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Preface 

This book is an introduction to statistics for students of the life sciences, particularly 
for field and laboratory biologists, but also for those studying agriculture and medicine. 
Students commonly face the statistical analysis of their data with anxiety, and yet 
statistics can be elegant and exciting. Statistical analysis can reveal subtle patterns in 
otherwise uninformative data, reduce large data sets to a few key parameters, give 
researchers confidence in their conclusions and ensure that they do not deceive 
themselves when interpreting their data. 

This book stresses the concepts and ideas that underlie the most important statistical 
methods used in biology. I have placed these concepts and ideas in a narrative structure 
and consider the same problems from different angles and in progressively more detail. 
Once you understand the general principles and are able to apply them to specific 
problems, you should be able to analyse new problems and to discover new applica
tions for statistics in your own work. To ensure that the text remains firmly rooted 
in real problems, I have taken examples and illustrations from the biological literature 
wherever possible. 

When using statistics to help answer a biological question, it is important to under
stand the question clearly. Once you know what it is that you wish to gain from 
your data, statistical techniques become powerful tools for revealing information that 
is otherwise hidden. Always remember that the statistics is simply a way to help you 
think clearly about the biology. 

FURTHER READING 

Many books on biostatistics are available; some can be used to complement this 
book. I have drawn on the following sources. 

Introductions 

Bailey N. T. (197 4) Statistical Methods in Biology, English Universities Press, London. 
Glantz, S. A. (1987) Primer of Biostatistics, McGraw-Hill, New York. 
Parker R. E. (1986) Introductory Statistics for Biologists, Edward Arnold, London. 

Phillips, J. L. Jr. (1982) Statistical Thinking, Freeman, New York. 
Porkess, R. (1988) Dictionary of Statistics, Collins, London. 
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Intermediate 

Bliss, C. I. (1967) Statistics in Biology-Volume I, McGraw-Hill, New York. 
Bulmer, M.G. (1979) Principles of Statistics, Dover, New York. 
Campbell, R. C. (1987) Statistics for Biologists, Cambridge University Press, Cambridge. 
Fleiss, J. L. ( 1986) The Design and Analysis of Clinical Experiments, John Wiley, New York. 
Freund, J. E. (1972) Mathematical Statistics, Prentice-Hall, London. 
Hays, W. L. (1988) Statistics, Holt, Rinehart and Winston, Orlando. 
Jeffers, J. N. R. (1978) An Introduction to Systems Analysis: With Ecological Applications, 

Edward Arnold, London. 
Manly, B. (1986) Multivariate Statistical Methods: A Primer, Chapman & Hall, London. 
Mead, R. (1988) The Design of Experiments: Statistical Principles for Practical Applications, 

Cambridge University Press, Cambridge. 
Mead, R. and Curnow, R.N. (1983) Statistical Methods in Agriculture and Experimental 

Biology, Chapman & Hall, London. 
Siegel, S. and Castellan Jr. N.J. (1988) Nonparametric Statistics for the Behavioral Sciences, 

McGraw-Hill, New York. 
Sokal, R. R. and Rohlf F. J. (1981) Biometry, Freeman, New York. 
Sokal, R. R. and Rohlf F.J. (1987) Introduction to Biostatistics, Freeman, New York. 
Sprent P. (1990) Applied Nonparametric Statistical Methods, Chapman & Hall, London. 
Zar J. H. (1984) Biostatistical Analysis, Prentice-Hall, Englewood Cliffs. 

Advanced 

Green P. E. (1978) Analyzing Multivariate Data, Dryden Press, Hinsdale, Illinois. 
Mason, R. L. Gunst, R. F. and Hess, J. L. (1989) Statistical Design and Analysis of 

Experiments: With Applications to Engineering and Science, John Wiley, New York. 
Seber, G. A. F. (1989) Linear Regression Analysis, John Wiley, New York. 
Snedecor, G. W. and Cochran, W. G. (1980) Statistical Methods, Iowa State University 

Press, Ames, Iowa. 
Winer B. J. (1971) Statistical Principles of Experimental Design, McGraw-Hill, New York. 

STATISTICAL SOFTWARE 

Many statistical packages are available for personal computers and spreadsheet pack
ages offer basic statistical routines. Using one of these you will avoid having to carry 
out detailed and tedious calculations. It is essential to have access to at least one 
such package to use in conjunction with this book. This is particularly important for 
the last two chapters on the analysis of variance and regression. 

There are two very large packages called SAS and SPSS. These will do everything 
you ever thought of and a lot more besides. There are also a range of medium-sized 
packages that should be adequate for your needs and several small packages that are 
cheap but limited. Some vendors offer cut-down versions at cheap rates for students. 
Prices for the big packages range up to a thousand pounds and you may have to 
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pay an annual licence fee; for smaller packages you should expect to pay up to several 

hundred pounds. 

It is difficult to make firm recommendations because statistical software packages 

are developing rapidly. In this age of microcomputers, I believe that menu-driven 

software combined with publication quality, interactive graphics and a reasonable 

range of standard analytical procedures is essential. If you use a PostScript printer, 

you should check the printer drivers available in each package - even now some 

software does not support PostScript. Based on my own experience I would advise 

you to consider, at the very least, MiniTab, StatGraphics, StatView and SyStat. You 

should review all the packages carefully and make a decision based on your needs. 

BASS from Bass Institute Inc., P.O. Box Chapel HilL NC 27514, USA. Telephone 

(919) 489 0729. 
C-Stat from Cherwell Scientific Publishing, 27 Park End Street, Oxford OX1 1HU, 

UK. Telephone (0865) 794884/794664. 
Crunch Statistical Package from Crunch Software, 5335 College Avenue, Suite 27, 

Oakland, CA 94618, USA. Telephone (415) 420 8660. 
CSS from StatSoft, 2325 East 13th Street, Tulsa, OK 74104, USA. Telephone (918) 

583 4149. 
Data Desk from Odesta Corp., 4084 Commercial Avenue, Northbrook, IL 60062, USA. 

Telephone (800) 323 5423. 

Exstatix from Strategic Mapping, 4030 Moorpark Avenue, Suite 250, San Jose, CA 

95117, USA. Telephone (408) 985 7400. 
GUM from NAG Ltd., Wilkinson House, Jordan Hill Road, Oxford, UK. Telephone 

(0865) 511245. Fax (0865) 310139. 
Mac SS!Statistica from StatSoft, 2325 E. 13th Street, Tulsa, OK 74104, USA. 

Telephone (918) 583 4149. 
MiniTab Statistical Software from Minitab Inc., 3081 Enterprise Drive, State College, 

PA 16801, USA. Telephone (800) 448 3555 and CLE Com Ltd., The Research 
Park, Vincent Drive, Edgbaston, Birmingham B15 2SQ, UK. Telephone (021) 471 
4199. 

NWA Statpak from Northwest Analytical Inc., 520 N. W. Davis Street, Portland, OR 

97209, USA. Telephone (503) 224 7727. 
S-Plus from Statistical Sciences Inc., 1700 Westlake Avenue N., Suite 500, Seattle, 

WA 98109, USA. Telephone (206) 283 8802. Fax (206) 283 8691 and Statistical 

Sciences UK Ltd., 52 Sandfield Road, Oxford OX3 7RL UK. Telephone (0865) 

61000. Fax (0865) 61000. 
SAS and ]MP from SAS Institute, SAS Circle, Box 8000, Cary, NC 27512, USA. 

Telephone (919) 467-8000 and SAS Software Ltd., Wittington House, Henley Road, 
Marlow SL7 2EB, UK. Telephone (0628) 486933. 

Solo 101 and BP-90 from BMDP Statistical Software Inc., 1424 Sepulveda Boulevard, 
Suite 316, Los Angeles, CA 90025, USA. Telephone (213) 479 7799. 

SPSSIPC + from SPSS Inc., 444 N. Michigan Avenue, Chicago, IL 60611. USA. 

Telephone (312) 329 3300, and SPSS InternationaL P.O. Box 115, 4200 AC 
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Gorinchem, The Netherlands. Telephone (31) 1830 36711. Fax (31) 1830 358 39. 
StatGraphics from STGC Inc., 2115 E. Jefferson Street, Rockville, MD 20852, USA. 

Telephone (301) 984 5000, (301) 592 0050. 
Statistix II from NH Analytical Software, 19 58 Eldridge A venue, Roseville, MN 5 5113, 

USA. Telephone (612) 631 2852. 
StatPac Gold from StatPac Inc., 3814 Lyndale Avenue S., Minneapolis, MN 55409, 

USA. Telephone (612) 822 8252 and Perifemalia, Snoekstraat 69, Aiken, B-3570, 
Belgium. Telephone (32) 11 313754. 

Statview II/Super ANOVA and Statview SE and Graphics from Abacus Concepts, 1984 
Bonita Avenue, Berkeley, CA 94704, USA. Telephone (800) 666 7828; (415) 540 
1949. 

SyStat!SyGraph from SyStat Inc., 1800 Sherman Avenue, Evanston, IL 60201, USA. 
Telephone (708) 864 5670. 
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1 

Why mathematics? 

It is interesting to contemplate a tangled bank, clothed with many plants of many kinds, 
with birds singing on the bushes, with various insects flitting about, and with worms 
crawling through the damp earth, and to reflect that these elaborately constructed forms, 
so different from each other, and dependent on each other in so complex a manner, 
have all been produced by laws acting around us. These laws, taken in the largest sense, 
being Growth and Reproduction; Inheritance which is almost implied by reproduction; 
Variability from the indirect and direct action of the conditions of life, and from use 
and disuse; a Ratio of Increase so high as to lead to a Struggle for Life, and as a 
consequence to Natural Selection, entailing Divergence of Character and the extinction 
of the less-improved forms. C. Darwin (1906, p. 669). 

Mathematics and biology are two of the oldest sciences, both dating back to the 

beginning of recorded history, but it is only in this century that they have come 

together in the creation of modem mathematical biology. Well before the development 

of our modem view of natural history, much effort had been devoted to the systematic 

classification of plants and animals; by the seventeenth century many species had 

been described and identified. In 1686 John Ray defined species as groups of similar 
individuals characterized by 'distinguishing features that perpetuate themselves in 

propagation from seed' and noted that 'One species never springs from the seed of 

another' (Burkhardt, 1981). In 1735 Linnaeus developed the two-name system of 

classification for plants and animals that is used to this day. Believing in the constancy 

of species, he said, 'There are as many species as the Creator produced different forms 

in the beginning' (Burkhardt, 1981). By the nineteenth century this view of species as 

immutable entities was beginning to weaken; although naturalists accepted that species 

were 'genuine entities in nature, constant in their essential characters', they now added 

'subject to non-essential, accidental variation' (Burkhardt, 1981). Although the classi

fication of species cannot be called mathematical. we cannot do anything until we have 

defined the entities we wish to study. 

Having defined and classified species, it was natural to ponder the reasons why 

these particular species were found in the world. The idea of change within the other

wise fixed species was unavoidable in a world in which selective breeding of plants 

and animals was widely practised, and this led to intense debates concerning the origin 

of the natural world: was the world created as we see it now or was it created in a 

simpler form from which our present world has evolved? Nearly all religions postulate 
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a process of creation and the idea of a progressive, albeit rather rapid, creation of 
the world is found in all cultures. But if the world has evolved from a 'simpler' state, 
do we need to invoke a 'higher power' to guide and direct the process of evolution 
or can we find a theory that allows us to explain evolution without recourse to 
external powers? If we can find laws of evolution, what kind of laws should they 
be7 Should the laws of evolution be causal and mechanistic as are the laws of classical 
physics? The only physical law that depends explicitly on the direction of time is 
the second law of thermodynamics and this law predicts increasing disorder as time 
passes. How can we reconcile this with the apparent increase in order as time passes 
that we seem to see in biological evolution? 

Two thousand years ago Aristotle reflected on the same problem (Ross, 1952): Why 
should not nature work, not for the sake of something, nor because it is better so, 
but just as the sky rains, not in order to make com grow, but of necessity? ... Why ... 
should it not be ... that our teeth come up of necessity-the front teeth sharp, fitted 
for tearing, the molars broad and useful for grinding down the food ... [and] survived, 
being organized spontaneously in a fitting way; whereas those which grew otherwise 
perished and continue to perish?' Since Aristotle believed that chance would destroy 
rather than preserve the adaptations we find in members of a given population, he 
rejected his own proposal and continued: 'Yet it is impossible that this should be the 
true view. For teeth and all other natural things either invariably or normally come 
about in a given way; but of not one of the results of chance or spontaneity is this 
true'. In this discourse Aristotle is concerned with the problem of selection rather than 
evolution, but he touched on the idea that the best adapted organisms should survive 
while those less well adapted should perish. Two thousand years later we find Darwin 
wondering how undirected chance events could have produced the apparently directed 
change found in the fossil record. 

Darwin's interest lay in the ways in which changes arose in natural populations and 
he knew that substantial changes can be brought about in animal and plant populations 
by cross-breeding and selection. But while the work of breeders, who systematically 
select desirable characteristics, hinted at a mechanism for the emergence of novelty, 
Darwin could not see how such apparently directed change could be brought about 
in nature, if we assume that she is neutral and does not regard any particular change 
as more desirable than any other. 

The answer came to Darwin from a quite unexpected source, as he recorded in his 
autobiography: 'In October 1838, ... fifteen months after I had begun my systematic 
inquiry, I happened to read for amusement Malthus on Population, and being well 
prepared to appreciate the struggle for existence which everywhere goes on, from 
long-continued observation of the habits of animals and plants, it at once struck me 
that under these circumstances favourable variations would tend to be preserved, 
and unfavourable ones to be destroyed. The result of this would be the formation 
of a new species. Here, then, I had at last got a theory by which to work .. .' (Darwin, 
1958). Wallace (1905) took his inspiration from the same source: 'One day something 
brought to my recollection Malthus' Principle of Population ... I thought of his clear 
exposition of 'the positive checks' to increase ... which kept down the population .... 
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It then occurred to me that these causes or their equivalents are continually acting in 
the case of animals also; and, as animals usually breed much more rapidly than does 
mankind, the destructions every year from these causes must be enormous in order to 
keep down the numbers of each species, since they evidently do not increase regularly 
from year to year, as otherwise the world would long ago have become densely 
crowded with those that breed most quickly .... Why do some die and some live? 
And the answer was clearly, that on the whole the best fitted live. From the effects 
of disease the most healthy escaped; from enemies the strongest, the swiftest, or the 
most cunning; from famine, the best hunters or those with the best digestion; and 
so on ..... The more I thought over it the more I became convinced that I had at length 
found the long-sought-for law of nature that solved the problem of the origin of species.' 
(Cronin, 1991, provides a fascinating account of the development of Darwinian theory 
from Darwin and Wallace to the present day.) 

Malthus (1970) realized that if the growth of a natural population were unchecked 
it would increase exponentially, i.e. the numbers would double in a fixed time and 
then double again and again in each equivalent time period. He also argued that our 
ability to increase food production would increase only arithmetically, i.e. we can at 
best increase food production only by the same absolute amount in any fixed time. 
Therefore, population growth would always tend to outstrip increases in food produc
tion. Since human populations do not always increase exponentially, Malthus sought 
to identify the factors that act to limit population growth. After examining the evidence 
from a number of countries, Malthus concluded that 'vice' (including abortion and 
infanticide) and 'misery' (including hunger and disease) acted as checks, although in 
later works he added 'moral restraint' (abstinence), which he hoped might one day 
replace 'vice' and 'misery' as a check to population growth. In modem terms, Malthus 
understood that the growth of all populations must eventually be limited by an 
increase in mortality or a decrease in fecundity with increasing density. Darwin and 
Wallace now took Malthus's essentially mathematical arguments and realized that for 
all biological organisms an exponential increase in the number of individuals would 
lead to a struggle for life in which many would die and few would survive. Given the 
natural variation between individuals in a given population, those that are in some 
sense better adapted to their environment than the others will be more likely to survive. 

We can illustrate the consequences of exponential growth quite simply. We know, 
for example, that one tsetse fly weighs about 30 mg. We also know that the maximum 
rate of growth of a tsetse fly population amounts to a doubling in the numbers each 
month (making the tsetse fly a very slow grower by insect standards). So if the world 
contained only one pregnant tsetse fly, and if this initial population grew at the maxi
mum possible rate, at the end of one year the numbers would have doubled 12 times, 
making a total of 212, or about 4000, tsetse flies. At the end of 10 years the population 
would have increased by this same factor of 4000 another ten times, making a total 
of 400010, or 1036, tsetse flies, weighing about 3 x 1034 g, which is five million times 
the mass of the earth. Since tsetse flies have been around for rather more than 10 years, 
the number of flies in existence today is only a tiny fraction of the number that could 
have been produced. Clearly there must be a constant thinning of the population, and 
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it seems reasonable to assume that if the individuals of a population vary, those indivi
duals that have slightly advantageous characteristics will tend to survive and pass on 
their genes while those that possess characteristics that are slightly disadvantageous 
will tend to be eliminated along with their genes. 

While evolution has resulted in the production of the most varied and wonderful 
organisms, just as remarkable is the extraordinary stability that we see in the wings 
of the dragon fly, for example, which have remained unchanged for millions of years. 
To account for this we argue that if a particular characteristic is optimal in the sense 
that any small change from that state is disadvantageous, there will be a tendency for 
natural selection to maintain that state. Darwin's theory of natural selection therefore 
attempts to explain both speciation and stasis. 

Darwin's theory provided a convincing and detailed description of the processes by 
which biological evolution occurs and it removed the need for a teleological theory of 
evolution. Nevertheless, Darwin was aware that he did not have a mechanism that 
would explain the process of evolution at a deeper level. 'The laws governing inheri
tance are for the most part unknown', he wrote. 'No one can say why the same 
peculiarity in different individuals of the same species, or in different species, is some
times inherited and sometimes not' (Darwin, 1906, p. 15). The key to the mechanism 
that Darwin lacked was discovered by Gregor Mendel, who in 1866 published the 
results of his work on inheritance in garden peas, Pisum sativum (Mendel, 1866). The 
modem theory that derives from Mendel's work is essentially 'atomistic'. Characteris
tics of what we now call the phenotype are conferred on organisms by a small number 
of inherited 'particles' that we now call genes. But although Mendel's papers were 
sent to the Royal and Linnaean Societies in England (Fisher, 1936), his work was almost 
entirely neglected, perhaps because his observations contrasted so strongly with the 
'continuum' theory of pangenesis, proposed by Aristotle and accepted by Darwin 
(Ayala and Kiger, 1980) in which inheritance involves a blending of fluids created in the 
bodies of the parents. To put Darwin and Mendel's work into prespective, it is worth 
remembering that Schwann established the theory that living organisms were composed 
of separate cells only in 1839 and that cell division reached wide acceptance only after 
the work of Virchow in 1858 (Ronan, 1983). It was not until the middle of the nineteenth 
century that atomism achieved universal acceptance in physics and chemistry. 

At the tum of the century Mendel's work was rediscovered, perhaps because the 
intellectual climate had become more favourable to his ideas. Biologists soon realized 
that the new science of genetics provided a quantitative basis for Darwin's essentially 
qualitative theory, leading to what we now call the neo-Darwinian synthesis. Genetics 
itself has been placed on a sound chemical basis during this century with the elucidation 
of the structure of DNA, our increasing understanding of the biochemical basis of 
genetic replication and the establishment of molecular biology and genetic engineering. 

As biological thought has evolved over the past three centuries, biology has become 
more quantitative and precise. Although Darwin was able to develop his theory without 
mathematics, the essentially mathematical idea of exponential growth was crucial to 
the development of his ideas. Mendel was obliged to use statistics to analyse his experi
ments on peas, Watson and Crick needed advanced mathematics to determine the 
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structure of DNA from Franklin's X-ray photographs and geneticists now rely on 

sophisticated mathematics in the analysis and interpretation of their experiments. Now 

we have come full circle: we are applying mathematics to organisms and their inter

actions, the basis of much of Darwin's work, in the modelling of ecosystems. Having 

started from Darwin's essentially qualitative theory of evolution, we have worked our 
way down to an understanding of the process of evolution at a molecular level. Now 

we are working our way back up again, synthesizing ideas and information from many 

different disciplines, at many different levels, and creating in the last few decades a 

quantitative theoretical ecology. 
Over 300 years ago, Galileo Galilei revolutionized natural philosophy by systemati

cally applying mathematics to the analysis of experimental data. 'Philosophy', he said, 

'is written in that great book which lies before our gaze-! mean the universe-but 

we cannot understand it if we do not first learn the language and grasp the symbols 

in which it is written. The book is written in the mathematical language, ... without 
the help of which ... one wanders in vain through a dark labyrinth' (Needham, 1972, 

p. 32). Biology is now following the same path and little can be done without mathe
matics. Despite the difficulties many of us have in learning mathematics, the power 

it gives us more than repays the effort it takes to learn it. 

1.1 SOME PROBLEMS 

Before launching fully into biostatistics, I shall introduce you to some of the problems 

discussed in this book. Here I hope to persuade you that the answers are worth knowing; 
in the chapters that follow we will address these problems and many others. By the time 
that you have finished reading the book, I hope that you will agree that a knowledge 
of statistics will help you to analyse otherwise intractable problems and to draw reliable 

and consistent conclusions from your experimental data. 

1.1.1 The casino 

Suppose that a friend of yours offers to play a game of chance with you. She will throw 

a pair of dice and for £1 you are to guess the sum of the two numbers that tum up. If 
your guess is wrong, she keeps the pound; if it is right, she pays you as many pounds as 
the number you guessed. What number should you guess? Should you play with her at 
all? If you make your best guess, will you win or lose, and if so, how much? 

1.1.2 Mendel's peas 

In his work on inheritance in peas, Mendel (1866) crossed a number of pure-bred tall 
plants (which have two 'tall' genes, T T) with pure-bred short plants (which have two 

'short' genes, tt). The plants of the first filial generation, F1 , inherited a 'tall' gene from 

one parent and a 'short' gene from the other. Since the 'tall' gene is dominant all of 

the F1 plants were tall. Mendel then crossed 1064 F1 plants and in the second filial 

generation, F2 , he obtained 787 tall plants and 277 short plants, as shown in Table 1.1. 
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Table 1.1 The results of an experiment conducted by Mendel in which he 
compared the number of tall and short pea plants in the F2 generation to the 
numbers he expected on the basis of his theory of inheritance. The expected 
numbers are 1064 X 3/4 = 798 tall plants and 1064 X II 4 = 266 short plants 

Tall Short Ratio 
plants plants Total tall! short 

Observed 787 277 1064 2.84 
Expected 798 266 1064 3.00 

Now if the probability that either of the two F1 parents will contribute a 'tall' gene to 
the F2 generation is the same as the probability that either will contribute a 'short' 
gene, and given that the 'tall' gene is dominant, we can show that there should be three 
tall plants for every short plant, or 798 tall plants and 266 short plants in the F2 genera
tion. In section 2.2.1 we shall see why Mendel decided that there should be three tall 
plants for every short plant, but for the moment we note that the ratio of the number 
of tall to short plants that he observed was 2.84 rather than 3. Does this refute his 
theory that the ratio should be 3 or was it just chance that the observed ratio was 
not quite equal to the expected ratio? Suppose, for example, he had obtained 760 tall 
and 304 short plants, giving a ratio of 2.5. Would these data support or refute his 
theory? Indeed, by how much could the ratio deviate from 3 before we would have 
to say that the data do not support the theory? 

1.1.3 The polio vaccine 

In the early 1950s poliomyelitis was recognized as a major disease causing crippling 
paralysis and death, especially in children. In 1954 Jonas Salk developed a vaccine 
against polio (Snedecor and Cochran, 1989, p. 13). These days there is much talk about 
the possibility of developing an effective vaccine against malaria (Targett, 1991). If 
you were to carry out a trial of such a vaccine, how would you proceed? 

In the study carried out to test the Salk vaccine, the results of which are given in 
Table 1.2, 200 745 children were vaccinated, of whom 33 developed polio. Those 
conducting the study needed to determine how many of these children would have 
developed the disease if they had not been given the vaccine. The vaccinated children 

Table 1.2 The number of paralytic cases of polio that developed among two 
groups of children, one of which was given the Salk polio vaccine and the 
other of which was given a saline solution 

Number Paralytic Cases per 
Group treated cases 100000 

Vaccinated 200 745 33 16 
Placebo 201229 liS 57 
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obviously could not be used to discover what would have happened if they had not 
been vaccinated, so a separate control group of children was injected with a saline 
solution placebo rather than the vaccine. Of 201 229 children given the placebo, I 15 
developed polio. The proportion of children who developed polio was greater among 
those given the placebo (57 per 100 000) than among those given the vaccine (16 
per 100 000), so the vaccine appears to be effective in reducing the incidence of polio, 
although in both cases only a small number of children developed the disease. Any 
intervention, including vaccination, carries some risk. On the basis of these results, 
would you have your child vaccinated against polio? A trial involving nearly half a 
million children is both costly and time-consuming; could the same result have been 
obtained more quickly and at less cost by treating only 20 000 children in each category? 

A number of other questions arise. How could the scientists carrying out the trial 
be sure that, as far as the vaccine and the disease were concerned, the control group 
of children did not differ significantly from the treated group of children? There is 
a moral dilemma: since the trial would not have been carried out unless the scientists 
already believed that the vaccine was effective in preventing polio, how should they 
decide which children to vaccinate and which to treat as the control? The design of 
experiments is crucial and forms an entire area of biomathematics in itself, although 
it is too often overlooked. Months of hard work may be devoted to doing an experi
ment in biology only to discover that because of a flaw in the design of the experiment 
or the presence of a factor that should have been included but wasn't, the data do not 
provide the answer to the question being asked. Indeed, the hallmark of a good scientist 
is the ability to design experiments that will elicit the subtle changes and effects one 
is seeking in research. 

1.1.4 Controlling armyworm 

The conventional way of controlling the African armyworm, Spodoptera exempta, is to 
spray crops with pyrethrum, but this pollutes the environment and kills many of the 
predators that feed on armyworms. A more attractive control strategy involves the use 
of biological control agents, such as the bacterium Bacillus thuringiensis var. aizawai 
(B.t.), which can be stored as a powder and applied in a water suspension. 

In June 1988 an outbreak of the African armyworm was detected in a 40-acre wheat 
field at Ngungugu Farm, near Nakuru, in Kenya (Brownbridge, 1988). A suspension 
of B.t. in water was applied at concentrations of 0.5, 1.0 and 2.0% weight by volume, 
to three different parts of a field infested with armyworm, with the results shown in 
Table 1.3. B.t. was not applied in the control area. In the control area there is no obvious 
reduction in the number of armyworm larvae over 4 days. Treatments A and B both 
appear to reduce larval numbers by a factor of three after 4 days, while treatment C 
reduces larval numbers by a factor of about 75 after 4 days and appears to be very 
effective. But are the slight reductions under treatments A and B significant or are 
they simply due to chance? Do treatments A and B differ from each other? For how 
long would we have to apply each of the treatments to achieve a 99% reduction in 
the number of larvae? 
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Table 1.3 Mean counts of armyworm larvae on each day after applying 
three different treatments: Control-no treatment, A -0.5%, B-1.0% and 
C-2.0% B.t. suspended in water 

Treatment 
Time/days Control A B c 
0 497 320 294 295 
1 463 203 213 93 
2 506 155 118 33 
3 487 125 124 12 
4 480 101 111 4 

1.1.5 Summary 

When you have finished reading this book, I hope you will be able to answer all of 
these questions without difficulty. These problems were chosen because they are easy 
to state and to appreciate but we will encounter more complicated problems. For 
example, we have only considered experiments in which the outcome is determined by 
a single factor: whether or not the children were vaccinated, whether the peas had tall 
or short genes. But more often than not we will be analysing data in which there are 
many factors that may determine the outcome of an experiment, and we will want to 
separate out the contributions of the various factors as best we can. Whenever possible, 
we will design our experiments in such a way that the contributions of the various 
factors that determine the outcome are independent of one another so that we can 
assess their effects independently. 

1.2 A BRIEF OUTLINE 

In this book you will encounter new words-Poisson distributions, cumulative distri
bution functions, analysis of variance, regression, and many others. Just as we use Latin 
names to indicate particular species and thus avoid lengthy taxonomic descriptions, 
we need to do the same in biostatistics so that we can express sophisticated ideas 
clearly and concisely. This means thay you will have to learn a new language of words 
and symbols. We will, for example, define probability rather carefully, so that when 
we say, 'If I spin a coin, the probability that it falls heads is one half, we know precisely 
what this means. We will then abbreviate the statement to: P(H) = 0.5. 

Often the variables we are studying are beyond our control. For example, the number 
of tsetse flies caught in traps is high during the rains (Dransfield et al., 1990). But the 
humidity is also high during the rains, so is it the rain or the humidity causing the 
increase in the catch? In fact, when it rains the temperature is generally low and perhaps 
the high catch has nothing to do with rain but rather is related to low temperatures. 
Much of biostatistical theory is devoted to developing techniques for separating out 
the effects of different factors, in this case rainfall, temperature and humidity, on the 
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variable of interest, in this case the number of tsetse flies caught in a trap, the variation 
of which we hope to understand. 

The book is divided into the following main sections. 

• Probability-the fundamental concepts and ideas underlying the application of 
statistics to biology. 

• Representations-ways of picturing distributions of random numbers. 
• Measures-ways to measure and describe distributions of random numbers. 
• Basic distributions-the most important distributions of random numbers. 
• Testing hypotheses-how to frame questions and test predictions. 
• Comparisons-how to make reliable comparisons among the results of experi

ments. 
• Analysis of variance-how to analyse variations in data in terms of contributions 

from the separate factors that may affect and influence the data. 
• Regression-how changes in one variable are related to changes in another. 

It is unfortunate, but true, that many biologists find statistics difficult and there is 
no doubt that the statistical analysis of biological experiments can become very compli
cated. However, the number of concepts underpinning biostatistics are few. 

• There are two fundamental laws of probability and two laws for combining 
probabilities. 

• We need to understand the concept of probability distributions and their measures. 
The two most important measures are the mean and the variance. The mean is the 
average value; the variance is a measure of the 'spread' of the observed values about 
the mean. 

• When several factors may affect the result of an experiment, we want to know how 
much of the variation in the result can be ascribed to each factor. For example, if 
we feed male and female rats on fresh and rancid lard, we might want to know how 
the sex of the rats as well as the freshness of the lard affects the weight gained by 
the rats. 

• When we have several things going on at once, for example, crop growth, fruit 
production, rainfall and insect infestation, each of which may be important, we want 
to know how they are related, and which ones influence the others. We might say, 
for example, that rainfall and crop growth tend to increase or decrease together, 
while insect infestation and fruit production are inversely related, so that as the one 
increases the other decreases. 

• We want to be able to measure variables, such as rainfall and temperature, and use 
these to predict other variables, such as the growth of a crop. But we want to be 
able to pick out those factors that affect the outcome, in this case the growth of 
a crop, most strongly. If we then decide that the key factors are rainfall and tempera
ture, we want to find the combination of the two that gives us the 'best' prediction 
of crop growth, and we need to think about what we mean by the 'best' prediction. 

These few ideas really contain everything that is covered in this book. If you can 
get a firm grasp of the key underlying ideas, then the subtle and complex applications 



10 Why mathematics? 

should not be difficult. If you lose sight of the underlying generalities, however, even 
relatively simple applications will seem confusing and difficult. On the other hand, 
it is also important to develop technical skills because you do not always want to 
start from the laws of probability. The English philosopher and mathematician Alfred 
Whitehead (1928) put it like this: 'Without a doubt, technical facility is a first requisite 
for valuable mental activity: we shall fail to appreciate the rhythm of Milton, or the 
passion of Shelley, so long as we find it necessary to spell the words and are not 
quite certain of the forms of the individual letters. In this sense there is no royal 
road to learning. But it is equally an error to confine attention to technical processes, 
excluding consideration of general ideas. Here lies the road to pedantry.' 

Taylor and Wheeler (1963) gave the following advice to young physicists: 'Never 
make a calculation until you know the answer. Make an estimate before every 
calculation, try a simple physical argument ... before using every derivation, guess 
the answer to every puzzle. Courage: no one else needs to know what the guess is. 
Therefore, make it quickly, by instinct. A right guess reinforces this instinct. A wrong 
guess brings the refreshment of surprise.' I hope that you too will have the courage 
and the confidence to guess. 

1.3 EXERCISES 

1. In an experiment growing duckweed under controlled conditions in the laboratory, 
it was found that the number of fronds doubles every 2 days. Starting with one frond, 
how many would there be after 1, 2 and 3 months if the growth continued unchecked? 

2. The formation of locust swarms tends to occur after drought-breaking rains. The 
process of swarm development involves increased rates of multiplication, concentra-

Table 1.4 The results of a series of hypothetical experiments carried out to 
test Mendel's hypothesis that the ratio of tall to short plants in the F2 genera
tion is 3 

Number of Number of 
tall plants short plants Ratio 

30 10 3.0 
28 12 2.3 
26 14 1.9 
24 16 1.5 
22 18 1.2 
20 20 1.0 

300 100 3.0 
280 120 2.3 
260 140 1.9 
240 160 1.5 
220 ISO 1.2 
200 200 1.0 
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tion of the locusts into small areas and behavioural and morphological changes 
from the 'solitarious' to the 'gregarious' phase. In a study of the origin of plagues 
of the South American locust Schistocerca cancellata in Argentina, Hunter and Cosenza 
(1990) showed that plagues began with a season when three generations per year 
were possible and plagues were sustained when only two generations were possible. 
Plagues typically took two years to increase to maximum size. The number of 
generations per year is therefore an important factor in determining the outbreak 
and decline of plagues. Assuming that each female locust lays about 80 eggs in a pod 
of which about 30 survive to adulthood (Farrow, 1979), calculate the factor by which 
the number of locusts could increase in two breeding seasons with one, two and three 
generations per breeding season. 

3. Imagine that you repeated Mendel's experiment (section 1.1.2). Guess which of 
the (hypothetical) results given in Table 1.4 support his hypothesis that the expected 
ratio of tall to short plants in the F 2 generation is 3 to 17 (You will find the answers 
in Chapter 6, Exercise 1.) 

4. Plot graphs of the number of armyworms and of the logarithm of the number of 
armyworms against time from the data in Table 1.3 for the control and the three 
treatments. What do you notice about the two sets of plots? 
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Probability 

... young students, familiar with animals, ... are often disappointed that their painstaking 
analysis, above all the dull statistical evaluation, finally shows nothing more than what 
a sensible person with eyes in his head and a good knowledge of animals knows already. 
There is, however, a difference between seeing and proving, and it is this difference 
which divides art from science. K. Lorenz (1967) 

A curious feature of science is that the foundations, which most people assume are 
well established, are the least secure parts of the edifice. When we begin a new study, 
we generally make a few vague statements to get us going and then race happily 
onwards. The theory of probability and statistics is no exception and the philosophical 
foundation of the theory is the subject of intense debate. A reasonably thorough 
discussion of the foundations of statistics would require an entire course in itself, so 
I shall simply give you my own biased view of how best to get going. (Hacking, 
1979, discusses the foundations of statistics in his book Logic of Statistical Inference.) 

2.1 THE CONCEPT OF PROBABILITY 

Suppose that I spin a coin and ask 'What is the probability of getting heads rather 
than tails'? Most people would say SO% or one-in-two. But suppose we try to be more 
precise and ask ourselves what we mean by this. There are several ways in which 
we could expand the answer further. 

One way would be to say that we are just as likely to get heads as to get tails. 
But this only says the same thing in different words and what we probably mean is 
that we simply have to take the definition as given, that we cannot explain it further. 

Another explanation might be to say that if we throw a coin very many times, 
we will get heads on about half the throws. To test this, I threw a penny one million 
times (I confess with the aid of a computer pretending to be a penny) and had 
SOO 737 heads and 499 263 tails. The proportion of heads is S0.07%, which is almost, 
but not exactly, equal to the expected SO%. So how close to SO% do we have to be 
before we can say that heads and tails are indeed equally likely? 

Still another explanation might be that if someone throws a coin, it is worth betting 
that it will land heads only if the odds you are offered are better than 1 to I. 

These answers represent three ways of looking at probability. The first, a priori, 
approach says that the concept cannot be reduced further and so we simply have to 



The concept of probability 13 

accept that a thing called probability exists and then proceed to define laws for com
bining probabilities, derive theorems about probabilities (much as you may have done 
with Euclidean geometry at school) and then try to match our theoretical predictions 
with the outcome of whatever experiments we do. 

The second, empirical or experimental, approach says that we should define proba
bility in terms of long-run frequencies. This is certainly a useful way to think about 
probability and is the way most people do think about it. In the first edition of his 
book Logic, the English philosopher John Mill wrote (Bulmer, 1979, p. 5), Why in 
tossing up a halfpenny do we reckon it equally probable that we shall throw heads 
or tails? Because we know that in any great number of throws, heads and tails are 
thrown equally often; and that the more throws we make, the more nearly the equality 
is perfect.' But this long-run approach is not without its problems. We might agree 
that there is a definite probability that I shall be run over by a bus tomorrow: but 
if it does happen, I shall hardly be in a position to repeat the experiment many times. 

The third way of looking at probability, which we might call the casino definition, 
is particularly suited to those who gamble. While I would not like to suggest that 
Mill led a dissipated life, he explicitly rejected the frequency definition in the later 
editions of his book and gave the following definition instead (Bulmer, 1979, p. 6): 
We must remember that the probability of an event is not a quality of the event 
itself, but a mere name for the degree of ground which we ... have for expecting 
it ... Every event is in itself certain, not probable: if we knew all, we should either 
know positively that it will happen, or positively that it will not. But its probability 
means to us the degree of expectation of its occurrence, which we are warranted 
in entertaining by our present evidence.' This would seem to be a useful definition 
for actuaries and insurance brokers. 

In science you should always follow the approach that best suits you. In the first, 
a priori, view of probability, we simply define an unbiased coin as one for which the 
probability of heads is 0.5 and use our laws of probability to work out whether 
500 737 heads in one million throws is a reasonable outcome given our hypothesis 
that the coin is unbiased. In other words, we make an hypothesis, do an experiment and 
then see whether the resulting data are in reasonable agreement with our expectations: 
if they are not we must reconsider the hypothesis and possibly our data as well. As 
we shall see in this book, we do not sit around looking blankly at our data and then 
suddenly jump up, saying, 'Eureka! tsetse flies like blue traps.' Usually we have a 
pretty good idea of what we think might happen and we are more likely to say, 'I 
wonder if the colour of the traps affects the number of tsetse flies that we catch? 
Let us catch as many flies as we can with blue traps and yellow traps, and then see 
whether the data we collect supports our hypothesis that the catch is affected by 
the colour of the trap.' In this book we will talk about testing hypotheses. This not 
only makes for more rigorous statistics but helps us to remember that the reason we 
apply mathematics to biology is not to generate large amounts of obscure numbers, 
but to help to formulate clear and precise hypotheses to test. 

Sometimes the second, the long-run frequency idea, is the most useful: if you are 
struggling to decide on how to assign frequencies or probabilities, or indeed to decide 
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on what might be the important factors in an experiment, you can always ask: What 

would I expect to happen if I repeated this experiment many times? We usually hope 

that the results of our experiments on new insect trap designs, improved insecticides, 
or high yielding strains of wheat, for example, will be used by other people in other 

places and this might help you to think about all of the possible things that might 

happen when the experiment is repeated many times. 
The third, casino, approach can also be useful because it reminds us that the random 

nature of our observations arises, at least in part, from our lack of knowledge of the 

precise factors affecting our experiments. Given some information, we might then make 

certain predictions concerning the outcome of an experiment. But more information 

might lead us to change our prediction and this reflects well the provisional nature 
of scientific knowledge. 

2.2 THE LAWS OF PROBABILITY 

Once we have agreed on some concept of probability, we need to develop our nota

tion. We could make statements, such as, 'If I toss an unbiased coin, the probability 

that it will land heads is 50%.' But this is long, and we will want to discuss considerably 

more complicated situations. So let us use the letter P for probability and define our 

scale of probability in such a way that anything that is certain to happen has a 
probability of 1 and anything that is certain not to happen has a probability 
of 0. We will then say, for example, that if we toss an unbiased coin, 

P(H) = 0.5, 2.1 

which is read, The probability of getting heads is 0.5'. Sometimes we will want to 
include explicitly the conditions under which our statement holds, and then we use 
a 'I' (bar) to indicate a conditional probability and write instead 

P(Hiunbiased coin)= 0.5, 2.2 

which reads The probability of getting heads, given that the coin is unbiased, 
is 0.5'. In another situation we might then write 

P(HI double-headed) = 1, 2.3 

which reads, The probability of getting heads, given that coin is double-headed, is 1'. 

We can combine numbers in two important ways: we can add them and we can 
multiply them. The next thing we must do is to determine the equivalent laws for 
combining probabilities. 

2.2.1 The law of addition 

I think you will agree that if we spin an unbiased coin 

P(H) = P(T) = 112. 2.4 

And I think you will also agree that with an unbiased die the probability of throwing 
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any number between I and 6 is I/6, that is 

P(I) = P(l) ... = P(6) = 1/6. 2.5 

So if I were to throw a die and ask you to guess the number that turns up, you 
would consider that the probability of guessing correctly is I in 6, of guessing 
incorrectly is 5 in 6. You should demand odds of at least 5 to I to make it worth 
your while playing the game. 

So far so good. But suppose I throw a die and let you guess any two numbers 
and we agree that if either of them comes up you win. What odds would then make 
it worth your while to play? For example, you might now bet that the result will 
be either a 2 or a 5, and so we want to know the probability of getting a 2 or a 5, 
or in our new notation, we want to know the value of P(2 or 5). 

Let us examine the problem more carefully. When we throw an unbiased die, the 
reason for concluding that P(4) = 1/6 is as follows: There are six possible outcomes, 
I, 2, ... 6. Since we assume that each outcome is equally likely, we argue that the 
probability of getting 4, say, is simply equal to the number of ways we can get 4 
(I) divided by the total number of ways the die can fall (6). 

Suppose then that we throw a die and are allowed two bets. If you bet on 2 or 
5, say, there are two ways in which you can win-namely, if the die falls 2 or 
5-and four ways in which you can lose-namely, if the die falls I, 3, 4 or 6. The 
total number of outcomes is still 6, so that the chance of winning is 2 out of 6 (and 
of losing is 4 out of 6) and we can write 

P(2 or 5) = 2/6 = 113. 2.6 

Clearly, if you are going to play this game you should demand odds of at least 2 
to I. Now if you think about this argument, it should be clear that we have simply 
added up the number of (equally likely) ways in which you can win and divided that 
number by the total number of (equally likely) ways the game can come out, so that 
we can generalize Equation 2.6 and write 

P(2 or 5) =(I + 1)/6 = I/6 + 116 = P(2) + P(5) = 113, 2.7 

since adding the number of ways we can win and then dividing that number by the 
total number of ways the dice can fall is just the same as adding the probabilities 
of each outcome. But we must be careful: if you bet two numbers but both bets are 
for 2, that is, if you make the silly bet that the outcome will be 2 or 2, then the 
probability of a win is P(2 or 2) = I/6, not 113, so that the rule only applies if the 
alternatives are mutually exclusive: that is to say, either of the two outcomes might 
happen but certainly not both. 

Let us then summarize our law of addition. For two mutually exclusive events, 
A and B, the probability that either A or B will occur is equal to the sum of their 
separate probabilities: that is, 

P(A or B) = P(A) + P(B). 2.8 

Indeed, we have come full circle, for we effectively used our law of addition to derive 
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the results given in Equations 2.4 and 2.5. If the probability of getting heads is equal 
to the probability of getting tails, and if our law of addition holds so that they add 
up to I, then each of them must be equal to 0.5. 

We can now use this law to take another look at Mendel's experiments on peas 
(MendeL I866). Mendel crossed homozygous TT peas with homozygous tt peas, 
where T indicates the gene for tallness and t the gene for shortness. Each plant in the 
first filial generation, F1 , receives one gene from each of its parents and so they must 
all have one T and one t gene. Thus the F1 plants are all heterozygous, with genetic 
constitution Tt. Since all of the plants in the first filial generation were tall, the gene 
for tall plants is dominant over the gene for short plants. Mendel then cross-fertilized 
these heterozygous plants and found that about 3/4 of them were tall and I/ 4 were 
short. In the second filial generation, F2 , there are four ways in which the F2 plants 
can inherit genes from the male and female F1 parents, as indicated in Table 2.1. 

Since each of the four outcomes in Table 2.I is equally likely and the tall gene is 
dominant, the ratio of tall to short plants should be 3 to I. We have effectively used 
the law of addition to determine the predicted ratio of tall to short plants since 

P(F2 is tall)= P(TT) + P(Tt) + P(tT) = 1/4 + I/4 + 1/4 = 3/4, 2.9 

while 

P(F2 is short)= P(tt) = I/4. 2.IO 

There are three important points to note. First of all, the four outcomes in Table 
2.I are equally likely only if the F2 plants are just as likely to inherit T genes as 
they are to inherit t genes. When we use statistics, we must be aware of the assumptions 
that underlie our analyses, especially when the assumptions are not explicitly stated, 
so that if the data do not agree with our expectation we have some idea of where 
to look for an explanation. The second point is that Tt and tT are distinguishable 
genetic constitutions: in the first case T came from the male and t from the female, 
while in the second case the reverse was true. We must be careful to distinguish 
events which, though seemingly the same, are in fact different. Lastly, we can apply 
the law of addition because the outcomes are mutually exclusive. For example, we 
could have TT or Tt, but we could not possibly have TT and Tt in the same plant. 

In the previous chapter we saw that Mendel's tall and short plants did occur in 
the ratio of about 3 to I in the F 2 generation. However, being a good scientist, he 

Table 2.1 The four possible (equally likely, mutually exclusive) genetic 
constitutions of F2 peas produced from heterozygous F1 males and females 

F1 male 

T 
T 

F1 female 

T 
t 

T 

TT 
Tt 
tT 
tt 
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Table 2.2 Mendel's data for pairs of characters as they occurred in the F2 generation 
of peas. The table gives the number of plants showing the dominant character, the 
number of plants showing the recessive character and the ratio of the two. The last 
row gives the total number of plants, showing the dominant or recessive character 
and the ratio of these two numbers 

Character Dominants Recessives Ratio 

Round vs wrinkled seeds 5 474 1850 2.96 
Yell ow vs green seeds 6022 2001 3.01 
Purple vs white flowers 705 224 3.15 
Smooth vs constricted pods 882 299 2.95 
Axial vs terminal flowers 651 207 3.14 
Green vs yellow unripe pods 428 152 2.82 
Tall vs dwarf stems 787 277 2.84 

Total 14949 5010 2.98 
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did not stop there but went on to study several other pairs of characteristics, some 
of which are given in Table 2.2 (Mendel, 1866). The ratios of the numbers of peas 
having the dominant character to the numbers having the corresponding recessive 
character cluster around a value of 3, in support of Mendel's theory, although none 
of the numbers is precisely 3. The data for yellow and green seeds give a ratio very 
close to 3 while the data for green and yellow unripe pods give a ratio less close 
to 3. In later chapters we shall examine in detail the question 'How close is close?', 
and we shall develop statistical tests that will enable us to make precise statements 
about the meaning of 'closeness'. The theory that allows us to say just how close 
is close was not widely understood in Mendel's day, but he stated this aspect of the 
problem clearly: The true ratios of the numbers can only be ascertained by an average 
deduced from the sum of as many single values as possible; the greater the number, 
the more are merely chance effects eliminated' (Mendel, 1866). This is in essence a 
statement of our long-run frequency definition of probability. We see from Mendel's 
data that the ratio of the total number of dominants to the total number of recessives 
is very close to 3:1. 

2.2.2 Conditional probability 

Before we can establish the second important law of probability, we need to introduce 
the concept of conditional probabilities. We have agreed that if I throw one die, 
the probability that it will come up showing 2, say, is 1/6, which we can write as 

P(2) = 1/6. 2.11 

Suppose I now throw a die and look at it but hide it from you. I tell you that it has 
come up with an even number. What would you say is the probability that it is 
showing 27 Since there are now only three possible outcomes-2, 4 and 6-the 
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probability that it is showing 2 is 1/3, which we can write as 

P(2leven) = 1/3, 2.12 

and Equation 2.12 reads 'The probability of getting a 2, given that the number is 
even, is 1/3'. 

We can now use the notion of conditional probability to define another important 
concept, that of statistical independence. Suppose we throw two dice, which we 
call a and b. Then the probability that a shows 2 has nothing at all to do with the 
number that b shows and it must be the case that 

P(a shows 21 b shows even)= P(a shows 2) = 1/6, 2.13 

while we know that the probability that a shows 2 does depend on whether or not 
a shows even, since 

P(a shows 2la shows even)= 1/3 ::f. P(a shows 2) = 1/6. 2.14 

These observations provide us with an important test of statistical independence, 
because if we find that 

P(A I B) = P(A), 2.15 

we can conclude that A and B are statistically independent. We should also note that 
in general 

P(AIB) ::f. P(BIA). 2.16 

This is easily seen with our die since P(2leven) = 1/3, while P(evenl2) = 1. 

