4.437 11 
12 .128 .695 .873 1.356 1.782 2.179 2.681 3.055 4.318 12 
13 .128 .694 .870 1.350 1.771 2.160 2.650 3.012 4.221 13 
14 .128 .692 .868 1.345 1.761 2.145 2.624 2.977 4.140 14 
15 .128 .691 .866 1.341 1.753 2.131 2.602 2.947 4.073 15 

16 .128 .690 .865 1.337 1.746 2.120 2.583 2.921 4.015 16 
17 .128 .689 .863 1.333 1.740 2.110 2.567 2.898 3.965 17 
18 .127 .688 .862 1.330 1.734 2.101 2.552 2.878 3.922 18 
19 .127 .688 .861 1.328 1.729 2.093 2.539 2.861 3.883 19 
20 .127 .687 .860 1.325 1.725 2.086 2.528 2.845 3.850 20 

21 .127 .686 .859 1.323 1.721 2.080 2.518 2.831 3.819 21 
22 .127 .686 .858 1.321 1.717 2.074 2.508 2.819 3.792 22 
23 .127 .685 .858 1.319 1.714 2.069 2.500 2.807 3767 23 
24 .127 .685 .857 1.318 1.711 2.064 2.492 2.797 3.745 24 
25 .127 .684 .856 1.316 1.708 2.060 2.485 2.787 3.725 25 

26 .127 .684 .856 1.315 1.706 2.056 2.479 2.779 3.707 26 
27 .127 .684 .855 1.314 1.703 2.052 2.473 2.771 3.690 27 
28 .127 .683 .855 1.313 1.701 2.048 2.467 2.763 3.674 28 
29 .127 .683 .854 1.311 1.699 2.045 2.462 2.756 3.659 29 
30 .127 .683 .854 1.310 1.697 2.042 2.457 2.750 3.646 30 

40 .126 .681 .851 1.303 1.684 2.021 2.423 2.704 3.551 40 
60 126 .679 .848 1.296 1.671 2.<XX) 2.390 2.660 3.460 60 

120 .126 .677 .845 1.289 1.658 1.980 2.358 2.617 3.373 120 
<» .126 .674 .842 1.282 1.645 1.960 2.326 2.576 3.291 QO 

Note: If a one-tailed test is desired, the probabilities at Ihc head of the table must be halved, f o r degrees of 
freedom ν > 30, interpolate between the values of the argument v. The table is designed for harmonic inter-
polation. Thus, to obtain io.o5|43j> interpolate between in ns |4oi ~ 2.021 and i0„M ( 1 ) ) | - 2.000, which are furnished 
in the table. Transform the arguments into 120/v - 120/43 - 2.791 and interpolate between 120/60 - 2.000 and 
120/40 - 3.000 by ordinary linear interpolation: 

'o 0514 Μ - (0-791 χ 2.021) ι [(1 - 0.791) χ 2.000 | 

2.017 

When ν > 120, interpolate between l?0 /x 0 and 120/120 = 1. Values in this table have been taken from a 
more extensive one (table III) in R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and 
\ Λ „ . S t h (ΠϋυρΓ A R.wH I-'ainhnroli I 9S81 with nprmk̂ inn of I hi- :ι 111 h« tr·; ;i nd their nuhlishers 



a p p e n d i x 2 / s t a t i s t i c a l t a b l e s 

T A B L E I V 

Critical values of the chi-square distribution 

a 

V . 9 9 5 . 9 7 5 .9 .5 .1 . 05 . 0 2 5 .01 . 0 0 5 . 0 0 1 V 

1 0 . 0 0 0 0 . 0 0 0 0 . 0 1 6 0 . 4 5 5 2 . 7 0 6 3 .841 5 . 0 2 4 6 . 6 3 5 7 . 8 7 9 1 0 . 8 2 8 1 
2 0 . 0 1 0 0 . 0 5 1 0.211 1 .386 4 . 6 0 5 5 . 9 9 1 7 . 3 7 8 9 . 2 1 0 l K S 9 f 1 3 . 8 1 6 2 
3 0 . 0 7 2 0 . 2 1 6 0 . 5 8 4 2 . 3 6 6 6 . 2 5 1 7 . 8 1 5 9 . 3 4 8 11 .345 1 2 . 8 3 8 1 6 . 2 6 6 3 
4 0 . 2 0 7 0 . 4 8 4 1 . 0 6 4 3 .357 7 . 7 7 9 9 . 4 8 8 1 1 . 1 4 3 13.277 1 4 . 8 6 0 1 8 . 4 6 7 4 
5 0 . 4 1 2 0 . 8 3 1 1 .610 4 . 3 5 1 9 . 2 3 6 1 1 . 0 7 0 1 2 . 8 3 2 15 .086 16 .750 2 0 . 5 1 5 5 

6 0 . 6 7 6 1 .237 2 . 2 0 4 5 . 3 4 8 1 0 . 6 4 5 1 2 . 5 9 2 1 4 . 4 4 9 16 .812 1 8 . 5 4 8 2 2 . 4 5 8 6 
7 0 . 9 8 9 1 .690 2 . 8 3 3 6 . 3 4 6 1 2 . 0 1 7 1 4 . 0 6 7 1 6 . 0 1 3 18 .475 2 0 . 2 7 8 2 4 . 3 2 2 7 
8 1 . 3 4 4 2 . 1 8 0 3 . 4 9 0 7 .344 13 .362 1 5 . 5 0 7 1 7 . 5 3 5 20 .090 2 1 . 9 5 5 2 6 . 1 2 4 8 
9 1 . 7 3 5 2 . 7 0 0 4 . 1 6 8 8 . 3 4 3 14 .684 1 6 . 9 1 9 1 9 . 0 2 3 2 1 . 6 6 6 2 3 . 5 8 9 2 7 . 8 7 7 9 

10 2 . 1 5 6 3 . 2 4 7 4 . 8 6 5 9 . 3 4 2 15 .987 18 .307 2 0 . 4 8 3 2 3 . 2 0 9 2 5 . 1 8 8 2 9 . 5 8 8 10 

11 2 . 6 0 3 3 . 8 1 6 5 . 5 7 8 10 .341 1 7 . 2 7 5 1 9 . 6 7 5 2 1 . 9 2 0 2 4 . 7 2 5 2 6 . 7 5 7 3 1 . 2 6 4 11 
12 3 . 0 7 4 4 . 4 0 4 6 . 3 0 4 11 .340 1 8 . 5 4 9 2 1 . 0 2 6 2 3 . 3 3 7 2 6 . 2 1 7 2 8 . 3 0 0 3 2 . 9 1 0 12 
1 3 3 . 5 6 5 5 . 0 0 9 7 .042 12 .340 19 .812 2 2 . 3 6 2 2 4 . 7 3 6 2 7 . 6 8 8 2 9 . 8 1 9 3 4 . 5 2 8 13 
14 4 . 0 7 5 5 . 6 2 9 7 .790 1 3 . 3 3 9 2 1 . 0 6 4 2 3 . 6 8 5 29 .141 3 1 3 1 9 3 6 . 1 2 3 14 
15 4 . 6 0 1 6 . 2 6 2 8 .547 1 4 . 3 3 9 2 2 . 3 0 7 2 4 . 9 9 6 2 7 . 4 8 8 3 0 . 5 7 8 32 .801 3 7 . 6 9 7 15 

16 5 . 1 4 2 6 . 9 0 8 9 . 3 1 2 1 5 . 3 3 8 2 3 . 5 4 2 2 6 . 2 9 6 2 8 . 8 4 5 3 2 . 0 0 0 3 4 . 2 6 7 3 9 . 2 5 2 16 
17 5 . 6 9 7 7 . 5 6 4 1 0 . 0 8 5 1 6 . 3 3 8 2 4 . 7 6 9 2 7 . 5 8 7 30 .191 3 3 . 4 0 9 3 5 . 7 1 8 4 0 . 7 9 0 17 
1 8 6 . 2 6 5 8 .231 1 0 . 8 6 5 1 7 . 3 3 8 2 5 . 9 8 9 2 8 . 8 6 9 3 1 . 5 2 6 3 4 . 8 0 5 3 7 . 1 5 6 4 2 . 3 1 2 18 
19 6 . 8 4 4 8 . 9 0 7 11 .651 1 8 . 3 3 8 2 7 . 2 0 4 3 0 . 1 4 4 3 2 . 8 5 2 36 .191 38 .582 4 3 . 8 2 0 19 
2 0 7 . 4 3 4 9 .591 1 2 . 4 4 3 1 9 . 3 3 7 2 8 . 4 1 2 3 1 . 4 1 0 3 4 . 1 7 0 3 7 . 5 6 6 3 9 . 9 9 7 4 5 . 3 1 5 2 0 

21 8 . 0 3 4 1 0 . 2 8 3 13.2411 20 .337 2 9 . 6 1 5 3 2 . 6 7 0 3 5 . 4 7 9 38 .932 41 .401 4 6 . 7 9 7 21 
22 8 . 6 4 3 1 0 . 9 8 2 14 .042 2 1 . 3 3 7 30 .81 3 3 3 . 9 2 4 36 .781 4 0 . 2 8 9 4 2 . 7 9 6 4 8 . 2 6 8 22 
2 3 9 . 2 6 0 1 1 . 6 8 8 1 4 . 8 4 8 2 2 . 3 3 7 3 2 . 0 0 7 3 5 . 1 7 2 3 8 . 0 7 6 4 1.638 44 .181 4 9 . 7 2 8 23 
24 9 . 8 8 6 12 .401 ) 5 . 6 5 9 2 3 . 3 3 7 3 3 . 1 9 6 3 6 . 4 1 5 39 .364 4 2 . 9 8 0 4 5 . 5 5 6 5 1 . 1 7 9 24 
2 5 1 0 . 5 2 0 1 3 . 1 2 0 16 .473 2 4 . 3 3 7 (4 .382 3 7 . 6 5 2 4 0 6 4 6 44 .314 4 6 . 9 2 8 5 2 . 6 2 0 2 5 

2 6 1 1 . 1 6 0 13 .844 1 7 .292 2 5 . 3 3 6 35 .5 ( ,3 3 8 . 8 8 5 4 1 . 9 2 3 45 .642 48.291) 5 4 . 0 5 2 26 
27 1 1 . 8 0 8 1 4 . 5 7 3 18 .114 2 6 . 3 3 6 36 .741 4 0 . 1 1 3 4 3 . 1 9 4 4 6 . 9 6 3 4 9 . 6 4 5 5 5 . 4 7 6 27 
2 8 12 .461 1 5 . 3 0 8 1 8 . 9 3 9 2 7 . 3 3 6 3 7 . 9 1 6 4 1 . 3 3 7 4 4 . 4 6 1 4 8 . 2 7 8 5 0 . 9 9 3 5 6 . 8 9 2 2 8 
2 9 13 .121 1 6 . 0 4 7 19 .768 2 8 . 3 3 6 3 9 . 0 8 8 4 2 . 5 5 7 4 5 . 7 2 2 4 9 . 5 8 8 5 2 . 3 3 6 58 .301 29 
3 0 1 3 . 7 8 7 16 .791 2 0 . 5 9 9 2 9 . 3 3 6 4 0 . 2 5 6 4 3 . 7 7 3 4 6 . 9 7 9 5 0 . 8 9 2 5 3 . 6 7 2 5 9 . 7 0 3 30 

31 1 4 . 4 5 8 1 7 .539 2 1 . 4 3 4 3 0 . 3 3 6 4 1 . 4 2 2 4 4 . 9 8 5 4 8 . 2 3 2 52 .191 5 5 . 0 0 3 6 1 . 0 9 8 31 
.12 15 .134 18 .291 22 .271 3 1 . 3 3 6 4 2 . 5 8 5 4 6 . 1 9 4 4 9 . 4 8 0 5.3.486 5(i .329 6 2 . 4 8 7 32 
33 1 5 . 8 1 5 19 0 4 7 23.1 1(1 3 2 . 3 3 6 A 3 .745 4 7 . 4 0 0 5 0 . 7 2 5 5 4 . 7 7 6 5 7 . 6 4 9 6 3 . 8 7 0 33 
34 16 .501 1 9 . 8 0 6 2 3 . 9 5 2 3 3 . 3 3 6 4 4 . 9 0 3 4K.602 5 1 . 9 6 6 56 .061 58 .964 6 5 . 2 4 7 34 
3 5 17 192 2 0 . 5 6 9 24 .797 3 4 . 3 3 6 •16.059 4 9 . 8 0 2 5 3 . 2 0 3 5 7 . 3 4 2 6 0 . 2 7 5 6 6 . 6 1 9 3 5 

3<> 1 7 8 8 7 2 1 . 336 2 5 . 6 4 3 35 3 3 6 4 7 . 2 1 2 5 0 . 9 9 8 5 4 . 4 3 7 5 8 . 6 1 9 6 1 . 5 8 2 6 7 . 9 8 5 36 
37 1 8 .58d 2 2 . 1 0 6 26 .492 3 6 . 3 3 5 4 8 . 3 6 3 5 2 . 1 9 2 5 5 . 6 6 8 5 9 . 8 9 2 6 2 . 8 8 4 6 9 . 3 4 6 37 
3 Κ 1 9 . 2 8 9 22 .S7S 2 7 . 3 4 3 3 7 . 3 3 5 4 9 . 5 1 3 5 3 . 3 8 4 5 6 . 8 9 6 6 1 . 1 6 2 6 4 . 1 8 2 7 0 . 7 0 3 38 
3 9 19.99(> 2 3 . 6 5 4 28 .19( , 3 8 . 3 3 5 5 0 . 6 6 0 5 4 . 5 7 2 5 8 . 1 2 0 6 2 4 2 8 6 5 . 4 7 6 7 2 . 0 5 5 39 
4 0 20.71)7 2 4 . 4 3 3 29 .051 3 9 . 3 3 5 5 1 . 8 0 5 5 5 . 7 5 8 5 9 . 3 1 2 63 .691 6 6 . 7 6 6 7 3 . 4 0 2 4 0 

41 2 1 . 4 2 1 2 5 . 2 1 5 2 9 . 9 0 7 411.335 5 2 . 9 4 9 5 6 . 9 4 2 60 .561 6 4 . 9 5 0 6 8 . 0 5 3 7 4 . 7 4 5 41 
42 2 2 . 1 3 8 2 5 . 9 9 9 3 0 . 7 6 5 4 1 . 3 3 5 5 4 . 0 9 0 5 8 . 1 2 1 6 1 . 7 7 7 6 6 . 2 0 6 6 9 . 3 3 6 7 6 . 0 8 4 •12 
4 3 2 2 . 8 5 9 2 6 . 7 8 5 3 1 . 6 2 5 4 2 . 3 3 5 5 5 . 2 3 0 59.3(14 (.2.99(1 6 7 . 4 5 9 7 0 . 6 1 6 7 7 . 4 1 9 4 3 
44 2 3 . 5 8 4 2 7 . 5 7 5 3 2 . 4 8 7 4 3 . 3 (5 5 6 . 3 6 9 6 0 . 4 S I 6 4 . 2 0 2 6 8 . 7 1 0 7 1 . 8 9 3 7 8 . 7 5 0 44 
4 5 24 .31 1 2 8 . 3 6 6 33.351) 4 4 . 3 3 5 5 7 . 5 0 5 6 1 . 6 5 0 6 5 . 4 1 0 6 9 . 9 5 7 7 3 . 1 6 6 8 0 . 0 7 7 4 5 

4 6 2 5 . 0 4 2 2 9 . 1 6 0 3 4 . 2 1 5 •15.335 58 .641 6 2 . 8 3 0 6 6 . 6 1 7 71 .201 74 .437 8 1 . 4 0 0 46 
4 7 2 5 . 7 7 5 2 9 . 9 5 6 35 .081 4 6 . 3 3 5 5 9 . 7 7 4 64 .001 6 7 . 8 2 1 7 2 . 4 4 3 7 5 . 7 0 1 8 2 . 7 2 0 4 7 
4 8 2 6 . 5 1 1 3 0 . 7 5 5 3 5 . 9 4 9 47 (35 6 0 . 9 0 7 65 .171 6 9 . 0 2 3 7 3 . 6 8 3 7 6 . 9 6 9 8 4 . 0 3 7 4 8 
4 9 2 7 . 2 4 9 3 1 . 5 5 5 3 6 . 8 1 8 4 8 . 3 3 5 6 2 . 0 3 8 6 6 . 3 3 9 7 0 . 2 2 2 7 4 . 9 1 9 78 .231 85 .351 4 9 
5 o 27 .991 3 2 . 3 5 7 3 7 . 6 8 9 4 9 . 3 (5 6 3 . 1 6 7 6 7 . 5 0 5 7 1 . 4 2 0 76 .154 7 9 . 4 9 0 86 .661 5 0 

Γοι values of ν > 100, compulc approximale critical values of χ2 by formula as follows: . ι t 
r I w h e r e / 2 l | , | can be looked up in l ah lc Ml Thus χ;, 0 5 | , :c,| is computed as III,, r i | I v 240 1 )' 
.645 t s/2'·))1 - }(I7.10462|2 = 146.2X4. l o r * · 0.5 employ ι, , I | o e ] in the above formula. When ι -- 0.5, 

- 0 Vainer of chi-snnare from 1 to 111 di-i-u-rs of IriN'itom h.ivp hppn taken from ι mnr,* ...ι..ικινι. ι-ιΚΙ.· In. 
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TABLE I V 

continued 

α 
V .995 .975 .9 .5 .1 .05 .025 .01 .005 .001 f 

51 2 8 . 7 3 5 3 3 . 1 6 2 3 8 . 5 6 0 5 0 . 3 3 5 6 4 . 2 9 5 6 8 . 6 6 9 7 2 . 6 1 6 7 7 . 3 8 6 8 0 . 7 4 7 8 7 . 9 6 8 5 1 
5 2 2 9 . 4 8 1 3 3 . 9 6 8 3 9 . 4 3 3 5 1 . 3 3 5 6 5 . 4 2 2 6 9 . 8 3 2 7 3 . 8 1 0 7 8 . 6 1 6 82 .001 8 9 . 2 7 2 5 2 
5 3 3 0 . 2 3 0 3 4 . 7 7 6 4 0 . 3 0 8 5 2 . 3 3 5 6 6 . 5 4 8 7 0 . 9 9 3 7 5 . 0 0 2 7 9 . 8 4 3 8 3 . 2 5 3 9 0 . 5 7 3 5 3 
54 3 0 . 9 8 1 3 5 . 5 8 6 4 1 . 1 8 3 5 3 . 3 3 5 6 7 . 6 7 3 7 2 . 1 5 3 7 6 . 1 9 2 8 1 . 0 6 9 8 4 . 5 0 2 9 1 . 8 7 2 5 4 
5 5 3 1 . 7 3 5 3 6 . 3 9 8 4 2 . 0 6 0 5 4 . 3 3 5 6 8 . 7 9 6 7 3 . 3 1 1 7 7 . 3 8 0 8 2 . 2 9 2 8 5 . 7 4 9 9 3 . 1 6 8 5 5 

