
1 Introduction

Introduction to Scientific Research and Biostatistics
Unversity of Zadar
Winter, 2012-2013

1



Contact Information

• Instructor: Stewart T. Schultz

– email: sschultz@unizd.hr

– phone: 200-653

• Teaching Assistant:

– Ivana Zubak

– email: izubak@unizd.hr

– phone: 200-653

• Course website: http://moodle.srce.hr/2012-2013/course/view.php?id=2097

– Username: zadar77

– Password: zadar77

Course textbook:
Vasilj, D. 2000. Biometrika i eksperimentiranje u bilonogojstvu. Hrvatsko agronomsko društvo,

Zagreb.
If you have any questions, feel free to contact us by sending a message within Merlin, by email or

phone.

Class schedule

• Lectures

– Monday: 10:00 to 12:00 (two hours), Lecture hall DHM

– Tuesday: 16:00 to 17:00 (one hour), Lecture hall DHM

• Computer laboratory

– Tuesday: 14:00 to 15:00 or 15:00 to 16:00 (one hour), SK-INF

Laboratory exercises will be using R, a programming language and an environment for statistical
computing and graphics, and a platform/forum for expert statisticians to provide software for general
use.

You will need to do your weekly quizzes outside the classroom at any computer with internet access
(at home or on campus). You will need to have R installed on this computer.

To do this, go to http://www.r-project.org/, and click on “CRAN” on the left hand panel under
downloads. Then choose a site to download from, perhaps from a site in Berlin, Germany. Then choose
your operating system. Under Windows, choose the “base” distribution by clicking “install R for the
first time”. Then click “Download R 2.15.1 for Windows”. This will give you a file with the extension
.exe. Just click on it and it will install R on your computer. It will give you a blue “R” on your desktop,
just click on that to start R running.

You will need to then install the package TeachingDemos within R. Open R, then go to the the
menu item “Packages”. Click “Install packages”, then choose “Germany (Berlin)” and hit OK. Then
scroll through the packages to “TeachingDemos”, and select that, and hit OK. This will install Teach-
ingDemos on your computer. Now go back to the R console and type “library(TeachingDemos)”. Now
TeachingDemos is active on your R session, and it will be active until you close R.

Course requirements

• Quizzes (15)

• Lab exercises (15)

• 3 midterm exams

• Attendance

• Cumulative final exam



Final exam
You are required to take the final exam. But if you do all the following, the requirement to take the

final exam is waived:

• Pass all the quizzes.

• Pass all the lab exercises.

• Pass all the midterm exams.

• Show a minimum quiet and respectful attendance in lectures and labs.

Course work
Questions?
You learn statistics by doing statistics, therefore we have weekly quizzes, which you will complete

online on the course page. You can take the quiz as many times as you want during the week it is open,
and your final score on the quiz will be your maximum score. There will be a new quiz posted each week,
and when the new quiz is posted the old quiz is locked and you can’t take it anymore.

Also, since statistical analysis is done on the computer, you will do weekly exercises in the computer
lab. These exercises will also be completed on the course web page, using R and Excel to answer the
questions.

What is statistics?

• Set of tools

• to convert data

• to probability.

In this course, our data examples for the most part will come from agricultural or aquacultural
research.

2 Probability

What is probability?

• Chance experiment

• Repeat the experiment n times, tally the frequency of event A, nA.

•
P (A) = lim

n→∞

nA
n

• Basics of set theory are necessary for manipulating probabilities.

Union

• A ∪B ≡ “A union B” or “A or B”

• A = {1, 2, 3, 4}

• B = {3, 4, 5}

• A ∪B = {1, 2, 3, 4, 5}
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Intersection

• A ∩B ≡ “A intersect B” or “A and B”

• A = {1, 2, 3, 4}

• B = {3, 4, 5}

• A ∩B = {3, 4}

Complement

• A′ ≡ “A complement” or “not A”

• A = {1, 2, 3, 4}

• B = {3, 4, 5}

• U = {1, 2, 3, 4, 5, 6}

• A′ = {5, 6}

• B′ = {1, 2, 6}

What is probability?

• Chance experiment

– Repeat the experiment n times, tally the frequency of event A, nA.

–
P (A) = lim

n→∞

nA
n

• Probability axioms

1. 0 ≤ P (A) ≤ 1

2. Impossible event: P (A) = 0

3. Certain event: P (A) = 1

4. Complement of A, A′: P (A′) = 1− P (A)

5. Two incompatible events A and B: P (A ∩B) = 0

6. Any two events A and B: P (A ∪B) = P (A) + P (B)− P (A ∩B)

Both definitions of probability are useful, the axiomatic definition for simple symmetric systems and
cases of random sampling, and the relative frequency definition within any experimental context. These
axioms are easily visualized in a Venn Diagram or probability tree.

Example: rolling dice.
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Conditional probability

Definition 1. The probability of A given B ≡ P (A/B).

P (A/B) =
P (A ∩B)

P (B)

Thus,
P (A ∩B) = P (A/B)P (B)

Conditional probability simply recognizes the intuitive fact that if you know something about the
context of an event, then its probability might change.

Independent events

Definition 2. Event A is independent of event B if and only if

P (A/B) = P (A)

Thus,
P (A ∩B) = P (A/B)× P (B) = P (A)× P (B)

“Product rule for independent events.”

Event A is independent of event B if the probability of A is the same whether or not B occurs.

Bayes’ Theorem

Theorem 3.

P (A/B) =
P (B/A)P (A)

P (B)

=
P (B ∩A)

P (B ∩A) + P (B ∩A′)

=
P (B/A)P (A)

P (B/A)P (A) + P (B/A′)P (A′)

Bayes’ Theorem allows calculation of the probability of event A conditioned on B, if you know the
probability of event B conditioned on A. This is easily illustrated by a Venn Diagram or by a probability
tree.

Screening test

Definition 4. A screening test is a preliminary test given to a sample of individuals to determine if they
are likely to have a condition such as a disease, genotype, or contamination. Two events are analyzed:
C, the presence of the condition; and T , a positive test result.

Screening test properties
Fundamental properties of a screening test T for a condition C:

• Positive predictive value: probability of having the condition given a positive test result; PPV =
P (C/T ).

• Negative predictive value: probability of not having the condition given a negative test result;
NPV = P (C ′/T ′).

• False positive rate: the probability of a positive test result given that the individual does not have
the condition; α = P (T/C ′) = 1− specificity.

• False negative rate: the probability of a negative test result given that the individual has the
condition; β = P (T ′/C) = 1− sensitivity.

•
Power = 1− β = sensitivity

Illustrate with a probability tree.
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Fagan plot

Definition 5. An intuitive plot that relates the prior probability of a condition P (C) to the posterior
probability of a condition P (C/T ), based on the ratio of true positive rate to false positive rate, or
power/α.

3 Review of basic concepts of Probability

Lecture 2: Review of basic concepts of probability

Lecture 2: Random variables and counting rules

What is statistics?

Definition 6. • Set of tools

• to convert data

• to probability.

Our tools so far

• Probability axioms (union, intersection, complement)

• Independence

• Conditional probability

• Bayes Theorem

• Venn Diagram, Probability Tree

What is probability?

• Chance experiment

– Repeat the experiment n times, tally the frequency of event A, nA.

–
P (A) = lim

n→∞

nA
n

• Axioms

1. 0 ≤ P (A) ≤ 1

2. Impossible event: P (A) = 0

3. Certain event: P (A) = 1

4. Complement of A, A′: P (A′) = 1− P (A)

5. Two incompatible (disjoint) events A and B: P (A ∩B) = 0

6. Any two events A and B: P (A ∪B) = P (A) + P (B)− P (A ∩B)

7. Two incompatible events A and B: P (A ∪B) = P (A) + P (B)
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Another example
Bayes’ Theorem, illustrated by screening test.
Screening nitrate with a test strip (Ross and Carlson, 1999). A white strip of paper turns pink or

purple if there is more than a trace amount of nitrate in the sample. So a pink strip means high quality
forage for goats or sheep. False positive rate is 0.98. False negative rate is 0.99. So it’s a very good
test, right? Well that depends on the prevalence, in this case the prevalence of plants with high nitrate
content.

Emphasize: Definition of prevalance. Prevalence is just P(C), the probability of the condition in the
population that you are interested. So in English we refer to the prevalence of AIDS, or the prevalence
of breast cancer, or the prevalence of drug use, the prevalence of obesity, prevalence of alcoholism. All
these are the overall probability that a random person drawn from the population has the condition.

The positive predictive value of the test is the proportion of all tests that are true positives.
The negative predictive value of the test is the proportion of all tests that are true negatives.
The sensitivity (or power) of the test is the proportion of all positive people who test positive. This

is one minus the false negative rate. So sensitivity is P(T/C), where T is a positive test, and C is having
the condition.

The specificity of the test is the proportion of all negative people who test negative. This is one
minus the false positive rate. So specificity is P(T’/C’).

The false positive rate of the test is the proportion of all negative people who test positive.
Other examples: The EMIT test, Enzyme Multiplied Immunoassay Test, for cocaine: α = 0.05, power

= 0.99, prevalence = 0.01.
False positive rate for opiates is 0.45 False positive rate for amphetamines is 0.8.
Example: mammography
power = 0.85 false positive rate = 0.05 prevalence in the population of breast cancer, for 40 yo women

= 0.0064

Screening test in R
In R, we can construct a screening test table using:

• package TeachingDemos

• SensSpec.demo()

There are three ways to visualize conditional probability: probability trees, Venn diagrams, and 2×2
tables. The R demonstration constructs a full screening test table from three inputs: the sensitivity of
the test, the specificity of the test, and the prevalence of the condition (or disease) in the population.

4 Random variables

Probability calculations using axioms
Two incompatible events A and B: P (A ∪B) = P (A) + P (B)
Examples using dice.

Classical definition of probability

Definition 7.

P (A) =
number of equally probable outcomes giving event A

total number of equally probable outcomes

Random variables

Definition 8. A random variable is a quantity whose value is not fixed, but which can take on different
values according to a probability distribution.

Classical definition of probability

Definition 9.

P (A) =
number of equally probable outcomes giving event A

total number of equally probable outcomes
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Random variables
Example: number of boys in a family of three
Example: the number of boys in a family of three. There are four possibilities, 0, 1, 2, and 3, and

each of these possibilities can be assigned a probability. In order to calculate these probabilities, first we
need to tally up all the possible outcomes for families of three. Here are the possible outcomes: BBB,
GGG, BGG, GBG, GGB, GBB, BGB, BBG. So there are eight possible outcomes. Now if we assume
that each of these outcomes is equally likely, then we can calculate the probabilities.

Classical definition of probability

Definition 10.

P (A) =
number of equally probable outcomes giving event A

total number of equally probable outcomes

P(0) = 1/8 P(1) = 3/8 P(2) = 3/8 P(3) = 1/8
So: we have a random variable, let’s call it x, the number of boys in a family of three children. There

are four possible values of this variable. Each of these values has an associated probability.

Binomial expansion
This result can be illustrated with the binomial expansion.

(p+ q)3 = p3 + 3p2q + 3pq2 + q3.

Classical definition of probability

Definition 11.

P (A) =
number of equally probable outcomes giving event A

total number of equally probable outcomes

Fundamental counting principle

Definition 12. If a first task can be done in any one of m different ways and, after that task is completed,
a second task can be done in any one of n different ways, then both tasks can be done, in the order
given, in m× n different ways.

This can be illustrated with a probability tree diagram.

Permutations

Definition 13. A permutation is an ordered arrangement of a set of distinctly different items. For
example, two permutations of the numbers one through five are 12345 and 53142.

Permutations

Theorem 14. Through a direct application of the Fundamental Counting Principle, the number of
permutations of n distinct items is given by

nPn = n! = n(n− 1)(n− 2) . . . (2)(1)

The number of permutations of r items selected from n distinctly different items is

nPr =
n!

(n− r)!

Example: 6 people seated in six chairs along a straight line. Example: 4 people out of 6 seated in
four chairs along a straight line.
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Combinations

Definition 15. A combination is an arrangement of a set of distinct items in which different orderings
of the same items are considered the same. In other words, a combination is just a subset of a set of
distinct elements.

Theorem 16. The number of combinations of r items selected from n distinct items is

nCr =
n!

r!(n− r)!
=

(
n
r

)
Example: you go to the store to buy two shirts. The store has 3 different kinds of shirts. How many

combinations of two shirts out of 3 can you buy? You can buy shirts 1 and 2, shirts 1 and 3, or shirts 2
and 3. So there are three possible combinations of two shirts selected out of a set of three shirts. Note
that shirts 1 and 2 is the same combination as shirts 2 and 1, because order does not matter in this
problem.

To understand the equation, we can arrange the possibilities under the general equation:

(number of combinations)×(number of permutations per combination) = total number of permutations

The total number of permutations is six: 12, 21, 13, 31, 23, 32. The number of permutations per
combination is 2 (12 and 21, etc.). So the number of combinations is three.

We can then write down each of these: the number of permutations is 3 × 2. In terms of factorials,
we can write this as 3!/1!. The number of permutations per combination is 2 × 1, which is 2!. So if we
solve this equation for the number of combinations, we have

number of combinations =
total number of permutations

number of permutations per combination
=

n!

r!(n− r)!

Laboratory exercises in R

• TeachingDemos: a package that illustrates statistical relationships

• sample() for random sampling from datasets

• SensSpec.demo() for constructing a screening test table

5 Review of counting rules and binomial distribution

Lecture 3: Review of counting rules and binomial distribution

What is statistics?

Definition 17. • Set of tools

• to convert data

• to probability.

Our tools so far

• Probability axioms (union, intersection, complement)

• Independence

• Conditional probability

• Bayes Theorem

• Venn Diagram, Probability Tree

• Fundamental counting rule

• Permutations rule

• Combinations rule
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Random variables

Definition 18. A random variable is a quantity whose value is not fixed, but which can take on different
values according to a probability distribution.

To take our next step in the study of probability, we need to consider the idea of a random variable.
A random variable is just the outcome of a chance experiment. For example, the number of heads in 10
coin flips is a random variable. Every time you flip a coin 10 times, you could get a different number.
You don’t know in advance what that number is, but we can calculate the probability of getting 0, 1,
2, 3, 4, 5, ... 10 heads. Calculating these probabilities is called finding the “probability distribution” of
this variable, which is the number of heads in 10 coin flips. The idea of a probability distribution is that
the total probability has to be 1, but that total is divided among many possible outcomes. So we have
P(0), P(1), P(2), .... P(10). These all must sum to one, because there are no other possibilities. So that
total probability is “distributed” over all possible outcomes. This distribution of probabilities is called
the “probability distribution”.

For this simple experiment of coin flipping, we can calculate that probability distribution. This
particular probability distribution, of number of heads in n coin flips, has a name, it’s called the “binomial
distribution”. “Binomial” means two possible outcomes, e.g. heads or tails.

Binomial distribution is derived from

• Fundamental counting rule

• Number of permutations of n items taken r at a time

• Number of combinations of n items taken r at a time

• We assume independence!

Fundamental counting principle

Definition 19. If a first task can be done in any one of m different ways and, after that task is completed,
a second task can be done in any one of n different ways, then both tasks can be done, in the order
given, in m× n different ways.

Examples: Number of possible phone numbers beginning with a given prefix, say 200. Number
of possible passwords, assuming either a letter or a digit, assuming say 26 letters and 10 digits, and
letters can be either upper or lower case. Monkeys at a keyboard typing letters at random, what is the
probability that a monkey types out Shakespeare’s Hamlet? There are 199749 characters in Shakespeare’s
Hamlet.

Answer: around one in 37199749 = 10313246.7.
The number of protons in the universe is around 1080.

Permutations

Definition 20. A permutation is an ordered arrangement of a set of distinctly different items. For
example, two permutations of the numbers one through five are 12345 and 53142.

Permutations

Theorem 21. Through a direct application of the Fundamental Counting Principle, the number of
permutations of n distinct items is given by

nPn = n! = n(n− 1)(n− 2) . . . (2)(1)

The number of permutations of r items selected from n distinctly different items is

nPr =
n!

(n− r)!
Examples: how many ways is it possible to seat 25 people in a straight line of chairs? Answer: 25!.

How many distinct ways is it possible to arrange the 10 letters of the word statistics? Let’s say we want
to elect a president, vice-president, and secretary of our class. How many different ways can we do this?
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Combinations

Definition 22. A combination is an arrangement of a set of distinct items in which different orderings
of the same items are considered the same. In other words, a combination is just a subset of a set of
distinct elements.

Theorem 23. The number of combinations of r items selected from n distinct items is

nCr =
n!

r!(n− r)!
=

(
n
r

)
Examples: say we go shopping for shirts. At the store there are 10 shirts for sale and we want to

buy 3. How many different combinations of 3 shirts out of 10 are possible? Let’s say we want to buy
two pairs of pants out of 15 that are available. How many combinations are possible? Now how many
possible combinations of both pants and shirts are possible if we have 3 shirts and 2 pants, out of 10 and
15?

What is probability?

• Chance experiment

– Repeat the experiment n times, tally the frequency of event A, nA.

–
P (A) = lim

n→∞

nA
n

• Axioms

1. 0 ≤ P (A) ≤ 1

2. Impossible event: P (A) = 0

3. Certain event: P (A) = 1

4. Complement of A, A′: P (A′) = 1− P (A)

5. Two incompatible (disjoint) events A and B: P (A ∩B) = 0

6. Any two events A and B: P (A ∪B) = P (A) + P (B)− P (A ∩B)

7. Two incompatible events A and B: P (A ∪B) = P (A) + P (B)

What is P(A)?