2.2.3 The law of multiplication 

Our law of addition gave us a rule for calculating P(A or B). We now want a rule 
for calculating P(A and B). For example, we might want to throw two dice and work 
out the probability that they will both show 2. We have already seen (Equations 2.9 
and 2.10) that Mendel's theory predicts that for peas in the second filial generation 
P(plants are tall)= 0.75, P(plants are short)= 0.25, P(seeds are round)= 0.75, and 
P(seeds are wrinkled) = 0.25. How then will we calculate P(plants are tall and seeds 
are round) or P(plants are short and seeds are wrinkled)? 

For any two outcomes, A and B, we want an expression for P(A and B). We can 
consider this problem in two stages. First, what is the probability that we will get 
B? Second, given that we do get B, what is the probability that we will then get A 
also? The answer to the first question is simply P(B) and the answer to the second 
question is the conditional probability P(A I B). I now want to convince you that to 
determine P(A and B) we must multiply these two probabilities together, so the law 
of multiplication states: the probability of getting A and B is the probability of 
getting A, given B, times the probability of getting B. 

P(A and B) = P(A I B) X P(B). 2.17 
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In words, the probability of getting A and B is the probability of getting B times 
the probability of getting A given that we already have B. If A and B are statistically 
independent so that P(A I B) = P(A), as in Equation 2.15, then Equation 2.17 becomes 

P(A and B) = P(A) x P(B). 2.18 

Let us examine this simpler version first. 
Suppose we throw two dice, one coloured red and one coloured blue so that we 

can tell them apart. I think we agree that, unless we glue them together, what happens 
to the red one will not affect what happens to the blue one, so that they are statistically 
independent. This time we will play a game in which you have to guess a number 
for each die. Suppose you guess 2 for red and 5 for blue; what then is the probability 
that the red will show 2 and the blue will show 5 and you will win? That is, we 
want to evaluate P(2 on red and 5 on blue). 

Since the number of possible outcomes is small, we can write them all down as 
in Table 2.3 and we see that there are 6 X 6 = 36 ways in which the dice can fall. 
Out of the 36 possible outcomes, the red shows 2 on six occasions, so that the 
probability that the red shows 2 is 6/36 = 1/6, just as we expect. We now look at 
these six outcomes, the second row of Table 2.3, and on only one of them does the 
blue die show 5. So the probability that the blue die shows 5, given that the red 
die shows 2, is 1/6. Again, this is just as we expect, since the number that shows 
on the blue die does not depend on the number that shows on the red die. We then 
see that on 1/6 of 1/6 of the throws, the red shows 2 and the blue shows 5, so that 
the probability that the red shows 2 and the blue shows 5 is (1/6) X (1/6) = 1/36, 
in agreement with Equation 2.18, which is the law of multiplication for statistically 
independent events. 

To illustrate the law of multiplication for events that are not statistically 
independent, imagine that we throw a die and ask: what is P(even and ~ 5)7 There 
are two outcomes, namely 2 and 4, that are both even and less than or equal to 5 so 
the answer must be 113. To confirm that the law of multiplication gives the same 
answer we note that 

P(even and~ 5) = P(evenl ~ 5) x P( ~ 5) = (2/5)(5/6) = 1/3 2.19 

Table 2.3 The 36 ways in which two dice can fall. The numbers in the 
table give the sum of the numbers on the dice 

Blue 
1 2 3 4 5 6 

1 2 3 4 5 6 7 

2 3 4 5 6 7 8 
Red 3 4 5 6 7 8 9 

4 5 6 7 8 9 10 
5 6 7 8 9 10 11 

6 7 8 9 10 11 12 
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or, if you prefer, 

P(even and~ 5) = P(~5leven) X P(even) = (2/3)(112) = 113. 2.20 

In a case as simple as this we would not bother to use the law of multiplication and 
would simply write down the answer directly, but in more complicated situations 
we will have to use the law of multiplication. When faced with a statistical result 
whose meaning may not be obvious, it is always good practice to think of a simple 
example, such as the one above, and put in some numbers to help you to understand 
the result. 

We can now look again at the casino game we suggested in section 1.1.1, in which 
we throw two dice and have to guess what the sum of the two numbers will be. 
From Table 2.3 it is clear that we must guess a number between 2 and 12 and that 

the dice can fall in 36 different ways. We can also see by counting the number of 
ways various sums can turn up that P(2) = 1/36, P(3) = 2/36, ... , P(7) = 6/36, P(8) 
= 5/36, and so on. To see how we can apply our laws to reach the same conclusion, we 
note that we will get 5, for example, if we throw 1 and 4, 2 and 3, 3 and 2, or 4 and 1. 
We then have 

P(5) = P[(1 and 4) or (2 and 3) or (3 and 2) or (4 and 1)]. 2.21 

Using the law of addition we can write out the 'or's so that 

P(5) = P(1 and 4) + P(2 and 3) + P(3 and 2) + P(4 and 1). 2.22 

We can then use the law of multiplication (for independent events) to write out the 
'and's, so that 

P(5) = P(1) x P(4) + P(2) x P(3) + P(3) x P(2) + P(4) x P(1). 2.23 

Since each of the individual outcomes has a probability of 1/6, 

P(5) =(1/6) X (116) + (116) X {116) + (116) X (1/6) + (116) X {116) =4/36. 2.24 

In a case as simple as this, it is easy to count the number of successes and the total 
number of possible outcomes and divide the one by the other, and that is all that 
our laws are doing for us. But if we have hundreds of possible outcomes, it quickly 
becomes tedious if not impossible to enumerate all the possibilities; we then use our 
laws to help us manipulate probabilities. 

Now we can work out the best strategy for our casino game. Remember that you 
pay £1 every time you guess wrong and you receive as many pounds as the number 
you guess if you guess right. If you bet 5, say, your probability of wining is 4/36 

and since you are then paid £5 your average winnings in 36 games are £20. Since 
you pay £1 each time that you make a wrong guess and your probability of losing 
is 32/36, your average losses in 36 games are £32. Table 2.4 summarizes the results 
for some of the bets that you might make. Clearly, your best bet is 7 although 8 is 
almost as good and you should also do well if you bet 9. 

Let us return again to Mendel and his peas. We have seen that Mendel was able 
to identify a number of dominant-recessive pairs of characters. This led him to 
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Table 2.4 The gains and losses in pounds for various bets in the 
casino game described in section 1.2.1 

Bet P(winning) Gain/36 games Loss! 36 games Net gain 

5 4/36 20 32 -12 
6 5/36 30 31 -1 
7 6/36 42 30 +12 
8 5/36 40 31 +9 
9 4/36 36 32 +4 

10 3/36 30 33 -3 

wonder if the pairs of characters were linked in any way. For example, genes for 
round seeds are dominant over genes for wrinkled seeds, while genes for yellow 
seeds are dominant over genes for green seeds; perhaps the round seeds will tend 
also to be yellow while the wrinkled seeds will tend to be green. We can rephrase this 
using our newly developed terminology and ask: is P(yellow I round) = P(yellow)7 is 
P(wrinkledlyellow) = P(wrinkled)7 and so on. In other words, we can test the pairs 
of characteristics to see if they are statistically independent. To do this, Mendel 
proceeded as in his earlier experiments, but this time he crossed a pure line having 
round yellow seeds with a pure line having wrinkled green seeds. All the resulting 
hybrids had round yellow seeds, confirming the dominance of the round and yellow 
characters. When these hybrids were in turn crossed, he obtained the results shown 
in Table 2.5 from which we can calculate the proportions in which the various 
characteristics occur. For example, we have 

P(round) = 423/556 = 0.761 P(wrinkled) = 133/556 = 0.239 

P(roundlyellow) = 315/416 = 0.757 

P(wrinkledlyellow) = 101/416 = 0.243. 2.25 

(I have used a circumflex ' " ' to indicate a probability estimated as the ratio of two 
frequencies to distinguish it from the 'true' underlying probability.) First of all we 
see that about 3/4 of all the seeds are round. More importantly, if we consider only 
the yellow seeds, about 3/4 of them are round and if we consider only the green 
seeds, about 3/4 of them are round. Writing this out formally we have 

P(round) = 0.761:::::: P(roundlyellow) = 0.757:::::: P(roundlgreen) = 0.771. 2.26 

Table 2.5 Mendel's data on the distribution of seed colour and shape 

Yellow Green Total 

Round 315 108 423 
Wrinkled 101 32 133 

Total 416 140 556 
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Table 2.6 Bateson's data on the distribution of pollen shape and the colour 
of the flowers in the F2 generation 

Purple flowers Red flowers Total 

Long pollen 1528 117 1645 
Round pollen 106 381 487 

Total 1634 498 2132 

So the estimated probability that a seed will be round is about the same whether 
the seed is green or yellow and the traits for colour and shape are statistically 
independent (Equation 2.15). 

With the rediscovery of Mendel's work, William Bateson repeated many of 
Mendel's experiments (Bateson, 1909). In one experiment Bateson started from two 
pure strains of peas, the first having long pollen and purple flowers, the second 
having round pollen and red flowers. In the F1 generation all the plants had long 
pollen and purple flowers, these being the dominant characters. In the F 2 generation 
he obtained the results shown in Table 2.6. 

If we go through the same exercise as we did for Mendel's data, we find that 

P(long pollen)= 1645/2132 = 0.772 

P(round pollen)= 487/2132 = 0.229 

in about the proportions expected on the basis of Mendel's theory. However, 

P(long pollenjpurple flowers)= 1528/1634 = 0.935 

P(long pollen ired flowers)= 117/498 = 0.215. 

In this case, the two pairs of characters are not statistically independent, since 

P(long pollen)= 0.772 

~ P(long pollenlpurple flowers)= 0.935 

~ P(long pollen Ired flowers)= 0.215, 

2.27 

2.28 

2.29 

so that the probability that a pea has long pollen does depend on the colour of its 
flowers. 

Two points are worth noting. First of all, we have said that 0.935 and 0.215 in 
Bateson's experiments differ from 0.772 but that 0.757 and 0.771 in Mendel's 
experiments are not different from 0.761. Clearly Mendel's numbers are in closer 
agreement with each other than are Bateson's but we are going to have to decide 
when differences are and are not significant. The second point is that the statistics 
merely suggest that something interesting might be going on since flower colour 
and pollen shape seem to be related while seed colour and seed shape do not. But 
the statistics tell us nothing at all about the biology. We now know that the reason 
for these results is that genes are carried on chromosomes and if two pairs of genes 
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are found on the same chromosome they are likely to be inherited together, and 
therefore linked, while if they are found on different chromosomes they are likely to 
be inherited independently of one another. In other words, the statistics are important 
and suggestive and give us hints as to where to look, but it is up to us to interpret 
our data and draw out the biological implications. 

2.3 SUMMARY 

Probability is a subtle concept and it can be thought about in several different ways: 
as something that is given, as the outcome of many repeats of the same experiment 
or as a measure of our confidence or degree of belief in a certain event. How you 
think about it will depend on you and on the problem at hand. 

In order to progress we need to be able to calculate the probability that several 
different things will happen in an experiment and the laws for combining probabilities 
are central to everything that follows. I have not tried to present them in a rigorous 
way; that has been done by others (Freund, I 972). What matters is that you know 
how and when to apply the two laws for combining probabilities and the conditions 
under which they hold and that you understand clearly when events are mutually 
exclusive and the meaning of statistical independence. 

We have already seen that even in simple experiments, such as the throwing of 
two dice, the probabilities of each of the possible (combined) outcomes occurring 
may differ. In the next chapter we will consider the probability distributions of the 
outcomes of various experiments and think about ways to represent these distributions. 

2.4 EXERCISES 

I. Suppose that you throw one die. Write down: P(l), P(l or 2), P(l or 2 or 3), P(l 
or 2 or 3 or 4), P(I or 2 or 3 or 4 or 5), P(I or 2 or 3 or 4 or 5 or 6). Write down 
P(not 5), i.e. the probability that it does not show 5. 

2. Suppose that you throw two dice, a and b. Write down: P(a shows I and b shows 
2), P(a shows I and b shows 2 or 3). 

3. Use Mendel's data in Table 2.5 to estimate P(roundlgreen), P(wrinkledlgreen), 
P(yellow), P(yellow I round), P(yellow I wrinkled), P(yellow and round). 

4. Use Bateson's data in Table 2.6 to estimate P(round pollen), P(round pollen I purple 
flowers), P(round pollen I red flowers), P(purple flowers), P(purple flowers I round 
pollen), P(purple flowers I long pollen). 

5. Use Bateson's data in Table 2.6 to estimate P(long pollen and purple flowers), 
P(round pollen and red flowers). 

6. Suppose that you throw three coins. How many ways can they fall so as to give 
(a) three heads, (b) two heads, one tails, (c) one heads, two tails and (d) three tails? 
If the coin is unbiased, what is the probability of each outcome (a) to (d)? 
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7. Suppose that we have four plants in the F1 generation as bred in Mendel's experi
ment so that one has genetic constitution TT, two Tt, and one tt. Each of these 
four plants is then crossed with each of the others. Suppose that each cross produces 
four new plants. Calculate the expected number of plants with each genetic constitution 
in the next generation. This illustrates the Hardy-Weinberg law (Roughgarden, 1979), 
that in the absence of natural selection and with random mating the genotypic 
proportions remain fixed. [Hint: You can solve this problem either by enumerating 
all possible crosses or by using the laws of probability.] 
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Representations 

If we fully apprehend the pattern of things of the world will it not be found that 
everything must have a reason why it is as it is? And also a rule [of co-existence with 
all other things] to which it cannot but conform? Is not this just what is meant by Pattern? 

Hsii Heng (1209-1281) (Needham, 1972, p. 38) 

When we throw a die we cannot predict with certainty which number will turn up. 
In the nineteenth century scientists would have argued that our inability to predict 
the outcome reflected our lack of knowledge, so that if we knew precisely how we 
had thrown the die, the precise details of its shape and weight, how each tiny current 
of air was moving, and so on, then we could, in principle, tell with certainty how it 
would land. This was the essence of Mill's second statement of probability (section 
2.1). Nowadays, uncertainty is regarded as being more fundamental than was pre
viously thought, and quantum mechanics is based on laws that are themselves 
probabilistic. Einstein never accepted quantum mechanics as a complete theory of 
maHer because of the probabilistic nature of its laws Gammer, 197 4). 'Quantum 
mechanics is very imposing,' he wrote, 'but an inner voice tells me that is still not 
the true Jacob. The theory yields much, but it hardly brings us nearer to the secret 
of the Old One. In any case I am convinced that He does not throw dice.' Realizing 
that combining quantum mechanics and general relativity in the study of black holes 
leads to even greater uncertainty, Stephen Hawking comments (Boslough, 1984): 
'God not only plays dice, but he sometimes throws them where they cannot be seen!' 
Stewart (1990) in his book on Chaos now adds: 'For we are beginning to discover 
that systems obeying immutable and precise laws do not always ad in predictable 
and regular ways. Simple laws may not produce simple behaviour. Deterministic laws 
can produce behaviour that appears random. Order can breed its own kind of chaos. 
The question is not so much whether God plays dice, but how God plays dice.' 

The discovery of chaotic behaviour, and its application to biology by Robert May 
(1976) and others, shows that even entirely deterministic classical systems can be 
inherently unpredictable and John Conway's delightful game 'Life' illustrates deter
ministic but unpredictable dynamics (Gardiner, 1970, 1971, 1983). It is believed that 
weather is chaotic so that no maHer how powerful our computers become, we will 
never be able to make precise weather forecasts more than a week or so into the 
future. In later chapters we will have to consider the degree to which the 'randomness' 
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in our data reflects essentially unknowable features of our experiments and the extent 
to which it reflects aspects of the experiment we have not understood or taken into 
account. 

If we throw a die many times and get 6, 3, 5, 3, 2, 5, 1, ... , say, these give us a 
sequence of random numbers. Now, although we cannot say with certainty which 
number will tum up next, we can make precise statements about the probability that 
each number will tum up next. In other words, the probability distribution of the 
outcome of even a single throw of a die can be known precisely. In our study of 
statistics we are therefore concerned with determining the probability distributions 
from which the numbers that we measure in such experiments come. 

3.1 DISCRETE RANDOM VARIABLES 

In statistics we are concerned not with the particular results of individual measurements 
but with the distribution of the measured values. A great deal of work in statistics 
is spent in identifying and describing the distribution associated with a particular set 
of measurements or observations and the first thing we must do is to consider ways 
of representing distributions of random numbers. 

3.1.1 Frequency distributions 

In the previous chapter we saw that when we throw a die, the probability of getting 
any number between 1 and 6 is 1/6. To illustrate this, I used a computer to simulate an 
experiment in which I threw a die 600 times, getting 95 ones, 101 twos, 107 threes, 
112 fours, 91 fives and 94 sixes. As expected, each number came up about 100 times 
or about one time in six. However, it is easier to see what is going on if we plot the 
frequency distribution of outcomes in the form of a bar chart in which we draw a 
series of boxes in such a way that the height of each box gives the number of times 
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Figure 3.1 The result of a computer simulation of an experiment in which a die is thrown 
600 times. (a) The frequency distribution (b) the relative frequency distribution of the possible 
outcomes. The two plots differ only in the choice of scale on the vertical axis. 
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Figure 3.2 The result of a computer simulation of an experiment in which two dice are thrown 

600 times and the pairs of numbers are added together. (a) The distribution of outcomes and 

(b) the relative frequency distribution. The two plots differ only in the choice of scale on the 

vertical axis. 

the result for that box turns up. This is shown in Fig. 3.Ia from which we see that 
each number occurs with about the same frequency. 

An alternative, but equivalent, way to plot the data involves dividing the number 
of times each outcome occurs by the total number of events. This is called the relative 
frequency distribution and is shown in Fig. 3.Ib. The frequency distribution shows 
us that we get a I in 95 out of 600 throws; the relative frequency distribution shows 
us that we get a I with probability O.I6. 

To illustrate this further I threw two (simulated) dice 600 times, added together 
each pair of numbers that turned up and then plotted the frequency distribution of 
the sums. In Fig. 3.2 we can see that the two numbers add up to 7, for example, in 
95 out of 600 or I6% of the throws. 

3.1.2 Probability distributions 

Now we know how to calculate the probabilities of each outcome in each of the 
two experiments shown in Figs 3.I and 3.2. We believe that the more times we throw 
the dice the closer the observed relative frequencies will be to the theoretical 
probabilities, which are plotted in Fig. 3.3. We can regard each of the relative frequency 
distributions plotted in Figs 3.I and 3.2 as estimates of the underlying 'true' probability 
distributions shown in Fig. 3.3. 

In passing we should note that these are examples of mathematical models. In 
Fig. 3.3 we have analytical models in which we calculate the probabilities of various 

outcomes from first principles; because the problems are so simple, we can do this 
exactly. In biology we are seldom able to carry out exact calculations and so we often 
make simulation models, which mimic our experiments, or at least what we believe 
to be the most important aspects of our experiments. This is what we did to obtain 
the results shown in Figs 3.I and 3.2. We could then do an actual experiment by 
throwing two real dice 600 times and comparing the outcome with the results of 
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Figure 3.3 The theoretical probability distribution functions corresponding to the two 
experiments shown in Figures 3.1 and 3.2. (a) The probability distribution for the number that 
shows when one die is thrown and (b) the probability distribution for the sum of the numbers 
that show when two dice are thrown. 

our analytical (Fig. 3.3) or simulation (Fig. 3.2) models in order to decide if there is 
evidence for bias in our dice. 

3.1.3 Cumulative distributions 

Bar charts give us a graphical representation of the frequency or the probability with 
which a particular outcome turns up in an experiment. However, instead of asking 
What is the probability of getting a 3?', we might ask, 'What is the probability of 
getting a number less than or equal to 3?' The latter question is important because 
when we test an hypothesis against our data, we are usually looking for extreme 
cases or unusual results and we want to know the probability of getting a result as 
big as or bigger than (or as small as or smaller than) the one we actually observe. 
For example, when we vaccinated the children against polio (section 1.1.3) we wanted 
to know if the number who then developed polio was unusually small. If we are 
testing an insect trap, we want to know if it catches an exceptionally large number 
of insects. 

If we throw one die, then using the law of addition we have 

P(1) = 1/6 

P(1 or 2) = P(1) + P(2) = 1/3 

P(1 or 2 or 3) = P(1) + P(2) + P(3) = 1/2 

3.1 

3.2 

3.3 

and so on. In other words, to obtain the probability that the result is less than or 
equal to 3, say, we add the probabilities of each outcome from 1 to 3. Now we 
could always write these sums out in full. But I am sure you will agree that if we 
had 100 possible outcomes, writing out the sums would rapidly become tedious. So 
we introduce a new notation in which we use the Greek capital letter I:, 'sigma', the 
equivalent of our S, to represent summing over various outcomes. We can then 
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Figure 3.4 The cumulative distribution functions, c.d.f.s, corresponding to the relative 
frequencies given in Figures 3.1b and 3.2b. 

rewrite Equation 3.3 more compactly as 
3 

P(I or 2 or 3) = I P(i). 3.4 
t=l 

The right-hand side of Equation 3.4 reads: 'the sum of P(i) from i = I to 3'. Since 
Equation 3.4 gives us the accumulated probability for all outcomes less than 3, we 

call it the cumulative distribution function or c.d.f. Writing it with a C we have 
3 

C(3) = I P(i) = 112 3.5 
i= 1 

for the cumulative probability of throwing one die and getting a number less than 
or equal to 3. Figure 3.4 gives the cumulative distributions for the data given in Figs 3. I 
and 3.2. From the cumulative distributions we can read off directly the probability 
that a number is less than or equal to any chosen value. The c.d.f. must always lie 
between 0 and I. 

3.2 CONTINUOUS RANDOM VARIABLES 

So far we have talked about experiments in which we measure discrete variables, 
which can take on discrete values only, such as heads or tails, purple or white, and 
I or 2 or 3. We will discuss other discrete variables such as the number of armyworms 
in a field of maize or the number of ticks feeding on different rabbits. But we will 
also measure continuous variables, which can take any value on a continuum of 
numbers, such as the wing length of a fly or the weight of an engorged tick and 
we will need to see how these fit into our scheme of things. 

Fortunately, the ideas we have developed to describe discrete distributions all have 
e'1_uivalents for continuous distributions and if we are clear about the one we should 
be clear about the other. There is, however, an entire branch of mathematics that 
deals with changes in continuous functions. This was developed in the eighteenth 
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century by Isaac Newton in England and Gottfried Leibniz in France. This study is 
called calculus: differential calculus enables one to find the slope of a continuous 
curve at any point on it and integral calculus enables one to find the area under a 
continuous curve between any two points. We will not be able to develop and use 
calculus in this book; we will be able to do all that we need without it. However, 
for those of you who are familiar with calculus, remember that many of the results 
we will obtain could be more easily obtained using the calculus. 

3.2.1 Frequency distributions 

As an example of a continuous distribution, consider the data shown in Table 3.1, 
which give measurements in millimetres of the lengths of the wings of 100 houseflies 
(Sokal and Hunter, 1955). In Table 3.1 we see that there are lots of 4.5s and only 
one 3.6, but a graphical representation should make it easier to see how the lengths 
of the wings are distributed. If the wing lengths occurred in discrete categories, as 
in our earlier examples, we could plot them as a bar chart, which would indicate 
how the lengths of the wings are distributed. We can still do this, even though the 
wing lengths are continuously distributed, but we will have to create our own discrete 
categories. For example, we can make a series of categories by taking 0.1 mm ranges. 
Since the shortest wing is 3.63 mm long, let us take wing lengths from 3.6 to just 
less than 3.7mm for our first category, which in this example contains one fly, from 
3.7 to just less than 3.8 mm for the second category, containing one fly, from 3.8 
to just less than 3.9 mm for the third category, containing two flies, ... , from 4.5 to 
just less than 4.6 mm for the 26th category, containing 12 flies, and so on. We can 
then plot a bar chart, just as we did before and the result is shown in Fig. 3.5, which 
we call a histogram. Since each interval is 0.1 mm wide, I have divided each frequency 
by 0.1 so that the units are frequency per 1.0 mm rather than frequency per 0.1 mm. 
The difference between a bar chart and a histogram is that in the histogram we have 
chosen our own categories. (Many authors use 'bar chart' and 'histogram' interchange
ably.) With a histogram we can make the categories as broad or as narrow as we 

Table 3.1 Lengths in millimetres of the wings of 100 houseflies. The measurements 
have been arranged in order of increasing length 

3.63 3.71 3.83 3.86 3.91 3.99 4.05 4.09 4.09 4.09 
4.10 4.11 4.13 4.15 4.15 4.16 4.23 4.24 4.25 4.26 
4.27 4.28 4.29 4.30 4.33 4.35 4.38 4.39 4.39 4.39 
4.40 4.40 4.42 4.43 4.46 4.47 4.47 4.48 4.50 4.50 
4.52 4.53 4.54 4.56 4.57 4.58 4.59 4.59 4.59 4.59 
4.60 4.61 4.61 4.61 4.62 4.63 4.64 4.65 4.68 4.69 
4.72 4.73 4.73 4.74 4.74 4.76 4.78 4.80 4.80 4.80 
4.81 4.81 4.84 4.86 4.86 4.87 4.88 4.91 4.91 4.97 
4.99 4.99 4.99 5.00 5.00 5.03 5.08 5.08 5.08 5.08 
5.10 5.1~ 5.15 5.20 5.26 5.27 5.34 5.38 5.40 5.57 
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5.5 

Figure 3.5 The wing lengths shown in Table 3.1 plotted as a histogram. The vertical axis 
gives the number of flies per millimetre whose wings fall into each 0.1 mm range. 
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Figure 3.6 The histogram shown in Figure 3.5 replotted after (a) doubling and (b) halving 
the widths of the categories to which the wing lengths are allocated. By plotting the data as 
the frequency per millimetre, we keep the vertical axes the same in (a) and (b). 

like, but unless we are very carefuL we must keep the widths the same within any 
one histogram. One unfortunately common way of misrepresenting data is to vary 
the width of the categories to ~hange the appearance of the histogram. An example 
of such misrepresentation is given in Exercise 3.4.3. 

In Fig. 3.6 I have first doubled and then halved the widths of the categories in 
Fig. 3.5. Doubling the width of each category to 0.2 mm produces a smoother 
histogram but we are in danger of losing some of the details of the shape. Halving 
the width of each category to 0.05 mm reveals more structure but the statistical 
variation now makes it more difficult to pick out the underlying shape of the 
distribution. 

By plotting the number of flies per unit of measurement on the vertical axis we 
are able to use the same vertical scale in all three cases in Figs. 3.5 and 3.6 and an impor
tant result follows: the area under any part of the histogram is equal to the number 
of flies in the corresponding range. For example, the height of the bar in Fig. 3.5 
covering the range 5.0 to 5.1 mm is 70/mm while the width of the bar is 0.1 mm. 
The area of the rectangle, 70 x 0.1 = 7, gives the number of flies in the range covered 
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by that bar. Finally, we can divide the area under any part of the histogram by the 
total number of flies to get the probability that the length of a fly's wing falls into 
a given range. 

For discrete variables, we regarded each experimental frequency distribution as an 
approximation to an underlying 'true' probability distribution. What then is the 
equivalent of the 'true' theoretical probability distribution for continuous variables? 

3.2.2 Probability density functions 

The probability density function, or p.d.f., is the continuous equivalent of the 
probability distribution for discrete variables. To illustrate the p.d.f., the data in 
Fig. 3.5 have been replotted in Fig. 3.7, after dividing by the total number of flies, 
so that the frequencies become probabilities. It then turns out that the normal distribu
tion shown by the smooth curve in Fig. 3.7 is a good approximation to the p.d.f. 
It is called the normal distribution because it is the most common distribution; things 
are normally distributed in this way. Although the mathematical definition of the 
normal distribution function might seem obscure, it is the most important distribution 
in statistics, so we will digress for a while and consider it carefully. 

We want a functional form for the bell-shaped curve in Fig. 3.7. Here we will not 
derive it from first principles, but if we plot a graph of P(x) against x with 

3.6 

where e = 2.71828 ... is the number that provides the base for natural logarithms, 
we will obtain a curve of the desired shape. When x = 0, P(x) = 1 and as x deviates 
from 0 in either direction, P(x) becomes smaller. For very large values of x (in either 
direction) P(x) becomes very small so that the curve flattens out along the x axis. 
Now we want to be able to scale the height of our curve to match our data so we 
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Figure 3.7 The data of Figure 3.5, after dividing by the total number of flies. The line is the 
probability density function for the normal distribution that best fits the data. 
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multiply the right-hand side of Equation 3.6 by a number N to get 

P(x) = Ne-x'. 
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3.7 

We also want to be able to shift our curve to match our data and we achieve this 
by subtracting a number m from x so that Equation 3.7 becomes 

P(x) = Ne- (x-m)'. 3.8 

In section 5.3 we will see that m is the mean of the distribution. We also want to 
be able to vary the width of our curve to match our data and we achieve this by 
dividing x- m by a number s so that Equation 3. 7 becomes 

3.9 

and if we include the extra factor of 2 then, as we will see in section 5.3, s is the 
standard deviation of the distribution. Equation 3.9 is very important and you should 
plot graphs of P(x) against x for various values of N, m and s to make sure that 
you understand the effect that each has on P(x). The values that give the best fit of 
Equation 3.9 to the housefly data turn out to be 4.604 mm for m, 0.393 mm for s 
and 1.015/mm for Nand these values were used to calculate the smooth curve in 
Fig. 3.7. 

We have to think carefully about the meaning of a p.d.f., such as the normal 
distribution function. The continuous curve in Fig. 3. 7 must be equivalent to the 
rectangles that we use for our histograms. Since the curve is continuous, we can 
imagine that it is made up of a very large number of very thin rectangles as in 
Fig. 3.8 where each rectangle is 0.1 mm wide. The area under the curve between 
any two values of x will then be equal to the area under the corresponding rectangles 
and therefore equal to the probability that the length of a fly's wing falls into a 
given range. Since the area under the entire curve, from - 00 to + 00 gives the 
probability that the length of a wing takes on any value, it must be 1 and to ensure 
that this is so the N in Equation 3.9 must be equal to 
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Figure 3.8 The normal distribution curve of Figure 3.7, which we can approximate by a series 
of narrow rectangles. In this plot the rectangles are 0.1 mm wide. 
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The concept of a probability density is central to much of what follows. First of 
all we note that whereas a probability is always dimensionless, the units of P(x), in 
this example, are probability per mm, as expected for a 'density'. Since the height 
of each rectangle is equal to the probability per mm that a fly has a certain wing 
length, P(x) gives the probability per unit length that a wing is x mm long. Suppose, 
for example, that we choose a wing length of 5 mm. P(5) is equal to 0.67 /mm for 
m = 4.604 mm and s = 0.393 mm (note the units). If we multiply P(5) by 0.1 mm, the 
units cancel and the probability that the length of a wing lies within 0.1 mm of 5 mm, 
that is between 4.95 and 5.05 mm, is 0.067, or 

P(4.95 mm ~wing length~ 5.05 mm) = 0.067. 3.11 

If we count the number of flies in Table 3.1 whose wings are between 4.95 and 
5.05 mm in length, we have seven flies, which means that the probability, estimated 
directly from the data, that the length of a wing is in this range is 0.07, in good 
agreement with the value obtained from the p.d.f. of 0.067. If we multiply P(5) by 
0.2 mm we have 

P(4.9mm ~wing length~ 5.1 mm) = 0.12. 3.12 

We can again count the number of flies in Table 3.1 whose wings are more than 4.9 
and less than 5.1 mm long, and we get 14 flies, so that the probability, estimated 
directly from the data, that the length of a wing lies in this range is 0.14, again in 
good agreement with the value obtained from the p.d.f. of 0.12. This is valid if the 
range we consider is sufficiently small, because we can then treat P(x) as constant 
within this range and we are effectively working out the area under the curve 
between 4.95 and 5.05 mm in the first case and between 4.9 and 5.1 mm in the 
second1. 

The two important things to remember are: 

• The probability density function or p.d.f. is the probability per unit of measure
ment that the measured variable has a particular value. 

• The probability that a particular observation lies in a given range is equal to the 
area under the curve of the p.d.f. over this range and if the range is small we can 
calculate the area approximately by taking the value of the p.d.f. at the midpoint 
of the range and then multiplying by the range. 

3.2.3 Cumulative distribution functions 

Just as for discrete distributions, we want to be able to evaluate the probability that 
the length of the wing of a fly is less than 3.00 mm or greater than 4.00 mm, and 
so on. If we approximate the continuous probability density function by a histogram, 
we can proceed as we did in the case of discrete distributions and simply add up 
the probabilities per unit of length for all of the bars in the histogram below the 
critical level and then multiply this number by the width of the bars. If we do this 
for the data on houseflies, we obtain the cumulative distribution function, or c.d.f. 
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Figure 3.9 The cumulative distribution function (c.d.f.) for the housefly data shown in 
Figure 3.5. 

shown in Fig. 3.9, corresponding to the histogram in Fig. 3.5. Formally we write 
n 

C(xn) = L P(xn)bx 3.13 
•= I 

where xn labels the bars and bx is the width of the bars. 
For continuous distributions the c.d.f. has several advantages over the p.d.f. First 

of all, whereas the p.d.f. is a density and gives the probability per unit of measurement 
that a certain result is observed, the c.d.f. is a probability and gives the probability 
that, in our example, the length of a housefly's wing is less than or equal to a set 
value. Secondly, although we can calculate the c.d.f. by first dividing the range of 
the observed variables into discrete categories, constructing a histogram and adding 
up the areas of successive histograms, there is a more direct way of obtaining the 
c.d.f. We simply take the length of the shortest wing, 3.63 mm, and we have one fly 
whose wing length is less than or equal to this. We then take the next smallest wing 
length, 3.71 mm, and we have two flies whose wings are less than or equal to this 
length. We proceed in this fashion up to the longest wing and then divide the number 
of each fly by the total number of flies to get the c.d.f. You see that we do 
not need to worry about setting up categories. This is illustrated in Table 3.2 and 
Fig. 3.10. 

Table 3.2 The flies from which the data in Table 3.1 were obtained were ordered 
according to the lengths of their wings so that fly I has the shortest wing, fly 2 

has the next shortest and so on. The c.d.f. is obtained by plotting the number of 
each fly in the ordered sequence divided by the total number of flies against the 
length of the wing for each fly as shown in Figure 3.10 

Fly number 
c.d.f. 
Wing length 

1 
0.01 

3.63 

2 
0.02 

3.71 

3 
0.03 

3.83 

99 

0.99 

5.40 

100 

1.00 
5.57 
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Figure 3.10 The c.d.f. obtained by plotting the cumulative probability in Table 3.2 against 
the wing length. The wiggly line gives the experimental values and the smooth line the 
theoretical c.d.f. for a normal distribution, with m = 4.06 mm and s = 0.39 mm. 

We would also like to be able to calculate the theoretical c.d.f<t corresponding to 
the theoretical p.d.f. given by Equation 3.9. Formally, the theoretical c.d.f. is the area 
under the curve below each value of x.2 As it happens, the c.d.f. for the normal 
distribution cannot be obtained analytically, even using calculus, but we will see in 
Chapter 5 that the c.d.f. for the normal distribution is tabulated in books on statistics 
and is easily calculated with the aid of a computer. In Fig. 3.10 I have used a computer 
to calculate the theoretical c.d.f. for the housefly data and this is indicated by the 
smooth line. 

Finally, we note that since 
n 

C(xn) = L P(x;)i5x 3.14 
i= 1 

and 

n- I 

C(xn- I) = L P(x;)i5x, 3.15 
i= I 

3.16 

so that we can calculate the p.d.f. simply by subtracting pairs of values from the c.d.U 

3.3 SUMMARY 

For both discrete and continuous random variables we can represent their distributions 
in two ways. The probability density function gives us the probability that a particular 
variable will fall into a given, small range. The cumulative distribution function gives 
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the probability that a particular variable will be less than or equal to a particular 
value. At first sight the p.d.f. seems to be more fundamental and easier to grasp. 
However, as you will discover, we will be concerned almost exclusively with c.d.f.s 
and hardly at all with p.d.f.s. The reasons for this are threefold. 

First of alL the p.d.f. is a density and to specify a particular value we need also 
to specify the units in which it is measured, whereas the c.d.f. is a pure probability 
and does not depend on the units in which it is measured. Secondly, if we know the 
c.d.f. we can immediately calculate the p.d.f. for any interval simply by subtracting 
the values of the c.d.f. at either end of the interval. Thirdly, as we will discover, 
when we examine our data we will be concerned to identify extreme events, ones 
that are unlikely to occur on a given hypothesis. The c.d.f. gives us directly the 
probability of particular extreme events occuring. 

We do not always want to specify every distribution in all its detail. We therefore 
need to find ways to summarize the most important properties of our data in terms of 
a few key parameters. This is the subject of the next chapter. 

NOTES 

1 For those who know calculus, the exact expression is 

P(a ~X~ b) = r P(r)dx. 

2 Using calculus 

C(a) = roo P(x)dx. 

3 For a continuous distribution 

C(b)- C(a) = P(a ~ x ~b)= r P(x)dx 

3.4 EXERCISES 

1. (a) Using a computer, generate 600 evenly distributed discrete random numbers 
between 1 and 6 and plot the data as a bar chart. (b) Generate a second set of random 
numbers, add them to the first, and then plot the sum of the numbers as a histogram. 

2. Estimate from Figs 3.3b and 3.4b the probability that the sum of the two numbers 
on a pair of dice shows 5 or less. 

3. The data given in Table 3.3 and plotted in Fig 3.11 were published by the National 
Science Foundation in the United States of America. They show a decline during the 
1960s and 1970s in the number of Nobel Prizes won by Americans after the numbers 
had peaked in the 1950s (Tufte, 1986), This graph was published to show that unless 
funding was increased, the United States of America would rapidly fall behind its 
competitors in scientific research. Why is this graph misleading? (Answer at the end 
of the examples.) 
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Table 3.3 The number of Nobel Prizes won by scientists in five countries 
from I90I to I974 

Dates USA 

I90I-I9IO I 

I9Il-I920 2 
I92I-I930 4 

I93I-I940 9 
I94I-I950 I4 
I95I-I960 29 
I96I-I970 26 
I971-I974 13 

20 

10 

0 
0 0 0 0 0 .... N '? "r It) 

' ' ' .... .... .... .... 
0 N (') "<t 

Dates 

Germany UK 

12 5 
7 3 

8 7 
8 7 
5 7 
3 9 
6 I2 
I 7 

0 0 "<t 
<D ...... ...... 
' ' ' .... .... .... 

It) <D ...... 

USSR 

2 

0 
0 

0 
0 
5 
4 

0 

France 

6 

5 
4 

3 
0 
0 
6 
0 

USA 

Germany 

UK 
USSR 

France 

Figure 3.11 Nobel Prizes in science for selected countries, I90I-74. 

4. Use Equation 3.9 and the values of m, sand N given in the text to calculate the 
number of flies whose wing lengths lie between 4.5 and 5.0 mm. Compare your result 
with the number given in Table 3.1. Use Fig. 3.10 to determine the number of flies 
whose wing lengths lie between 4.5 and 5.0 mm. 

5. The following are the wing lengths of ten of the 100 flies given in Table 3.1, 
chosen at random: 4.40, 4.35, 4.25, 4.68, 5.40, 4.43, 3.63, 4.46, 4.43, 4.63. Plot the 
p.d.f. and the c.d.f. for these data and compare the plots with Figs 3.5 and 3.10. 

[Answer to Question 3: Each point on the graph gives the number of prizes won in 
a 10 year period, except the last set of points which only cover 4 years. Not 
surprisingly, the number of prizes fell in all countries at the end of the plot. Plot the 
number of prizes won by scientists from each country per decade by multiplying 
the· numbers in the last row by 10/ 4.] 
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Measures 

How can it be that mathematics, being after all a product of human thought which 
is independent of experience, is so admirably appropriate to the objects of reality? 
Is human reason, then, without experience, merely by taking thought, able to fathom 
the properties of real things? In my opinion the answer to this question is briefly 
this: as far as the propositions of mathematics refer to reality, they are not certain; 
and as far as they are certain, they do not refer to reality. 

A. Einstein (1954) 

If you were asked to describe a giraffe, you might say that it is a very tall, four-legged 

mammal with a long neck and a patchy brown coat. This description is brief; you 

could elaborate on it at considerable length. But it is often useful to be able to 

indicate one or two key features of an object that are sufficient to describe its form 

or function. Of course, the particular features we name depend on our reasons for 

wanting to classify the object. You would not give a child Linnaeus's description of 

an elephant and you would not tell a biologist that an elephant is a large grey beast 

with tusks. If you wished to distinguish a horse from a zebra you might say that 
the zebra has stripes that the horse does not have, while to distinguish a horse from 

a donkey, you might say that the donkey has long ears that the horse does not 

have. In biology we constantly classify the objects in the world around us and we 

will need to do the same in statistics. The 'objects' we are concerned with in statistics 

are probability distributions. In the last chapter we discussed the uniform distribution 

(Fig. 3.1), which we obtained when we threw one die, the triangular distribution, 

which we found when we threw two dice and added the numbers together (Fig. 3.2), 

and the normal distribution, obtained when we considered the length of the wings 

of 100 houseflies (Fig. 3.7). In this chapter we will think about ways of classifying 

probability distributions so that we do not need to specify the distributions in every 

detail but rather can pick out the key properties as we need them. 

4.1 MEASURES OF LOCATION 

We will start by considering ways to determine the location of a distribution. 

Figure 4.1 shows the even and triangular distributions from Figs 3.1 and 3.2 with 

the two distributions plotted on the same scales. 
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Figure 4.1 (a) The even distribution and (b) the triangular distribution shown in Figures 3.1 
and 3.2. The arrows indicate the mean values. 

4.1.1 Means 

The first thing we might say about the two distributions is that the triangular distribu
tion is shifted to larger values on the horizontal axis than is the even distribution. 
The most commonly used measure of location is the mean or average value. Using 
a horizontal bar to indicate means we have 

n 

i= L x/n, 4.1 
i= 1 

where n is the number of measurements that we make. For the even distribution X; 

is the number that turns up on the ith throw; for the triangular distribution, X; is the 
sum of the two numbers that tum up on the ith throw. In both cases n is the number 
of throws. For our housefly data, X; is the length of the ith wing. We will also use 
( .. ·) to indicate average values or means since ( x) is sometimes easier to write than 
a long bar over the top of an expression. 

In Fig. 4.1 the mean of the numbers chosen from the even distribution is 3.48 and 
this is less than the mean of the numbers chosen from the triangular distribution which 
is 6.89. From Fig. 3.3 it is easy to see that the means of the theoretical even and 
triangular distributions are 3.5 and 7, respectively, so that our estimates from the 
simulation are quite close to the values for the underlying theoretical distributions. 
For the housefly data the mean wing length is 4.604 mm. 

We use the Greek letter Jl ('mu') for the 'true' mean of the underlying theoretical 
distribution to distinguish it from m, the mean estimated from the data in a particular 
experiment. For the even distribution Jl = 3.5, for the triangular distribution Jl = 7. 
(We will use Roman letters for parameters estimated from data and Greek letters 
for the equivalent parameters of the underlying distribution that we are trying to 
estimate.) 

The mean can also be expressed in terms of the probability of each possible 
outcome. In the simulation in which we threw one die 600 times, we had 94 ones, 
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84 twos, 113 threes, 106 fours, 99 fives and 104 sixes, so that the mean m is 

m = (1 X 94 + 2 X 84 + 3 X 113 + 4 X 106 + 5 X 99 + 6 X 104)/600 

= 1 X (94/600) + 2 X (84/600) + 3 X (113/600) 

+4 X (106/600) + 5 X (99/600) + 6 X (104/600) 

= I X P(I) + 2 X P(2) + 3 X P(3) + 4 X P(4) + 5 X P(5) + 6 X P(6) 
6 

= L iP(i) = 3.5 
i= 1 
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4.2 

and in general the mean value of any variable xi is the sum over xi times the 
probability of getting x/, 

ii = LxiP(xJ 
i 

4.3 

Just as we learned to combine probabilities, we need also to be able to combine 
means. Suppose, for example, we have calculated the mean length (I) of the left 
wings of 100 houseflies and the mean length (r) of the right wings of the same 
flies. If we now want (I+ r), the mean length of all the wings, left and right, we 
can either add up the lengths of all the wings, left and right, and divide by 200, or 
simply note that provided we have the same number of wings in both cases, the 
mean of the sum is the sum of the means (as shown in the Appendix, section 4.5.1), 
so that 

(I+ r) =(I)+ (r). 4.4 

The mean has several especially desirable properties, but it is not the only measure 
of the location of a distribution and sometimes other measures are more appropriate. 
An alternative to the arithmetic mean given by Equation 4.1 is the geometric mean, 
G, which is the nth root of the product of the individual measurements, so that 

Taking logarithms of both sides of Equation 4.5 gives 

InG=(lnx1 +lnx2 ••• +lnx0 )1n, 

4.5 

4.6 

so that the logarithm of G is the arithmetic mean of the logarithms of the individual 
measurements. 

4.1.2 Medians 

Another measure of location is the median, which is the measurement that falls in 
the middle of the distribution so that there are as many items below it as above it. 
(For a continuous distribution, the median is the point that divides the area under 
the p.d.f. into two equal parts, which is also the point on the c.d.f. corresponding to 
a probability of 0.5.) For example, the mean of I, 3, 4, 8 and 9 is 5, while the median 
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is 4. For the housefly data given in Table 3.1, reading number 50 is 4.59 mm and 
reading number 51 is 4.60mm, so we take 4.595 mm as the median wing length, 
which is close to the mean wing length of 4.604 mm. 

As an example of a situation in which you might wish to use the median rather 
than the mean, suppose you carried out an experiment to measure the time it takes 
insects to die after they have been sprayed with an insecticide. If you start with 100 
insects and then measure the time it takes each one to die, you can calculate the 
mean lifetime of the insects exposed to the insecticide. But if the last insect takes a 
long time to die, you might spend most of your time waiting for that one to die. 
To obtain the median lifetime, on the other hand, you need only to know the time 
at which the 50th insect dies, after which you can stop the experiment. 

A further advantage of the median is that if we have outliers in our data, that is 
to say, a few points that are very much larger or very much smaller than the others, 
these points will influence the mean greatly. For example, the mean of 2, 4 and 6 is 
4 and the mean of 2, 4 and 100 is 53, while in both cases the median is 4. There 
are many techniques that have been developed for handling outliers in data and these 
are discussed in detail by Winer (1971, p. 51). 

If the distribution is symmetrical, the mean and the median of the underlying 
distribution are the same although the values calculated from the data may differ. One 
way to test if a set of numbers comes from a symmetrical distribution is to compare 
the mean and the median; if they differ significantly we conclude that the underlying 
distribution is not symmetrical. 

4.1.3 Modes 

Another measure of the location of a distribution is the mode, which is the location 
of the most probable outcome. For example, in our example of throwing two dice 
(Fig. 3.2), the mode estimated from the data is 7 and of course the mode of the 
theoretical probability distribution is 7. In the case of our housefly data as plotted 
in Fig. 3.6, the mode is 4.6. 

4.2 MEASURES OF SCALE 

Looking at the frequency histograms in Fig. 4.1, we see not only that the triangular 
distribution is shifted to the right of the even distribution, but the shapes of the two 
distributions differ; in particular, the triangular distribution is wider than the even distri
bution. So the next thing we need is a measure of the spread or width of our 
distributions. 

4.2.1 Variance 

To obtain a measure of the width of the distributions, we subtract the mean, since 
we have already taken that into account. For each measured point, we are then left 
with the deviation from the mean. One possible measure of the spread would be the 
average value of the deviations from the mean. However, the mean of 1, 2 and 3, 
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for example, is 2 so that the deviations from the mean are - I, 0 and I and the mean 
deviation is 0! One way around this is to square the deviations before taking the 
average. For the three numbers given above the squared deviations are I, 0 and I 
and the mean squared deviation, which we call the variance, is 2/3. The variance 
may be written 

n 

V = L (x-i)2/n. 4.7 
i= I 

The variance is important in biological statistics where we are usually concerned 
to discover the causes of the variation in our data. In section 8.4.5 we will discuss 
an experiment to compare three different designs of tsetse fly traps. The number of 
flies that we catch depends on the design of the trap, the day of the experiment and 
the site in which each trap is placed. By designing the experiment carefully, it turns 
out that we can calculate a variance corresponding to each factor in our experiment. 
This technique, which is the subject of Chapter 8, is called the analysis of variance, or 
'ANOV A' for short, and it tells us which factors (trap, day or site) contribute 
significantly to the variations that we observe in the data (number of flies caught). 

Just as we learned to combine probabilities and rrteans, we need to know the rules 
for combining variances. We can show (Appendix, section 4.5.2) that if we have two 
independent random variables, the variance of their sum is the sum of their variances, 
so that if, for example, V(l) is the variance of the lengths of the left wings of IOO 

houseflies and V(r) is the variance of the lengths of the right wings, the variance of 
the lengths of their right wings and their left wings, added together, is 

V(l + r) = V(l) + V(r) 4.8 

so that for independent random variables the variance, like the mean, is additive. If 
the left and right wing lengths are not independent we have an extra term in 
Equation 4.8 (see Equation 9.28). 