5 6 3 2 . 4 9 0 3 7 . 2 1 2 4 2 . 9 3 7 5 5 . 3 3 5 6 9 . 9 1 8 7 4 . 4 6 8 7 8 . 5 6 7 8 3 . 5 1 3 86 .994 9 4 . 4 6 0 5 6 
57 3 3 . 2 4 8 3 8 . 0 2 7 4 3 . 8 1 6 5 6 . 3 3 5 7 1 . 0 4 0 7 5 . 6 2 4 7 9 . 7 5 2 8 4 . 7 3 3 8 8 . 2 3 7 9 5 . 7 5 1 5 7 

5 8 3 4 . 0 0 8 3 8 . 8 4 4 4 4 . 6 9 6 5 7 . 3 3 5 7 2 . 1 6 0 7 6 . 7 7 8 8 0 . 9 3 6 8 5 . 9 5 0 8 9 . 4 7 7 9 7 . 0 3 9 5 8 
5 9 3 4 . 7 7 0 3 9 . 6 6 2 4 5 . 5 7 7 5 8 . 3 3 5 7 3 . 2 7 9 77 .931 8 2 . 1 1 7 8 7 . 1 6 6 9 0 . 7 1 5 9 8 . 3 2 4 5 9 
6 0 3 5 . 5 3 4 4 0 . 4 8 2 4 6 . 4 5 9 5 9 . 3 3 5 7 4 . 3 9 7 7 9 . 0 8 2 8 3 . 2 9 8 8 8 . 3 7 9 9 1 . 9 5 2 9 9 . 6 0 7 6 0 

61 3 6 . 3 0 0 4 1 . 3 0 3 4 7 . 3 4 2 6 0 . 3 3 5 75 .514 8 0 . 2 3 2 8 4 . 4 7 6 89 .591 9 3 . 1 8 6 1 0 0 . 8 8 8 61 
6 2 3 7 . 0 6 8 4 2 . 1 2 6 4 8 . 2 2 6 6 1 . 3 3 5 7 6 . 6 3 0 81 .381 8 5 . 6 5 4 9 0 . 8 0 2 9 4 . 4 1 9 1 0 2 . 1 6 6 62 
6 3 3 7 . 8 3 8 4 2 . 9 5 0 4 9 . 1 1 1 6 2 . 3 3 5 7 7 . 7 4 5 8 2 . 5 2 9 8 6 . 8 3 0 9 2 . 0 1 0 9 5 . 6 4 9 103 .442 6 3 
64 3 8 . 6 1 0 4 3 . 7 7 6 4 9 . 9 9 6 6 3 . 3 3 5 7 8 . 8 6 0 8 3 . 6 7 5 88.(X)4 9 3 . 2 1 7 9 6 . 8 7 8 1 0 4 . 7 1 6 6 4 
6 5 3 9 . 3 8 3 4 4 . 6 0 3 5 0 . 8 8 3 6 4 . 3 3 5 7 9 . 9 7 3 84 .821 8 9 . 1 7 7 9 4 . 4 2 2 9 8 . 1 0 5 1 0 5 . 9 9 8 6 5 

6 6 4 0 . 1 5 8 4 5 . 4 3 1 5 1 . 7 7 0 6 5 . 3 3 5 8 1 . 0 8 5 8 5 . 9 6 5 9 0 . 3 4 9 9 5 . 6 2 6 99 .331 107.2.58 6 6 
67 4 0 . 9 3 5 4 6 . 2 6 1 5 2 . 6 5 9 6 6 . 3 3 5 8 2 . 1 9 7 8 7 . 1 0 8 9 1 . 5 1 9 9 6 . 8 2 8 100 .55 1 0 8 . 5 2 6 6 7 

6 8 4 1 . 7 1 3 4 7 . 0 9 2 5 3 . 5 4 8 6 7 . 3 3 4 8 3 . 3 0 8 8 8 . 2 5 0 9 2 . 6 8 9 9 8 . 0 2 8 1 0 1 . 7 8 109 .791 6 8 
6 9 4 2 . 4 9 4 4 7 . 9 2 4 5 4 . 4 3 8 6 8 . 3 3 4 8 4 . 4 1 8 89 .391 9 3 . 8 5 6 9 9 . 2 2 8 103-00 1 1 1 . 0 5 5 6 9 
7 0 4 3 . 2 7 5 4 8 . 7 5 8 5 5 . 3 2 9 6 9 . 3 3 4 8 5 . 5 2 7 9 0 . 5 3 1 95.02.3 100 .43 104 .21 112 .317 70 

71 4 4 . 0 5 8 4 9 . 5 9 2 56 .221 70 .334 8 6 . 6 3 5 9 1 . 6 7 0 9 6 . 1 8 9 101 .62 105 .43 113 .577 71 
72 4 4 . 8 4 3 5 0 . 4 2 8 5 7 . 1 1 3 71 .334 8 7 . 7 4 3 9 2 . 8 0 8 97.35.1 102 .82 1 0 6 . 6 5 1 1 4 . 8 3 5 72 
7 3 4 ^ , 6 2 9 5 1 . 2 6 5 5S.0O6 7 2 . 3 3 4 8 S H 5 0 9 3 . 9 4 5 9 S . 5 1 6 104 .01 1 0 7 . 8 6 116 .092 7 3 
74 16.417 5 2 . 1 0 3 58.9(H) 73.33-1 8 9 . 9 5 6 95.1 >81 9 9 . 6 7 8 105 .20 109 .07 1 1 7 . 3 4 6 74 
7 5 4 7 . 2 0 6 5 2 . 9 4 2 5 9 . 7 9 5 74 .334 91.( )61 9 6 . 2 1 7 10O.K4 106 .39 1 1 0 . 2 9 1 1 8 . 5 9 9 7 5 

76 4 7 . 9 9 7 5 3 . 7 8 2 6 0 . 6 9 0 7 5 . 3 3 4 9 2 . 1 6 6 9 7 . 3 5 1 1 0 2 . 0 0 107 .58 111 .50 1 1 9 . 8 5 0 76 
77 4 8 . 7 8 8 5 4 . 6 2 3 6 1 . 5 8 6 76 .334 9 3 . 2 7 0 9S .484 1 0 3 . 1 6 108 .77 1 1 2 . 7 0 121.1(H) 77 
78 4 9 . 5 8 2 5 5 . 4 6 6 6 2 . 4 8 3 77 .334 9 4 . 3 7 3 99./)] 7 104 .32 109 .96 113.91 1 2 2 . 3 4 8 7 8 
7 9 5 0 . 3 7 6 5 6 . 3 0 9 6 3 . 3 8 0 78 .334 9 5 . 4 7 6 UK).75 1 0 5 . 4 7 111 .14 115 .12 123 .594 79 
8 0 5 1 . 1 7 2 5 7 . 1 5 3 6 4 . 2 7 8 79 .334 9 6 . 5 7 8 1 0 1 . 8 8 1 0 6 . 6 3 1 1 2 . 3 3 116 .32 124 .839 80 

81 5 1 . 9 6 9 5 7 . 9 9 8 6 5 . 1 7 6 80 .334 9 7 . 6 8 0 101.Ο1 1 0 7 . 7 8 113.51 117 .52 126 .082 81 
82 5 2 . 7 6 7 5 8 . 8 4 5 6 6 . 0 7 6 81 .334 9 8 . 7 8 0 104 14 108.9-1 1 1 4 . 6 9 1 1 8 . 7 3 1 2 7 . 3 2 4 82 
83 5 3 . 5 6 7 5 9 . 6 9 2 66 .97( , 82 .334 9 9 . 8 8 0 105 .27 1 1 0 . 0 9 1 1 5 . 8 8 1 1 9 . 9 3 1 2 8 . 5 6 5 8 3 
84 5 4 . 3 6 8 6 0 . 5 4 0 ( .7 .876 83 .334 100 .98 1U6.39 111 .24 117 .06 121 .13 1 2 9 . 8 0 1 84 
8 5 5 5 . 1 7 0 6 1 . 3 8 9 6 8 . 7 7 7 84 .334 102 .08 107 .52 1 12 .39 11 8.24 122 .32 131 .041 8 5 

86 5 5 . 9 7 3 6 2 . 2 3 9 6 9 . 6 7 9 85 .334 Κ13.18 1 0 8 . 6 5 1 1 3 .54 119.41 123 .52 1 3 2 . 2 7 7 86 
87 5 6 . 7 7 7 63.(189 70 .581 86 .334 104 .28 109 .77 1 1 4 . 6 9 1 2 0 . 5 9 124 .72 1 3 3 . 5 1 2 87 
HH 5 7 . 5 8 2 6 3 . 9 4 1 7 1 . 4 8 4 87 .334 105 .37 1 1 0 . 9 0 1 15.84 121 .77 125.91 1 3 4 . 7 4 5 8 8 
8') 5 8 . 3 8 9 6 4 . 7 9 3 7 2 . 3 8 7 88 .334 106 .47 1 12.02 116 .99 122.94 127.11 135 .978 89 
9(1 5 9 . 1 9 6 6 5 . 6 4 7 73 .291 89 .334 107 .56 1 1 3 . 1 5 1 1 8.14 124 .12 128 .30 137 .208 9 0 

VI 6().(* 15 6 6 . 5 0 1 7 4 . 1 9 6 90 .334 108 .66 114 .27 1 19.28 1 2 5 . 2 9 1 2 9 . 4 9 138 .438 91 
92 6 0 . 8 1 5 6 7 . 3 5 6 7 5 . 1 0 1 9 1 . 3 3 1 1 0 9 . 7 6 1 15.39 120 .43 1 2 6 . 4 6 1 30 .68 1 3 9 . 6 6 6 92 
9 3 6 1 . 6 2 5 6 8 . 2 Π 76.0(16 92.33-1 1 1 0 . 8 5 I 16.51 1 2 1 . 5 7 127 .63 131 .87 1 4 0 . 8 9 3 9 3 
9.1 6 2 4 3 7 6 9 . 0 6 8 76 .91 2 93 . (34 111 .94 1 1 7 . 6 3 122 .72 128 .80 1 3 3 . 0 6 142.1 19 9 4 
" 5 6 3 . 2 5 0 6 9 . 9 2 5 7 7 . 8 1 8 9 4 . 3 3 4 113 .04 1 18 .75 1 23 .86 129 .97 1 3 4 . 2 5 14 i.3-14 9 5 

64.06.1 7 0 . 7 8 3 7 8 . 7 2 5 9 5 . 3 3 4 1 1 4 . 1 3 1 1 9 . 8 7 1 2 5 . 0 0 131 .14 135 .43 144 .567 9 6 
97 6 4 . 8 7 8 7 1 .642 7 9 . 6 3 3 9 6 . 3 3 4 115 .22 1 20 .99 1 26.14 132.31 136 .62 1 4 5 . 7 8 9 9 7 
9 8 6 5 . 6 9 4 72 .501 80 .541 97.33-1 116 .32 122.1 1 127 .28 1 3 3 . 4 8 137 .80 I 4 7.(1 [O <'8 
99 6 6 . 5 1 0 7 3 . 3 6 1 8 1 . 4 4 9 9 8 . 3 3 4 117.41 1 2 3 . 2 3 128 .42 134.64 1 3 8 . 9 9 1 4 8 . 2 3 0 99 

l o o 6 7 . 3 2 8 7 4 . 2 2 2 8 2 . 3 5 8 9 9 . 3 3 4 118 .50 1 24 .34 1 29 .56 135.81 140 .17 149 149 1(H) 
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TABLE V 

Critical values of the F distribution 

ν ι (degrees of freedom of numera tor mean squares) 

a 1 2 3 4 5 6 7 8 9 10 11 12 α 

1 .05 161 199 216 225 230 234 237 239 241 241 243 244 .05 
.025 648 800 864 900 922 937 948 957 963 969 973 977 .025 
.01 4050 5000 5400 5620 5760 5860 5930 5980 6020 6060 6080 6110 .01 

2 .05 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 .05 
.025 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 .025 
.01 98.5 99.0 99.2 99.2 99.3 99.3 99.4 99.4 99.4 99.4 99.4 99.4 .01 

3 .05 10.1 9.55 9.2S 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 .05 
.025 17.4 16.0 15.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.3 14.3 .025 
.01 34.1 30.8 29.5 28.7 28.2 27.9 27.7 27.5 27.3 27.2 27.1 27.1 .01 

4 .05 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 .05 
.025 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.79 8.75 .025 
.01 21.2 18.0 16.7 16.0 15.5 15.2 15.0 14.8 14.7 14.5 14.4 14.4 .01 

5 .05 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.71 4.68 .05 
.025 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.57 6.52 .025 
.01 16.3 13.3 12.1 11.4 11.0 10.7 10.5 10.3 10.2 10.1 9.99 9.89 .01 

6 .05 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 .05 
.025 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.41 5.37 .025 
.01 13.7 10.9 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 .01 

7 .05 5.59 4.74 4.35 4.12 3.97 3.87 3.77 3.73 3.68 3.64 3.60 3.57 .05 
.025 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.89 4.82 4.76 4.71 4.67 .025 
.01 12.2 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47 .01 

8 .05 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 .05 
.025 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.25 4.20 .025 
.01 11.3 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67 .01 

9 .05 .5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 .05 
.025 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.91 3.87 .025 
.01 10.6 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11 .01 

10 .05 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 .05 
.025 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.67 3.62 .025 
.01 10.0 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71 .01 

Note: In terpola t ion for number of degrees of f reedom not furnished in the a rguments is by means of ha rmon ic 
in terpola t ion (see foo tno te for Tab le III). If both v, and v ; require in terpola t ion, one needs to in terpolate for 
each of these a rgumen t s in turn. T h u s lo obta in F l> (is[ssho]· o r l c ^ r s t interpolates between /'oosisn.Mii a , u ' 

.I5IMU.0I a n d between /·'„ „ „ , „ , i n | and F„ „,,„„., ,,„. to es t imate Fa.osi.is.eoi a n d Fo.05155.1 i«i- respectively. O n e 
then in terpola tes between these two values to obta in the desired quant i ty . Entries for α - 0.05, 0.025, 0.01, and 
0.005 and for v, and ν , I to 10, 12, 15, 20, 24, 30, 40, 60, 120, and * were copied f rom a table by M. Mcriington 
and C. M. T h o m p s o n (Hiumetrika 3.1:71 8K, 194.1) with permission of the publisher. 
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t a b l e V 

continued 

ν ι (degrees of freedom of numerator mean squares) 

!X 15 2 0 2 4 3 0 4 0 5 0 6 0 1 2 0 CO a 

1 . 0 5 2 4 6 2 4 8 2 4 9 2 5 0 2 5 1 2 5 2 2 5 2 2 5 3 2 5 4 .05 

. 0 2 5 9 8 5 9 9 3 9 9 7 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 2 0 . 0 2 5 

.01 6 1 6 0 6 2 1 0 6 2 3 0 6 2 6 0 6 2 9 0 6 3 0 0 6 3 1 0 6 3 4 0 6 3 7 0 .01 

2 . 0 5 19.4 19.4 1 9 . 5 1 9 . 5 1 9 . 5 1 9 . 5 1 9 . 5 1 9 . 5 1 9 . 5 . 0 5 

. 0 2 5 3 9 . 4 3 9 . 4 3 9 . 5 3 9 . 5 3 9 . 5 3 9 . 5 3 9 . 5 3 9 . 5 3 9 . 5 . 0 2 5 

.01 9 9 . 4 9 9 . 4 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 9 9 . 5 .01 

3 . 0 5 8 . 7 0 8 . 6 6 8 .64 8 .62 8 . 5 9 8 . 5 8 8 . 5 7 8 . 5 5 8 . 5 3 .05 

. 0 2 5 14.3 14 .2 14 .1 14 .1 1 4 . 0 14 .0 14 .0 13 .9 1 3 . 9 . 0 2 5 

.01 2 6 . 9 2 6 . 7 2 6 . 6 2 6 . 5 2 6 . 4 2 6 . 3 2 6 . 3 2 6 . 2 26 .1 .01 

4 . 0 5 5 . 8 6 5 . 8 0 5 . 7 7 5 . 7 5 5 . 7 2 5 . 7 0 5 . 6 9 5 . 6 6 5 . 6 3 . 0 5 

. 0 2 5 8 . 6 6 8 . 5 6 8 .51 8 . 4 6 8 .41 8 . 3 8 8 .36 8.31 8 . 2 6 . 0 2 5 

.01 14 .2 1 4 . 0 13 .9 1 3 . 8 1 3 . 7 1 3 . 7 13 .7 13 .6 1 3 . 5 .01 

5 . 0 5 4 . 6 2 4 . 5 6 4 . 5 3 4 . 5 0 4 . 4 6 4 . 4 4 4 . 4 3 4 . 4 0 4 . 3 6 .05 

. 0 2 5 6 . 4 3 6 . 3 3 6 . 2 8 6 . 2 3 6 . 1 8 6 . 1 4 6 . 1 2 6 . 0 7 6 . 0 2 . 0 2 5 

.01 9 . 7 2 9 . 5 5 9 . 4 7 9 . 3 8 9 . 2 9 9 . 2 4 9 . 2 0 9 .11 9 . 0 2 .01 

6 . 0 5 3 . 9 4 3 . 8 7 3 .84 3 .81 3 . 7 7 3 . 7 5 3 .74 3 . 7 0 3 . 6 7 . 0 5 

. 0 2 5 5 . 2 7 5 . 1 7 5 . 1 2 5 . 0 7 5 .01 4 . 9 8 4 . 9 6 4 . 9 0 4 . 8 5 . 0 2 5 

.01 7 . 5 6 7 . 4 0 7 .31 7 . 2 3 7 .14 7 . 0 9 7 .06 6 . 9 7 6 . 8 8 .01 

7 . 0 5 3 .51 3 . 4 4 3 .41 3 . 3 8 3 . 3 4 3 . 3 2 3 . 3 0 3 . 2 7 3 . 2 3 .05 

. 0 2 5 4 . 5 7 4 . 4 7 4 . 4 2 4 . 3 6 4 .31 4 . 2 7 4 . 2 5 4 . 2 0 4 . 1 4 . 0 2 5 

.01 6 . 3 1 6 . 1 6 6 . 0 7 5 . 9 9 5 .91 5 . 8 6 5 . 82 5 . 7 4 5 . 6 5 .01 
8 . 0 5 3 .22 3 . 1 5 3 .12 3 . 0 8 3 .04 3 . 02 3 .01 2 . 9 7 2 . 9 3 .05 

. 0 2 5 4 . 1 0 4 . 0 0 3 . 9 5 3 . 8 9 3 .84 3 . 8 0 3 . 7 8 3 . 7 3 3 . 6 7 . 0 2 5 

.01 5 . 5 2 5 . 3 6 5 . 2 8 5 . 2 0 5 . 1 2 5 . 0 7 5 . 0 3 4 . 9 5 4 . 8 6 .01 

9 . 0 5 3 .01 2 . 9 4 2 . 9 0 2 . 8 6 2 . 8 3 2 .81 2 . 7 9 2 . 7 5 2 .71 .05 

. 0 2 5 3 . 7 7 3 . 6 7 3 .61 3 . 5 6 3 .51 3 . 4 7 3 . 4 5 3 . 3 9 3 . 3 3 . 0 2 5 