• If P(A) combines many incompatible outcomes a, b, c, d, etc., then

• P (A) = P (a ∪ b ∪ c ∪ d ∪ ...) = P (a) + P (b) + P (c) + P (d) + ...

If we want to know for example the probability of having 3 boys out of a family of six, then we need
to find all the ways that this event can occur, find the probability of each of those ways, and add them
up.

Probability of 3 boys out of 6 children?

1. Find all the way that this event can occur

2. Find the probability of each of these ways

3. Add them all up!

The number of ways that 3 boys out of a family of 6 can occur is the number of combinations of 3
out of 6. In R, you can type choose(6, 3), and this gives as an answer 20. The probability of each of
these 20 ways is the probability of a boy taken to the third power, times the probability of a girl taken
to the third power. We can multiply these probabilities together because we assume independence; i.e.
we assume that the sex of one child does not affect the probability of the sex of subsequent children. So
we are using the product rule for independence to get the probability of each possible way of getting 3
boys in a family of 6.
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Probability of 3 boys out of 6 children?

P (3 out of 6) = 6C3p
boysqgirls = 20p3q3, where p is the probability of a boy and q = 1 − p is the

probability of a girl.
We can generalize this to the Binomial distribution, for any number “n” of “trials” and any number

“r” of successes among those trials. “Binomial” refers to the fact that there are just two possibilities,
with no overlap: in our example we had boys or girls. “Trials” refers to the number of independent
experiments in which we observed either one or the other outcomes. In our example each trial was a
birth, and the outcome was boy or girl. “Successes” means that we often think of one outcome as a
success (the one we’re interested in) and the other outcome as a failure.

Binomial distribution

Theorem 24. Let the random variable R denote the number of successes in n trials of a binomial
experiment. Then R has a binomial distribution and the formula for the probability of observing exactly
r successes in n trials is given by

P (R = r) =

(
n
r

)
prqn−rfor r = 0, 1, 2, . . . n, where

n = number of trials, r = number of successes in n trials, p = probability of success in a single trial,

q = 1− p, and

(
n
r

)
=n Cr = n!

r!(n−r)!

In R, we can calculate a binomial probability very easily. Say we want to know the probability of 10
successes in 20 trials, with the probability of success in one trial equal to 0.2. Then the probability of
10 successes in 20 trials is

choose(20, 10)*0.2^10*0.8^10

The answer we get is 0.107.
Note that we assume that each trial is independent of each other trial. This allows us to use the

product rule of independence, and multiply all the probabilities together to compute the final probability.

6 Random variables: Binomial and Poisson

Lecture 4: Random variables
Today’s schedule:

• Random variables

• Probability distributions

• Measures of central tendency, spread

• Binomial distribution

• Poisson distribution

What is statistics?

Definition 25. • Set of tools

• to convert data

• to probability.

What is data?

Definition 26. Data is a collection of random variables that may be related in some way.
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Examples of random variables

• Number of female children in families of 5

• Number of diseased plants in a population of 100

• Number of deaths in a population of 100 fish over some time period

• Number of fish in a patch of seagrass

• Photosynthesis rate of a plant

• Respiration rate of a plant

• Weight of a fish

• Number of seeds germinating out of 100

• Number of eggs hatching out of 100

• etc.

Random variables

Definition 27. A random variable is a quantity whose value is not fixed, but which can take on different
values according to a probability distribution. A probability distribution consists of a chart, table,
graph, or formula that specifies all the values that the random variable can assume along with the
probability of those values occurring.

Examples: we take a random sample of students and measure height or weight. A random sample
of plants and measure seet set, fruit set, harvest yield, growth rate, survivorship from seed to harvest.
Or the number of offspring in a family with a trait or condition of interest, such as disease, or disease
resistance, or growth rate, or some trait we’re interested in.

Example: flipping a coin once: the probability distribution is 0.5 on heads and 0.5 on tails. Rolling
a die once: the probability distribution is 1/6 on each of the six possibilities. THe complication here
comes when you flip a coin more than once. Now how do we distribute probabilities over 1, 2, 3, 4, etc.
heads?

Draw a graph of a probability distribution to visualize the distribution of probability across possible
values of the variable.

There are two types of probability distribution the probability mass distribution for discrete variables,
and the probability density distribution for continuous variables

Probability distributions
Two kinds:

• Probability mass function for a discrete variable

• Probability density function for a continuous variable

Probability distributions
Two fundamental properties:

• Location

• Spread

Draw pictures of probability distributions varying in location and spread.
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Measures of location, or “central tendency”

• Mode

• Median

• Mean, or “Expected value” of x, E(x) = µ

Mean of a distribution

Definition 28. The mean of a discrete probability distribution is

E(x) = µ =
∑
i

xiP (xi).

The mean of a continuous probability distribution is

E(x) = µ =

∫ +∞

−∞
xf(x)dx.

In both cases, the mean is the “balance point” of the distribution.

Measures of variability

• Variance = V ar(x) = σ2
x

• Standard deviation =
√
V ar(x) = σx

Variance of a distribution

Definition 29. The variance of a discrete probability distribution is

V ar(x) = E(x− µ)2 =
∑
i

(xi − µ)2P (xi).

The variance of a continuous probability distribution is

V ar(x) = E(x− µ)2 =

∫ +∞

−∞
(x− µ)2f(x)dx.

Properties of the mean

• E(x+ c) = E(x) + c

• E(ax) = aE(x)

• E(x+ y) = E(x) + E(y), even if x and y are dependent (correlated).

• E(xy) 6= E(x)E(y)

• E(x2) 6= [E(x)]2

Properties of the variance

• V ar(ax) = a2V ar(x)

• V ar(x+ y) = V ar(x) + V ar(y) only if x and y are independent (not correlated)

Let’s apply to the binomial distribution

13



Classical definition of probability

Definition 30.

P (A) =
number of equally probable outcomes giving event A

total number of equally probable outcomes

P (A) = (number of equally probable outcomes giving event A)

×(probability of one outcome giving event A)

Binomial distribution

Definition 31. Consider n independent trials of an experiment where at each trial there are exactly
two possible outcomes: success with probability p that is constant from trial to trial and failure with
probability 1 − p. Let X equal the number of successes out of the n repeated trials. The random
variable X is called a binomial random variable, and its probability distribution is called a binomial
distribution.

Mean and variance of the binomial distribution

Theorem 32. If x is a binomial random variable with n trials and probability of success p, then the
mean of this variable is np and its variance is np(1− p) = npq.

Binomial distribution

Theorem 33. Let the random variable X denote the number of successes in n trials of a binomial
experiment. Then X has a binomial distribution and the formula for the probability of observing exactly
x successes in n trials is given by

P (X = x) =

(
n
x

)
pxqn−xfor x = 0, 1, 2, . . . n, where

x = number of trials, x = number of successes in n trials, p = probability of success in a single trial,

q = 1− p, and

(
n
x

)
=n Cx = n!

x!(n−x)!

Poisson distribution
The Poisson distribution can be thought of a special case of the binomial distribution for very large

n and very small p.
In that case, the mean np and variance np(1− p) are essentially equal to each other.

Poisson distribution
The probability of exactly k events during some interval or across some spatial region, given that the

mean number of events is λ, is equal to

P (k, λ) =
λke−λ

k!

Binomial distribution in R

• dbinom(0:10, 10, 0.5) gives the probability of each of zero to 10 successes in a sample of 10, where
the probability pf one success is 0.5

• pbinom(0:10, 10, 0.5) gives the cumulative probability of each of zero to zero to 10 successes in a
sample of 10, where the probability pf one success is 0.5.

• plot(0:10, dbinom(0:10, 10, 0.5)) plots the above on a graph, which gives a visual depiction of the
binomial probability distribution for those values.
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Poisson distribution in R

• dpois(0:10, 2) gives the probability of each of zero to 10 events across some spatial or temporal
sampling area, where mean number of events in that area is 2

• ppois(0:10, 2) gives the cumulative probability of each of zero to 10 events across some spatial or
temporal sampling area, where mean number of events in that area is 2.

• plot(0:10, dpois(0:10, 2)) plots the above on a graph, which gives a visual depiction of the poisson
probability distribution for those values.

Lecture 5: Random variables
Announcement:

• Midterm 1 will be held on Tuesday, November 20, 14:00 to 17:00.

• Midterm will be a selection of questions taken from Quizzes 1 through 4.

• A practice midterm will be posted soon.

• Location of the midterm will be announced.

7 Random variables: Binomial and Poisson

Lecture 4: Random variables
Today’s schedule:

• Random variables

• Probability distributions

• Measures of central tendency, spread

• Binomial distribution

• Poisson distribution

Lecture 6: Random variables: review

What is statistics?

Definition 34. • Set of tools

• to convert data

• to probability.

Probability distributions
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Probability distributions
In this probability distribution, the probability that x is greater than one equals one-half:

Probability distributions
Two fundamental properties:

• Location

16



• Spread

Measures of location, or “central tendency”

• Mode

• Median

• Mean, or “Expected value” of x, E(x) = µ

Mean of a distribution

Definition 35. The mean of a discrete probability distribution is

E(x) = µ =
∑
i

xiP (xi).

The mean of a continuous probability distribution is

E(x) = µ =

∫ +∞

−∞
xf(x)dx.

In both cases, the mean is the “balance point” of the distribution.

Mean of a distribution
The mean is the balancing point of the distribution, if we treat the area under the curve as physical

mass.

Measures of variability

• Variance = V ar(x) = σ2
x

• Standard deviation =
√
V ar(x) = σx

17



Variance of a distribution

Definition 36. The variance of a discrete probability distribution is

V ar(x) = E(x− µ)2 =
∑
i

(xi − µ)2P (xi).

The variance of a continuous probability distribution is

V ar(x) = E(x− µ)2 =

∫ +∞

−∞
(x− µ)2f(x)dx.

Properties of the mean

• E(c) = c, where c is a constant.

• E(x+ c) = E(x) + c, where c is a constant.

• E(cx) = cE(x), where c is a constant.

• E(x+ y) = E(x) + E(y), even if x and y are dependent (correlated).

• E[E(x), E(y)] = E(x, y),

• E(xy) 6= E(x)E(y)

• E(x2) 6= [E(x)]2

Binomial distribution

• We have n trials, and the probability of success on each trial is p.

• p is a constant.

• Each trial is independent of every other trial (one trial does not affect another trial).

• Mean of the binomial distribution E(x) = np.

• Variance of the binomial distribution V ar(x) = np(1− p) = npq.

Binomial distribution
Probability of r successes in n trials:

P (r, n) = number of ways r successes× probability of one way

= number of ways to get r successes× prqn−r

= combinations of n items taken r at a time× prqn−r

=
n!

r!(n− r)!
× prqn−r
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Statistical test
We want to know if some observation can be explained by chance variation, or if some additional

cause is present.

1. We suppose that we have a known probability distribution.

2. We suppose that our observation was drawn from that probability distribution.

3. We ask: what is the probability that we would have obtained a value this extreme (or more) from
this distribution?

4. If this probability is less than 0.05, then we conclude that this observation could not (likely) have
occurred by chance; i.e. it is “unusual” or “unexpected.” Therefore, there must have been some
cause outside the variation in the given probability distribution.

5. If this probability is greater than or equal to 0.05, then we conclude that this observation could
have occurred by chance.

Binomial distribution in R

• dbinom(0:10, 10, 0.5) gives the probability of each of zero to 10 successes in a sample of 10, where
the probability pf one success is 0.5

• pbinom(0:10, 10, 0.5) gives the cumulative probability of each of zero to zero to 10 successes in a
sample of 10, where the probability pf one success is 0.5.

• plot(0:10, dbinom(0:10, 10, 0.5)) plots the above on a graph, which gives a visual depiction of the
binomial probability distribution for those values.

Examples: number of lymphocytes in a sample of blood cells. Number of a particular type of offspring.
Number of individuals dying over a given time interval (also might be a Poisson distribution), number
of disease infected individuals in a population.

Poisson distribution

• Poisson distribution is the binomial distribution with large n and small p.

• If n > 100 and p < 0.01, and all the assumptions of the binomial are met, then we have the Poisson
distribution.

• Then the mean is equal to the variance.

• σ2 = V ar(x) = np(1− p) ∼= np = mean(x) = µ.

• Poisson distribution is appropriate for events in space or time, where one event is independent of
other events.

• Examples: genetic mutation, dispersion of individuals in space, morphology, weather events (e.g.
storms), accidents, number of deaths in a region or across a time interval, number of parasites
found on a host, radioactive decay.

Poisson distribution in R

• dpois(0:10, 2) gives the probability of each of zero to 10 events across some spatial or temporal
sampling area, where mean number of events in that area is 2

• ppois(0:10, 2) gives the cumulative probability of each of zero to 10 events across some spatial or
temporal sampling area, where mean number of events in that area is 2.

• plot(0:10, dpois(0:10, 2)) plots the above on a graph, which gives a visual depiction of the poisson
probability distribution for those values.
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Examples from the binomial distribution: can a person predict the outcome of a coin flip? Do this
in class. Another example: lymphocytes in a sample of 100 blood cells. Probability of HIV positive
is 0.008. What if 500 babies are screened, and 5 are found positive? Number of people getting cancer
over a particular time interval. Let’s say the probability that someone dies between age 20 and age 40
is 0.002. Let’s say we have 100 students age 20 in a class, and they have their 20-year reunion, and 3
people died. Is that an unusual class?

Examples from the Poisson distribution: let’s say there is an expected average of 1 new mutation per
seed. We screen a seed for mutations, and we find 3 new mutations. Is this expected purely by chance?
Number of buras per winter is 10. This winter there were 20. Is this expected by chance, or could some
other factor be involved, maybe climate change? Let’s say the average number of offspring of a particular
bird is 3. We take a particular bird we’re interested in and find that it produces 6 offspring. Could this
have happened by chance, or is some other factor involved (perhaps an unusual diet)?

Normal distribution
Fundamental rule: approximately 95% of all observations lie within 2 standard deviations of the

mean!

8 Normal distribution

Announcement

• Midterm exam 1 is in the Economics building, room 15, first floor on the right, Tuesday, November
20, 14:00 to 17:00

• Midterm 1 practice exam is online
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Lecture 6: Normal distribution and the Central Limit Theorem
Reading: pp. 11 - 44 in Vasilj.

What is statistics?

Definition 37. • Set of tools

• to convert data

• to probability.

Probability distributions

plot(0:5, dbinom(0:5, 5, .5), type = “h”, xlab = “Successes”, ylab = “Probability”, main = “Binomial,
n = 5, p = 0.5”)
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Binomial distribution

• We have n trials, and the probability of success on each trial is p.

• p is a constant.

• Each trial is independent of every other trial (one trial does not affect another trial).

• Mean of the binomial distribution E(x) = np.

• Variance of the binomial distribution V ar(x) = np(1− p) = npq.

Binomial distribution

µ = E(x) = np = 5× 0.5 = 2.5.
σ2 = V ar(x) = E(x− µ)2 = np(1− p) = 5× 0.5× 0.5 = 1.25.

σ =
√
σ2 =

√
1.25 = 1.12.

Binomial distribution: Example

• Given: probability that a blood cell is a lymphocyte is 0.22 in a healthy human population.

• In one patient’s blood test, 100 cells were counted and 32 were lymphocytes.

• Is this normal?

• Need to calculate P (X = 32) or more from a binomial distribution with n = 100 and p = 0.22.

• P (X = r) = n!
r!(n−r)! × p

rqn−r

• P (0 ≤ X ≤ r) = pbinom(r, n, p)

• P (r ≤ X ≤ n) = 1− pbinom(r-1, n, p)

We do this with the pbinom() function. pbinom(r, n, p) gives the probability that the number of
successes lies between 0 and r inclusive. So to get the probability that the number of successes is between
r and n inclusive, we compute 1 - pbinom(r-1, n, p). This follows from the axioms of probability.
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Statistical test
We want to know if some observation can be explained by chance variation, or if some additional

cause is present.

1. We suppose that we have a known probability distribution.

2. We suppose that our observation was drawn from that probability distribution.

3. We ask: what is the probability that we would have obtained a value this extreme (or more) from
this distribution?

4. If this probability is less than 0.05, then we conclude that this observation could not (likely) have
occurred by chance; i.e. it is “unusual” or “unexpected” or “significant.” Therefore, there must
have been some cause outside the variation in the given probability distribution.

5. If this probability is greater than or equal to 0.05, then we conclude that this observation could
have occurred by chance.

Binomial distribution: Example 2

• Given: probability that a coin lands heads is 0.5.

• I flip a coin 10 times, and a student guesses correctly on 4 flips.

• Can the student predict a coin flip?

• Need to calculate P (X = 4) or better from a binomial distribution with n = 10 and p = 0.5.

• 1 - pbinom(3, 10, 0.5)

Poisson distribution

• Poisson distribution is the binomial distribution with large n and small p.

• If n > 100 and p < 0.01, and all the assumptions of the binomial are met, then we have the Poisson
distribution.

• Then the mean is equal to the variance.

• σ2 = V ar(x) = np(1− p) ∼= np = mean(x) = µ.

• Poisson distribution is appropriate for events in space or time, where one event is independent of
other events.

• Examples: genetic mutation, dispersion of individuals in space, morphology, weather events (e.g.
storms), accidents, number of deaths in a region or across a time interval, number of parasites
found on a host, radioactive decay.

Poisson distribution: Example 1

• Given: in a normal plant, the mean number of mutations per genome each generation is 1.0.

• I expose a plant to a chemical, then measure 3.0 mutations in one seed.