We can also write an expression for the variance, as we did for the mean, in terms 
of probabilities: 

4.9 

In fact, for any function of x we can always write the mean value of f(x) as the sum 
over f(x) times the probability of getting x, so that 

(f(x)) = ~f(x)P(x). 4.IO 

Finally, we should note a computational formula that we will use in later chapters: 

V(x) = ~(x- i)21n = ~x2/n- 2i~xln + XZ 

4.11 

We will use the right-hand side of Equation 4.II to calculate variances in Chapter 8. 

4.2.2 Standard deviation 

Although ANOV A will be central to much of what we do, the units of the variance 
are not the same as those of our original data: when we measure the length of the 
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wings of houseflies in mm, the variance has units of mm2, and we would like to 
measure the width of the distribution in the same units as the original variable. For 
this reason we define the standard deviation as the square root of the variance (for 
our houseflies the units are then millimeters again) and 

s = Lt
1 
(xi- Jliln ]

112
. 4.12 

The standard deviation is the root-mean-square value of the deviations about the mean. 
As it stands, Equation 4.12 is correct. However, we do not usually know the true 

mean; rather, we have to use the value of the mean estimated from the data. Since 
the estimated mean minimizes the mean-square deviation about the mean, using m 
instead of J.l in Equation 4.12 will systematically underestimate, or bias, the standard 
deviation. Fortunately, it is possible to show that if we divide by n - I instead of 
n, this will remove the bias and our equation for estimating the standard deviation 
becomes 

4.13 

This argument can be made more rigorous (Bulmer, 1979, p.130). What we are 
doing is dividing by the number of independent parameters we have in our estimate 
of s which we call the number of degrees of freedom. In our calculation of the 
standard deviation, we start with n data points, each of which is independent of the 
others, so that we have n degrees of freedom. When we calculate the mean we use 
up one of these degrees of freedom, leaving n - I, and this is the number we use 
in Equation 4.13. 

For the even distribution, Fig. 4.1a, the standard deviation is 1.67 and for the 
triangular distribution, Fig. 4.Ib, it is somewhat greater at 2.37. For the housefly 
data, the calculated standard deviation is 0.39 mm. 

We use the Greek letter a to indicate the 'true' value of the standard deviation 
so that the experimental standard deviation s is an estimate of a. 

4.2.3 Standard deviation of the mean 

The mean value of a set of numbers is an estimate of the mean of the underlying 
distribution: so how accurate is this estimate of the underlying or 'true' mean? 

Suppose we have a set of measurements xi so that their mean is 

m = I:xJn. 4.14 

Since the variance of a sum is the sum of the variances (Equation 4.8 and Appendix, 
section 4.5.2), 

4.15 

and if each xi is chosen independently from the same distribution, they all 
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have the same variance, s2 , so that 

The standard deviation is the square root of the variance so that 

5(Lxi)=j;, 

and the standard deviation of the mean, 5m, is 

5m = 5(Lx/n) = j;1n =51 ;-;z. 
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4.16 

4.17 

4.18 

(Many authors call 5 the standard deviation and 5m the standard error. To avoid 

confusion, I call 5 the population standard deviation and 5m, the standard deviation 
of the mean.) The importance of Equation 4.18 is that it shows that as we make 
more measurements, the accuracy of each measurement, which is given by 5, will 

remain constant but the accuracy of the mean, which is given by 5m, will improve 

as the number of measurements increases. Since the estimate of the mean improves 

as the square root of the number of measurements, we need to make four times as 

many measurements if we want to double the accuracy of our estimate. 

4.2.4 Ranges 

Just as the mean is not the only measure of the location of a distribution, the standard 

deviation is not the only measure of the dispersion. An alternative to the standard 

deviation as a measure of dispersion is the range, which is the difference between 
the largest and the smallest values in the data. For the even distribution (Fig. 4.1a), 
the range is 5, for the triangular distribution (Fig. 4.Ib), it is 10 and for the housefly 

data (Table 3.1) it is 1.94 mm. 
Both the range and the standard deviation, like the mean, are sensitive to the 

presence of outliers and so we sometimes use the interquartile range, which has 
properties rather like the median. The median is the point that occurs half-way up 
the distribution, and we define the lower quartile as the point that occurs one-quarter 
of the way up the distribution and the upper quartile as the point that occurs 
three-quarters of the way up the distribution. For example, for the numbers I, 3, 4, 
7 and 10, the lower quartile is 3, the upper quartile is 7 and the interquartile range 
is 7 - 3 = 4. If the number 10 in the series is replaced by 100, the range and the 
standard deviation change considerably while the interquartile range remains the same. 

4.3 MEASURES OF SHAPE 

In nearly all of our work we will be concerned with means and variances or standard 

deviations, but we will sometimes want to know more about the shape of a distribution. 

We may want to know if a distribution is symmetrical or not. We may want to 

know if it has long tails extending out on either side or if it terminates abruptly. 
The two measures of the shape of a distribution that we will consider are the skewness 
and the kurtosis. 
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4.3.1 Skewness 

The distributions we have considered so far are all symmetrical about the mean. As 
an example of a skew distribution that is not symmetrical about the mean, consider 
Table 4.1, which gives the number of Prussian army officers kicked to death each 
year by their horses in each of ten army corps in the 20 years from 1875 to 1894 
(von Bortkewitsch, 1898). 

From Table 4.1 it is clear that in most of the army corps in most years no officers 
were kicked to death. However, in 1882 four officers in corps 9 were kicked to death, 
and in three cells in Table 4.1 we see that three officers were kicked to death in the 
same corps in the same year. The most convenient way to represent the distribution 
of deaths is to calculate the frequency distribution so that we record the number of 
cells in Table 4.1 in which no officers were kicked to death, the number of cells in 
which one was kicked to death, and so on. The result is shown in Table 4.2. 

The data in Table 4.2 are plotted as a bar chart in Fig. 4.2. The distribution is 
clearly skew. Since the tail is to the right, we say that the distribution is skew to the 
right; if the tail were on the other side, we would say that the distribution is skew 
to the left. We now need a measure of the skewness of the distribution shown in 
Fig. 4.2. We would like it to be zero for a symmetrical distribution, positive if the 

Table 4.1 The number of Prussian army officers kicked to death by their 
horses in each of ten army corps in each year from 1875 to 1894 

Corps 
Year I 2 3 4 5 6 7 8 9 10 

75 1 1 1 

76 1 1 1 

77 I 1 2 

78 2 1 1 1 1 

79 1 1 2 1 1 

80 2 I I I 2 1 3 

81 2 1 1 1 

82 1 1 2 4 1 

83 1 2 1 1 1 

84 1 1 2 1 1 

85 2 1 

86 1 1 1 3 

87 2 1 2 1 1 2 

88 1 1 1 

89 1 1 1 1 2 2 

90 2 1 2 2 1 2 2 
91 1 1 1 1 1 3 1 
92 2 I 1 1 I 1 
93 1 2 1 

94 1 1 
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Table 4.2 The frequency with which a given number of officers were 
kicked to death by their horses in ten Prussian army corps in each of 
the 20 years from I875 to I894. k, deaths occurred in each of n, of 
the cells in Table 4.I 

Number of Observed 
deaths, k, frequency, n, 

0 I09 
I 65 
2 22 
3 3 
4 I 
5+ 0 

120 
r--

100 

>- 80 u 
c: -
~ 60 
o-
CD 40 u: 

20 n 0 
0 2 3 4 5 

Number of deaths 

Figure 4.2 Bar chart of the data shown in Table 4.2. 
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distribution is skew to the right and negative if the distribution is skew to the left. 
We have already defined the mean as (x) and the variance as ( (x- xi), so it makes 
sense to define the skewness as ( (x - i)3 ). But just as the variance of our housefly 
wing lengths has dimensions of mm2, this definition of skewness would have units 
of mm3 . We could take the cube root, which for our houseflies would have units of 
millimeters, but since the skewness is to be a measure of shape, we prefer it to be 
dimensionless, and so instead we divide by the cube of the standard deviation to get 

4.19 

With this definition, a symmetrical distribution has skewness equal to zero. For 
example, the numbers - 1, 0 and 1, for which the standard deviation is 1, have 
skewness= { [(- 1)3 + (0)3 + (1)3 ]/3 }113 = 0. Furthermore, the numbers - 1, 0 and 
4 have skewness 0.32 while the numbers - 4, 0 and 1 have skewness - 0.32. The 
numbers - 2, 0 and 8 also have skewness 0.32, so that the skewness depends only 
on. the shape of the distribution and not on the width, and it is positive when the 
tail is on the right, negative when the tail is on the left. 
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Returning to our Prussian army officers, the mean of the frequency distribution is 

4.20 

where ni is the number of cells in Table 4.1 in which ki officers in any one corps 
were kicked to death in any one year, and n is the total number of cells in Table 
4.1 which is 10 x 20 = 200. In 10 years, for example, we would expect an average 
of 0.61 x 10 = 6 army officers to be kicked to death in each corps. The variance is 

V = l:(ki- m)2 P(ki) = l: (ki- m)2 nJ(n- 1) = 0.611/corps2/year2, 4.21 

so that the standard deviation is 0.782/corps/year. The skewness is 

4.22 

and as you can see from Figure 4.2, the distribution is skew to the right. 

4.3.2 Kurtosis 

The last measure we will consider is the kurtosis, K, which tells us if the distribution 
has long tails or short tails. If the distribution has long low tails and a narrow peak 
in the middle, the kurtosis is high and the distribution is called leptokurtic. If the 
distribution has a broad hump in the middle and short tails, it is called platykurtic. 
We define the kurtosis as the fourth power of the deviation about the mean divided 
by the fourth power of the standard deviation, 

4.23 

so that it too is dimensionless. 
Consider, for example, the two distributions in Table 4.3 illustrated in Fig. 4.3. 

Both distributions have a mean of 0, a standard deviation of 0.834 and, since they 
are symmetricaL a skewness of 0. However, they are clearly different and the difference 
is in the kurtosis, which is 4.2 for the first and 1.4 for the second. Note that the 
distribution with the longer tails has the greater kurtosis. We will see in the next 
chapter that the normal distribution has a kurtosis of 3 and this is taken as the 
standard value against which we compare the kurtosis of other distributions. For the 

Table 4.3 Two frequency distributions. In the first the outcome i 
occurs mi times. In the second the outcome i occurs n, times. The 
mean, standard deviation and skewness are the same for both but m 
has a kurtosis 4.2 while for n it is 1.4 

mi ni 

-2 I 0 
-I 4 8 

0 I4 8 
I 4 8 
2 I 0 
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Figure 4.3 Bar charts of the distributions given in Table 4.3. 

frequency distribution of ill-fated Prussian anny officers, the kurtosis is 

K = {l:(ki- m)4 n/n}/s4 = 4.37, 

{b) 

2 

4.24 

rather more than the standard value of 3. (Many statistics packages calculate Fisher's 
K statistics rather than the skewness and the kurtosis and are discussed in the Appendix, 
section 4.5.3.) 

4.4 SUMMARY 

In this chapter we have developed ways of measuring the position, the width and 
the shape of statistical distributions. In most of what we do we will use the mean, 
the standard deviation or the variance, the skewness and the kurtosis. But we have 
also seen that there are other measures, such as the median and the interquartile 
range, that we could use instead, and if our data are not 'well behaved', for example 
if we have outliers that we are not sure of, these other measures may be more appro
priate. As we will see in the next few chapters, the mean and the standard deviation 
enable us to make precise statements about our data but only if we know the 'true' 
underlying distribution. But suppose that we do not know what the underlying 
distribution is. Even worse, suppose that our data are not strictly quantifiable as 
would be the case if we only had categories such as very small, small, medium, large 
and very large. Provided we can order the categories, we can still detennine measures 
such as the median while parameters such as the mean may be of little or no use. 
In these situations we will use what are called non-parametric statistics, of which the 
median is one, and we will discuss these further in Chapter 8. 

4.5 APPENDIX 

4.5.1 The mean of a sum 

The mean of a sum is the sum of the means. 
If we measure xi andyJor i =I, 2, ... nand let zi =xi+ Yi' then (z) = (x) + (y). 
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We have 

(z) = I:zJn = I:(xi + Yi)ln = I:xJn + I:yJn = (x) + (y). 4.25 

4.5.2 The variance of a sum or difference 

For independent random variables, the variance of a sum or a difference is the 
sum of the variances. 

Suppose that we measure two random variables, x and y, whose true means are 
J.l and v. Then 

V(x + y) = L~)xi + Yi- J.L- v)2 P(xi and yi) 
i j 

and if x and y are statistically independent, 

P(xi and yi) = P(xi)P(yi) 

so that 

V(x + y) = L (xi - J.l)2 P(xJ L P(yi) + L (yi - v)2 P(yi) L P(xi) 
i i 

- 2L(xj- J.L)P(xJL(yj- v)P(yjl· 
i j 

4.26 

4.27 

4.28 

The last term is the mean value of x - J.l times the mean value of y - v, both of which 
are zero. Furthermore, 

4.29 

so that 

V (x + y) = V (x) + V (y). 4.30 

If x and y are not independent, we have an extra term in the expression for the 
variance of the sum. We discuss this in section 9.5. 

4.5.3 Fisher's K statistics 

Fisher's K statistics are similar to the skewness and kurtosis described here but are 
adjusted for biases in small samples, the equivalent of dividing by n - 1 when we 
calculate the variance or the standard deviation (Bliss, 1967, p. 144). 

Fisher's K statistics s• and K" are 

s• = SN2/[(N -1)(N- 2)], 4.31 

which, if the original data are normally distributed, is itself approximately normally 
distributed with mean zero and variance 6N(N- 1)/[(N- 2)(N + 1)(N + 3)] and 

K" = KN2 (N + 1)/[(N -1)(N- 2)(N- 3)]- 3(N -1)2/[(N- 2)(N- 3)], 4.32 
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which, if the original data are normally distributed, is itself approximately normally 
distributed with mean zero and variance 4(N2 - 1) V (5"')/[(N- 3)(N- 5)]. Fisher's 
K statistics are used to test if the skewness and kurtosis of a given distribution differ 
significantly from the values obtained for a normal distribution. 

NOTE 

1 For continuous functions 

(x) = f~"' xP(x)dx 

4.6 EXERCISES 

1. Calculate the means, standard deviations and skewness of (a) - 1, 0, 1; (b) - 1, 0, 4; 
(c) - 4, 0, 1; (d) - 2, 0, 8. 

2. Use Equations 4.3 and 4.10 to calculate the mean, standard deviation, skewness 
and kurtosis of (a) the even distribution generated by throwing one die and (b) the 
triangular distribution generated by throwing two dice and adding the numbers 
together. 

3. Mark the position of the median of the data (4.595 mm) on the p.d.f. given in 
Fig. 3.5 and decide if it divides the area under the curve into two equal parts. Do 
the same for the c.d.f. given in Fig. 3.10 and decide if it corresponds to a probability 
of 0.5. 

4. Calculate the standard deviation of the following numbers: 4.32, 2.79, 5.14, 3.87 

and 2.31 using both V(x) = ~(x- i)2 /n and V(x) = <r)- <x ) 2 . (These formulae 
use n, the number of measurements, rather than n - I, the number of degrees of 
freedom. In both cases we can multiply the final answer by nl(n- I) to allow for this. 

5. Determine the range, lower quartile, upper quartile and interquartile range for the 
housefly data given in Table 3.1 

6. Use a computer to generate three sets of normally distributed random numbers 
with mean 0 and standard deviation 1, the first set containing ten numbers, the 
second 40 and the third 160. Calculate the mean, the population standard deviation 
and the standard deviation of the mean of each set of numbers. Note the relationships 
between these estimates for the three sets of numbers. 

7. You measure the lengths of the wings of 16 flies and obtain a mean of 4.60 mm 
and a population standard deviation of 0.40 mm. What is the standard deviation of 
the mean? How many wings would you need to measure to obtain an estimate of 
the mean that was accurate to within 0.025 mm? 

8. Work out the mean, standard deviation, skewness and kurtosis of the Prussian 
army officer data in Table 4.2. 
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Distributions 

I know of scarcely anything so apt to impress the imagination as the wonderful form 
of cosmic order expressed by the 'Law of Frequency of Error'. The Law would have 
been personified by the Greeks and deified if they had known of it. It reigns with 
serenity and in complete self-effacement amidst the wildest confusion. The huger the 
mob, and the greater the apparent anarchy the more perfect is its sway. It is the perfect 
law of Unreason. F. Galton (1889) 

In the previous chapters we considered examples of random distributions: from the 
throw of a die we found the uniform distribution which is flat; from Mendel's experi
ments on peas we obtained a distribution that can take on only one of two values; 
from the lengths of the wings of houseflies we had the 'bell-shaped' normal distribution; 
and from the fate of Prussian army officers we found a skew distribution. In this 
chapter we will consider the most common distributions and their properties and we 
will discover that a small number of distributions will suffice to describe most biological 
situations. 

We have already seen that if we throw two dice, the numbers that tum up on 
each one are uniformly distributed between 1 and 6, while the sum of the pairs of 
numbers on the two dice has a triangular distribution ranging from 2 to 12. We can 
therefore generate a triangular distribution by adding together pairs of numbers each 
taken from a uniform distribution. In this chapter we will examine several basic distri
butions as well as the relationships among them. 

To convince you thai: we need to understand the properties of distributions, 
consider the data on the polio vaccine (Table 1.2). The vaccinated children appear 
to have gained some protection from polio, but few children succumbed to polio in 
either group and we need to know if the effect of the vaccine is statistically significant. 
In other words, does the difference represent a real effect of the vaccine or is it just 
chance that one number turned out to be less than the other? If we can establish the 
intrinsic variability of the data and if we can then show that the difference between 
the proportion of vaccinated and the proportion of unvaccinated children who develop 
polio is greater than this variability, we can reasonably argue that the vaccine did 
have a significant effect. But to determine the intrinsic variability of the data, we 
need to determine the underlying distribution, and this takes us into the subject of 
this chapter. 
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In this chapter we will discuss the binomial, Poisson, normal, z2 ('chi-square'), t 
and F distributions. We will start with the binomial distribution, which we get when 
there are pnly two possible outcomes, such as heads or tails, true or false, success 
or failure. When one of the two outcomes occurs only rarely, we will see that the 
binomial distribution may be approximated by the Poisson distribution. When the 
number of successes is sufficiently large, both the binomial and the Poisson distribution 
may be approximated by the normal distribution. Sometimes we will want to combine 
variables, each of which follows a normal distribution, and we will see that the sum 
of the squares of normally distributed variables follows a X2 distribution, while the 
ratio of a normally distributed variable to the square root of a variable that follows 
the X2 distribution follows a t distribution. Finally, we will see that the ratio of two 
X2 variates follows an F distribution. 

5.1 THE BINOMIAL DISTRIBUTION 

We get a binomial distribution when there are only two possible outcomes in an 
experiment, such as heads or tails, tall or short, round or wrinkled. Suppose, for 
example, that we want to know if a coin is biased. It is no good throwing it once 
since it will certainly land either heads or tails, but if we throw it 100 times and get 
45 heads and 55 tails, we can then ask if this is or is not indicative of a bias in the 
coin. The binomial distribution will give us the probability of getting 45 heads and 
55 tails, or indeed any other combination of heads and tails, and this will enable us 
to decide if the observed outcome is so unlikely that we should regard the coin as 
biased. 

When there are only two possible outcomes, we use the words success and failure 
to describe the alternatives, and we write p for the probability of success and q for 
the probability of failure, bearing in mind that success and failure are arbitrary terms 
and may correspond to heads and tails, tails and heads, tall and short or any other 
pair of characteristics. Then since the probabilities of all possible outcomes must add 
up to 1 (section 2.2), 

p +q = 1. 5.1 

Now consider Table 5.1, which shows the various ways in which two or three 
coins can fall. If we throw two coins and apply our Law of Multiplication, the 
probability of getting one heads and one tails is pq and this can arise in two ways 
(HT or TH), so that using the Law of Addition, the probability of getting one heads 
and one tails in any order is 2pq. In general the probability of getting k heads in n 
throws can be obtained by expanding (p + q)" and then choosing the kth term in 
the series. Alternatively, the probability of getting k successes in n trials may be 
calculated using (Bulmer, 1979, p. 84) 

n! 
P(k successes in trials)= pr-qn-k 

k!(n- k)! 
5.2 

where p is the probability of success and q is the probability of failure in any one 
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Table 5.1 The possible outcomes when throwing either two or three coins. The table gives 
the probability of each outcome, the number of ways the coins can land showing 0, I, 2 or 
3 heads, the relative frequencies of each combination of heads and the probability of getting 
each number of heads 

2 coins 

Outcome HH HT TH TT 
Probability pp pq qp qq 

Heads 2 I 0 
Frequency I 2 I 

Probability p2 2pq q2 

3 coins 

Outcome HHH HHT HTH THH HTT THT TTH TIT 
Probability ppp ppq pqp qpp pqq qpq qqp qqq 

Heads 3 2 I 0 
Frequency I 3 3 1 

Probability p3 3p2q 3pq2 q3 

trial. (Remember that n! = n x (n - 1) x (n - 2) ... 1, 0! = 1 and that x0 = 1.) For 
example, the probability of getting two heads in three throws of a coin is 

31 
P(2j3) = -· ]lq1 = 3p2 q, 

2!1! 
5.3 

in agreement with the value given in Table 5.1. For an unbiased coin for which 
p = q = 0.5, we expect, on average, to get two heads in three throws with probability 
P(2j3) = 3/8. 

To summarize: we get a binomial distribution whenever there are only two possible 
outcomes, the probability of success or failure is constant from one trial to 
the next and each trial is independent of all the others. Then if we know the 
probability of success in one trial, Equation 5.2 gives us the probability of getting 
k successes in n trials. 

The binomial distribution is illustrated in Fig. 5.1. Keeping n, the number of trials, 
constant at 10 (Figs 5.1a, b and c), the distribution shifts to the right as p, the prob
ability of success, increases from 0.1 to 0.9. When the probability of success is zero, 
the number of successes is always zero and when the probability of success is one, 
the number of successes is always equal to n. All three distributions peak at pn 
{1, 5 and 9 in Figs 5.1a, b and c, respectively) and we will see below that the mean 
of the binomial distribution is in fact pn. To see the effect of changing the number 
of trials, Fig. 5.1d shows the distribution for 100 trials with p set to 0.5. For 
p = 0.5, the width of the distribution for ten trials (Fig. 5.1b) is about 4, while the 
width of the distribution for 100 trials (Fig. 5.1d) is about 12, so that increasing the 
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Figure 5.1 The probability of getting a given number of successes for the binomial distribution 
where the number of trials, n, and the probability of success, p, are (a) n = 10, p = 0.1; 
(b) n = 10, p = 0.5; (c) n = 10, p = 0.9; (d) n = 100, p = 0.5. 

number of trials by ten times increases the width of the distribution by about three 
times. We will see below that the width is in fact proportional to the square root of 
the number of trials. The reason the distribution for 100 trials (Fig. 5.1d) looks narrower 
than the distribution for ten trials (Fig. 5.1b) is because of the change in the horizontal 
scale. 

5.1.1 Families of eight 

To illustrate the binomial distribution, consider the following problem. One occa
sionally finds large families in which all of the children are boys or all of the children 
are girls. Can these families of all boys or all girls be ascribed to chance alone or is 
there a genetic propensity for children in large families to be of the same sex7 Table 
5.2, extracted from birth registers in Saxony between 1876 and 1895 (Giessler, 1889), 
shows the number of boys and girls in families with eight children from a study of 
53 680 families and we see, for example, that 215 families had 0 boys and 8 girls 
while 342 had 8 boys and 0 girls. We will treat each family as one experiment in 
which we have eight trials. For each trial there are two possible outcomes: a boy or 
a girl. We then repeat the experiment with each family in our sample. 
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Table 5.2 The number of families, fi, having eight children of whom bi are boys. Pi is the binomial 
probability of having bi boys. F, the total number of families, is equal to 53 680 and Fpi is the 
expected number of families of eight children with bi boys 

Number of Number of Binomial Expected number 
boys, bi families, fi probability, Pi of families, Fpi 

0 215 qs 165 

1 1485 8pq7 1401 

2 5 331 28p2q6 5202 

3 10649 56p3q5 11034 

4 14959 70p4q4 14627 

5 11929 56p5q3 12411 

6 6678 28p6q2 6581 
7 2092 8p7q 1994 

8 342 ps 264 

In our binomial formula (Equation 5.2}, n is equal to 8. For each sample we then 
have nine possible outcomes: 0, I, ... , 8 boys and 8, 7, ... , 0 girls. To determine the 
expected numbers of families with 0, I, 2, ... , boys we first need to know p, the 
probability of having a boy. The total number of boys is 

B=O X 2I5 +I X I485 ... 8 X 342=22I023, 

and in the same way we find that the total number of girls is 

G = 2084I7. 

5.4 

5.5 

The proportion of boys, which gives an estimate of p, the probability of having 
a boy, is then 

p = 22I 023/(22I 023 + 2084I7) = 0.5I47, 

so that q, the probability of having a girl, is 

q =I- 0.5I47 = 0.4853. 

5.6 

5.7 

The first thing we notice is that the probability of having a boy is slightly 
greater than the probability of having a girl. But is this just due to chance or is there 
a genetic propensity to produce slightly more boys than girls? We can work out the 
various parameters of the distribution. Let us write hi for the number of boys in a 
family (column I in Table 5.2) and/; for the number of families (column 2 in Table 5.2) 
with hi boys. Then, the total number of families is 

F= Lfi = 53680. 5.8 
i 

(As a check, eight times the number of families must give the total number of children: 
8 x 53 680 = 429440 = 22I 023 + 208 4I7.) The mean number of boys is then (using 
Equation 4.2) 

m = L hiPi = L hJJF = 4.118. 5.9 
i i 
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The variance of the number of boys is (using Equation 4.9) 

V = L (bi - m)2 f/(F- 1) = 2.067, 5.10 
i 

so that the population standard deviation of the number of boys is J2ii67 = 1.438. 
The standard deviation of the mean number of boys is (Equation 4.18) 

sm = sl jF = 0.00621. 5.11 

Let us now see if the slight preponderance of boys is significant or if it is simply 
a result of the inherent variation in the data. If the probability of having a boy was 
equal to the probability of having a girL the mean number of boys per family should 
be 4 whereas the observed value is 4.118, so that the observed and expected values 
differ by 0.118. Since the standard deviation of the mean is 0.0062, the observed 
and expected values differ by 19 times the standard deviation, the amount of spread 
we expect, and the difference is almost certainly real and not a matter of chance. 

We can now consider the question that we began with: does the fact that 557 
families have all boys or all girls indicate that some people have a propensity to 
produce children of the same sex or can it be put down to the fact that with so 
many families in our sample we would expect about this many to have all boys or 
all girls? 

To do this we use the binomial probabilities and the values we have calculated 
for p and q to work out how many families we expect to have 0, 1, 2 ... 8 boys 
(assuming that the assumptions of the binomial distribution hold), as shown in column 
4 of Table 5.2. The agreement is reasonably good although the observed numbers 
of families are about 30% higher than the expected numbers at the ends of the 
distribution. If there is a genetic propensity to produce all boys or all girls, it must 
be rather slight and we still need to decide how big the difference should be before 

we consider that it is significant. 
For the binomial distribution, it is possible to derive expressions for each of the 

parameters in terms of p, q and n, the number of trials. The mean, Jl, is 

Jl = pn. 5.12 

Since we don't know the 'true' probability of having a boy, we have to use our 
estimated probability of having a boy (Equation 5.6) to estimate the mean and we 
have 0.5147 x 8 = 4.118, the same value as before (Equation 5.9). 

The variance is more interesting; we can show that for a binomial distribution the 
variance may be written in terms of p, q, and n as (Bulmer, 1979, p. 90) 

V= pqn, 5.13 

which for our families of eight children gives 4.117 X 0.4853 = 1.998, very close to 
the value of 2.067 estimated directly from the data using the squared deviations from 
the mean. 
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We can do the same for the skewness and the kurtosis. We can calculate the 
skewness directly from the data as 

5 = { ~ (bi- m)3 f/F}IV312 =- 0.016, 5.14 

and the kurtosis as 

K = { ~(bi- m)4 fJF}IV2 = 2.787. 5.15 

But we can also show that for a binomial distribution the skewness is (Bulmer, 1979, 

p. 90) 

5 = (q - p)l .;;;pq, 5.16 

which for our families of eight children gives - 0.021, and the kurtosis is (Bulmer, 
1979, p. 90) 

K = 3 + (1 - 6pq)lnpq 5.17 

which for our families of eight children gives 2.75. We see that the variance, skewness 
and kurtosis estimated from p, q, and n agree well with the values estimated directly 
from the data, indicating that the data are close to a binomial distribution. The 
expressions for the mean, variance, skewness and kurtosis of the binomial distribution 
are summarized in Table 5.3. 

We see that we are able to estimate the parameters of the distribution in two 
ways: either directly from the data using the probability that a family has 0, I, 2 ... 8 

boys, or by using the data to estimate p, the probability of having a boy, from which 
q follows immediately, and n, the number of children in each family, in this case 8. 
For a given number of trials, the binomial distribution has only one free parameter, 
p, since q is always 1 - p, and we use this in calculating the mean. However, the 
expressions in Table 5.3 enable us to calculate the other parameters once we know p 
and n and if the underlying distribution is indeed binomial we should get very similar 
values whichever way we calculate these parameters. 

We can also use the expressions given in Table 5.3 to estimate the standard 
deviations of the numbers of children in each category separately to help us to 
decide if the differences between the observed and expected numbers are significant 
or not. To do this, let us look at the problem in a different way and consider each 

Table 5.3 The mean, variance, skewness and kurtosis for the binomial 
distribution in terms of the number of trials, n, the probability of 
success, p, and the probability of failure, q 

m=pn 
V =pqn 

5 = (q- p)l .jnpq 
K = 3 + (I - 6pq)lnpq 
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family as a trial (rather than each birth in each family) and consider only two outcomes: 
0 boys and 8 girls will be a success, all other combinations will be a failure. The 
number of trials is now equal to the number of families, which is 53 680, and the 
number of successes is the number of families having 0 boys and 8 girls. Then 

p = 215/53 680 = 0.0040, 

q = 1-0.00401 = 0.9960, 

n = F= 53680. 

5.18 

5.19 

5.20 

Now we have only a single repeat of this 'experiment' so we cannot deduce 
the variance, skewness or kurtosis directly from the data. However, the expressions 
given in Table 5.3 still apply, so that the variance is 

V = pqn = 214, 5.21 

and the standard deviation is 

5 = .jV = 14.6. 5.22 

Since the observed number of families is 215 and the expected number of families 
is 165 (Table 5.2), the observed and expected numbers differ by 50, which is 
50/14.6 = 3.4 standard deviations, so that it appears as though the difference might 
be significant. We could of course repeat this calculation for each combination of 
boys and girls and hope to have a more sensitive test. We will do this in section 6.2. 

Note also that the variance of the number of families having eight boys, 214, is 
very close to the number of families having eight boys, 215, which is our estimate 
of the mean number of families having eight boys. Looking at Table 5.3 we see 
immediately that since, in this case, p is very smalL q is very close to 1 and the mean 
and the variance are both equal to pn. 

5.1.2 Mendel's peas 

As another application of the binomial distribution, consider again Mendel's study 
on peas. In one experiment (Table 2.2), he examined 1064 plants in the F2 generation, 
of which 787 were tall and 277 were short. According to Mendel's theory, the 
probability of obtaining a tall plant is 0.75, and there are only two possible outcomes, 
tall and short. If we assume that the events are independent, so that what happens 
to one plant does not influence what happens to another, the distribution of plants 
should follow a binomial distribution. We could, of course, work out the precise 
probability of obtaining 787 tall plants from a total of 1064 plants with a probability 
of 0.75 that each plant is tall, but most of the information we need is contained in 
the mean and the variance. Since the mean of a binomial distribution is pn, the 
expected value of the mean is 1064 x 0.75 = 798, so that the difference between 
the observed and expected number of tall plants is 798- 787 = 11. Furthermore, 
the variance is pqn = 0.75 x 0.25 x 1064 = 199.5, so that the standard deviation is 
Ji99.5 = 14. We see that the difference between the observed and expected number 
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of tall plants is less than the expected spread in the number of tall plants, and we 
can conclude that Mendel's data agree with the predictions of the theory within the 
intrinsic variation of the experiment. 

5.2 THE POISSON DISTRIBUTION 

When the number of trials is relatively small the binomial distribution is easily 
calculated, but for the study of families with eight children, calculating the probabilities 
for each possible outcome was quite tedious. In an experiment in which the number 
of trials runs to hundreds or even thousands, it is impractical even to think about 
calculating the binomial frequencies exactly. However, it turns out that if the 
probability of success in each trial is very small but the number of trials is very large, 
the binomial distribution tends to a simpler form discovered in I837 by the French 
mathematician Simeon-Denis Poisson. 

For the binomial distribution, the expected number of successes in n trials is pn 

where p is the probability of success. Now suppose that we have a very large number 
of trials so that n--+ 00. (We read '--+' as 'tends to'. Since n cannot actually be infinite 
the idea is that n --+ 00 means that n is very much bigger than anything else in the 
problem. Similarly, p--+ 0 means that p is very much smaller than anything else in 
the problem.) To ensure that the number of successes remains finite, we must have 
a very small probability of success so that we let p--+ 0 in such a way that pn remains 
finite. These conditions define the Poisson distribution, which we get whenever the 
number of trials is very large but the probability of success on each trial is 
very small. 

Whereas the binomial distribution is specified by two parameters, the number of 
trials, n, and the probability of success on each trial, p, the Poisson distribution is 
specified by a single parameter, J1. = pn, the mean number of successes. The probability 
of k successes is (Bulmer, I979, p. 90) 

P(k)=e-~tJ1.klk!k=O,I,2···, 5.23 

so that provided we know the mean number of successes, we can calculate the 
probability of getting any given number of successes. 

Figure 5.2 shows the Poisson distribution for values of the mean, Jl., equal to I, 5, 9 
and 50. The distribution in Fig. 5.2a is similar to the binomial distribution shown in 
Fig. S.Ia because q is small (O.I) and in both cases the mean is I. As the mean increases, 
the distribution shifts to higher values and the width of the distribution increases as 
the square root of the mean while the ratio of the width to the mean decreases as 
the square root of the mean. 

5.2.1 Prussian army officers 

The horses in the Prussian army (von Bortkewitsch, I898), which we discussed in 
section 4.3.I, must have had very many occasions on which they might have kicked 
their officers to death so that the number of trials in that experiment was indeed 
very large and we can let n --+ oo. The probability that any one officer was kicked 
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Figure 5.2 The Poisson distribution for (a) m = 1; (b) m = 5; (c) m = 9 ; (d) m =50. 

to death each time he happened to walk behind his horse was, fortunately for the 
Prussian army, very small and we can let p---.. 0. 

We don't know the actual number of trials, which would be the number of times 
an officer in each corps walked behind his horse in any one year, but for the Poisson 
distribution we need to know only the mean number of successes. In section 4.3.1 
we showed that, m, the mean number of deaths per army corps per year, was 0.61. 

Assuming that the data follow a Poisson distribution, the probability that no deaths 
occur in any one corps in any one year is (Equation 5.23) 

5.24 

Similarly, the probability that, say, three deaths occur in any one corps in any one 
year is 

P(3) = e-061 0.61 3/ 3! = 0.0205. 5.25 

To get the frequency with which we expect no deaths, one death, and so on, we 
need to multiply each probability by 200, the total number of events (20 years x 10 

corps). Table 5.4 gives the observed and expected frequencies of deaths and the two 
distributions agree very well indeed. 

Since the Poisson distribution is the limiting form of the binomial distribution as 
p---.. 0 and q -.I, we can use the binomial results (Table 5.3) to show that for the 
Poisson distribution the variance is equal to the mean, J.l, the skewness is equal to 
II jft and the kurtosis is equal to 3 + II J.l, as summarized in Table 5.5 
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Table 5.4 The frequency with which between 0 and 5 officers were 
kicked to death by their horses in each year from 1875 to 1894 in each 
of ten Prussian army corps 

Number Observed Expected 
of deaths frequency frequency 

0 109 108.7 
1 65 66.3 
2 22 20.2 

3 3 4.1 
4 1 0.6 
5 0 0.1 

Table S.S The variance, skewness and kurtosis for the Poisson 
distribution 

V=Jl. 
5=1/h 

K=3 +lip. 

We have already calculated the parameters of the distribution for the Prussian army 
data. The mean was found to be 0.61 deaths/corps/year, so that on average rather 
less than one officer was kicked to death by his horse in each corps in each year. 
The variance we estimated from the data as 0.611 death2/corps2/year2, so that the 
variance is approximately equal to the mean as expected for a Poisson distribution. 
The skewness, estimated directly from the data, was 1.26, a little less than 1.28, the 
value calculated from the mean, and the kurtosis estimated directly from the data 
was 4.38, a little less than 4.64, the value calculated from the mean. The agreement 
between the values of the variance, skewness and kurtosis calculated directly from 
the data and from the expressions in Table 5.5 give us reason to believe that the 
data do follow a Poisson distribution. 

5.2.2 The polio vaccine 

Let us consider the data on the polio vaccine given in section 1.1.3. Of the 200 745 
children vaccinated, 33 developed the disease. Since very many children were 
inoculated, n is very large, but since few developed the disease, p is very small. We 
therefore assume that the data follow a Poisson distribution and that the variance is 
equal to the mean number of children who develop the disease. Since 33 vaccinated 
children developed polio, the standard deviation is fo = 5.7. Similarly, 115 
unvaccinated children developed the disease so that the standard deviation in this 
number is Jils = 10.7. 

Now the number of children in the two categories are not the same but if we calcu
late the number per 100 000 who contracted the disease we get 16.4 ± 2.86 for those 
who were vaccirtated and 57.1 ± 5.33 for those who were not vaccinated. The diffe-
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renee between the two means, 40.7, is much greater than the expected spread in either 
measurement, 2.86 and 5.33, and we conclude that the vaccine does indeed bring 
about a significant degree of protection. If we want to be more precise we can apply 
our formula for the variance of a difference (Appendix, section 4.5.2), which gives 

2.862 + 5.332 = 36.59, so that the standard deviation of the difference is j36.59 = 
6.04 and the observed difference is about seven times the standard deviation. 

We can now see what would have happened if we had used only one tenth as 
many children in the trial. We would then have vaccinated 20 000 children and we 
would expect to get about 33/10 or 3.3 cases of polio. Placebo would have been 
given to 20 000 children and we would expect to get 115/10 or 11.5 cases of polio. 
The expected value of the difference would then be 8.2, but the variance of the 
differt!nce would be 3.3 + 11.5 = 14.8, giving a standard deviation of .Ji4.8 = 3.9, 
so that the observed difference is only twice the standard deviation. The intrinsic 
variation in the data may well have concealed the difference between the vaccinated 
and the unvaccinated children. 

The fact that the variance of a Poisson distribution is equal to the mean is important 
in the theory of sampling because it implies that for random sampling from large 
populations, for which the probability that any particular individual is trapped or 
caught is small, the standard deviation of the number sampled is given by the square 
root of the number sampled. 

5.3 THE NORMAL DISTRIBUTION 

The most important distribution in biology, if not in all of statistics, is the normal 
distribution. We have already touched on it in section 3.2.2, where we discussed the 
length of the wings of houseflies. The normal distribution was first investigated by 
Karl Gauss in 1809 in his study of the theory of errors in astronomical investigations 
(Bulmer, 1979, p. 108). The theory of errors is dominated by the normal distribution 
because the sum of any large number of random variables is normally distributed, a 
result known as the Central Limit Theorem (Bulmer, 1979, p. 115). There are, as 
always, some provisos: the contributing variables should be independent of each 
other and their variances should be well-behaved. Since it is often the case in nature 
that variables, such as the height of a person, are the result of many random effects, 
each of which contributes a little to the total, we often find that biological observables 
are normally distributed. 

We have already seen (Equations 3.9 and 3.10) that the probability density function, 
or p.d.f., for a normal distribution with mean J.l and standard deviation u is (Bulmer, 
1979, p 108) 

P(x) = _I_e- (x- Jl)zlzaz. 

afo 
5.26 

The normal distribution is plotted in Fig. 5.3 for various values of the mean and 
standard deviation. As the mean J.l, increases, the distribution shifts to the right and 
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Figure 5.3 The normal distribution for (a) /). = 0, a= 1; (b) /). = I, a= I; (c) /). = 0, a= 2; 
(d)/). = 2, a = 2. The distribution is symmetrical about the mean, /)., and the width is proportional 
to the standard deviation, a. 

as the standard deviation, u, increases, the distribution becomes wider. The normaliza
tion constant, 1/ufo, is chosen to ensure that the area under the p.d.f. from - oo 
to oo is 1. 

The normal distribution is symmetrical about the mean since we obtain the same 
answer if we set x equal to J.l + b or J.L- b in Equation 5.26; if we set J.l = 0, it will 
be centred at the origin. The standard deviation determines the width of the distribu
tion and when u is 1 and the mean is zero we refer to the standard normal distri
bution, indicated by the letter Z, so that 

Z(x) = _I_e-xz/2 

fo 
5.27 

The standard normal distribution is tabulated in many books on statistics. We can 
use it to calculate P(x) for any normal distribution with mean J.l and variance u2 by 
noting that P(x) = (1/ u) Z[ (x- J.l)l u]. Since the normal distribution is symmetrical, its 
skewness is zero. The kurtosis of the normal distribution is 3 and we take this for 
the standard value of kurtosis. 

5.3.1 Normal approximations 

The Central Limit Theorem tells us that the sum of a large number of independently 
distributed random numbers is nearly always normally distributed provided the 
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Figure 5.4 The distribution of numbers obtained when a coin was thrown 10 000 times and 
the numbers were added together in groups of ten counting I for heads and 0 for tails. The 
curve is the normal distribution that best fits the data. 

individual distributions satisfy some reasonable conditions (Bulmer, 1979, p. 115). To 
illustrate this, I spun a coin (simulated on a computer) 10 000 times, counting 1 for 
heads and 0 for tails, and then added the numbers together in groups of ten. Figure 5.4 

shows the distribution of the resulting numbers, with the normal distribution that best 
fits the data, and the agreement is good. 

The mean and the standard deviation, calculated from the simulation, were 4.95 
and 1.57. Using Equation 4.3, the mean for one throw of the coin is 

J1. = I X P(H) + 0 X P(T) = 0.5, 5.28 

and since the mean of a sum is the sum of the means, the expected mean for ten 
throws is 5, so that the value from the simulation (4.95) is close to the expected 
value. Using Equation 4.9, the variance for one throw of the coin is 

v = (1 - 0.5f X P(H) + (0- 0.5)2 X P(T) = 0.25, 5.29 

and since the throws are independent, the variance of ten throws is 2.5 and the 
standard deviation is J2.5 = 1.58, so that the value from the simulation (1.57) is 
again close to the expected value. The skewness and the kurtosis, calculated directly 
from the data, are - 0.0062 and 2.909, close to the expected values of 0 and 3. 

5.3.2 Binomial and Poisson distributions 

Whenever there are two possible outcomes, success and failure, and the probability 
of success or failure is constant and independent from one trial to the next, the 
binomial distribution gives us the distribution of successes for any given number of 
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trials. Furthermore, if the number of trials is very large and the probability of success 
on each is very small, the binomial distribution may be approximated by the Poisson 
distribution. 

Both the binomial and the Poisson distributions are discrete so that they give us 
the probability of observing 0, 1, 2, ... events. The normal distribution, on the other 
hand, is continuous and the observable may take on a range of continuous values, 
as in the case of the wing lengths of our houseflies. However, it is possible to show 
that provided the variance of the distribution is not too small, the binomial and 
Poisson distributions can both be approximated by a normal distribution. Referring 
back to Figs 5.1d and 5.2d, both the binomial and the Poisson distribution look like 
the normal distribution when the expected number of successes and the variance are 
sufficiently large. In general, the approximation is quite good provided the variance, 
which is pqn for the binomial and is equal to the mean for the Poisson distribution, 
is greater than about 9. 

For the Prussian army data of Table 5.4, pqn = 0.61, and the distribution is quite 
skew, so we would not expect the distribution to approximate closely to a normal 
distribution. For our data on the numbers of boys and girls in families of eight in 
Saxony, we have pqn = 2, but the probability of success and failure are both close 
to 0.5 so that the distribution is almost symmetrical and the skewness is small (- 0.02). 
Furthermore, the kurtosis (2.8) is close to 3, so let us see how well we can approximate 
the data in Table 5.2 using a normal distribution. 

Equation 5.26 gives the p.d.f. for the normal distribution. Since the normalization 
constant is chosen so that the total area under the curve is equal to 1, we must 
multiply by 53 680, the total number of families, to obtain the frequency distribution 
N(x). We therefore evaluate 

N(x) = _i'!_e-(x-m)211s2 

sfo 
5.30 

Table 5.6 The observed and expected numbers of families of eight children with 
between 0 and 8 boys. The third column gives the expected numbers after fitting the 
data to a binomial distribution and the fourth column the expected numbers after fitting 
the data to a normal distribution 

No. of Observed no. Expected Expected 
boys of families Binomial Normal 

0 2I5 I65 247 
I I485 140I 1420 
2 5 33I 5 202 5 038 
3 10649 II 034 11 OI5 
4 I4 959 I4627 I4846 
5 II929 12411 12335 
6 6678 658I 63I8 

7 2092 I994 I995 
8 342 264 388 
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with a mean, m, of 4.118 and a standard deviation, s, of 1.438. The results are given 
in Table 5.6, from which we see that the normal approximation is too high in the 
tails (the binomial is too low), but the fit over the peaks is somewhat better and 
the overall fit is about as good as that obtained using the binomial distribution. The 
difference between the observed numbers and the numbers predicted using the binomial 
distribution may be due in part to random effects in the way the data were collected 
and recorded, which would tend to make the distribution look more like a normal 
distribution. 

5.4 THE X2, t AND F DISTRIBUTIONS 

There are three more distributions that are widely used in biostatistics and all may 
be derived from the normal distribution. In this section I will introduce them briefly 
and we will consider their properties in more detail as we use them. 

5.4.1 The X2 distribution 

Much of our work will be concerned with analysing the variances of the numbers 
we measure. When we test a new trap to see how well it catches tsetse flies, we 
always expect some variation in the number of flies caught. We will then want to 
know if the variation is simply due to the stochastic nature of the sampling process 
or if it is due to a variable of interest such as the colour of the trap, the site in which 
it is placed or even the day on which it is used. We have already seen that when 
we calculate the variance, we add up the squares of the deviations of each measurement 
about the mean. We generally assume that each of our measurements is normally 
distributed about the mean, and we would like to know how the sum of the squares 
of such normally distributed numbers will itself vary so that we can determine the 
distribution of our variances. 

Suppose we let x be the sum of the squares of a number of independent, standard, 
normal variates, zi, so that 

5.31 

Then x is said to belong to a chi-square distribution with f degrees of freedom, which 
is written xf. Figure 5.5 shows the X2 distribution for 1, 4, 16 and 64 degrees ot 
freedom. You see that the distribution starts off being very skew but looks more 
like a normal distribution as the number of degrees of freedom increases. The mean 
of the x2 distribution is equal to the number of degrees of freedom, so that the 
distribution shifts to higher values as the number of degrees of freedom increases. 

The parameters of the X2 distribution are given in Table 5.7, from which it is clear 
that as the number of degrees of freedom increases, the skewness tends to 0 and the 
kurtosis tends to the normal value of 3, so that the X2 distribution tends to the 
normal distribution. Of course, this is simply another example of the Central Limit 
Theorem, since we have defined the x2 distribution as the sum of a number of 
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Figure 5.5 The x2 distribution for (a) I, (b) 4, (c) 16 and (d) 64 degrees of freedom. 

Table 5.7 Parameters of the X2 distribution 

mean 
variance 
skewness 
kurtosis 

lf 
Js!f 

3 + 12/f 

independent random variables and if we have enough of them their sum must follow 
a normal distribution. 

5.4.2 The t distribution 

We often want to compare the mean value of a measurement with its standard devia
tion: if the mean is less than the standard deviation, it is dear that it does not differ 
significantly from zero, while if it is much greater than the standard deviation, it is 
dear that it does differ significantly from zero. For example, in section 5.1.2, in our 
examination of Mendel's data on peas, we compared the difference between the 
observed and expected number of tall plants (11) with the standard deviation in the 
observed number (14). Because the difference was less than the standard deviation, 
we concluded that the difference was not significant and that the data supported 
Mendel's hypothesis. In section 5.2.2 we found that the probability of a child 
developing polio was reduced if the child had received the Salk vaccine. To convince 
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ourselves that the effect was significant, we calculated the difference between the 
proportion of vaccinated and the proportion of unvaccinated children who developed 
polio (40.7 per 100 000) and then calculated the standard deviation of the difference 
(6.04 per 100 000). Because the difference was seven times the standard deviation, 
we concluded that the difference was real and the vaccine efficacious. 

