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Preface

With this concise volume we hope to satisfy the needs of a large scientific community pre-
viously served mainly by huge encyclopedic references. Rather than aiming at a compre-
hensive coverage of our subject, we have concentrated on the most important topics, but
explained those as deeply as space has allowed. The result is a compact work which we trust
leaves no central topics out.
Entries have a rigid structure to facilitate the finding of information. Each term introduced
here includes a definition, history, mathematical details, limitations in using the terms fol-
lowed by examples, references and relevant literature for further reading. The reference
is arranged alphabetically to provide quick access to the fundamental tools of statistical
methodology and biographies of famous statisticians, including some currents ones who
continue to contribute to the science of statistics, such as Sir David Cox, Bradley Efron and
T.W. Anderson just to mention a few. The critera for selecting these statisticians, whether
living or absent, is of course rather personal and it is very possible that some of those famous
persons deserving of an entry are absent. I apologize sincerely for any such unintentional
omissions.
In addition, an attempt has been made to present the essential information about statistical
tests, concepts, and analytical methods in language that is accessible to practitioners and
students and the vast community using statistics in medicine, engineering, physical science,
life science, social science, and business/economics.
The primary steps of writing this book were taken in 1983. In 1993 the first French language
version was published by Dunod publishing company in Paris. Later, in 2004, the updated
and longer version in French was published by Springer France and in 2007 a student edition
of the French edition was published at Springer.
In this encyclopedia, just as with the Oxford Dictionary of Statistical Terms, published for
the International Statistical Institute in 2003, for each term one or more references are given,
in some cases to an early source, and in others to a more recent publication. While some
care has been taken in the choice of references, the establishment of historical priorities is
notoriously difficult and the historical assignments are not to be regarded as authoritative.
For more information on terms not found in this encyclopedia short articles can be found
in the following encyclopedias and dictionaries:
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Acceptance Region

The acceptance region is the interval within
the sampling distribution of the test statis-
tic that isconsistentwith thenull hypothesis
H0 from hypothesis testing.
It is the complementary region to the rejec-
tion region.
The acceptance region is associated with
a probability 1− α, where α is the signifi-
cance level of the test.

MATHEMATICAL ASPECTS
See rejection region.

EXAMPLES
See rejection region.

FURTHER READING
� Critical value
� Hypothesis testing
� Rejection region
� Significance level

Accuracy

The general meaning of accuracy is the prox-
imity of a value or a statistic to a refer-
encevalue.Morespecifically, itmeasures the
proximity of theestimatorT of theunknown
parameter θ to the true value of θ .

The accuracy of an estimator can be mea-
sured by the expected value of the squared
deviation between T and θ , in other words:

E
[
(T − θ)2

]
.

Accuracy should not be confused with the
termprecision,which indicates thedegreeof
exactnessofameasureand isusually indicat-
ed by the number of decimals after the com-
ma.

FURTHER READING
� Bias
� Estimator
� Parameter
� Statistics

Algorithm
An algorithm is a process that consists of
a sequence of well-defined steps that lead to
the solution of a particular type of problem.
This process can be iterative, meaning that
it is repeated several times. It is generally
a numerical process.

HISTORY
The term algorithm comes from the Latin
pronunciation of the nameof the ninth centu-
ry mathematician al-Khwarizmi, who lived
in Baghdad and was the father of algebra.
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DOMAINS AND LIMITATIONS
The word algorithm has taken on a different
meaning in recent years due to the advent of
computers. In thefield of computing, it refers
to a process that is described in a way that can
be used in a computer program.
The principal goal of statistical software is
to develop a programming language capa-
ble of incorporating statistical algorithms,
so that these algorithms can then be pre-
sented in a form that is comprehensible to
the user. The advantage of this approach is
that the user understands the results pro-
duced by the algorithm and trusts the preci-
sion of the solutions. Among various sta-
tistical reviews that discuss algorithms,
the Journal of Algorithms from the Aca-
demic Press (New York), the part of the
Journal of the Royal Statistical Society
Series C (Applied Statistics) that focuses on
algorithms, Computational Statistics from
Physica-Verlag (Heidelberg) and Random
Structures and Algorithms edited by Wiley
(New York) are all worthy of special men-
tion.