• Is the chemical a mutagen?

• Need to calculate P (X = 3) or more from a Poisson distribution with λ = 1.0.

• P (X = k) = λke−λ

k! .

• 1 - ppois(2, 1)
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Normal distribution

• The normal distribution is bell-shaped.

• The normal distribution is symmetrical.

• Approximately 95% of all observations lie within 2 standard deviations of the mean.

Normal distribution: Example 1

• The mean height of an adult Arabidopsis plant is 15 cm, and the standard deviation of height is 2
cm.

• I randomly sample a seed from a mutant variety of Arabidopsis. I grow it to adult, and its height
is 10 cm.

• Does the mutant gene cause stunted growth?

• Need to calculate P (X = 10) or lower, assuming a normal distribution.

• pnorm(10, 15, 2)

Note that the normal distribution is continuous, while the Binomial and Poisson distributions are
discrete. For this reason, you don’t have to worry about the probability of the endpoint of the interval
you are calculating. So, for the binomial probability of more than 6 successes out of 10 trials, for p =
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0.5, you compute 1 - pbinom(6-1, 10, 0.5). We have to subtract 1 from six, otherwise we would count
the probability of 6 twice. For the normal distribution probability of greater than 6 if the mean is 5
and standard deviation 1.58, we compute 1 - pnorm(6, 5, 1.58). We don’t have to subtract 1 from six,
because the probability of six is zero, because this is a continuous distribution.

Normal distribution

• The normal distribution is bell-shaped.

• The normal distribution is symmetrical.

• Approximately 95% of all observations lie within 1.96 standard deviations of the mean.

Normal distribution

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2
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Where did this equation come from?

Central Limit Theorem

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Theorem 38. The sum of n identically-distributed variables call Sn. Then Sn approaches a normal
distribution as n approaches infinity.

Central Limit Theorem
The central limit theorem can be demonstrated in a Galton board, or a Quincunx machine:
http://www.youtube.com/watch?v=xDIyAOBayU
http://www.mathsisfun.com/data/quincunx.html

Normal distribution
The binomial distribution becomes the normal distribution if np ≥ 5 and n(1− p) ≥ 5. Compare the

two when n = 16 and p = 0.5:
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Here, np(1 − p) = (16)(0.25) = 4, so we wouldn’t usually consider this quite a normal distribution,
but it is very very close. If n = 20, then it is virtually indistinguishable from normal.

Similarly, the Poisson distribution becomes a normal distribution when λ > 5. Here, the variance is
also greater than 5, because the variance and mean are equal.

Pascal’s triangle

The normal distribution can be illustrated with Pascal’s triangle. Each row represents a biological
experiment with n trials, with n = the number of rows counted down from the top. Each number in the
triangle represents the number of ways of getting r successes, where r is equal to the number of slots in
the row, counted in from the left. Pascal’s triangle itself is illustrated by the Quincunx machine.

9 Central Limit Theorem continued

Lecture 7: Central limit theorem, normal distribution continued
Announcements:

• Reading for today’s subject: pp. 48 - 54 in Vasilj.
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• New location for Tuesday’s lab exercises: Economy building room 15

• Central limit theorem, standard error of the mean

• Estimation, confidence intervals

Central Limit Theorem
The central limit theorem can be demonstrated in a Galton board:
http://www.youtube.com/watch?v=xDIyAOBayU
http://www.mathsisfun.com/data/quincunx.html
Any repeated random process eventually generates the normal distribution. In this case the repeated

random process is a ball bouncing against pegs, left to right with probability 0.5. In other words a
binomial variable with n equal to the number of rows on the board, and p equal to any constant.

Central Limit Theorem

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Theorem 39. The sum of n identically-distributed variables call Sn. Then Sn approaches a normal
distribution as n approaches infinity.

Question: What if the variables are not identically-distributed? See the Galton board to see what
happens.

Answer: we can calculate the sample mean!

The sample mean is calculated x̄ =
∑n
i xi
n .

Question: what is the shape of the distribution of the sample mean?
Answer: We know that the sample mean should approach a normal distribution, by the Central Limit

Theorem.
If you are drawing from two or more distributions, then the resulting sum is not necessarily normally

distributed. You must be drawing from a single distribution, at random, every time, for the sum to be
normally distributed.

Central Limit Theorem

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Theorem 40. The sum of n identically-distributed variables call Sn. Then Sn approaches a normal
distribution as n approaches infinity.

Corollary: the sample mean of these n identically-distributed variables is normally distributed.
Question: what is the mean of the sample mean?
Corollary: the mean of the sample mean is the mean of the distribution.
Question: what is the variance of the sample mean?
Corollary: the variance of the sample mean of the n variables is their variance divided by n. The

standard deviation of the sample mean of the n variables is the standard deviation divided by
√
n.

Again, the central limit theorem requires that all the variables that we sum have the same “identical“
distribution, identical mean and variance. If they don’t, then the sum is no longer normally distributed.

This can be demonstrated on the Quincunx machine on the mathisfun website, by changing the p-
value. Let it run with p=0.5 for awhile, then switch to p=.1 or something, and see what happens. You
get a bimodal distribution.

Are we then out of luck? Can we convert this to a normal distribution somehow? Yes we can, by
taking a random sample from it. Every time we take a sample from it, we have a sample from the same
“identical“ distribution. The distribution does not change between samples. So if we take a random
sample from that distribution, then get the sum of that sample, the sum is normally distributed, by the
central limit theorem.
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But, if the sum is normally distributed, then the sample mean also is. The sample mean is just

x̄ =
∑
i xi
n , where n is the sample size. Notice that the numerator is the sum of many identically

distributed variables (we know they are all identically distributed because we have sampled randomly
from the same distribution), so the numerator is likely to be normally distributed if n is large enough.
Dividing by n is just dividing by a constant, so that has no effect on the distribution, so the sum divided
by n is also normally distributed. So the sample mean is normally distributed.

This is a very useful result. By the central limit theorem, we know that the sample mean will be
approximately normally distributed, and it will be closer to the normal distribution as n, the sample size,
increases. Generally, if we are sampling from a distribution that is already close to a normal distribution,
such as height or mass of individuals, then we need exceed only a small n in order for the mean to be
normally distributed. Usually n > 20 or so is enough sample size to assume the mean is normal.

Draw a normal distribution, show its mean, now imagine that we take random samples of n = 100
or some other number from this population, and for each sample we calculate the mean and mark it
on the graph. Will our estimates of the mean be as spread out as the original distribution? No, their
distribution will be narrower. In other words, the distribution of the sample mean has a lower variance
than the distribution of teh population you are sampling from. How much lower? We can calculate this
from the properties of the variance that we demonstrated last week.

Properties of the mean

• E(ax) = aE(x)

• E(x+ y) = E(x) + E(y) for all variables x and y with finite variance

Central Limit Theorem
The expected value of the sample mean is the mean of the distribution, E(x̄) = E(

∑n
i xi/n) =

E(x) = µ.

Proof. We know that E(x+y) = E(x)+E(y). Also, E(ax) = aE(x). Then E(x1+x2) = E(x1)+E(x2) =
2E(x). Then E(x1 + x2 + x3 + . . . + xn) = nE(x). Or, equivalently, E(

∑n
i xi) = nE(x). But we want

to know E(
∑n
i xi/n). This is just the sum divided by the constant. Therefore the mean is the sum of

the means divided by the constant, E(x̄) = E(
∑n
i xi/n) = nE(x)/n = E(x) = µ.

Properties of the variance

• V ar(ax) = a2V ar(x)

• V ar(x+ y) = V ar(x) + V ar(y) only if x and y are independent (not correlated)

Central Limit Theorem

Theorem 41. [. . .]
Corollary: the variance of the sample mean of the n variables is their variance divided by n. The

standard deviation of the sample mean of the n variables is the standard deviation divided by
√
n.

Central Limit Theorem

Proof. We know that V ar(x + y) = V ar(x) + V ar(y), if x and y are independent. Also, V ar(ax) =
a2V ar(x). Then V ar(x1 + x2) = V ar(x1) + V ar(x2) = 2V ar(x). Then V ar(x1 + x2 + x3 + . . .+ xn) =
nV ar(x). Or, equivalently, V ar(

∑n
i xi) = nV ar(x). But we want to know V ar(

∑n
i xi/n). This is just

the sum divided by the constant. Therefore the variance is the sum of the variances divided by the
constant squared, V ar(x̄) = V ar(

∑n
i xi/n) = nV ar(x)/n2 = V ar(x)/n. Then the standard deviation is

the square root of the variance: SD(x̄) =
√
V ar(x̄) =

√
V ar(x)/n = SD(x)/

√
n ≡ S.E.M.
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Central Limit Theorem

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

Theorem 42. The sum of n identically-distributed variables call Sn. Then Sn approaches a normal
distribution as n approaches infinity.

Corollary: the sample mean of these n identically-distributed variables is normally distributed.
Corollary: the variance of the sample mean of the n variables is their variance divided by n. The

standard deviation of the sample mean of the n variables is the standard deviation divided by
√
n.

Central Limit Theorem
In summary:

• The mean of all the sample means is µ, the population mean.

• The standard deviation of all the sample means is σ√
n

, where σ is the population standard deviation.

• The variance of all the sample means is σ2

n , where σ2 is the population variance.

Central Limit Theorem
General procedure if we know the true standard deviation σ:

• Given we know the true mean µ and true standard deviation σ from the distribution.

• We have an observation xi.

• We calculate the Z score of our observation:

Z =
xi − µ
σ

.

• This is the distance from the mean to the observation in units of standard deviation.

• If this distance is in the tail of the distribution (e.g. if |Z| > 1.96) then we conclude that the
observation is “unusual” or “unexpected” or “significant”.

• Or, we can calculate the probability that the observation is at least as extreme as observed.

Example. Let’s imagine that a hotel owner has a hotel with 9 rooms. He has a boiler that can give
90 minutes of hot water for the 9 showers. He wants to know what is the probability that if he has all
9 guests showering at the same time, they will use up all the 90 minutes of water? Well that would
require that the average shower length for those 9 guests is 10 minutes. So, what’s the probability that
the average (sample mean) shower length for 9 random guests is 10 minutes? To calculate this we need
to know the mean and standard deviation. Let’s say he knows (he has been keeping track over several
months) that the mean shower length of people in his hotel is 8 minutes, and the standard deviation is
3 minutes. What is the probability that the mean shower length of 9 people would be higher than 10
minutes? The standard deviation of the mean, or S.E.M. is 3 divided by the square root of 9, or 3/3 = 1.
The mean is 8 minutes. So 10 minutes is 2 standard deviations higher than 8, and 2 standard deviations
is 95% of the normal distribution. So our Z-score is 2.0, and the probability that 9 people all showering
at the same time would use up all the water is approximately 0.025, or 2.5%.

NOTE our assumptions here. We assume the sample mean is a normal distribution. Can we assume
this? The reason we assume it is that we have a sample of 9. Is 9 large enough of a sample to assume
normality? It might be, if the variable of shower time is close to normal, as you can see from the R
TeachingDemo clt.examp(). Just adding together 5 or so uniform random variates is enough to give a
distribution close to normal. But in practice, we might be a little concerned that the distribution is
normal if we have a sample size only of 9. We also assume that we already know the mean and standard
deviation of shower time of the hotel guests, and that the 9 people are a random sample from all potential
guests of this hotel. If they are not a random sample, then we can’t make any conclusions. For example,
the mean and standard deviation may have changed recently because people changed their showering
habits, etc., so now we have a sample from a different distribution than that assumed.
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10 Estimation

Lecture 7 continued: Estimation with confidence intervals
Announcements:

• Reading for today’s subject: pp. 52 - 54 in Vasilj.

• Z scores, estimation, and confidence intervals.

Lecture 7 continued: Estimation with confidence intervals
Remember, the standard deviation of the sample mean is

σ√
n

• This is also called the SEM or standard error of the mean.

• We can use this to create error bars around our estimate of the mean.

• There are two conventions for error bars: the simpler one is that the error bar is just the standard
error of the mean.

• The more complicated one is that the error bar is the “confidence interval” around the mean.

• Both can be better understood in terms of Z, the standard normal variate.

Z scale
General procedure if we know the true standard deviation:

• Given we know the true mean µ and true standard deviation σ from the distribution.

• We have an observation xi.

• We calculate the Z score of our observation:

Zi =
xi − µ
σ

.

• This is the distance from the mean to the observation in units of standard deviation.

• If this distance is in the tail of the distribution (e.g. if |Zi| > 1.96) then we conclude that the
observation is unusual.

• Z0.025 = 1.960.

• Z0.05 = 1.645.

• Z0.005 = 2.576.

Z distribution
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f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

f(x) =
1√
2π
e−

x2

2

Notice that the mean of the Z variable is 0, and the standard deviation and variance are both equal
to 1.

Z distribution in R: pnorm()
For any Zi score, the probability that Z is less than or equal to Zi,

P (Z ≤ Zi) = pnorm(Zi).

You should know (memorize) that the Z variable is normally distributed with mean 0 and standard
deviation 1. The Z distribution is called the “standard normal” distribution, i.e. the distribution with
mean 0 and standard deviation 1. All normal distributions can be converted to the Z distribution; in
fact it makes them easier to work with. It’s just changing the scale.

Example: assume the mean height of men is 175 cm, and the standard deviation is 8 cm, and height
is normally distributed. Then my height of 183 cm has a Z score of 1, it is one standard deviation
higher than the mean. In R, the probability that a random man is shorter than I am is pnorm(1). The
probability that a random man is taller is 1-pnorm(1). pnorm() assumes that the mean is zero and the
standard deviation is 1 unless you tell it otherwise. So, for example, pnorm(1) is the same as pnrom(183,
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mean=175, sd = 8) since 183 has a Z score of 1 if the mean is 175 and the sd is 8. So in general, for any
Z score, pnorm(Z) is the probability of Z or smaller.

Z distribution

Z critical values

P (−2.576 ≤ Z ≤ 2.576) = 0.99.

P (−1.960 ≤ Z ≤ 1.960) = 0.95.

P (−1.645 ≤ Z ≤ 1.645) = 0.90.

Notice that most of the time the normal distribution that we will be working with is for the sample
mean. So we can convert a sample mean into a Z value. But for the sample mean, the standard deviation
is not σ, rather the standard deviation is σ/

√
n. Remember the standard deviation of the mean is the

SEM, the standard error of the mean. So the Z value for the sample mean is (x̄− µ)/(σ/
√
n).

Confidence interval

Definition 43. A confidence interval is any interval that we can say with confidence contains a parameter
of interest. The parameter of interest is usually the population mean µ or variance σ2. Our level
of confidence is determined by the method of constructing the interval. The method will produce an
interval containing the estimated parameter with a probability equal to the level of confidence.

Calculating the 95% confidence interval for µ

P (−1.96 ≤ Z ≤ 1.96) = 0.95.

P

(
−1.96 ≤ x̄− µ

σ√
n

≤ 1.96

)
= 0.95.

P

(
−1.96

σ√
n
≤ x̄− µ ≤ 1.96

σ√
n

)
= 0.95.
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P

(
−x̄− 1.96

σ√
n
≤ −µ ≤ −x̄+ 1.96

σ√
n

)
= 0.95.

P

(
x̄− 1.96

σ√
n
≤ µ ≤ x̄+ 1.96

σ√
n

)
= 0.95.

Calculating the 95% confidence interval

P

(
x̄− 1.96

σ√
n
≤ µ ≤ x̄+ 1.96

σ√
n

)
= 0.95.

x̄± 1.96
σ√
n

This is the 95% confidence interval for the sample mean.
We are 95% confident that the true mean is contained in this interval.

Z0.025 = 1.96.

x̄± Z0.025
σ√
n
.

For example, we want to estimate the mean height of Croatian men. We take a random sample of 5
men, measure their height. Let’s say the mean is 169. What is the 95% confidence interval? It is (162,
176). Let’s say we take another sample of 20 men, and find that the sample mean is 176. Then the 95%
confidence interval is (172.5, 179.5). Let’s say we take another sample of 100 mean, and find the sample
mean is 174. Then the 95% confidence interval is (172.4, 175.6). Let’s say we take a random sample of
1000 men, and get a mean of 175.3. Now the 95% confidence interval is (174.8, 175.8). You should do
these calculations yourself to check your knowledge. As you can see, as the sample size increases, the
width of the confidence interval gets smaller. In other words, our estimate becomes closer and closer to
the true mean, and our 95% confidence of the true mean extends over a smaller and smaller segment of
possible values.

We don’t have to calculate the 95% confidence interval, we could also calculate the 90% confidence
interval, or the 99% confidence interval, or some other interval. It depends on how certain we would like
to be about the true value of the population mean. The 99% confidence interval is wider than the 95%
and 90% confidence intervals.

This procedure can be followed for any sample mean from any distribution, as long as n, the sample
size is large enough that we can assume the normal distribution. The calculation can be done for the
binomial distribution and for the Poisson distribution. The mean of a binomial variable (the number
of successes out of n trials, with probability of success p), is just the observed proportion of successes,
nsuccesses/n.

Lecture 10: Estimation with confidence intervals, continued
Announcements:

• Reading for this week’s subject: pp. 54 - 79 in Vasilj.

• No lab exercises next Tuesday.

• Instead Midterm Exam 1 will be during the lab period.

• You need to sign up for the exam. Sign up for one of three sessions:

14:00 to 14:50

15:00 to 15:50

16:00 to 16:50
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Lecture 10: Estimation with confidence intervals, continued
Rules for Midterm Exam 1

• You have 50 minutes.