Let us restate this: if the ratio of the absolute value of the mean to the standard 
deviation is much less than 1, we know that the mean does not differ significantly 
from zero while, if the ratio is much greater than 1, we know that the mean does 
differ significantly from zero. If we can determine the distribution followed by the 
ratio of the mean to the standard deviation, then, as we will see in Chapter 7, we 
will be able to put precise limits on such statements and determine the probability 
that our observed value of the mean is simply due to chance as opposed to a real effect. 

The distribution of the ratio of the mean to its standard deviation was first 
investigated by William Gossett (Student, 1908) who wrote under the pen name 
'Student'. Since the mean is normally distributed and the variance follows a X2 distribu
tion, we are interested in the ratio of a normally distributed variable to the square 
root of a variable following a X2 distribution; this is called Student's t distribution. 
Formally, if 

x=z!Jy!f 5.32 

and z follows a normal distribution while y follows a X2 distribution with f degrees 
of freedom, we say that x follows a t distribution with f degrees of freedom. At 
this point we will extend our notation further and use the symbol "' to mean 'follows'. 
Then we can summarize this result as follows: 

If z "' N(O, 1) and y "' x:, 
then x = zl.jylf"' tf 5.33 

Table 5.8 gives the parameters of Student's t distribution, from which we see that 
the distribution is symmetrical about the origin and that the kurtosis tends to the 
normal value of 3 as the number of degrees of freedom increases. Plotting the t distri
bution for various numbers of degrees of freedom (Fig. 5.6), we see that the t distribu
tion looks very much like the normal distribution except that it has long tails, which 
become less pronounced as the number of degrees of freedom increases. 

Table 5.8 Parameters of the t distribution. f is the number of degrees 
of freedom. For f :s;; 2 the variance is infinite and for f :s;; 4 the kurtosis 
of infinite 

mean 
variance 
skewness 
kurtosis 

0 
f!(f- 2) 

0 

3+6/(f- 4) 

f>2 

f>4 
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Figure 5.6 The t distribution for I, 2, 4 and 100 degrees of freedom. As the number of 
degrees of freedom increases, the peak value increases and the tails become shorter. 
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Figure 5.7 The F distribution with (a) 4 and 4; (b) 4 and 16; (c) 16 and 4 and (d) 16 and 16 

degrees of freedom. 



Cumulative distribution functions 

Table 5.9 The mean and the variance of the F distribution for large 
numbers of degrees of freedom. The expressions for the skewness and 
kurtosis are more complicated 

mean 
variance 

5.4.3 The F distribution 

1 

2(ft + fz)l(ft fz) 
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We will use the t distribution to test a mean or to compare two means. Sometimes, 
however, we will want to compare two variances. To see if two variances differ 
significantly, we can calculate their ratio and then see if this ratio is greater or less 
than 1. Since we know that a variance follows a x2 distribution, we will want to 
know the distribution of the ratio of two numbers, each of which follows a X2 distri
bution; this is called the F distribution, after the English statistician Ronald Fisher. 
Then if 

5.34 

and y1 and y2 independently follow X2 distribution with / 1 and / 2 degrees of freedom, 
respectively, x follows an F distribution with / 1 and / 2 degrees of freedom. We 
can summarize this as follows. 

5.35 

The F distribution is illustrated in Fig. 5.7 for various combinations of the two 
degrees of freedom that define it. The mean of a X2 distribution is close to the number 
of degrees of freedom so that if we divide by the number of degrees of freedom 
the mean will be close to 1. The expressions for the parameters of the F distribution 
are rather complicated: Table 5.9 gives the parameters for large values of f 1 and f2 

only. 

5.5 CUMULATIVE DISTRIBUTION FUNCTIONS 

For each of the distributions discussed in this chapter we can also determine the 
corresponding c.d.f. For discrete distributions we simply sum all the probabilities up 
to each observed value. For the families of eight children, given in Table 5.1, the 
estimated c.d.f. is 

J 

CJ= L f/F, 5.36 
1=0 

where F is the total number of families and fi is the number of families having i 
boys. This is plotted in Fig. 5.8a. We can calculate the c.d.f. for the Poisson distribution 
of Prussian army officers (Table 5 .4) in the same way and this is plotted in Fig. 5 .8b. 

The importance of the c.d.f. is that we can use it to determine the probability that 
an observable lies in a given range directly from graphs or tables. For example, from 
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Figure 5.8 (a) The cumulative distribution function of the number of boys in families of eight 
children. (b) The cumulative distribution function of the number of Prussian army officers 
kicked to death by their horses. 

Fig. 5.8 we see immediately that the probability that a family of eight children has 
four or fewer boys is 0.61. Similarly, the probability that none or one officer was 
kicked to death by their horses in any one year is 0.87. 

Forcontinuous distributions, the c.d.f. is the area under the p.d.f. up to each point 
(as we saw in section 3.2.3), so that for the normal distribution the value of the c.d.f. 
at x is the area under the p.d.f. from - 00 to x. This is plotted for the standard normal 
distribution in Fig. 5.9. If we want to know the probability that a number falls in a 
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Figure 5.9 The cumulative distribution function for the standard normal distribution. 



Tables of distribution functions 

Table 5.10 Selected points from the c.d.f. of the standard normal distribution 
shown in Figure 5.9 

X C(x) X C(x) 

-3.29 0.0005 0.00 0.50 
-3.09 0.001 1.28 0.90 
-2.58 0.005 1.64 0.95 
-2.33 0.010 1.96 0.975 
-1.96 0.025 2.33 0.990 
-1.64 0.05 2.58 0.995 
-1.28 0.10 3.09 0.999 

0.00 0.50 3.29 0.9995 

certain range, say x1 to x2 , then for both discrete and continuous distributions 

73 

P(x1 < x < x2 ) =Area(- 00 to x2 )- Area(- 00 to x1 ) = C(x2 )- C(x1 ), 5.37 

so that we can easily use the c.d.f. to find the probability that an observable falls 
into any given range. 

Suppose we select a number from a normal distribution. The c.d.f. can be used to 
find the probability that the number we pick is less than 0, greater than 2, between 
1 and 3 or falls into any range we choose. For example, Table 5.10 gives points 
from the c.d.f. for a standard normal distribution. If a number is drawn from a standard 
normal distribution, the probability that it is less than 0 is 0.5. If a number is drawn 
from any normal distribution the probability that it is less than the mean is 0.5. 
Similarly, the probability that a number drawn from a standard normal distribution 
is less than 1.96 is 0.975 (Table 5.10), so that the probability that a number chosen 
from any normal distribution is less than Jl + 1.96a is 0.975, or 97.5%, and so on. 
It also follows that the probability that a number drawn from a normal distribution 
is greater than Jl + 1.96a is 0.025, or 2.5%. Finally, we see that the probability that 
a number drawn from a normal distribution is greater than Jl + 1.96a or less than 
jl- l.96a is 0.05, or 5%. 

T abies of c.d.f.s allow us to determine the probability that a number chosen from 
the appropriate distribution lies in any given range and we will use c.d.f.s extensively 
in this way. And, unlike the p.d.f., the c.d.f. is always dimensionless. 

5.6 TABLES OF DISTRIBUTION FUNCTIONS 

At the end of this book you will find tables of the c.d.f.s of the t, X2 and F distribu
tions and you need to be able to use them. The row labelled P in the tables 
gives the value of the c.d.f., the first column gives the number of degrees of freedom 
and the values in the tables, which we call critical values, are the values of the 
statistics that we calculate. For example, the number in Table 10.1 corresponding to 
P = 0.99 with 6 degrees of freedom is 3.14. This tells us that if we measure a variable 
that follows the t distribution with 6 degrees of freedom, there is a 99% probability 
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that it will be less than 3.14. Similarly, Table 10.2 tells us that if we measure a 
variable that follows the X2 distribution with 11 degrees of freedom, there is a 
95% probability that it will be less than 19.68. 

T abies of the F distribution are more extensive than the others because the F 
distribution has 2 separate degrees of freedom. Table 10.3, for example, gives the 
critical values for P = 0.95. For example, if we measure a variable that follows an F 
distribution with 6 and 12 degrees of freedom, there is a 95% probability that it will 
be less than 3.00. In the same way, Table 10.4 shows that if we measure a variable 
that follows an F distribution with 6 and 12 degrees of freedom there is a 99% 
probability that it will be less than 4.82. 

You will notice that we do not give tables for the normal distribution. This is 
because the t distribution with an infinite number of degrees of freedom is identical 
to the normal distribution. Referring to Table 10.1, we see that if we choose a number 
from a normal distribution, there is a 99% probability that it will be less than 2.33. 

5.7 SUMMARY 

The binomial, Poisson, normal, x2, t, and F distributions provide the basis for most 
of what you need to know and we can summarize the conditions under which they 
hold as follows. 

• Binomial: two outcomes, success or failure, probability of success is constant from 
one trial to the next and successive trials are independent. 

• Poisson: limiting case of the binomial distribution when the probabtlity of success 
in any one trial is very small but the number of trials is very large so that the mean 
number of successes remains finite. 

• Normal: sum of a large number of independent variates. 
• x2 : sum of squares of normal variates. 
• f: ratio of a normal variate to the square root of a X2 variate. 
• F: ratio of two X2 variates. 

There are other distributions of importance in biology. In particular, you may 
encounter the negative binomial distribution, which is often used to describe clumped 
distributions Oeffers, 1978). For example, if a few cows in a herd have many ticks 
while most cows have few ticks, the distribution of the ticks on the cows can probably 
be described by a negative binomial distribution and one of its parameters can be 
used as a measure of the degree of clumping. The Poisson distribution turns out to 
be a particular case of the negative binomial distribution. 

For the distributions we have discussed in detail and others that you will meet, 
it is important to be clear about the conditions under which they hold so that you 
can relate them directly to the biology of the problem that you are considering. In 
the next chapter we will use these distributions to see how we can make more rigorous 
and precise statements about differences between the results of our measurements and 
the predictions of our theories. 
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5.8 EXERCISES 

I. Expand (p + q)2 and (p + q)3 and confirm that the successive terms give the 
probabilities listed in Table 5.1. Use Equation 5.2 to obtain the same result. 

2. Use Equation 5.2 to verify the values for the expected numbers of families having 
four boys in Table 5.2. 

3. Use Equation 5.30 to verify the values for the expected numbers of families 
having four boys in Table 5.6, assuming that the data are normally distributed with 
a mean of 4.118 and a standard deviation of 1.438. 

4. Table 5.11, taken from Greenwood and Yule (1920), is an accident record for 647 
women working in a munitions plant and gives the number of women having no 
accidents, one accident and so on. Calculate the mean number of accidents per woman. 
If the probability that any woman has an accident is small and is the same for all 
women, the numbers should follow a Poisson distribution. Calculate the expected 
frequencies and compare them with the observed frequencies. 

Greenwood and Yule conclude that the number of women having three or more 
accidents is greater than expected and that there must have been two subgroups, 
one more accident prone than the other. Do you agree with their conclusions? 

5. Larvae of the Azuki bean weevil (Callosobruchus chinensis) enter into beans (Phaseolus 
radiatus), feed and pupate inside them and then emerge through a hole (Utida, 1943). 
The number of holes per bean is therefore a good measure of the number of adults 
that have emerged. If the probability that any one bean is parasitized is small and 
does not depend on whether a bean has already been parasitized, the frequency 
distribution of the number of beans having 0, I, 2, ... holes should follow a Poisson 
distribution. Use the data in Table 5.12 to calculate the expected numbers of beans 
having a given number of holes and compare these with the observed frequencies. 
The authors conclude that there are fewer beans with two or three holes than one 
would expect because weevils can identify and avoid beans that are already parasitized. 
Do you agree with this conclusion? 

Table 5.11 The number of women 
having I, 2, 3, 4 and 5 accidents in a 
five-week period 

Number Number 
of accidents of women 

0 447 
1 132 
2 42 
3 21 
4 3 
5 2 
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Table 5.12 The number of beans 
having 1, 2 and 3 holes 

Number Number 
of holes of beans 

0 61 

1 50 

2 1 

3 0 

6. Student (1907) counted the number of yeast cells in each of 400 squares of a 
haemocytometer with the results given in Table 5.13. Assuming that the number of 
cells follows a Poisson distribution, calculate the expected number of squares having 
any given number of cells in them and compare the observed and expected values. 
(This problem is analysed by Sokal and Rohlf, 1981, p. 84.) 

7. Use the c.d.f. for the standard normal distribution (Fig. 5.9) to find the probability 
that a number chosen from a normal distribution with mean 1 and standard deviation 
2 is (a) greater than 3; (b) less than 2; (c) lies between 2 and 3. 

8. Use the tables at the end of this book to determine the probability that 

(i) a number chosen from a t distribution with 1 degree of freedom is (a) greater 
than 6.31; (b) less than -6.31; (c) lies between -6.31 and + 6.31; 

(ii) a number chosen from a X2 distribution with 6 degrees of freedom is (a) less 
than 1.64; (b) greater than 12.59; 

(iii) a number chosen from an F distribution (a) with 3 and 4 degrees of freedom 
is greater than 6.59; (b) with 7 and 10 degrees of freedom is less than 6.06. 

Table 5.13 The number of squares 
having 0, I. ... cells in them 

Number of Number of 
cells/ square squares 

0 75 
1 103 
2 121 
3 54 
4 30 
5 13 
6 2 
7 1 
8 0 
9 1 
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Testing hypotheses 

Science is the attempt to make the chaotic diversity of our sense experience correspond 
to a logically uniform system of thought. In this system single experiences must be 
correlated with the theoretic structure in such a way that the resulting coordination is 
unique and convincing. 

The sense experiences are the given subject-matter. But the theory that shall interpret 
them is man-made. It is the result of an extremely laborious process of adaptation: 
hypothetical, never completely final, always subject to question and doubt. 

The scientific way of forming concepts differs from that which we use in our daily life, 
not basically, but merely in the more precise definition of concepts and conclusions; 
more painstaking and systematic choice of experimental material; and greater logical 
economy. By this last we mean the effort to reduce all concepts and correlations to as 
few as possible logically independent basic concepts and axioms. 

A. Einstein (1950) 

The relationship between theory and experiment lies at the heart of modern science 

and has been the subject of intense debates in the history and philosophy of science. 
The Greeks and the Hindus established many of the most important branches of 
mathematics but did not develop a quantitative experimental science. The Romans 
were excellent engineers and the Chinese made the most extraordinary discoveries 
concerning the natural world but neither of them developed mathematical laws to 
describe natural phenomena. Kepler made a vital contribution to the development 
of modern science by showing that the orbits of the planets obeyed precise algebraic 
laws and Galileo' s great contribution to science lay in the application of mathematics 
to the analysis of carefully conducted experiments. Indeed, Needham (1988) has said 
that 'Modern [as opposed to ancient or mediaeval] science is the mathematization of 

hypotheses about nature · · · combined with rigorous experimentation. 
Newton proposed the first scientific theory based solely on the formulation of a 

mathematical law, and although his law made it possible to predict the motion of 
the planets with great precision, many of his contemporaries rejected Newton's theory 

because it did not provide a mechanistic model of planetary motion. Darwin acknow

ledged that his theory of natural selection did not provide a mechanistic explanation 

of evolution, but he appealed to Newton's theory of gravitation in his defence, saying 
(Darwin, 1906, p. 657), 'It is no valid objection that science as yet throws no light 

on the far higher problem of the essence or origin of life. Who can explain what is 
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the essence of the attraction of gravity? No one now objects to following out the 
results consequent on this unknown element of attraction, notwithstanding the fact 
that Leibniz formerly accused Newton of introducing occult qualities and miracles into 
philosophy'. So the debate continues. The 'idealists' claim primacy for theory, the 
'materialists' claim primacy for experiment. Against the idealist position, we can 
argue that if you walk into a wall its reality is self-evident; against the materialist 
position, we can argue that the reason why the wall, viewed in a mirror, seems to 
be in front of us and not behind us is that our minds have already adopted the theo
retical position that light travels in straight lines, and this is why we are deceived 
when we look in a mirror. Einstein (1978) said that The object of all science, whether 
natural science or psychology, is to coordinate our experiences into a logical system.' 

It is important to remember that on the one hand we have our experiments and 
observations, on the other hand we have our theories and our deductions. The 
relationship between them is of a dialectical nature so that each informs the other. 
When we perform an experiment we do it to increase our understanding; when we 
build a theory we hope that it will reflect and clarify the results of our experiments. 
We do not perform our experiments in a 'theoretical vacuum'; there is always a theory 
or hypothesis we are trying to test. When we say that we should approach science 
with an open mind, we do not mean that we should have a blank mind, only that if 
our assumptions and hypotheses do not appear to be supported by the evidence, we 
should be willing and able to change our assumptions, invent new ones and maintain 
a flexible attitude. Indeed, whenever we look in a mirror, we should be reminded 
that even when we think that we are making no hypotheses, our subconscious is 
doing it for us. In this chapter we will consider the testing of hypotheses and 
statistical inference and see how these relate to statistics. 

6.1 SIGNIFICANCE LEVELS AND THE POWER OF A TEST 

Suppose we throw a coin 100 times and it lands heads on 55 occasions and tails on 
45 occasions. How shall we decide if the coin is biased? 

Let us begin by stating the problem carefully. We have an idea, I, that we want 
to test 

I: the coin is biased. 6.1 

We carry out an experiment that we hope will provide evidence for or against I and 
this gives us data, D 

D: 55 heads and 45 tails. 6.2 

In science, it is all too easy to read into data what we want to see. We therefore 
proceed cautiously and make the null hypothesis 

H: the coin is not biased. 6.3 

We now use our knowledge of statistics to decide if D seem reasonable if His true. 
If D seem reasonable given H, we accept H and reject I (perhaps reluctantly). If D 
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seem unreasonable given H, we reject H, provisionally accept I and look for an explana
tion. To explain I we might, for example, examine the coin to see if it is bent. What 
we need is a way to link the hypothesis, H, to the data, D. Making this link is what 
biostatistics is all about. (We are discussing a simple problem in a formal way: when 
we consider more complicated problems, proceeding formally should help.) 

We have already worked out how to calculate the probability of getting 55 heads 
and 45 tails in 100 throws of a coin using Equation 5.2 and the answer is 

n' P(55I100)= . pkqn-k 
k!(n-k)! 

= (100!/45!55!)0.5 55 0.545 

= 6.145 X 1028 X 7.889 X 10- 31 = 0.048. 6.4 

so that this particular outcome is expected to occur only five times in every 
100 experiments and all we can say is that it is rather improbable. However, even 
the most probable outcome, which is 50 heads and 50 tails, only occurs eight times 
in every 100 sets of 100 throws. Calculating the probability of getting the observed 
result doesn't really help. If we think about this, it is obvious that if there are many 
possible outcomes, even the most probable outcome will occur only very rarely; 
looking at the probability that particular, individual events will occur is thus of little 
value. 

Let us try another approach. Even if our hypothesis is true and the coin is unbiased, 
we would not expect to get precisely 50 heads and 50 tails, but rather to have results 
which are close to 50 heads and 50 tails. We would surely agree that 50 heads and 
50 tails is evidence in favour of the coin being unbiased while 100 heads and 0 tails 
is evidence in favour of the coin being biased. We might then say that if we get 
anywhere between 40 and 60 heads, we will regard the coin as unbiased, while if 
we get less than 40 or more than 60 heads, we will regard it as biased. We could 
calculate the probability of getting between 40 and 60 heads by adding the proba
bilities of each outcome in this range as we did in Equation 6.4. That rapidly becomes 
tedious. However, we know that the expected number of heads is pn = 0.5 x 100 = 50 
and that the variance is pqn = 25 so that the standard deviation is 5. Since pqn is 
sufficiently large, we can approximate the binomial distribution by a normal 
distribution. With an expected mean of 50 and a standard deviation of 5, the probability 
of getting between 40 and 60 heads is equal to the probability that a number chosen 
from a normal distribution is within ± 2 standard deviations of the mean. Table 10.1 
shows us that this probability is close to 95%. Since the probability of getting any 
result is 1, the probability of getting less than 40 or more than 60 heads is 1- 0.95 = 
0.05. In other words, if we repeated this experiment many times, we would expect 
to get between 40 and 60 heads in 95% of the trials and less than 40 or more than 
60 heads in 5% of the trials. 

This test looks reasonable and this is how we will proceed, so let us tie it down 
carefully. What we have done is to define an acceptance range (40 to 60 heads) and 
a rejection range (O to 39 and 61 to 100 heads). If the data, D, fall within the 
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acceptance range, we accept Hypothesis 6.3; if they fall in the rejection range, we 
reject it. Nevertheless, it is as well to bear in mind Gould's (1986) dictum that 'In 
science, "fact" can only mean "confirmed to such a degree that it would be perverse 
to withhold provisional assent" ', for even if the null hypothesis is true and the coin 
is unbiased, we know that the outcome may still be in the rejection range, and we 
would then reject the hypothesis even though it is true. We call this a Type I error. 
With the acceptance range of 40 to 60 heads, the probability of a Type I error is 
approximately 0.05 or I in 20. Since errors are undesirable, why don't we simply 
increase the acceptance range and in this way reduce the probability of making a 
Type I error? The trouble is that if we do this, the test becomes less sensitive. 
Suppose that we go to the extreme and include all results between 0 and 100 in our 
acceptance range. We will then never make a Type I error but we also will never 
reject Hypothesis 6.3 and we will conclude that even double-headed coins are unbiased! 
The danger now is that we accept our null hypothesis even when it is false and this 
is called a Type II error. We therefore have the following two kinds of error. 

Type I error: reject when true. 

Type II error: accept when false. 6.5 

What we need is a balance: we want to keep the rejection range small to minimize 
Type I errors and keep the acceptance range small to minimize Type II errors. Because 
we cannot do both at the same time, our choice of range depends on our own 
judgement and the reasons for performing the experiment. For example, in English 
Law our hypothesis is that the defendant is innocent. The prosecution attempts to 
prove that the hypothesis of innocence is false. If an innocent person is punished, 
we are making a Type I error; if a guilty person is allowed to go free, we are making 
a Type II error. Since we prefer to make a Type II error and let a guilty person go 
free than to make a Type I error and make an innocent person suffer, the court insists 
that the case against the defendant be proved 'beyond reasonable doubt', which 
means that the rejection range is made very small and the probability of. making a 
Type I error is minimized. 

We now need more terminology and we call the probability of making a Type I 
error the significance level of the test. When we say that 'our data lead us to reject 
the hypothesis Hat the 5% significance level', we are saying that although we believe 
that the hypothesis is indeed false, we acknowledge that we will be making a Type 
I error five times in every 100 experiments and that on these occasions the hypothesis 
really is true. 

One minus the probability of making a Type II error we call the power of the 
test. Unfortunately, there is a major difficulty in specifying the power of a test because 
if we want to know the probability of accepting the null hypothesis when it is false 
we need to know what the alternative hypothesis is. The power of a test of one 
hypothesis can be defined only in relation to a second hypothesis. Let us call our 
hypothesis that the coin is unbiased the null hypothesis, H0 and let us consider a 
second hypothesis, H1 , that the coin is biased in such a way that the probability 
that it falls heads is 0.6. We then spin our coin 100 times and record the number of 
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Figure 6.1 The two curves give the p.d.f.s for two hypotheses, (a) H0 : P(H) = 0.5 and (b) H 1 : 

P(H) = 0.65. The acceptance range at a 5% significance level is from 40 to 60 heads. The 

horizontally shaded area is 0.05 and gives the probability of making a Type I error. The 

vertically shaded area is 0.16 and gives the probability of making a Type II error. The power 

of the test is 1-0.16 = 0.84. 

times it shows heads. Figure 6.1 shows the probabilities of the various possible 

outcomes under each of the two hypotheses. Suppose we now set the acceptance 

range to include any outcome in which the number of heads is between 40 and 60, 

and set the rejection range to include any outcome in which the number of heads 

is less than 40 or greater than 60. The horizontally shaded area in Fig. 6.1 is the 
probability of making a Type I error, in this case 0.05, and determines the significance 

level. The vertically shaded area in Fig. 6.1 is the probability of making a Type II 

error, in this case 0.16, and accepting H0 when H1 is true and H0 is false. Since we 
want the power of the test to be high when the probability of making Type II error 

is small, we define the power of the test as I- 0.16 = 0.84. If we reduce the 

significance level to increase protection against Type I errors by widening the accep

tance range, we also reduce the power of the test, giving less protection against 

Type II errors. 
Now if we are in that rather rare situation in which we have only two possible 

hypotheses, then we can talk about both the significance level and the power of the 

test and choose our acceptance and rejection ranges accordingly. More often we will 

have only our null hypothesis to test. If we decide to reject it, we may think of an 

alternative explanation, formulate a new hypothesis and then test the new one, but 

we will generally be concerned with one hypothesis at a time. For this reason, we 

will nearly always specify the significance level of our tests rather than their power. 
However, when we plan experiments, we can use the power of a test to decide, in 

advance, how big our samples should be. For example, we have seen in the trial of 
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the polio vaccine that with 200 000 children in each group there was little doubt 
about the effectiveness of the vaccine, but we have also seen that with only 20 000 

children in each group, the effect of the vaccine may have been lost in the statistical 
noise. In section 7.8.2 we will show how we can use the power of a test to help us to 
decide how many children we need to include in such a study. 

6.1.1 Summary 

Before we perform an experiment we must have an idea that we are trying to test. 
The danger is that we deceive ourselves and read into the data what we want to 
see there rather than what is there. We therefore err on the side of caution by 
making the null hypothesis that the effect is not there and then we try to disprove 
the null hypothesis. If we succeed we look more favourably on the idea we are 
testing, if we fail we look less favourably on the idea we are testing. 

Formally, we proceed as follows: 

• We have an idea we want to examine (the coin is biased). 
• We make a series of measurements (throw the coin 100 times) that give us data, 

D, (H, H, H, T, H, T, T, H, T ... ). 
• We make an hypothesis, H (the coin is not biased). 
• We calculate a test statistic, x (65 heads, say), based on D. 
• Assuming that H is true, we use our knowledge of statistics to decide on the 

distribution that x should follow (binomial with p = 0.5, n = 100). 

• We decide on a significance level P(5%, say) and determine critical values (40 and 
60 heads) that define the acceptance range (40-60 heads), and the rejection range 
{0-39 and 61-100 heads) at this level of significance. 

• If x (65) falls in the acceptance range (4o--60) then we provisionally accept H, and 
conclude that the coin is not biased, remembering that more extensive data (more 
throws of the coin) may lead us to change our minds in the future. 

• If x (65) falls in the rejection range (G-39 and 61-100 heads) we reject Hat the 
P% significance level and we conclude that the coin is probably biased, remembering 
that although we are confident about rejecting H there is still a probability P (5%) 
that we are making a Type I error and the coin is not in fact biased (since even 
an unbiased coin could produce 65 heads and 35 tails). 

This may seem pedantic but science proceeds by the accumulation of very many 
small steps and it is vital that we do not lose our way or allow ourselves to be 
seduced into seeing what we want to see. 

6.2 THE ·£ TEST 

In Chapter 5 we examined the distribution of the number of boys in families of eight 
children and compared the observed distribution with the distribution we expected 
if the assumptions of the binomial distribution were satisfied. In particular we wanted 
to know if there was any evidence that large families tend to produce more boys 
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or girls than expected, for if this is so then some parents may have a tendency to 
produce children of one sex. We also looked at the number of plants in Mendel's 
experiments having various pairs of characteristics and we wanted to know if the 
observed numbers supported Mendel's theory. 

When we compare observed and expected numbers, a convenient and powerful 
test is the X2 test based on the X2 distribution. Before we develop the test, remember 
that we will start by assuming that 'nothing is going on': our coins are unbiased, 
there is no tendency to produce boys rather than girls, there is no tendency to 
produce children of the same sex, the polio vaccine does not prevent polio, and so 
on. Our initial hypothesis H is therefore referred to as the null hypothesis. 

For our study of the number of boys in families of eight children, our null hypothesis 
is that there is no propensity to produce children of the same sex so that the observed 
numbers of boys and girls should agree with the predictions of the binomial distribu
tion calculated in Table 5.1 and repeated in Table 6.1. We can then restate Has follows: 

H: the observed frequencies do not differ significantly 

from those expected for a binomial distribution. 6.6 

Let us first look at 0 - E, the difference between the observed frequencies 0, and 
the expected frequencies E. If H0 is true, the expected value of 0- E is 0. Now, if 
the probability of any given outcome, two boys and six girls, say, is small, 0, the 
observed number of times each outcome occurs will follow a Poisson distribution so 

that the variance of 0 is equal to its expected value E. ( 0 - E) I .jE will therefore 
have an expected value of 0 and a variance of 1. Provided E is not too small, 

(0- E)/ .jE will be approximately normally distributed. Therefore, if we square 

(0- E)! .jE for each pair of observed and expected values and add them all together, 

this variable will come from a X2 distribution, provided our null hypothesis is true, 

so that 
n 

L (0,- Ei)21Ei"" X~ 
i= 1 

6.7 

Table 6.1 Calculation of X2 from the observed and expected numbers of 
boys in families with eight children. The sum of the X2 values is 92 

Number Observed Expected 
of boys frequency frequency Difference xz 

0 215 165 +SO 15.2 

I 1485 1402 +83 4.9 

2 5 331 5 203 + 128 3.2 

3 10649 11035 -386 13.5 

4 14959 14628 + 331 7.5 

5 11929 12410 -481 18.6 

6 6678 6580 +98 1.5 

7 2092 1994 +98 4.8 

8 342 264 + 78 23.0 
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where the sum is over all our observations and m is the number of degrees of freedom. 

(This result is more subtle than it appears and is discussed further in the Appendix, 
section 6.5.1. In fact we only need to assume that 0 follows a binomial distribution 
rather than the more restrictive assumption that 0 follows a Poisson distribution.) 
We can then test Hypothesis 6.6 by comparing the left-hand side of Equation 6.7 

with a suitable acceptance range chosen from the X2 distribution with m degrees of 
freedom. 

We have to be careful with the number of degrees of freedom. For our families 
with eight children, we start off with nine possible outcomes: 0, 1, 2 ... 8. Once eight 
of the probabilities have been fixed, the last is also fixed since they must add up to 1, 

so this removes 1 degree of freedom. However, we have also used the data to 
estimate the probability that any one child is a boy, so we lose another degree of 
freedom. The total number of degrees of freedom is therefore 7 and we use the X2 

distribution with 7 degrees of freedom to determine the critical value that defines 

the acceptance range. 
Table 6.1 shows the data of Table 5.2 with the contributions to the X2 distribution 

calculated for each observation. Adding all the numbers in the last column of Table 
6.1 gives a value of 92. The next thing we need to do is to decide on our acceptance 
range. Suppose we are willing to risk making a Type I error by rejecting the hypothesis 
even though it is true, about 1 time in 20. We then look up the 5% significance level 
for a X2 distribution with 7 degrees of freedom and Table 10.2 tells us that the critical 
value is 14.1, so our acceptance range is from 0 to 14.1 and our rejection range is 
anything greater than 14.1. The X2 statistic is 92, well outside the acceptance range, 
and we can decisively reject our hypothesis that the observed frequencies in Table 
6.1 follow a binomial distribution. 

To summarize, we want to know if there is a propensity for some families to 
produce children of the same sex so we start with the null hypothesis that there 
is no propensity for some families to produce runs of boys and others to produce 
runs of girls. We then model the results we expect to find if our null hypothesis 
is consistent with the data. For the example of boys and girls in Saxony, we find 
reasonably good agreement between the observed and expected numbers, but because 
the sample size is very large, the data are very precise and our statistical test is able 
to pick up very small differences. Although the observed distribution is close to the 
distribution predicted using our null hypothesis, we find that there are small but 
significant differences. The data appear to suggest that there is a slight genetic 
propensity to produce children of the same sex. To pursue the matter further we 
would examine the deviations from the predictions, formulate new hypotheses, make 

new models and hope eventually to find a model that not only fits the data but also 
makes biological sense. 

6.2.1 Mendel's peas 

Mendel found that the observed ratios of dominant to recessive characters in the F2 

generations of his peas were always close to 3 to 1 (Table 2.2). We can now use 
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the x2 test to see whether the deviations from the expected ratio of 3 to 1 are small 
enough to be attributed to chance alone. Our hypothesis in each case is then 

H: The ratio of the number of dominants to recessives 

in the F 2 generation is 3 : 1. 6.8 

For each experiment in Table 2.2 we take the total number of peas (7324 for 
the comparison of round and wrinkled seeds) and calculate the expected number of 
dominants (7324 X 0.75 = 5493 for round seeds) and recessives (7324 X 0.25 = 1831 

for wrinkled seeds) on the hypothesis that the expected ratio of dominants to recessives 
is 3: 1. We then use Equation 6. 7 to calculate the values of X2 , so that for the experi
ment involving round and wrinkled seeds we have 

X2 = 1:(0- E)z/E 

= (5474- 5493)2/5493 

+ (1850- 1831)211831 

= 0.263. 6.9 

The x2 statistics for each of Mendel's experiments are given in Table 6.2. In 
each experiment we have two measurements, the number of plants showing the 
dominant character and the number showing the recessive character, but we have 
had to use the total number of plants to calculate the expected frequencies, so we 
lose 1 degree of freedom, and we need to compare each statistic with a X2 distribution 
with 1 degree of freedom. 

To see whether each of these numbers could reasonably come from a X2 distribution 
with 1 degree of freedom, we let our acceptance range correspond to the lower 95% 
of the distribution, so that our significance level is 5%. From Table 10.2, the critical 
value of xi at the 5% significance level is 3.84, so that the values of X2 in Table 6.2 
are all well within the acceptance range. In fact, they are all so well within the 
acceptance range that they look suspiciously good and we may begin to wonder if 
Mendel did not in fact 'massage' his data to improve the agreement between the 

Table 6.2 Values of X2 for Mendel's experiments on peas calculated 
from the data given in Table 2.2 

Characters xz 
Round vs wrinkled seeds 0.263 
Yellow vs green seeds O.Dl5 
Purple vs white flowers 0.391 
Smooth vs constricted pods 0.064 
Axial vs terminal flowers 0.350 
Green vs yellow unripe pods 0.451 
Tall vs dwarf stems 0.607 
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experimental values and his expectations. Let us, therefore, make a new hypothesis, 

H: The ratio of dominants to recessive is 3: 1 and 

Mendel was an honest scientist, 6.10 

and see if his data gives us cause to reject the hypothesis. Our suspicion has 
been aroused because of the consistently small values of X2 obtained in Table 6.2 

and we want to know if seven such small values could reasonably have arisen by 
chance. 

Usually our acceptance range would include all values less than the critical value, 
because significant differences between observed and expected values will give large 
values of X2 that we treat with suspicion. However, if Mendel tried to improve the 
agreement between his observed and expected values, it is small values of X2 that 
we treat with suspicion and we now choose our acceptance range so that the observed 
numbers should be greater than the critical value with 95% probability and less than 
the critical value with 5% probability. In other words, we take the bottom 5% rather 
than the top 5% of the distribution as our rejection range. For a X2 distribution with 
1 degree of freedom, the bottom 5% of the distribution corresponds to values between 
0 and 0.004 (Table 10.2) and all of the values in Table 6.2 lie within the acceptance 
range so that we cannot reject the hypothesis that Mendel was an honest scientist 
at the 5% significance level. 

The fact that we have seven values of X2 , which taken together seem to be 
consistently small. leads us to wonder if we can combine them and obtain a more 
sensitive test of our hypothesis concerning Mendel's honesty. Adding the X2 values 
(each of which has 1 degree of freedom) gives 2.14 and if Hypothesis 6.10 holds, 
this will be a random sample from a X2 distribution with 7 degrees of freedom. For 
a x2 distribution with 7 degrees of freedom, the critical value for the bottom 5% of 
the distribution is 2.17 (Table 10.2) and since this is slightly greater than 2.14, we 
can reject the hypothesis that Mendel was an honest scientist at the 5% significance 
level. The probability that we are making a Type I error (rejecting the hypothesis 
when true) and accusing Mendel falsely is only 1 in 20. 

The debate as to what Mendel actually did is complex but the evidence against 
Mendel can be made stronger than it has been made here. Fisher carried out a 
detailed analysis of all of Mendel's published data and concluded that the data are 
too good to be true (Fisher, 1936). However, saying that Mendel 'cheated' does not 
get us very far because his theory was correct: he had, in fact, made one of the most 
important scientific discoveries of all time. If his work had been understood and ap
preciated, the study of evolution and inheritance might have been advanced by 
30 years. What we really want to know is how and why did he manipulate his data? 

On the evidence available to him Fisher concluded that 'after examining various 
possibilites, I have no doubt that Mendel was deceived by a gardening assistant who 
knew too well what his principle expected from each trial' (Fisher, 1965). Blaming 
an unnamed assistant would seem to be wishful thinking on Fisher's part and an 
attempt to protect Mendel's honour. It seems to me equally likely that Mendel 
deceived himself: every scientist tends to repeat experiments that give the 'wrong' 
answer, stopping as soon as the 'correct' answer turns up. 
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Even if Mendel's data are falsely presented, various interpretations are possible. 
It appears that Mendel did not realize that he had discovered the genetic basis 
of inheritance and that his work on peas could be generalized to include the entire 
living world. He seems rather to have believed that the numerical proportions he 
discovered for the inheritance of characteristics in peas would have to be determined 
separately for each species of plant or animal. Mendel appears not to have speculated 
on the mechanism that might have given rise to his observations: if he had, he would 
surely have been led to postulate pairs of units (genes), one inherited from the male, 
the other inherited from the female. In other words, Mendel may have been concerned 
in his paper primarily to demonstrate his methodology and to educate others, and 
may have thought that the precise numbers were unimportant. If so, it may have 
seemed entirely reasonable to select those numbers that best demonstrated the result 
he was trying to establish. (Broad and Wade (1985) have written about fraud in 
science and Gould (1981) has addressed such questions in relation to intelligence 
testing.) I have done something similar in this book by selecting examples that match 
my expectations while avoiding those that are overly complicated. As Gould (1980) 
says, 'Science is not an objective, truth directed machine, but a quintessentially human 
activity, affected by passions, hopes and cultural biases.' 

6.3 CONTINGENCY TABLES 

Once we agree that Mendel's theory of inheritance is essentially correct and that 
the various characteristics are determined by what we now call genes, we are led 
to wonder whether the genes for different characters are related: perhaps the genes 
that confer 'roundness' and 'yellowness' on the seeds are linked. The question as to 
whether two properties are related arises frequently in biology and is amenable to 
analysis using a i test 

Mendel reported the results of crosses involving more than one pair of characters, 
but since he had not developed a mechanistic explanation of inheritance, he did not 
imagine that different pairs of characters might be linked-he assumed that the 
various characters were independent and then proceeded to show that the various 
combinations occurred in the appropriate proportions. It is now known that of the 
genes studied by Mendel only two are linked: those that determine the colour of 
the unripe pods and those that determine the length of the stem (Lambrecht, 1961). 
With our present-day knowledge of genes and chromosomes, let us test Mendel's 
data for linkage. To do this we use contingency tables, such as Table 2.5 repeated 
here as Table 6.3. It is called a 'contingency table' because we can use it to calculate 
the probability that a seed is round contingent on it also being green, and vice versa: 
in other words, we can use it to test conditional probabilities. 

In section 2.2.3 we estimated, for example, the probability that a seed will be 
round given that it is yellow, P(round I yellow), and showed that this is almost the same 
as P(roundlgreen). We then argued that since the probability of it being round is the 
same whether it is yellow or green, the gene for shape and the gene for colour must 
be independent But we need to quantify this observation and decide if the small 
differences in the two probabilities are significant or not. 
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Table 6.3 Mendel's data on the distribution of seed colour and shape 

Yellow Green Total 

Round 315 108 423 
Wrinkled 101 32 133 

Total 416 140 556 

To develop our X2 test for contingency tables, we again start from the hypothesis 
we want to test, in this case 

H: The traits for seed colour and shape are independent. 6.11 

Given this assumption, we can use our statistical theory to calculate the expected 
frequencies for seeds of each colour and shape and then use a X2 test to compare 
the observed and expected frequencies. 

For Mendel's data, we want to calculate the expected frequency in each cell of 
Table 6.3 under Hypothesis 6.11, taking the row and column totals as given. As we 
saw in section 2.2.3, 

P(round) = 423/556 P(yellow) = 416/556. 6.12 

and we know from Equation 2.17 that if 'roundness' and 'yellowness' are statisti
cally independent, then 

P(round and yellow)= P(round) x P(yellow) = 423 x 416/5562 = 0.569. 6.13 

Since we have a total of 556 plants, the expected number of plants whose seeds are 
both round and yellow is 0.569 x 556 = 316.5, while the observed number is 315. 
The contribution to the X2 sum is (315- 316.5)2/316.5 = 0.0070. Repeating this for 
the other three combinations of colour and shape gives the expected frequencies and 
contributions to the X2 sum shown in Table 6.4. Adding together the four contributions 
to the X2 sum gives 0.116. 

Once again we need to decide how many degrees of freedom to use in our X2 

test. We started with four measurements but we used the total number of seeds 
(556), the marginal number of round seeds (423), and the marginal number of yellow 
seeds (416), so that we have lost 3 degrees of freedom. We do not count the marginal 
number of wrinkled seeds or the marginal number of green seeds, since once we 
have fixed the three numbers mentioned above, these two are also fixed and we lose 
nothing further by using them. We are therefore left with 4- 3 = 1 degree of 
freedom. (If you calculate 0- E for each cell in Tables 6.3 and 6.4, you will get 
± 1.49 for each of them, showing that although we have four differences, there is 
really only one independent difference.) 

If we choose to test the experiment at the 5% significance level, the acceptance 
range for X~ is from 0 to 3.84 (Table 10.2), and we see that Mendel's result, 0.116, 
falls well within this range (perhaps too well within it), and we accept the hypothesis 
that the genes for shape and colour are independent. 
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Table 6.4 The expected frequencies and the contributions to the X2 sum for 
the different combinations of seed colour and shape corresponding to the 
observed values in Table 6.3. The X2 values add up to 0.116 

Expected x2 
Yellow Green Yellow Green 

Round 316.49 106.51 0.007 0.021 
Wrinkled 99.51 33.49 0.022 0.066 

89 

Now we have ignored some of the information inherent in Mendel's data because 
his theory predicts that the marginal totals should be in the ratio of 3 to 1, and 
instead of using the observed marginal totals to calculate the expected cell frequencies, 
we could have used his theory. If we make use of his theory, our hypothesis is 
slightly different and we have 

H: The ratio of dominants to recessives is 3 to 1 and the 

genes for roundness and colour are independent. 6.14 

The probability that a seed is both round and yellow under Hypothesis 6.14 is then 
0.75 X 0.75 = 0.5625, and the expected cell frequency for plants whose seeds are 
both round and yellow is 0.5625 x 556 = 312.8, which we see is slightly different 
from the previous expected value of 316.5. We again calculate the expected frequencies 
for each cell in our table and use these to calculate the value of X2 , which turns out 
to be 0.47, a larger number than we had before. This time, however, we have lost 
only 1 degree of freedom in using the total number of plants to determine the 
expected frequencies, so we are left with 4- 1 = 3 degrees of freedom. We must 
now compare our result with a x2 distribution with 3 degrees of freedom, for which 
the acceptance range at the 5% significance level is from 0 to 7.81 (Table 10.2). We 
see that we are again well within the acceptance range and we should accept the 
Hypothesis 6.14 that the ratio of dominants to recessives is 3 to 1 and that the 
genes for shape and colour are independent. 

6.3.1 Multiway contingency tables 

There is no reason to limit ourselves to only two categories for each variable in our 
contingency table. The extension to more than two is straightforward and the rules 
for a contingency table with R rows and C columns are as follows. 

If we need to use the marginal totals to calculate the expected cell frequencies (as 
in our analysis based on Hypothesis 6.11), we proceed as follows. 

1. Calculate the expected cell frequencies, by multiplying the appropriate row total 
by the appropriate column total and dividing by the grand total. 

2. Carry out a x2 test with (R- 1) X (C- 1) degrees of freedom. 

If we have a theory that predicts the marginal totals (as in our second analysis 
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based on Hypothesis 6.14), we proceed as follows. 

1. Calculate the expected marginal totals from the grand total using the theory, and 
then calculate the expected cell frequencies as in the previous case. 

2. Carry out a X2 test with RC- 1 degrees of freedom. 

Convince yourself of the validity of Rule 1. To understand Rule 2 in the first case, 
note that we start with RC frequencies. We lose 1 degree of freedom when we use 
the grand total. With R - 1 row totals and the grand total we can calculate the 
remaining row total. We therefore lose another R - 1 degrees of freedom when we 
use the row totals to calculate cell frequencies. Similarly, we lose C - 1 degrees of 
freedom when we use the column totals. This leaves RC- (R- 1)- (C -1) -1 = 
(R - 1) x ( C - 1) degrees of freedom. For Rule 2 in the second case we only use 
the grand total and hence lose only 1 degree of freedom, leaving RC - 1 degrees 
of freedom. 

6.3.2 Corrections for small numbers 

A critical assumption in our development of the x2 test is that we can approximate 
a binomial distribution by a normal distribution. If the numbers are small, this can 
lead to significant bias in the results. Snedecor and Cochran (1989, p. 77) give the 
following rules for applying the X2 test to small samples. 

• No class expectation should be less than 1. 

• Two expected values may be close to 1 if most of the others exceed 5. 
• If necessary, classes should be combined to meet these rules. 

For a 2 X 2 contingency table, a conservative recommendation (Sokal and Rohlf, 
1981, p. 711) is that no expected number should be less than 5 and a correction 
factor, known as Yate's correction (Bulmer, 1979, p. 163; Hays, 1988, p. 774), can 
be included in 2 X 2 tables by replacing Equation 6.7 with 

6.15 

where I a I indicates the absolute value of a. (The absolute value is the number with 
a positive sign so that I - 31 = I + 31 = + 3.) Alternatively, provided that the 
numbers in each cell are not too large we can calculate the probabilities of all possible 
outcomes exactly which is the basis of Fisher's exact test (Siegel and Castellan, 1988, 
p. 103; Hays, 1988, p. 781). 

6.4 SUMMARY 

When you apply statistics to the analysis of your data, there will always be some 
idea or theory that you wish to test and of course it is precisely in the formulation 
of such ideas or theories that the creativity of science lies. However, we choose to 
proceed in a rather indirect way. If we suspect that a coin is biased we assume initially 
that it is not and' then try to disprove our null hypothesis. Given our null hypothesis, 
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we use our knowledge of biology and statistics to decide if the observed data seem 
reasonable if the null hypothesis is indeed true. If the observed data seem reasonable, 
we accept our null hypothesis and conclude, provisionally, that our idea cannot be 
supported by the data. It is still open to us to design a more subtle experiment, carry 
out more trials or in some way try to tease out the information that we believe 
is there. If the observed data do not seem reasonable given the nulll hypothesis, we 
conclude, provisionally, that our idea is supported by the data. It may still be the 
case that the observed effects could be explained on the basis of some other idea, 
one that is quite unrelated to the one we are proposing. So we try to test our ideas 
in as many different ways as possible and if we still come up with the same theory 
we begin to believe it. At the end of the day, all that matters is that we can provide 
a sound and convincing biological explanation for the effects that we observe. The 
mathematics is the handmaiden to the biology that we hope to understand. 

The x2 statistic, which we have examined at some length, is only one of many 
statistics that we can derive from our experimental data. In the next three chapters 
we will examine other situations and other statistics that we can use to test hypotheses 
about our data. 

6.5 APPENDIX 

6.5.1 The x!· test 

Consider an experiment in which there are only two possible outcomes such as heads 
or tails, tall or short plants, boys or girls, and so on. Let N be the total number of 
events (throws of the coin, plants sampled, children) of which a fall into the first 
category (heads, tall plants, boys), while b fall into the second category (tails, short 
plants, girls). Let ~ be the probability that a occurs and let {3 be the probability 
that b occurs. Then 

Now 

But 

a+b=N ~+/3=1 

E(a) = ~N V (a) = ~{3N 

E(b) = {3N V (b)= {3~N. 

X2 = l:.(O- £)2/E 

=(a- ~N)2/~N + (b- {3N)21{3N 

= {/3 (a - ~N)2 + ~ (b - {3N)2 } I ~{3N. 

b- {3N = (N- a)- (1 - rt)N = rtN- a, 

so that substituting for b- {3N in equation 6.19, 

x2 =(a- ~N)2 ({3 + ~)lrt{3N =(a- rtN)21rt{3N. 

6.16 

6.17 

6.18 

6.19 

6.20 

6.21 
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Now E(a- rx.N) = 0 and V(a- rx.N) = rx.PN so that (a- rx.N)21rx.PN has mean zero 
and variance 1. Provided rx.N is sufficiently large we can assume that its distribution 
is approximately normal, so that i given by Equation 6.21 belongs to a X2 distribution 
with 1 degree of freedom. 