.01 4 . 9 6 4 . 8 1 4 . 7 3 4 . 6 5 4 . 5 7 4 . 5 2 4 . 4 8 4 . 4 0 4 . 3 1 .01 

1 0 . 0 5 2 . 8 5 2 . 7 7 2 .74 2 . 7 0 2 . 6 6 2.64 2 . 6 2 2 . 5 8 2 . 5 4 . 0 5 

. 0 2 5 3 .52 3 .42 3 . 3 7 3 .31 3 . 2 6 3 . 22 3 . 2 0 3 . 1 4 3 . 0 8 . 0 2 5 

.01 4 . 5 6 4 .41 4 . 3 3 4 . 2 5 4 . 1 7 4 . 1 2 4 . 0 8 4 . 0 0 3 .91 .01 
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t a b l e V 

continued 

ν ! (degrees of freedom of numerator mean squares) 

α 1 2 3 4 5 6 7 8 9 10 11 12 α 

11 . 0 5 4 . 8 4 3 . 9 8 3 . 5 9 3 . 3 6 3 . 2 0 3 . 0 9 3 .01 2 . 9 5 2 . 9 0 2 . 8 5 2 . 8 2 2 . 7 9 . 0 5 
. 0 2 5 6 . 7 2 5 . 2 6 4 . 6 3 4 . 2 8 4 . 0 4 3 . 8 8 3 . 7 6 3 . 6 6 3 . 5 9 3 . 5 3 3 . 4 8 3 . 4 3 . 0 2 5 
.01 9 . 6 5 7 .21 6 . 2 2 5 . 6 7 5 . 3 2 5 . 0 7 4 . 8 9 4 . 7 4 4 . 6 3 4 . 5 4 4 . 4 6 4 . 4 0 .01 

12 . 0 5 4 . 7 5 3 . 8 9 3 . 4 9 3 . 2 6 3 . 1 1 3 . 0 0 2 . 9 1 2 . 8 5 2 . 8 0 2 . 7 5 2 . 7 2 2 . 6 9 . 0 5 
. 0 2 5 6 . 5 5 5 . 1 0 4 . 4 7 4 . 1 2 3 . 8 9 3 . 7 3 3 .61 3 .51 3 .44 3 . 3 7 3 . 32 3 . 2 8 . 0 2 5 
.01 9 . 3 3 6 . 9 3 5 . 9 5 5 . 4 1 5 . 0 6 4 . 8 2 4 . 6 4 4 . 5 0 4 . 3 9 4 . 3 0 4 . 2 2 4 . 1 6 .01 

1 5 . 0 5 4 . 5 4 3 . 6 8 3 . 2 9 3 . 0 6 2 . 9 0 2 . 7 9 2 .71 2 . 6 4 2 . 5 9 2 .54 2 .51 2 . 4 8 .05 . 
. 0 2 5 6 . 2 0 4 . 7 7 4 . 1 5 3 . 8 0 3 . 5 8 3 . 4 1 3 . 2 9 3 . 2 0 3 .12 3 . 0 6 3 .01 2 . 9 6 . 0 2 5 
.01 8 . 6 8 6 . 3 6 5 . 4 2 4 . 8 9 4 . 5 6 4 . 3 2 4 . 1 4 4 . 0 0 3 . 8 9 3 . 8 0 3 . 7 3 3 . 6 7 .01 

2 0 . 0 5 4 . 3 5 3 . 4 9 3 . 1 0 2 . 8 7 2 . 7 1 2 . 6 0 2 .51 2 . 4 5 2 . 3 9 2 . 3 5 2 .31 2 . 2 8 . 0 5 
. 0 2 5 5 . 8 7 4 . 4 6 3 . 8 6 3 . 5 1 3 . 2 9 3 . 1 3 3 .01 2 .91 2 . 8 4 2 . 7 7 2 . 7 2 2 . 6 8 . 0 2 5 
.01 8 . 1 0 5 . 8 5 4 . 9 4 4 . 4 3 4 . 1 0 3 . 8 7 3 . 7 0 3 . 5 6 3 .46 3 .37 3 . 2 9 3 . 2 3 .01 

2 4 . 0 5 4 . 2 6 3 . 4 0 3 .01 2 . 7 8 2 . 6 2 2 .51 2 . 4 2 2 . 3 6 2 . 3 0 2 . 2 5 2 . 2 2 2 . 1 8 .05 
. 0 2 5 5 . 7 2 4 . 3 2 3 . 7 2 3 . 3 8 3 . 1 5 2 . 9 9 2 . 8 7 2 . 7 8 2 . 7 0 2 .64 2 . 5 9 2 .54 . 0 2 5 
.01 7 . 8 2 5 . 6 1 4 . 7 2 4 . 2 2 3 . 9 0 3 . 6 7 3 . 5 0 3 .36 3 .26 3 . 1 7 3 . 0 9 3 . 0 3 .01 

3 0 . 0 5 4 . 1 7 3 . 3 2 2 . 9 2 2 . 6 9 2 . 5 3 2 . 4 2 2 . 3 3 2 . 2 7 2 .21 2 .16 2 . 1 3 2 . 0 9 . 0 5 
. 0 2 5 5 . 5 7 4 . 1 8 3 . 5 9 3 . 2 5 3 . 0 3 2 . 8 7 2 . 7 5 2 . 6 5 2 . 5 7 2 .51 2 . 4 6 2 . 4 1 . 0 2 5 
.01 7 . 5 6 5 . 3 9 4 .51 4 . 0 2 3 . 7 0 3 . 4 7 3 . 3 0 3 .17 3 . 0 7 2 . 9 8 2 . 9 0 2 . 8 4 .01 

4 0 . 0 5 4 . 0 8 3 . 2 3 2 . 8 4 2 .61 2 . 4 5 2 . 3 4 2 . 2 5 2 . 1 8 2 .12 2 . 0 8 2 . 0 4 2 .04 . 0 5 
. 0 2 5 5 . 4 2 4 . 0 5 3 . 4 6 3 . 1 3 2 . 9 0 2 . 7 4 2 . 6 2 2 . 5 3 2 . 4 5 2 . 3 9 2 . 3 3 2 . 2 9 . 0 2 5 
.01 7 .31 5.1 8 4 . 3 1 3 . 8 3 3 .51 3 . 2 9 3 .12 2 . 9 9 2 . 8 9 2 . 8 0 2 . 7 3 2 . 6 6 .01 

6 0 . 0 5 4 . 0 0 3 . 1 5 2 . 7 6 2 . 5 3 2 . 3 7 2 . 2 5 2 . 1 7 2 . 1 0 2 . 0 4 1 .99 1 . 9 5 1 . 92 . 0 5 
. 0 2 5 5 . 2 9 3 . 9 3 3 . 3 4 3 .01 2 . 7 9 2 . 6 3 2 .51 2 .41 2 . 3 3 2 . 2 7 2 . 2 2 2 . 1 7 . 0 2 5 
.01 7 . 0 8 4 . 9 8 4 . 1 3 3 . 6 5 3 . 3 4 3 .12 2 . 9 5 2 . 8 2 2 .72 2 . 6 3 2 . 5 6 2 . 5 0 .01 

1 2 0 . 0 5 3 . 9 2 3 . 0 7 2 . 6 8 2 . 4 5 2 . 2 9 2 . 1 7 2 . 0 9 2 . 0 2 1 .96 1.91 1 .87 1 . 8 3 . 0 5 
. 0 2 5 5 . 1 5 3 . 8 0 3 . 2 3 2 . 8 9 2 . 6 7 2 . 5 2 2 . 3 9 2 . 3 0 2 .22 2 .16 2 . 1 0 2 . 0 5 . 0 2 5 
.01 6 . 8 5 4 . 7 9 3 . 9 5 3 . 4 8 3 . 1 7 2 . 9 6 2 . 7 9 2 . 6 6 2 . 5 6 2 . 4 7 2 . 4 0 2 .34 .01 

» . 0 5 3 . 8 4 3 . 0 0 2 . 6 0 2 . 3 7 2 .21 2 . 1 0 2 .01 1 .94 1 .88 1 .83 1 .79 1 . 7 5 .05 
. 0 2 5 5 . 0 2 3 . 6 9 3 .11 2 . 7 9 2 . 5 7 2 .41 2 . 2 9 2 . 1 9 2 .11 2 . 0 5 1 .99 1 .94 . 0 2 5 
.01 6 . 6 3 4 .61 3 . 7 8 3 . 3 2 3 . 0 2 2 . 8 0 2 . 6 4 2 .51 2 .41 2 .32 2 . 2 5 2 . 1 8 .01 
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t a b l e V 

continued 

ν ) (degrees of freedom of numerator mean squares) 

α 1 5 2 0 2 4 3 0 4 0 5 0 6 0 1 2 0 Oo tx 

11 . 0 5 2 . 7 2 2 . 6 5 2 .61 2 . 5 7 2 . 5 3 2 . 5 1 2 . 4 9 2 . 4 5 2 . 4 0 . 0 5 
. 0 2 5 3 . 3 3 3 . 2 3 3 . 1 7 3 . 1 2 3 . 0 6 3 . 0 2 3 . 0 0 2 . 9 4 2 . 8 8 . 0 2 5 
.01 4 . 2 5 4 . 1 0 4 . 0 2 3 . 9 4 3 . 8 6 3 . 8 1 3 . 7 8 3 . 6 9 3 . 6 0 .01 

1 2 . 0 5 2 . 6 2 2 . 5 4 2 . 5 1 2 . 4 7 2 . 4 3 2 . 4 0 2 . 3 8 2 . 3 4 2 . 3 0 . 0 5 
. 0 2 5 3 . 1 8 3 . 0 7 3 . 0 2 2 . 9 6 2 . 9 1 2 . 8 7 2 . 8 5 2 . 7 9 2 . 7 2 . 0 2 5 
.01 4 . 0 1 3 . 8 6 3 . 7 8 3 . 7 0 3 . 6 2 3 . 5 7 3 . 5 4 3 . 4 5 3 .36 .01 

1 5 . 0 5 2 . 4 0 2 . 3 3 2 . 3 9 2 . 2 5 2 . 2 0 2 . 1 8 2 . 1 6 2 .11 2 . 0 7 . 0 5 
. 0 2 5 2 . 8 6 2 . 7 6 2 . 7 0 2 . 6 4 2 . 5 9 2 . 5 5 2 . 5 2 2 . 4 6 2 . 4 0 . 0 2 5 
.01 3 . 5 2 3 . 3 7 3 . 2 9 3 .21 3 . 1 3 3 . 0 8 3 . 0 5 2 . 9 6 2 . 8 7 .01 

2 0 . 0 5 2 . 2 0 2 . 1 2 2 . 0 8 2 . 0 4 1 . 9 9 1 . 9 7 1 .95 1 . 9 0 1 .84 . 0 5 
. 0 2 5 2 . 5 7 2 . 4 6 2 . 4 1 2 . 3 5 2 . 2 9 2 . 2 5 2 . 2 2 2 . 1 6 2 . 0 9 . 0 2 5 
.01 3 . 0 9 2 . 9 4 2 . 8 6 2 . 7 8 2 . 6 9 2 . 6 4 2 .61 2 . 5 2 2 . 42 .01 

2 4 . 0 5 2 . 1 1 2 . 0 3 1 . 9 8 1 .94 1 . 8 9 1 .86 1 .84 1.79 1 .73 . 0 5 
. 0 2 5 2 . 4 4 2 . 3 3 2 . 2 7 2.21 2.15 2 . 1 1 2.08 2.01 1.9-1 .025 
.01 2 . 8 9 2 . 7 4 2 . 6 6 2 . 5 8 2 . 4 9 2 .44 2 . 4 0 2 .31 2 .21 .01 

3 0 . 0 5 2 . 0 1 1 . 9 3 1 . 8 9 1 .84 1 . 7 9 1 .76 1 .74 1 .68 1 .62 . 0 5 
. 0 2 5 2 . 3 1 2 . 2 0 2 . 1 4 2 . 0 7 2 . 0 1 1 . 9 7 1 .94 1 .87 1 . 7 9 . 0 2 5 
.01 2 . 7 0 2 . 5 5 2 . 4 7 2 . 3 9 2 . 3 0 2 . 2 5 2 .21 2 . 1 1 2 .01 .01 

4 0 . 0 5 1 .92 1 .84 1 . 7 9 1 .74 1 . 6 9 1 .66 1 .64 1 . 5 8 1 .51 . 0 5 
. 0 2 5 2 . 1 8 2 . 0 7 2 .01 1 .94 1 .88 1 . 8 3 1 . 8 0 1 .72 1 .64 . 0 2 5 
.01 2 . 5 2 2 . 3 7 2 . 2 9 2 . 2 0 2 .11 2 . 0 6 2 . 0 2 1 .92 1 .80 .01 

6 0 . 0 5 1 . 8 4 1 . 7 5 1 .70 1 . 6 5 1 . 5 9 1 .56 1 .53 1 .47 1 .39 . 0 5 
. 0 2 5 2 . 0 6 1 .94 1 .88 1 .82 1 .74 1 .70 1 .67 1 .58 1 . 4 8 . 0 2 5 
.01 2 . 3 5 2 . 2 0 2 . 1 2 2 . 0 3 1 .94 1 . 8 8 1 .84 1 . 7 3 1 .60 .01 

1 2 0 . 0 5 1 . 7 5 1 . 6 6 1.61 1 . 5 5 1 . 5 0 1 .46 1 .43 1 . 3 5 1 . 2 5 . 0 5 
. 0 2 5 1 . 9 5 1 .82 1 .76 1 . 6 9 1 .61 1 .56 1 . 5 3 1 . 4 3 1.31 . 0 2 5 
.01 2 . 1 9 2 . 0 3 1 .95 1 .86 1 .76 1 .70 1 .66 1.5 3 1 .38 .01 

® . 0 5 1 .67 1 . 5 7 1.52 1 . 4 6 1 .39 1 .35 1.32 1 .22 1.00 . 0 5 
. 0 2 5 1 . 8 3 1 .71 1.64 1 . 5 7 1 . 4 8 1 .43 1 . 3 9 1 .27 1.<X) . 0 2 5 
.01 2 . 0 4 1.88 1 . 7 9 1 . 7 0 1 . 5 9 1 .52 1 .47 1 .32 1 . 0 0 .01 
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t a b l e V I 

Critical 

ν α 

values of F m a x 

2 3 

α ( n u m b e r 

4 5 

o f s a m p l e s ) 

6 7 8 9 1 0 1 1 1 2 

2 .05 3 9 . 0 8 7 . 5 1 4 2 . 2 0 2 . 2 6 6 . 3 3 3 . 4 0 3 . 4 7 5 . 5 5 0 . 6 2 6 . 7 0 4 . 
.01 1 9 9 . 4 4 8 7 2 9 . 1 0 3 6 . 1 3 6 2 . 1 7 0 5 . 2 0 6 3 . 2 4 3 2 . 2 8 1 3 . 3 2 0 4 . 3 6 0 5 . 

3 . 05 15 .4 2 7 . 8 3 9 . 2 5 0 . 7 6 2 . 0 7 2 . 9 83 .5 9 3 . 9 104 . 114 . 1 2 4 . 
.01 4 7 . 5 8 5 . 1 2 0 . 151 . 184 . 2 1 ( 6 ) 2 4 ( 9 ) 2 8 ( 1 ) 3 1 ( 0 ) 3 3 ( 7 ) 3 6 ( 1 ) 

4 . 05 9 . 6 0 15 .5 2 0 . 6 2 5 . 2 2 9 . 5 3 3 . 6 3 7 . 5 41.1 4 4 . 6 4 8 . 0 5 1 . 4 
.01 2 3 . 2 3 7 . 4 9 . 59 . 6 9 . 79. 89 . 97 . 106 . 113 . 120 . 

5 .05 7 . 1 5 10.8 13 .7 16 .3 18.7 2 0 . 8 2 2 . 9 24 .7 26 .5 2 8 . 2 2 9 . 9 
.01 14 .9 2 2 . 2 8 . 33 . 38 . 4 2 . 4 6 . 50 . 54 . 5 7 . 6 0 . 

6 .05 5 . 8 2 8 .38 10 .4 12.1 13.7 1 5 . 0 1 6 . 3 17 .5 18.6 19 .7 20 .7 
.01 11.1 1 5 . 5 19.1 2 2 . 2 5 . 2 7 . 30 . 32. 34 . 3 6 . 37 . 

7 . 05 4 . 9 9 6 . 9 4 8 .44 9 . 7 0 10 .8 11 .8 12 .7 13.5 14 .3 15.1 15 .8 
.01 8 .89 12.1 14 .5 16 .5 18.4 2 0 . 22 . 23 . 24. 2 6 . 2 7 . 

8 . 05 4 . 4 3 6 . 0 0 7 . 1 8 8 .12 9 . 0 3 9 . 7 8 10 .5 11.1 11.7 1 2 . 2 12.7 
.01 7 . 5 0 9 .9 11 .7 13 .2 14 .5 15 .8 16 .9 17.9 18.9 19 .8 2 1 . 