• This exam is closed book, closed notes, open mind.

• You are allowed one side of one sheet of paper for any notes you want.

• You may take the exam as many times as you want, within the 50 minute time limit.

• Questions?

Lecture 10: Estimation with confidence intervals

Population versus sample

Definition 44. A population is the set of all persons or things of interest. A sample is a subset of the
population. Convention: Greek letters are used for population parameters (µ for mean, σ for standard
deviation. Latin letters are used for the sample (x̄ for sample mean, s for sample standard deviation).
We say x̄ is an estimate of µ, and s is an estimate of σ.

Show a diagram of population and sample, with corresponding probability distributions. Show the
definition of mean of the probability distribution, and the definition of mean of the sample.

We can illustrate the effects of sample size on the distribution of the mean with R, using the dnorm()
function. Say for heights of men, the distribution will have a mean of 175 cm and standard deviation
of 8 cm. To make a plot, we type xv = seq(140, 215, .1) to get the x values to plot, and then plot the
distribution with plot(xv, dnorm(xv, mean=175, sd = 8), type=“l“). We can show the effect of sample
size with points(xv, dnorm(xv, mean=175, sd = 8/sqrt(n)), where n is the sample size.

For example: IQ scores for adults are normally distributed, with mean µ = 100 and standard deviation
σ = 15. If a random sample of 16 adults is selected, find the probability that the average IQ score in
the sample will be at least 92.5. Here the standard deviation of the mean is 15/4 = 3.75, and 92.5 is
(−7.5)/3.75 = −2 on the Z scale. So the probability that the mean is at least -2 on the Z scale is 1 -
pnorm(-2) = 0.977.

We can use the standard error of the mean (SEM) to construct the margin of error around the
estimate of the true mean.

Draw another picture of the normal distribution, and show that 95% of the distribution is between
plus or minus 1.96 standard deviations.

As I showed last time, the 95% confidence interval is easily calculated:
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Calculating the 95% confidence interval

P (−1.96 ≤ Z ≤ 1.96) = 0.95.

P

(
−1.96 ≤ x̄− µ

σ√
n

≤ 1.96

)
= 0.95.

Therefore, P

(
x̄− 1.96

σ√
n
≤ µ ≤ x̄+ 1.96

σ√
n

)
= 0.95.

x̄± 1.96
σ√
n

This is the 95% confidence interval for the sample mean.

Z0.025 = 1.96.

x̄± Z0.025
σ√
n
.

Calculating the 95% confidence interval of the sample mean x̄

x̄± Zα/2
σ√
n

= (x̄− E, x̄+ E)

where
1 - α = confidence coefficient (1 - α)100% = level of confidence α = the error probability x̄ = the

mean of the sample σ = the standard deviation of the population n = the sample size Zα/2 = the critical
value of Z, or the Z value that cuts off a right-tail area of α/2 under the standard normal curve; that
is, 1− P (Z < Zα/2) = α/2 Zα/2

σ√
n

= E, the margin of error.

Calculating the 95% confidence interval of the sample mean x̄

x̄± Zα/2
σ√
n

= (x̄− E, x̄+ E)

As an example, let’s say there is a new diet for people who want to lose weight. We sample 100
people who use the diet for two months, and we keep track of their weight gain during that time. The
sample mean weight gain is -1 kg, and the standard deviation weight gain is 7 kg. Does the diet work?
The standard error of the mean is 7/10 kg. Thus the mean, -1, is less than 2 standard errors from zero,
so it is not unexpected assuming the true mean is zero. So we cannot conclude that the diet works.
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The sample standard deviation

Definition 45. The sample variance is written s2 and is defined as:

s2 =

∑n
1 (xi − x̄)2

n− 1
.

The sample standard deviation is just the square root of the sample variance:

s =
√
s2 =

√∑n
1 (xi − x̄)2

n− 1
.

n− 1 is called the “degrees of freedom” in this calculation.

General rule (to be revisited later)
If the sample size is 30 or greater, we assume Z can be calculated using the sample standard deviation

s rather than the population standard deviation σ.

11 Z tests and t tests

Lecture 8: Estimation with Z and t distributions
Announcements:

• Reading for this week’s subject: pp. 54 - 79 in Vasilj.

Lecture 8: Estimation with Z and t distributions
On the menu for today

• Estimation continued with the Z distribution

• ... using the normal approximation from the Binomial

• ... using the normal approximation from the Poisson

• Estimation continued with the t distribution

Population versus sample

Definition 46. A population is the set of all persons or things of interest. A sample is a subset of the
population. Convention: Greek letters are used for population parameters (µ for mean, σ for standard
deviation. Latin letters are used for the sample (x̄ for sample mean, s for sample standard deviation).
We say x̄ is an estimate of µ, and s is an estimate of σ.

Z test in general

Z =
observed statistic− expected

true standard deviation of observed statistic

Z scale
General procedure if we know the true standard deviation:

• Given we know the true mean µ and true standard deviation σ from the distribution.

• We have an observation xi.

• We calculate the Z score of our observation:

Zi =
xi − µ
σ

.
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• This is the distance from the mean to the observation in units of standard deviation.

• If this distance is in the tail of the distribution (e.g. if |Zi| > 1.96) then we conclude that the
observation is unusual.

• Z0.025 = ±1.960.

• Z0.05 = ±1.645.

• Z0.005 = ±2.576.

Errors

• If we define “unusual” as p < 0.05, then the probability of one tail is 0.025.

• In this case the probability that Z is in one of the two tails, by chance, is 0.05.

• In this case the error probability, α, equals 0.05.

• In this case the Z value for the tail is ±1.96, and we write:

• Zα/2 = Z0.025 = ±1.96.

• Z0.025 = ±1.960; α = 0.05 = error probability.

• Z0.05 = ±1.645; α = 0.10 = error probability.

• Z0.005 = ±2.576; α = 0.01 = error probability.

Z distribution

f(x) =
1√

2πσ2
e−

(x−µ)2

2σ2

f(x) =
1√
2π
e−

x2

2

Z test in general

Z =
observed statistic− expected

true standard deviation of observed statistic
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Z distribution
To convert the sample mean to the Z-scale:

Zx̄ =
x̄− µ
σ√
n

To convert the sample sum to the Z-scale:

Z∑
x =

∑
x− nµ√

nσ2 = σ
√
n

=

∑
x− nµ
σ
√
n

Calculating the 95% confidence interval for µ

P (−1.96 ≤ Z ≤ 1.96) = 0.95.

P

(
−1.96 ≤ x̄− µ

σ√
n

≤ 1.96

)
= 0.95.

P

(
−1.96

σ√
n
≤ x̄− µ ≤ 1.96

σ√
n

)
= 0.95.

P

(
−x̄− 1.96

σ√
n
≤ −µ ≤ −x̄+ 1.96

σ√
n

)
= 0.95.

P

(
x̄− 1.96

σ√
n
≤ µ ≤ x̄+ 1.96

σ√
n

)
= 0.95.

Calculating the 95% confidence interval

P

(
x̄− 1.96

σ√
n
≤ µ ≤ x̄+ 1.96

σ√
n

)
= 0.95.

x̄± 1.96
σ√
n

This is the 95% confidence interval for the sample mean.
We are 95% confident that the true mean is contained in an interval created in this way.

Z0.025 = 1.96.

x̄± Z0.025
σ√
n
.

Normal distribution
The binomial distribution becomes the normal distribution if np ≥ 5 and n(1− p) ≥ 5. Compare the

two when n = 16 and p = 0.5, so np = 8 ≥ 5:
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Mean and variance of the binomial distribution

Theorem 47. If x is a binomial random variable with n trials and probability of success p, then the
mean of this variable is µ = np and its variance is σ2 = np(1 − p) = npq. Its standard deviation is
σ =
√
npq =

√
np(1− p).

Z scale for the binomial distribution

Theorem 48. If r is a binomial random variable with n trials and probability of success p, then the
mean of this variable is µ = np and its variance Var(r) is σ2

r = np(1− p) = npq. Its standard deviation
is σr =

√
npq =

√
np(1− p).

Let’s say we observe s successes in n trials of a binomial experiment. What is s on the Z scale?

Zs =
s− µ
σ

=
s− np√
np(1− p)

.

Calculating the 95% confidence interval for µ = np, from the binomial distribution

P (−1.96 ≤ Z ≤ 1.96) = 0.95.

P

(
−1.96 ≤ s− np√

np(1− p)
≤ 1.96

)
= 0.95.

P
(
−1.96

√
np(1− p) ≤ s− np ≤ 1.96

√
np(1− p)

)
= 0.95.

P
(
−s− 1.96

√
np(1− p) ≤ −np ≤ −s+ 1.96

√
np(1− p)

)
= 0.95.

P
(
s− 1.96

√
np(1− p) ≤ np ≤ s+ 1.96

√
np(1− p)

)
= 0.95.
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Calculating the 95% confidence interval for µ = np, from the binomial distribution

P
(
s− 1.96

√
np(1− p) ≤ np ≤ s+ 1.96

√
np(1− p)

)
= 0.95.

s± 1.96
√
np(1− p)

This is the 95% confidence interval for the true mean number of successes r in n trials.
We are 95% confident that the mean np is contained in this interval.

Z0.025 = 1.96.

x̄± Z0.025
σ√
n
.

Mean and variance of the proportion p̂ in a binomial experiment

Theorem 49. If r is a binomial random variable with n trials and probability of success p, then we can
calculate the proportion of successes as p̂ = r/n. What is the mean of this proportion? E(p̂) = µ = p.
What is the variance of this proportion?

V ar(p̂) = σ2 = V ar
(x
n

)
=

(
1

n2

)
V ar(x) =

np(1− p)
n2

=
p(1− p)

n
.

What is the standard deviation of this proportion?

σ =
√
σ2 =

√
p(1− p)

n

Calculating the 95% confidence interval for the probability p in the binomial distribution

P
(
p̂− 1.96

√
p(1− p)/n ≤ p ≤ p̂+ 1.96

√
p(1− p)/n

)
= 0.95.

p̂± 1.96
√
p(1− p)/n

This is the 95% confidence interval for the true probability of success p.
We are 95% confident that p is contained in this interval.

Z0.025 = 1.96.

x̄± Z0.025
σ√
n
.

Poisson distribution
The Poisson distribution can be thought of a special case of the binomial distribution for very large

n and very small p.
In that case, the mean np and variance np(1− p) are essentially equal to each other.

Poisson distribution
The probability of exactly k events during some interval or across some spatial region, given that the

mean number of events is λ, is equal to

P (k, λ) =
λke−λ

k!

For a Poisson distribution, µ = σ2 = λ. The mean and variance of any Poisson distribution are both
equal to λ.
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95% confidence interval for λ in the Poisson distribution
In a Poisson distribution, the mean and variance are both λ. Thus, the standard deviation is σ =

√
λ.

If we can approximate the Poisson distribution by the normal distribution (i.e. if λ ≥ 5), then we can
use Zcrit = 1.96 to compute the confidence interval. If we observe k > 10 Poisson events, then an
approximate 95% confidence interval for λ is

k ± 1.96
√
k.

We are 95% confident that λ is within this confidence interval.

What is the variance of the difference between two sample means?
Properties of the variance:

• V ar(ax) = a2V ar(x)

• V ar(x+ y) = V ar(x) + V ar(y) only if x and y are independent (not correlated)

• V ar(x1 − x2) = V ar(x1 + -x2) = V ar(x1) + V ar(-x2)

• V ar(x1) + (-1)2V ar(x2) = V ar(x1) + V ar(x2), only if x1 and x2 are independent.

• If x1 and x2 are sample means, then their variances are respectively V ar(x1) = σ2
x1/nx1 and

V ar(x2) = σ2
x2/nx2.

• So V ar(x1 − x2) = σ2
x1/nx1 + σ2

x2/nx2.

Z versus t

Show a drawing: we have several possible populations, and a sample. Which population did the
sample come from? To answer that question we ask “is the sample unusual relative to the reference
population¿‘

Z test in general

Z =
observed statistic− expected

true standard deviation of observed statistic
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If observed statistic is the mean of a sample of n, then its standard deviation is σ/
√
n.

If observed statistic is a binomial variate r in n trials, its standard deviation is
√
np(1− p).

If observed statistic is a Poisson variate, its standard deviation is
√
λ.

Show a drawing of the normal distribution with tails, on the Z scale. This represents the reference
population. We can plot our sample on this reference population. if the sample is in one of the tails,
then we conclude the sample is unusual and it was not drawn from the reference population.

Z test in general

Z =
observed statistic− expected

true standard deviation of observed statistic

If observed statistic is the mean of a sample of n, then its standard deviation is σ/
√
n.

If observed statistic is a binomial variate, its standard deviation is
√
np(1− p).

If observed statistic is a Poisson variate, its standard deviation is
√
λ.

First we have to convert to the Z scale. To do so, we need to know the standard deviation, the
denominator of the Z expression. If the observation is the mean of the sample, the standard deviation is
the SEM, or the standard deviation of the distribution divided by the square root of the sample size. If
the sample size is one, then we have just one observation, and the standard deviation in the denominator
is just the standard deviation of the distribution.

Take some examples from Problem sets 5 and 6. The orchard question, question 2 on PS 5. Here we
have the sample mean, so we use the SEM in the denominator.

Then Mendel’s pea experiment. Here we have the binomial distribution, so we can use the binomial
variance to calculate the Z. The denominator is just the square root of the binomial variance. We can
assume a normal distribution because np > 5.

Then try a Poisson example, with the Poisson we also know what the true standard deviation is, if
we know the true mean. Let’s say we know the true mutation rate is 1 mutation per seed. We screen 100
seeds and find a total of 118 mutations. Is that unusual if the normal mutation rate is 1 per seed? The Z
value would be (118-100)/(sqrt(100)) = 1.8, which is not quite unusual, but close, since our convention
is a 2-tail probability of 0.05, and the Z value corresponding to that 2-tail probability is 1.96. We can
assume normality because we added up 100 seeds, and the sum should be close to normal according to
the Central Limit Theorem.

What is the variance of the difference between two sample means?
Properties of the variance:

• V ar(ax) = a2V ar(x)

• V ar(x+ y) = V ar(x) + V ar(y) only if x and y are independent (not correlated)

• V ar(x1 − x2) = V ar(x1 + -x2) = V ar(x1) + V ar(-x2)

• V ar(x1) + (-1)2V ar(x2) = V ar(x1) + V ar(x2), only if x1 and x2 are independent.

• If x1 and x2 are sample means, then their variances are respectively V ar(x1) = σ2
x1/nx1 and

V ar(x2) = σ2
x2/nx2.

• So V ar(x1 − x2) = σ2
x1/nx1 + σ2

x2/nx2.

We can also use a Z test to test for a difference between two samples. If we have two samples: were
they drawn from the same distribution with true mean and standard deviation, or were they drawn from
different distributions? Our observed statistic is the difference between the two sample means. Our
expected value of the difference is (usually) zero. And in the denominator, the standard deviation of the
difference is the square root of the sum of the variances of the two sample means.
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Z test in general

Z =
observed statistic− expected

true standard deviation of observed statistic

If observed statistic is the difference between two sample means, x1−x2, then the expected is usually
zero, and

the standard deviation of the difference is

standard deviation of difference =
√
σ2
x1/nx1 + σ2

x2/nx2.

So

Z =
x1 − x2√

σ2
x1/nx1 + σ2

x2/nx2

Up until now we have assumed we know the true value of the standard deviation. We needed to know
that because we needed to assume it was a constant, so we could assume that Z was normal. If you
divide a normal variate with a constant, then the resulting variate is also normal. But if we don’t know
the true value of the standard deviation, we can calculate it from the sample. But then, it is no longer
a constant, it is a variable. Every time we take a sample, the calculated standard deviation is slightly
different. In that case, the distribution of the Z will no longer be normal. It will be more spread out than
normal. Because it is no longer normal, it is no longer called a Z variate or Z score or Z distribution.
Rather it is called a t distribution. The shape of a t distribution was derived by William Sealey Gossett
(1876 - 1937) a British statistician who worked for the Guinness brewery. He called himself “Student”,
his pen-name, and the t distribution is also called “Student’s t distribution”.

Z versus t

Z =
x− expected

σ√
n

t =
x− expected

s√
n

s = sample standard deviation =

√∑n
1 (x− x)2

n− 1

Z versus t
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Lecture 8 continued: confidence intervals continued
Announcements:

• Reading for this week’s subject: pp. 347 - 353 in Horvat (reading for this week).

Calculating the 95% confidence interval

P

(
x̄− 1.96

σ√
n
≤ µ ≤ x̄+ 1.96

σ√
n

)
= 0.95.

x̄± 1.96
σ√
n

This is the 95% confidence interval for the sample mean.
We are 95% confident that the true mean is contained in this interval.

Z0.025 = 1.96.

x̄± Z0.025
σ√
n
.

Calculating the 95% confidence interval from the binomial distribution

P
(
p̂− 1.96

√
p(1− p)/n ≤ p ≤ p̂+ 1.96

√
p(1− p)/n

)
= 0.95.

p̂± 1.96
√
p(1− p)/n

This is the 95% confidence interval for the true probability of success p.
We are 95% confident that p is contained in this interval.

Z0.025 = 1.96.

x̄± Z0.025
σ√
n
.

45



Poisson distribution
The Poisson distribution can be thought of a special case of the binomial distribution for very large

n and very small p.
In that case, the mean np and variance np(1− p) are essentially equal to each other.

Poisson distribution
The probability of exactly k events during some interval or across some spatial region, given that the

mean number of events is λ, is equal to

P (k, λ) =
λke−λ

k!