The key point to note is that although the variance pqN of a binomially distributed 
variable is not equal to the expected value pN, we nevertheless divide by the expected 
value in Equation 6.19. The sum then reduces to the correct expression for a x2 

distribution with the number of degrees of freedom equal to the number of degrees 
of freedom in the data. In other words, Equation 6.7 holds for binomially distributed 
observations and p need not be small as would be the case if it only held for observa
tions following a Poisson distribution as implied in the text. 

It is still necessary however for each expected value to be sufficiently large for 
the assumption of normality to hold and experience shows that this does hold provided 
the conditions noted in section 6.3.2 are satisfied. 

6.6 EXERCISES 

1. Carry out X2 tests on the hypothetical data in Table 1.4 and decide which numbers 
confirm Mendel's theory and at what significance level. How good were your guesses? 

2. The data of Table 1.2 for the results of the trial of the polio vaccine are repeated 
as a contingency table in Table 6.5. Carry out a X2 test to decide if the incidence of 
polio is related to use of the vaccine. 

3. Carry out a X2 test on the data of Table 5.4 and decide whether to accept or reject 
the hypothesis that the number of deaths follows a Poisson distribution. (Note the 
recommendations in section 6.3.2.) 

4. Carry out a X2 test of Bateson's data in Table 2.6 using both the marginal totals 
and Mendel's theory to predict the cell frequencies. Are we justified in concluding 
that in Bateson's experiment the shape of the pollen is related to the colour of the 
flowers? 

5. In an experiment to investigate the possible protective effects of vitamin C against 
rabies 98 guinea-pigs were given a small dose of fixed rabies virus. Of these 48 were 
also given vitamin C. the rest were not. Table 6.6 gives the number that died or 
survived under each treatment (Banic, 1975). Deaths occurred in 35% of the treated and 

Table 6.5 The number of children that developed polio and that 
remained healthy after receiving either the vaccine or a placebo 

Vaccine 
Placebo 

Paralytic 
cases 

33 
115 

Healthy 
cases 

200712 
201114 
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Table 6.6 The number of treated and untreated guinea-pigs that died 
or survived in an experiment on the efficacy of vitamin C in treating 
rabies 

Treatment 

Vitamin C 
Control 

No. of deaths 

17 
35 

No. of survivors 

31 
15 

93 

70% of the control animals. Carry out a X2 test with and without Yate's correction to 
decide if vitamin C is effective against rabies. 

6. In August 1989 Newsweek published a report on a US government-funded study 
that showed that AZT (azidothymidine) helps to slow down the development of the 
diseases AIDS (acquired immune deficiency syndrome) (Newsweek, 1989). Either AZT 
or a placebo was given to 713 people. At the time of writing, 14 of those taking 
AZT had developed AIDS, while 36 of those given the placebo had developed AIDS. 
Do these data encourage us to believe that AZT slows the development of AIDS? 
(Hint: Without knowing how many received the drug and how many received the 
placebo, we can draw no conclusions. Let us therefore assume that about half were 
given the drug and half the placebo.) 

7. The shell of the snail Cepaea nemoralis can be yellow, brown·or pink and it can 
be banded or uniform. Cain and Sheppard (1952, 1954) showed that shell colour is 
adaptive in that it provides camouflage against attack by thrushes. In ~abitats provid
ing a uniform background the shells tend to be uniform in colour; in habitats providing 
a varied background the shells tend to be banded. To confirm that this was the result 
of selective predation by thrushes, Sheppard (1951) counted the numbers of banded 
and unbanded snails that were living and the numbers that were killed by thrushes 
in a certain area. Since a thrush breaks the snail shell by smashing it on a rock, it 
was possible to sample the number killed by thrushes in each class. The results are 
given in Table 6.7. Use a X2 test to decide if there is a significant association between 
'bandedness' and being killed by a thrush. Do these data support Cain and Sheppard's 
predation hypothesis? 

Table 6.7 The numbers of banded and unhanded snails that were 
living and that were killed by thrushes 

Living 
Killed 

Banded 

264 
486 

Unhanded 

296 
377 
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It's proper to begin with the regular facts, but after a rule has been established beyond 
all doubt, the facts in conformity with it become dull because they no longer teach us 
anything new. Then it's the exception that becomes important. We seek not resemblances 
but differences, choose the most accentuated differences because they're the most striking 
and also the most instructive. R.M. Pirsig (1980} 

When we analyse data we have an hypothesis that we wish to test. We then use 
our knowledge of statistics to give us a measure of the probability that the observed 
data will arise in an experiment if the hypothesis is true. So far we have considered 
situations in which we want to know only if the measured data could reasonably 
have arisen from a particular hypothetical distribution. In practice, life is usually more 
complicated than this. We may have a number of different variables, perhaps rainfall 
and temperature, each of which might affect the outcome of our experiment, which 
might be the growth of a crop, and we want to be able to test each of them. We 
may even find that the effect of one variable depends on the particular values of 
another so that high temperatures might increase crop growth when it is wet but 
lead to decrease in crop growth when it is dry. 

In this chapter we will consider problems that arise when we compare measurements 
made under several different conditions. We will consider some aspects of the design 
of experiments and this will lead us into the chapters on the analysis of variance and 
regression where we formalize the way in which we design experiments and analyse 
data. 

7.1 ONE- AND TWO-TAILED TESTS 

In Chapter 6 we compared the observed and expected number of boys in families 
with eight children. To do this we used a X2 test and since a failure of the hypothesis 
would lead to large values of x2 , we took as our acceptance range (at the 5% signi
ficance level) all values less than 11.1 and our rejection range corresponded to the 
top 5% of the distribution. To test Mendel's data on peas, we again argued that 
failure of the hypothesis would lead to large values of r! and our rejection range 
was again the top 5% of the distribution. However, when we set out to test Mendel's 
honesty, we argued that if he had cheated, the observed results would have been 
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Figure 7.1 The p.d.f. for a standard normal distribution. Each of the separately shaded areas 

contains 2.5% of the total area. 

smaller than expected, and so we took as our acceptance range (at the 5% significance 

level) all values greater than 2.26 and our rejection range then corresponded to the 

bottom 5% of the distribution. On still other occasions we will want to know if two 

observations differ in either direction and on these occasions we will want our rejection 

range to include both tails of the distribution. 
To illustrate this, Fig. 7.1 shows the p.d.f. for a standard normal distribution. Each 

of the separately shaded areas contains 2.5% of the total area. Suppose we now 
measure two numbers, let us call them a and b, and take as our null hypothesis that 

their difference belongs to a standard normal distribution. Then we can set up various 

alternative hypotheses as indicated in Table 7.1. If the alternative hypothesis is that 

a > b, we take as the rejection range the two shaded areas on the right-hand side of 
Fig. 7.1; if it is that a< b, we take the two shaded areas on the left-hand side 

of Fig. 7.1; if it is that a#- b, we take as the rejection range the two vertically 

shaded areas at the two ends of Fig. 7.1. The point to bear in mind is that in all 

three cases given in Table 7.1, the significance level is the same but the acceptance 

Table 7.1 Tests of the hypothesis a= b at the 5% significance level, assuming that a- b 
follows a standard normal distribution, for various alternative hypotheses 

Null Alternative Rejection 
Hypothesis hypothesis range for a - b 

a=b a>b 1.65 to oo 

a=b a<b - oo to 1.65 

a=b a#b - oo to - 1.96 & 1.96 to oo 
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range depends on the alternative hypothesis so that we are effectively choosing the 
acceptance range in such a way as to maximize the power of the test for a given 
alternative hypothesis. 

7.2 COMPARISON OF MEANS 

Suppose that we want to compare the results of two measurements. The first thing 
we will probably want to know is whether the means are significantly different. This 
is essentially what we did in section 5.2.2 in our study of the effects of the polio 
vaccine where we noted that the probability of a vaccinated child developing polio 
was 16.4 ± 2.9 per 100 000, while the probability of an unvaccinated child developing 
the disease was 57.1 ± 5.3 per 100000. Using the result (Appendix, section 4.5.2) 
that for two independent random variables, the variance of their sum or difference is 
the sum of their variance, we were able to calculate the standard deviation of the 
difference as 

7.1 

and we noted that this was much less than 40.7, the reduction in the number of 
children per 100 000 contracting polio when they were given the vaccination. 

Now we can be more precise in our analysis. The hypothesis we want to test is 
that the vaccine brings about a significant reduction in the number of children who 
contract polio and so we use a one-tailed test. Since there are a large number of 
trials and the numbers of children contracting polio are not too small, we can approxi
mate the distribution of the difference in the numbers contracting polio under the 
two treatments by a normal distribution. For a standard normal distribution, 0.1% 
of the area under the curve is above 3.09 (Table 10.1), so that for a normal distribution 
with mean zero, the hypothesis we are testing, and standard deviations, 0.1% of the 
area is above 3.09s = 3.09 x 6.0 = 18.5. The difference between the numbers of 
children contracting polio in the two groups, 40.7, is well outside the acceptance 
range at the 0.1% significance level so that we are able to conclude that the vaccine 
does indeed bring about a significant reduction in the incidence of polio. 

In this example we have used a one-tailed test. Suppose, however, we had two 
different vaccines and we wanted to know if there was any significant difference 
between them. We would not know in advance which was the better of the two 
and we would then use a two-tailed test. Our acceptance range at a 0.1% significance 
level would then be - 3.29s to + 3.29s (see Table 10.1), which in this case is - 19.4 
to + 19.4, rather than anything less than 18.5, the range for the one-tailed test. 

Comparing the mean, m, with the acceptance level of 3.09s is clearly equivalent 
to comparing mls with the acceptance level 3.09 for a standard normal deviate. For 
our polio data we can then compare 40.7/6.0 = 6.8 with 3.09 for the 0.1% significance 
level and we again find that the mean differs significantly from zero. 

7.2.1 t tests 

Whenever we want to compare two means we proceed as in the example above, so 
let us write it out clearly, assuming that we are using a two-tailed test. To test if 
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the mean of a set of numbers differs significantly from zero, divide the mean by the 
standard deviation: if the result is greater than 1.96, the mean differs significantly 
from zero at the 5% level; if it is greater than 2.58, the mean differs significantly from 
zero at the I% level; if it is greater than 3.29, the mean differs significantly from zero 
at the O.I% level; and so on. To add to our notation: the three most commonly used 
significance levels, 5%, I% and O.I%, are often indicated by •, .... and •••, respectively, 
while if a result is not significant at the 5% level we indicate this with the letters ns. 

There is, however, an important correction we need to apply when we have only 
a few observations. Consider the following two numbers, chosen at random from a 
standard normal distribution: 0.2I8 and 0.332. We know that their true mean is I 
and their true variance is I, since that is how they were chosen, and indeed both 
0.2I8 and 0.332 lie well within the acceptance range of ± 1.96 for a 5% significance 
level. Suppose we didn't know in advance how they were chosen and wanted to 
test the hypothesis that their mean value differs from zero. The calculated mean, m, 
of 0.2I8 and 0.332 is 0.275 and the calculated population standard deviation is 0.08I, 
so that the standard deviation of the mean, sm, is 0.057 and m/sm = 4.8. Since this 
is greater than 3.29, we would say that the mean differs significantly from zero at 
the O.I% significance level and give it 3 stars! Now we know that this is not the 
case, since we deliberately chose the numbers from a normal distribution with a mean 
of zero. So where have we gone wrong? Our estimate of 0.275 for the mean is 
reasonable since we expect it to lie in the range ± 1. However, our estimated popula
tion standard deviation 0.08I is 12 times smaller than the true value of I and this 
is where our problem lies. To illustrate this further, I generated two more normally 
distributed numbers and obtained - 0.969 and 0.582. For these two numbers the 
mean is - O.I94 and the standard deviation is 0.775, so that m/sm = 0.25, this time 
well within the acceptance range at the 5% significance level. In this second case the 
mean differs from zero by about the same amount as before but the estimate of the 
standard deviation is now much closer to the true value of I. So the problem arises 
because we have had to use an estimate of the standard deviation instead of the true 
value, thereby introducing a further uncertainty. If we had used the true value of I 
for the standard deviation, we would have had 0.275 and O.I94 for the two estimates 
of mlsm and in both cases would have accepted the hypothesis that the numbers 
came from a normal distribution with mean zero. Since we do not know the true 
value of the standard deviation, we need to allow for the inaccuracy inherent in our 
estimate of the standard deviation in setting the acceptance range for the ratio ml sm. 

The solution to this problem was found by Student (I908), who realized that m/sm 
follows a normal distribution only if sm is known exactly. He therefore set out to 
determine the distribution that is followed by mlsm. Student was able to show that 
if m is the mean of n readings taken from a normal distribution whose true mean is 
Jl, and if sm is the estimated standard deviation of the mean, then 

t = (m- Jl)lsm"' f0 _ 1 . 7.2 

In words, the t statistic in Equation 7.2 follows Student's t distribution with n- I 

degrees of freedom, the number used to estimate sm. (Equation 7.2 is derived in the 
Appendix, section 7.IO.l.) Of course, we do not in general know the true mean, Jl, 
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for if we did we would not be concerned with the estimate m. What we do is to 
make an hypothesis about J.l and then test the difference (m- J.l)lsm. In our example 
above, the hypothesis is that J.l = 0 and so we test m/sm against tn- 1 . 

Let us look at our two pairs of numbers again. Since we are comparing two numbers, 
we have 2 degrees of freedom, but we have used up one of them when we used 
the mean to estimate the standard deviation. We therefore look up the t distribution 
with 2- I= I degree of freedom in Table IO.l. The acceptance range at a 5% 
significance level is - 12.71 to + 12.71. Since our two ratios were 4.8 and 0.25, 
both of them now lie well within the acceptance range for the 5% significance level 
and we accept our null hypothesis that the two pairs of numbers come from a normal 
distribution with mean zero. 

Since this is a crucial result let us restate it: when we divide the sum of the squares 
of the deviations by n - I when we calculate the standard deviation, subtracting the 
I allows for the fact that we have used the estimated mean, and not the true mean, 
and this gives us our best unbiased estimate of the standard deviation. The use of 
the t distribution rather than the normal distribution to test the ratio of the estimated 
mean to the estimated standard deviation allows for the fact that we have used the 
estimated rather than the true standard deviation, so that even our best estimate of 
sm may not be very good. For very large samples the estimate of the standard devi
ation will be close to the true value and the t distribution tends to the normal distri
bution as the number of degrees of freedom increases as illustrated in Figure 5.6. 
We can therefore look on the t distribution as a correction to the normal distribution 
when the sample size is small. 

To illustrate the use of the t distribution, Student (I908) analysed data on the 
effect on sleep of two drugs, hyoscyamine and hyoscine. The drugs were administered 
to ten patients in the Michigan Asylum for the insane at Kalamazoo and the results 
were repoted by Cushny and Peebles (I905). The amount of time each patient slept 
was measured for between 3 and 9 nights in each case with no drug and after the 
administration of 0.6mg of hyoscyamine or hyoscine. The results are given in Table 
7.2. 

To test if hyoscyamine is soporific, we calculate the mean amount of sleep gained, 
as compared with the control (0.75 hours) and the standard deviation of the mean 
(0.57 hours). The ratio gives us a t value of I.32. We have ten points and lose I 
degree of freedom in calculating the mean, so we are left with 9 degrees of freedom. 
Since we are interested in the drug only if it increases the amount of sleep, we use 
a one-tailed test. At the 5% significance level, t9 is I.83 (Table IO.I) so the effect of 
hyoscyamine is not significant. For hyoscine, the value of t is 3.68, which exceeds 
the value of t9 at the I% significance level, 2.82, and we conclude that hyoscine does 
increase the amount of sleep significantly and give it two stars. 

So far we have tested each mean on its own to see if it differs from zero. We 
might also like to know if the two drugs differ significantly in thier effects. Now we 
want to see if the difference between two means differs from zero. The t test for the 
difference of two means is a straightforward extension of the above results. If we 
have n readings in each set of data so that the variance of the first mean is si In, while 
that of the second is siln, then the variance of the difference is s2 = siln + siln. 
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Table 7.2 The number of hours for which patients slept with no drug, with hyoscyamine and 
with hyoscine. The increase in the amount of sleep gained with each drug as well as the difference 
in the amount of sleep gained with each drug are also given 

Patient Control Hyoscyamine Increase Hyoscine Increase Difference 

I 0.6 1.3 +0.7 2.5 + 1.9 1.2 
2 3.0 1.4 -1.6 3.8 +0.8 2.4 
3 4.7 4.5 -0.2 5.8 +1.1 1.3 
4 5.5 4.3 -1.2 5.6 +0.1 1.3 
5 6.2 6.1 -0.1 6.1 -0.1 0.0 
6 3.2 6.6 +3.4 7.6 +4.4 1.0 
7 2.5 6.2 +3.7 8.0 +5.5 1.8 
8 2.8 3.6 +0.8 4.4 + 1.6 0.8 
9 1.1 1.1 +0.0 5.7 +4.6 4.6 
10 2.9 4.9 +2.0 6.3 +3.4 1.4 

m 0.75 2.33 1.58 
s 1.79 2.00 1.23 

.Sm 0.57 0.63 0.39 
1.32 3.68 4.06 

ns .. 

We call s2 the 'pooled' standard deviation since it combines the estimates from 
both sets of data. Dividing the difference in the two means by the standard deviation 
of the difference gives our t parameter with 2n - 2 degrees of freedom. (This is 
strictly valid only if the 'true' variances, a~ and a;, are the same. If this is not the 
case, or if the number of measurements contributing to each of the means differs, an 
approximate test can be carried out in which we use the same t statistic but a rather 
more complicated expression for the number of degrees of freedom. This is discussed 
in the Appendix, section 7.10.2). 

For Student's data on soporific drugs (Table 7.1), the two means are 0.74 ± 0.57, 
and 2.33 ± 0.63 hours so that 

m2 - m1 = 1.58 hours 

s = (0.572 + 0.63 2 ) 112 = 0.85 hours m1-m2 7.3 

t = 1.86. 

Now we need to compare this with the acceptance range for a t distribution with 
2 x 10 - 2 = 18 degrees of freedom. Since either drug could be better, we need to 
use a two-tailed test and since t18 at the 5% significance level is 2.10, the two drugs 
do not differ significantly in their effect. 

7.2.2 Paired t tests 

When analysing experimental data it is important to make full use of all of the 
available data. In comparing the two drugs whose effects are given in Table 7.2, we 
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compared the mean effects of the two drugs, and if there had been 20 different 
patients this would have been all we could have done. However, each patient received 
both drugs and so we could instead calculate the difference between the effects of 
the two drugs on each patient separately and then see if the mean of the differences 
(rather than the difference of the means) is significant. 

To illustrate the problem, the data of Table 7.2 are plotted in Fig. 7.2, from which 
it is clear that the individual patients vary greatly in their response to the drugs and 
that this tends to conceal any difference between the effects of the two drugs. How
ever, in all cases the second drug induces at least as much sleep as the first and by 
looking at the difference between the effects of the two drugs on each patient, the 
last column in Table 7.2, we might hope to have a more sensitive test of the difference 
between the effects of the two drugs. The mean difference is 1.58 hours with a 
standard deviation of 0.39 hours, giving a value of t equal to 4.06. We have ten 
differences and have used up I degree of freedom in calculating the mean, leaving 
us with 9 degrees of freedom. Since either drug might be more effective, we need 
to use a two-tailed t test. At the 5% significance level, t9 is equal to 3.25 (Table IO.I), 

so that the drugs do differ significantly at the I% level. 
The point to note is that when we compared means without taking into considera

tion the fact that both drugs were given to each patient, their effects were not 
significantly different, whereas when we included the additional information that each 
patient was given both drugs, their effects were significantly different. The second 
kind of test, in which we take the treatments in pairs, is called a paired t test. Obviously, 
if we had used 20 different patients and given each of them one of the drugs only, 
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Figure 7.2 The number of hours of sleep gained by each patient after the use of hyoscyamine 
and hyoscine. The points with error bars give the mean effects of the two drugs ± 2.26sm. 

The diagonal lines link the response of each patient to the two drugs. 
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instead of using ten patients each of whom received both drugs, we would not have 

been able to use a paired t test. Note in particular that in Table 7.2 the mean of the 
differences is precisely the same as the difference between the means. The increase 

in the sensitivity of the paired t test as compared with the unpaired t test is due to 
the reduction in the standard deviation from 0.85 hours, when we use the difference 
between the means, to 0.39 hours when we use the mean of the differences. By 
taking the differences between the responses to each drug separately for each patient, 
the paired t test calculates the variation due to the effect of the drugs after allowing 
for the average response of each patient. 

7.3 NON-PARAMETRIC TESTS 

When we compare two means using a t test, we assume that the individual measure
ments are normally distributed about their mean values. Although this assumption 
may be correct in the case of Student's data on the two drugs, we may have other 
sets of data for which the assumption of normality is not justified. We might even 
measure the response qualitatively so that we decide in each case which drug appears 
to be the better of the two without quantifying the effect in terms of hours of sleep. 
In such cases, we do not make precise assumptions about the underlying distribution 
or its parameters, and such tests are therefore called non-parametric. 

Having carried out a parametric test on Student's data, let us see what happens 
if we carry out a non-parametric test. We will start with hyoscyamine but will now 
only use the fact that the drug increased the amount of sleep for five patients, 
produced no effect in one patient and decreased the amount of sleep in four patients. 
These observations are summarized in Table 7.3. 

If hyoscyamine has no effect, we would expect an increase in the amount of sleep 
to be as likely as a decrease. (We are assuming that the distribution of the amount 
of sleep is symmetrical about the mean, but we are not assuming that the distribution 
is normal.) In other words 

P(increase) = P(decrease) = 0.5. 7.4 

Under our null hypothesis that the drug has no effect, the observations should come 

Table 7.3 The number of patients for which hyoscyamine and 
hyoscine increased their amount of sleep, had no effect or decreased 
their amount of sleep. The last column gives positive, zero or negative 
differences between the amount of sleep gained when using each of 
the two drugs 

Hyoscyamine Hyoscine Difference 

Increase 5 9 9 
No effect I 0 I 

Decrease 4 I 0 
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Table 7.4 Binomial probabilities P(k, n) and cumulative probabilities C(k, n) for k successes 
in n equal to 9 and 10 trials 

Number of successes, k 
0 1 2 3 4 5 6 7 8 9 10 

P(k, 9) 0.002 0.018 0.070 0.164 0.246 0.246 0.164 0.070 O.D18 0.002 • 
C(k,9) 0.002 0.020 0.090 0.254 0.500 0.746 0.910 0.980 0.998 1.000 • 
P(k,10) 0.001 0.010 0.044 0.117 0.205 0.246 0.205 0.117 0.044 0.010 0.001 

C(k, 10) 0.001 O.Dl1 0.055 0.172 0.377 0.623 0.828 0.954 0.989 0.999 1.000 

from a binomial distribution with p = 0.5. Before we proceed, we need to decide 
what to do about the one patient who neither gained nor lost sleep when using the 
drug. Since the tie provides no evidence one way or the other, the usual procedure 
is simply to drop it from the analysis. 

We can calculate the binomial probabilities for all possible outcomes of our 
experiment using Equation 5.2 and these are given in Table 7.4. We are interested 
in the drug only if it increases the amount of sleep. We see from Table 7.4 that if 
the drug has no effect, the probability of four or fewer successes in nine trials is 0.5, 

so that the probability of five or more is also equal to 0.5 and, on the basis of the 
available evidence, we conclude that hyoscyamine has no effect, which agrees with 
our previous conclusion. 

With five successses and four failures out of nine trials, it should have been obvious 
that we would not have a significant effect. Let us therefore try the same test on 
hyoscine for which nine out of ten of the patients showed an increase in sleep. We 
see from Table 7.4 that the probability of eight or fewer successes in ten trials is 
0.989, so that the probability of nine or more successes is only 0.011, and this 
outcome is very unlikely. We can therefore reject the null hypothesis at the 5% but 
not quite at the 1% level. which again agrees with our earlier conclusion. 

We can now proceed to compare the effects of the two drugs. We now have nine 
increases and no decreases with one tie, which we ignore (Table 7.3). This time we 
need to use a two-tailed test since we do not know in advance which of the two 
drugs is the more efficacious. The probability of nine successes in nine trials is equal 
to the probability of zero successes in nine trials, which is 0.001. The probability of 
a result as extreme as this, in either direction, is therefore 0.002 and we can reject 
the null hypothesis and conclude that the two drugs differ significantly at the 1%, 
but not at the 0.1% level. once again in agreement with our previous conclusions. 

The test described above is called the sign test because it is based on the signs 
of the differences between the effect of each drug and no drug and between the two 
drugs. Although our conclusions concerning the effects of the drugs were the same 
using the parametric t test and the non-parametric sign test, non-parametric tests are 
generally less powerful and this is the price that we pay for making fewer assumptions 
about the underlying distribution of the data. To confirm this we note that when 
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we compared the two drugs using the two-tailed t test the significance level corres
ponding to the critical value of 4.08 with 18 degrees of freedom was 0.07%, whereas 
the significance level corresponding to zero or nine successes using the sign test was 
0.2%. The t test was therefore significant at the 0.1% level while the sign test was 
significant only at the I% level. Nevertheless, it is often the case that a suitable non
parametric test is almost as powerful as the corresponding parametric test and since 
non-parametric tests make fewer assumptions about the data, they also give more 
robust conclusions. 

Although we will not discuss non-parametric tests further in this book, there are 
non-parametric tests corresponding to all of the standard parametric tests. Non
parametric tests are especially important in the social sciences where the data collected 
often take the form of answers to questionnaires and may be nominal categories that 
cannot be ranked, such as single, married, widowed or divorced, or ordinal categories 
that can be ranked but not on a quantitative scale, such as very bad, bad, good or 
excellent. You are also likely to encounter non-parametric tests in biology where an 
animal's behaviour may again be categorized but not on a quantitative scale. In these 
cases, tests may be carried out using only signs of differences, as in the examples given 
above, they may take advantage of ranking in the data, they may test runs of positive 
and negative values to ensure that series of data are random and not clumped. The 
important thing to bear in mind is that if the data are not measured on a quantitative 
scale or if you suspect that the distribution of the data does not follow a known, 
usually normal, distribution, you should use a non-parametric test. Good references 
for further reading are the books by Siegel and Castellan (1988) and Sprent (1990). 

7.4 MULTIPLE RANGE TESTS 

If we are comparing only two numbers, we proceed just as in the previous section. 
However, if we are comparing many numbers, we encounter a problem. Consider, 
for example, the housefly data of Table 3.1 in which the longest wing was 5.57mm 
and the shortest 3.63 mm. The difference in the lengths of these two wings is 1.94 mm, 
while the sample standard deviation is 0.39 mm. The standard deviation of the 
difference is therefore 0.39 x J2, so that the t statistic is 3.51 with 99 degrees of 
freedom. If our hypothesis is that both measurements come from the same normal 
distribution with a population standard deviation of 0.39, we should reject the 
hypothesis at the 0.1% significance level! 

It should be immediately clear that I have cheated by choosing the shortest and 
the longest wings: if I had chosen two wings at random, the comparison would have 
been valid. Of course, I might have picked out the longest and shortest wings 
even if the choice had been random, but the probability of that happening is only 
(2/100) x (1/99) = 2 x 10- 4, and we know that we cannot exclude the possibility 
of a Type I error completely. Nevertheless, if we do make several measurements 
there is no reason not to compare all of them; we simply have to be more cautious 
in the analysis. 

There are a number of ways in which one can deal with the problem of multiple 
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comparisons. Sokal and Rohlf (I98I, p. 26I) list ten different tests, along with the 
conditions under which you should use them. Here I consider the problem briefly. 

If, before looking at the numbers, we decide to compare only two of them, we 
simply use the t test as before. However, we see that if we have IOO numbers and 
make all possible comparisons, we are bound to find spuriously significant differences 
when we compare the largest with the smallest numbers. To avoid this problem we 
can show (Appendix, section 7.I0.3) that if we measure n random variables, and if 
the probability that any one of them is less than some value, say x, is rx., then the 
probability that all of them are less than xis approximately rx.ln. Comparing numbers 
in pairs is a slightly different problem from that of testing a series of numbers 
separately, but this result suggests that if we make k comparisons and want an overall 
significance level of rx., say, we should use the acceptance range corresponding to a 
significance level of rx.lk. For ten comparisons at the I% significance level, we would 
use the acceptance range for the O.I% significance level so that for the normal 
distribution our I% acceptance range would be ± 3.29 instead of ± 2.58 (Table IO.I). 
Now if we make n measurements, we can make at most k = n(n- I)/2 comparisons. 
For this reason Fisher (Kendall et al., I983) suggested that if we want to make all 
possible comparisons between n numbers and ensure that the significance level for 
each comparison is at least rx., we should use a significance level of rx.l(n(n- I)/2]. 

For our houseflies we can make up to IOO x 99/2 = 4950 comparisons. Testing 
the difference between the biggest and the smallest numbers at the 5% significance 
level, we than use the acceptance range for the 5/4950 = O.OOI% significance level 
with 99 degrees of freedom (the number of degrees of freedom in the calculation of 
the standard deviation). At this significance level f99 = 4.5 and the calculated t statistic 
for the difference between the lengths of the longest and shortest wings, 3.5I, is 
well within the acceptance range. We accept the hypothesis that the difference is 
not significant at the 5% significance level. 

We now have two extreme cases: the standard t test strictly applies only to a 
comparison between two numbers or two numbers chosen at random from a larger 
set of numbers and is sometimes called the least significant difference or LSD test. 
If we wish to compare more than two numbers, the acceptance range will be too 
narrow and it will produce too many Type I errors indicating significant differences 
where none exist. On the other hand, the modified t test applies only to a comparison 
between the largest and smallest of a set of numbers. If we wish to compare more 
than two means, the acceptance range will be too wide, it will produce too many 
Type II errors and fail to pick up significant differences. 

To illustrate this, Table 7.5 shows the critical values that define the acceptance 
ranges at the 5% significance level for the LSD and modified t test (the first and third 
number in each triplet) for various numbers of measurements and degrees of freedom. 
If we have only two measurements to compare, the critical values are the same for 
both tests, as we would expect. But as we increase the number of measurements that 
we wish to compare, the modified t test becomes progressively more conservative 
by comparison with the LSD test since a bigger value of t is required before we can 
reject the null hypothesis. 
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Table 7.5 Critical values at the 5% significance level for the difference between the biggest 
and the smallest of a set of normally distributed numbers. The number of comparisons that 
are made is n and the number of degrees of freedom used to calculate the standard deviation 
is f The first number in each triplet is based on the LSD or standard t test and is Jlt1(0.975). The 
second number in each triplet is based on the Studentized range statistic q(n, f). The third 
number in each triplet is based on the modified t test and is j2t1(1- 0.025/k) where 
k= n(n -1)/2 

Degrees of 
freedom, f 

1 

5 

10 

20 

2 

18.0 
18.0 
18.0 

3.64 
3.64 
3.64 

3.15 
3.15 

3.15 

2.77 

2.77 

2.77 

Number of measurements, n 
5 

18.0 
37.2 

180 

3.64 
5.67 
6.74 

3.15 

3.58 
4.66 

2.77 
3.86 

3.97 

10 20 

18.0 18.0 
49.1 59.6 
810 3421 

3.64 3.64 
6.99 8.21 
9.49 12.9 

3.15 3.15 
4.52 5.50 

5.60 6.47 

2.77 2.77 
4.39 5.01 

4.61 5.16 

The modified t test is only approximate, even when testing the difference between 
the largest and the smallest numbers from a set of numbers. However, we can calculate 
the so-called Studentized range statistic, q (n, f), which is the actual distribution of 
the difference between the largest and the smallest of two numbers taken from a set 
of n normally distributed numbers, where f is the number of degrees of freedom 
used to calculate the standard deviation. The test based on the Studentized range 
statistic is called Tukey's honestly significant difference, or HSD, test (Hays, 1988, 
p. 420) and critical values are given by Hays (1988, p. 949). In Table 7.5 the middle 
number in each triplet gives the critical value for the HSD test and this lies between 
the critical values for the LSD test and the modified t test. Provided the number of 
degrees of freedom is greater than the number of points that we wish to compare, 
the three tests do not differ greatly. When the number of degrees of freedom is small 
and the number of points to be compared is large, they do differ greatly but it would 
be a bad experiment that compared, say, 20 measurements on the basis of a standard 
error calculated with only 1 degree of freedom. 

There are two important points to be made here. If two numbers do not differ 
significantly using the LSD test they will not differ significantly on any test. Equally, 
if two numbers do differ significantly using the modified t test they will differ 
significantly on any other test. It is only when we find marginally significant differences 
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using the LSD test or marginally non-significant differences using the modified t test 
that we need to exercise caution. 

The second point is that even the HSD test based on the Studentized range statistic 
is exact only when comparing the largest and the smallest of two numbers from a 
given set of numbers. We would expect numbers that lie close together in the ordered 
distribution to differ by less. To allow for this, we can use a variation on the HSD 
test called the Student-Newman-Kuels test (Hays, 1988, p. 420), in which we first 
compare the largest and the smallest of n numbers using the Studentized range 
statistic as described above. If. and only if. they differ significantly, we then compare 
the two numbers that are one step closer together in the ordered sequence using the 
Studentized range statistic based on k - 1 comparisons. We then proceed inwards 
in this way, stopping as soon as we find the first non-significant difference. 

7.4.1 Prussian army officers 

Let us look again at the deaths of Prussian army officers in Table 4.1. We still feel 
uneasy about army corps number 9 in which 24 officers were kicked to death by their 
horses. Table 7.6 gives the number of officers kicked to death in each corps, summed 
over all 20 years. To see if army corps number 9 did have significantly more deaths 
than the others, our null hypothesis is 

H: The number of deaths in each army corps 

follows the same Poisson distribution. 7.5 

The mean number of army officers kicked to death in all of the corps is 12. The 
probability that a number, chosen from a Poisson distribution with a mean of 12, is 
greater than or equal to 24 is 0.16%. The number of deaths in army corps 9 therefore 
appears to be significant at the 1% significance level. However, we have deliberately 
chosen the greatest value and since we have ten numbers we are effectively making 
ten comparisons. To test the largest number at a significance level equal to P, we 
need to use the critical value for a significance level of P/10. The probability that the 
largest of ten numbers chosen from our Poisson distribution is greater than 24 is 
therefore equal to 0.16 x 10 = 1.6%, so that we can reject Hypothesis 7.5 at the 5% 
level but not at the 1% level. 

Once again, we are left to decide what it means. There may well have been a 
problem with safety in army corps number 9. However, army corps number 9 might 
have been bigger than the others, had more cavalry than the others or simply been 
more active than the others. The statistics raise a question: we have to provide the 
answer. 

Table 7.6 The number of army officers kicked to death in each of ten army corps between 
1875 and 1894 

Corps 
Deaths 

1 

12 

2 
12 

3 

8 

4 

11 

5 

12 

6 
7 

7 
13 

8 

14 
9 

24 

10 
8 
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7.5 VARIANCE RATIOS 

So far we have concentrated on comparisons between means and we have assumed 
that the variance of the sets of numbers used to calculate the means are the same. 
But suppose we want to compare two variances. We saw in section 5.4.3 that since 
each variance follows a X2 distribution, the ratio of two variances will follow an F 
distribution so that 

7.6 

where n1 - 1 and n2 - 1 are the number of degrees of freedom associated with V1 and 
V 2 , respectively (Appendix section 7.10.4). 

We can illustrate this with data collected to investigate the basis of speciation. Mayr 
(1942) suggested that a new population that starts from a small group of founders 
will be genetically atypical of the parent population and thus more likely to give 
rise to a new species than a new population starting from a large group of founders. 
To test this hypothesis, Dobzhansky and Pavlovsky (1957) took 20 populations of 
fruit flies: ten having 5000 individuals each and ten having 20 individuals each. At the 
start of the experiment, 50% of the individuals in each population were homozygous 
for a gene P, 50% were heterozygous. At the end of the experiment, after 18 genera
tions, the proportions of flies homozygous for the gene P were as given in Table 7.7. 

The mean proportion of homozygous flies in the large populations is 0.26 with vari

ance 0.0032, while for the small populations the mean is 0.32 with variance 0.0127. The 
ratio of the two variances is 3.96 and we need to compare this with an F distribution 
with 9 and 9 degrees of freedom. From Tables 10.3 and 10.4 we see that the variances 
differ significantly at the 5% but not at the 1% leveL giving support to Mayr's theory. 

7.6 CONFIDENCE LIMITS 

In the analyses developed so far we have (i) made an hypothesis, H, about the data 
(e.g. two means are the same), (ii) made a series of measurements from which to 
calculate a test parameter, T, (e.g., the difference between the two means divided by 
the standard deviation), (iii) determined a range, K within which T should lie if H is 
true (e.g. 95% acceptance range for a normally distributed variable), (iv) accepted H 
if T is contained in R; rejected H if T is not contained in R. 

It is important to be clear as to what we mean when we accept or reject H. When 
we accept an hypothesis, we are not saying that it is necessarily true but only that 
we have failed to show that it is false; more accurate data may well lead us to reject 
the hypothesis. Although we accepted the null hypothesis that hyoscyamine does 

Table 7.7 The proportions of flies bred from large and small initial populations that were 

homozygous for the gene P after 18 generations 

Large 0.187 0.202 0.208 0.216 0.244 0.276 0.306 0.312 0.324 0.338 

Small 0.153 0.172 0.208 0.306 0.321 0.333 0.440 0.306 0.450 0.462 
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not increase the amount of sleep significantly (section 7.2.1), more extensive data 
might reveal a significant difference and lead us to reject the null hypothesis. 

We are on firmer ground when we reject, rather than accept, an hypothesis, and 
we can be confident that the hypothesis does not hold. In the trial of the polio 
vaccine, we were able to show that the vaccine produces a statistically significant 
reduction in the number of children contracting polio. Nevertheless, the data in 
themselves do not tell us why the null hypothesis is false or what would be a 
reasonable alternative hypothesis. In the study of children in Saxony, we decisively 
rejected the hypothesis that the data follow a binomial distribution in which the 
probability of having a boy or a girl is independent of the sex of its older siblings. 
However, the observed numbers deviate only slightly from the binomial prediction 
and any further hypothesis should take the binomial model as a starting point. 

Considering hypotheses in this manner is both rigorous and sound, but rigour 
alone leads to pedantry, not progress. For example, in our study of the effect of 
hyoscine on sleep we found that the average sleep gained was 2.33 ± 0.63 hours so 
that m/ s was about 4 and we concluded that the number of hours of sleep gained 
differed significantly from zero and that the hyoscine does induce sleep. But we 
should be able to say more than this. For example, I think we agree that it is unlikely 
that hyoscine will increase the amount of sleep by, say, 10 hours or that it decreases 
the amount of sleep. What we want is an idea of the limits within which we can be 
confident that the 'true' value lies. Let us see if we can define confidence limits for 
our estimates of various parameters so that we can regard the sample mean, for 
example, as our 'best' estimate of the underlying population mean and use the standard 
deviation as an indication of the range within which the true mean should lie. 

Setting this out formally, suppose that we make a series of n measurements on a 
variable that is normally distributed with true mean f.l, estimated mean m and estimated 
standard deviation of the mean equal to sm. Now we have seen (Equation 7.2) that 

t = (m- J.l)lsm 7.7 

follows a t distribution with n - 1 degrees of freedom, so that if r· is the upper 
97.5% point of the distribution, 

P(- r· < t < t .. ) = o.95, 7.8 

and there is a 95% probability that t lies in the range ± t ... We use the critical 
value for a two-tailed test because we do not know if m is less than or greater than 
f.l. Now if t < t .. , then (m- J.l)lsm < t .. and J.l > m- t .. sm. Similarly, if - t .. < t, then 
f.l < m + t .. sm, so that 

P(m- t .. sm < f.l < m + t""sm) = 0.95, 7.9 

which tells us that there is a 95% probability that the range m ± t .. sm includes 
the true mean. We can assert that the amount of sleep gained after taking hyoscine 
is 2.33 ± 1.43 hours, that is between 0.90 and 3.76 hours, with 95% confidence. 

In our study of the polio vaccine (section 7.2), we found that the difference between 
the number of vaccinated and unvaccinated children who contracted polio was 
40.7 ± 6.0, and we are able to reject the hypothesis that the vaccine has no effect 
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at the 0.1% significance level. We can now use our concept of confidence limits to 
say instead that the reduction in the number of children per 100 000 who will develop 
polio when given the vaccine is 40.7 ± 1.96 X 6.0, that is, in the range 29 to 52 per 
100 000, with 95% confidence. We can also say that this number lies between 21 
and 60 per 100 000, with 99.9% confidence. 

Expressing our results in terms of confidence limits appears to be much stronger 
than merely accepting or rejecting an hypothesis. However, we have to be care
ful about the interpretation of confidence limits. We cannot strictly conclude from 
Equation 7.9 that the true mean lies within the defined confidence limits with the 
calculated probability because we know that it either lies within the limits with 
certainty or outside the limits with certainty. What we can do is simply assert that 
it lies within the given interval and we will then be right in 95% of cases and wrong 
in 5% of cases, for 95% confidence limits. Alternatively, we can note that we are 
effectively using our confidence limits to test all possible hypotheses about the value 
of the mean and the confidence limits then correspond to those values we would 
accept while excluding all those values we would reject. Regarding the polio study, 
where we found a difference in the number of children, per 100 000, contracting 
polio of between 29 and 52, with 95% confidence, we are saying that we would 
reject the hypothesis that the true difference is 0, 1, 2, ... , 27, 28 or 53, 54, ... at 
the 5% significance level but we would accept the hypothesis that the true difference 
is 29, 30, ... , 51. 52 at the 5% significance level. (Bulmer, 1979, provides an excellent 
discussion of this topic but see also Kendall and Stuart, 1983.) 

7.6.1 The importance of 'three' 

The discussion of confidence limits leads to an important observation. Whenever 
you carry out an experiment or make an observation, you should always take at 
least three readings. One reading gives us an estimate of the mean but no indication 
of the dispersion. Two readings enable us to calculate the standard deviation, and a 
95% confidence interval for the mean is then 

m ± t1 (0.975)51Jl = m ± 12.75. 7.10 

Two repeats is thus the absolute minimum number of readings you should take. 
However, with three repeats the confidence interval for the mean is 

m ± t2 (0.975)5!J2 = m ± 4.351J2 = m ± 3.05. 7.11 

With SO% more effort, we have increased the precision of our estimate by a factor 
of 4! If we take still more readings, we improve the accuracy further so that for four 
readings we have m ± 1.65 and for five readings we have m ± 1.15. None of these 
gains, however, is as striking as that made in going from two to three readings. 

7.7 SEVERAL FACTORS 

In many experiments the response variable that we measure depends on several 
different factors and we want to examine the effects of each factor separately as well 
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Table 7.8 The weight (in grams) gained by male and female rats fed 
on diets containing fresh and rancid lard 

Fresh Rancid 

171 108 

Male 172 89 

172 69 

153 85 

Female 109 64 

160 82 

as the interactions between them. We can illustrate this using data from an experiment 
to discover whether rancid lard has a lower food value than fresh lard. Because rancid 
lard contains strongly oxidizing peroxides and vitamin A is readily oxidized, Powick 
(1925) felt that the consumption of rancid lard might cause rats to suffer from a 
deficiency of vitamin A. Three young male and three young female rats were fed 
on a diet that included fresh lard and the same number of rats were fed on an 
equivalent diet but using rancid instead of fresh lard. To minimize the effects of 
variables other than those arising from the difference in the diets, the rats were 
selected for uniformity as to age, weight and general health. The rats each weighed 
between 39 and 52 gat the start of the experiment. Table 7.8 gives the weight gained 
by each rat after 73 days. 

In this experiment we will treat each group of three rats as repeats of the measure
ment of the effect of sex and lard freshness on the weight gained by the rats. 
Everything we need to know about the data in Table 7.8 is contained in the mean 
and the standard deviation of each set of three numbers and these are given in 
Table 7.9. We want to use these data to answer the following questions: 

• Does the freshness of the lard affect the weight gain of the rats? 
• Does the sex of the rats affect the weight gain of the rats? 
• Does the effect of lard freshness on the weight gains depend on the sex of the 

rats? Or, putting it the other way round, does the effect of sex on the weight 
gains depend on the freshness of the lard? 

The first question is then: does the freshness of the lard affect the weight gained 
by the rats? We could answer this simply by comparing the average weight gained 

Table 7.9 The mean and standard deviation of the weight (in grams) 
gained by male and female rats fed on a diet containing fresh and 
rancid lard 

Male 
Female 

Fresh 

171.7 ± 0.33 
140.7 ± 15.96 

Rancid 

88.7 ± 11.25 

77.0 ± 6.56 
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by all of the rats that were fed on fresh lard with the average weight gained by all 

of the rats that were fed on rancid lard. This is precisely what we would do if we did not 

know the sex of the rats and we would use an unpaired t test to do it. However, 

we have seen that, whenever possible, we should do a paired t test as this is always 

more powerful. Unfortunately, in the example of our rats we are unable to pair them 
directly since each rat was fed on rancid lard or fresh lard but not both. However, 
we can pair the rats by sex so that we consider the effect of lard freshness on weight 

gain for male rats and the effect of lard freshness on weight gain for female rats 
separately, and then calculate the effect of freshness averaged over the effects on 
males and females. 

From Table 7.10 we see that the male rats gain 83.0 g more weight when the lard 

is fresh rather than rancid and that the standard deviation of this difference is ± 11.3 g 

(remembering that the variance of a difference is the sum of the variances). Similarly, 

the female rats gain 63.7 ± 17.3 g more when the lard is fresh rather than rancid. In 

both cases the rats gain more weight when fed on fresh rather than rancid lard and 

the average increase is 73.0 ± 10.3 g. 
Before we perform t tests to determine the effect of freshness and sex on the 

weight gain of the rats we need to decide how many degrees of freedom to use. 

Since each mean in Table 7.9 is calculated using 3 points, each standard deviation 
in that table has 2 degrees of freedom. When we compare the weight gained by 
male rats eating fresh lard and rancid lard we therefore have 2 + 2 = 4 degrees of 

freedom, and of course the same applies to the comparison for female rats as well 

as to comparisons between the sexes fed on fresh lard and on rancid lard. 
For the male rats then our t statistic for the effect of freshness on weight gain is 

83.0/11.3 = 7.4 and using a two-tailed t test this is significant at the I% level but 

not at the 0.1% level (Table 10.1) and has two stars. For the female rats we see from 

Table 7.10 The effect of sex and freshness on the weight gain of rats. F - fresh lard, R- rancid 
lard, m - male rats, f- female rats. The first line, for example, gives the average difference 
between the weight gained when eating fresh as opposed to rancid lard for male rats 

Lard freshness 

Sex 

(F- Rim)= 83.0 ± 11.3 
(F- Rlf) = 63.7 ± 17.3 

( (F- Rim)+ (F- Rlf)) = 73.3 ± 10.3 

(m- fiF) = 31.0 ± 16.0 
(m- fiR)= 11.7 ± 13.0 

( (m- fiF) + (m- fiR))= 21.3 ± 10.3 

Effects of sex on effect of freshness 
(F- Rim)- (F- Rlf) = 19.3 ± 20.6 

Effect of freshness on effect of sex 
(m- fiF)- (m- fiR)= 19.3 ± 20.6 

t4 = 7.4 .. 

t4 = 3.7· 
tll = 7.1" .. 

t4 =1.9ns 
t4 = 0.9ns 
t 8 = 2.1 ns 

t8 = 0.94ns 

t8 = 0.94ns 
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the data summarized in Table 7.10 that the effect of freshness on weight gain is 
significant only at the 5% level and has one star. 

To determine the overall effect of lard freshness, we average the effect for males 
and females and this gives us an average weight gain when the lard is fresh of 
73.3 ± 10.3 g. We are now calculating the average of two numbers each of which 
has 4 degrees of freedom so that the number of degrees of freedom for this comparison 
is 8. Our t statistic is 73.3/10.3 = 7.12 and this is significant at the 0.1% level and 
has three stars. (If we had not distinguished between the male and female rats, the 
mean increase in consumption would have been the same, i.e. 73.3 g, but the standard 
deviation would have been 26.4 g instead of 10.3 g. Using a two-tailed t test with 
10 degrees of freedom, the value of t = 2. 78 would have been significant at the 5% 
but not at the 0.1% level. Although the effect of the sex of the rats is not in itself 
significant, by allowing for the small effect of sex, we obtain a more sensitive test 
of the effect of lard freshness.) 

We can now perform the same set of calculations for the effect of sex on the 
consumption of lard. The results of these calculations are also summarized in Table 
7.10, from which we see that in fact none of them is significant at the 5% level and 
all receive an ns. 

The results of these calculations show that the weight gained by the rats is 
influenced by the freshness of the lard but not by the sex of the rats. But it is also 
possible that the sex of rats interacts with the effect of the freshness of the lard. The 
concept of interactions in important but rather subtle. To illustrate what is meant by 
an interaction, suppose that male and female rats both gained 100 g more when the 
lard was fresh rather than rancid. The difference in weight gain due to lard freshness 
would then be independent of the sex of the rats. But if the male rats gained 100 g 
more when the lard was fresh while the females gained 100 g less when the lard was 
fresh, we would conclude that the effect of freshness does depend on the sex of the 
rats and we call this effect an interaction between freshness of the lard and sex of 
the rats. 