9 .05 4 . 0 3 5 . 3 4 6 .31 7.11 7 . 8 0 8.41 8 .95 9 . 4 5 9.91 1 0 . 3 10.7 
.01 6 . 5 4 8.5 9 .9 11.1 12.1 13.1 13 .9 14.7 15 .3 1 6 . 0 16 .6 

1 0 .05 3 .72 4 . 8 5 5 . 6 7 6 .34 6 . 9 2 7 . 4 2 7 .87 8 .28 8 .66 9 .01 9 . 3 4 
.01 5 . 8 5 7.4 8.6 9 .6 10.4 11.1 11 .8 12.4 12.9 13 .4 13.9 

12 . 05 3 . 2 8 4 . 1 6 4 . 7 9 5 . 3 0 5 . 7 2 6 . 0 9 6 . 4 2 6 . 7 2 7 . 0 0 7 . 2 5 7 .48 
.01 4 .91 6.1 6 .9 7.6 8.2 8.7 9.1 9 .5 9 .9 10.2 10.6 

15 .05 2 . 8 6 3 .54 4 .01 4 . 3 7 4 . 6 8 4 . 9 5 5 . 1 9 5 . 4 0 5 . 5 9 5 . 7 7 5.9.3 
.01 4 . 0 7 4 .9 5 .5 6 .0 6 .4 6 .7 7.1 7 .3 7.5 7 .8 8 .0 

2 0 .05 2 . 4 6 2 .95 3 . 2 9 3 .54 3 .76 3 .94 4 . 1 0 4 .24 4 . 3 7 4 . 4 9 4 . 5 9 
.01 3 .32 3.8 4 .3 4 .6 4 .9 5.1 5 .3 5 .5 5.6 5 .8 5 .9 

3 0 .05 2 .07 2 .40 2.61 2 .78 2.91 3 . 0 2 3 . 1 2 3.21 3 . 2 9 3 . 3 6 3 . 3 9 
.o i 2 . 6 3 3 .0 3.3 .3.4 3.6 3.7 3.8 .3.9 4 .0 4.1 4 .2 

6 0 .05 1.67 1 .85 1 .96 2 .04 2.1 1 2 .17 2 . 2 2 2 . 2 6 2 . 3 0 2.3.3 2 . 3 6 
.01 1 .96 2.2 2 .3 2 .4 2 .4 2.5 2.5 2 .6 2.6 2 .7 2 .7 

CO . 05 1 .00 1 .00 1 .00 l.(X) 1 .00 1 .00 1 .00 1 .00 l.(X> 1 .00 1 . 0 0 
.01 1 .00 1 .00 1 .00 1 .00 1 .00 1.<X> 1 .00 1 .00 1 .00 1 . 0 0 1 .00 

Noli· Corresponding lo cach value of a {number of samples) and ν (degrees of freedom) arc Iwo critical values 
of / 'm:1I representing the upper 5% and 1 '7, percentage points The corresponding probabilities a 0.05 and 0.01 
represent one tad of the / '„M, distribution This table was copied from H. A. David (Binnn lnkn 39:422 424. ll)S2) 
with permission of the publisher and author 



a p p e n d i x 2 / s t a t i s t i c a l t a b l e s 3 3 1 

t a b l e V I I 

Shortest unbiased confidence limits for the variance 

Confidence Confidence Confidence 
coefficients coefficients coefficients 

Ρ 0 . 9 5 0 . 9 9 V 0 . 9 5 0 . 9 9 V 0 . 9 5 0 . 9 9 

2 .2099 .1505 14 .5135 .4289 26 .6057 .5261 
23.605 114.489 2.354 3.244 1.825 2.262 

3 .2681 .1983 15 .5242 .4399 27 .6110 .5319 
10.127 29.689 2.276 3.091 1.802 2.223 

4 .3125 .2367 16 .5341 .4502 28 .6160 .5374 
6.590 15.154 2.208 2.961 1.782 2.187 

5 .3480 .2685 17 .5433 .4598 29 .6209 .5427 
5.054 10.076 2.149 2.848 1.762 2.153 

6 .3774 .2956 18 .5520 .4689 30 .6255 .5478 
4.211 7.637 2.097 2.750 1.744 2.122 

7 .4025 .3192 19 .5601 .4774 40 .6636 .5900 
3.679 6.238 2.050 2.664 1.608 1.896 

8 .4242 .3400 20 .5677 .4855 50 .6913 .6213 
3.314 5.341 2.008 2.588 1.523 1.760 

9 .4432 .3585 21 .5749 .4931 60 .7128 .6458 
3.048 4.720 1.971 2.519 1.464 1.668 

10 .4602 .3752 22 .5817 .5004 70 .7300 .6657 
2.844 4.265 1.936 2.458 1.421 1.607 

11 .4755 .3904 23 .5882 .5073 80 .7443 .6824 
2.683 3.919 1.905 2.402 1.387 1.549 

12 .489.3 .4043 24 .5943 .5139 90 .7564 .6966 
2.553 3.646 1.876 2.351 1.360 1.508 

13 .5019 .4171 25 .6001 .5201 100 .7669 .7090 
2.445 3.426 1.850 2.305 1.338 1.475 

Note: The factors in this table have been obtained by dividing the quantity n 1 by the values found in a table 
prepared by D. V Lindley, D. A. East, and P. A. Hamilton (Biometrika 47:433 437, 1960). 
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t a b l e VIII 
Critical values for correlation coeff ic ients 

V α r 

1 .05 .997 
.01 1.000 

2 .05 .950 
.01 .990 

3 .05 .878 
.01 .959 

4 .05 .811 
.01 .917 

5 .05 .754 
.01 .874 

6 .05 .707 
.01 .834 

7 .05 .666 
.01 .798 

8 .05 .632 
.01 .765 

9 .05 .602 
.01 .735 

10 .05 .576 
.01 .708 

11 .05 .553 
.01 .684 

12 .05 .532 
.01 .661 

13 .05 .514 
.01 .641 

14 .05 .497 
.01 .623 

15 .05 .482 
.01 .606 

V α r 

16 .05 .468 
.01 .590 

17 .05 .456 
.01 .575 

18 .05 .444 
.01 .561 

19 .05 .433 
.01 .549 

20 .05 .423 
.01 .537 

21 .05 .413 
.01 .526 

22 .05 .404 
.01 .515 

23 .05 .396 
.01 .505 

24 .05 .388 
.01 .496 

25 .05 .381 
.01 .487 

26 .05 .374 
.01 .478 

27 .05 .367 
.01 .470 

28 .05 .361 
.01 .463 

29 .05 .355 
.01 .456 

30 .05 .349 
.01 .449 

V α r 

35 .05 .325 
.01 .418 

40 .05 .304 
.01 .393 

45 .05 .288 
.01 .372 

50 .05 .273 
.01 .354 

60 .05 .250 
.01 .325 

70 .05 .232 
.01 .302 

80 .05 .217 
.01 .283 

90 .05 .205 
.01 .267 

100 .05 .195 
.01 .254 

120 .05 .174 
.01 .228 

150 .05 .159 
.01 .208 

200 .05 .138 
.01 .181 

3(X) .05 .113 
.01 .148 

400 .05 .098 
.01 .128 

500 .05 .088 
.01 .115 

1,000 .05 .062 
.01 .081 

Nftte: Upper value is V',",, lower value is 1 c r i t i c a l value. This table is reproduced by permission from Stuli.slitnl 
M c t h n h , 5th edition, by (ii-or^c W. Snedecor, (c) 1956 by The Iowa State University Press. 
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TABLE I X 

Confidence limits for percentages 

This table furnishes confidence limits for percentages based on the binomial 
distribution. 

The first part of the table furnishes limits for samples up to size η = 30. 
The arguments are Y, number of items in the sample that exhibit a given prop-
erty, and n, sample size. Argument Y is tabled for integral values between 0 and 
15, which yield percentages up to 50%. For each sample size η and number of 
items 7 with the given property, three lines of numerical values are shown. The 
first line of values gives 95% confidence limits for the percentage, the second line 
lists the observed percentage incidence of the property, and the third line of 
values furnishes the 99% confidence limits for the percentage. For example, for 
Τ = 8 individuals showing the property out of a sample of η = 20, the second 
line indicates that this represents an incidence of the property of 40.00%, the 
first line yields the 95% confidence limits of this percentage as 19.10% to 63.95%, 
and the third line gives the 99% limits as 14.60% to 70.10%. 

Interpolate in this table (up to η = 49) by dividing L a n d L J , the lower 
and upper confidence limits at the next lower tabled sample size n~, by desired 
sample size n, and multiply them by the next lower tabled sample size n~. Thus, 
for example, to obtain the confidence limits of the percentage corresponding to 
8 individuals showing the given property in a sample of 22 individuals (which 
corresponds to 36.36% of the individuals showing the property), compute the 
lower confidence limit Li - L^n~/n = (19.10)20/22 = 17.36% and the upper 
confidence limit L 2 = L J n " / « = (63.95)20/22 = 58.14%. 

The second half of the table is for larger sample sizes (n = 50, 100, 200, 
500, and 1000). The arguments along the left margin of the table are percentages 
from 0 to 50% in increments of 1%, rather than counts. The 95% and 99% 
confidence limits corresponding to a given percentage incidence ρ and sample 
size η are the functions given in two lines in the body of the table. For instance, 
the 99% confidence limits of an observed incidence of 12% in a sample of 
500 are found to be 8.56-16.19%, in the second of the two lines. Interpolation 
in this table between the furnished sample sizes can be achieved by means of the 
following formula for the lower limit: 

__ L, n~(n* - n) + Lfn'(« - Ό 
1 n(n+ — n~) 

In the above expression, η is the" size of the observed sample, n~ and n+ the 
next lower and upper tabled sample sizes, respectively, L^ and are corre-
sponding tabled confidence limits for these sample sizes, and L, is the lower 
confidence limit to be found by interpolation. The upper confidence limit, L 2 , 
can be obtained by a corresponding formula by substituting 2 for the subscript 
1. By way of an example we shall illustrate setting 95% confidence limits to an 
observed percentage of 25% in a sample size of 80. The tabled 95% limits for 
n = 50 are 13.84 39.27%. For n = 100, the corresponding tabled limits are 
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16.88-34.66%. When we substitute the values for the lower limits in the above 
formula we obtain 

(13.84)(50)(100 - 80) + (16.88)(100)(80 - 50) 
L l = 8 0 ( 1 0 0 ^ 5 0 ) = 1 6 ' 1 2 % 

for the lower confidence limit. Similarly, for the upper confidence limit we 
compute 

(39.27)(50)(100 - 80) + (34.66)(100)(80 - 50) 
L··) = = j j .ol /o 

2 80(100 - 50) 

The tabled values in parentheses are limits for percentages that could not be 
obtained in any real sampling problem (for example, 25% in 50 items) but are 
necessary for purposes of interpolation. For percentages greater than 50% look 
up the complementary percentage as the argument. The complements of the 
tabled binomial confidence limits are the desired limits. 

These tables have been extracted from more extensive ones in D. Mainland, 
L. Herrera, and Μ. I. Sutcliffe, Tables for Use with Binomial Samples (Depart-
ment of Medical Statistics, New York University College of Medicine, 1956) 
with permission of the publisher. The interpolation formulas cited are also due 
to these authors. Confidence limits of odd percentages up to 13% for η = 50 
were computed by interpolation. For Y = 0, one-sided (1 — a)100% confidence 
limits were computed as L 2 = 1 — oc1/n with L, = 0. 
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99 
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99 
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99 

95 

99 

95 
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95 
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APPENDIX 2 / s t a t i s t i c a l t a b l e s 

its for percentages 

η 
5 10 15 20 25 30 

0.00-45.07 0.00-25.89 0.00-18.10 0.00-13.91 0.00-11.29 0.00- 9.50 
0.00 0.00 0.00 0.00 0.00 0.00 

0.00-60.19 0.00-36.90 0.00-26.44 0.00-20.57 0.00-16.82 0.00-14.23 

0.51-71.60 0.25-44.50 0.17-32.00 0.13-24.85 0.10-20.36 0.08-17.23 
20.00 10.00 6.67 5.00 4.00 3.33 

0.10-81.40 0.05-54.4 0.03-40.27 0.02-31.70 0.02-26.24 0.02-22.33 

5.28-85.34 2.52-55.60 1.66-40.49 1.24-31.70 0.98-26.05 0.82-22.09 
40.00 20.00 13.33 10.00 8.00 6.67 

2.28-91.72 1.08-64.80 0.71-48.71 0.53-38.70 0.42-32.08 0.35-27.35 

6.67-65.2 4.33-48.07 3.21-37.93 2.55-31.24 2.11-26.53 
30.00 20.00 15.00 12.00 10.(X) 

3.70-73.50 2.39-56.07 1.77-45.05 1.40-37.48 1.16-32.03 

12.20-73.80 7.80-55.14 5.75-43.65 4.55-36.10 3.77-30.74 
40.00 26.67 20.(X) 16.00 13.33 

7.68-80.91 4.88-62.78 3.58-50.65 2.83-42.41 2.34-36.39 

18.70-81.30 11.85-61.62 8.68-49.13 6.84-40.72 5.64-34.74 
50.00 33.3.3 25.00 20.(X) 16.67 

12.80-87.20 8.03-68.89 5.85-56.05 4.60-47.(X) 3.79-40.44 

16.33-67.74 11.90-54.30 9.35-45.14 7.70-38.56 
40.00 30.00 24.CX > 20.00 

11.67-74.40 8.45-60.95 6.62-51.38 5.43-44.26 

21.29-73.38 15.38-59.20 12.06-49.38 9.92-42.29 
46.67 35.00 28.00 23.33 

15.87-79.54 11.40-65.70 8.90-55.56 7.29-48.01 

19.10-63.95 14.96-53.50 12.29-45.89 
40.00 32.00 26.67 

14.60-70.10 11.36-59.54 9.30 51.58 

23.05-68.48 17.97 57.48 14.73-49.40 
45.(X> 36.IX) 30.00 

18.08-74.30 14.01-63.36 11.43-55.00 

27.20-72.80 21.12-61.32 17.29 52.80 
50.00 40.00 33.33 

21.75-78.25 16.80 67.04 13.69 58.35 

24.41-65.06 19.93 56.13 
44.00 36.67 

19.75-70.55 16.06-61.57 

27.81-68.69 22.66 59.39 
48.00 40.IXI 

22.84 73.93 18.50-64.69 

25.46 62.56 
43.33 

21.07 67.72 

28.35-65.66 
46.67 

23.73-70.66 

31.3(1 68.70 
50.00 

26.47 73.53 
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- α 

9 5 
9 9 

9 5 
9 9 

9 5 
99 
9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

95 
9 9 

9 5 
9 9 

9 5 
9 9 

95 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

95 
9 9 

a p p e n d i x 2 / 

50 
. 0 0 - 7 . 1 1 

. 0 0 - 1 0 . 0 5 

(.02- 8.88) 
(.00-12.02) 

. 0 5 - 1 0 . 6 6 

. 0 1 - 1 3 . 9 8 

( . 2 7 - 1 2 . 1 9 ) 

( . 1 6 - 1 5 . 6 0 ) 

. 4 9 - 1 3 . 7 2 

. 2 1 - 1 7 . 2 1 

( . 8 8 - 1 5 . 1 4 ) 

( . 4 5 - 1 8 . 7 6 ) 

1 . 2 6 - 1 6 . 5 7 

. 6 9 - 2 0 . 3 2 

( 1 . 7 4 - 1 7 . 9 1 ) 

( 1 . 0 4 - 2 1 . 7 2 ) 

2 . 2 3 - 1 9 . 2 5 

1 . 3 8 - 2 3 . 1 3 

( 2 . 7 8 - 2 0 . 5 4 ) 

( 1 . 8 0 - 2 4 . 4 6 ) 

3 . 3 2 2 1 . 8 2 

2 . 2 2 - 2 5 . 8 0 

( 3 . 9 3 - 2 3 . 0 6 ) 

( 2 . 7 0 - 2 7 . 1 1 ) 

4 . 5 4 2 4 . 3 1 

3 . 1 8 - 2 8 . 4 2 

( 5 . 1 8 - 2 7 . 0 3 ) 

( 3 . 7 2 - 2 9 . 6 7 ) 

5 . 8 2 - 2 6 . 7 5 

4 . 2 5 - 3 0 . 9 2 

( 6 . 5 0 - 2 7 . 9 4 ) 

( 4 . 8 2 - 3 2 . 1 4 ) 

7 . 1 7 2 9 . 1 2 

5 . 4 0 - 3 3 . 3 6 

( 7 . 8 8 3 0 . 2 8 ) 

( 6 . 0 0 3 4 . 5 4 ) 

8 . 5 8 3 1 . 4 4 

6 . 6 0 - 3 5 . 7 3 

( 9 . 3 1 3 2 . 5 8 ) 

( 7 . 2 3 3 6 . 8 8 ) 

1 0 . 0 4 - 3 3 . 7 2 

7 . 8 6 3 8 . 0 4 

( 1 0 . 7 9 3 4 . 8 4 ) 

( 8 . 5 3 3 9 . 1 8 1 

1 1 . 5 4 3 5 . 9 5 

9 . 2 0 - 4 0 . 3 2 

( 1 2 . 3 0 3 7 . 0 6 ) 

( 9 . 8 8 4 1 . 4 4 ) 

1 3 . 0 7 3 8 . 1 7 

1 0 . 5 6 4 2 . 5 6 

( 1 3 . 8 4 3 9 . 2 7 ) 

( 1 1 . 2 5 - 4 3 . 6 5 ) 