For a Poisson distribution, µ = σ2 = λ. The mean and variance of any Poisson distribution are both
equal to λ.

95% confidence interval for λ in the Poisson distribution
In a Poisson distribution, the mean and variance are both λ. Thus, the standard deviation is σ =

√
λ.

If we can approximate the Poisson distribution by the normal distribution (i.e. if λ > 5), then we can
use Zcrit = 1.96 to compute the confidence interval. If we observe k > 10 Poisson events, then an
approximate 95% confidence interval for λ is

k ± 1.96
√
k.

We are 95% confident that λ is within this confidence interval.

Confidence intervals can be used to test a hypothesis
Let’s say we’d like to buy a batch of apples if we’re 95% confident that their mean mass is greater

than 200 g.
We randomly sample several apples from the batch and find the 95% confidence interval for µ is (189,

195).
Is this consistent with the proposition that µ > 200?
No.
Is this consistent with the proposition that µ < 200?
Yes.
So we can conclude, with 95% confidence that µ < 200.
Do we buy the apples?
No.

Confidence intervals can be used to test a hypothesis
Let’s say we’d like to buy a batch of apples if we’re 95% confident that their mean mass is greater

than 200 g.
We randomly sample several apples from the batch and find the 95% confidence interval for µ is (198,

205).
Is this consistent with the proposition that µ > 200?
Yes.
Is this consistent with the proposition that µ < 200?
Yes.
Do we buy the apples?
No.

Confidence intervals can be used to test a hypothesis
Let’s say we’d like to buy a batch of apples if we’re 95% confident that their mean mass is greater

than 200 g.
We randomly sample several apples from the batch and find the 95% confidence interval for µ is (205,

210).
Is this consistent with the proposition that µ > 200?
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Yes.
Is this consistent with the proposition that µ < 200?
No.
So we can conclude, with 95% confidence that µ > 200.
Do we buy the apples?
Yes.

Confidence intervals can be used to test a hypothesis
Let’s say we’d like to buy a batch of apples if we’re 95% confident that their mean mass is greater

than 200 g.
He find this confidence interval: (205, 210), we have rejected the hypothesis that µ < 200. We

have rejected the hypothesis at the 95% confidence level. You can also say we have rejected the
hypothesis at the 5% significance level. The significance level is also called alpha, α.

α = 1− confidence level

.

Example: poll results: binomial confidence interval
Let’s say a poll of 1000 random Croatians found that 47.5% were in favor of entering the EU. Do

a majority of Croatians favor entering the EU? Get the confidence interval. So p̂ = 0.475. The 95%
confidence interval for the true proportion p is

p̂± 1.96
√
p̂(1− p̂)/n

= 0.475± 1.96
√

0.475(1− 0.475)/1000

= 0.475± 0.03

= (0.445, 0.505)

Is this consistent with a majority favoring entering the EU? Yes. Is this consistent with a majority
opposing entering the EU? Yes. We can’t conclude anything at the 95% confidence level.

Example: poll results: binomial confidence interval
Let’s say a poll of 1000 random Croatians found that 46% were in favor of entering the EU. Do a

majority of Croatians favor entering the EU?
The 95% confidence interval for p is (0.43, 0.49).
Is this consistent with a majority favoring entering the EU?
No.
Is this consistent with a majority opposing entering the EU?
Yes.
We conclude that the majority of Croatians are opposed to entering the EU.
This is the 95% confidence level, or the 5% significance level.

Example: poll results: binomial confidence interval
Let’s say a poll of 1000 random Croatians found that 54% were in favor of entering the EU. Do a

majority of Croatians favor entering the EU?
The 95% confidence interval for p is (0.51, 0.57).
Is this consistent with a majority favoring entering the EU?
Yes.
Is this consistent with a majority opposing entering the EU?
No.
We conclude that the majority of Croatians are in favor of entering the EU.
This is the 95% confidence level, or the 5% significance level.
So far we’ve been looking at one population. If we want to compare the means of two populations,

what do we do? We can see if their 95% confidence intervals overlap. If they don’t, then we conclude
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that the true means are different. If they do overlap, the true means may still be different, we don’t
know. We can test for a difference directly by calculating the 99% confidence interval of the difference.

This is equal to the observed difference between the sample means, plus or minus 1.96 times the
standard deviation of the difference between the sample means. To get the standard deviation of the
difference between the sample means, we need to use the properties of the variance:

What is the variance of the difference between two sample means?
Properties of the variance:

• V ar(ax) = a2V ar(x)

• V ar(x+ y) = V ar(x) + V ar(y) only if x and y are independent (not correlated)

• V ar(x1 − x2) = V ar(x1 + -x2) = V ar(x1) + V ar(-x2)

• = V ar(x1) + (-1)2V ar(x2) = V ar(x1) + V ar(x2), only if x1 and x2 are independent.

• If x1 and x2 are sample means, then their variances are respectively V ar(x1) = σ2
1/n1 and

V ar(x2) = σ2
2/n2.

• So V ar(x1 − x2) = σ2
1/n1 + σ2

2/n2.

So the standard deviation of the difference between two sample means must be equal to

sdiff =
√
σ2

1/n1 + σ2
2/n2 =

√
SEM2

1 + SEM2
2

.
So the 95% confidence interval of the difference between two sample means is

x1 − x2 ± 1.96
√
SEM2

1 + SEM2
2 .

Z test in general

Z =
observed statistic− expected

true standard deviation of observed statistic

If observed statistic is the mean of a sample of n, then its standard deviation is σ/
√
n.

If observed statistic is a binomial variate, its standard deviation is
√
np(1− p).

If observed statistic is a Poisson variate, its standard deviation is
√
λ.

If observed statistic is the difference between two sample means, its standard deviation is
√
σ2

1/n1 + σ2
2/n2.

Example: poll results Z test
Let’s say a poll of 1000 random Croatians found that 47.5% Were in favor of entering the EU. Is this

unusual if the true proportion was 51.0% in favor?
The Z value for this calculation is -35/15.80823 = -2.214037. The associated probability is 0.01341312,

so this is an unusual result, and we conclude that Croatians as a whole are not in favor of entering the
EU according to this poll.

Chi square test

χ2 =

∑n
1 (count of observed− count of expected)2

count of expected

Degrees of freedom is the number of counts that are free to vary in this calculation.
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Example: poll results chi square test
Let’s say a poll of 1000 random Croatians found that 47.5% Were in favor of entering the EU. Is this

unusual if the true proportion was 51.0% in favor?
We can redo this problem as a chi-square test, which is mathematically equivalent to a Z test. The

chi square statistic is χ2 = 352/510 + 352/490 = 4.901961 = −2.2140372 = Z2. So a question involving
a binomial variable can be answered either by a Z test or a chi-square test, assuming that the normality
assumption of the Z test is met, namely that the binomial variate is normally distributed, which is
generally assumed to be true if the mean of the binomial variable is greater than 5 (np(1− p) > 5).

If you have a choice between a Z test and a chi-square test, which should you choose? Because they
are mathematically identical, it makes little difference. However, with the Z test it is possible for the Z
value to be positive or negative. It is not possible for the chi-square value to be negative. So if you use
a chi-square test, you need to keep in mind the direction of the difference. In the example above 475
Croatians were in favor and 525 were opposed to EU entry. If these numbers were reversed, they would
have given the same chi-square statistic. While the chi-square test is insensitive to the direction of any
result, the Z test is sensitive.

Z test versus t test
What if we don’t know σ? We calculate it from the sample as the sample standard deviation:

s =

√∑n
1 (xi − x)2

n− 1

n− 1 is called v, or the “degrees of freedom” used in the calculation of s.

Z test versus t test

Z =
observed− expected

true standard deviation of observed

Z =
observed− expected

σobs
.

t =
observed− expected

estimated standard deviation of observed

t =
observed− expected

sobs
.

Z test versus t test
Z is normally distributed, with mean of 0 and standard deviation of 1.
t is very close to normally distributed, symmetrical, with mean of 0 and standard deviation slightly

higher than 1.
But t is practically indistinguishable from a normal distribution if n > 30.

t distribution for various sample sizes (or degrees of freedom)
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Example: a sample of heights
Say we have a random sample of 15 women, their sample mean height is x = 173 cm, and sample

standard deviation of height is s = 9.2 cm. Is this unusual if the population mean is µ = 169 cm?

Example: exam scores
In our Exam 1, the mean score of women was 72.7 and the mean score for men was 70.3. The

standard deviation for women was 7.7 and for men was 8.3. There were 14 women and 13 men. Is the
sex difference in means unusual, if we expect the difference to be zero?

12 Hypothesis testing

Lecture 9: Hypothesis testing
Announcements:

• Reading for this week’s subject: pp. 61 - 79 in Vasilj.

• Midterm 2 will be held Tuesday, December 18. A practice exam will be posted to the website soon.

Testing a hypothesis with a confidence interval
Let’s say we plant 1000 asparagus seeds and found that 46% were female. Is this consistent with a

1:1 sex ratio in asparagus, i.e. 50% female and 50% male? The 95% confidence interval for p is (0.43,
0.49). Is this consistent with a true sex ratio of 1:1? No. Is this consistent with a true sex ratio different
from 1:1? Yes. We conclude that the sex ratio in asparagus is not 1:1. We reject the hypothesis that
the sex ratio in asparagus is 1:1. This is the 95% confidence level, or the 5% significance level.

Last time we learned how to test a hypothesis by calculating the confidence interval. If the hypothesis
lies outside the interval, then the hypothesis is rejected. We say we reject it at the 95% level, if we
calculated the 95% confidence interval.

So far we’ve been looking at one population. If we want to compare the means of two populations,
what do we do? We can see if their 95% confidence intervals overlap. If they don’t, then we conclude
that the true means are different. If they do overlap, the true means may still be different, we don’t
know. We can test for a difference directly by calculating the 95% confidence interval of the difference.
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This is equal to the observed difference between the sample means, plus or minus 1.96 times the
standard deviation of the difference between the sample means. To get the standard deviation of the
difference between the sample means, we need to use the properties of the variance:

What is the variance of the difference between two sample means?
Properties of the variance:

• V ar(ax) = a2V ar(x)

• V ar(x+ y) = V ar(x) + V ar(y) only if x and y are independent (not correlated)

• V ar(x1 − x2) = V ar(x1 + -x2) = V ar(x1) + V ar(-x2)

• = V ar(x1) + (-1)2V ar(x2) = V ar(x1) + V ar(x2), only if x1 and x2 are independent.

• If x1 and x2 are sample means, then their variances are respectively V ar(x1) = σ2
1/n1 and

V ar(x2) = σ2
2/n2.

• So V ar(x1 − x2) = σ2
1/n1 + σ2

2/n2.

Standard deviation of the difference between two sample means
So the standard deviation of the difference between two sample means must be equal to

sdiff =
√
σ2

1/n1 + σ2
2/n2 =

√
SEM2

1 + SEM2
2

.
So the 95% confidence interval of the difference between two sample means is

x1 − x2 ± 1.96
√
SEM2

1 + SEM2
2 .

Example
Let’s say we have a new genotype of apple, and we want to know if its mean mass is the same as the

old genotype. We sample 100 apples of each genotype, and found the mean mass of the new genotype is
200 g. The mean mass of the old genotype is 190 g. The standard deviation in mass of both genotypes is
50 g. What is the 95% confidence interval of the difference? What is our margin of error for estimating
the difference?

See the tablet for this lecture for the above calculations. Basically, after we calculate the 95%
confidence interval for the difference between the two sample means, we just ask: does the confidence
interval contain 0? If it does, then we can’t reject the hypothesis that the two means are equal (i.e.
their difference is 0). If the confidence interval does not contain zero, then we conclude that the two
population means are different, i.e. that one of the means is greater than the other.

Hypothesis testing: more elegant procedure than calculating the CI
Let’s say we hypothesize that the mean apple mass is µ0. Can we reject this hypothesis? Calculate

the 95% confidence interval, call it (L,U) where L is the lower limit of the confidence interval, and
U is the upper limit. There are two ways to reject the hypothesis: If U < µ0 then we can reject the
hypothesis. If L > µ0 then we can reject the hypothesis.

Hypothesis testing: more elegant procedure than calculating the CI
Let’s start by considering that U < µ0 then we can reject the hypothesis. But U = x̄ + 1.96(SEM).

Then we reject the hypothesis when x̄ + 1.96(SEM) < µ0. This implies that we reject the hypothesis
when x̄− µ0 < −1.96(SEM). Or, we reject when

x̄− µ0

SEM
< −1.96.
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But, we already know that Zobserved = x̄−µ0

SEM. So we can conclude that we reject when

Zobs < −1.96

. If this is true, then the confidence interval is entirely below µ0.

Hypothesis testing: more elegant procedure than calculating the CI
Now let’s look at the other criterion for rejecting the hypothesis: If L > µ0 then we can reject the

hypothesis. But L = x̄ − 1.96(SEM). Then we reject the hypothesis when x̄ − 1.96(SEM) > µ0. This
implies that we reject the hypothesis when x̄− µ0 > 1.96(SEM). Or, we reject when

x̄− µ0

SEM
> 1.96.

But, we already know that Zobserved = x̄−µ0

SEM. So we can conclude that we reject when

Zobs > 1.96.

If this is true, then the confidence interval is entirely above µ0.

Hypothesis testing: more elegant procedure than calculating the CI
So, the more elegant procedure for hypothesis testing is to just calculate the Z value of our observed

mean, or difference between two means. Then ask, is

|Zobserved| > 1.96

| x̄− µ0

SEM
| > 1.96

If this condition is met, then we reject our hypothesis.
If |Zobserved| > 1.96, then this means that the 95% confidence interval is entirely greater than the

hypothesis, and it is therefore rejected at the 95% confidence level. If |Zobserved| < −1.96, then the
entire 95% confidence interval is less than the hypothesis, so again we reject the hypothesis at the 95%
level.

Example
I flip a coin 100 times and get 46 heads, so p̂ = 0.46. Is this a fair coin? In other words, does p = 0.5?

We calculate the observed Z and ask: Is |Z| > 1.96?

Zobserved =
p̂− µ0√

0.5(1− 0.5)/n

Zobserved =
0.46− 0.5√

0.25/100

Zobserved = −0.040

0.050

Zobserved = −0.8.

Since |Zobserved| = 0.8 < 1.96, we conclude that we can’t reject the hypothesis that the coin is fair.
This is the 95% confidence interval, or the 5% significance level.
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Z test and chi square tests are mathematically equivalent
I flip a coin 100 times and get 46 heads, so p̂ = 0.46. Is this a fair coin? In other words, does p = 0.5?

We tested this by calculating Zobserved = 0.8. We can also test this by calculating χ2, the chi-square
value of our observation.

χ2
observed =

∑ (observed− expected)2

expected

χ2
observed =

(46− 50)2 + (54− 50)2

50

χ2
observed =

32

50

χ2
observed = 0.64 = 0.82 = Z2

observed.

Since χ2
observed < 1.962 = 3.84, we conclude that we can’t reject the hypothesis that the coin is fair.

This is the 95% confidence interval, or the 5% significance level.

Lecture 9: Hypothesis testing

• We have a question about a population.

• We take a sample, calculate a statistic.

• We plot that statistic on the expected probability distribution.

• If the statistic is within the tail, we conclude that the sample is “unusual” relative to the reference
population.

Hypothesis testing: procedure

1. We ask a yes/no question about a population.

2. We answer the question yes, and answer the question no, using symbols for the population means.

3. We label one answer the null hypothesis and the other answer the alternative hypothesis.

4. We decide the criterion for rejecting the null hypothesis.

5. The test is one of: two-tailed, right-tailed, or left-tailed.

6. We take a sample, and calculate our test statistic (Z or t or χ2 for now)

7. We find if the observed test statistic is in the rejection region (critical region or tail) of the
distribution.

8. If the statistic is in the rejection region, we reject the null hypothesis and accept the alternative
hypothesis.

9. If the statistic is not in the rejection region, we retain the null hypothesis, and do not accept the
alternative hypothesis.

Examples
I flip a coin n times and get r heads. Is this a fair coin?
First we define the true means of the population we’re interested in. The population is all possible

coin flips of this particular coin. The population mean could be defined as p, the true proportion heads in
an infinite number of flips. So first we answer the question “yes”: yes, it is a fair coin would be equivalent
to writing the equation p = 0.5. If the true proportion heads in an infinite number of flips is 0.5, then the
coin is fair. Then we answer the question “no”: if the coin is not fair, then the probability of landing heads
is something besides 0.5. So the equation for this is p 6= 0.5. Now we decide: which of these equations
is the null hypothesis and which is the alternative hypothesis? The null hypothesis is the hypothesis
containing the equals sign, which is the first equation above. So the null hypothesis H0 is p = 0.5. So
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we can write H0 : p = 0.5. This means the other equation is the alternative hypothesis: HA : p 6= 0.5.
Now we decide whether this is a 2-tailed, left-tailed, or right-tailed hypothesis. Because the alternative
hypothesis contains the 6= sign, we know that this is a two-tailed test. This means the null hypothesis can
be rejected in either direction, right or left. To the right, the coin’s chances of landing heads is greater
than 0.5. To the left, its chances of landing heads are less than 0.5. Next we write down the equation
for the statistic that tests the null hypothesis. We have been using either t or Z so far. In this case

we can use a Z test if n is sufficiently large (then we have a normal distribution). Z = r/n−0.5√
r/n(1−r/n)/n

.