EXAMPLES
We present here an algorithm that calculates
the absolute value of a nonzero number; in
other words |x|.
Process:

Step 1. Identify the algebraic sign of the
given number.

Step 2. If the sign is negative, go to step 3.
If the sign is positive, specify the
absolute value of the number as the
number itself:

|x| = x

and stop the process.

Step 3. Specify the absolute value of the
given number as its opposite num-
ber:

|x| = −x

and stop the process.

FURTHER READING
� Statistical software
� Yates’ algorithm

REFERENCES
Chambers, J.M.: Computational Methods

for Data Analysis. Wiley, New York
(1977)

Khwarizmi, Musa ibn Meusba (9th cent.).
Jabr wa-al-muqeabalah. The algebra of
Mohammed ben Musa, Rosen, F. (ed. and
transl.). Georg Olms Verlag, Hildesheim
(1986)

Rashed, R.: La naissance de l’algèbre. In:
Noël, E. (ed.) Le Matin des Mathémati-
ciens. Belin-Radio France, Paris (1985)

Alternative Hypothesis

An alternative hypothesis is the hypothesis
which differs from the hypothesis being test-
ed.
Thealternativehypothesis isusuallydenoted
by H1.

HISTORY
See hypothesis and hypothesis testing.

MATHEMATICAL ASPECTS
During the hypothesis testing of a param-
eter of a population, the null hypothesis is
presented in the following way:

H0 : θ = θ0 ,
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where θ is the parameter of the population
that is to be estimated, and θ0 is the pre-
sumed value of this parameter. The alterna-
tive hypothesis can then take three different
forms:
1. H1 : θ > θ0

2. H1 : θ < θ0

3. H1 : θ �= θ0

In the first two cases, the hypothesis test
is called the one-sided, whereas in the third
case it is called the two-sided.
Thealternativehypothesiscanalso take three
different forms during the hypothesis test-
ingofparametersof twopopulations. If the
null hypothesis treats the two parameters θ1

and θ2 equally, then:

H0 : θ1 = θ2 or

H0 : θ1 − θ2 = 0 .

The alternative hypothesis could then be
• H1 : θ1 > θ2 or H1 : θ1 − θ2 > 0
• H1 : θ1 < θ2 or H1 : θ1 − θ2 < 0
• H1 : θ1 �= θ2 or H1 : θ1 − θ2 �= 0
During the comparison of more than two
populations, the null hypothesis supposes
that the values of all of the parameters are
identical. If we want to compare k popula-
tions, the null hypothesis is the following:

H0 : θ1 = θ2 = . . . = θk .

The alternative hypothesis will then be for-
mulated as follows:

H1: the values of θi(i = 1, . . . , k) are not all
identical.

This means that only one parameter needs
to have a different value to those of the other
parametersinorder toreject thenull hypoth-
esis and accept the alternative hypothesis.

EXAMPLES
We are going to examine the alternative
hypotheses for threeexamplesofhypothesis
testing:
1. Hypothesis testing on the percentage of

a population
An election candidate wants to know if he
will receive more than 50% of the votes.
The null hypothesis for this problem can
be written as follows:

H0 : π = 0.5 ,

where π is the percentage of the popu-
lation to be estimated.
Wecarry outaone-sided teston the right-
hand side that allows us to answer the can-
didate’s question. The alternative hypoth-
esis will therefore be:

H1 : π > 0.5 .

2. Hypothesis testing on the mean of a pop-
ulation
A bolt maker wants to test the precision
of a new machine that should make bolts
8 mm in diameter.
We can use the following null hypothe-
sis:

H0 : μ = 8 ,

where μ is the mean of the population
that is to be estimated.
We carry out a two-sided test to check
whether the bolt diameter is too small or
too big.
The alternative hypothesis can be formu-
lated in the following way:

H1 : μ �= 8 .

3. Hypothesis testing on a comparison of
the means of two populations
An insurance company decided to equip
its offices with microcomputers. It wants
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to buy these computers from two differ-
ent companies so long as there is no sig-
nificant difference in durability between
the two brands. It therefore tests the time
that passes before the first breakdown on
a sample of microcomputers from each
brand.
According to the null hypothesis, the
mean of the elapsed time before the first
breakdown is the same for each brand:

H0 : μ1 − μ2 = 0 .