100 
. 0 0 - 3 . 6 2 

. 0 0 - 5 . 1 6 

. 0 2 - 5 . 4 5 

. 0 0 - 7 . 2 1 

. 2 4 - 7 . 0 4 

. 1 0 - 8 . 9 4 

. 6 2 - 8 . 5 3 

. 3 4 - 1 0 . 5 7 

I . 1 0 - 9 . 9 3 

.68-12.08 
1 . 6 4 - 1 1 . 2 9 

1 . 1 0 - 1 3 . 5 3 

2 . 2 4 - 1 2 . 6 0 

1 . 5 6 - 1 4 . 9 3 

2 . 8 6 - 1 3 . 9 0 

2.08-16.28 
3 . 5 1 - 1 5 . 1 6 

2 . 6 3 - 1 7 . 6 1 

4 . 2 0 - 1 6 . 4 0 

3 . 2 1 1 8 . 9 2 

4 . 9 0 - 1 7 . 6 2 

3 . 8 2 - 2 0 . 2 0 

5 . 6 5 1 8 . 8 0 

4 . 4 8 - 2 1 . 4 2 

6 . 4 0 - 1 9 . 9 8 

5 . 1 5 - 2 2 . 6 5 

7 . 1 1 2 1 . 2 0 

5 . 7 7 - 2 3 . 9 2 

7 . 8 7 - 2 2 . 3 7 

6 . 4 6 2 5 . 1 3 

8 . 6 4 2 3 . 5 3 

7 . 1 5 - 2 ( 1 . 3 3 

9 . 4 5 2 -1 .66 

7 . 8 9 2 7 . 4 Ί 

1 0 . 2 5 2 5 . 7 4 
8 . 6 3 2 8 . 6 5 

I I . 0 6 2 6 . 9 2 
9 . 3 7 2 9 8 0 

11.86 28 06 
1 0 . 1 0 3 0 . 9 6 

1 2 . 6 6 2 9 . 1 9 

1 0 . 8 4 3 2 . 1 2 

1 3 . 5 1 3 0 . 2 8 

1 1 . 6 3 3 3 . 2 4 

1 4 . 3 5 3 1 . 3 7 

1 2 . 4 1 3 4 . 3 5 

1 5 . 1 9 3 2 . 4 7 

1 3 . 6 0 3 -1 .82 

1 6 . 0 3 3 3 . 5 ( i 

1 3 . 9 8 3 6 . 5 7 

1 6 8 8 3 4 . 6 6 

1 1 .77 3 7 . 6 9 

η 
200 

. 0 0 - 1 . 8 3 

.00- 2.62 

. 1 2 - 3 . 5 7 

. 0 5 - 4 . 5 5 

. 5 5 - 5 . 0 4 

. 3 4 - 6 . 1 7 

1 . 1 1 - 6 . 4 2 

. 7 8 - 7 . 6 5 

1 . 7 4 - 7 . 7 3 

I . 3 1 - 9 . 0 5 

2 . 4 3 - 9 . 0 0 

1 . 8 9 - 1 0 . 4 0 

3 . 1 8 - 1 0 . 2 1 

2 . 5 7 - 1 1 . 6 6 

3 . 8 8 - 1 1 . 4 7 

3 . 1 7 1 2 . 9 9 

4 . 7 0 - 1 2 . 6 1 

3 . 9 3 1 4 . 1 8 

5 . 4 6 1 3 . 8 2 

4 . 6 1 1 5 . 4 4 

6 . 2 2 - 1 5 . 0 2 

5 . 2 9 - 1 6 . 7 0 

7 . 0 5 1 6 . 1 6 

6 . 0 6 1 7 . 8 7 

7 . 8 7 - 1 7 . 3 0 

6 . 8 3 - 1 9 . 0 5 

8 . 7 0 - 1 8 . 4 4 

7 . 6 0 - 2 0 . 2 3 

9 . 5 3 1 9 . 5 8 

8 . 3 8 - 2 1 . 4 0 

1 0 . 3 6 2 0 . 7 2 

9 . 1 5 2 2 . 5 8 

1 1.22 2 1 . 8 2 

9 . 9 7 2 3 . 7 1 

1 2 . 0 9 2 2 . 9 2 

1 0 . 7 9 2 4 . 8 4 

1 2 . 9 6 2 4 . 0 2 

I I . 6 1 2 5 . 9 ( , 

1 3 . 8 2 2 5 . 1 2 

1 2 . 4 3 27.1 >9 

1 -1 .69 2 6 . 2 2 

1 3 . 2 6 2 8 . 2 2 

1 5 . 5 8 2 7 . 3 0 

1-1.1 1 2 9 . 3 1 

1 6 . 4 8 2 8 . 3 7 

1 4 . 9 7 - 3 0 . 4 0 

1 7 . 3 7 - 2 9 . 4 5 

1 5 . S 3 3 1 . 5 0 

1 8 . 2 7 - 3 0 . 5 2 

1 6 . 6 8 3 2 . 5 9 

1 9 . 1 6 - 3 1 . 6 0 

1 7 . 5 4 - 3 3 . 6 8 

500 
. 0 0 - 0 . 7 4 

. 0 0 - 1 . 0 5 

. 3 2 - 2 . 3 2 

. 2 2 - 2 . 8 0 

I . 0 6 - 3 . 5 6 
. 8 7 4 . 1 2 

1 . 7 9 - 4 . 8 1 

1 . 5 2 - 5 . 4 4 

2 . 5 3 - 6 . 0 5 

2 . 1 7 - 6 . 7 5 

3 . 2 6 - 7 .2 .9 

2 . 8 3 - 8 . 0 7 

4 . 1 1 - 8 . 4 3 

3 . 6 3 - 9 . 2 4 

4 . 9 6 - 9 . 5 6 

4 . 4 3 - 1 0 . 4 2 

5 . 8 1 - 1 0 . 7 0 

5 . 2 3 1 1 . 6 0 

6 . 6 6 1 1 . 8 3 

6 . 0 4 1 2 . 7 7 

7 . 5 1 1 2 . 9 7 

6 . 8 4 1 3 . 9 5 

8 . 4 1 1 4 . 0 6 

7 . 7 0 1 5 . 0 7 

9 . 3 0 1 5 . 1 6 

8 . 5 6 1 6 . 1 9 

1 0 . 2 0 1 6 . 2 5 

9 . 4 2 1 7 . 3 1 

1 1 . 0 9 1 7 . 3 4 

1 0 . 2 8 1 8 . 4 3 

I I . 9 8 1 8 . 4 4 

1 1 . 1 4 1 9 . 5 5 

1 2 . 9 0 - 1 9 . 5 0 

1 2 . 0 3 - 2 0 . 6 3 

1 3 . 8 2 2 0 . 5 7 

1 2 . 9 2 2 1 . 7 2 

1 4 . 7 4 2 1 . 6 1 

1 3 . 8 1 2 2 . 8 1 

1 5 . 6 6 2 2 . 7 1 

1 4 . 7 1 2 3 . 9 0 

1 6 . 5 8 2 3 . 7 8 

1 5 . 6 0 2 4 . 9 9 

1 7 . 5 2 - 2 4 . 8 3 

1 6 . 5 1 2 6 . 0 5 

1 8 . 4 5 2 5 . 8 8 

1 7 . 4 3 - 2 7 . 1 2 

1 9 . 3 9 2 6 . 9 3 

1 8 . 3 4 - 2 8 . 1 8 

2 0 . 3 3 - 2 7 . 9 9 

1 9 . 2 6 2 9 . 2 5 

2 1 . 2 6 - 2 9 . 0 4 

2 0 . 1 7 - 3 0 . 3 1 

1000 
. 0 0 - 0 . 3 7 

. 0 0 - 0 . 5 3 

. 4 8 - 1 . 8 3 

. 3 7 - 2 . 1 3 

1 . 2 9 - 3 . 0 1 

I . 1 3 - 3 . 3 6 

2 . 1 1 - 4 . 1 9 

I . 8 8 - 4 . 5 9 

2 . 9 2 - 5 . 3 6 

2 . 6 4 - 5 . 8 2 

3 . 7 3 - 6 . 5 4 

3 . 3 9 - 7 . 0 5 

4 . 6 3 - 7 . 6 4 

4 . 2 5 - 8 . 1 8 

5 . 5 2 - 8 . 7 3 

5 . 1 2 - 9 . 3 1 

6 . 4 2 - 9 . 8 3 

5 . 9 8 - 1 0 . 4 3 

7 . 3 2 - 1 0 . 9 . 3 

6 . 8 4 - 1 1 . 5 6 

8 . 2 1 - 1 2 . 0 3 

7 . 7 0 - 1 2 . 6 9 

9 . 1 4 1 3 . 1 0 

8 . 6 0 1 3 . 7 8 

1 0 . 0 6 1 4 . 1 6 

9 . 5 1 1 4 . 8 6 

1 0 . 9 9 - 1 5 . 2 3 

1 0 . 4 1 - 1 5 . 9 5 

I I . 9 2 1 6 . 3 0 

I I . 3 1 - 1 7 . 0 4 

1 2 . 8 4 1 7 . 3 7 

1 2 . 2 1 1 8 . 1 3 

1 3 . 7 9 - 1 8 . 4 2 

1 3 . 1 4 - 1 9 . 1 9 

1 4 . 7 3 1 9 . 4 7 

1 4 . 0 7 - 2 0 . 2 5 

1 5 . 6 7 - 2 0 . 5 2 

1 4 . 9 9 - 2 1 . 3 2 

1 6 . 6 2 - 2 1 . 5 7 

1 5 . 9 2 2 2 . 3 8 

1 7 . 5 6 2 2 . 6 2 

1 6 . 8 4 2 3 . 4 5 

1 8 . 5 2 2 3 . 6 5 

1 7 . 7 8 2 4 . 5 0 

1 9 . 4 7 2 4 . 6 9 

1 8 . 7 2 2 5 . 5 5 

2 0 . 4 3 2 5 . 7 3 

1 9 . 6 7 2 6 . 5 9 

2 1 . 3 9 2 6 . 7 7 

2 0 . 6 1 2 7 . 6 4 

2 2 . 3 4 2 7 . 8 1 

2 1 . 5 5 2 8 . 6 9 
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95 
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99 
95 
99 
95 
99 
95 
99 
95 
99 
95 
99 
95 
99 
95 
99 
95 
99 
95 
99 
95 
9 9 

9 5 

9 9 

95 
99 
95 
99 
95 
9 9 

95 
99 
9 5 
9 9 

9 5 
9 9 

9 5 
9 9 

95 
99 
95 
9 9 

95 
9 9 

95 
9 9 

95 
99 

η 
50 100 200 500 1000 

14.63-40.34 
11.98-44.73 

(15.45-41.40) 
(12.71-45.79) 

16.23-42.48 
13.42-46.88 

(17.06-43.54) 
(14.18-47.92) 

17.87-44.61 
14.91-48.99 

(18.71-45.65) 
(15.68-50.02) 
19.55-46.68 
16.46-51.05 

(20.38-47.72) 
(17.23-52.08) 

21.22-48.76 
18.01-53.11 

(22.06-49.80) 
(18.78-54.14) 
22.93-50.80 
19.60-55.13 

(23.80-51.81) 
(20.42-56.12) 
24.67-52.81 
21.23-57.10 

(25.54-53.82) 
(22.05-58.09) 
26.41-54.82 
22.87-59.08 

(27.31-55.80) 
(23.72-60.04) 
28.21-56.78 
24.57-60.99 

(29.ΙΟ 57.76) 
(25.42-61.95) 
30.00 58.74 
26.27 62.90 

(30.90 59.71) 
(27.12 63.86) 
31.83-60.67 
28 .0064 .78 

(32.75-61.62) 
(28.89 65.69) 

33.68 62.57 
29.78-66.61 

(34.61 63.52) 
(30.67 67.53) 
35.53-64.47 
31.55 68.45 

17.75-35.72 
15.59-38.76 
18.62-36.79 
16.42 39.84 
19.50-37.85 
17.25-40.91 
20.37-38.92 
18.07-41.99 
21.24-39.98 
18.90-43.06 
22.14-41.02 
19.76-44.11 
23.04-42.06 
20.61-45.15 
23.93-43.10 
21.47-46.19 
24.83-44.15 
22.33-47.24 
25.73-45.19 
23.19-48.28 
26.65-46.20 

24.08-49.30 
27.57 47.22 
24.96-50.31 
28.49-48.24 
25.85-51.32 
29.41-49.26 
26.74 52.34 
30.33-50.28 
27.63-53.35 
31.27-51.28 
28.54-54.34 
32.21 52.28 
29.45-55.33 
33.15 53.27 
30.37-56.32 
34.09 54.27 
31.28 57.31 
35.03 55.27 
32.19 58.30 
35.99 56.25 
33.13 59.26 
36.95-57.23 
34.07-60.22 
37.91-58.21 
35.01-61.19 
38.87-59.19 
35.95-62.15 
39.83-60.17 
36.89-63.11 

20.08-32.65 
18.43-34.75 
20.99-33.70 
19.31 35.81 
21.91-34.76 
20.20-36.88 
22.82-35.81 
21.08-37.94 
23.74-36.87 
21.97-39.01 
24.67-37.90 
22.88-40.05 
25.61-38.94 
23.79-41.09 
26.54-39.97 
24.69-42.13 
27.47-41.01 
25.60-43.18 
28.41-42.04 
26.51-44.22 
29.36-43.06 
27.44 45.24 
30.31-44.08 
28.37-46.26 
31.25-45.10 
29.30-47.29 
32.20-46.12 
30.23 48.31 
33.15 47.14 
31.16-49.33 
34.12 48.15 
32.11 50.33 
35.08-49.16 
33.06-51.33 
36.05 50.16 
34.01 52.34 
37.01-51.17 
34.95-53.34 
37.97 52.17 
35.90-54.34 
38.95-53.17 
36.87-55.33 
39.93-54.16 
37.84-56.31 

40.91-55.15 
38.80-57.30 
41.89-56.14 
39.77-58.28 
42.86-57.14 
40.74-59.26 

22.21-30.08 
21.10-31.36 
23.16-31.11 
22.04-32.41 
24.11-32.15 
22.97-33.46 
25.06-33.19 
23.90-34.51 
26.01-34.23 
24.83-35.55 
26.97-35.25 
25.78-36.59 
27.93-36.28 
26.73-37.62 
28.90-37.31 
27.68-38.65 
29.86-38.33 
28.62-39.69 
30.82-39.36 

29.57-40.72 
31.79-40.38 
30.53-41.74 
32.76-41.39 
31.49-42.76 
33.73-42.41 
32.45-43.78 
34.70-43.43 
33.42 44.80 
35.68-44.44 
34.38 45.82 
36.66 45.45 
35.35-46.83 
37.64-46.46 
36.32-47.83 
38.62 47.46 
37.29-48.84 
39.60-48.47 
38.27-49.85 
40.58-49.48 
39.24-50.86 
41.57-50.48 
40.22-51.85 
42.56-51.48 
41.21 52.85 
43.55-52.47 
42.19-53.85 
44.54 53.47 
43.18 54.84 
45.53-54.47 
44.16-55.84 

23.31-28.83 
22.50-29.73 
24.27-29.86 
23.46-30.76 
25.24 30.89 
24.41-31.80 
26.21-31.92 
25.37-32.84 
27.17-32.95 
26.32-33.87 
28.15-33.97 
27.29-34.90 
29.12-34.99 
28.25-35.92 
30.09-36.01 
29.22-36.95 
31.07-37.03 
30.18-37.97 
32.04 38.05 
31.14 39.00 
33.02-39.06 
32.12-40.02 
34.00-40.07 
33.09-41.03 
34.98-41.09 
34.07-42.05 

35.97-42.10 
35.04-43.06 
36.95 43.11 
36.02-44.08 
37.93-44.12 
37.00-45.09 
38.92-45.12 
37.98-46.10 
39.91 46.13 
38.96-47.10 
40.90-47.14 
39.95-48.11 
41.89-48.14 
40.93-49.12 
42.88 49.14 
41.92-50.12 
43.87-50.14 
42.91 51.12 
44.87 51.14 
43.90-52.12 
45.86 52.14 
44.89 53.12 
46.85-53.15 
45.89 54.11 
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TABLL X 

The ; transformation 

r Ζ 

0.00 0.0000 
0.01 0.0100 
0.02 0.0200 
0.03 0.0300 
0.04 0.04(X> 

0.05 0.0500 
0.06 0.0601 
0.07 0.0701 
0.08 0.0802 
0.09 0.0902 

0.10 0.1003 
0.11 0.1104 
0.12 0.1206 
0.13 0.1307 
0.14 0.1409 

0.15 0.1511 
0.16 0.1614 
0.17 0.1717 
0.18 0.1820 
0.19 0.1923 

0.20 0.2027 
0.21 0.2132 
0.22 0.2237 
0.23 0.2342 
0.24 0.244 8 

0.25 0.2554 
0.26 0.2661 
0.27 0.2769 
0.28 0.2877 
0.29 0.2986 

0.30 0.3045 
0.31 0.3205 
0.32 0.3316 
0.33 0.3428 
0.34 0.3541 

0.35 0.3654 
0.36 0.3769 
0.37 0.3884 
0.38 0.4(K)1 
0.39 0.4118 

0.40 0.4236 
0.41 0.4.356 
0.42 0.4477 
0 4 3 0.4599 
0.44 0.4722 

0.45 0.4 847 
0.46 0.4973 
0.47 0.5101 
0.48 0.5230 
O 49 05V,1 

correlation coefficient r 

r Ζ 

0.50 0.5493 
0.51 0.5627 
0.52 0.5763 
0.53 0.5901 
0.54 0.6042 

0.55 0.6184 
0.56 0.6328 
0.57 0.6475 
0.58 0.6625 
0.59 0.6777 

0.60 0.6931 
0.61 0.7089 
0.62 0.7250 
0.63 0.7414 
0.64 0.7582 

0.65 0.7753 
0.66 0.7928 
0.67 0.8107 
0.68 0.8291 
0.69 0.8480 

0.70 0.8673 
0.71 0.8872 
0.72 0.9076 
0.73 0.9287 
0.74 0.9505 

0.75 0.9730 
0.76 0.9962 
0.77 1.0203 
0.78 1.0454 
0.79 1.0714 

0.80 1.0986 
0.81 1.1270 
0.82 1.1568 
0.83 1.1881 
0.84 1.2212 

0.85 1.2562 
0.86 1.2933 
0.87 1.3331 
0.88 1.3758 
0.89 1.4219 

0.90 1.4722 
0.91 1.5275 
0.92 1.5890 
0.93 1.6584 
0.94 1.7380 

0.95 1.8318 
0.96 1.9459 
0.97 2.0923 
0.98 2.2976 
0.99 2.6467 
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TABLE XI 
Critical values of U, the Mann-Whitney statistic 

α 

n \ n2 0.10 0.05 0.025 0.01 0.005 0.001 

3 2 6 
3 8 9 

4 2 8 
3 11 12 
4 13 15 16 

5 2 9 10 
3 13 14 15 
4 16 18 19 20 
5 20 21 23 24 25 

6 2 11 12 
3 15 16 17 
4 19 21 22 23 24 
5 23 25 27 28 29 
6 27 29 31 33 34 

7 2 13 14 
3 17 19 20 21 
4 22 24 25 27 28 
5 27 29 30 32 34 
6 31 34 36 38 39 42 
7 36 38 41 43 45 48 

8 2 14 15 16 
3 19 21 22 24 
4 25 27 28 30 .31 
5 30 32 34 36 38 40 
6 35 38 40 42 44 47 
7 40 43 46 49 50 54 
8 45 49 51 55 57 60 

9 1 9 
2 16 17 18 
3 22 23 25 26 27 
4 27 30 32 33 35 
5 33 36 38 40 42 44 
6 39 42 44 47 49 52 
7 45 48 51 54 56 60 
8 50 54 57 61 63 67 
9 56 60 64 67 70 74 

10 1 10 
2 17 19 20 
3 24 26 27 29 30 
4 30 33 35 37 .38 40 
5 37 39 42 44 46 49 
6 43 46 49 52 54 57 
7 49 53 56 59 6) 65 
8 56 60 63 67 69 74 
9 62 66 70 74 77 82 

10 68 73 77 81 84 90 

Noli-: Critical values are tahulaled for two samples of sizes and n2 . where > UP 1 0 "·, "ι ~ The 
upper bounds of the critical values are furnished so that the sample statistic U, has to be greater than a given 
critical value to be significant. The probabilities at the heads of the columns are based on a one-tailed lest and 
represent the proport ion of the area of the distribution of 1' in one tail beyond the critical value, f or a two-tailed 
test use the same critical values but double the probability at the heads of the columns. This table was extracted 
from a more extensive one (table 11.4) in D. B. Owen. Handbook of Statistical Tables (Addison-Wesley Publishing 
Co , Reading, Mass.. 1962): Courtesy of U.S. Atomic Energy Commission, with permission of the publishers. 