What is the criterion for rejection of the null hypothesis? The criterion is |Z| > Zcrit, where Zcrit is the
value of Z that defines what the tail is of the distribution. Since this is a two tailed test, and the tails
by definition contain α, and α is conventionally set to 0.05, then the Zcrit must be the Z value that cuts
off a tail of 0.025. This Z value is 1.96. So |Z| > 1.96 is the criterion for rejecting the null hypothesis
that the coin is fair.

See the solutions to the examples below in the tablet file for this lecture.

Examples
I create a new genotype of olive tree. Do its olives produce more oil than the old genotype?
This is a right-tail test, and the criterion for rejection is If Zobserved > 1.65. Note we don’t have

the absolute value of Z, just Z. The reason we don’t use 1.96 is that the rejection area of the curve is
always equal to alpha, and if the right tail is the rejection region, then the right tail is equal to alpha. If
alpha is 0.05, then we want the Z value that cuts off a right tail equal to 0.05 of the distribution. That
Z is 1.65. If it were a left tail test, then the criterion would be Zobserved < −1.65.

Rules

• The hypothesis containing the = sign is the null hypothesis, denoted H0. The other hypothesis is
the alternative hypothesis, denoted HA.

• If the alternative hypothesis contains the 6= sign, the test is two-tailed.

• If the alternative hypothesis contains the < sign, the test is left-tailed.

• If the alternative hypothesis contains the > sign, the test is right-tailed.

Examples
I have a new chemical pesticide. Does it leave less residue on apples than the old kind?
This is a one-tailed test, left-tailed, and the criterion for rejection of the null hypothesis is Zobserved <

−1.64,

Examples
I take a poll. Are Croatians in favor of entering the EU?
This is a right-tailed test, with criterion for rejection Zobserved > 1.65.

Examples
Is the sex ratio of males to females 1:1 in some population?
This is a two-tailed test with criterion for rejection |Zobserved| > 1.96.
Here is some terminology for writing the critical values of a test statistic. The subscript is basically

alpha divided by the number of tails in the test. I’ve written t values here, but the same notation applies
to any statistic, whether t, Z, χ2, etc.

Terminology

• The critical value of a test statistic is the value that defines the rejection region of the distribution.

• t0.05/2 is the critical t-value for α = 0.05 and a 2-tailed test. Each tail here contains 0.025 of the
probability.
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• t0.05/1 is the critical t-value for α = 0.05 and a 1-tailed test. The single tail contains 0.05 of the
probability.

• t0.01/1 is the critical t-value for α = 0.01 and a 1-tailed test. The single tail contains 0.01 of the
probability.

Examples
Is the level of arsenic in a well greater than some minimum value x?
This is a right-tailed test with criterion for rejection Zobserved > 1.65.

Lecture 9: Hypothesis testing, continued
Announcements:

• Reading for this week’s subject: pp. 61 - 79 in Vasilj.

Testing a hypothesis with a confidence interval
Let’s say we plant 1000 asparagus seeds and found that 46% were female. Is this consistent with a

1:1 sex ratio in asparagus, i.e. 50% female and 50% male? The 95% confidence interval for p is (0.43,
0.49). Is this consistent with a true sex ratio of 1:1? No. Is this consistent with a true sex ratio different
from 1:1? Yes. We conclude that the sex ratio in asparagus is not 1:1. We reject the hypothesis that
the sex ratio in asparagus is 1:1. This is the 95% confidence level, or the 5% significance level.

Hypothesis testing: more elegant procedure than calculating the CI
Let’s say we hypothesize that the mean apple mass is µ0. Can we reject this hypothesis? Calculate

the 95% confidence interval, call it (L,U) where L is the lower limit of the confidence interval, and
U is the upper limit. There are two ways to reject the hypothesis: If U < µ0 then we can reject the
hypothesis. If L > µ0 then we can reject the hypothesis.

Hypothesis testing: more elegant procedure than calculating the CI
Now let’s look at the other criterion for rejecting the hypothesis: If L > µ0 then we can reject the

hypothesis. But L = x̄ − 1.96(SEM). Then we reject the hypothesis when x̄ − 1.96(SEM) > µ0. This
implies that we reject the hypothesis when x̄− µ0 > 1.96(SEM). Or, we reject when

x̄− µ0

SEM
> 1.96.

But, we already know that Zobserved = x̄−µ0

SEM. So we can conclude that we reject when

Zobs > 1.96.

If this is true, then the confidence interval is entirely above µ0.

Hypothesis testing: more elegant procedure than calculating the CI
So, the more elegant procedure for hypothesis testing is to just calculate the Z value of our observed

mean, or difference between two means. Then for a two-tailed test, here is our criterion:

| x̄− µ0

SEM
| > 1.96

|Zobserved| > 1.96

If this condition is met, then we reject our hypothesis.
For a left-tailed test,

Zobserved < −1.64

For a right-tailed test,
Zobserved > 1.64
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Hypothesis testing: procedure

1. We ask a yes/no question about a population.

2. We answer the question yes, and answer the question no, using symbols for the population means.

3. We label one answer the null hypothesis and the other answer the alternative hypothesis.

4. We decide the criterion for rejecting the null hypothesis.

5. The test is one of: two-tailed, right-tailed, or left-tailed.

6. We take a sample, and calculate our test statistic (Z or t or χ2 for now)

7. We find if the observed test statistic is in the rejection region (critical region or tail) of the
distribution.

8. If the statistic is in the rejection region, we reject the null hypothesis and accept the alternative
hypothesis.

9. If the statistic is not in the rejection region, we retain the null hypothesis, and do not accept the
alternative hypothesis (yet).

Rules

• If the alternative hypothesis contains the 6= sign, the test is two-tailed.

• If the alternative hypothesis contains the < sign, the test is left-tailed.

• If the alternative hypothesis contains the > sign, the test is right-tailed.

Hypothesis testing: example
We have a new variety of tomato. Does it have the same resistance to fusarium wilt as the old

variety? To answer this question, we do an experiment. We expose 100 new plants to fusarium, and
found that the mean growth rate was 35 with standard deviation 10. We know from previous experience
that the mean growth rate of the old genotype is 33.

Examples
I have a new chemical pesticide. Does it leave less residue on apples than the old kind?
This is a one-tailed test, left-tailed, and the criterion for rejection of the null hypothesis is Zobserved <

−1.64,

Examples
I take a poll. Are Croatians in favor of entering the EU?
This is a right-tailed test, with criterion for rejection Zobserved > 1.65.

Examples
Is the sex ratio of males to females 1:1 in some population?
This is a two-tailed test, with criterion for rejection |Zobserved| > 1.96.

The null distribution and alternative distribution
Null distribution: the distribution of a variable if the null hypothesis is true Alternative distribution:

the distribution of a variable if the alternative hypothesis is true.

Hypothesis testing: example
We have a new variety of tomato. Does it have the same resistance to fusarium wilt as the old

variety? To answer this question, we do an experiment. We expose 100 new plants to fusarium, and
found that the mean growth rate was 35 with standard deviation 10. We know from previous experience
that the mean growth rate of the old genotype is 33.
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Hypothesis testing: example
We have a new variety of tomato. Does it have lower resistance to fusarium wilt than the old variety?

To answer this question, we do an experiment. We expose 100 new plants to fusarium, and found that
the mean growth rate was 35 with standard deviation 10. We know from previous experience that the
mean growth rate of the old genotype is 33.

Hypothesis testing: example
We have a new variety of tomato. Does it have higher resistance to fusarium wilt than the old

variety? To answer this question, we do an experiment. We expose 100 new plants to fusarium, and
found that the mean growth rate was 35 with standard deviation 10. We know from previous experience
that the mean growth rate of the old genotype is 33.

Some terminology

• If we reject the null hypothesis, then we conclude our data are significant, or significantly
different from the null.

• The probability of the test is the probability of a test result that is of equal or greater departure
from the null hypothesis, if the null hypothesis were true.

• In a two-tailed test, the probability is twice the tail probability. In a one-tailed test, the probability
is the one-tail probability.

• In R, you can calculate the probability of a Z test with pnorm(). For a two tailed test, the
probability of Zobserved is 2*(1 - pnorm(abs(Zobserved))). This gives the sum of the two tails.

• The probability for a left-tailed test is the left tail. In R the left tail is pnorm(Zobserved).

• The probability for a right-tailed test is the right tail. In R the right tail is 1 - pnorm(Zobserved).

13 Statistical power

Lecture 15: Type I, II errors, power of a hypothesis test
Announcements:

• Quiz 8 is posted, due after the holiday

• Next class is Tuesday, Jan 8, 2013, Lab exercise 8

Some terminology

• If we reject the null hypothesis, then we conclude our data are significant, or significantly
different from the null.

• The probability of the test is the probability of a test result that is of equal or greater departure
from the null hypothesis, if the null hypothesis were true.

• In a two-tailed test, the probability is twice the tail probability. In a one-tailed test, the probability
is the one-tail probability.

• In R, you can calculate the probability of a Z test with pnorm(). For a two tailed test, the
probability of Zobserved is 2*(1 - pnorm(abs(Zobserved))). This gives the sum of the two tails.

• The probability for a left-tailed test is the left tail. In R the left tail is pnorm(Zobserved).

• The probability for a right-tailed test is the right tail. In R the right tail is 1 - pnorm(Zobserved).
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Z test in general

Z =
observed statistic− expected

true standard deviation of observed statistic

If observed statistic is the mean of a sample of n, then its standard deviation is σ/
√
n, the SEM.

If observed statistic is a binomial proportion, its standard deviation is
√
p(1− p)/n.

If observed statistic is a Poisson variate, its standard deviation is
√
λ.

If the observed statistic is the difference between two sample means, its standard deviation is√
SEM2

1 + SEM2
2 .

Standard deviation of the difference between two sample means
So the standard deviation of the difference between two sample means must be equal to

sdiff =
√
σ2

1/n1 + σ2
2/n2 =

√
SEM2

1 + SEM2
2

.
So the 95% confidence interval of the difference between two sample means is

x1 − x2 ± 1.96
√
SEM2

1 + SEM2
2 .

Z versus t

Z =
x− expected

σ√
n

t =
x− expected

s√
n

s = sample standard deviation =

√∑n
1 (x− x)2

n− 1

the “degrees of freedom”, or “df” is n− 1.

Example
Let’s say we have a new genotype of apple, and we want to know if its mean mass is the same as the

old genotype. We sample 100 apples of each genotype, and found the mean mass of the new genotype is
200 g. The mean mass of the old genotype is 190 g. The standard deviation in mass of both genotypes is
50 g. What is the 95% confidence interval of the difference? What is our margin of error for estimating
the difference? What is the Zobserved for the difference? Do we reject the null hypothesis?

Example
Let’s say we have a new genotype of apple, and we want to know if its mean mass is the same as the

old genotype. We sample 10 apples of each genotype, and found the mean mass of the new genotype is
200 g. The mean mass of the old genotype is 190 g. The standard deviation in mass of both genotypes is
50 g. What is the 95% confidence interval of the difference? What is our margin of error for estimating
the difference? What is the tobserved for the difference? Do we reject the null hypothesis?
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Problem: statistical power
Statistical significance is not the same as biological “significance” (or meaning).

If you do not reject the null hypothesis, that could be because:
1) the null hypothesis is true, or
2) your test was not powerful enough: your sample size was too low.

What is the power of a test?
Let’s say you do a t-test to compare the mean weight of apples from grower 1 to grower 2, and find

that you can’t reject the null hypothesis, and there is no “significant” difference. Does that mean there
is really no true difference in weight of apples between the two growers? No. There could be a difference,
but your test was not sensitive enough, i.e. its power was too low. How do you increase power? By
increasing the sample size. If you increase the sample size, your estimate of the mean apple weight gets
better and better, because the standard error of the mean gets smaller and smaller, so eventually, with
high enough sample size, you can now reject the null hypothesis.

So this begs the question: what sample size do you need to increase the power of the test enough to
reject the null hypothesis?

Problem
As you recall, a screening test has four combinations of test outcome/condition.
In a screening test, a false negative occurs because power is not 100%. If you performed more than

one test on a person, you might find that the first negative was a fluke, and that subsequent tests were
positive. This might reduce the probability that you will falsely conclude that there is no condition
(or disease etc.). So increasing sample size reduces the probability of false negative conclusions, and
therefore increases the power of a test.

How do you calculate the power of a hypothesis test?

Example
As you recall, a screening test has four combinations of test outcome/condition.

Errors

Terminology

• Type I error is α. This is also the false positive rate of the test.

• Type II error is β. This is also the false negative rate of the test.

• Sensitivity of the test is the power, which is 1− β.

• Specificity of the test is the confidence level, which is 1− α.
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Basic power equations, one-sample
Z

-test

Zpow = |Zcrit| −
|δ|
σ√
n

= |Zcrit| −
|δ|
√
n

σ

n = σ2 (Zpow − |Zcrit|)2

δ2

|δ| = σ
(|Zcrit| − Zpow)√

n

Note: Zpow will usually be negative.

Calculating power using R

Power = 1− pnorm(Zpow)

Zpow = qnorm(1 − power)

Zcrit = ±qnorm(1 − α/T ),

T is the number of tails in the test. Note that the Zcrit is negative for a left-tailed test.
Also, the function power.examp() in TeachingDemos is a nice graphical demonstration of power. For

example, you type power.examp(diff = 2, alpha = 0.05, stdev = 10, n = 20) to compute the power of
detecting a true difference of 2, at α = 0.05, for a standard deviation of 10 and sample size of 20.

Example
A buyer wants to buy a large batch of apples from a grower. But he does not want to buy if the

true mean weight is less than 150 g. He can’t weigh all the apples, but he can weigh a sample of n,
and calculate the sample mean. Let’s say the true standard deviation is 30g. If he weighs 20 apples and
does a Z test he may or may not reject the null hypothesis. If the true mean weight of apples is 150 g,
what is the probability that he rejects the null hypothesis, and rejects the apples? Assume he is doing a
one-tailed Z-test, with a significance level of 0.05 (α = 0.05). He rejects the apples only if he rejects the
null hypothesis.

Example
What if the true mean weight of the grower’s apples is 149 g? Will he reject the null hypothesis? 145

g? 140 g?

Example
What is the least significant difference (LSD) that the buyer must see before he rejects the grower’s

apples?

Example
What is the probability that he will see the LSD if the true mean weight of the grower’s apples is 149

g? 145 g? 140 g?
Power goes up with sample size.

Example
If his sample size has to be 20, then what true difference (δ) will he be able to detect with his test

80% of the time? What if the sample size is 30? 50? 100? 500?

Example
If he wants to detect, at a power of 80%, a true difference of only 2 g, what sample size will he need?

1 g? 0.5 g?
You need much larger sample sizes to detect smaller true differences.
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Example
If he wants to detect a true difference of 10 g, at a power of 80%, what should his sample size be?

At a power of 90%? 95%? 99%?
You can detect smaller true differences with higher sample sizes.

Example
If he wants to detect a true difference of 15 g, at a power of 80%, with a sample size of 20. What

effect α should he use?
If α is smaller, power also decreases.

14 Testing for equality of variances: the F -test

Lecture 11: Testing for equality of variances: the F -test
Today’s topics:

• F test for equality of variances

• Using the F test in the analysis of variance

• Today I will explain what you did in lab yesterday :-)

Power tradeoffs

• We can use power.examp() in TeachingDemos to visualize:

• Power increases if alpha increases

• Power increases with increasing δ

• Power increases with decreasing σ

• Power increases with increasing n

Basic power equations, one-sample
Z

-test

Zpow = |Zcrit| −
|δ|
σ√
n

= |Zcrit| −
|δ|
√
n

σ

n = σ2 (Zpow − Zcrit)2

δ2

|δ| = σ
(Zcrit − Zpow)√

n

Calculating power using R

Power = 1− pnorm(Zpow)

Zpow = qnorm(1 − power)

Zcrit = ±qnorm(1 − α/T ),

T is the number of tails in the test. Note that the Zcrit is negative for a left-tailed test.
Up until now, we have been using two samples for testing of the equality of the means of two

populations. Another common question in biology is whether the variances of two populations are the
same. Remember variance is a measure of the spread of a distribution, and the standard deviation is the
square root of the variance.

Remember how variance is defined: differently for a continuous variable and a discrete variable.
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F -test purpose: to compare two variances

F -test purpose: to compare two variances
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F -test purpose: to compare two variances
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Measures of variability

• Variance = V ar(x) = σ2
x

• Standard deviation =
√
V ar(x) = σx

Variance of a distribution

Definition 50. The variance of a discrete probability distribution is

V ar(x) = E(x− µ)2 =
∑
i

(xi − µ)2P (xi).

The variance of a continuous probability distribution is

V ar(x) = E(x− µ)2 =

∫ +∞

−∞
(x− µ)2f(x)dx.

These are the definitions of the absolute variance from a probability distribution.
We can visualize changes in the variance of a distribution using R, by plotting the distribution. For

a normal distribution, we can do a plot with dnorm(). For example, set the xvalues as xval = seq(-3, 3,
.01). Then plot with plot(xval, dnorm(xval), type = “l“). Then you can see how changes in the variance
affect changes in the distribution with lines(xval, dnorm(xval, sd = 0.8), type = “l“).

Now we imagine that we take a random sample from that distribution, and estimate the true variance
from the sample.

Calculation of the sample variance

Sample variance = s2 =

∑n
1 (xi − x)2

n− 1

Sample standard deviation = s =
√
s2
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n− 1 is called v, or the “degrees of freedom” used in the calculation of s.
We can calculate variance of a sample x in R with var(x). We can take a random sample from a

normal distribution with the function rnorm(). So for example x = rnorm(100) creates 100 datapoints
from a normal distribution with mean 0 and variance 1. We can calculate the sample variance of these
data with var(rnorm(100)).