To calculate the interaction between the freshness of the lard and the sex of the 
rats, which we write lard x sex, we take the effect of lard freshness on the weight 
gain of male rats, which is 83.0 ± 11.3 g, and compare this with the effect of lard 
freshness on the weight gain of female rats which is 63.7 ± 17.3 g. The difference 
between the effect of freshness for male rats and the effect of freshness for female 
rats is then 19.3 ± 20.6 g. Now we are comparing two numbers each with 4 degrees 
of freedom so that the number of degrees of freedom in the interaction term is 8 
and our t statistic is 19.3/20.6 = 0.94, which is not significant. 

The sex of the rats does not affect the change in consumption due to the freshness 
of the lard: is it possible that the freshness of the lard affects the change in consumption 
due to the sex of the rats? The two numbers we now wish to compare are, from 
Table 7.8, 31.0 ± 16.0g and 11.77 ± 13.1g, from which we find a difference of 
19.3 ± 20.6 g, exactly the same as before, so that the interaction term is the same 
whichever way we calculate it. 
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7.7.1 Contrasts 

In the previous section we compared the effects of fresh and rancid lard, male and 

female rats, fresh lard consumed by male rats with rancid lard consumed by male 

rats, and so on. Altogether we made eight comparisons. However, there must be a 

limit to the number of independent comparisons or contrasts one can make (Winer, 

1971). For example, if we have three numbers-7, 5 and 3, say-the first is greater 

than the second and the second is greater than the third. But this means that the 

first must also be greater than the third so that we can only make two independent 

comparisons. 
The maximum number of independent pair-wise comparisons that we can make 

is one less than the number of independent means that we are comparing. In our 

example of the consumption of lard by rats, we have four independent means (Table 

7.9) and we can therefore make at most three independent comparisons. The choice 

of which comparisons to make depends on what we want to learn from the data. 

We usually choose to compare each 'main effect' (lard freshness and sex) averaged 

over the other (sex and lard freshness) and then their interaction (the effect of sex 

on the change in consumption brought about by lard freshness or vice versa). If we 

choose to make three comparisons, say, we should divide our significance levels by 

3 as we discussed in section 7.4 for multiple range tests. In this example, both sex 

and the interaction remain non-significant, as they must, while lard freshness is still 

significant at the 0.1% level. 

7.8 EXPERIMENTAL DESIGN 

The data we collect are only as good as the design of our experiments. In her 

experiment on rats, for example, Powick was careful to select the rats for uniformity 
of age, weight and general health so that these factors would not affect the outcome 

of her experiment. In the trials of the polio vaccine, we cannot give the placebo and 
the vaccine to the same children and so we have to find children who are likely to 

respond in the same way. We would not, for example, give the placebo to boys and 
the vaccination to girls because the efficacy of the vaccine might depend on the sex 
of the child. Indeed, we would want to give both the placebo and the vaccine to 
children from each state, each city and each school in the study area. However, we 

also have a moral dilemma; we would not be testing the vaccine if we did not believe 

that it was beneficial, so how shall we decide who should be given it and who 

should not? One way to do this is to use a random number generator to allocate 

the placebo and the vaccine within each sex in each school. This way each child has 

an equal chance of having the vaccine. Finally, to ensure that there is no unconscious 

bias, neither the doctors administering the vaccinations nor the doctors who eventually 

are to diagnose the patients for polio should know which injections contain the 

placebo and which contain the drug. 
To illustrate the consequences of not carrying out well-designed trials, Rensberger 
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(1983) describes an operation, used for many years to treat people with angina, in 

which the mammary arteries are tied off. Doctors and patients were happy with the 

results. When a proper trial was eventually conduct~d using a control group, the 
control group, whose arteries were not tied off, fared better than those whose arteries 

were tied off. The operation was quietly dropped. 
Another example of how not to proceed can be found in a series of trials in Kenya 

in 1988 to test the use of low-dose interferon administered orally for the treatment 
of AIDS patients (Pacala, 1990). The tests were carried out without a control group 
but the scientists doing the tests claimed striking improvements in the treated patients. 
The World Health Organization (WHO) then decided to run trials of their own. 
These trials were also carried out without controls in the hope that the Kenyan 
findings 'could be readily and immediately confirmed'. Eventually, the WHO conclu
ded that though some patients appeared to improve, it was impossible to say whether 
this was due to the treatment or to the patient's own raised expectations. Moreover, 
the interferon used was not prepared in a consistent form. The WHO report concluded 
that properly controlled clinical trials should be 'undertaken in accordance with an 
appropriate experimental design in which all relevant variables are monitored' (Pacala, 
1990). The attempt to cut comers simply meant that two years after the first trial 
no useful evidence as to the efficacy of the drug had been obtained. Now a Canadian 
team have begun a properly controlled trial to see if the issue can be decided one 
way or the other (Brown, 1991). 

7.8.1 Crossed and nested designs 

Experiments are often much more complicated than those we have considered so far. 
In Chapter 8 we will discuss an experiment designed to compare different traps for 
catching tsetse flies in which the catch depends on the trap, the site in which the 
trap is placed and the day on which the flies are caught. We will discuss an experiment 
to determine the amount of calcium in plants which will be seen to depend on the 
individual plants, the leaves within each plant and the samples taken from each leaf. 
In Chapter 9 we will consider the growth of Japanese larch trees and this will depend 
on the amount of nitrogen, phosphorus, potassium and residual ash. We need to 
think carefully about the design of such experiments to ensure that we can assess 
the effect of each variable after allowing for the effects of the other variables and, 
where possible, to assess the effect of each variable independently of all other 
variables. 

The design of experiments warrants an entire book in itself and Mead and Curnow 
(1983) provide a good introduction. However, the most complicated experimental 
designs can be analysed in terms of crossed and nested factors. This is best explained 
using examples. 

In the trial of the polio vaccine (section 7.2), the children were nested within the 
treatment since one set of children received the vaccine while another set received 
the placebo. We were unable to do a paired comparison since each child could not 
be given both the vaccine and the placebo. 
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When we used Student's data to compare two soporific drugs using an unpaired 
t test (section 7.2.1), the patients were nested within the drugs. However, when we 
considered the same data using a paired t test (section 7.2.2), the patients were crossed 
with drugs since each patient received both drugs and each drug was given to each 
patient. Although the difference between the mean effects of the drugs (unpaired t 
test, nested factors) was the same as the mean of the differences (paired t test, crossed 
factors) the latter analysis gave a more sensitive test because it separated out the 
variation due to patients leaving a smaller residual error. 

In Powick's experiments on rats, sex was crossed with lard freshness since male 
and female rats were fed on fresh and rancid lard. We were able to assess the effects 
of the lard freshness after allowing for the effects of the sex of the rats. The individual 
rats, however, were nested within sex and lard freshness. The error term in our 
assessment of the effect of lard freshness on weight gain was smaller when we 
allowed for the effect of the sex of the rats than it was when we did not (section 7.7). 

In Chapter 8 we will analyse experiments involving crossed and nested designs 
in more detail. The important thing to remember is that the analysis, and in particular 
our assessment of the errors, will depend on whether or not factors are crossed or 
nested. 

7.8.2 Sample-size determination 

As we increase the number of measurements that we make, the standard deviation 
of the mean decreases and we are more likely to be able to detect differences between 
pairs of means. Can we decide, in advance, how many measurements we should make 
in a particular experiment? 

Consider again Student's data on soporific drugs (Table 7.2). Although hyoscyamine 
increased the mean amount of sleep in ten patients by 0.75 hours, the increase was 
not significant at the 5% level and may therefore have been due to chance. Suppose 
that we decided to conduct further tests on the drug. How many patients should we 
use to decide if the drug has an effect? 

We need to know two things: the intrinsic variation in the data, that is, the 
population standard deviation, and the smallest effect that we wish to detect. The 
larger the intrinsic variation in the data and the smaller the effect we wish to detect, 
the more patients we will need to use. 

If we let J.l be the increase in the amount of sleep induced by hyoscyamine, our 
null hypothesis is 

H0 : J.l = 0 hours. 7.12 

Now suppose that we are interested in the drug only if it increases the amount of 
sleep by at least one hour. Then our alternative hypothesis is 

7.13 

We now let n be the number of measurements that we will make and let x be the 
critical value of the increase in the amount of sleep. If the mean amount of sleep 
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gained is less than x we will accept H0 ; if the mean amount of sleep gained is greater 
than x, we will reject H0 and implicitly accept H1 . To ensure that the probability of 
making a Type I error is less than, say, 5% we require 

x ~ 1.65s/ Jn, 7.14 

where 5 is the population standard deviation and assuming that the number of measure
ments is sufficiently large to allow us to use the normal approximation for t. But we 
might also want to keep the probability of making a Type II error small. Since the 
consequence of making a Type II error (deciding that an effective drug has no effect) 
may be less serious than the consequences of making a Type I error (deciding that 
an ineffective drug does have an effect), we might decide to keep the probability of 
making a Type II error less than 10%. Then we require 

1 - x ~ 1.285Jn, 7.15 

since 1 - x is the difference between the mean and the critical value if our alternative 
hypothesis is true. Rearranging Equation 7.15 gives 

x ~ 1 - 1.2851 Jn. 7.16 

The smallest value of n that ensures that both inequalities 7.14 and 7.16 hold will 
be the value for which they become equalities, so that 

1.6551 Jn = x = 1 - 1.28s/ Jn. 7.17 

Our best available estimate of the population standard deviation is the value we 
already have, namely 1.8 hours. Solving Equation 7.17 for n we find that n must 
be at least 28. In other words, to decide if the drug induces at least one hour of 
extra sleep while keeping the probability of making a Type I error less than 5% and 
the probability of making a Type II error less than 10%, we need to use at least 28 
patients. If the effect of the drug is to increase the amount of sleep by more than one 
hour, the probability of making a Type II error will be reduced so that 28 pairs of 
patients gives us a conservative estimate of the number of patients that we need to 
use. The critical value for our test is obtained from Equation 7.17 with 5 = 1.8 hours 
and n = 28 patients which gives x = 0.56 hours or 34 minutes. If the mean amount 
of sleep gained using hyoscyamine is less than 34 minutes we accept the null 
hypothesis and conclude that the drug does not have a significant effect, otherwise 
we reject the null hypothesis and conclude that the drug does have a significant effect. 

We can apply similar arguments to our study of the polio vaccine. We want to 
determine the number of children we should use. Let us assume that before the trial 
we already know that the probability that an unvaccinated child will develop polio 
is Po = 0.0005 7, the value obtained from the unvaccinated children in our clinical 
trial (Table 1.1) since we will already have some knowledge of the incidence of the 
disease. Then if n children receive the placebo, we expect np0 ± ~ children to 
develop polio since the number of sick children should follow a Poisson distribution. 
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Since the consequences of making a Type I error, and concluding that an ineffective 

vaccine is effective, may be quite serious, we might decide to keep the probability 

of making a Type I error below 1%. The critical value, x, for our test must therefore be 

7.18 

Under our alternative hypothesis, we expect np1 ± ~ children to develop polio. 

We might now decide that we are interested in the vaccine only if it reduces the 

probability of a child developing polio by at least 50%, so that p1 ~ 0.00029. Since 

making a Type II error may be less serious than making a Type I error, we might 

choose to keep the probability of making a Type II error to less than 5%. Then 

the critical value, x, for our test must also satisfy 

x~np1 + 1.65~. 7.19 

Once again the smallest acceptable value of n will be that for which both inequalities 

become equalities so that 

7.20 

Solving Equation 7.20 for n gives 

.{n = (1.65~ + 2.33~)1(p0 - p1 ) = 289, 7.21 

so that n is equal to 83 000. In other words, we see that while using about 200 000 

children in each group might seem excessive, it is in fact only slightly conservative 

if we are to obtain a reliable test of the vaccine. Further discussions of sample size 
determination are given by Healy (1981) and Winer (1971, p. 30). 

7.9 SUMMARY 

When applying statistical tests to problems in biology, we want to know if a particular 
test statistic that we have calculated from our data could reasonably have come from 
a certain distribution. To do this we set up an acceptance range and a rejection range. 
However, the acceptance range might correspond to the upper part of the distribution 
if it is large values that we treat with suspicion or it might come from the lower 

part of this distribution if it is small values that we treat with suspicion. In both 
cases we will use a one-tailed test but take opposite ends of the distribution for our 

rejection range. It might be that we regard both large and small values with suspicion, 
in which case we will use both ends of the distribution to define our rejection range. 
Effectively we are choosing the rejection range in such a way as to maximize the 
power of our test in relation to the alternative hypothesis that we will accept if the 

null hypothesis is rejected. 
To decide if two means differ significantly, we compare their difference and the 

standard deviation of their difference. The standard deviation is only an estimate of 
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the true underlying standard deviation and it was once thought that this meant that 
tests could not be performed on small samples for which the estimated standard 
deviation is quite inaccurate. The importance of Student's discovery was that we do 
not in fact need to know the true standard deviations provided we use the t distribution 
rather than the normal distribution, for this allows for the inaccuracies associated 
with our estimate of the standard deviation. 

There is, however, a second trap for the unwary. The t test applies to a comparison 
of two means. If we make 100 such comparisons and set a significance level of 5% 

about five comparisons will appear to be significant even if all the true means are 
exactly the same. We therefore need to use a more conservative acceptance range 
when we make many comparisons. Unfortunately, there is no universally best way to 
do this and I have outlined some of the ways that are commonly used. Of course if the 
significance level of the test is much less than 0.1% the test will almost certainly be 
significant however we do it. Equally, if the significance level of the test is much 
greater than 5% the test will almost certainly not be significant however we do it. 
You only need to tread carefully if the calculated value of the significance level is 
close to the range from 5% to 0.1% or if the number of comparisons that you make 
is very large. 

The idea of paired and unpaired tests or crossed and nested designs is important 
because a paired test or a crossed design allows us to estimate the effect of one 
factor after allowing for the effects of another. Of course if we put in the wrong 
biology, and assume for example that the patients are paired when they are not, we 
will not have a meaningful answer. The biology is also important when deciding 
between parametric and non-parameteric tests since every test that we carry out 
involves a set of assumptions about the underlying distribution of the data. If we 
have reason to believe that these assumptions do not hold, it will be better to use a 
less powerful test that does not rely on these assumptions. As long as you understand 
the biology well you should be able to decide which test is appropriate. 

The concept of confidence intervals provides us with a further powerful analytical 
tool because we do not only want to say a certain measurement is significant, but 
also want to set limits on the range of values within which we believe the true value 
lies. As long as we are clear as to how to interpret the confidence intervaL there 
should be no problems in using it. 

This and the previous chapter contain many of the most important concepts in 
the statistical analysis of data, but so far we have restricted our attention to fairly 
simple experimental designs. As the design of the experiment becomes more compli
cated, the number of comparisons that we can make, including the effects of inter
actions among the various factors in our experiments, increases alarmingly. In the 
next chapter we will discuss analysis of variance, or ANOV A, which provides us 
with a systematic way of analysing the results of more complicated experimental 
designs. 

Finally, we have seen that although the power of a test is seldom used in reporting 
the results of our experiments, it provides an important tool in helping us to decide 
on how big a sample we need for a particular experiment. 
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7.IO APPENDIX 

7.10.1 Derivation of student's t test 

Suppose we have n measurements, xi, i = I, 2, ... , n from a normal distribution with 
true mean Jl and true variance (12 so that 

xi"' N(Jl, (Jz). 7.22 
Then 

(xi- Jl)/(J "'N(O, I) 7.23 
and 

l: (xi - Jl)l I (Jl "' Xn 2. 7.24 

When we calculate the standard deviation, we use the estimated mean m, rather than 
the true mean, Jl, and this reduces the number of degrees of freedom in the sum by 
I so that 

7.25 

We also know that 

7.26 

so that 

(m- Jl)j;t/(J "'N(O, I). 7.27 

Dividing the left-hand side of Equation 7.27 by the square root of the left-hand side 
of Equation 7.25 over n - I, the number of degrees of freedom, we have 

(m _ Jl)Jn [(Jl(n _ 1)]112 
---'----- X "' f 

(J [l:(xi _ m)2]112 n-1 
7.28 

since, by definition, the ratio of a normal variate to the square root of a X2 variate 
divided by the number of degrees of freedom follows a t distribution (Equation 5.33). 
But, sm, the standard deviation of the mean, is 

so that 

Sm = [l:(xi- m)l]1/l 
n(n -I) 

7.29 

7.30 

The importance of this result is that we do not need to know Jl, the true value of 
the mean, since that will be determined by the hypothesis under test. But (J cancels 
in Equation 7.28, so we do not need to know its value either. 

7.10.2 t test for samples of unequal variance 

If the true variances or the number of measurements contributing to the means of 
two independent samples are not equal, the parameter 
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t = (m 1 - m2 )/s 7.31 

with 
s2 = s~lni + s~ln2 7.32 

does not strictly follow a t distribution. However, Satterthwaite (1946) has 
shown that if we set vi= s;lni, the t statistic given by Equation 7.31 is approximately 
distributed as tn, where the number of degrees of freedom is 

7.33 

Note that when vi= v2 and ni = n2 , the effective number of degrees of freedom is 
ni + n2 - 2, as expected. However, if vi« v2 , n = n2 - 1. In this case m1 is effectively 
known exactly and we are comparing m2 with a fixed constant so that the appropriate 
number of degrees of freedom is n2 - 1. 

7.10.3 Multiple range tests 

Suppose that we have a set of n observations xi and an acceptance range R corres
ponding to a significance level r:x for each observation. Then for any one number, 

xi, chosen at random 

P(xi is in R) = 1 - r:x. 7.34 

Using the law of multiplication 

P(all xi are in R) = (1 - r:xt. 7.35 

Now if the biggest number is contained in R, all of the numbers must be contained 

in R so that 

P(xmax is in R) = (I - r:xt, 7.36 
and 

P(xmax is not in R) =I- (I- r:xt. 7.37 

For small values of r:x, the right-hand side of this equation is approximately equal to 
nr:x. Since P(xmax is not in R) is the significance level r:x*, we have 

7.38 

and for n comparisons we should use a significance level of r:x*ln to ensure that all 
comparisons are significant at a significance level of r:x*. 

With k numbers we have at most k(k- I)/2 independent pairs of differences since 
we can compare the first number with (k- I) others, the second with (k- 2) others, 
since we have already compared it with the first, and so on. But 

(k- I) + (k- 2) ... I = k(k- I)/2, 7.39 

and we see that to obtain the acceptance range at a significance level of r:x for the 
difference between the largest and the smallest of a set of k readings, we should use 

the acceptance range for a single comparison at a significance level of r:x*ln where 

n = k(k- 1)/2. 



Exercises 121 

7.10.4 The ratio of two variances 

Consider a set of measurements from a normal distribution with true mean m and 
true variance a2 . As in Appendix, section 7.IO.I 

7.40 

The left-hand side of Equation 7.40 is (n- I)s2/a2 , so that s2 /a2 is a ·f variate 
divided by (n- I). We have also seen in section 5.4.3 that the ratio of two X2 

variates, each divided by their number of degrees of freedom, defines an F variate 
so that 

7.41 

where n1 - I and n2 - I are the number of degrees of freedom associated with s1 

and s2, respectively. Since our null hypothesis when we compare variances is that 

ai=az, 

7.42 

7.11 EXERCISES 

I. In Student's study of the effects of hyoscyamine and hyoscine (Table 7.2), we 
used t tests to decide if the drugs were efficacious. Would our conclusions have been 
different if we had used a normal distribution rather than t distributions to determine 
the critical values for each significance level? 

2. Determine what the significance levels in Table 7.IO would have been if we had 
used the normal distribution instead of the t distribution. 

3. The scutum widths of ticks collected from four cotton-tail rabbits were measured 
and the data are given in Table 7.II (Sokal and Rohlf, 1981, p. 2II). Using Satterthwaite's 
rule (Appendix, section 7.I0.2, Equation 7.33) to determine the appropriate number 
of degrees of freedom, carry out t tests to decide which, if any, of the mean scutum 
widths differ significantly. Make the comparisons with and without a correction for 
the number of comparisons (section 7.4). 

4. In Table 7.9 the standard deviation of the weight gained by male rats feeding on 

Table 7.11 Number of ticks, mean scutum width in microns and 
standard deviation of the mean width in microns, taken from each of 
four rabbits 

Rabbit n m Sm 

I 8 372.3 6.23 
2 10 354.4 2.60 

3 13 355.3 3.77 
4 6 361.3 2.47 
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fresh lard is 0.33 g while the weight gained by female rats feeding on fresh lard is 
15.96 g. Our analysis assumes that the variances do differ significantly. Carry out an 
F test to see if this assumption is justified. When deciding on the significance level, 
remember that you are comparing the largest and the smallest of four numbers. (f2,2 

at the 0.42% significance level is 237 and at the 0.083% significance level is 1200.) 

5. How many patients would you need to use in order to decide if hyoscyamine 
increases the amount of sleep by at least 30 minutes while keeping the probability 
of making a Type I error to less than 5% and the probability of making a Type II 
error to less than 10%7 

6. Our analysis showed that a trial of the polio vaccine designed to detect a reduction 
of at least 50% in the number of paralytic cases required 83 000 children in each 
group if the probability of making a Type I error is to be less than 1% and the 
probability of making a Type II error is to be less than 5%. However many children 
would you need to include in your trial if you wanted to keep the probability of 
making a Type II error less than 1%7 
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Analysis of variance 

... Like every other human endeavor [logic] is just a patchwork quilt whose patches do 
not meet very well. and which are continually being tom up and restitched. 

I. Hacking (1979) 

In Chapters 6 and 7 we tested hypotheses about sets of data by comparing means 
and using the standard deviation as a measure of their precision. For example, the 
number of children contracting polio was significantly reduced when they were given 
the Salk vaccine and patients given hyoscine slept for significantly longer than patients 
given hyoscyamine. Rats given fresh lard gained significantly more weight than rats 
given rancid lard. This is a sound and reliable way to proceed. However, we have 
already seen that when we have several treatments each with several levels, such as 
male and female rats feeding on fresh and rancid lard, the analysis rapidly becomes 
complicated. 

Let us consider an alternative approach. We have an experiment in which we apply 
several treatments, each at several levels. We know that even if none of the treatments 
we apply has a significant effect there will still be some variation in our data associated 
with each level of each treatment due to the random nature of the sampling and 
measurement process. In this chapter we will show that we can partition the variation 
of all the data about the grand mean into contributions associated with each treatment 
factor plus a residual term. By comparing the variation that we attribute to each 
treatment factor with the residual variation we will be able to decide which factors 
contribute significantly to the overall variation of the data. 

In our experiment on rats, for example, we will consider the freshness of the lard 
and the sex of the rats in tum and see how much of the observed variation in the 
weight gain we can explain away using each factor. Instead of asking: 'Do rats gain 
more weight when the lard is fresh than they do when it is rancid?' we ask instead: 
'How much of the variation in weight gain can be explained on the basis of the 
freshness of the lard?' If very little of the variation can be accounted for using lard 
freshness, we conclude that lard freshness does not influence the weight gain of the 
rats significantly. If much of the variation can be accounted for using lard freshness, 
we conclude that lard freshness does influence the weight gain of the rats significantly 
and we then return to the kind of analysis we carried out before and ask: 'Do male 
rats gain significantly more weight than female rats?' Do rats gain more weight when 
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the lard is fresh or when it is rancid? What the analysis of variance, or ANOV A, 
does for us is to test each factor and combination of factors (freshness of lard, sex 
of rats, the interaction between then), enabling us to pick out the significant factors for 
further consideration. If the ANOVA indicates that certain factors are significant, we 
then compare the different levels within each treatment factor using the kind of 
analysis developed in Chapters 6 and 7. 

In this book I have not given the computational formulae needed to carry out 
ANOV As. The calculations are specific to each experimental design and are given 
in most of the standard books on statistics. The calculations given in this and the 
next chapter can be carried out using standard statistical packages and you should 
do them yourself as you read the book. 

8.1 ONE-WAY ANOVA 

The central role that ANOV A plays in the analysis of biological data is due to the 
fact that the sums of the squares of the residuals in suitably designed experiments, 
calculated without regard to the various treatments or factors involved, can be broken 
down into a sum of terms, one for each factor involved. To illustrate this we will 
begin by examining the simplest possible experimental design. 

8.1.1 Analysing the sum of squares 

Consider a treatment or factor with two levels, T1 and T2 • We make two measurements 
at each level, a and c, at level T1, band d, at level T2 , as illustrated in Table 8.1. The two 
levels might be two different cows, in which case a and c might be two estimates of 
the number of ticks on cow 1; b and d two estimates of the number of ticks on cow 
2. Alternatively, the two levels might be two designs of tsetse fly traps in which 
case a and c might be the number of flies caught on two days in trap 1, b and d the 
number of flies caught on the same two days in trap 2. Or the two levels might be 
two kinds of fertilizer and the measurements two estimates of a maize harvest after 
the application of each kind of fertilizer. 

We proceed as follows. 

• First we calculate the overall mean and the overall or total sums of squares, SST, 
of the deviations about the overall mean for all of the observations, ignoring the 
fact that we have two treatments. 

• We then partition the total sums of squares into a part due to differences between 
treatments, SS8 (arising from differences between cows, traps or fertilizers) and a 
part due to differences within treatments, SSw, (arising from variability in our 
sampling of ticks, flies or maize). 

• For each sum of squares we calculate a corresponding variance, MS8 and MSw. 
• If the between-treatment variance, MS8 , is significantly greater than the within

treatment variance, MSw, we conclude that the two levels, T1 and T2 , of the 
factor or treatment do have a significant effect on the measurements (the cows, 
traps or fertilizer differ), but if MS8 is less than or about the same as MSw, we 
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Table 8.1 A model of an experiment in which we apply treatment T at two levels, T1 and 
T2 , and make two measurements of the response, a and c, band d, at each level of each treatment. 
The table shows the breakdown of the total sum of squares, SS-r. into SSw. the sum of squares 
within, and SS8 , the sum of squares between, groups of measurements. MS indicates mean 
square, d.f. degrees of freedom 

TI Tz 
a b 
c d 

ml mz SSB 
ssl ss2 SST 

(i) G) 

• SST= (a 2 + b2 + c2 + d2 )- (a+ b + c + d)2/4 
d.f. = 4- I= 3 MST = SST/3 

• SS 1 = (a 2 + c2)- (a+ dl2 
d.f. = 2 -I= I 
SS2 = (b 2 + d2)- (b + d) 2/2 
d.f. = 2- I= I 

(i) 0 @ 

SSw= SS1 + SS2 = (a 2 + h2 + c2 + d2)- (a+ c) 2/2- (b + d) 212 
d.f. = (2- I)+ (2- 1) = 2 MSw = (SS 1 + SS2)/2 

0 @ G) 
• SS8 = {m~ + m;- (m 1 + m2 ) 2/2} x 2 =(a+ c) 2/2 + (b + d) 2/2- (a+ c + b + d) 2/4 

d.f. = 2- 1 = 1 MS8 = SS8 /l 

conclude that the two levels, T1 and T2 , of the two factors or treatments do not 
have a significant effect on the measurements (the cows, traps or fertilizers do not 
differ.) 

• If the ANOV A indicates that the two levels of the treatment or factors produce 
significantly different results, we analyse the data further (compare individual cows, 
traps or fertilizers) and decide what the differences mean. 

Table 8.1 gives a step-by-step breakdown of the analysis of variance for a single 
classification, or one-way, two-level experiment with two repeated measures. The 
first calculation is for SST, the total sum of squares for all of the readings about the 
mean of all of the readings: this is what we need to account for. To calculate this, 
remember that the sum of squares of the deviations about the mean can be written 
as (Equation 4.11) 

55= ~x;- (~xi ln. 8.1 

There are four measurements and we have used up I degree of freedom in calcula
ting the mean, leaving 3 degrees of freedom. If the treatments have no effect, 
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M5r, the total mean square, will be an estimate of the variance due to the intrinsic 
variations in the readings. 

The second calculation is for the sum of squares within each treatment about their 
means m1 and m2 : SS1 for treatment T1 , SS2 for treatment T2 and SSw for both 
treatments together. Each of these has two measurements and we use up 1 degree 
of freedom in calculating each mean, leaving 1 degree of freedom for each treatment. 
SSw therefore has 2 degrees of freedom and MSw is our best estimate of the within
group variance. 

The third calculation is for SS8 , the sum of the squares between the means m1 

and m2 , of the two groups about their common mean. Since we have two measure
ments within each group, we multiply by two. This time we have two means and 
we calculate their overall mean, leaving 1 degree of freedom. MS8 is an estimate 
of the between-group variance. 

The first thing to note is that 

8.2 

We can see this directly by substituting the expressions given in Table 8.1 into 
Equation 8.2. The terms labelled <D and @ appear on both sides of the equation 
and the terms labelled ® and ® cancel. In other words, it is possible to partition the 
total sum of squares into a sum of squares within groups and a sum of squares 
between groups. (Snedecor and Cochran, 1989, p. 225, give more general proofs of 
Equation 8.2 for this and for other experimental designs.) 

The second thing to note is that the number of degrees of freedom for SSr, 3, is 
equal to the number of degrees of freedom for SSw, 2, plus the number of degrees 
of freedom for SS8 , 1, so that 

d.f.T = d.f.w + d.f. 8 . 8.3 

Dividing each sum of squares by the appropriate number of degrees of freedom 
gives three variances-M5r, MSw and MS8-and if there is no treatment effect, 
all three are estimates of the variance due to the intrinsic variation in the data. In 
this ANOVA, the hypothesis that there is no treatment effect reduces to a test of 
the hypothesis that MSw = MS8 . 

To be dear about the calculation of the number of degrees of freedom, note that 
for a one-way ANOV A with a levels and n measures, we calculate the numbers of 
degrees of freedom for each sum of squares as indicated in Table 8.2. 

Table 8.2 Calculation of the number of degrees of freedom in 
a one-way ANOV A with a levels each with n measurements. 
Note that d.f.T = d.f.w + d.[8 

SSr: an points - 1 mean -+an - 1 d. f. 

SSw: n points- 1 mean-+ n- 1 d. f. 
Summed over a levels-+a(n -1) d. f. 

SSs: a levels- 1 mean -+a -1 d. f. 
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8.1.2 No treatment effects 

The observation that all three variances are estimates of the overall variance of the 
data, provided there is no treatment effect, is critical. To illustrate this, I generated 
18 normally distributed random numbers from N(O,I) and divided them into nine 
pairs (Table 8.3). We can now analyse this is as a one-way ANOVA with nine levels 
and two measurements per level. 

Table 8.4 gives the ANOVA for the 'without treatment' data in Table 8.3 (columns 
2 and 3). The sums of squares between and within groups add up to the total sum 
of squares and the number of degrees of freedom between and within groups add 
up to the total number of degrees of freedom. The sums of squares divided by the 
appropriate numbers of degrees of freedom give the mean squares. Since there is no 
treatment effect, each gives a reasonable estimate of the true variance, which we 
know to be I. 

8.1.3 Treatment effects 

What we really want to know is what happens when the treatment does have an 
effect. To illustrate this I took the nine pairs of numbers in Table 8.3 (columns 2 and 
3), subtracted 4 from the first pair of numbers, 3 from the second pair and so on, 

Table 8.3 Eighteen normally distributed random numbers with mean zero and 
variance I (columns 2 and 3). In columns 4 and 5, 4 has been subtracted from the 
first pair, 3 from the second pair ... , 4 has been added to the last pair 

Without treatment effect With treatment effect 
Treatment 1 2 1 2 

I -1.02 0.23 -5.02 -3.77 
2 -0.24 0.01 -3.24 -2.99 
3 2.18 -0.22 0.18 -2.22 
4 -0.47 0.19 -1.47 -0.8I 

5 -0.74 O.IO -0.74 0.10 
6 0.89 1.98 I.89 2.98 
7 -0.98 -l.I7 1.02 0.83 

8 0.23 0.31 3.23 3.31 

9 0.42 0.23 4.42 4.23 

Table 8.4 ANOV A table for nine pairs of random numbers chosen from N(O, I) 

Source of Sums of Degrees Mean Significance 
variation squares of freedom square F-ratio level, P 

Between 6.6 8 0.82 0.65 0.72 ns 

Within 11.4 9 1.27 

Total I8.0 I7 I.06 
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Table 8.5 ANOV A for the data in columns 4 and 5 in Table 8.3 

Source of Sums of Degrees Mean Significance 
variation squares of freedom square F-ratio level, P 

Between 132.2 8 16.53 13.0 0.00042 
Within 11.4 9 1.27 

Total 143.6 17 8.45 

adding 4 to the last pair. The data with the 'treatment' effect are also given in Table 8.3 
(columns 4 and 5) and the resulting ANOVA is given in Table 8.5. The between 
groups sum of squares has increased dramatically, the within groups sum of squares 
has not changed and the residual sum of squares has increased by the same amount 
as the between groups sum of squares. 

The partitioning of the sums of squares is carried out as before. The treatment 
effect will not change any of the within treatments sums of squares since all of the 
numbers, as well as the mean, for a given treatment level, will be changed by the 
same amount and the sum of squares of the deviations about the mean will not 
change. However, we can show (Snedecor and Cochran, 1989) that, on average, the 
between groups sum of squares will increase by (a- 1)ns; where a is the number 
of levels of the treatment, n is the number of measurements made at each level and 
s; is the population variance calculated for the effect of the different treatment levels 
on the outcome. Since (a - 1) is the number of degrees of freedom associated with 
the treatment, the between groups mean will increase by ns;. (This is discussed further 
in section 8.4.6.) 

In the example given in Table 8.3 the treatment effect changes the individual levels 
by - 4, - 3 ... 2, 3, 4. The sums of squares for the treatment effect is therefore 
16 + 9 + ... 4 + 9 + 16 = 60 and since two measurements are made at each level 
the sum of squares for the treatment effect should increase by about 120. From Tables 
8.4 and 8.5 we see that the actual increase is 125.6. The expected increase in the 
between levels mean square is 120/8 = 15 and we see that the actual increase is 15.7. 

Finally, we can estimate the population variance of the levels for a given treatment 
by dividing the increase in the between levels mean square by two, the number of 
repeats per level of treatment. This gives 7.9 which compares well with the actual 
value of 60/8 = 7.5. The population variance of the treatment levels is referred to 
as the added variance component per level of that treatment. 

8.1.4 Testing hypotheses 

It is evident that the mean square estimates of the variance in Table 8.4 are approxi
mately equal, indicating that there is no 'treatment' effect, while in Table 8.5 the 
between-groups mean square is so much greater than the within-groups mean square 
that we can be confident that in this case there is a significant treatment effect. Once 
again, we want to set significance levels to these statements, starling with the null 
hypothesis that there is no significant treatment effect. 
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If there is no significant treatment effect, the between-groups mean square, MS8 , 

and the within-groups mean square, MSw, are both estimates of the intrinsic variance 
of the data, a2 , the first with a- I degrees of freedom the second with a(n- I) 
degrees of freedom (Table 8.2), so that 

8.4 

and if the null hypothesis holds, MS8 /MSw will follow an F distribution with 
a- I and a(n- I) degrees of freedom. We therefore compare MS8 /MSw with critical 
values for the appropriate F distribution. For our simulated experiment with random 
numbers, we have 8 and 9 degrees of freedom. For the data in Table 8.4, the F ratio 
(0.65) is well within the 5% acceptance range for F8•9 (3.23) and we write ns for 'not 
significant' in the last column; for the data in Table 8.5, the F ratio (13.0) is outside 
the O.I% acceptance range for F8.9 (I0.4) and we give it three stars. Tables 8.4 and 
8.5 also give the significance level corresponding to an acceptance range that just 
includes the observed point. Thus in the case of Table 8.4, an acceptance range from 
0 to 0.65, for an F distribution with 8 and 9 degrees of freedom corresponds to a 
72% significance level, while in Table 8.7 the acceptance range from 0 to 13.0 cor
responds to a significance level of 0.04%. 

8.1.5 Means plots 

Having carried out the ANOV A and decided that something interesting is going on 
in our second set of data, we have to decide what this is. Plotting the means for 
each treatment, as shown in Fig. 8.I, it is clear that the mean increases from one 
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Figure 8.1 Means plot for the data used in Table 8.7. The error bars indicate ±sm. 
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treatment to the next. If this were real data, we would want to decide why the mean 
increases with treatment as it does. When we carry out an ANOV A we start by 
testing each factor or treatment to see if it has a significant effect on our observations; 
if it does we then examine the individual levels of that treatment to decide how the 
levels within that treatment factor differ in their effect. This is more efficient than 
calculating the means for each pair of points at each level and then making all possible 
comparisons to decide which, if any, differ. 

8.1.6 Soporific drugs 

Let us reconsider the data analysed by Student on the effect of hyoscyamine and 
hyoscine on the amount of sleep gained by ten patients given in Table 7.2. We will 
begin (as in section 7.2.1) by ignoring the fact that each patient received both drugs. 
The two drugs are then two levels of treatment with ten repeats at each level. This 
is a nested design with patients nested in drugs (see section 7.8.1). If we carry out 
a single-classification ANOVA on the data, we obtain the results shown in Table 
8.6. From the ANOV A table we see that there is no significant difference between 
treatments at the 5% leveL which is what we found in section 7.2.1 (Equation 7.3) 
when we compared the two means using the unpaired t test. Indeed, the value of t 
was 1.86, which is the square root of 3.5, the value ofF given in Table 8.6, showing 
that in a single-classification experiment the t test provides exactly the same answer 
as the ANOV A. 

Table 8.6 gives both the internal (si) and the pooled (sp) standard deviations of 
the means. The internal standard deviation is the standard deviation calculated 
separately for each of the two treatments and the values in Table 8.6 agree with the 
values calculated in Table 7.2. The pooled standard deviation is the root-mean square 
value of the two internal standard deviations. Since the within-groups mean square, 
3.61, is an estimate of the variance of the response from one patient to the next, we 
can also calculate the pooled standard deviation as (3.6/9)112 = 0.60. When comparing 
responses under different levels of the same treatment, we use the pooled standard 
deviation because this gives us the best estimate of the within-groups variation. (If 

Table 8.6 ANOVA table for the two treatments in Student's data of Table 6.6. s, is the 
internal standard deviation and sP is the pooled standard deviation 

Source of Sums of Degrees Mean Significance 
variation squares of freedom square F-ratio level, P 

Between 12.5 I 12.5 3.5 0.079 ns 
Within 64.9 18 3.61 
Total 77.4 19 

Treatment Mean s, sP 95% C.L. 

Hyoscyamine 0.75 0.57 0.60 -0.51-2.01 
Hyoscine 2.33 0.63 0.60 1.06-3.59 
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the internal standard deviations differ significantly, we have to be more careful and 
use Satterthwaite's rule for the t test as recommended in section 7.2.1.) 

To calculate 95% confidence limits for the amount of sleep gained, we multi
ply the standard deviations by the two-tailed value of t18 at the 5% significance 
level, 2.10, so that the amount of sleep induced by hyoscyamine, for example, is 
0.75 ± 0.6 x 2.10, that is from - 0.51 to 2.01. In Table 8.6 the 95% confidence 
intervals for the two means overlap, reinforcing our conclusion that they do not differ 
significantly. We also note that the confidence interval for the first mean includes 0, 

while that for the second does not, and this is again in agreement with our previous 
observation that hyoscyamine does not significantly increase the amount of sleep 
while hyoscine does. 

8.2 UNEQUAL SAMPLE SIZES 

When we have a non-way ANOV A with only a few levels it may be sufficient 
to calculate means and standard deviations and then compare the means using a 
suitable multiple range test if there is any doubt as to the significance of the various 
differences. The real power of ANOV A will be apparent only when we analyse 
experiments with more than one treatment or factor. However, it is important to 
have a firm grasp of the basic ideas, so we will consider another example of a one-way 
ANOV A but with unequal sample sizes. 

An experiment was performed in which tick larvae of the species Haemaphysalis 
leporispalustris were collected from four cotton-tail rabbits (Sokal and Rohlf, 1987, 

Table 8.7 Scutum widths, in microns, of tick larvae taken from four 
cottontail rabbits 

Rabbit 
1 2 3 4 

380 350 354 376 
376 356 360 344 
360 358 362 342 
368 376 352 372 
372 338 366 374 
366 342 372 360 
374 366 362 
382 350 344 

344 342 
364 358 

351 
348 
348 

m 372.3 354.4 355.3 361.3 
Sm 6.23 2.60 3.77 2.47 



132 Analysis of variance 

Table 8.8 ANOVA table for the data of Table 8.8. 'Among' refers to differences 
among rabbits and 'within' to differences among ticks on each rabbit 

Source of Sums of Degrees Mean Significance 
variation squares of freedom square F-ratio level, P 

Among 1808 3 603 5.26 0.0045 
Within 3778 33 115 

Total 5586 36 102 

p. 2I7). The width of the scutum, the dorsal shield, of each larva was measured in 
microns and the data are given in Table 8.7. The mean scutum width is about the 
same for rabbits 2 and 3, while for rabbit 4 it is a little greater and for rabbit I it is 
greater still. The difference between the biggest and the smallest mean is I7.9, but 
this is less than three times the standard deviation of the mean for larvae from rabbit 
4, and we will need to be careful in our analysis. The analysis of variance is shown 
in Table 8.8 and Sokal and Rohlf (I987, p. I68) perform the calulation step by step. 

The number of degrees of freedom among rabbits is 4 - I = 3. Since rabbit I 
has eight ticks, the number of degrees of freedom 'within' rabbit I is 8 - I and 
taking all the rabbits together the number of degrees of freedom 'within' rabbits is 
(8 - I) + (IO - I) + (13 - I) + (6- I) = 33. The total number of degrees of freedom 
is 37- I= 36. Both the sums of squares and the number of degrees of freedom 
between and within groups shown in Table 8.8 add up to the corresponding totals. 

The F ratio is significant at the I% level and has two stars. 
So far, all that we know is that the mean scutum width of the ticks differ among 

the four rabbits. Now we need to consider individual rabbits. If we plot the mean 
scutum widths for the ticks on each rabbit together with 95% confidence intervals, 
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Figure 8.2 Mean scutum width/microns for the larvae &om each of four rabbits. 
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Table 8.9 Comparison of the mean scutum widths from the data in 
Table 8.7. The columns of stars and letters indicate which means differ 
significantly using an LSD test (section 7.4) at the 95% significance 
level 

Number <scutum width) 
Rabbit of larvae (microns) Groups Groups 

2 10 354.4 a 
3 13 355.3 a 
4 6 361.3 ab 
I 8 372.3 b 
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as shown in Fig. 8.2, we see that the confidence limits for the scutum width of larvae 

from rabbit I does not overlap the confidence limits for rabbits 2 and 3, but does 

overlap the confidence limits for rabbit 4. 

In addition to plotting the means such data are often presented as a means table 

as in Table 8.9. The data are presented in such a way that rabbits sharing a star in 

the same column do not differ significantly in the scutum widths of the tick larvae 

taken from them. The first column of stars shows that the mean scutum widths of 

larvae on rabbits 2, 3 and 4 do not differ, the second shows that the mean scutum 

widths of larvae on rabbits 4 and I do not differ, but since rabbit I does not share 

stars with rabbits 2 or 3, the mean scutum width of larvae on rabbit I does differ 

significantly from those on rabbits 2 and 3. An alternative way of _presenting this 

data is shown in column 5, in which rabbits sharing the same letter do not differ 

significantly in the mean scutum width of the tick larvae taken from them. 

Another useful piece of information we can extract from the ANOV A table (after 

we have used an F test to check that there is a significant effect) is the contribution 
to the overall variance arising from a particular treatment. We have already seen 

(section 8.1.3) that the mean square within groups, MSw, gives us an estimate of 

a2, the intrinsic variability of the data, while the mean square between groups, MS8 , 

gives us an estimate of a2 + ns~, where a~ is the average value per level of the 

added variance component due to the treatment T and n is the number of levels per 

treatment, in this case the mean number of ticks per rabbit, i.e. 9.25. Therefore 

8.5 

gives us an estimate of this added variance per level. (Sokal and Rohlf, I98I, 

show how to calculate confidence limits for the added variance.) From the data given 

in Table 8.8, the average value of the added variance component is 52.8 microns2 

per rabbit and the best estimate of the standard deviation of the variability among 

rabbits is 7.3 microns. 

8.3 MODEL I AND MODEL II ANOV A 

The experiment on rabbits discussed in the previous section could have been conducted 

for either of two reasons. We could have been studying levels of immunity of rabbits 
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to ticks in order to identify the factors that confer such immunity with a view to 
developing a vaccine against ticks. Rabbits on which ticks grow less well may have 
some immunity. In this case we would be interested in the individual rabbits and we 
would refer to the rabbits as a fixed factor. When we are interested in individual 
levels of various treatments or factors, we talk about a Model I ANOV A, and we 
choose particular treatment or factor levels (in this case rabbits) with a view to 
deciding if the different levels produce significantly different effects. After calculating 
the ANOV A table, we then go on to test for differences between the means or 
between various combinations of the means. 

We could, however, be interested in the genetic variability within various rabbit 
populations of their response to ticks so that the variability itself is of interest. When 
we are interested in the variability across the levels of any one treatment or factor, 
we talk about a Model II ANOV A, and we will generally choose the levels (in this 
case rabbits) at random, often going to great lengths to ensure that the chosen rabbits 
are representative of the population at large. We then refer to the rabbits as a random 
factor. In a Model II ANOV A we tacitly assume that the effect of the variability is 
not only random but is normally distributed. After calculating the ANOV A table, 
we then go on to assess the added component of the variance arising from the 
treatment effect. The important point to note is that for a given set of data the 
precise analysis that we carry out depends on the question that we ask. 

We can also have mixed models in which some factors are fixed and correspond 
to Model I and others are random and correspond to Model II. In Student's study 
of the effects of hyoscyamine and hyoscine on sleep, we hope to determine the 
effects of these two specific drugs so that the drugs are a fixed factor. Since we are 
not interested in particular patients but in these patients as representative of the 
population as a whole, the different patients used in the trial are a random factor 
and the variance within groups of patients gives us an estimate of the variance in 
the population as a whole. 

8.3.1 Specifying the model 

It is often useful to think explicitly about the model that underlies our analysis. 
Suppose that the response variable is Yw so that in Student's data on soporific drugs 
y indicates the number of hours of sleep gained, i indicates each of the two drugs 
and j indicates each of the individual patients. Then our model is 

8.6 

where m is the mean number of hours of sleep gained by all the patients under 
both treatments, di(i = 1, 2) is the change from the mean under each drug and the 
residuals eii give the residual amount of sleep gained by patient j(j = 1 to 10) not 
accounted for by m and the drugs di. In this case the grand mean tells us that m = 0.54 

hours and the difference between the means for each drug and the grand mean tell 
us that d1 = 0.21 hours and d2 = - 0.21 hours. 
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8.4 TWO-WAY ANOVA 

The simplest way to extend the one-way ANOV A described in the previous sections 

is to consider two treatment factors. We have already considered a problem of this 

kind in the experiment on the diet of rats (section 7.7) where we examined the extent 
to which the freshness of the lard and the sex of the rats affected the weight gained 
by the rats. 

8.4.1 Factorial designs 

Suppose that we have two treatments or factors, A and 8 (in our experiments on 
rats these would be lard and sex), each with two levels (fresh/rancid lard, male/female 
rats). Ideally we would like to make several measurements with every possible 

combination of A and 8: A1 81 , A 2 81 , A1 82 and A 2 82 . When we make measurements 
on every combination of the relevant factors, we call it a factorial experiment. Note 
that factor A is crossed with factor B since each level of B occurs with each level of 
A and vice versa. 

One way to approach such an experiment would be to treat each combination of 
factors as though it were a separate factor. We might then use C to represent these 
combined factors, so that 

8.7 

We can then treat this experiment as a one-way ANOVA with C as the single 
treatment or factor with four levels. In this case, C1 would be fresh lard, male rats; 
C2 would be rancid lard, male rats; C3 would be fresh lard, female rats; and C4 would 
be rancid lard, female rats. Our model would then be 

8.8 

Table 8.10 gives the data of Table 7.8 laid out as a one-way ANOV A. The 
analysis proceeds as before and the resulting ANOVA table is shown in Table 8.11 

which shows that the combined treatment factor C, corresponding to sex and lard, 
is highly significant. 