XI 
led 

η· 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

a p p e n d i x 2 / s t a t i s t i c a l t a b l e s 

α 
0.10 0.05 0.025 0.01 0.005 0.001 

11 
19 21 22 
26 28 30 
33 36 38 
40 43 46 
47 50 53 
54 58 61 
61 65 69 
68 72 76 
74 79 84 
81 87 91 
12 
20 22 23 
28 31 32 
36 39 41 
43 47 49 
51 55 58 
58 63 66 
66 70 74 
73 78 82 
81 86 91 
88 94 99 
95 102 107 
13 
22 24 25 
30 33 35 
39 42 44 
47 50 53 
55 59 62 
63 67 71 
71 76 80 
79 84 89 
87 93 97 
95 101 106 

103 109 115 
111 118 124 

14 
24 25 27 
32 35 37 
41 45 47 
50 54 57 
59 63 67 
67 72 76 
76 81 86 
85 90 95 
93 99 104 

102 108 114 
110 117 123 
119 126 132 
127 135 141 

32 33 
40 42 44 
48 50 53 
57 59 62 
65 67 71 
73 75 80 
81 83 89 
88 92 98 
96 100 106 

34 35 
42 45 48 
52 54 58 
61 63 68 
70 72 77 
79 81 87 
87 90 96 
96 99 106 

104 108 115 
113 117 124 

26 
37 38 
47 49 51 
56 58 62 
66 68 73 
75 78 83 
84 87 93 
94 97 103 

103 106 113 
112 116 123 
121 125 133 
130 135 143 

28 
40 41 
50 52 55 
60 63 67 
71 73 78 
81 83 89 
90 94 100 

100 104 111 
110 114 121 
120 124 132 
130 134 143 
139 144 153 
149 154 164 
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TABLE X I 

continued 

" l n2 0.10 0.05 0.025 
α 

0.01 0.005 0.001 

15 1 15 
2 25 27 29 30 
3 35 38 4 0 42 43 
4 44 48 5 0 53 55 59 
5 53 57 61 64 67 71 
6 63 67 71 75 78 83 
7 72 77 81 86 89 95 
8 81 87 91 96 100 106 
9 9 0 96 101 107 111 118 

10 99 106 111 117 121 129 
11 108 115 121 128 132 141 
12 117 125 131 138 143 152 
13 127 134 141 148 153 163 
14 136 144 151 159 164 174 
15 145 153 161 169 174 185 

16 1 16 
2 27 29 31 32 
3 37 40 42 45 46 
4 47 50 53 57 59 62 
5 57 61 65 68 71 75 
6 67 71 75 80 83 88 
7 76 82 86 91 94 101 
8 86 92 97 102 106 113 
9 96 102 107 113 117 125 

10 106 112 118 124 129 137 
11 115 122 129 135 140 149 
12 125 132 139 146 151 161 
13 134 143 149 157 163 173 
14 144 153 160 168 174 185 
15 154 163 170 179 185 197 
16 163 173 181 190 196 208 

17 1 17 
2 28 31 32 34 
3 39 42 45 47 49 51 
4 50 53 57 60 62 66 
5 60 65 68 72 75 80 
6 71 76 80 84 87 93 
7 81 86 91 96 100 106 
8 91 97 102 108 112 119 
9 101 108 114 120 124 132 

10 112 119 125 132 136 145 
11 122 130 136 143 148 158 
12 132 140 147 155 160 170 
13 142 151 158 166 172 183 
14 153 161 169 178 184 195 
15 163 172 180 189 195 208 
16 173 183 191 201 207 220 
17 183 193 202 212 21c> 232 



XI 
ed 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
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0.10 0.05 0.025 
a 

0.01 0.005 0.001 

18 
30 32 34 36 
41 45 47 50 52 54 
52 56 60 63 66 69 
63 68 72 76 79 84 
74 80 84 89 92 98 
85 91 96 102 105 112 
96 103 108 114 118 126 

107 114 120 126 131 139 
118 125 132 139 143 153 
129 137 143 151 156 166 
139 148 155 163 169 179 
150 159 167 175 181 192 
161 170 178 187 194 206 
172 182 190 200 206 219 
182 193 202 212 218 232 
193 204 213 224 231 245 
204 215 225 236 243 258 

18 19 
31 34 36 37 38 
43 47 50 53 54 57 
55 59 63 67 69 73 
67 72 76 80 83 88 
78 84 89 94 97 103 
90 96 101 107 111 118 

101 108 114 120 124 132 
113 120 126 133 138 146 
124 132 138 146 151 161 
136 144 151 159 164 175 
147 156 163 172 177 188 
158 167 175 184 190 202 
169 179 188 197 203 216 
181 191 200 210 216 230 
192 203 212 222 230 244 
203 214 224 235 242 257 
214 226 236 248 255 271 
226 238 248 260 268 284 

19 20 
33 36 38 39 40 
45 49 52 55 57 60 
58 62 66 70 72 77 
70 75 80 84 87 93 
82 88 93 98 102 108 
94 101 106 112 116 124 

106 113 119 126 130 139 
118 126 132 140 144 154 
130 138 145 153 158 168 
142 151 158 167 172 183 
154 163 171 180 186 198 
166 176 184 193 200 212 
178 188 197 207 213 226 
190 2<X> 210 220 227 241 
201 213 222 233 241 255 
213 225 235 247 254 270 
225 237 248 260 268 284 
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t a b l e X I I 

Critical values of the Wilcoxon rank sum. 

nominal α 
0.05 0.025 0.01 0.005 

η Τ a Τ α Τ α Τ α 

5 0 .0312 
1 .0625 

6 2 .0469 0 .0156 
3 .0781 1 .0312 

7 3 .0391 2 .0234 0 .0078 
4 .0547 3 .0391 1 .0156 

8 5 .0391 3 .0195 1 .0078 0 .0039 
6 .0547 4 .0273 2 .0117 1 .0078 

9 8 .0488 5 .0195 3 .0098 1 .0039 
9 .0645 6 .0273 4 .0137 2 .0059 

10 10 .0420 8 .0244 5 .0098 3 .0049 
11 .0527 9 .0322 6 .0137 4 .0068 

11 13 .0415 10 .0210 7 .0093 5 .0049 
14 .0508 11 .0269 8 .0122 6 .0068 

12 17 .0461 13 .0212 9 .0081 7 .0046 
18 .0549 14 .0261 10 .0105 8 .0061 

13 21 .0471 17 .0239 12 .<Χ)85 9 ,<Χ)40 
22 .0549 18 .0287 1.3 .0107 10 .(Χ)52 

14 25 .0453 21 .0247 15 .0083 12 .0043 
26 .0520 22 .0290 16 .0101 13 .0054 

15 30 .0473 25 .0240 19 .0090 15 .0042 
31 .0535 26 .0277 20 .0108 16 .0051 

16 35 .0467 29 .0222 23 .0091 19 .0046 
36 .0523 30 .0253 24 .0107 20 .0055 

17 41 .0492 34 .0224 27 .0087 23 .0047 
42 .0544 35 .0253 28 .0101 24 .0055 

18 47 .0494 4 0 .0241 32 .0091 27 .0045 
48 .0542 41 .0269 33 .0104 28 .0052 

19 53 .0478 46 .0247 37 .0090 32 ,<Χ>47 
54 .0521 47 .0273 38 .0102 33 .0054 

20 60 .0487 52 .0242 4 .3 .0096 37 .0047 
61 .0527 53 .0266 4 4 .0107 38 .(Χ)53 

Note This tabic furnishes critical values Tor the one-tailed test of significance of the tank sum / , obtained in 
Wileoxon's matched-pair's signed-ranks lest Since the exact probability level desired cannot be obtained with 
integral critical values of T, two such values and iheir attendant probabilities bracketing the desired signlicance 
level are furnished. Thus, to find the significant 1**» values for κ -- W we note the two critical of / . Μ and 3K, 
in the table. H ie probabilities corresponding to these two values of I are 0.0090 and 0.0102. Clearly a rank sum 
of Ί\ 37 would have a probability of less than 0.01 and would be considered significant by the stated criterion. 
I or two-tailed tests in which the alternative hypothesis is that the pairs could diller in either direction, double 
the probabilities .stated at the head of the table. For sample sizes η > 59 compute 

I 7, n(n + 1)1 / ln(n + I)(2η + 1) 
" Ί Λ 4 J / V 24 
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TABLE X I I 

continued 

n o m i n a l α 
0.05 0.025 0.01 0.005 

η Τ α Τ α Τ α Τ α 

21 67 .0479 58 .0230 49 .0097 42 .0045 
68 .0516 59 .0251 50 .0108 43 .0051 

22 75 .0492 65 .0231 55 .0095 48 .0046 
76 .0527 66 .0250 56 .0104 49 .0052 

23 83 .0490 73 .0242 62 .0098 54 .0046 
84 .0523 74 .0261 63 .0107 55 .0051 

24 91 .0475 81 .0245 69 .0097 61 .0048 
92 .0505 82 .0263 70 .0106 62 .0053 

25 100 .0479 89 .0241 76 .0094 68 .0048 
101 .0507 90 .0258 77 .0101 69 .0053 

26 110 .0497 98 .0247 84 .0095 75 .0047 
111 .0524 99 .0263 85 .0102 76 .0051 

27 119 .0477 107 .0246 92 .0093 83 .0048 
120 .0502 108 .0260 93 .0100 84 .0052 

28 130 .0496 116 .0239 101 .0096 91 .0048 
131 .0521 117 .0252 102 .0102 92 .0051 

29 140 .0482 126 .0240 110 .0095 100 .0049 
141 .0504 127 .0253 111 .0101 101 .0053 

30 151 .0481 137 .0249 120 .0098 109 .0050 
152 .0502 138 .0261 121 .0104 110 .0053 

31 163 .0491 147 .0239 130 .(Χ)99 118 .0049 
164 .0512 148 .0251 131 .0105 119 .0052 

32 175 .0492 159 .0249 140 .0097 128 .0050 
176 .0512 160 .0260 141 .0103 129 .0053 

33 187 .0485 170 .0242 151 .0099 138 .(Χ)49 
188 .0503 171 .0253 152 .0104 139 ,(Χ)52 

34 2(X) .0488 182 .0242 162 .0098 148 .(Χ)48 
201 .0506 183 .0252 163 .0103 149 .0051 

35 213 .0484 195 .0247 173 .0096 159 .0048 
214 .0501 196 .0257 174 .0100 160 .0051 
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t a b l e X I I 

continued 

n o m i n a l α 
0 . 0 5 0 . 0 2 5 0 . 0 1 0 . 0 0 5 

η Τ α Τ α Τ α Τ α 

36 227 .0489 208 .0248 185 .0096 171 .0050 
228 .0505 209 .0258 186 .0100 172 .0052 

37 241 .0487 221 .0245 198 .0099 182 .0048 
242 .0503 222 .0254 199 .0103 183 .0050 

38 256 .0493 235 .0247 211 .0099 194 .0048 
257 .0509 236 .0256 212 .0104 195 .0050 

39 271 .0493 249 .0246 224 .0099 207 .0049 
272 .0507 250 .0254 225 .0103 208 .0051 

40 286 .0486 264 .0249 238 .0100 220 .0049 
287 .0500 265 .0257 239 .0104 221 .0051 

41 302 .0488 279 .0248 252 .0100 233 .0048 
303 .0501 280 .0256 253 .0103 234 .0050 

42 319 .0496 294 .0245 266 .0098 247 .0049 
320 .0509 295 .0252 267 .0102 248 .0051 

43 336 .0498 310 .0245 281 .0098 261 .0048 
337 .0511 311 .0252 282 .0102 262 .0050 

44 353 .0495 327 .0250 296 .0097 276 .0049 
354 .0507 328 .0257 297 .0101 277 .0051 

45 371 .0498 343 .0244 312 .0098 291 .(Χ)49 
372 .0510 344 .0251 313 .0101 292 .0051 

46 389 .0497 361 .0249 328 .0098 307 .0050 
390 .0508 362 .0256 329 .0101 308 .0052 

47 407 .0490 378 .0245 345 .0099 322 .0048 
408 .0501 379 .0251 346 .0102 323 .0050 

48 426 .0490 396 .0244 362 .0099 339 .0050 
427 .0500 397 .0251 363 .0102 340 .(Χ)51 

49 446 .0495 415 .0247 379 .0098 355 .0049 
4 4 7 .0505 416 .0253 380 .0100 356 .0050 

50 466 .0495 434 .0247 397 .0098 373 .0050 
467 .0506 435 .0253 398 .0101 374 .0051 
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TABLE XIII 

Critical values of the two-sample Kolmogorov-Smirnov statistic. 

«2 

η , a 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
2 . 0 5 16 18 2 0 2 2 2 4 26 2 6 2 8 3 0 32 3 4 3 6 3 8 3 8 4 0 4 2 4 4 4 6 

. 0 2 5 2 4 2 6 2 8 3 0 32 34 3 6 3 8 4 0 4 0 4 2 4 4 16 4 8 

.01 - 3 8 4 0 4 2 4 4 4 6 4 8 5 0 

3 . 0 5 15 1 8 21 21 2 4 2 7 3 0 3 0 3 3 3 6 3 6 3 9 4 2 4 5 4 5 4 8 5 1 51 5 4 5 7 6 0 
. 0 2 5 - - 18 21 2 4 2 7 3 0 3 0 3 3 36 3 9 3 9 42 4 5 4 8 51 51 5 4 5 7 6 0 6 0 6 3 
.01 - - 2 7 3 0 3 3 3 6 39 4 2 4 2 4 5 4 8 51 5 4 5 7 5 7 6 0 6 3 6 6 6 9 

4 . 0 5 16 2 0 2 0 2 4 2 8 2 8 3 0 3 3 3 6 39 4 2 4 4 4 8 4 8 5 0 5 3 6 0 5 9 6 2 6 4 6 8 6 8 
. 0 2 5 - - 2 0 2 4 2 8 2 8 3 2 3 6 3 6 4 0 4 4 4 4 4 5 5 2 5 2 5 4 5 7 6 4 6 3 6 6 6 9 72 7 5 
.01 - - - - 2 4 2 8 32 3 6 3 6 4 0 4 4 4 8 4 8 52, 5 6 6 0 6 0 6 4 6 8 7 2 72 76 8 0 84 

5 . 0 5 1 5 2 0 2 5 2 4 2 8 3 0 3 5 4 0 3 9 4 3 4 5 4 6 5 5 5 4 5 5 6 0 6 1 6 5 6 9 7 0 72 7 6 8 0 
. 0 2 5 - - 2 0 2 5 3 0 3 0 3 2 3 6 4 0 4 4 4 5 4 7 51 5 5 5 9 6 0 6 5 6 6 7 5 7 4 7 8 8 0 81 9 0 
.01 - 2 5 3 0 3 5 3 5 4 0 4 5 4 5 5 0 5 2 5 6 6 0 6 4 6 8 7 0 71 8 0 8 0 8 3 87 9 0 9 5 

6 . 0 5 18 2 0 2 4 3 0 3 0 3 4 3 9 4 0 4 3 4 8 5 2 5 4 5 7 6 0 6 2 72 7 0 72 7 5 7 8 8 0 9 0 8 8 
. 0 2 5 - 18 2 4 3 0 3 6 3 5 3 6 4 2 4 4 4 8 5 4 5 4 5 8 6 3 6 4 6 7 7 8 7 6 7 8 81 8 6 8 6 9 6 9 6 
.01 2 4 3 0 3 6 3 6 4 0 4 5 4 8 5 4 6 0 6 0 6 4 6 9 72 7 3 84 8 3 8 8 9 0 9 2 9 7 102 1 0 7 

7 . 0 5 21 24 2 8 3 0 4 2 4 0 4 2 4 6 4 8 5 3 5 6 6 3 6 2 6 4 6 8 7 2 7 6 7 9 9 1 84 8 9 9 2 9 7 
. 0 2 5 21 2 8 3 0 3 5 4 2 41 4 5 4 9 5 2 5 6 5 8 7 0 6 8 7 3 77 8 0 84 8 6 9 8 9 6 9 8 102 1 0 5 
.01 2 8 3 5 3 6 4 2 4 8 4 9 5 3 5 9 6 0 6 5 77 7 5 77 84 87 9 1 9 3 1 0 5 1 0 3 1 0 8 112 1 1 5 

S . 0 5 16 21 2 8 3 0 34 4 0 4 8 4 6 4 8 5 3 6 0 6 2 6 4 6 7 8 0 77 8 0 82 8 8 8 9 9 4 9 8 104 1 0 4 
. 0 2 5 2 4 2 8 32 3 6 41 4 8 4 8 5 4 5 8 6 4 6 5 7 0 7 4 8 0 8 0 8 6 9 0 9 6 9 7 102 1 0 6 112 1 1 2 
.01 3 2 3 5 4 0 4 8 5 6 5 5 6 0 6 4 6 8 72 7 6 81 8 8 8 8 9 4 9 8 104 1 0 7 1 1 2 1 1 5 1 2 8 1 2 5 

9 .05 18 24 2 8 3 5 3 9 4 2 4 6 5 4 5 3 5 9 6 3 6 5 7 0 7 5 7 8 82 9 0 8 9 9 3 9 9 1 0 1 1 0 6 111 1 1 4 
. 0 2 5 2 7 32 3 6 4 2 4 5 18 6 3 6 0 6 3 6 9 72 7 6 81 8 5 9 0 9 9 9 8 1 0 0 1 0 8 1 1 0 1 1 5 1 2 0 1 2 3 
.01 27 3 6 4 0 4 5 4 9 5 5 6 3 6 3 7 0 7 5 7 8 8 1 9 0 9 4 9 9 1 0 8 1 0 7 111 1 1 7 122 1 2 6 132 1 3 5 

10 . 0 5 2 0 2 7 3 0 4 0 4 0 4 6 4 8 5 3 7 0 6 0 6 6 7 0 7 4 8 0 8 4 8 9 9 2 9 4 1 1 0 1 0 5 1 0 8 1 1 4 1 1 8 1 2 5 
. 0 2 5 3 0 3 6 4 0 4 4 4 9 5 4 6 0 7 0 6 8 72 77 82 9 0 9 0 9 6 1 (X) 1 0 3 1 2 0 1 1 6 1 1 8 1 2 4 1 2 8 1 3 5 
.01 3 0 3 6 4 5 4 8 5 3 6 0 6 3 8 0 77 8 0 84 9 0 1 0 0 1 0 0 1 0 6 1 0 8 1 1 3 1 3 0 1 2 6 1 3 0 1 3 7 1 4 0 1 5 0 

Note· This table furnishes upper critical values of n:n2l), the Kolmogoiov-Smirnov test statistic I) multiplied 
by the two sample sizes m, and ηλ . Sample sizes n, are given at the left margin of the table, while sample sizes 
π ι are given across its top at the heads of the columns. The three values furnished at the intersection of two 
samples sizes represent the following three two-tailed probabilities: 0.05. 0.025, and 0.01 

f o r two samples with m, 16 and /?_> 10, the 5"ό critical value of n { n j ) is K4 Any value of n t n J ) > 84 
will be significant at / ' < 0.05. 

When a one-sided test is desired, approximate probabilities can be obtained from this table by doubling 
the nominal ct values. However, these are not exact, since the distribution of cumulative frequencies is discrete. 