So, how do we test the hypothesis that two samples were drawn from the same population variance?
We can’t do a t-test, because the sample standard deviation is not normally distributed. Instead we do
an F -test.

F -test steps

1. We want to know if the two population variances are equal. Null hypothesis is that σ2
1 = σ2

2 .

2. Calculate the sample variance in the two samples, s2
1 and s2

2.

3. Form the ratio of the larger over the smaller.

4. This ratio has an F -distribution with degrees of freedom for the numerator and denominator.

5. Compare the observed F with Fcrit, which is qf(1 - alpha/2, dfn, dfd). Note that we divide alpha
by 2 for a two-tailed test.

6. Calculate the probability of the observed F as 2(1 - pf(F, dfn, dfd)). Note that we multiply by 2
if this is a two-tailed test.

F -test purpose: to compare two variances

You can look up the critical values of F , Fcrit in Tablica C1 of the Vasilj textbook, page 299.

F -test purpose: to compare two variances
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Hermon Bumpus (1862-1943)

F -test purpose: to compare two variances

English sparrow (Passer do-
mesticus)

F -test purpose: to compare two variances
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A good example of the use of the F -test is the Bumpus sparrow data. In Providence, Rhode Island,
USA, in the 1890s there was a severe winter storm. Somebody collected 136 stunned sparrows and took
them to Bumpus. Some of them revived, the rest died. He measured various morphological characteristics
of the survivors and dead, and concluded that natural selection had eliminated individuals that were far
from the average, which he considered the ideal, or the value of maximum fitness. If natural selection
favors individuals closer to the mean, then the variance of the survivors should be lower than the variance
of the non-survivors. We can test this hypothesis with an F -test.

Bumpus data
In females, the variance of the humerus length of survivors was 0.176, and the variance for the non-

survivors was 0.434. The number of survivors was 21, and the number of non-survivors was 28. Question:
is the population variance of survivors different from the population variance of non-survivors?

Exam scores, men and women
In our first midterm exam, the sample variance for women was 59.2, and the sample variance for men

was 68.9. There were 14 women and 13 men taking the exam. Is the true population variance for women
different from that for men?

Confidence interval for the population variance

χ2 =
vs2

σ2
,

v is the degrees of freedom; so:

P (χ2
0.025 <

vs2

σ2
< χ2

0.975) = 0.95

P (
vs2

χ2
0.975

< σ2 <
vs2

χ2
0.025

) = 0.95
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High end of 95% confidence interval: vs2

χ2
0.025

Low end of 95% confidence interval: vs2

χ2
0.975

Note that this method assumes that the variable itself is normally distributed, and it is sensitive to
small departures from normality. So you should use it with care!

15 Analysis of variance: ANOVA

Lecture 11 continued: Analysis of variance: ANOVA
Announcements:

• F tests and F distribution

• Analysis of variance (ANOVA)

F -test purpose: to compare two variances

F -test purpose: to compare two variances

Hermon Bumpus (1862-1943)

F -test purpose: to compare two variances
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English sparrow (Passer do-
mesticus)

F -test purpose: to compare two variances

F -test purpose: to compare two variances
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The example we gave last time was the bumpus sparrow data, where the humerus length in survivors
had a significantly lower variance than the humerus length in non-survivors. The F value was 2.47, with
a p = 0.04.

F -test steps

1. We want to know if the two population variances are equal. Null hypothesis is that σ2
1 = σ2

2 .

2. Calculate the sample variance in the two samples, s2
1 and s2

2.

3. Form the ratio of the larger over the smaller.

4. This ratio has an F -distribution with degrees of freedom for the numerator and denominator.

5. Compare the observed F with Fcrit, which is qf(1 - alpha/2, dfn, dfd). Note that we divide alpha
by 2 for a two-tailed test.

6. Calculate the probability of the observed F as 2(1 - pf(F, dfn, dfd)). Note that we multiply by 2
if this is a two-tailed test.

F -test purpose: to compare two variances
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F -test purpose: to compare two variances
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ANOVA problem
We want to test for the equality of means in more than two samples.
If we have two samples: t-test or Z-test.
If we have more than two samples: ANOVA.
In fact, ANOVA for two samples is mathematically the same as a t-test.

ANOVA problem

ANOVA problem

72



Single-factor ANOVA, g samples (groups), same n in all groups

1. We want to know if all population means are equal to each other. The null hypothesis is µ1 =
µ2 = µ2 = . . . = µk.

2. Calculate the observed variance among the group means. Var(xobs) =
∑

(xk−x)2

g−1 .

3. Calculate the expected variance among group means, Var(xexp) = s2

n .

4. Form the ratio of observed to expected:

F =
Var(xobs)

Var(xexp)
=

∑
(xk−x)2

g−1

s2

n

.

Single-factor ANOVA, g samples (groups), same n in all groups

1. Compare the observed F with Fcrit, which is qf(1 - alpha, dfn, dfd). Note that in an ANOVA this
is always a one-tailed test. Numerator degrees of freedom is g−1. Denominator degrees of freedom
is
∑
k nk − g.

2. Calculate the probability of the observed F as 1 - pf(F, dfn, dfd). Note that we do not multiply
by 2, we want only the right tail probability.

Single-factor ANOVA, g samples (groups), same n in all groups

1.

F =
Var(xobs)

Var(xexp)
=

∑
(xk−x)2

g−1

s2

n

=
n
∑

(xk − x)2/(g − 1)

s2
.

F =
SSg/dfg
s2

.

2.

s2 =

∑
(x1 − x1)2 + . . .+

∑
(xg − xg)2∑

n− g
.

3.

F =
SSg/dfg
SSw/dfw

=
MSg
MSw

.

Single-factor ANOVA, g samples (groups), different nk in all groups

1.

F =

∑
nk(xk − x)2/(g − 1)

s2
.

F =
SSg/dfg
s2

.

2.

s2 =

∑
(x1 − x1)2 + . . .+

∑
(xg − xg)2∑

nk − g
.

3.

F =
SSg/dfg
SSw/dfw

=
MSg
MSw

.

The proportion variation explained is called the coefficient of determination, denoted r2, and is equal
to SSg/(SSg + SSw). Generally these results are presented in an ANOVA table, with columns SS, df ,
MS, F , and sometimes a box also for probability. The rows are groups and within, and sometimes you
can add a row indicating the totals. The total sums of squares SSt = SSg + SSw. The total degrees of
freedom dft = dfg + dfw. The total mean squares is MSt = SSt/dft.
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16 Multiple comparisons and 2-factor ANOVA

Lecture 18: 2-factor ANOVA
Announcements:

• Quiz 9 is up and ready, due Wednesday.

• Midterm Exam 2 will be Tuesday, December 20, 2011, in the lab.

• Midterm Exam 2 will cover quizzes 6, 7, 8, 9, and 10.

• Midterm 2 Practice Exam is up.

F -test purpose: to compare two variances

F -test purpose: to compare two variances

The F -test is used to test for the equality of population variances, using the ratio of sample variances,
which follows an F distribution. The F -test is used in the analysis of variance (ANOVA), to test for
the equality of means, not variances, by comparing the observed variance among sample means to the
predicted variance among sample means if all samples were drawn from the same population.

Remember, the purpose of ANOVA is to explain variation. We have a variable, and we see that it
varies from individual to individual, or from place to place, or from time to time, and we want to know
what the causes of that variation are. The variable we’re interested in is called the “response” variable.
It is the variable that responds to some other variable, so that its variation is “explained” by variation in
the other variable. The other variable, that explains the first variable is called the “predictor” variable,
because it explains the variable in our variable of interest. So, for example, we see insect damage of a
plant. Different plants have different degrees of insect damage. Why do they vary? Maybe it is because
different plants have higher numbers of parasites than others. So in this example, the damage is the
response variable, and its variation is partly influenced by the number of parasites, which is the predictor
variable. So we say that the predictor explains variation in the response. In an ANOVA we can calculate
exactly how much of the variation in the response variable is explained by the predictor variable.

So far our predictor variable has been categorical. A categorical variable is a variable that assigns
each observation to a category. Examples are sex (categories are male or female), variety (categories
A, B, C, etc.), location, site, season. A categorical predictor variable is called a “factor”. Each of the
category choices within the factor are called “levels” of the factor. So the factor sex for example has two
levels, male and female. The factor season has four levels, winter, spring, summer, and fall. In R, you
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need to make sure that when you label categories with numbers, those numbers are treated as factor
levels rather than numbers. For example if you label the sexes 1 and 2 you need to make sure R sees
those as factor levels and not the numbers 1 and 2.

F -test purpose: to compare two variances

ANOVA purpose is to compare means of populations, not
variances. But any difference can be expressed as a variance. So the difference among means can be
tested with an F test.

The single-factor ANOVA can be thought of as a multi-sample t-test. If there are only two samples,
then the ANOVA is mathematically equivalent to a two-sample t-test assuming equal variances in the
two populations.

Single-factor ANOVA, g samples (groups), different nk in all groups

1.

F =

∑
nk(xk − x)2/(g − 1)

s2
.

F =
SSg/dfg
s2

.

2.

s2 =

∑
(x1 − x1)2 + . . .+

∑
(xg − xg)2∑

nk − g
.

3.

F =
SSg/dfg
SSw/dfw

=
MSg
MSw

.

4. Note that s2 = MSw. This is the “pooled variance” within groups.

Calculating pooled variance s2

The pooled variance is the weighted mean variance of the groups, where the weights are the degrees
of freedom.

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2 + (n3 − 1)s2

3 + . . .+ (ng − 1)s2
g∑

nk − g

MSw = pooled variance = s2 =
SSw
dfw

SSw =
∑

(x1 − x1)2 + . . .+
∑

(xg − xg)2

dfw =
∑

nk − g

In the single-factor ANOVA, we have just one response variable and one predictor variable. The
response variable is a continuous variable (like height or weight), and the predictor variable is a factor
(like sex or species or treatment).

In an ANOVA, the result is an analysis of variance table, which always has the same components.
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Single-factor ANOVA

Single-factor ANOVA

1.

F =
MSg
MSw

.

2.

MSg =
SSg
dfg

3.
SSg =

∑
nk(xk − x)2

4.
dfg = g − 1

5.

MSw = pooled variance = s2 =
SSw
dfw

For example, let’s take the dataset data(chickwts) in R. This is the weight of chicks after some length
of time fed on different diets. We want to know if there is any difference among the diets in the weight
of chicks. We answer this question with a single-factor ANOVA: anova(lm(weight ˜ feed)). We see in
the ANOVA that there is a significant difference. The next question is: which diets are actually different
from each other? We can visualize the differences among diets with the command boxplot(weight ˜ feed),
but the plot doesn’t answer the question. We can answer this question by doing all possible t-tests for
all possible pairs of diets. But for each t-test, the false positive rate is 0.05. If we do many t-tests, the
probability that at least one of the tests gives a false positive is greater than 0.05. So doing a large
number of tests, looking for a significant result, is a “fishing expedition” that greatly increases the false
positive rate. We can correct this problem by adjusting the probability of the test upwards based on the
number of tests performed, and still using the 0.05 criterion for significance. This adjusted probability
is used in the Tukey Honestly Significant Difference method for performing multiple t-tests.

Multiple comparisons problem

• Multiple t-tests inflate the false positive rate!

• Therefore, we need to adjust for the number of comparisons.

• The Tukey Honestly Significant Difference tests makes this adjustment.

• In R, the function is TukeyHSD().

• First do a = aov(response ˜ predictor), then TukeyHSD(a, “predictor”).

• Or, just TukeyHSD(aov(response ˜ predictor)) to do all possible comparisons within each predictor.

For the chick weight data, we do:

76



data(chickwts)

attach(chickwts)

a = aov(weight \string~ feed)

Tukey(a, ‘‘feed’’)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = weight \string~ feed)

$feed

diff lwr upr p adj

horsebean-casein -163.383333 -232.346876 -94.41979 0.0000000

linseed-casein -104.833333 -170.587491 -39.07918 0.0002100

meatmeal-casein -46.674242 -113.906207 20.55772 0.3324584

soybean-casein -77.154762 -140.517054 -13.79247 0.0083653

sunflower-casein 5.333333 -60.420825 71.08749 0.9998902

linseed-horsebean 58.550000 -10.413543 127.51354 0.1413329

meatmeal-horsebean 116.709091 46.335105 187.08308 0.0001062

soybean-horsebean 86.228571 19.541684 152.91546 0.0042167

sunflower-horsebean 168.716667 99.753124 237.68021 0.0000000

meatmeal-linseed 58.159091 -9.072873 125.39106 0.1276965

soybean-linseed 27.678571 -35.683721 91.04086 0.7932853

sunflower-linseed 110.166667 44.412509 175.92082 0.0000884

soybean-meatmeal -30.480519 -95.375109 34.41407 0.7391356

sunflower-meatmeal 52.007576 -15.224388 119.23954 0.2206962

sunflower-soybean 82.488095 19.125803 145.85039 0.0038845

This shows us the difference in mean weight between each feed type, the 95% confidence interval for
the difference (adjusted for the multiple comparisons) and the probability in the t-test (again, adjusted
for the multiple comparisons). Here we find out that the largest significant difference in weight is between
sunflower and horsebean diets. Some diets are not significantly different from each other, as for example
sunflower and casein.

2-factor ANOVA: calculations
We do three hypothesis tests in 2-factor ANOVA. We test for:

• the main effect of factor 1.

• the main effect of factor 2.

• the interaction between the two factors.

Take, for example, two factors, very commonly used: sex, and drugs. Often when you take a medi-
cation, there are side effects. For example, if you take steroids. The side effects are different in men and
women. For example, women taking steroids often develop a deeper voice.

2-factor ANOVA: calculations

• The mean squares for each effect are the same as for the single-factor ANOVA.

• The within mean squares is different from the single-factor ANOVA: it is the pooled variance within
each cell, rather than within each effect.

• The interaction is calculated as a difference.
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2-factor ANOVA: calculations

• The mean squares for each effect are the same as for the single-factor ANOVA.

• The within mean squares is different from the single-factor ANOVA: it is the pooled variance within
each cell, rather than within each effect.

• The interaction is calculated as a difference.

As an example, let’s do a 2-factor ANOVA for voice deepness, with factors steroid use and sex.
Here are the data: no steroids, female: mean is 3, variance is 3, sample size is 20. yes steroids, female:

mean is 6, variance is 3, sample size is 20. no steroids, male: mean is 7, variance is 2, sample size is 20.
yes steroids, male: mean is 8, variance is 2, sample size is 20.

How do we calculate the ANOVA table for these data, assuming we’re testing for a drug effect, a sex
effect, and the interaction between the two? See the tablet file for the calculations.

Some additional calculations are generally interesting: the coefficient of determination, which is the
proportion of the total variation that is explained by the effect. This is just the sum of squares for the
effect divided by the total sum of squares. The total sum of squares is the sum of all the sums of squares
(factor1, factor2, interaction, within). Also, when we have a 2-by-2 table, we can actually calculate the
interaction. This is effect of factor 1 within the first level of factor two, minus the effect of factor 1 within
the second level of factor 2. In the steroid example the sample or observed interaction is (3-6) - (7-8) =
(-3) - (-1) = -2.

What are the reasons for doing a 2-factor ANOVA, rather than two single-factor ANOVAs? First, if
there is an interaction, then you explain more of the variation. Second, if there is an interaction, then
your interpretation of the main effect is different, it becomes conditional. And third, whether there is an
interaction or not, then the mean squares within is smaller if you do a 2-factor ANOVA, which results
in a higher power of the test.

2-factor ANOVA: coefficient of determination, r2

In the above ANOVA table, the coefficient of determination is 3.45/(3.45 + 7.66) = 0.31. In other
words, 31% of the variation in the response variable is explained by the predictor. Variation is synony-
mous with “sum of squares”. To calculate the coefficient of determination (r2) for a factor, we divide its
sum of squares with the total sum of squares. The total sum of squares is the factor sum of squares plus
the within sum of squares.

2-factor ANOVA: rationale
Why do a 2-factor ANOVA rather than two 1-factor ANOVAs?

• If an interaction exists, then the interpretation of the main effect is different.

• If an interaction exists, then we can demonstrate it and increase the proportion of variation that
we have explained (i.e. increase the coefficient of determination, r2).

• If there is a large effect of both of the factors, then including both in the same analysis greatly
reduces the within mean squares, which increases the power of the test for demonstrating both
main effects.
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Lecture 19: 2-factor ANOVA
Announcements:

• Quiz 9 is up and ready, due Wednesday.

• Midterm Exam 2 will be Tuesday, December 20, 2011, in the lab.

• Midterm Exam 2 will cover quizzes 6, 7, 8, 9, and 10.

• Midterm 2 Practice Exam will be up soon.

F -test purpose: to compare two variances

F -test purpose: to compare two variances

The F -test is used to test for the equality of population variances, using the ratio of sample variances,
which follows an F distribution. The F -test is used in the analysis of variance (ANOVA), to test for
the equality of means, not variances, by comparing the observed variance among sample means to the
predicted variance among sample means if all samples were drawn from the same population.

Remember, the purpose of ANOVA is to explain variation. We have a variable, and we see that it
varies from individual to individual, or from place to place, or from time to time, and we want to know
what the causes of that variation are. The variable we’re interested in is called the “response” variable.
It is the variable that responds to some other variable, so that its variation is “explained” by variation in
the other variable. The other variable, that explains the first variable is called the “predictor” variable,
because it explains the variable in our variable of interest. So, for example, we see insect damage of a
plant. Different plants have different degrees of insect damage. Why do they vary? Maybe it is because
different plants have higher numbers of parasites than others. So in this example, the damage is the
response variable, and its variation is partly influenced by the number of parasites, which is the predictor
variable. So we say that the predictor explains variation in the response. In an ANOVA we can calculate
exactly how much of the variation in the response variable is explained by the predictor variable.