We could now proceed as we did when we were using t tests and examine the 
effect of sex allowing for the freshness of the lard, and so on. However, it is more 

Table 8.10 The weight (in grams) gained by male rats fed on fresh 

lard C1 and on rancid lard C2 , and by female rats fed on fresh lard 

c3 and on rancid lard c4 

171 
172 

172 

108 
89 

69 

Treatment 

153 
109 

160 

85 
64 

82 
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Table 8.11 One-way ANOVA for the data of Table 8.13 for the weight gained 
by male and female rats fed on fresh and on rancid lard with each combination of 
sex and freshness treated as a separate factor 

Source of 
variation 

Among 
Within 

Total 

Sums of Degrees Mean Significance 
squares of freedom square F-ratio level, P 

17 779 3 5926 18.6 0.0006 
2548 8 319 

20327 11 

Table 8.12 The data of Table 8.10 laid out for a two-way 
ANOV A with three repeated measures 

A 1 (fresh lard) A2 (rancid lard) 
171 108 

B1 (male rats) 172 89 
172 69 

153 85 
B2 (female rats) 109 64 

160 82 

convenient to build these comparisons directly into our analysis and this is what 
the two-way (or multi-way) ANOV A does for us. Table 8.12 gives us the data of 
Table 8.10, but this time laid out as for a two-way ANOV A 

Our model is now 

8.9 

where ai indicates the change from the mean value when the lard is fresh or 
rancid, bi indicates the change from the mean when the rats are males or females 
and (ab)ii indicates the effect of the interaction so that (ab)11 , for example, gives the 
effect of fresh lard for male rats after allowing for the overall mean, the average 
effect of sex and the average effect of lard freshness. 

To make the details of Model 8.9 explicit we can calculate each term separately. 
Table 8.13 gives various mean values calculated from the data in Table 8.12. The 
grand mean is 119.5 g so that in Equation 8.9 

m = 119.5 g. 8.10 

The average increase in weight for male rats is 130.2 g so that 

a1 = 130.2- 119.5 = 10.7 g 8.11 

and in the same way 

a2 = 108.8- 119.5 = - 10.7 g. 8.12 
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Table 8.13 Averages calculated from the numbers in Table 8.12. The 
four numbers in the comers are the means of the four sets of three 
numbers in Table 8.12. The numbers in italics are the means of the 
two adjacent numbers (vertically or horizontally) and the number in 
bold is the grand mean of all the data 

Male 
(Sex) 
Female 

Fresh 

171.7 
156.0 

140.7 

(Freshness) 

130.2 

119.5 

108.8 

Rancid 

88.7 
82.8 

77.0 

The average increase in weight when the lard is fresh is 156.0 g so that 

b1 = 156.0-119.5 = 36.7 g 
and similarly 

h2 = 82.8-119.5 =- 36.7 g. 
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8.13 

8.14 

That the two coefficients for the effect of sex and the two coefficients for the effect 
of lard freshness differ only in signs, reminds us that in each case we have only a 
single independent number and hence only 1 degree of freedom for each factor. 

To calculate the interaction term for male rats eating fresh lard we take the average 
weight gain for all the rats (119.5 g), add the additional weight gain for male rats 
(10.7 g), and then add the additional weight gain for fresh lard (36.7 g), to give 166.9 g. 
Then since the average weight gain for male rats eating fresh lard is 171.7 g, the 
interaction term is 

(ab) 11 = 171.7- 166.9 = 4.8 g. 

We can calculate the other three interaction terms in the same way: 

(ab) 12 = - 4.8 g (ab)z 1 = 4.8 g (ab)z2 = - 4.8 g. 

8.15 

8.16 

That the four numbers differ only in their signs shows that we have 1 degree .of 
freedom for the interaction. 

The ANOVA for the data of Table 8.12 is given in Table 8.14. Comparing Table 
8.14 with Table 8.11, we see that the total and residual sums of squares are the same 
in both cases and that the sums of squares for the three 'effects' -sex, lard and 
sex x lard-add up to the sums of squares for the single treatment, 'sex-lard'. In 
other words, the two-way ANOV A partitions the total sums of squares for the 
treatments into contributions from the individual treatments and their interactions. 
In Table 8.14 the effect of sex is not significant at the 5% level, as we found in 
Table 7.10 using the t test. The effect of lard freshness, on the other hand, is highly 
significant and has three stars, as in Table 7.10. Finally, the effect of the interaction 
sex X lard is again not significant in agreement with the t test. In fact, the two ap
proaches are entirely equivalent when we have only two levels for each treatment, 
so that we are comparing means in pairs. (In Table 7.10 the t parameters are 2.07 
for sex, 7.12 for lard freshness and 0.94 for the interaction term. If we square these 
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Table 8.14 Two-way ANOVA for the data of Table 8.12 for the weight gained 
by male and female rats when fed on fresh and rancid lard 

Source of Sums of Degrees Mean Significance 
variation squares of freedom square F-ratio level, P 

Sex I365 I 1365 4.29 0.072 ns 

Lard I6133 I I6 133 50.7 O.OOOI 
Sex x Lard 280 I 280 0.88 0.39 ns 

Residual 2548 8 3I8 

Total 20326 11 

numbers we have 4.28, 50.7 and 0.88, which are identical to the corresponding F 
statistics given in Table 8.I4.) When we have more than two levels per treatment, 
the ANOV A assumes that none of them has any effect; if we find a treatment or 
factor that does have a significant effect, we then proceed to examine its various 
levels in pairs to discover reasons for the effect. If we were to start from the t test, 
we would have to build up all possible pairs of effects and would rapidly become 
bogged down in complexity. 

In Table 8.I4 the sum of squares for sex, lard and sex x lard add up to the sum of 
squares for the combined treatment sex-lard (Table 8.12), as we would expect. For 
sex we have two levels, males and females, and we use up I degree of freedom when 
we average over sex leaving us with 2 - I = I degree of freedom for sex. In the 
same way we see that we are left with 2 - I degree of freedom for lard. For the 
interaction, we have (2 - I) = I degree of freedom for sex combined with (2 - I) = I 
degree of freedom for lard, giving us I X I degree of freedom for the interaction. For 
the residual term we have three repeats in each category, giving (3 - I) = 2 degrees 
of freedom for each one. We repeat this 2 x 2 = 4 times for all combinations of sex 
and lard, giving 2 x 4 = 8 degrees of freedom for the residual term. These four 
numbers I, I, I and 8 add up to II and this is the same as the number of degrees 
of freedom for the total sum of squares, which is I2 - I = II. 

We can generalize the argument of the preceding paragraph as follows. Suppose that 
in our experiment treatment A has a levels and treatment B has b levels. The relevant 
numbers of degrees of freedom in a two-way factorial ANOV A would then be those 
given in Table 8.I5. For A we have a levels and after calculating the deviations 
from the mean we are left with (a - I) degrees of freedom. For B we have b levels 
and after calculating the deviations from the mean we are left with (b - I) degrees 
of freedom. For A X B we have a X b levels, but only (a - I) and (b - I) independent 
levels, giving us (a- I) x (b- I) degrees of freedom. Within each group we have 
n levels and calculate I mean, giving us n - I degrees of freedom, but we repeat 
this ab times, giving us ab(n- I) degrees of freedom for the residual sum of squares. 
For the total we take the total number of points abn and subtract I, giving us 
abn - I degrees of freedom. 
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Table 8.15 Decomposition of the number of degrees of freedom in 
a two-way factorial ANOV A 

Treatment No. of levels d.f 

A a a-1 
B b b-1 
AxB ab (a -1)(b -1) 

Residual n ab(n-1) 

Total abn abn -1 

8.4.2 Multiple comparisons 
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Making several comparisons brings us back to the discussion of multiple comparisons 
in section 7.4. If we had decided in advance that we wanted to examine only the 
effect of the lard, then comparing the F ratios in Table 8.14 with the appropriate 
critical values is correct. However, if we want to test all three F ratios to see if any 
of them are significant at a significance level of rx, we should use a significance level 
of rx/3. The effects of sex and lard are, of course, still not significant. To decide if 
the effect of lard is significant at the 0.1% level, we need to use a significance level 
of 0.03% and in this case we see that it still has three stars since the significance level 
corresponding to the observed F ratio is 0.01%. 

8.4.3 Interactions 

The roles of the two levels sex and lard in our ANOV A are clear: they tell us if the 
amount of lard consumed depends on the sex of the rats (after allowing for freshness) 
or the freshness of the lard (after allowing for sex). We have already discussed the 
interaction term in Chapter 7 (Table 7.10), where we calculated 

(F- Rim)- (F- Rlf), 8.17 

that is the difference between the effect of lard freshness on the consumption 
by male rats and the effect of lard freshness on the consumption by female rats. 
We also calculated 

(m- fiF)- (m- fiR), 8.18 

which is the difference between the effect of the sex of the rats on the consumption 
of fresh lard and the effect of the sex of the rats on the consumption of rancid lard. 
We found that the interaction term was the same whichever way we calculated it. 

To understand the interaction clearly, consider the hypothetical results given sche
matically in Fig. 8.3. In Fig. 8.3a the effect of changing A from level A1 to A2 is the 
same for both levels of B, and the effect of changing B from level B1 to B2 is the same 
for both levels of A. The effect of changing A is therefore independent of the level 
of B, and vice versa, and there is no interaction. In Fig. 8.3b, on the other hand, changing 
A from level A1 to A 2 increases the response if we are at level B1 and decreases the 



140 Analysis of variance 

2.5 (a) 
2.5 

(b) 

2.0 ~(A,IB21 2.0 
Q) Q) (A,,B,) X (A,IB1) 
::::1 

~(A,IB1i 
::::1 

-ro 1.5 -ro 1.5 
> > 
c c 
C'IJ 1.0 (A11Bz) C'IJ 1.0 
Q) Q) 

~ ~ (A1iB1) (A2IB2) 

0.5 (A1IB1) 0.5 

0.0 0.0 

2.5 
(c) 

2.5 
(d) 

(AziBz} 

2.0 

(A1IB2)/ 

(A2IB2) 
2.0 

Q) 
Q) 

::::1 ::::1 

-ro 1.5 -ro 1.5 
> > 
c c 
C'IJ 1.0 C'IJ 1.0 /(A2IB11 Q) (A1IB1)~ 

Q) 

~ ~ (A11Bz} 

0.5 0.5 
(AziB1) 

(A1IB1) 

0.0 0.0 

Figure 8.3 Schematic diagram of the means in a two-factor ANOV A. (A1 1 B1 }, for example, 

gives the mean value under level 1 of A and level 1 of B. In (a) there is a significant effect for 
A and B but no interaction A x B. In (b) neither treatment is significant but there is a significant 

interaction A x B. In (c) treatment B and the interaction are significant but treatment A is not. 

In (d) both treatments and the interaction are significant. 

response if we are at B2 , so that the effect of a change in A depends on the level 
of B and there is a significant interaction. Similarly, changing B from level B1 to B2 

increases the response if we are at level A1 and decreases the response if we are at 
A2 , so that the interaction is significant. Note, however, that the effect of changing 
A averaged over the two levels of B is zero and the effect of B averaged over the 
two levels of A is zero so that neither factor is significant when averaged over the 
levels of the other factor. Fig. 8.3c shows a situation in which B and the interaction 
are significant while A is not, while Fig. 8.3d shows a situation in which both treat
ments and their interaction are significant. 

Figure 8.4 is a plot of the mean weight gained by the male and female rats eating 
fresh and rancid lard and we can see that there is no significant interaction because 
the two lines are almost parallel. 

8.4.4 Soporific drugs 

In section 8.16 we analysed Student's data on the effects of two soporific drug on 
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Figure 8.4 Means plot for the weight gains given in Table 8.14. 

In fact, only ten patients were used, with each patient being given both drugs and 
also no drug. Since each patient was given both drugs, we can treat the patients as one 

factor and the drugs as a second in a factorial design. The patients are still a random 

factor but they are now crossed with the drugs not nested under drugs. Since we 
are not interested in the response of individual patients who have been randomly 
selected from the overall population, the patients are a Model II factor. We are, 
however, interested in the effect of each drug separately, and so the drugs are a Model 
I factor. The model is therefore a mixed-model, two-way ANOV A without replication. 
The ten patients account for 9 degrees of freedom and the two treatments account 

for 1 degree of freedom. If we tried to calculate the interaction term, this would 
have 9 x 1 degrees of freedom, giving us a total of 19, but since we have only 19 

degrees of freedom at our disposal, we would have none left for the error term. In 
other words, we can carry out an ANOV A on a two-factor model without replication, 
but only if we assume that the interaction term is zero so that we can ignore it. 

Carrying out a factorial ANOV A on Student's data with the two factors crossed, we 
obtain the results shown in Table 8.16. By treating patients as a separate factor, the 
analysis is equivalent to a paired t test. In Table 7.2 we obtained a value oft= 4.06, 

which is equal to the square root of 16.5, the value of Fin Table 8.16, so that the 
two-way ANOV A without replication is equivalent to the paired t test. By using 
the fact that each treatment is applied to the same patients twice, we are able to 
show that the effects of the two drugs are significantly different, whereas in our 
earlier ANOVA (Table 8.6), in which we did not use this knowledge, the two tests 
were not significantly different. Of course, if we had used 20 patients and had given 
each of them one treatment only, the analysis in Table 8.6 would have been the best 

that we could do. For the two-way ANOV A our model is 

8.19 
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Table 8.16 ANOVA table for the two drug treatments in Table 7.2. si is the internal standard 

deviation and sP the pooled standard deviation 

Source of Sums of Degrees Mean Significance 
variation squares of freedom square F-ratio level, P 

Drugs 12.5 I 12.5 16.5 0.0028 
Patients 58.1 9 6.46 8.53 0.0019 
Residual 6.8 9 0.756 
Total 77.4 19 

Drug Mean si sP 95% C.L. 

Hyoscyamine 0.75 0.57 0.27 -0.13-1.37 
Hyoscine 2.33 0.63 0.27 1.71-2.95 

where m is the grand mean, di is the change from the mean due to drug i, Pi is the 

change from the mean due to patient j and eii is the residual for patient jon drug i. 

It is worth comparing Table 8.6, in which we simply treated the patients as replicates, 

with Table 8.16, in which we treat the patients as a second factor. The 'treatment' 

sum of squares in Table 8.16 is identical to the 'between-groups' sum of squares in 

Table 8.6. However, the 'within-group' sum of squares in Table 8.6 is now 

partitioned into a 'patient' sum of squares and a 'residual' sum of squares. Because 

we are able to separate these out and compare the treatment effect with the residuals 

after allowing for the effect of the patients, the denominator in our F test is reduced 

and the test of our null hypothesis is made more sensitive. The means in Table 8.16 

are exactly the same as in Table 8.6. However, the pooled standard deviation in 

Table 8.16 (0.27) is less than the value of the pooled standard deviation in Table 

8.6 (0.60) as it is now calculated after allowing for the variation among patients. The 

reduction in the pooled standard deviation increases the sensitivity of the comparison. 

8.4.5 Latin squares 

We would always like to make measurements for all possible combinations of the 

levels of each factor and with several repeats of each measurement to that we can 

assess the effect of each factor as well as all the interactions among the factors. 

Unfortunately this is not always possible. We have already seen in our study of the 

polio vaccine that we cannot give the vaccine and the placebo to each child and we 

will return to this again in the next section. Consider, however, the following 

problem. Tsetse flies (Glossina spp.) are the vectors of trypanosome diseases called 

nagana in cattle and sleeping sickness in people. Trypanosomiasis is widely regarded 

as one of the most debilitating diseases in Africa and where tsetse flies are present 

livestock are largely absent. This makes it impossible to keep livestock in much of 

the potentially most productive areas of Africa. The lack of livestock results in a lack 

of protein, milk, tractive power, fertilizer and leather goods. Recent work, however, 

has shown that testse fly populations can be controlled effectively using traps 
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Day 3 

Figure 8.5 Three traps, b- biconical, e- epsilon and n- Nguruman, are rotated around three 
different sites on three different days in a Latin square experiment. 

(Dransfield et a/., I99I). The development of traps that are effective against tsetse 
flies has involved testing many different trap shapes, colours and attractive odours. 
How can we best compare different traps in field conditions? We know that the number 
of flies that we catch in a trap varies significantly from day to day, for reasons 
that are still not understood. We also know that the number of flies that we catch 
in a trap depends on the site in which we put the trap, probably because of variations 
in the visibility and degree of shading at different sites. Now we can put trap I into 
site I on day I but we cannot then put another trap into the same site on the same 
day, and we are faced with the problem that we cannot carry out measurements on 
all possible combinations of treatments. In this situation a very useful design is the 
Latin square, illustrated in Fig. 8.5. We see that we can rotate the traps between sites 
on successive days so that each trap occupies each site over the 3 days. (Note that 
the square refers to the design and not to the actual layout although the layout 
could also be a square.) 

Dransfield and Brightwell (pers. comm.) carried out an experiment to compare the 
effectiveness of three traps for female Glossina pallidipes. The first and oldest trap is 
called the biconical because it is made out of two cloth cones joined at their bases 
(Challier eta/., I977). A more recently developed trap is the Nguruman trap (Brightwell 
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Table 8.17 Numbers of tsetse flies caught in biconical, b, epsilon, e, 
and Nguruman, n, traps. Three Latin squares were used. Within each 
square there were three sites and measurements were taken over 3 
days so that all three traps are placed once in each site and on each 
day all three traps are found in one of the three sites for that square 

Day 
Site 1 2 3 

1 n393 e230 b15B 
2 b 58 n146 e392 
3 e159 b 60 n392 

4 e 97 b 22 n252 
5 n443 e119 b 81 
6 b 33 n166 e162 

7 b 12 n103 e 38 
8 e 55 b 30 n216 
9 n 89 e132 b 44 

et al., 1991) and this consists of a triangular prism made of cloth with a netting cone 
on the top. The third trap is the epsilon trap which is similar to the Nguruman trap 
with the cone recessed into the prism. All three traps were baited with acetone, cow 
urine and octenol, which are known to be attractive to tsetse flies. The results of 
the experiment are recorded in Table 8.17. 

The Latin square is an incomplete factorial design with all factors crossed. Before we 
carry out the analysis of variance we need to consider the model that we wish to apply 
to our data. We assume that the effects of sites, traps and days are multiplicative 
so that if site 2 is twice as good as site I, if there are twice as many flies present 
on day 2 as there are on day I, and if trap 2 is twice as good as trap I, then trap 2 
on day 2 in site 2 should catch 2 x 2 x 2 = 8 times as many flies as trap 1 in site 1 on 
day 1. However, analysis of variance assumes that the effects are additive. We 
therefore take the logarithm of the trap catches since the logarithm of a product is 
the sum of the logarithms and multiplicative effects become additive after transforming 
the catches to logarithms. Our model is therefore 

8.20 

where si refers to the three sites, ti to the three traps and dk to the three days. 
We can now analyse each square separately and the ANOVA table for the first 

square (sites 1, 2 and 3 in Table 8.17) is given in Table 8.I8 from which we see that 
the epsilon trap catches more flies than the biconical trap and the Nguruman trap 
catches more flies that the epsilon trap. However, the only significant difference is 
between the biconical trap and the Nguruman trap. If we repeat the exercise for the 
other squares, then in square 2 the biconical trap differs significantly from both the 
Nguruman and the epsilon while in square 3 none of the traps differs significantly 
from any other. The reason for this is that in square 3 fewer flies were caught than 
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Table 8.18 Analysis of variance for the first Latin square given in Table 8.17. The catches 
were transformed by calculating the logarithm of the catch (base 10) before carrying out the 
analysis of variance. 'Lower' and 'upper' give 95% confidence limits for the transformed mean 
catches. The means are compared using Tukey's HSD at the 95% level 

Source of Sums of Degrees Mean Significance 
variation squares of freedom square F-ratio level, P 

Site 0.2091 2 0.1045 21.4 0.040 
Trap 0.4364 2 0.2182 44.7 0.022 
Day 0.0594 2 0.0297 6.08 0.141 ns 

Residual 0.0098 2 0.0049 
Total 0.7147 8 

Pooled standard error = 0.0403 

Trap Lower Mean Upper 

Biconical 1.740 1.913 2.087 a 
Epsilon 2.050 2.223 2.397 ab 
Nguruman 2.277 2.451 2.624 b 

in the other two squares. Note that we use Tukey's HSD test since we are interested 
in comparing all three traps. 

The problem with a single 3 x 3 Latin square is that we have 2 degrees of freedom 
for each of our three factors but only 8 degrees of freedom altogether so that we 
are left with only 2 degrees of freedom for the error term. We would like to combine 
the three squares into one experiment. We have to be careful as to how we do this. 
In this particular experiment the three squares were run on the same three days so that 
we can treat the three squares as one Latin rectangle with the three traps spread 
over 3 days and nine sites. 

Table 8.19 gives the analysis of variance for the data of Table 8.17 treated as a 
Latin rectangle. By combining the three squares, we have 14 degrees of freedom for 
the residual. The site effect and the trap effect are both significant at the 0.1% level 
and get three stars while the day effect is not quite significant at the 5% level. Further
more, we now see that all three traps differ significantly, with the epsilon trap signi
ficantly better than the biconical trap and the Nguruman trap significantly better than 
the epsilon. It is worth noting that the pooled standard error in the Latin rectangle, 
0.0491, is slightly greater than the pooled standard error for square 1. However, to 
calculate 95% confidence limits for the individual squares where we have 2 degrees 
of freedom for the error term, we multiply by t2 (0.975) = 4.30, while for the Latin 
rectangle where we have 14 degrees of freedom for the error term we multiply by 
t14 (0.975) = 2.15, and this makes the test on the combined data significantly more 
sensitive than the tests for each of the individual squares. If the number of degrees 
of freedom remaining for the error term is very small, all tests are going to be rather 
insensitive. 

Since the biconical trap is well established, it is often used as a standard against 
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Table 8.19 Analysis of variance for the data in Table 8.17 treated as a Latin rectangle. The 
catches were transformed by calculating the logarithm (base 10) of the catch before carrying 
out the analysis of variance. 'Lower' and 'upper' give 95% confidence limits for the transformed 
mean catches. The means are compared using Turkey's HSD at the 95% level 

Source of Sums of Degrees Mean Significance 
variation squares of freedom square F ratio level, P 

Site 1.394 8 0.174 7.76 0.0005 
Trap 2.165 2 1.082 48.2 0.0000 
Day 0.158 2 0.079 3.52 0.058 ns 
Residual 0.314 14 0.0224 
Total 4.031 26 

Pooled standard error= 0.0499 

Trap Lower Mean Upper 

Biconical 1.527 1.634 1.742 a 
Epsilon 1.935 2.042 2.150 b 
Nguruman 2.217 2.324 2.431 c 

which to compare other traps and we can calculate an index of increase by detrans
forming the means and then calculating the ratio of the catch in each trap to the 
catch in the biconical trap and this gives us the result in Table 8.20. 

To determine error limits for the indices of increase, we calculate errors for the 
differences between the transformed mean catches as the square root of the sums of the 
squares of the errors for each pair of traps. We then add the error term to the dif
ference between the transformed mean and detransform the result to obtain the upper 
limit and subtract the error term and proceed in the same way to obtain the lower 
limit. Although the errors in the differences of the transformed means are symmetricaL 
the errors in the detransformed means are not, as we can see in Table 8.20. We see 
then that the epsilon trap catches, on average, 2.5 times as many flies as the biconical 
with 95% confidence limits from 1.5 to 4.2, while the Nguruman trap catches, on 
average, 4.8 times as many flies as the biconical with 95% confidence limits ranging 
from 2.9 to 7.9. 

Table 8.20 Indices of increase for the epsilon and Nguruman traps 
over the biconical trap with 95% confidence limits 

Lower Mean Upper 

Biconical • 1.00 • 
Epsilon 1.51 2.51 4.16 
Nguruman 2.88 4.78 7.91 
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Figure 8.6 Schematic illustration of the dependence of the calcium concentration on the plants, 
the leaves and the individual calcium determinations. The data are in Table 8.21. 

8.4.6 Nested designs 

We have seen that in a factorial design we make measurements for all possible combina
tions of the levels of each factor. A Latin square design is an incomplete factorial 
design that we use when we cannot set up all possible combinations of the levels of 
each factor. Another important class of designs arises when factors are nested within 
one another. In the analysis of Student's data on soporific drugs, we noted that if we 
had 20 different patients we would have performed either an unpaired t test or a 
single-factor ANOV A; the patients would have been nested within the drugs. In the 
analysis of scutum widths of tick larvae on rabbits the ticks were nested within rabbits 
and we were able to estimate the added variance component due to rabbits. 

Consider the following example of a nested design, discussed in detail by Snedecor 
and Cochran (1989, p. 247), in which the calcium concentration in the leaves of turnip 
plants was measured as a percentage of the dry weight of the leaves. Four turnip 
plants were chosen; from each plant three leaves were chosen; from each leaf two 
samples were taken and used to measure the concentration of calcium. Clearly, we 
might expect the calcium concentration to vary between plants, the concentration 
within each plant to vary between leaves and the concentration within each leaf to 
vary between the two measurements of the calcium concentration. This hierarchical 
structure is illustrated in Fig. 8.6 which shows the data given in Table 8.21. 

The various factors are nested one within the other, because the same leaf cannot 
be on more than one plant and each sample cannot be from more than one leaf. The 
model for this design is written as follows 

8.21 
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Table 8.21 Four plants were chosen (column!). From each of these three leaves were chosen 
(column 2). From each of these two samples were taken (column 3) and determinations were 
made of the calcium concentration in parts per million (column 4). The sums of squares (column 5) 

and the mean values (column 6) of the determinations in each leaf were calculated. The mean 
values in column 6 were used to determine the sums of squares (column 7) and the mean values 
(column 8) for the leaves within plants. The mean values in column 8 were use to determine 
the sums of squares within plants (column 9) 

1 2 3 4 5 6 7 8 9 
p L 5 Ca% 55(5 in L) (5 in L) 55(L in P) (Lin P) 55(P) 

1 3.28 
1 0.0180 3.19 

2 3.10 

1 3.52 
1 2 0.0008 3.50 0.2180 3.18 

2 3.48 

1 2.88 
3 0.0032 2.84 

2 2.80 

1 2.46 
1 0.0002 2.45 

2 2.44 

2 2 
1 1.87 

0.0012 1.90 0.1542 2.18 
2 1.92 

1 2.19 
3 0.0000 2.19 

2 2.19 

1 2.77 
0.0060 1.2601 1 2.72 

2 2.66 

1 3.74 
3 2 

2 3.44 
0.0450 3.59 0.6248 2.95 

1 2.55 
3 0.0000 2.55 

2 2.55 

1 3.78 
1 

2 3.87 
0.0041 3.83 

1 4.07 
4 2 

2 4.12 
0.0012 4.10 0.3181 3.74 

1 3.31 
3 0.0000 3.31 

2 3.31 

where from each plant Pi three leaves were chosen so that Iii is leaf j in plant i and 

from each leaf two samples were taken and used to measure the concentration of 

calcium so that siik is kth determination of concentration of calcium in leaf j from 
plant i. 

We can now calculate the sums of squares for samples in leaves, leaves in plants 
and plants. For the samples in leaves we simply add up the individual sums of squares 

given in column 5. For the leaves in plants we add up the sums of squares in· column 
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Table 8.22 Sums of squares and mean squares for the data given in 
Table 8.23 

Source 

Plants 
Leaves in plants 
Samples in leaves 

55 

7.5603 
2.6302 
0.0799 

d.f. 

3 
8 

12 

MS 

2.5201 
0.3288 
0.0067 
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7, but since each mean is the mean of two determinations, we multiply by two to find 
the total sum of squares for the leaves in plants. For the plants we take the sum of 
squares in column 9 and since each mean is the mean of six determinations, we 
multiply by six to find the total sum of squares for the plants. The results of these 
calculations are given in Table 8.22. To determine the mean squares, we now divide 
each sum of squares by the number of degrees of freedom. Since there are four 
plants, there are 3 degrees of freedom for the plants. Since there are three leaves 
within each of four plants, there are (3 - 1) x 4 = 8 degrees of freedom for the 
leaves in plants. Since there are two samples within each of 3 x 4 plants, there 
are (2 - 1) x 12 = 12 degrees of freedom for the samples in leaves. 

Now we need to think carefully about just what each mean square estimates: The 
mean square for samples in leaves allows for the effects of the plants and the leaves, 
since each term is calculated after allowing for their effects, and gives us an estimate 
of a;, the population variance of the samples in each leaf. If neither the plants nor 
the leaves had any effect on the measurements, the mean squares for the leaves in 
plants would also give us an estimate of a;. Suppose, however, that the population 
variance of the calcium concentration among the leaves is af. Then we add to the 
mean square for the leaves in plants' n5 ai where we have multiplied by n5 the number 
of samples within each leaf. The mean square for leaves in plants is therefore an 
estimate of a;+ n5 af (c.f. section 8.1.3). The variation among plants includes the 
variation among leaves so that we start with a; + n.af, Now if the population 
variance of the calcium concentration among the plants is a~ we must add n.n1 a~ 
where we multiply by n5 n1 the number of samples within each plant. These results 
are summarized in Table 8.23. To test the null hypothesis that the plants have no 
effect, that is a~ = 0, we use the mean square for leaves within plants as our error 
term. To test the null hypothesis that the leaves have no effect, that is af = 0, we 
use the mean square for samples within leaves as our error term. From Table 8.23 
we see that the variation due to the plants is significant at the 5% level while the 
variation due to the leaves is significant at the 0.1% level. 

This experiment was performed to determine the overall variation in the amount 
of calcium in turnip plants. We want to know how much of the variation is due to 
plants, leaves and samples taken from each leaf. The difference between the mean 
squares for plants and for leaves in plants divided by n5 n1 gives us 0.365 as our 
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Table 8.23 Analysis of variance table for the determination of calcium within leaves 
on turnip plants. The F ratio for plants is calculated as 2.5201/0.3288 = 7.66 with 3 
and 8 degrees of freedom. The F ratio for leaves is calculated as 0.3288/0.0067 = 49 
with 8 and 12 degrees of freedom 

Source d.f MS Parameters estimated F-ratio 

Plants 3 2.5201 a;+ n.a~ + n.n1 a~ 7.66 
Leaves in plants 8 0.3288 a;+ n.a~ 49 
Samples in leaves 12 0.0067 a2 

s 

best estimate of a2 • The difference between the mean squares for leaves in plants p 
and samples in leaves divided by n5 gives us 0.161 as our best estimate of ar Finally, 
the mean square for samples gives us our best estimate of a; as 0.0067. The standard 
deviations are then 0.60, 0.40 and 0.08, for plants, leaves and samples, respectively. 
The variation among leaves on a given plant is almost as great as the variation among 
plants, whereas the variation among determinations on a given leaf is much less. 

With a nested design and random factors we are interested in the amount of 
variation within successive levels of the various factors and our analysis is aimed at 
estimating the contribution to the overall variation from the variation at each level. 
This is in contrast to a crossed design with fixed factors where we are interested in 
comparing the different levels of each factor using a multiple range test. It is important 
to remember that for random factors we tacitly assume that their effects are normally 
distributed. 

8.5 SUMMARY 

Most of the variables that we measure have associated uncertainties that are normally 
distributed or can be made so by a well-chosen transformation. Furthemore, if we 
design our experiments carefully, the sum of the squares of the deviations of all of 
our observations from the mean can be decomposed into contributions from each of 
the contributing factors. For these reasons the analysis of variance (which should, 
perhaps, be called the analysis of sums of squares) is central to the statistical analysis 
of experimental data. 

ANOV A allows us to take the results of a complicated experiment with many 
factors, crossed and nested, fixed and random, some interacting with others, and 
identify those that contribute significantly to the overall variation in the data. We 
can then analyse the data further using multiple range tests for fixed factors or the 
added variance components for random factors. The design of our experiments can 
be as complicated as we choose although the analysis of variance will then be 
correspondingly complicated. 

The most complicated experimental design can be expressed as combinations of 
crossed and nested factors. We say that B is nested in A if the levels of factor B 
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differ among the levels of factor A. In Student's data on soporific drugs (section 
8.1.6}, if there had been 20 patients of whom ten received one drug and ten the 
other, the patients receiving the first drug would not have been the same as the 
patients receiving the second drug so that patients would have been nested within 
drugs. We then analyse the data using an unpaired t test or a single-factor ANOV A. 
The turnip data discussed in section 8.4.6 is an example of a purely nested design, with 
determinations nested in leaves, leaves nested in plants. If a factor B is nested within 
a factor A, factor B must be a random factor and we are then interested in using the 
ANOV A to determine the variance due to factor B. 

We say that factor B is crossed with factor A if each level of factor B occurs in 
combination with each level of factor A. In Student's data on soporific drugs (section 
8.4.4}, we actually had ten patients, each of whom received both drugs. Since each 
patient was given each drug, the patients were crossed with the drugs. We were 
then able to analyse the data using a paired t test or a two-factor ANOV A. Although 
factor B was now crossed with factor A, factor B (patients) was still a random factor 
while factor A (drugs) was a fixed factor. If we were interested only in these ten 
people and never had any intention of giving the drug to anyone else, the patients 
would also have been a fixed factor. We are, of course, testing the drugs on these 
ten patients in the hope that if the drugs are effective we will then be able to give 
them to other patients. Our ten patients are therefore a random sample from a larger 
population of patients. The data on the weight gained by male and female rats fed 
on fresh and on rancid lard is another example of a purely crossed design. In this 
case, sex and lard freshness are both fixed factors. 

The analysis of our data depends on whether the factors are ne!lted or crossed, 
random or fixed. Especially in agricultural trials, field crops and treatments may be 
divided up in quite complicated ways and one needs to think carefully about the analysis. 
As always, the best defence against error and confusion is to think carefully about 
the biology and to think about the relationship between the particular experiment 
that you have performed and the broader context in which you hope to apply your 
results. 

In this chapter our response variables have generally been quantitative (hours of 
sleep, number of ticks, weight gained}, while our predictor variables have been quali
tative (drugs, rabbits, sex and lard freshness). In Chapter 7 we touched on non-parametric 
tests, in the analysis of data for which the response variables are also qualitative. 
There is no reason to restrict ourselves to qualitative predictor factors, however, and 
in the next chapter we will consider the analysis of data in which both the response 
and the predictor variables are measured on quantitative scales. 

8.6 EXERCISES 

1. In a single factor ANOV A for an experiment on four rabbits, ten ticks were removed 
from each rabbit and weighed. We are interested in the variation between the average 
weights of the ticks on the four rabbits. How many degrees of freedom would you 
use to calculate the within-treatments sums of squares? How many degrees of freedom 
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Table 8.25 
and 8.24 

Source of 
variation 

Sex 
Trap 
Day 
Site 
Sex x Trap 
Sex x Day 
Sex X Site 
Residual 

Analysis of variance 

Table 8.24 The number of male G. pallidipes tsetse flies caught by a 
biconicaL b, an epsilon, e, and a Nguruman, n, trap. These data were 
collected as part of the experiment described in section 8.4.5 

Day 
Site 2 3 

1 n675 e 192 b292 
2 b193 n114 e 245 

3 e 395 b109 n507 

4 e 132 b 39 n214 
5 n506 e 94 b191 

6 b 89 n105 e 210 

7 b 25 n 46 e 43 

8 e 34 b 18 n160 

9 n 49 e 40 b 55 

Analysis of variance table for the combined Latin rectangles given in Tables 8.17 

Sums of Degrees Mean Significance 
squares of freedom square F ratio level, P 

0.050 1 0.050 2.31 0.14 
2.465 2 1.232 56.3 0.0000 
0.698 2 0.349 15.9 0.0000 
4.116 8 0.514 23.48 0.0000 
0.270 2 0.135 3.19 0.0060 
0.226 2 0.113 6.18 0.0122 
0.342 8 0.043 5.17 0.0912 
0.613 28 0.218 1.95 

would you use to calculate the beween-treatments sums of squares? How many 
degrees of freedom would there be in the total sums of squares? 

2. Using the data in Table 8.16 estimate the added variance component and hence 
the population standard deviation in the amount of sleep gained due to the variability 
among patients. 

3. How many degrees of freedom are there for each factor and for the error term 
in a 4 X 4 Latin square? How many measurements would you make? How many 
degrees of freedom are there for each factor and the error term in a 4 X 4 factorial 
experiment? How many measurements would you make? 



Exercises 153 

4. Use a series ofF tests to decide if any of the standard deviations given in Table 
8.7 differ significantly. 

5. The data for male flies given in Table 8.24 were collected at the same time as 
the data for female flies given in Table 8.17. Using a computer carry out an analysis 
of variance treating the three squares as one Latin rectangle. 

6. The data for the number of female and male flies caught by the three traps given 
in Tables 8.19 and 8.24 can be combined into a single table with sex as an additional 
factor. Table 8.25 gives the results of the ANOVA on the combined data. Interpret 
the significance of the interactions. 
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Regression 

Nature only uses the longest threads to weave her patterns, so each small piece of her 
fabric reveals the organization of the entire tapestry. 

R. Feynman (1980) 

In the previous chapter we used one or more independent variables (drugs, rabbits, 
lard freshness) to explain the variation in a dependent variable (hours of sleep, scutum 

width of larvae, weight gained by rats). When the independent variables are cate

gorical, the analysis of variance provides a formal structure that enables us to assess 

the contribution that each of them makes to the variation in the dependent variable. 
Consider, however, the control of armyworm using Bacillus thuringiensis (B.t.) discussed 

in section 1.1.4. Brownbridge (1988) was concerned to determine the biocidal effect 
of B.t. on armyworms. In his experiments, the results of which are given in Table 9.1, 

the control areas were not sprayed, while 0.5, 1.0 and 2.0% B.t. suspended in water 
was applied for the three treatments. Estimates were made of the number of armyworms 
surviving under each treatment on five successive days. 

We could analyse these data using a two-factor ANOV A with days and treatments 
as the factors and our model would be 

9.1 

where ai accounts for the effect of the ith treatment and bi for the effect of the jth 

day on the number of armyworms. We would then find that the average number of 

armyworms declined over time under all three treatments and that fewer armyworms 
survive under treatment C than under the control, for example. 

Let us try a different approach. We really want to know if the number of armyworms 

declines at different rates under different treatments. We see from Fig. 9.1 that the 
logarithm of the number of armyworms decreases more or less linearly with time in 

all four cases. The equation for a straight line is y = a + bx and this suggests a 
model of the form 

9.2 

where a is the intercept on the ln(n) axis, b is the slope of the line, ti is the time at 

which the ith observation was made and ei is the residual term that gives us the 
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Table 9.1 The number of armyworms counted on each of five successive days under each 
of four treatments. Cont. is the unsprayed control sample, A, B and C are the areas sprayed 
with 0.5%, 1.0% and 2.0% Bacillus thuringiensis suspended in water, respectively. The last four 
columns give the natural logarithms of the numbers of armyworms 

Day Cont. A B c /n(Cont.) /n(A) /n(B) ln(C) 

0 497 320 294 295 6.209 5.768 5.684 5.687 
1 463 203 213 93 6.138 5.313 5.361 4.533 
2 506 155 118 33 6.227 5.043 4.771 3.497 

3 487 125 124 12 6.188 4.828 4.820 2.485 
4 480 101 111 4 6.174 4.615 4.710 1.386 

deviation from the line for the ith observation. (For the moment we will apply 
Equation 9.2 separately to each treatment.) 

The model given in Equation 9.2 is attractive for several reasons. If we fit separate 
lines to the data for each treatment, then in each case we have 5 degrees of freedom 
and lose 2 for the model (the estimates of the slope and the intercept) leaving us with 
3 degrees of freedom for the error term. We can then compare our estimates of the 
slopes to see if the various treatments differ in their effect on the armyworms. Once 
we have found values of a and b that give us the best fit to each set of data, we can 
then choose any value fort and use Equation 9.2 to calculate the corresponding value 
of ln(n). The problem is to find values of a and b, the coefficients in the fit and this 
is what regression does for us. 

Before we find out how to determine the values of a and b, let us ask why the 
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Figure 9.1 The natural logarithms of the numbers of armyworms plotted against time. Under 
the control no application of the biocide was made while the three treatments A, B and C 
were made with 0.5, 1.0 and 2.0% B.t suspended in water, respectively. 



156 Regression 

data fall on a straight line when the logarithms of the numbers are plotted against 
time. In the experiment on armyworms, we might expect the same proportion of 
those surviving to die on each successive day. To express this idea formally, we write 

dN(t)ldt = rN(t), 9.3 

where dN!dt is the rate of change of N per unit time and the proportionality 
constant r gives the growth or decay rate of the population. (For readers unfamiliar 
with calculus, Equation 9.3 says that if we take a very small interval of time, dt, then 
dN, the change in the number of armyworms in this small interval of time, will also 
be very small. If we divide the one small number by the other, their ratio, which 
gives the number dying per unit time, is proportional to N, the number present, and 
the proportionality constant is r. Learning calculus enables you to derive Equation 
9.4 from Equation 9.3.) 

Integrating Equation 9.3 gives 

N(t) = N(O)ert, 9.4 

where N(t) is the number of armyworms at time t, N(O) is the number at t = 0, 

and r is the rate of increase or decrease, that is. the fractional change in numbers per 
unit time. If r < 0, Equation 9.4 describes an exponential decline, if r > 0, an exponential 
growth. (For a discussion of the dynamics of single populations, see May, 1981.) Taking 
logarithms of both sides of Equation 9.4, we have 

ln[N(t)] = ln[N(O)] + rt, 9.5 

so that if we plot the logarithm of the numbers sampled on each day against time, 
we expect the numbers to lie on a straight line as they do in Figure 9.1. The slope of 
the line gives the mortality rate and the intercept on the vertical axis gives the number 
originally present so that both have a direct biological interpretation. 

The word 'regression' has an odd etymology. In 1889 Francis Galton formulated 
his 'law of universal regression' (Galton, 1889), which stated that 'each peculiarity in 
a man is shared by his kinsman, but on the average in less degree'. To illustrate this, 
Figure 9.2 shows a plot of the heights of sons against the heights of their fathers 
from records of more than a thousand families collected by Pearson and Lee (1903). 

The equation of the line shown in Fig. 9.2 is 

y = 37.75 + 0.457x. 9.6 

The average height of the fathers is 67.0 inches. Using Equation 9.6 to calculate 
the corresponding height of the sons gives 68.4 inches, so that on average the sons 
were 1.4 inches taller than their fathers. However, we can use Equation 9.6 to show 
that a father who is 6 inches above the average height (for fathers) produces, on 
average, a son who is only 2.7 inches above average height (for sons) and a father 
who is 6 inches below the average height produces, on average, a son who is only 
2.7 inches below the average height (for sons). Galton therefore argued that there 
was a 'regression' or 'going back' towards the average. Today we use the word 'regres
sion' to mean fifting a line to a plot of one variable against another; the use of the 
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Figure 9.2 Plot of the heights of sons against the heights of their fathers from 1078 families. 
Each point is the average height of all the sons whose fathers heights are 59, 60, 61. .... inches. 

word regression no longer implies Galton's law. (For a discussion of the genetics of 

inheritance based on Galton's data, see Roughgarden, 1979, p. 135.) 

Once we have decided on the line that gives the best fit to a set of data, we can 

interpolate the data and use the fitted line to estimate values of the dependent 
variable (son's height in Fig. 9.2) for any value of the independent variable (father's 

height in Fig. 9.2). We can also extrapolate the fitted line beyond the extremes of 

the data and make the prediction that a father who is 78 inches tall is likely to 

produce sons who are 7 4 inches talL even though the tallest father whose height 
was actually measured was only 75 inches. 

9.1 DEFINING THE FIT 

When we carry out a regression we want to find the line that gives us the best fit 
to our data, but we cannot do this until we decide what we mean by 'best'. We have 

already seen in section 4.1 that the location of a distribution can be defined in terms 

of the mean, the median or the mode, and which one is 'best' depends on what we 

intend to do with our data. The mean has certain rather attractive properties, in parti

cular, that it is the number about which the sum of the squares of the residual deviations 

is a minimum. (We can also show that if the numbers come from a normal distribution 

whose true mean is p,, then the sample mean m is the estimate of f.l that has the 

smallest variance.) 
Since the mean has this rather desirable property, it makes sense to try a similar 

approach in regression and define the 'best fit' as the line that minimizes the sum of 

the squares of the residual deviations from the fit. Fig. 9.3 shows a line drawn through 

four points. For each point xi we have the observed value of y, Yi• and the value of 
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Figure 9.3 A straight line has been drawn through four points. Each residual e; is the difference 
between the observed value of the dependent variable and the value read from the fitted line. 
The best fit line minimizes the sum of the squares of the residuals. a is the intercept on the 
y axis when x is zero, b is the slope of the line. 

y, read from the line, which we will call Yi. The difference between these two values 
of y is the residual from the fit, which we will call ei, so that 

9.7 

Since Yi is the value of y read from the fitted curve, we can write 

9.8 

We now want to find the values of a and b that minimize the sums of squares of the 
residuals, L,e~, and it is straightforward to show (Freund, 1972, p. 455) (with the aid 
of calculus) that these are 

~y~~-~xy~x 
a=------

n~~-(~x)2 

b = n~xy - ~x~y 

n~~-(~x)2 

9.9 

9.10 

(I have dropped the subscript i from each x andy in Equations 9.9 and 9.10 to make 
them easier to write; if you wish, you may put the subscripts in.) The derivation 
of Equations 9.9 and 9.10 assumes that the only errors are in y and that the errors 
in x are zero or at least negligibly small. The derivation also assumes that all of the ei 
are normally distributed with mean zero and a constant variance. 

We can now carry out the regression of the number of armyworms against time 
under treatment C. Using Equations 9.9 and 9.10, the logarithm of the number of army-
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worms surviving t hours after applying the treatment is 

ln[N(t)] = 5.647- 1.065t. 9.11 

The best estimate of the number of larvae on day 0 is e5·647 = 284 and the larvae 
are dying at a rate of 1.065/24 = 0.044, or 4.4%, per hour. 

9.2 ANOVA 

When we carry out a regression, we want not only to find the best-fit line but also 
to know how good the fit is. There are several ways to do this. One way is to carry 
out an ANOV A on the fitted line. Just as before, we begin by subtracting the mean 
since we are usually concerned only with deviations from the mean and our null 
hypothesis is that the 'true' values of y are constant. In Brownbridge's study of the 
African armyworm, under treatment C we start by calculating the total sums of 
squares about the mean, SST, and then break this down into a sum of squares due 
to the fit, SSF, and a sum of squares due to the residuals from the fit, SSR. 

Using Yi for the measured points, Yi for the corresponding points on the fitted 
line, after subtracting the mean, and ei for the residuals, we have 

9.12 

Squaring Equation 9.12 and summing over i 

"f.y; = r.g; + 2"f.yiei + r.e;. 9.13 

The left-hand side is the total sum of squares, S~, the first term on· the right-hand 
side is the sum of squares from the fit, SSF, and the last term on the right-hand side 
is the sum of squares due to the residuals, SSR. In the Appendix (section 9.9.1) I 
show that the middle term on the right-hand side of Equation 9.13 is zero, but since 
the residuals ei are as likely to be positive as negative, it seems reasonable that the 
sum over yiei should be zero, and Equation 9.13 may be written 

9.14 

Since we have calculated S~ as the sum of squares about the mean, we have lost 1 

degree of freedom, and 

d.f-T = n -1. 9.15 

We have then used up one more degree of freedom in setting the slope of the line, 
so that for the fitted line we have 

d.f.F = 1, 9.16 

leaving n - 2 degrees of freedom for the residuals, so that 

d.f.R = n- 2. 9.17 

Now we proceed just as in a conventional ANOV A: dividing each sum of squares 

by the appropriate number of degrees of freedom gives us the mean squares. If the 
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Table 9.2 ANOVA for the line corresponding to treatment C in Figure 9.1 

Sum of Degrees of Mean Significance 
Source squares freedom square F-ratio level, P 

Model 11.3402 I 11.3402 6140 0.000005 
Error 0.0055 3 0.0019 

Total 11.3457 4 R2 = 99.95% 

mean square for the fit, MSF, is large while that for the residuals, MSR, is small, the 
fit accounts for much of the total variance and is significant. If the reverse is the 
case, the fit does not account for much of the variance and the fit is not significant. 
The F ratio is calculated as 

9.18 

and we test our calculated F ratio against F l,n _ 2 . 

The ANOVA for the fit to the armyworm data for treatment Cis given in Table 9.2 
and the value of F is 6140, so that the fit is highly significant. Table 9.2 also gives 
a parameter, R2, which is the proportion of the variance explained by the fit: in this 
case 11.3402/11.3457 = 0.9995. (Strictly, R2 is the proportion of the total sum of 
squares accounted for by the model, but it is referred to as the proportion of the 
total variance accounted for by the model.) Since 99.95% of the variance in the data 
is explained by the fit, it is not surprising that the fit is highly significant. 

9.3 ERROR ESTIMATES AND CONFIDENCE LIMITS 

The analysis of variance applied to a regression enables us to determine the statistical 
significance of a line fitted to a set of data. However, we would like to determine 
error limits for our estimates of the parameters in our fit, especially as we hope to 
interpret the parameters biologically. We would also like to place confidence limits 
on our fitted line so that we can say that the true line lies within some range about 
the fitted line with an appropriate degree of certainty. 