This table was copied from table 55 in F S. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, 
Vol. II (Cambridge University Press, London 1972) with permission of the publishers. 
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TABLE XIII 
continued 

1 1 α 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2 0 21 2 2 2 3 2 4 25 

11 .05 22 30 33 39 4 3 48 53 59 60 77 72 75 82 84 89 9 3 97 102 107 112 121 119 124 129 
.025 30 36 44 48 52 58 6 3 68 77 76 84 87 9 4 9 6 102 107 111 116 123 132 131 137 140 
.01 3 3 4 0 45 54 5 9 6 4 70 77 88 86 91 9 6 102 106 110 118 122 127 134 143 142 150 154 

12 .05 24 30 36 4 3 48 5 3 6 0 6 3 66 72 84 81 86 9 3 96 100 108 108 116 120 124 125 144 138 
.025 24 33 4 0 45 54 56 6 4 6 9 72 76 9 6 84 94 99 104 108 120 120 124 129 134 137 156 150 
.01 - 36 44 50 6 0 6 0 6 8 75 80 86 96 95 104 108 116 119 126 130 140 141 148 149 168 165 

13 .05 26 33 39 45 52 56 62 6 5 70 75 81 91 89 96 101 105 110 114 120 126 130 135 140 145 
.025 26 36 44 47 54 58 6 5 72 77 84 84 104 100 104 111 114 120 126 130 137 141 146 151 158 
.01 - 39 48 52 6 0 65 72 78 84 91 9 5 117 104 115 121 127 131 138 143 150 156 161 166 172 

14 .05 26 36 42 46 54 6 3 64 70 74 82 86 89 112 98 106 111 116 121 126 140 138 142 146 150 
.025 28 39 44 51 58 70 70 76 82 87 9 4 100 112 110 116 122 126 133 138 147 148 154 160 166 
.01 - 42 48 56 64 77 76 84 9 0 9 6 104 104 126 123 126 134 140 148 152 161 164 170 176 182 

15 .05 28 36 44 55 57 62 67 75 80 84 9 3 96 98 120 1 14 116 123 127 135 138 144 149 156 160 
.025 3 0 39 45 5 5 6 3 68 74 81 9 0 94 99 104 110 135 119 129 135 141 150 153 154 163 168 175 
.01 - 42 52 6 0 69 75 81 9 0 100 102 108 115 123 135 133 142 147 152 160 168 173 179 186 195 

16 .05 30 39 48 54 6 0 64 80 78 84 89 96 101 106 114 128 124 128 133 140 145 150 157 168 167 
.025 32 42 5 2 5 9 64 7 3 8 0 85 9 0 96 104 111 116 119 144 136 140 145 156 157 164 169 184 181 
.01 45 56 64 72 77 88 94 100 106 116 121 126 133 160 143 154 160 168 173 180 187 200 199 

17 .05 32 42 48 55 62 6 8 77 82 89 9 3 100 105 111 116 124 136 133 141 146 151 157 163 168 173 
.025 34 45 52 6 0 67 77 80 9 0 9 6 102 108 114 122 129 136 153 148 151 160 166 170 179 183 190 
.01 48 6 0 68 73 84 88 9 9 106 110 119 127 134 142 143 170 164 166 175 180 187 196 203 207 

18 .05 34 45 5 0 6 0 72 72 80 9 0 92 97 108 110 116 123 128 133 162 142 152 159 164 170 180 180 
.025 36 48 54 6 5 78 80 86 9 9 100 107 120 120 126 135 140 148 162 159 166 174 178 184 198 196 
.01 51 60 70 84 87 9 4 108 108 118 126 131 140 147 154 164 180 176 182 189 196 204 216 216 

19 .05 36 45 5 3 61 70 76 82 89 9 4 102 108 114 121 127 133 141 142 171 160 163 169 177 183 187 
.025 38 51 57 66 76 84 9 0 98 103 111 120 126 133 141 145 151 159 190 169 180 185 190 199 205 
.01 38 54 64 71 83 91 9 8 107 113 122 130 138 148 152 160 166 176 190 187 199 204 209 218 224 

2 0 .05 38 48 6 0 65 72 79 88 9 3 110 107 116 120 126 135 140 146 152 160 180 173 176 184 192 2(X) 
.025 4 0 51 64 75 78 86 9 6 100 120 116 124 130 138 150 156 160 166 169 2(X> 180 192 199 208 215 
.01 40 57 6 8 80 88 9 3 104 111 130 127 140 143 152 160 168 175 182 187 220 199 212 219 228 235 

21 .05 38 51 59 69 75 91 89 99 105 112 120 126 140 138 145 151 159 163 173 189 183 189 198 202 
.025 4 0 54 6 3 74 81 98 97 108 116 123 129 137 147 153 157 166 174 180 180 210 203 206 213 220 
.01 42 57 72 80 9 0 105 107 117 126 134 141 150 161 168 173 180 189 199 199 231 223 2.2.7 237 244 

22 .05 40 51 62 70 78 84 94 101 108 121 124 130 138 141 150 157 164 169 176 183 198 194 204 209 
.025 42 57 66 78 86 96 102 1 10 118 132 134 141 148 154 164 170 178 185 192 203 220 214 222 228 
.01 44 6 0 72 83 92 103 112 122 130 143 148 156 164 173 180 187 196 204 212 223 242 237 242 250 

23 .05 42 54 64 72 80 89 98 106 1 14 119 125 135 142 149 157 163 170 177 184 189 194 230 205 216 
.025 44 6 0 69 80 86 9 8 106 115 124 131 137 146 154 163 169 179 184 190 199 206 214 230 226 237 
.01 46 6 3 76 87 97 108 115 126 137 142 149 161 170 179 187 196 204 209 2 1 9 227 237 253 249 262 

24 .05 44 57 68 76 9 0 92 104 111 118 124 144 140 146 156 168 168 180 183 192 198 204 205 240 225 
.025 16 6 0 72 81 96 102 112 120 128 137 156 151 160 168 184 183 198 199 2,08 213 222 226 264 238 
01 48 6 6 80 9 0 102 112 128 132 140 150 168 166 176 1 86 200 203 216 218 22.8 237 242 249 288 262 

25 .(15 •16 6 0 68 80 88 97 104 114 125 129 138 1-15 150 160 167 173 180 187 200 202 2 0 9 216 225 250 
.025 48 6 3 75 9 0 96 105 112 123 135 140 150 158 166 175 181 19() 196 2 0 5 215 2 2 0 228 2 3 7 2.18 2 7 5 
.01 50 6 9 84 95 107 115 125 135 150 154 165 172 182 195 199 207 216 224 2 3 5 244 250 262 262 MX) 
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t a b l e X I V 

Critical values for Kendall's rank correlation coefficient τ 

α 

η 0 . 1 0 0 . 0 5 0 . 0 1 

4 1.000 
5 0.800 1.000 -

6 0.733 0.867 1.000 
7 0.619 0.714 0.905 
8 0.571 0.643 0.786 
9 0.500 0.556 0.722 

10 0.467 0.511 0.644 

11 0.418 0.491 0.600 
12 0.394 0.455 0.576 
13 0.359 0.436 0.564 
14 0.363 0.407 0.516 
15 0.333 0.390 0.505 

16 0.317 0.383 0.483 
17 0.309 0.368 0.471 
18 0.294 0.346 0.451 
19 0.287 0.333 0.439 
20 0.274 0.326 0.421 

21 0.267 0.314 0.410 
22 0.264 0.307 0.394 
23 0.257 0.296 0.391 
24 0.246 0.290 0.377 
25 0.240 0.287 0.367 

26 0.237 0.280 0.360 
27 0.231 0.271 0.356 
28 0.228 0.265 0.344 
29 0.222 0.261 0.340 
30 0.218 0.255 0.333 

31 0.213 0.252 0.325 
32 0.210 0.246 0.323 
33 0.205 0.242 0.314 
34 0.201 0.237 0.312 
35 0.197 0.234 0.304 

36 0.194 0.232 0.302 
37 0.192 0.228 0.297 
38 0.189 0.223 0.292 
39 0.188 0.220 0.287 
40 0.185 0.218 0.285 

Note: This tabic furnishes 0.10, 0.05, and 0.01 critical values for Kendall's rank correlation coefficient τ. The 
probabilities arc for a two-tailed test When a one-tailed test is desired, halve the probabilities at the heads of 
the columns. 

To test the significance of a correlation coefficient, enter the table with the appropriate sample size and 
find the appropriate critical value. For example, for a sample size of 15, the 5% and 1% critical values of τ are 
0.390 and 0.505, respectively. Thus, an observed value of 0.49X would be considered significant at the 5% but 
not at the 1% level. Negative correlations are considered as positive for purposes of this test. For sample sizes 
/i > 40 use the asymptotic approximation given in Box 12.3, step 5. 

The values in this table have been derived from those furnished in table XI of J. V. Bradley, Distribution-Free 
Statistical Tests (Prentice-Hall, F.nylewood Cliffs. Ν .1 , I96X) with permission of the author and publisher. 
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a (number of groups), 134 
a (Κ intercept), 232 
A{ (random group effect), 149, 157 
a (parametric value of Y intercept). 233 
α significance level, 118 
at, (treatment effect), (43 
(a/i),j (interaction effect of ith group of factor 

A and j t h group of factor fl), 195 
A posteriori comparisons , 174 
A priori comparisons , 174 
Absolute expected frequencies, 57 
Acceptance region, 118, 119 
Added c o m p o n e n t d u e t o treatment effects, 

147- 148 
Added variance component a m o n g groups, 

149 
estimation of, 167 168 

Additive coding, 40 
Additivity, assumption in analysis of 

variance, 2 1 4 - 2 1 6 
Adjusted Y values, 258 
Allee, W. C„ 228, 229, 349 
Alternative hypothesis (H,) , 118 126 

Analysis of variance: 
assumptions of, 211 228 

additivity, 214 216 
homogeneity of variances, 213 214 
independence of errors, 212 213 
normality, 214 
randomness, 212 

average sample size (n0), 168 
computat ional rule for, 162 
introduction to, 133 158 
mixed model, 186, 199 
Model I, 148, 154 156 

a posteriori comparisons for, 174 
a priori comparisons for, 174 
planned comparisons a m o n g means, 

173 179 
unplanned comparisons a m o n g means, 

179 181 
Model II, 148 1 5 0 , 1 5 7 158 
partitioning of total sum of squares and 

degrees of freedom, 1 5 0 - 1 5 4 
single-classification, 160 - 1 8 1 . 

with unequal sample sizes, 165 168. 
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Analys is of va r i ance continued 
See also Single-classif icat ion ana lys is 

of va r i ance 
table , 1 5 0 - 1 5 1 
two-way , 185 -207 . 

See also T w o - w a y analys is of va r i ance 
A n g u l a r t r a n s f o r m a t i o n , 218 
A n o v a . See Analys is of va r i ance 
A n t i m o d e , 33 
Arch iba ld , Ε. Ε. Α., 16, 18, 349 
Arcsine t r a n s f o r m a t i o n , 218 
Ar i thme t i c m e a n . 2 8 - 3 0 
Ar i t hme t i c p robab i l i t y g r a p h p a p e r , 86 
Array , 16 
Assoc ia t ion , 312 

degree of, 269 
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A s s u m p t i o n s in regress ion . 233 - 2 3 4 
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β t (fixed t r e a t m e n t effect of f ac to r Β on j t h 

g roup) , 195 
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Bimoda l d i s t r i bu t ion , 33, 85 
Binomia l d i s t r ibu t ion . 54 64. 296 

c l u m p i n g in, 58 - 6 0 
con f idence limits for, 227, Table I X , 333 
genera l f o r m u l a for, 6t 
p a r a m e t e r s of, 60 
repuls ion in, 58 60 
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p a r a m e t r i c (p, q), 60 

Bioassay, 262 
Biological s tat is t ics , t 
B I O M c o m p u t e r p r o g r a m s , 25 
Biomet ry , I 
Bioslat ist ics, I 

h is tory of, 2 4 
b iva r i a l e n o r m a l d i s t r i bu t ion . 272 
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Bivar ia te s c a t t e r g r a m , 272 
Blakeslee, A. K , 209, 349 
Block, B. C., 261, 349 
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Bowen, Γ·., 228, 349 
Brower , L. P., 290, 349 
Brown, A. W. Α., 182, 349 

Brown , F . M., 293. 350 
Bufa. L. M „ 221, 352 

CD (coefficient of dispers ion) , 69 
C T (correc t ion term), 39, 161 
χ2 (chi-square), 112 
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level ot, a n d degrees of f r e e d o m v), 
113, Table IV, 324 

C a l c u l a t o r , 25 
C a r t e r , G . R.. 264, 350 
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C h a r a c t e r , 7 
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relation with paired comparisons test, 
2 7 7 - 2 7 9 

standard error of (s,), 280 
test of difference between, 284, Box 12.2, 

2 8 1 - 2 8 3 
test of significance for, 280 284 

computat ion for, Box 12.2, 281 283 
transformation to z, 283, Table X, 338 

Covariancc, 146, 239, 269, 271 
Cowan, 1. M „ 184, 350 
Critical region, 118 
Crossley, D. A„ 223 
Crovello, T. J., 292 

Cumulative normal curve, 7 9 - 8 0 , 85, 
Table I I , 322 

Curve, 
area under, 75 
cumulative normal, 7 9 - 8 0 , 85 
dosage-mortality, 262 
empirically fitted, 258 
power, 1 2 3 - 1 2 4 

Curvilinear regression, 2 4 6 - 2 4 7 , 260 

df (degrees of freedom), 103, 107 
dy.x (deviation from regression line), 

238, 241 
Dadd, R. H., 313, 350 
Dallal, G. E., 190, 352 
Darwin, C., 3 
Data, 2 

accuracy of, 1 0 - 1 3 
coding of, 4 0 - 4 3 
handling of, 2 4 - 2 6 
precision of, 1 0 - 1 3 
processing of, 25 

Davis, Ε. Α., Jr., 264, 350 
D e Fermat, P., 3 
De Moivre, Α., 3 
Deciles, 32 
Decker, G. C , 265, 350 
Degree of association, 269 
Degrees of freedom ( d f ) , (v), 38, 2 9 8 - 3 0 1 

of a statistic. See the particular statistic 
Density, 75 
Dependent variable, 232 
Dependent variates, comparison of, 258 
Derivative of a function, 232 
Derived variables, 1 3 - 1 4 
Descriptive statistics, 27 43 
Determination, coefficient of, 276 
Deviate, 36 

normal equivalent, 262 
standard, 83 
standard normal, 83 

Deviation(s): 
from the mean (y), 36 

sum of, 37, 314 315 
from regression (dr x). 2 4 0 - 2 4 1 
standard, 36 43, 99 

Difference: 
between two means, 168 173 

computat ion of. Box 8.2, 169 170 
confidence limils of, 170, 173 
significance of, 170, 172 173 
simplified formulas for, 315 316 
standard error of, 173 
t test for, computat ion of, 168 173, 

Box 8.2, 169 170 
t l , equal to F„ 172 173. 207, 316 317 

between a sample variance and a 
parametric variance, tesdng 
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Difference continued 
between two regression coefficients, 

2 5 6 - 2 5 7 
between two variances: 

computat ion of, Box 7.1, 142 
testing significance of, 1 4 2 - 1 4 3 

Di scont inuous variable, 9 
Discrepance, 203 
Discrete variables, 9 
Dispersion: 

coefficient of, 69 
statistics of, 28, 3 4 - 4 3 

Distribution: 
bimodal , 33. 85 
binomial , 5 4 - 6 4 , 296 
bivariate normal, 272 
chi-square, 1 1 2 - 1 1 4 , Table IV, 324 
clumped, 58, 66, 70 
contagious , 59, 66 
F, 1 3 8 - 1 4 2 , Table V, 326 
frequency, 1 4 - 2 4 

function, cumulative and normal, 79 
leptokurtic, 85 
of means, 9 4 - 1 0 0 
mult imodal , 33 
mult inomial , 299, 319 
normal, 16, 7 4 - 9 1 
platykurtic, 85 
Poisson, 6 4 - 7 1 
probability, 47, 56 
repulsed, 5 8 - 6 0 , 66, 71 
Student's /, 106 108, Table I I I , 323 

Distribution-free methods . See 
Nonparametr ic tests 

Dobzhansky , T„ 44, 158, 350 
Dosages , 262 
Dosage-mortal i ty curves, 262 

(random deviation of the /th individual 
of group 11, 155 

F.DS 0 (median effective dose), 33 
Effects: 

main, 194 
random group, 149, 157 
treatment. 143 

F.hrlich, Ρ R., 312 
Empirically fitted curves, 258 
Equality of a sample variance and a 

parametric variance, 129 130 
Error(s): 

independence of, 212 213 
mean square, 153 
standard. See Standard error 
type 1, 116-121 
type II, 117 125 

Frror rate, experimentwise. 178 
Estimate: 

of added variance component , 167 168 

of mean, 41, Box 5.1, 8 8 - 8 9 
of standard deviation, 41, Box 5.1, 8 8 - 8 9 
of value of Y in regression, 237 

Estimators: 
biased, 38 
unbiased, 38, 103 

Events, 50 
independence of, 52 

Expected frequencies, 5 6 - 5 7 
absolute , 57 
binomial, 5 6 - 5 7 
normal, 79 
Poisson, 68 
relative, 5 6 - 5 7 

Expected mean squares, 1 6 3 - 1 6 4 
Expected value, 98 

for Y, given X, 237 
Explained mean square, 251 
Explained sum of squares, 241 
Extrinsic hypothesis, 300 

/ (observed frequency), 57 
/ (absolute expected frequencies), 57 
f i j (observed frequency in row i and 

co lumn j), 311 
,/rcl (relative expected frequency), 57 
F (variance ratio), 138 142 
F, (sample statistics of F distribution), 138 
F\ l v i Vi) (critical value of the F distribution), 

141, Table V, 326 
(maximum variance ratio), 213, 

Table VI, 330 
/ distribution, 138- 142, Table V, 326 

critical value of (F, | v , vj |), 141, Table V, 
326 

sample statistics of (/·,), 138 
F test, one-tailed, 140 
F' test, two-tailed, 141 
f , „ test, 213 
Factorial, mathematical operation, 61 
Firschcin, I. L„ 44, 158, 350 
Fisher, R. Α., 3, 133, 139, 283 
Freedom, degrees of, 38, 298 -301 
Frei, M„ 266, 352 
French, A. R„ 210, 350 
Frequencies: 

absolute expected ( / ) , 57 
observed ( / ) , 57 
relative expected (/„.,), 56 57 

Frequency distribution, 14 24 
computat ion of median of, 32 
of cont inuous variables, 18 24, 75- 76 
graphic test for normalily of. Box 5.1, 

8 8 - 8 9 
l - shaped , 16, 69 
mcristic, 18 
normal, 16, 7 4 - 9 1 
preparation of, Box 2 . / , 20 21 
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qualitative, 17 
quantitative, 17 
two-way, 3 0 7 - 3 0 8 
U-shaped, 16, 33 

Frequency polygon, 24 
Frohlich, F. W., 261, 350 
Function, 231 

derivative of, 232 
probability density, 75 
slope of, 232 

G (sample statistic of log l ikelihood ratio 
test), 298 

Ga d j ((/-statistic adjusted for continuily), 305 
GMr (geometric mean), 31 
G test, 2 9 7 - 3 1 2 

with continuity correction, 305 
general expression for, 299, 319 
for goodness of fit, single classification, 

301-305 
computat ion for, Box 13.1, 3 0 2 - 3 0 4 

of independence, 305 - 3 1 2 
degrees of freedom for, 312 

Gabriel, K. R., 180, 181, 350 
Galton, F„ 3 
Gartler, S. M., 44, 158, 350 
Gauss, K. F., 3 
Geissler, Α., 63, 64, 350 
Geometric mean (CM,) , 31 
Goodness of fil tests: 

by chi-square, 3 0 0 - 3 0 1 
by G test, 3 0 1 - 3 0 5 
introduction to. 2 9 4 - 3 0 1 
for single classificalion, 3 0 1 - 3 0 5 

computat ion for. Box 13.1, 302 - 3 0 4 
for two classes, 2 9 6 - 2 9 9 

Gossctt , W. S„ 67, 107, 351 
Graph paper: 

normal probability, 86 
probability, 86 
probit, 262 

Graphic methods, 8 5 - 9 1 
Graunt, J., 3 
Greenwood . M „ 70, 350 
Grouping or classes, 18 23, Sox 2.1, 20 -21 
Groups: 

in anova, 134 
number o f (</), 134 
variance among, 136-137 
variance within, 136 

H 0 (null hypothesis), 116 
11, (alternative hypothesis), 118 
11, (harmonic mean), 31 
Hammond, D. H„ 14, 351 
Harmonic mean ( / / , ) , 31 
Hartley, II. O., 25 
Heterogeneity a m o n g sample means, 

143 150 

Heteroscedasticity, 213 
Histogram, 24 

hanging, 9 0 - 9 1 
Homogene i ty of variances, 2 1 3 - 2 1 4 
Homoscedast ic i ty , 213 
Hunter, P. E., 81, 183, 350, 351 
Hypothesis: 

alternative, 1 1 8 - 1 2 6 
extrinsic, 300 
intrinsic, 300 
null, 1 1 6 - 1 2 6 
testing, 1 1 5 - 1 3 0 