So far our predictor variable has been categorical. A categorical variable is a variable that assigns
each observation to a category. Examples are sex (categories are male or female), variety (categories
A, B, C, etc.), location, site, season. A categorical predictor variable is called a “factor”. Each of the
category choices within the factor are called “levels” of the factor. So the factor sex for example has two
levels, male and female. The factor season has four levels, winter, spring, summer, and fall. In R, you
need to make sure that when you label categories with numbers, those numbers are treated as factor
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levels rather than numbers. For example if you label the sexes 1 and 2 you need to make sure R sees
those as factor levels and not the numbers 1 and 2.

F -test purpose: to compare two variances

ANOVA purpose is to compare means of populations, not
variances. But any difference can be expressed as a variance. So the difference among means can be
tested with an F test.

The single-factor ANOVA can be thought of as a multi-sample t-test. If there are only two samples,
then the ANOVA is mathematically equivalent to a two-sample t-test assuming equal variances in the
two populations.

Single-factor ANOVA, g samples (groups), different nk in all groups

1.

F =

∑
nk(xk − x)2/(g − 1)

s2
.

F =
SSg/dfg
s2

.

2.

s2 =

∑
(x1 − x1)2 + . . .+

∑
(xg − xg)2∑

nk − g
.

3.

F =
SSg/dfg
SSw/dfw

=
MSg
MSw

.

4. Note that s2 = MSw. This is the “pooled variance” within groups.

Calculating pooled variance s2

The pooled variance is the weighted mean variance of the groups, where the weights are the degrees
of freedom.

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2 + (n3 − 1)s2

3 + . . .+ (ng − 1)s2
g∑

nk − g

MSw = pooled variance = s2 =
SSw
dfw

SSw =
∑

(x1 − x1)2 + . . .+
∑

(xg − xg)2

dfw =
∑

nk − g

In the single-factor ANOVA, we have just one response variable and one predictor variable. The
response variable is a continuous variable (like height or weight), and the predictor variable is a factor
(like sex or species or treatment).

In an ANOVA, the result is an analysis of variance table, which always has the same components.

80



Single-factor ANOVA

Single-factor ANOVA

1.

F =
MSg
MSw

.

2.

MSg =
SSg
dfg

3.
SSg =

∑
nk(xk − x)2

4.
dfg = g − 1

5.

MSw = pooled variance = s2 =
SSw
dfw

For example, let’s take the dataset data(chickwts) in R. This is the weight of chicks after some length
of time fed on different diets. We want to know if there is any difference among the diets in the weight
of chicks. We answer this question with a single-factor ANOVA: anova(lm(weight ˜ feed)). We see in
the ANOVA that there is a significant difference. The next question is: which diets are actually different
from each other? We can visualize the differences among diets with the command boxplot(weight ˜ feed),
but the plot doesn’t answer the question. We can answer this question by doing all possible t-tests for
all possible pairs of diets. But for each t-test, the false positive rate is 0.05. If we do many t-tests, the
probability that at least one of the tests gives a false positive is greater than 0.05. So doing a large
number of tests, looking for a significant result, is a “fishing expedition” that greatly increases the false
positive rate. We can correct this problem by adjusting the probability of the test upwards based on the
number of tests performed, and still using the 0.05 criterion for significance. This adjusted probability
is used in the Tukey Honestly Significant Difference method for performing multiple t-tests.

Multiple comparisons problem

• Multiple t-tests inflate the false positive rate!

• Therefore, we need to adjust for the number of comparisons.

• The Tukey Honestly Significant Difference tests makes this adjustment.

• In R, the function is TukeyHSD().

• First do a = aov(response ˜ predictor), then TukeyHSD(a, “predictor”).

• Or, just TukeyHSD(aov(response ˜ predictor)) to do all possible comparisons within each predictor.

For the chick weight data, we do:
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data(chickwts)

attach(chickwts)

a = aov(weight \string~ feed)

Tukey(a, ‘‘feed’’)

Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = weight \string~ feed)

$feed

diff lwr upr p adj

horsebean-casein -163.383333 -232.346876 -94.41979 0.0000000

linseed-casein -104.833333 -170.587491 -39.07918 0.0002100

meatmeal-casein -46.674242 -113.906207 20.55772 0.3324584

soybean-casein -77.154762 -140.517054 -13.79247 0.0083653

sunflower-casein 5.333333 -60.420825 71.08749 0.9998902

linseed-horsebean 58.550000 -10.413543 127.51354 0.1413329

meatmeal-horsebean 116.709091 46.335105 187.08308 0.0001062

soybean-horsebean 86.228571 19.541684 152.91546 0.0042167

sunflower-horsebean 168.716667 99.753124 237.68021 0.0000000

meatmeal-linseed 58.159091 -9.072873 125.39106 0.1276965

soybean-linseed 27.678571 -35.683721 91.04086 0.7932853

sunflower-linseed 110.166667 44.412509 175.92082 0.0000884

soybean-meatmeal -30.480519 -95.375109 34.41407 0.7391356

sunflower-meatmeal 52.007576 -15.224388 119.23954 0.2206962

sunflower-soybean 82.488095 19.125803 145.85039 0.0038845

This shows us the difference in mean weight between each feed type, the 95% confidence interval for
the difference (adjusted for the multiple comparisons) and the probability in the t-test (again, adjusted
for the multiple comparisons). Here we find out that the largest significant difference in weight is between
sunflower and horsebean diets. Some diets are not significantly different from each other, as for example
sunflower and casein.

2-factor ANOVA: calculations
We do three hypothesis tests in 2-factor ANOVA. We test for:

• the main effect of factor 1.

• the main effect of factor 2.

• the interaction between the two factors.

Take, for example, two factors, very commonly used: sex, and drugs. Often when you take a medi-
cation, there are side effects. For example, if you take steroids. The side effects are different in men and
women. For example, women taking steroids often develop a deeper voice.

2-factor ANOVA: calculations

• The mean squares for each effect are the same as for the single-factor ANOVA.

• The within mean squares is different from the single-factor ANOVA: it is the pooled variance within
each cell, rather than within each effect.

• The interaction is calculated as a difference.
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2-factor ANOVA: calculations

• The mean squares for each effect are the same as for the single-factor ANOVA.

• The within mean squares is different from the single-factor ANOVA: it is the pooled variance within
each cell, rather than within each effect.

• The interaction is calculated as a difference.

As an example, let’s do a 2-factor ANOVA for voice deepness, with factors steroid use and sex.
Here are the data: no steroids, female: mean is 3, variance is 3, sample size is 20. yes steroids, female:

mean is 6, variance is 3, sample size is 20. no steroids, male: mean is 7, variance is 2, sample size is 20.
yes steroids, male: mean is 8, variance is 2, sample size is 20.

How do we calculate the ANOVA table for these data, assuming we’re testing for a drug effect, a sex
effect, and the interaction between the two? See the tablet file for the calculations.

Some additional calculations are generally interesting: the coefficient of determination, which is the
proportion of the total variation that is explained by the effect. This is just the sum of squares for the
effect divided by the total sum of squares. The total sum of squares is the sum of all the sums of squares
(factor1, factor2, interaction, within). Also, when we have a 2-by-2 table, we can actually calculate the
interaction. This is effect of factor 1 within the first level of factor two, minus the effect of factor 1 within
the second level of factor 2. In the steroid example the sample or observed interaction is (3-6) - (7-8) =
(-3) - (-1) = -2.

What are the reasons for doing a 2-factor ANOVA, rather than two single-factor ANOVAs? First, if
there is an interaction, then you explain more of the variation. Second, if there is an interaction, then
your interpretation of the main effect is different, it becomes conditional. And third, whether there is an
interaction or not, then the mean squares within is smaller if you do a 2-factor ANOVA, which results
in a higher power of the test.

2-factor ANOVA: coefficient of determination, r2

In the above ANOVA table, the coefficient of determination is 3.45/(3.45 + 7.66) = 0.31. In other
words, 31% of the variation in the response variable is explained by the predictor. Variation is synony-
mous with “sum of squares”. To calculate the coefficient of determination (r2) for a factor, we divide its
sum of squares with the total sum of squares. The total sum of squares is the factor sum of squares plus
the within sum of squares.

2-factor ANOVA: rationale
Why do a 2-factor ANOVA rather than two 1-factor ANOVAs?

• If an interaction exists, then the interpretation of the main effect is different.

• If an interaction exists, then we can demonstrate it and increase the proportion of variation that
we have explained (i.e. increase the coefficient of determination, r2).

• If there is a large effect of both of the factors, then including both in the same analysis greatly
reduces the within mean squares, which increases the power of the test for demonstrating both
main effects.

Lecture 20 was just making jpg files of the quiz 9 questions and showing the class how to do each of
the questions.
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17 Covariance, correlation, and linear regression

Lecture 12: Covariance, correlation, and linear regression
Announcements:

• Reading: Chapter 7 in Vasilj.

• Partitioning variance, least squares

• Next on the menu: Covariance, correlation, and linear regression

Problem. Two continuous variables: are they related?
Examples

• Parents versus offspring.

• Growth curves (organs, organisms, populations).

• Allometric relationships.

• Physiological relationships.

• Ecological relationships.

Regression of traits on fitness

Ecological regressions can be messy

84



Correlation versus causation

Storks

Correlation versus causation
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Babies

Correlation versus causation

Storks and babies?

Correlation versus causation
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Correlation versus causation

Covariance

1. Cov(x, y) = E[(x− x)(y − y)]
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2.

Cov(x, y) =

∑
i[(xi − x)(yi − y)]

n− 1

Properties of the covariance

1. Cov(x, a) = 0, where a is any constant.

2. Cov(x, x) = Var(x), for any variable x.

3. Cov(x, y) = Cov(y, x), for any variables x and y.

4. Cov(x, bx) = bVar(x), for any variables x and y and constant b.

5. Cov(ax, by) = abCov(x, y), for any constants a and b.

6. Cov(x+ a, y + b) = Cov(x, y), for any constants a and b.

7. If x and y are independent, then Cov(x, y) = 0.

Calculating the slope and intercept of the best-fit line
The best fit line is the line that minimizes the residual sum of squares.

1.

Slope = b =
Cov(x, y)

Var(x)
.

2. Intercept = a = y − bx.

Correlation versus covariance
Correlation coefficient is the scaled covariance.

1. The maximum covariance between x and y is sxsy.

2.

Cor(x, y) = r =
Cov(x, y)

sxsy
.

3. The correlation coefficient lies between -1 and +1.

Strength of the correlation coefficient

88



Correlation coefficients

Simple linear regression

1. Calculate the best-fit straight line ŷ = a+ bx.

2. Calculate the residual sum of squares. SSres =
∑

(y − ŷ)2.

3. Calculate the line sum of squares SSx =
∑

(ŷ − y)2.
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4. Calculate the corresponding residual and line mean squares: MSres = SSres/dfres; and MSx =
SSx/dfx dfres = n− 2; dfx = 1

5. Form the F ratio and calculate its tail probability F = MSres/MSx.

6. Or let R do it all with anova(lm(y ˜ x)).

Assumptions of linear regression

1. The x values are measured without any error

2. The relationship between x and y is linear

3. The residuals are normally distributed

4. The variance is constant (regardless of the value of x)

Interpretation of correlation

Lecture 12 continued: Regression
Announcements:

• Reading: Chapter 7 in Vasilj.

Problem. Two continuous variables: are they related?
Examples

• Parents versus offspring.

• Growth curves (organs, organisms, populations).

90



• Allometric relationships.

• Regression of traits on fitness.

• Physiological relationships.

• Ecological relationships.

Regression of traits on fitness

Ecological regressions can be messy
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Covariance

1. Cov(x, y) = E[(x− x)(y − y)]

2.

Cov(x, y) =

∑
i[(xi − x)(yi − y)]

n− 1

Properties of the covariance

1. Cov(x, a) = 0, where a is any constant.

2. Cov(x, x) = Var(x), for any variable x.

3. Cov(x, y) = Cov(y, x), for any variables x and y.

4. Cov(x, bx) = bVar(x), for any variables x and y and constant b.

5. Cov(ax, by) = abCov(x, y), for any constants a and b.

6. Cov(x+ a, y + b) = Cov(x, y), for any constants a and b.

7. If x and y are independent, then Cov(x, y) = 0.

Simple linear regression

1. Calculate the best-fit straight line ŷ = a+ bx.

2. Calculate the residual sum of squares. SSres =
∑

(y − ŷ)2.

3. Calculate the line sum of squares SSx =
∑

(ŷ − y)2.

4. Calculate the corresponding residual and line mean squares: MSres = SSres/dfres; and MSx =
SSx/dfx dfres = n− 2; dfx = 1

5. Form the F ratio and calculate its tail probability F = MSres/MSx.

6. Or let R do it all with anova(lm(y ˜ x)).
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Simple linear regression: shortcut
Let’s say you don’t have the raw data, just the covariances, means, variances, and sample size. Here’s

how you calculate the ANOVA table:

1. dft = n− 1, dfres = n− 2, dfx = 1.

2. Since var(y) = MSt = SSt/dft = SSt/(n− 1), then SSt = var(y)(n− 1).

3. Calculate r, the correlation coefficient: r = cov(x, y)/(sxsy).

4. Since r2 = SSx/SSt, we get SSx = r2SSt.

5. Since 1− r2 = SSres/SSt, SSres = (1− r2)SSt.

6. Now the mean squares are easy: MSx = SSx/1, MSres = SSres/dfres.

7. Form the F ratio and calculate its tail probability F = MSres/MSx, 1 - pf(F, 1, n-2)

8. Or compare the observed F with the critical F , qf(1 - 0.05, 1, n-2).

Nonlinear regression

1. Calculate the best-fit curve in R using nls().

2. Plot the best fit curve over the scatter diagram using curve().

3. Estimate the standard error of each parameter in the equation.

4. Form the t value and test for the significance of each parameter in the equation.

5. Or let R do it all with summary(nls()).

Assumptions of linear regression

1. The x values are measured without any error

2. The relationship between x and y is linear

3. The residuals are normally distributed

4. The variance is constant (regardless of the value of x)

Correlation versus causation
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Correlation versus causation

Interpretation of correlation
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Correlation coefficients

Lecture 13: regression, assumptions of tests

95



Announcements:

• Reading: Chapter 7 in Vasilj.

• Midterm exam 3 on Tuesday, January 29, 14:00 to 18:00.

• Midterm exam 3 covers material on quizzes 8, 9, 11, 12

• Practice midterm 3 will be posted later today

• Practice final exam will also be posted

• Watch the website for announcements of exam times, and list of students who need to take the
final.

• Today: more on correlation regression, and assumptions of tests

Correlation versus regression

• Regression: we want to predict y from knowing x

• Correlation: we don’t want to predict, just know if there is a relationship

• The probability of the significance test is the same in both

• Regression: calculate the best fit line, ANOVA table

• Correlation: calculate the correlation coefficient

Correlation coefficient

Correlation coefficient = r = Cov(x,y)
sxsy

Correlation coefficient
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Checking assumptions
Review: Least Squares Statistics

• Total variation = Explained variation + Unexplained variation

• Sums of squares: SST = SSexp + SSres

• Degrees of freedom: dfT = dfexp + dfres

• Mean squares: MS = SS/df

• F ratio: F = MSexp/MSres

• Probability: P = 1 - pf(F, dfexp, dfres)

• Fcrit = qf(1 - 0.05, dfexp, dfres)

Lecture 13: assumptions of least-squares statistical tests

• All least squares statistics can be expressed as an ANOVA table.

• In the ANOVA table, variation is partitioned into explained and residual.

• If the ratio of explained to residual is high, then we reject the null hypothesis.

• Null hypothesis is that the predictor variable is not related to the response variable.

• This hypothesis test has several assumptions that we must check.

Assumptions of least squares statistical tests

1. The model is correct.

2. Predictor variables are measured exactly.

3. Residuals are independent of each other.
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4. Residuals are independent of predictor variable and response variable.

5. Residuals are normally distributed.

6. Residuals have constant variance.

7. Mean of the residuals is zero.

We can test these assumptions

• Correct model: residuals should be independent of predictor

• Exact measurement of predictor: can’t easily test

• Residuals independent: runs test (we won’t do this)

• Residuals independent of other variables: runs test, correlation with other variables

• Residuals normally distributed: shapiro.test(residuals), qnorm(residuals), plot(lm(y ˜ x))

• Residuals have constant variance: bartlett.test(y x), correlation with other variables, plot(lm(y ˜
x))

If the data do not meet the assumptions
Two choices:

1. Transform the response variable (for example, log, square root) and retest the data.

2. Use a non-parametric test instead.

3. Note: the null hypothesis is now different!

Non-parametric tests

1. Non-parametric single factor ANOVA: Kruskal-Wallis test, kruskal.test()

2. Non-parameteric two factor ANOVA: Friedman test, friedman.test()

3. Non-parametric multiple comparisons: Pairwise Wilcoxon test, pairwise.wilcox.test()

4. Or, just rank transform and do a parametric test.

5. Null hypothesis concerns medians rather than means

Assumption of non-parametric tests

1. Residuals are independent of each other

2. Probability distribution is the same for each residual

Non-parametric tests do not assume that residuals are normally distributed

98