9.3.1 Parameters 

Equations 9. 9 and 9.10 enable us to calculate the regression coefficients for a straight 
line fit to a set of data. The derivation of these equations is based on the assumption 
that the only errors are those associated with the dependent variable, y, and that 
there are no errors associated with the determination of the independent variable, x. 
If this is so, we can calculate the errors in a and b corresponding to the errors in y 
(Snedecor and Cochran, 1989, p. 175). The standard deviation of the residuals is 
calculated in the usual way, as 

9.19 
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Table 9.3 Regression of the natural logarithm of the number of armyworm larvae against 
time for treatment C. The table gives the least squares estimate of the slope and intercept 
together with its standard deviation, the t statistics and the significance level. The slope has 
units of days- 1 

Parameter 

Intercept 
Slope 

Value 

5.647 
- 1.065 

0.043 

0.014 

131 

-78 

p 

<0.00001 

<0.00001 

where the sum is from i = 1 to n and we have divided by the number of degrees of 
freedom that remain after fitting two parameters, the intercept and the slope. The 
standard deviation of the mean value of the dependent variable, y, is then 

9.20 

the usual expression for the standard error of a mean. The standard deviation of the 
slope, b, is (Appendix, section 9.9.2) 

9.21 

For the regression of the number of armyworms against time under treatment C 
Table 9.3 gives the standard deviations of the intercept and the slope and if we do 
a t test on each we find that both differ significantly from zero at the 0.1% level. 
Furthermore, if we multiply the standard deviation of the slope by the critical value 
for a two-tailed t test at the 5% significance leveL we obtain 95% confidence limits 
for the slope as -1.065 ± 0.014 x 3.18, so that we can assert that the rate of decline 
of the number of armyworms lies between - 1.020 and - 1.110/day with 95% 
confidence. 

In our armyworm experiments we want to know how the rate of decline varies 
between treatments to see which, if any, reduces their number significantly. If we fit 
straight lines to each of the four sets of data given in Table 9.1, after taking logarithms, 
we obtain the rates of decline given in Table 9.4. We test each t statistic using a 
one-tailed test since we are interested in the treatment only if it produces a decline 
in the numbers over time. In each case there are 3 degrees of freedom since each line 
is fitted to five points. The slope of the control curve is not significantly less than 
zero while all three treatments give significant rates of decline, B at the 5% leveL A 
at the 1% level and C at the 0.1% significance level. 

Table 9.4 The daily rates of decline in the number of armyworms under the four treatments 
described in Table 9.1 calculated from the slopes of straight lines fitted to the data 

Treatment Slope 

Control -0.0019 0.0124 0.15 ns a 
B -0.2489 0.0642 3.88 b 
A -0.2791 0.0284 9.83 b 
c - 1.0649 0.0136 78.3 c 
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Figure 9.4 The heavy solid line is the best fit straight line to the measured points. The thin 
solid line is a 95% confidence band for the fitted line. The dashed line is a 95% confidence 
interval for the individual points so that, on average, 19 out of 20 points should lie between 
the dashed lines. 

These experiments were conducted in order to determine the concentration of B.t. 
to use in armyworm control. To make comparisons between the various treatments, 
we calculate the difference between pairs of slopes divided by the pooled standard 
deviation of all the slopes, after checking that the variances of the slopes do not 
differ significantly. Since we do not know in advance whether the difference between 
two slopes will be positive or negative, we use two-tailed tests. Since each slope has 3 

degrees of freedom, each comparison has 6 degrees of freedom. Since we can make 
4(4- 1)/2 = 6 comparisons, we need to use a significance level of (5/6)% to ensure 
that the significance level for all comparisons is at least 5%. When tli.is is done, 
treatment B does not differ significantly from treatment A, but all other pairs differ 
significantly at the 5% level, as indicated in Table 9.4. In particular, treatment C is 
substantially better than treatments A or B. 

9.3.2 Lines 

Having fitted a line to a set of data, we can also calculate a confidence band for the 
line itself which will enable us to set limits within which the 'true' line lies with a 
suitable degree of confidence. The uncertainty in the estimate of the line can be 
regarded as arising from uncertainty in the estimate of the mean value and uncertainty 
in the estimate of the slope. The expression for the standard deviation of the fitted line 
at point xis (Appendix, section 9.9.3) 

9.22 

The standard deviation of the fitted line at the mean (x = i) is simply the standard 
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deviation of the mean of y, since the line passes through the point (i, y), and as x 

deviates from the mean in either direction, the standard deviation increases because 
of the uncertainty in the slope of the line. Again we need to multiply by tn- 2 for 
a two-tailed test at the 5% significance level to obtain the corresponding 95% 
confidence band. 

Figure 9.4 shows the data plotted in Fig. 9.2 with a 95% confidence band indicated 
by the thin solid lines. In regression tables, such as Table 9.3, we usually specify the 
standard error of the intercept on the y axis and this may be obtained by putting 
x = 0 in Equation 9.22. 

9.3.3 Points 

We would also like to set limits on the region within which the individual points 
should lie. This will enable us to detect outliers in our data. Equation 9.19 gives the 
variance of the residuals from the fitted line and Equation 9.22 the variance of the 
fitted line. To calculate a 95% confidence band for the individual points, we simply 
add these two variances, take the square root and multiply by tn _ 2 . For our graph 
of the heights of sons against the heights of their fathers, this gives the dashed line 
in Fig. 9.4. Approximately 19 out of 20 points should lie within the dashed lines. 

9.4 RESIDUALS 

This book began with a discussion of exponential growth and its influence on Darwin. 
Exponential growth is one of the most important ideas in ecology, so let us restate 
it: whenever the change in the number of objects is proportional to the number already 
present, the increase or decrease in the number follows an exponential curve. If 10 
plants produce 1 new plant per week (on average), 20 will produce 2, 50 will produce 
5 and so on, and the change in the number per week (I, 2 or 5) is always IllOth of 
the number already present (10, 20, 50). For the same reason, if the birth rate exceeds 
the death rate by a constant amount, human populations increase exponentially; if 
the rate of inflation is constant, the value of your money falls exponentially; because 
the number of radioactive atoms that decay in a given time is proportional to the 
number that have not yet decayed, the intensity of radiation emitted by radioactive 
isotopes decreases exponentially with time. 

Darwin realized that exponential growth cannot go on forever (remember our 
calculation on the potential growth of tsetse fly populations in Chapter 1). All natural 
populations are constrained by density dependent factors that limit further growth at 
a level referred to as the carrying capacity of the habitat for that population. The 
convergence to the carrying capacity is itself often exponential. 

To illustrate these ideas, consider the experiment of Ashby and Oxley (1935) who 
observed the growth of duckweed under controlled conditions in their laboratory 
and counted the number of fronds at the beginning of each day. Their data are given 
in Table 9.5 and plotted in Fig. 9.5. If the growth is exponentiaL a plot of !n[N(f)) 
against t should give a straight line with a slope of r and intercept on the vertical 
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Table 9.5 The number of duckweed fronds in a beaker kept at 24°( on each of 

14 successive days 

Day I 2 3 4 5 6 7 
Number 100 127 171 233 323 452 654 

Day 8 9 10 11 12 13 14 
Number 918 1406 2150 2800 4140 5760 8250 
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Figure 9.5 (a) The number of duckweed fronds and (b) the logarithm of the number of 
duckweed fronds plotted against time. 

axis equal to the logarithm of the number of fronds on day 0 (Equation 9.5). Figure 9.5b 

shows that this is indeed the case and the parameters from the fit are given in Table 9.6. 

The slope of the curve is 0.349 ± 0.005/day so that the growth rate is 34.9 ± 0.5% 

per day. With this value of r, e't = 2 when t = 1.99 days, so that the number of fronds 

doubles every 2 days. 
Although the fit in Fig. 9.5b looks good, it is always worth plotting the residuals 

as a check. If we do this we obtain the result shown in Fig. 9.6, from which it is clear 

that there is something odd going on at the beginning of the experiment. One possi

bility might be that we need a certain number of fronds to start the process. If we let 

the growth rate be proportional to the number of fronds above a threshold value, 

say M, we can replace Equation 9.3 by 

dN(t)!dt = r(N(t)- M). 9.23 

Integrating Equation 9.23 gives 

N(t)- M = N(O)e't 9.24 

Table 9.6 Parameters for the regression line shown in Figure 9.5b. The slope 
of the line is given in unit of fronds/day 

Parameter Value 5 p 

Intercept 4.107 0.039 105 < 0.0001 
Slope 0.349 0.0046 76 < 0.0001 
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Figure 9.6 The residuals from the plot shown in Figure 9.5b. 

so that 

ln[N(t)- M] = ln[N(O)]- rt. 9.25 

Since we do not know M, we cannot plot the data in a form that will give us a 

straight line directly: what we can do is to use an iterative procedure in which we 

repeatedly guess different values of M until we find the value that gives us the 

best fit. We do not of course carry out the iteration blindly: if we change M and 

the fit deteriorates, we know that we are changing it in the wrong direction. One 

way to decide when we have fouttd the best value of M is to do an ANOVA on 

each fit and find the F ratio for each value of M. The value of M that maximizes 

the F ratio turns out to be 33. If we use this value and plot ln(N(t)- 33) against 

time, we obtain the result shown in Fig. 9.7; the parameters from the fit are given 

in Table 9.7. The slope of the regression line gives a new estimate of the growth 
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Figure 9.7 (a) Plot of ln[N(t)- 33] against time and (b) plot of the residuals from the fit 

against time. 



166 Regression 

Table 9.7 Parameters from the regression of /n[N(t)- 33) against time and the corresponding 
ANOVA table 

Parameter Value s p 

Intercept 3.81 0.021 181 < 0.0001 ... 
Slope 0.375 0.0025 151 < 0.0001 ••• 

Source of Sums of Degrees Mean Significance 
variation squares of freedom square F-ratio level, P • 

Model 31.95 1 31.95 23059 < 0.0001 ••• 
Error 0.017 12 0.0014 

Total 31.967 13 R2 = 99.95% 

rate of 0.375 ± 0.0025 fronds/day, slightly lower than before, but with a threshold 
of 33 fronds for the process to start. Plotting the residuals in Fig. 9.7b we see that 
the overall fit is considerably better than before, although the number of fronds on 
day 9 is still some way off. 

We now go back to the biology: why are 33 fronds needed for the growth to 
start? What would happen in a smaller or a larger beaker? Eventually the numbers 
must level off, but at what number of fronds? Can we deduce anything useful from 
the fact that the doubling time is about 2 days? The statistics, if calculated carefully, 
will raise questions, but the answers can be found only in the biology. 

9.5 CORRELATION 

We have seen in the previous sections how to obtain the best estimate of one variable 
based on the values of another. However both variables are often subject to error 
and neither is more fundamental than the other. In such situations we might be 
concerned with the degree of correlation between the two variables rather than the 
dependence of one on the other. 

In section 4.2.1 we defined the variance of a set of numbers as 

9.26 

Furthermore, we have repeatedly spoken about variables being 'statistically independent'. 
To make this concept of statistical independence more precise, we define a new 
parameter, which we call the covariance, as 

C(x, y) = I:(xi- i)(yi- y)ln. 9.27 

The analogy with the definition of the variance is clear since C(x, x) = V(x), but we 
need to convince ourselves that the definition is sensible. 

In Equation 9.27 we have, as usual, subtracted the mean of each set of numbers. 
If x and y are either both positive or both negative, after subtracting their means, 
their product will contribute positively to the covariance, so that if they go up and 
down together, the covariance will be positive. In the same way we can see that if 
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one goes up when the other goes down, or vice versa, they will contribute negatively 
to the covariance. We can restate this in terms of our regression and say that if the 
regression line has a positive slope, the covariance will be positive, and if the regression 
line has a negative slope, the covariance will be negative. We can now write down 
a more complete expression for the variance of a sum: 

V(x + y) = V(x) + V(y) + 2C(x, y) 9.28 

and Equation 4.8, which we have used to evaluate the variance of a sum, is correct 
only when the covariance of the two variables is zero. 

Just as the standard deviation is often more useful than the variance because it 
has the same units as the original measurement, it turns out that a different measure 
of association, the correlation coefficient, is often more useful than the covariance. 
Taking the square root of the covariance does not help us much because the units 
of the two variables may be different, and if they were, say, metres and grams, we 
would have something measured in metres112grams112. Indeed, since we have already 
accounted for the variance of each measurement through their separate standard devia
tions, the most useful measure involves dividing the covariance by the standard devia
tion of each variable so that the correlation coefficient, r, is 

r = C(x,y)I[V(x) x V(y)]112 • 9.29 

If the points lie exactly along a straight line with positive slope, the correlation coeffi
cient is + 1, and if they all lie exactly along a line with negative slope, the correlation 
coefficient is - I. If there is no correlation between the two variables, the correlation 
coefficient is 0. 

The correlation coefficient can be illustrated using the heights of II pairs of brothers 
and sisters (Pearson and Lee, I903) given in Table 9.8 and plotted in Fig. 9.8. Calcula
ting the correlation coefficient using Equation 9.29 gives 

r = 0.553. 9.30 

Since the heights of the brothers and sisters clearly tend to go up and down together, 
the correlation coefficient is positive but the relationship is not very close and the 
correlation coefficient is much less than I. 

When we calculate a correlation coefficient, or perform a regression or an ANOV A 
we are looking for relationships between two sets of numbers. In Fig. 9.8 the line 
marked (a) is a regression of the heights of the brothers against the heights of their 
sisters. However, if we carry out a regression of the heights of the sisters against the 

Table 9.8 Heights, in inches, of 11 brothers and sisters, each pair belonging to a different 
family 

Family I 2 3 4 5 6 7 8 9 10 II 

Brother 71 68 66 67 70 71 70 73 72 65 66 
Sister 69 64 65 63 65 62 65 64 66 59 62 
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Figure 9.8 The heights of sisters plotted against the heights of their brothers using the data 
in Table 9.8. The two lines are regressions of brothers against sisters and sisters against 
brothers. 

heights of their brothers and plot it on the same graph, we obtain the line marked (b) in 
Fig. 9.8. The reason that we can obtain two quite different regressions for the same 
set of data is because each regression is based on the assumption that the errors are 
only in the dependent variable and that the independent variable is measured without 
error. If the variability in the data arose only from the heights of the boys, line (a) would 
be correct; if variability in the data arose only from the heights of the girls, line (b) 
would be correct. Consequently, line (a) gives the best prediction of the height of a 
brother given the height of his sister, and line (b) gives the best prediction of the 
height of a sister given the height of her brother. If we are not interested in using 
heights of sisters to predict heights of brothers, or vice versa, but rather are interested 
in the degree of association between the two, neither regression is then 'correct' since 
both the boys' and the girls' heights are subject to random variations. In this case 
the advantage of the correlation coefficient is that it is not biased in favour of either. 
In fact, it is easy to show that the correlation coefficient is the geometric mean of 
the slopes of the two regressions lines, so that the correlation coefficient measuring 
the degree of association between the height of brothers and sisters is 

9.31 

where h1 is the slope of the regression of brothers against sisters and b2 is the slope of 
the regression of sisters against brothers. 

Finally, we can make a connection between the correlation coefficient and the 
ANOV A of our regression. If the correlation between two variables is perfect, the 
correlation coefficient should be ± I. But the regression line should then explain all 
of the variance in the data, and the parameter, which we have called R2 in Tables 9.2 
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and 9.7, should also be 1. If there is no correlation between the two variables at all, 
the correlation coefficient should be zero. But the regression should then explain none 
of the variance in the data and R2 should be 0. In fact, it is not difficult to show that 
R and r are one and the same, so that the square of the correlation coefficient 
is the proportion of the total variance explained by the fit. 

9.6 POLYNOMIAL REGRESSION 

When we carry out a linear regression, we assume that the points lie along a straight 
line although we sometimes need to transform the data, perhaps by taking logarithms 
to achieve a linear relationship. If we cannot transform the data to lie along a straight 
line, we must use a more complicated function. One way to proceed is to fit a poly
nomial, which could be a quadratic function (a parabola), a cubic function or a still 
higher order polynomial. Consider, for example, the data measured by Crooke and 
Knight (1965) in a study of the relation between the age of oat plants and their content 
of nickel and iron when grown in sand cultures. Like other heavy metals, nickel 
supplied in excess to plants affects iron metabolism causing, in oat plants, longitudinal 
white necrotic striping of the leaves accompanied by an induced iron deficiency 
chlorosis. 

As part of their study, Crooke and Knight measured the relative absorption of 
nickel and iron from a controlled nutrient solution supplying iron at 1.2 ppm and 
nickel at 2.5 ppm, with the results shown in Table 9.9 and plotted in Fig. 9.9. The 
data lie along a curve and if we decide to fit a parabola our model equation is 

9.32 

As in the case of linear regression, we can again find expressions for the values of 
a, b and c that minimize the sums of squares of the residuals about the fitted line 
(Bliss, 1967, p. 37); the resulting values are given in Table 9.10 and the line is drawn 
in Fig. 9.9. The constant term is not significantly different from zero while both the 

Table 9.9 The ratio of the amount of nickel to the amount of iron in oat plants as a function 
of age 

Age/days Nil Fe Age/days Nil Fe Age/days Ni!Fe 

4 0.32 38 1.40 51 1.32 
9 0.41 39 1.95 52 1.52 
14 0.79 41 1.51 55 1.05 
18 0.86 42 1.81 56 1.70 
22 1.28 69 0.82 58 1.22 
26 1.28 73 0.95 59 1.90 
29 1.48 44 1.53 62 0.85 
33 1.15 45 1.30 63 1.05 
34 1.47 48 1.00 64 0.87 
37 1.67 49 1.50 66 1.08 



170 

2.0 

0 
1.5 

+:; 
ro .... 
(]) 1.0 LL. ::::: z 

0.5 

0.0 
0 10 20 

Regression 

• • • 
• • 

30 40 50 60 70 80 

Age/days 

Figure 9.9 The data of Table 9.9 and the parabola that gives the best fit. 

Table 9.10 Parameters for the regression line shown in Figure 9.9 and the ANOV A table. a 
is the intercept on they axis, b and care the coefficients of the linear and quadratic terms in the fit 

Parameter Value s p 

a -0.047 0.197 -0.240 0.812 ns 
b 0.0735 0.01048 7.021 0.0000 
c -0.000866 0.000129 -6.7358 0.0000 

Sum of Degrees of Mean Significance 
Source squares freedom square F-ratio level, P 

Model 3.04 2 1.52 24.7 0.0000 ... 
Error 1.66 27 0.0616 

Total 4.71 29 R2 =65% 

linear and the quadratic terms are significant at the 0.1% level. From Fig. 9.9 we see that 
the ratio of nickel to iron increases up to age 42 days and then decreases as the trees 
age. We can again carry out an analysis of variance on the fitted line, from which 
we find that the model explains 65% of the variance in the data. 

In our polynomial regression, the estimate of each coefficient depends on the 
inclusion of the others. If we fit a constant we will obtain an estimate of a. If we fit 
a straight line we will obtain an estimate of both a and b but we will find that the 
estimate of a has changed. If we fit a parabola we will obtain an estimate of a, b, 
and c but we will find that the estimates of a and b have changed. Formally we say 
that the constant, x, and r are not orthogonal. The ANOV A tells us that the overall 
fit using all three terms is highly significant. The regression analysis gives us the 
significance level of each coefficient, after allowing for the other two. We should 
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therefore consider first the significance of the quadratic term, c, in Table 9.10. If this 
is significant, we should keep all three terms. If it is not, we should drop it and repeat 
the exercise for the first two terms. We should drop terms of lower power first only 
if we have a sound biological reason for doing so. For example, it may be that we 
know that the graph must pass through the origin of our coordinate system, in which 
case we could drop the constant term. 

9.7 MULTIPLE REGRESSION 

Very often we would like to carry out a regression against more than one independent 
variable. Leyton (1956) studied the relation between growth and the mineral composi
tion of the foliage of Japanese larch trees. A stand of trees had been planted in hetero
geneous soil using variable planting stock. Leyton was concerned to discover the 
causes of the resulting variability in the height of the trees. Twenty-six trees were 
selected, ranging in height from 65 to 35 I em. From each tree one lateral shoot was 
taken from the uppermost whorl immediately below the terminal shoot and after 
drying the needles in an oven they were ground in a mill and analysed for nitrogen, 
phosphorus, potassium and residual ash. The data are given in Table 9.II. 

We now want to do a regression of height against each of the other variables so 
that our model is 

9.33 

and we can again find expressions for the coefficients of the fit that minimize the sums 
of squares of the residuals (Bliss, 1967, p. 308). The results are given in Table 9.12 
where only the coefficients of nitrogen and potassium are significant. We might try 
omitting phosphorus and residual ash, but if we do this the other coefficients change, 
as in our polynomial regression, because the independent variables are not orthogonal. 
(To test if two variables, say Ni and K, are orthogonal, we calculate 'I.NiKi and if 
the answer is zero they are orthogonal. If we are able to choose the levels of the 
independent variables we choose them to ensure orthogonality. In the case of our 
larch trees, we simply have to use the measured values.) 

Table 9.13 gives the correlation between each pair of variables. We see that the 
level of nitrogen is positively correlated with the level of each of the other variables. 
Any variable, in our case the height of the trees, that goes up and down with the 
level of nitrogen will also go up and down with the level of potassium, for example. 
In other words, some of the variation that is explained by variations in the level of 
nitrogen can also be explained by variations in the level of potassium. Consequently, 
if we first perform a regression against nitrogen alone and then perform a regression 
against nitrogen and potassium, some of the variation explained by nitrogen in the 
first regression will be explained by the potassium in the second regression and the 
coefficient for nitrogen will change. 

We need to proceed carefully and there are two standard approaches to carrying 
out regressions when the independent variables are correlated. The first approach is 
forward step-wise regression. We carry out a regression against each independent 
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Table 9.11 The concentration, measured in parts million, of nitrogen, phosphorus, potassium 
and residual ash in the needles of 26 Japanese larch trees with their heights in centimetres 

Nitrogen Phosphorus Potassium Ash Height 

2.20 0.417 1.35 1.79 351 

2.10 0.354 0.90 1.08 249 

1.52 0.208 0.71 0.47 171 

2.88 0.335 0.90 1.48 373 

2.18 0.314 1.26 1.09 321 

1.87 0.271 1.15 0.99 191 

1.52 0.164 0.83 0.85 225 

2.37 0.302 0.89 0.94 291 

2.06 0.373 0.79 0.80 284 

1.84 0.265 0.72 0.77 213 

1.89 0.192 0.46 0.46 138 

2.45 0.221 0.76 0.95 213 

1.88 0.186 0.52 0.95 151 

1.93 0.207 0.60 0.92 130 

1.80 0.157 0.67 0.60 93 

1.81 0.195 0.47 0.57 95 

1.49 0.165 0.66 0.80 147 

1.53 0.226 0.68 0.66 88 

1.43 0.224 0.44 0.45 65 

1.54 0.271 0.51 0.95 120 

1.13 0.187 0.38 0.63 72 

1.63 0.200 0.62 1.10 160 

1.36 0.211 0.71 0.47 72 

1.76 0.283 0.96 0.96 252 

2.53 0.284 0.85 1.39 310 

2.59 0.303 1.02 0.95 336 

Table 9.12 The regression coefficients for the model given by Equation 9.33 applied to the 
data in Table 9.11 

Chemical N p K A 

Coefficient 97.76 256.97 126.57 40.28 

s 24.57 169.91 46.43 36.61 

3.98 1.51 2.73 1.10 

ns ns 

variable separately and include the one that explains the greatest proportion of the 
variance. We then perform regression keeping this variable and including each of the 

others, one at a time, to see which variable explains the greatest proportion of the 

remaining variance. In other words, we find the most significant variable and include 

it. We then find the next most significant variable and include that. We proceed in 

this way until none of the excluded variables contributes significantly. 
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Table 9.13 Correlation coefficients for the concentrations of nitrogen, phosphorus, potassium 
and ash in Japanese larch trees 

Nitrogen Phosphorus Potassium Ash 

Nitrogen 1.00 0.60 0.55 0.65 

Phosphorus 0.60 1.00 0.71 0.67 

Potassium 0.55 0.70 1.00 0.67 

Ash 0.65 0.67 0.67 1.00 

The second approach is backward step-wise regression. We start by including all 
the variables and then drop the least significant variable. We then recalculate the contri
butions for the remaining variables and again drop the least significant, continuing in 
this way until all of the included variables are significant. 

Unfortunately, there is not usually a single 'correct' answer and forward and back
ward step-wise regressions can leave us with different sets of variables. In practice 
it is worth doing both and if they give different answers you will have to judge 
between them on the basis of your knowledge and understanding of the biology of 
the problem. 

Table 9.14 illustrates the forward step-wise regression. We start with none of the 
variables in the model and F-to-enter gives the significance level that we will obtain 
if we include each variable singly. Since we have 26 points, each of these F values 
should be compared with f 124 at the 5% level, which is 4.26, and each of them, taken 
on its own, is highly significant. Since nitrogen has the biggest F ratio, we include 
it first. The next part of the table shows the effect of each of the other variables, 
after allowing for the effect of nitrogen. Because nitrogen has already explained much 
of the variance, the contributions from each of the other variables is now much less 

Table 9.14 F-to-enter, F-to-remove and the final model for the forward step-wise regression 
of the height of Japanese larch trees against the amount of nitrogen, potassium, phosphorus 
and residual ash. The table also gives the regression coefficients for the variables that are 
included in the regression 

Variables 
in model 

Nitrogen 

Nitrogen 
Potassium 

Coefficient 

183.4 

123.3 

188.7 

F-to-remove 

48.6 

30.2 

24.1 

Variables 
not in model F-to-enter 

Nitrogen 48.6 

Phosphorus 35.9 

Potassium 40.3 

Ash 34.4 

Phosphorus 13.8 

Potassium 24.1 

Ash 9.4 

Phosphorus 3.39 

Ash 2.22 



174 Regression 

Table 9.15 F-to-enter, F-to-remove and the final model for the backward step-wise regression 
of the height of Japanese larch trees against the amount of nitrogen, potassium, phosphorus 
and residual ash 

Variables 
in model Coefficient 

Nitrogen 97.8 
Phosphorus 257.0 
Potassium 126.6 
Ash 40.3 

Nitrogen 107.8 
Phosphorus 304.2 
Potassium 143.1 

Nitrogen 123.3 

Potassium 188.7 

F-to-remove 

15.8 
2.29 
7.43 
1.21 

22.1 
3.39 

10.5 

30.2 
24.1 

Variables 
not in model 

Ash 

Phosphorus 
Ash 

F-to-enter 

1.21 

3.39 
2.22 

than before. We now compare each of the F values with f 1•23 , since we have used 
up another degree of freedom, and this is 4.28. Potassium now makes the most signi
ficant contribution so we include it also. In the last part of the table we see that the 
two remaining variables are no longer significant since the variance that they would 
have explained is already accounted for by nitrogen and potassium, and we omit 
them from the model. We also see in Table 9.14 that when nitrogen is included on 
its own, the regression coefficient is 183.4, but when we include potassium in the 
regression, the coefficient for nitrogen is reduced to 123.3 because part of the increase 
due to nitrogen is now explained by the increase due to potassium. 

Table 9.15 shows the corresponding sequence of steps for the backward stepwise 
regression and, in this case, we end by selecting the same two variables. Table 9.16 
is the ANOV A for the final model. 

Leyton (1956) concludes from his analysis of these data that the trees are suffering 
from a lack of nitrogen and potassium so that in those areas where the concentrations 
of these nutrients happen to be relatively high, the trees grow significantly taller. 
This experiment illustrates the care that must be taken when drawing conclusions 
from regressions. If Leyton had measured phosphorus but not nitrogen or potassium, 
it would have appeared that a significant part of the variation in growth could be 
explained on the basis of a phosphorus deficiency whereas the truth seems to be 
that the trees are deficient in nitrogen and potassium and that the concentration of 
phosphorus is correlated with both of these. 

9.8 SUMMARY 

ANOV A and regression are closely related and we can formulate ANOV A problems 
as regression problems or analyse regression problems using ANOV A. We use AN OVA 
when the independent variables are categorical. We use regression when the independent 
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Table 9.16 Parameters for the regression of the height of Japanese larch trees against the 
concentration of nitrogen and potassium 

Parameter Value s p 

Intercept -181 36.9 -4.9 0.0001 ••• 
Nitrogen 123 22.4 5.5 0.0000 ... 
Potassium 189 38.4 4.9 0.0001 

Sum of Degrees of Mean Significance 
Source squares freedom square F-ratio level, P 

Model 191184 2 95592 59.8 0.0000 ••• 
Error 36771 23 1599 

Total 227 954 25 R2 = 0.84 

variables are measured on a quantitative scale. Sometimes the independent variables 
may be of both kinds, some qualitative, some quantitative. In this case we can carry 
out a combined analysis called analysis of covariance or ANCOV A, in which the 
co variates are the quantitative variables. Brownbridge' s armyworm data are an example 
that we might choose to analyse using ANCOV A with the treatments as categorical 
variables and time as a continuous variable against which we carry out a regression 
(see Example 9.10.6). In fact, we can go further and treat ANOVA, regression and 
the combination, ANCOV A, as particular cases of a wider approach called generalized 
linear modelling (Dobson, 1983; McCullogh and Nelder, 1983). It is important, 
however, to be clear as to just what each technique does and it is useful to think of 
ANOV A and regression as separate but related techniques. 

The concept of interactions applies to regression just as to ANOV A In regression 
problems we simply include new variables that are products of the original variables. 
In the example of Japanese larch trees we might, for example, have tried a term of 
the form N X K to see if the response to the levels of nitrogen depends on the levels 
of potassium and vice versa. 

An important extension of these ideas involves the use of weights in ANOV A 
and regression. We often have data for which the different points are measured with 
differing accuracy. In this case, instead of finding the model that minimizes the sum 
of the squares of the residuals, r.e;, we find the model that minimizes r.e;wi where 
we choose the weights wi so that the more precise observations are given greater 
weight than the less precise observations. The best choice, in a least-squares sense, 
is to set the weights equal to the reciprocal of the variance so that if you know how 
the variance varies across your data you can weight the separate measurements accor
dingly (Hays, 1988, p. 624). 

The ideas discussed in this book contain many of the most important principles 
of statistical analysis. However, there are a number of techniques collectively known 
as multivariate methods. Multivariate analysis of variance, MANOV A deals with 
problems in which we have more than one response variable. Cluster analysis allows 
us to group individuals, for each of which a number of variables have been measured, 
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into hierarchical clusters starting from those that are most similar. Discriminant 
analysis allows us to find the combination of a set of variables that will best 
discriminate between the individuals of interest. Principle components analysis 
provides a method for combining a large number of variables into a smaller number 
of variables, each of which is a linear combination of the original variables. For further 

reading, the book by Jeffers (1978) provides a good introduction and the books by 
Manly (1986) and Green (1978) tell you how to carry out multivariate analyses. 

The best advice I can leave you with comes from Max Born (Margenau, 1950): 

'I believe that there is no philosophical high-road in science with epistemological 
sign-posts. No, we are in a jungle and find our way by trial and error, building our 
road behind us as we proceed. We do not find sign-posts at cross-roads, but our 
own scouts erect them to help the rest ... My advice to those who wish to learn the 
art of scientific prophecy is not to rely on abstract reason, but to decipher the langu
age of Nature from Nature's documents, the facts of experience.' 

9.9 APPENDIX 

9.9.1 Regression sums of squares 

We wish to partition the sums of squares of the points in a linear regression into a 
contribution from the fitted line and an error term. Since we are concerned with the 
variation about the mean, as in the standard ANOV A, we subtract the mean value 
of the dependent variable from each measured value Yi. Similarly, we can subtract 
the mean value of the independent variable, from each measured value of xi. Then 
~Yi and ~xi are both zero and from Equation 9.9 a is also zero. The equation of the 
regression line is then 

and the middle term on the right-hand side of Equation 9.13 is 

~yiei = ~bxi(bxi- y) = b(b~x;- ~xiy) 
However, from Equation 9.10 with ~Yi and ~xi equal to zero 

9.34 

9.35 

9.36 

so that the right-hand side of Equation 9.35, and hence ~yiei and the middle term 
on the right-hand side of Equation 9.13 are zero. 

9.9.2 Variance of the slope 

To calculate the variance of the slope in a linear regression we will again subtract the 
mean values of x andy from each data point since this will not affect the slope. Then 

b = ~xyl~x2 9.37 
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as in Appendix, section 9.9.1. But 

V(ay) = a2 V(y) 

so that 

V(b) = 1:x2 V(y)l(1:x2 )2 = V(y)l1:r = sP 2 /1:r 

as in Equation 9.21 with x equal to xi- i. 

9.9.3 Variance of the fitted line 

177 

9.38 

9.39 

To calculate the variance of the fitted line we again subtract the mean value of x 
and y from each data point. Then 

since a is zero. Then 

since we assume that the only errors are in y and V(x) = 0. Therefore 

V(y) = s~ + s~(xi- i)2 

9.10 EXERCISES 

9.40 

9.41 

9.42 

1. Use Equations 9.19 to 9.22 to calculate 95% confidence limits for the residuals 
plotted in Fig. 9.7b obtained by fitting Equation 9.25 to the data given in Table 9.5. 
Decide if the large residual on day 9 differs significantly from the fitted line. (Since 
you are only considering the largest residual you should use a significance level of 
5114% to obtain a 95% confidence band.) 

2. In studies of evolution it is important to be able to fix the rate at which evolutionary 
changes occur. Given two related species, we should then be able to estimate the 
time since they began to diverge. Fitch counted the mean number of nucleotide 
substitutions in seven proteins in 15 related species for which it was possible to 
determine the time at which they diverged from the fossil record, with the results given 
in Table 9.17 (Ruse, 1982). 

(a) Calculate the mean number of nucleotide substitutions per million years and 
determine the time at which two species differing by an average of 40 nucleotide 
substitutions diverged. (b) Calculate 95% confidence limits for the points and place 
error limits on the answer to (a). [Think carefully about which variable to take as the 
independent variable.] 

3. Large islands generally support more species than comparable small islands and 
the number of species, N, generally follows a power-law relationship with the area 
of the habitat, A, so that 

9.43 
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Table 9.17 The mean number of nucleotide substitutions in seven proteins 
in 15 related species and the time since they diverged 

Nucleotide Time/ M years Nucleotide Time/ M years 
substitutions substitutions 

7.91 1.65 40.29 53.14 
4.46 7.49 48.92 63.62 
4.17 11.23 46.76 61.23 
1.44 13.77 56.83 75.60 

17.27 15.87 66.19 70.36 
7.19 19.76 73.67 90.57 

15.83 32.93 97.84 121.26 

33.09 41.92 

The exponent in the power law, z, typically lies between 0.24 and 0.33 (Pianka, 
1983). Davis et al. (1988) studied assemblages of forest-dwelling species of small, 
non-flying mammals on the mountains of New Mexico and adjacent parts of Arizona. 
These montane islands of forest are surrounded by woodlands and grasslands that 
isolate one from another. Their results are given in Table 9.18. Carry out a regression 
of In N against In A, decide if the data show a power-law relationship and determine 
the value of z. [Hint: Since the logarithm of 0 is - 00 there is a problem when there 
are no species. To avoid this Davis et al. (1988) added 1 to each of the species 
numbers before taking logarithms.] 

The authors argue that species richness decreases with the distance from the original 
source of the various species, which they assume to be in the southern extension of 
the Rocky Mountains. They therefore also measured the shortest distance from there 
to the individual forests while remaining within suitable habitats and this is given 
as the 'isolation' in Table 9.18. Carry out a regression of the residuals from the previous 

Table 9.18 The area, the number of species and the isolation of 12 montane 
forest islands 

Forest Arealkm2 No. species Isolation/ /em 

I 21813 10 241 
2 2872 7 217 
3 346 6 75 
4 2575 6 292 
5 885 4 72 
6 2090 4 378 
7 1279 3 173 
8 750 3 281 
9 173 3 271 
10 205 2 269 
11 57 0 475 
12 8 0 392 
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Table 9.19 The mean antler length and shoulder height of various cervine deer. All 
measurements in inches. The last two numbers, shown in bold, are the values for the Irish Elk 

Antler 63.6 51.1 48.7 44.9 42.4 39.5 

Shoulder 65.0 50.4 55.0 54.5 45.5 50.9 

Antler 40.2 36.1 34.0 31.8 28.3 26.3 
Shoulder 36.8 40.9 45.7 36.3 34.8 32.5 

Antler 22.9 23.8 20.9 13.4 9.7 94.4 
Shoulder 39.1 27.5 34.0 27.1 27.0 72.9 

fit against the isolation and see if you agree that the isolation also influences species 
richness. (For discussions of the species-area relationship see Diamond and May, 

I98I; MacArthur and Wilson, I963; Brown and Lomolino, I989.) 

4. The Irish Elk. which Gould (I974, I977) points out is neither exclusively Irish nor 

an elk. became extinct in Ireland II 000 years ago. It has become famous for the 

prodigious size of its antlers whose span could reach 12 feet. Early in this century 

the Irish Elk was the centre of a fierce dispute between proponents and opponents of 

Darwin's theory of evolution for it was hard to see how such large antlers could 

confer a selective advantage on the animal and seemed more likely to lead to the 

animals' extinction. To decide if the antlers really were too big in proportion to the 

body size, Gould (I973) measured the spread of the antlers and the shoulder heights 

of various cervine deer, the group to which the Elk belongs, with the results given 
in Table 9.I9. Plot a graph of the logarithms of the spread of the antlers against the 

logarithms of the shoulder heights. Fit a straight line to all of the data excluding 

that of the Irish Elk and decide if you agree with Gould that the antlers of the Irish 

Elk are only as big as one would expect in a deer of that size. 
Calculate 95% confidence limits'for the points and determine how big (or small) the 

average spread of the antlers would have to be in order to reject the hypothesis that 

the antlers are about as big as one would expect. Do the data provide support for 
Gould's argument? 

5. MacFadden (I986) carried out a study to investigate the rate at which the body 
size of horses has changed over evolutionary time. It is difficult to estimate the body 
size of fossil horses as only fragments are usually found. MacFadden therefore began 

by studying the relationship between various bodily dimensions for New World 

Equidae in order to find the most useful measure of body size one could obtain from 

fossil remains. In Tab!t: 9.20, for example, the head-body length is compared with 

the length of the row of cheek-teeth. In general, the cheek-teeth are among the better 

preserved parts of fossil skeletons. The data have been read off a graph in MacFadden's 

paper. Carry out a regression of the head-body length against the length of the row 

of cheek-teeth and see if the latter can be used as a good estimator of the former. 
Using the data in this way MacFadden was able to estimate the body sizes of 40 

fossil horses covering about 55 million years as shown in Table 9.21. Plot a graph 
of the logarithm of the body mass against the age of the fossils. MacFadden concluded 
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Table 9.20 HBL is the head-body length measured from the tip of the nose to the beginning 

of the first caudal vertebra and TRL is the overall length of the row of cheek-teeth from the 

antero-most occlusal enamel of tooth P2 to postero-most occlusal enamel of tooth M3. All 
measurements in millimetres 

TRL 39.4 43.6 45.6 46.7 68.9 67.2 66.9 
HBL 648 648 691 648 843 91I 988 

TRL 84.7 85.0 90.0 105 liS 148 140 
HBL 1221 1306 1349 1306 1603 1709 1752 

TRL 140 158 161 173 170 173 170 

HBL 1900 1900 2109 2240 2304 2304 2346 

TRL 183 183 183 188 189 193 190 
HBL 2648 2588 2542 2499 2448 2448 2448 

Table 9.21 The mean body masses and the ages of 40 fossil horses 

Number I 2 3 4 5 
Myr 57.53 52.77 52.77 50.26 50.26 
Mass/kg 31.87 25.75 40.16 32.74 23.57 

Number 6 7 8 9 10 
Myr 45.49 45.53 31.91 30.64 25.87 
Mass/kg 31.87 44.52 47.58 48.02 53.25 

Number II 12 13 14 15 
Myr 23.40 21.91 20.85 18.43 18.38 
Mass/kg 101.71 115.24 93.41 78.13 47.58 

Number 16 17 18 19 20 
Myr 18.38 11.06 14.81 13.49 15.96 
Mass/kg 132.70 412.94 199.92 268.45 69.84 

Number 21 22 23 24 25 
Myr 15.79 15.83 13.45 Il.06 13.62 
Mass/kg 85.56 53.69 78.57 122.66 139.68 

Number 26 27 28 29 30 
Myr 8.55 14.77 11.06 13.57 13.49 
Mass/kg 6I.ll 108.69 153.21 170.24 161.51 

Number 31 32 33 34 35 
Myr 12.34 8.72 6.04 6.04 3.62 
Mass/kg 137.50 235.71 244.01 313.85 84.68 

Number 36 37 38 39 40 
Myr 5.15 2.38 2.47 2.47 2.47 
Mass/kg 434.76 436.94 501.98 351.83 457.02 
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Table 9.22 Numbers of armyworm larvae sampled in each plot on each day after the start 
of treatment. Note that treatment C actually started one day after treatments A and B. • 
indicates missing data 

Row 1 I I 2 2 2 3 3 3 
Column I 2 3 I 2 3 I 2 3 
Treatment B A c c B A A c B 

0 33I 425 420 287 390 290 267 2I4 197 
No. I 242 348 200 64 223 173 138 63 178 
on 2 213 306 43 26 109 115 I05 31 71 
day 3 • • 20 8 • • • 10 • 

4 154 204 • • 102 106 48 • 88 

that there may not have been much evolutionary change up to 35 million years ago 
but that since then the body size has been increasing at a rate of 5.6%/Myr if we 
exclude species 26 and 35, which seem to be especially small. These two species do 
in fact belong to a different Nannipus species from the others so that it might be 
reasonable to exclude them. Carry out a regression analysis to see if you agree with 
his conclusions. 

6. The actual data that Brownbridge (1988) collected in his experiment on the biocidal 
effects of Bacillus thuringiensis on the armyworm Spodoptera exempta are given in 
Table 9.22. The experiment used a Latin square design with three rows and three 
columns laid out in the field under study. Considerable attention was given to the 
sampling process. Within each plot 20 quadrats, each 20cm X 20cm, were chosen at 
random on each day and the numbers of larvae in the quadrats were counted. The 
outer 2 m of each plot were excluded from sampling to minimize effects arising from 
movement of larvae into or out of each plot. As a control, 30 quadrats were chosen 
at random on each day from the untreated areas around and between the treated 
plots (Table 1.3). 

Unfortunately, as a result of heavy rainfall at the time of spraying, only two 
treatments (A and B) were applied on Day 0. Treatment C was applied for the first 
time on Day 1. Furthermore, counting had to be abandoned early on Day 3 because 
the farm manager wished to spray the experimental area with pyrethrum as there were 
still a lot of armyworms in the untreated areas and the risk of damage to the rest 
of his crop was too great. On that day counts were made only for the three plots 
under treatment C. After summing the larval numbers over the quadrats in each experi
mental plot, the data given in Table 9.23 were recorded. 

The data were analysed, after taking logarithms, using MiniTab, which is able to 
handle missing data points. The rows, columns and treatments were qualitative factors 
and time was specified as the covariate so that this is an example of ANCOV A. 
Table 9.23 gives the result of the analysis. 

Because of the missing values, the factors in the analysis are not orthogonal. In 
the means table, Time' gives the average slope and Time X TrX gives the deviation 
from the average slope for treatment X. 
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Table 9.23 Analysis of Brownbridge's armyworm data using the general linear modelling 
facility in MiniT ab. 

Sums of Degrees of Mean Significance 
Source squares freedom square F ratio level, P 

Rows 3.788 2 1.894 34.69 < 0.001 

Columns 0.375 2 0.188 3.44 0.047 • 
Treatments 0.031 2 O.oi5 0.28 0.755 ns 

Time 17.905 I 17.905 327.94 < 0.001 ... 
Time x Treat. 7.683 2 3.842 70.36 < 0.001 ... 
Error 1.420 26 0.055 

Coefficient 5 p 

Constant 5.630 0.062 90.82 < 0.001 
Time -0.533 0.029 -18.11 < 0.001 ... 
Timex Tr.A 0.255 0.040 6.46 < 0.001 ... 
Time X Tr.B 0.285 0.040 7.22 <0.001 
Time X Tr.C -0.541 0.040 13.53 < 0.001 ... 

Make sure that you understand how each term in the table is calculated. Determine 
the slopes under each treatment and their confidence limits and compare these with 
the values given in Table 9.4. (When I presented the data in Table 9.1 I used the fit 
from Table 9.23 to determine best estimates of the missing values and then added 
suitably chosen random numbers to these estimates to avoid the problem of missing 
values.) Note that the sums of squares and mean squares given here are given as the 
adjusted sums of squares (ASS) and adjusted mean squares CAMS) in MiniTab. 
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Tables 

These tables were calculated using routines in the NAG Library provided by NAG 
Ltd. (For address see Preface.) 

Table 10.1 Critical values for Student's t distribution. P gives the value of the c.d.f., that is 
the probability that a number chosen from a t distribution is less than the value in the body 
of the table for the appropriate number of degrees of freedom. At the foot of the table SL 1 
and 2 give the significance levels for one- and two-tailed tests, respectively. Student's t distribu-
tion with an infinite number of degrees of freedom is identical to the standard normal distribution 

Degrees of p 

freedom 0.95 0.975 0.99 0.995 0.999 0.9995 

I 6.31 12.71 31.82 63.66 318.31 636.59 
2 2.92 4.30 6.96 9.92 22.33 31.60 
3 2.35 3.18 4.54 5.84 10.21 12.92 
4 2.13 2.78 3.75 4.60 7.17 8.61 
5 2.02 2.57 3.36 4.03 5.89 6.87 

6 1.94 2.45 3.14 3.71 5.21 5.96 
7 1.89 2.36 3.00 3.50 4.79 5.41 
8 1.86 2.31 2.90 3.36 4.50 5.04 

9 1.83 2.26 2.82 3.25 4.30 4.78 
10 1.81 2.23 2.76 3.17 4.14 4.59 

15 1.75 2.13 2.60 2.95 3.73 4.07 
20 1.73 2.09 2.53 2.85 3.55 3.85 

30 1.70 2.04 2.46 2.75 3.39 3.65 

60 1.67 2.00 2.39 2.66 3.23 3.46 

120 1.66 1.98 2.36 2.62 3.16 3.37 

Infinity 1.65 1.96 2.33 2.58 3.09 3.29 

SL 1 tail 5% 2.5% 1.0% 0.5% 0.1% 0.05% 
SL 2 tail 10% 5.0% 2.0% 1.0% 0.2% 0.10% 
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Table 10.2 Critical values for the x2 distribution. P gives the value of the c.d.f., that is the 
probability that a number chosen from a X2 distribution is less than the value in the body of 
the table for the appropriate number of degrees of freedom. SL gives the significance level 
for a one-tail test. To evaluate significance levels for a critical value of X2 equal to x, say, 
when the number of degrees of freedom exceeds 100, calculate y = (2x) 112 - (2f- 1)112 and then 
look up the significance level of y for a standard normal distribution 

Degrees of p 

freedom 0.05 0.1 0.9 0.95 0.99 0.999 

I 0.0039 0.016 2.71 3.84 6.63 10.83 
2 0.103 0.211 4.61 5.99 9.21 13.82 

3 0.352 0.584 6.25 7.81 11.34 16.27 
4 0.711 1.06 7.78 9.49 13.28 18.47 
5 1.15 1.61 9.24 11.07 15.09 20.52 

6 1.64 2.20 10.64 12.59 16.81 22.46 

7 2.17 2.83 12.02 14.07 18.48 24.32 

8 2.73 3.49 13.36 15.51 20.09 26.12 

9 3.33 4.17 14.68 16.92 21.67 27.88 

10 3.94 4.87 15.99 18.31 23.21 29.59 

11 4.57 5.58 17.28 19.68 24.72 31.26 
12 5.23 6.30 18.55 21.03 26.22 32.91 

13 5.89 7.04 19.81 22.36 27.69 34.53 
14 6.57 7.79 21.06 23.68 29.14 36.12 
15 7.26 8.55 22.31 25.00 30.58 37.70 

16 7.96 9.31 23.54 26.30 32.00 39.25 
17 8.67 10.09 24.77 27.59 33.41 40.79 
18 9.39 10.86 25.99 28.87 34.81 42.31 
19 10.12 11.65 27.20 30.14 36.19 43.82 
20 10.85 12.44 28.41 31.41 37.57 45.31 

21 11.59 13.24 29.62 32.67 38.93 46.80 
22 12.34 14.04 30.81 33.92 40.29 48.27 
23 13.09 14.85 32.01 35.17 41.64 49.73 
24 13.85 15.66 33.20 36.42 42.98 51.18 
25 14.61 16.47 34.38 37.65 44.31 52.62 

26 15.38 17.29 35.56 38.89 45.64 54.05 
28 16.93 18.94 37.92 41.34 48.28 56.89 
30 18.49 20.60 40.26 43.77 50.89 59.70 
40 26.51 29.05 51.81 55.76 63.69 73.40 
50 34.76 37.69 63.17 67.50 76.15 86.66 

60 43.19 46.46 74.40 79.08 88.38 99.61 
70 51.74 55.33 85.53 90.53 100.43 112.32 
80 60.39 64.28 96.58 101.88 112.33 124.84 
90 69.13 73.29 107.57 113.14 124.12 137.21 
100 77.93 82.36 118.50 124.34 135.81 149.45 

SL 95% 90% 10% 5% 1% 0.1% 
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