Illusory correlations, 285 
Implied class limits, 11, 19 
Independence: 

assumption in anova, 2 1 2 - 2 1 3 
of events, 52 
test of: 

2 x 2 computat ion, 3 0 8 - 3 1 0 , Box 13.2, 
309 

by G, 3 0 5 - 3 1 2 
R x C , 308, 310 
two-way tables in, 3 0 5 - 3 1 2 

Independent variable, 232 
Index, 13 
Individual mean square, 153 
Individual observations, 7 
Interaction, 192 197 

sum of squares, 192 
Intercept, V, 232 
Interdependence, 269 
Interference. 195 
Intersection, 50 
Intragroup mean square, 153 
Intrinsic hypothesis, 300 
Item, 7 

Johnson, Ν. K., 131. 350 
Johnston, P. Α., 184. 350 

k (sample size of a single binomial sample), 
55 

Karten, I., 209, 351 
Kendall's coefficient of rank correlation (τ), 

286 290 
compulat ion of. Box 12.3, 287 289 
critical values oi. Table A IV, 348 

Klett, G . W., 115, 351 
Kolmogorov-Smirnov two-sample test, 

223 225, Box 10.2, 22.3 224, 
Table X I I I , 346 

Koo , V., 287, 350 
Kosfeld, R. K, 287, 350 
Kouskolekas , C. Α., 265, 350 
Krumwiede, C„ 229, 351, 356 
Kurtosis. 85 
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L ( l ikelihood ratio), 298 
L t (lower confidence limit), 104 
L 2 (upper confidence limit), 104 
L D 5 0 (median lethal dose), 33 
Laplace, P. S., 3 
Latshaw, W. L., 208, 351 
Least squares, 235 
Lee, J. A. H„ 17, 350 
Leinert, J., 200, 350 
Leptokurtic curve, 85 
Level, significance, 118-121 
Lewis, N. , 142, 352 
Lewontin, R. C„ 313, 350 
Likel ihood ratio test, 298 
Limits: 

confidence. See Conf idence limits 
implied class, 1 1 , 1 9 

Linear regression. See Regression 
Littlejohn, M. J., 131, 350 
Liu, Υ. K , 36, 287, 350 
Location, statistics of, 2 8 - 3 4 
Log l ikel ihood ratio test, 298 

sample statistic of (G), 298 
Logarithmic transformation, 218, 260 

M S (mean square), 151 
MS γ (mean square due to regression), 248 
M S J X (mean square for deviations from 

regression), 248 
μ (parametric mean), 38 

confidence limits for, Box 6.2, 109 
μγ (expected value for variable F for any 

given value of A:), 233 
μf (expected value for ?,), 255 
Main effects, 194 
Mann-Whitney sample statistic (CJJ, 220 
Mann-Whitney statistic ( , „;|), 222, 

Table XI. 339 
Mann-Whi tney U-test, 220 222 

computat ion for, Box 1(1./, 221-222 
critical values in, 222, Table X I , 339 

Mean(s): 
arithmetic ( ? ) , 2 8 - 3 0 
comparison of: 

planned, 173 179 
unplanned, 179 181 

computat ion of, 39 43 
from a frequency dislribution, Box 3.2. 

42 
from unordered data. Box 3.1, 41 

conftdencc limits for, 109-111 
deviation from (V), 36 
difference between two, 168 -173 
distribution of, 94 100 
equality of two, 168 173 
est imates of, 38 
geometric (GM r ) , 31 
graphic estimate of, on probability paper, 

87 89. Box 5.1. 8 8 - 8 9 

harmonic, 31 
mean of (F), 136 
of Poisson distribution, 6 8 - 6 9 
parametric (μ), 38 
sample, 38 
of a sample, 30 
and ranges, correlation between, 211 
standard error of, 102 
sum of the deviations from, 37, 3 1 4 - 3 1 5 
t test of the difference between two, 

1 6 9 - 1 7 3 
variance among, 98, 1 3 6 - 1 3 7 
and variances, correlation between, 214 
weighted, 30, 98 

M e a n square(s) (MS), 37, 151 
for deviations from regression (MSr x), 

(s}.x), 248 
error, 153 
expected value of, 1 6 3 - 1 6 4 
explained, 251 
individual, 153 
intragroup, 153 
due to linear regression (MSf) , (sy), 

248, 251 
total, 153, 251 
unexplained, 251 

Measurement variables, 9 
Median, 3 2 - 3 3 

effective dose (ED 5 0 ) , 33 
lethal dose (LD 5 0 ) , 33 
standard error of, 102 

Meredith, Η. V., 205, 350 
Meristic frequency distribution, 18 
Meristic variables, 9 
Μ id range, 41 
Miller, L„ 278 
Miller, R. L„ 26, 183, 351 
Millis, J., 24, 42, 182, 350 
Mitchell, C. Α., 264, 350, 355 
Mittler, T. E„ 313, 350, 356 
Mixed model two-way anova, 186, 199 
Mode , 3 3 - 3 4 
Model I anova, 148, 1 5 4 - 1 5 6 
Model I regression: 

assumptions for, 2 3 3 - 2 3 4 , 269 - 2 7 0 
with one Y per X, 2 3 5 - 2 4 3 
with several Y's per X, 2 4 3 - 2 4 9 

Model II anova, 148-150 , 157- 158 
two-way, 1 8 5 - 2 0 7 

Model II regression, 234 235, 269 270 
Mosimann, J. E., 53, 350 
Mult imodal distribulions, 33 
Mult inomial distributions, 299, 319 
Multiple comparisons tests, 181 
Multiplicative coding, 40 

η (sample size), 29 
n„ (average sample size in analysis of 

var iance) 168 
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ν (degrees of freedom), 107 
Nelson, V. E„ 236, 237, 350 
Newman, K. J., 205, 350 
N e w s o m , L. D „ 265, 351 
Nomina l variable, 9 
Nonparametric tests, 125, 2 2 0 - 2 2 8 

in lieu of paired comparisons test, 
2 2 3 - 2 2 8 , Box 10.2, 2 2 3 - 2 2 4 , 
Box 10.3, 226 

in lieu of regression, 263 
in lieu of single classification anova for 

two unpaired groups, 2 2 1 - 2 2 2 , 
Box 10.1, 2 2 0 - 2 2 2 

Nonsense correlations, 2 8 4 - 2 8 6 
Normal curve: 

areas of, 80, Table 11, 322 
cumulative, 7 9 - 8 0 , 85 
heighl of ordinate of (Z), 78 

Normal deviates, standard, 83 
Normal distribution, 16, 7 4 - 9 1 

applications of, 83 85 
bivariate, 272 
condit ions for, 7 6 - 7 8 
derivation of, 7 6 - 7 8 
expected frequencies for, 79 
function, 79 
properties of, 78- 83 

Normal equivalent deviate, 262 
Normal probability density function, 78- 83 
Normal probability graph paper, 86, 

Box 5.1, 88 
Normal probability scale, 85 87 
Normality of a frequency distribution. 

Box 5.1, 88 
Normality, testing departures from, 85 91, 

303 
Null hypothesis ( / / 0 ) , 116 126 
Number of groups (<;), 134 

Observations, individual, 7 
Observed frequencies, 57 
Olson, Π. ( ., 26. 183, 351 
One-tailed /·' test, 140 
One-tailed tests, 64, 125 126 
Ordering test, 263 264 
Ordway. Κ , 169 

ρ (binomial probability), 54 
f> (parametric binomial probability), 60 
Ρ (probability). 48 
Paired comparisons, 204 207, 225 228. 

277 279 
compulat ion of. Box 9.3, 205 206, 

Box 10.3. 226 
/ test for, 207 

related to correlation, 277 279 
with t; identical to F „ 172 173, 207, 

316 317 

Parameters) , 38 
of the normal probability density 

function, 78 
Parametric mean, 38 
Parametric product-moment correlation 

coefficient, 272 
Parametric regression coefficient, 233 
Parametric value of )' intercept (a), 233 
Parametric variance, 38 
Park, W. H„ 229, 351 
Partitioning of sums of squares: 

in anova, 1 5 0 - 1 5 4 
with dependent variable, 251, 318 
a m o n g groups, 177 

Pascal, B., 3 
Pascal's triangle, 55 
Pearson, E. S., 25. 351 
Pearson, K„ 3, 270 
Percentages, 13 14 

confidence limits of, Table I X , 333 
drawbacks of, 14 
transformation of, 218 

Percentiles, 32 
Petty, W„ 3 
Pfiindner, K„ 313, 351 
Phillips, J. R„ 265, 351 
Planned comparisons, 1 7 3 - 1 7 9 
Platykurtic curve, 85 
Poisson, S. D„ 66 
Poisson distribution, 6 4 - 7 1 

calculation of expected frequencies, 

Box 4.1, 67 
c lumping in, 66, 70 
parameters of, 69 
repulsion in, 66, 71 

Populat ion, 7 8 
statistics, 38 

Power curve, 123 124 
Power of a test. 123 125 
Prediction, 258 
Probability (/'). 48 53 
Probability density function, 75 

normal, 74 91 
parameters of, 78 

Probability distribution, 47, 56 
Probability graph paper, 86 
Probability scale, 85 

normal, 85 87 
Probability space, 50 
Probit(s), 262 

analysis, 262 
graph paper, 262 
transformation. 262 

Product-moment correlation coefficient ( 
2 7 0 - 2 8 0 

computat ion of, 270 280, Box 12. / , 
278 279 

formula for, 271 
parameter of (pjk), 272 
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Products, sum of, 239, 271 
Purves, W., 163 

q (binomial probability), 54 
ή (parametric binomial probability), 60 
Qualitative frequency distribution, 17 
Quantitative frequency distribution, 17 
Quartiles, 32 
Quetelet, Α., 3 
Quintiles, 32 

rJk (product-moment correlation 
coefficient), 272 

R χ C test of independence, 3 0 8 - 3 1 0 
computation for, Box 13.3, 310 

pik (parameter of product-moment 
correlation coefficient), 272 

Random group effect (Λ,), 149 
Random numbers, 57, 81, Table / , 321 
Random sampling, 49, 53, 212 
Randomized blocks, 205 

computation of. Box 9.3. 2 0 5 - 2 0 6 
Randomness, assumption in anova, 212 
Range, 3 4 - 3 5 
Rank correlation, Kendall's coefficient of, 

2 8 6 - 2 9 0 
computation of, Box 12.3. 287-289 , 

Table XIV, 348 
Ranked variable, 9 
Rates, 13 
Ratios, 13 14 
Reciprocal transformation, 262 
Region: 

acceptance, 118 119 
critical, 118-119 
rejection, 118 

Regression, linear, 230 264 
computation of. 241 2 4 3 , 2 4 4 246 
and correlation, 268 270, Table 12.1, 270 
curvilinear, 246 247, 260 
equation for, 232, 2 3 5 - 2 4 3 
explained deviation from (>") 240 -241 
estimate of Y, 237 
mean square due to, 248, 251 
Model I, 233 -234, 269 270 
Model II, 234 235, 269 270 
with more than one value of Y per A", 

243- 249 
nonparametric, 2 6 3 - 2 6 4 
residuals, 259 -260 
with single value of Y per X, 235 243 
tests of significance in, 250 257 
transformations in, 259 263 
unexplained deviation from (c/r v | , 238 
uses or. 257 259 

Regression coefficient (/>), 232 
confidence limits for. 254 255, 256 
parametric value for (//), 233 

significance of, 254, 256 
standard error of, 252 -253 , Box 11.3, 252 
test of significance for, 254, 256, 

Box 11.4, 253 
of variable Y on variable X (br x), 232 

Regression line(s), 238 
confidence limits of, 255 
deviation from (dYX), 238, 241 
difference between two, 2 5 6 - 2 5 7 

Regression statistics: 
computation of, Box 11.1, 242 
confidence limits of, Box 11.4, 2 5 3 - 2 5 4 
significance tests for, 253 -254 , 

256-257 , Box 11.4, 2 5 3 - 2 5 4 
standard errors of, Box 11.3, 252, Box 11.4, 

253, 255 
Rejection region, 118 
Relative expected frequencies, 5 6 - 5 7 
Remainder sum of squares, 203 
Repeated testing of the same individuals, 

2 0 3 - 2 0 4 
Repulsed distribution, 58 -60 , 66, 71 
Repulsion: 

as departure from binomial distribution, 
58 

as departure from Poisson distribution, 71 
Residuals in regression, 2 5 9 - 2 6 0 
Rohlf, F. J., 179, 181, 351 
Rootogram, hanging, 9 0 - 9 1 
Rounding off, 12 
Ruffie, J., 310, 351 

s (standard deviation), 38 
s2 (sample variance), 38 
χ, χ (mean square for deviations from 

regression), 248 
Sf (mean square due to linear regression), 

251 
s fg (estimate of standard error of mean 

of ith sample), 106 
s, (standard error for correlation 

coefficient), 280 
s^ (sample estimate of added variance 

component among groups), 149 
SS (sum of squares), 37, 151 
SS-STP (sum of squares simultaneous lest 

procedure), 179 181 
Si (any statistic), 102, 129 
n2 (parametric variance), 38 
nz

4 (parametric' value of added variance 
component), 150 

Sample, 7 
bivariate, 7 
mean, 38 
si/.e («1, 29 
space, 49 
statistics. 38 
variance (.·>*), 38 
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Sampling, random, 49, 53, 212 
Scale, normal probability, 8 5 - 8 7 
Scientific laws, description of, 258 
Seng, Y. P., 24, 42, 182, 350 
Set, 49 
Shortest unbiased conf idence intervals 

for variance, 115, Table VII, 331 
computat ion of, Box 6.3, 115 

Sign test, 2 2 7 - 2 2 8 
Signed-ranks test, Wilcoxon's , 2 2 5 - 2 2 7 

computat ion for, Box 10.3, 226 
critical values for, 227, Table X I I , 343 

Significance: 
of correlation coefficients, Box 12.2, 

2 8 1 - 2 8 3 
of the difference between two means, 

1 6 8 - 1 7 3 
of regression coefficient, 254, 256 
of a statistic, 1 2 6 - 1 2 9 , Box 6.4, 129 

Significance levels, 1 1 8 - 1 2 1 
Significance tests: 

in correlation, 2 8 0 - 2 8 4 , Box 12.2, 
2 8 1 - 2 8 3 

of the deviation of a statistic from its 
parameter, 126 -129 , Box 6.4, 129 

of regression statistics, Box 11.4, 253 
of a sample variance from a parametric 

variance, 1 2 9 - 1 3 0 
Significant digits, 12 
Significantly different, 120 
Simple event, 50 
Single-classification analysis of variance. 

160- 181 
computat ional formulas for, 161 162 
with equal sample sizes, 1 6 2 - 1 6 5 , Box 8.1, 

1 6 3 - 1 6 4 
for two groups, 168-173, Box H.2. 

1 6 9 - 1 7 0 
with unequal sample sizes, 165 168, 

Table 8.1, 166 
Sinnott, E. W., 14, 351 
Skewness, 85 
Slope of a function, 232 
Sokal, R. R , 21, 71, 81, 179, 181, 209, 219, 

244, 290, 351 
Sokoloff , Α., 264, 283, 351, 357 
Spatially uniform distribution, 66 
Square, mean, 37, 151 

explained, 251 
Square root transformation, 218 
Squares: 

least, 235 
sum of (SS) 37, 151. 

See also Sum of squares 
Standard deviate, 83 
Standard deviat ion (s), 3 6 - 4 3 

computat ion of, 3 9 - 4 3 
from frequency distribution, Box 3.2, 42 
from unordered data, Box 3.1. 41 

graphic estimate of, 87, Box 5.1, 8 8 - 8 9 

standard error of, 102 
Standard error, 101 

of coefficient of variation, 102 
for c o m m o n statistics, Box 6.1, 102 
of correlation coefficient, 280 
of difference between two means, 172, 

3 1 5 - 3 1 6 
of estimated mean in regression, 255 
of estimated Υ, Y, a long regression line, 

255 
of median, 102 
of observed sample mean in regression, 

255 
of regression coefficient, 2 5 2 - 2 5 3 
of regression statistics. Box 11.3, 252 
of sample mean, 102 
of standard deviation, 102 

Standard normal deviate, 83 
Standardized deviate, 83 
Statistic(s), 1 - 2 

biological, 1 
descriptive, 2 7 - 4 3 
of dispersion, 28, 3 4 - 4 3 
of location, 2 8 - 3 4 
populat ion, 38 
sample, 38 
testing significance of, Box 6.4, 129 

Statistical control, 2 5 8 - 2 5 9 
Statistical significance. 121 

conventional statement of, 127 
Statistical tables. See Tables, statistical 
Stem-and-leaf display, 2 2 - 2 3 
Structural mathematical model , 258 
Student (W. S. Gossett) , 67, 107, 351 
Student's I distribution, 106-108 , Table I I I , 

323 
Sullivan, R. L„ 209 
Sum of deviations from the mean, 37, 

314 315 
Sum of products, 239, 271 

computat ional formula for, 241, 317 
Sum of squares t.S'.S'), 37, 151 

a m o n g groups, 1 5 1 - 1 5 2 
computat ional rule for, 162 
computat ional formula for, 152, 315 

explained, 241 
interaction, 192 
partitioning of, 177 

in anova, 150- 154 
with dependent variable, 251, 318 
a m o n g groups, 177 

remainder, 203 
s imultaneous test procedure, 179 181 
total, 150 154 
unexplained, 241 

computat ional formula for, 243, 318 
Sum of two variables, variance of, 318 
Summat ion signs, 29 
Swanson, C. O., 208, 351 
Synergism, 195 
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(critical va lues of Student 's d is tr ibut ion 
for ν degrees of freedom), 108, 
Table I I I , 323 

t, ( sample stat ist ic of t d istr ibution) , (27 
f 2 equal t o F . 1 7 2 - 1 7 3 , 207, 3 1 6 - 3 1 7 
Τ (critical va lue of rank s u m of W i l c o x o n ' s 

s igned-ranks test), 227, Table X I I . 
343 

T s (rank s u m of W i l c o x o n ' s s igned-ranks 
test), 227 

τ (Kendal l ' s coeff ic ient of rank correlat ion) , 
286 

t d i s tr ibut ion. Student's , 1 0 6 - 1 0 8 
f tables, 108, Table I I I . 323 
/ test: 

lor difference between t w o means, 
1 6 9 - 1 7 3 

c o m p u t a t i o n for. Box H.2, 169 - 1 7 0 
for paired c o m p a r i s o n s . 206 207 

c o m p u l a t i o n for, Box 9.3, 2 0 5 - 206 
Tahle(s): 

con t ingency . 307 
statistical: 

C'hi-square dis tr ibut ion. Table IV, 324 
Corre la t ion coeff ic ients , critical values, 

fable 1 7 / / , 332 
/ d is tr ibut ion. Table I . 326 
/• „,.„, Ί tihle VI, 330 
Kendal l ' s rank correlat ion coeff ic ient . 

Table XIV, 348 
K o l m o g o r o v - S m i r n o v t w o - s a m p l e 

statistic. 7 a b l e X I I I , 346 
N o r m a l curve, areas of, Table II. 322 
Percentages , c o n f i d e n c e limits. 
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