Here μ1 and μ2 are the respective means
of the two populations.
Since we do not know which mean will
be the highest, we carry out a two-sided
test. Therefore the alternative hypothesis
will be:

H1 : μ1 − μ2 �= 0 .

FURTHER READING
� Analysis of variance
� Hypothesis
� Hypothesis testing
� Null hypothesis

REFERENCE
Lehmann, E.I., Romann, S.P.: Testing Statis-

tical Hypothesis, 3rd edn. Springer, New
York (2005)

Analysis of Binary Data
The study of how the probability of success
depends on expanatory variables and group-
ing of materials.
The analysis of binary data also involves
goodness-of-fit tests of a sample of binary
variables to a theoretical distribution, as well
as the study of 2 × 2 contingency tables

and their subsequent analysis. In the latter
case we note especially independence tests
between attributes, and homogeneity tests.

HISTORY
See data analysis.

MATHEMATICAL ASPECTS
Let Y be a binary random variable and
X1, X2, . . . , Xk besupplementarybinaryvari-
ables. So the dependence of Y on the vari-
ablesX1, X2, . . . , Xk is represented by the fol-
lowing models (the coefficients of which are
estimated via the maximum likelihood):
1. Linear model: P(Y = 1) is expressed as

a linear function (in the parameters) of Xi.
2. Log-linear model: log P(Y = 1) is

expressed as a linear function (in the
parameters) of Xi.

3. Logistic model: log
(

P(Y=1)
P(Y=0)

)
is

expressed as a linear function (in the
parameters) of Xi.

Models 1 and 2 are easier to interpret. Yet
the last one has the advantage that the quan-
tity to be explained takes all possible values
of the linear models. It is also important to
pay attention to the extrapolation of themod-
eloutsideof thedomain inwhich it isapplied.
It is possible that among the independent
variables (X1, X2, . . . , Xk), there are cate-
gorical variables (eg. binary ones). In this
case, it is necessary to treat the nonbinary
categorical variables in the following way:
let Z be a random variable with m cate-
gories. We enumerate the categories from 1
to m and we define m − 1 random vari-
ables Z1, Z2, . . . , Zm−1. So Zi takes the val-
ue 1 if Z belongs to the category represent-
ed by this index. The variable Z is there-
fore replaced by these m − 1 variables, the
coefficientsofwhich express the influenceof
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the considered category. The reference (used
in order to avoid the situation of collinear-
ity) will have (for the purposes of compar-
ison with other categories) a parameter of
zero.

FURTHER READING
� Binary data
� Data analysis

REFERENCES
Cox, D.R., Snell, E.J.: The Analysis of Bina-

ry Data. Chapman & Hall (1989)

Analysis of Categorical Data

The analysis of categorical data involves
the following methods:

(a) A study of the goodness-of-fit test;

(b) Thestudy ofacontingency tableand its
subsequent analysis, which consists of
discovering and studying relationships
between the attributes (if they exist);

(c) An homogeneity test of some pop-
ulations, related to the distribution of
a binary qualitative categoricalvariable;

(d) An examination of the independence
hypothesis.

HISTORY
The term “contingency”, used in the rela-
tion to cross tables of categorical data was
probablyfirstusedbyPearson, Karl (1904).
The chi-square test, was proposed by Bar-
lett, M.S. in 1937.

MATHEMATICAL ASPECTS
See goodness-of-fit and contingency table.

FURTHER READING
� Data
� Data analysis
� Categorical data
� Chi-square goodness of fit test
� Contingency table
� Correspondence analysis
� Goodness of fit test
� Homogeneity test
� Test of independence

REFERENCES
Agresti, A.: Categorical Data Analysis.

Wiley, New York (1990)

Bartlett, M.S.: Properties of sufficiency and
statistical tests. Proc. Roy. Soc. Lond.
Ser. A 160, 268–282 (1937)

Cox, D.R., Snell, E.J.: Analysis of Binary
Data, 2nd edn. Chapman & Hall, London
(1990)

Haberman, S.J.: Analysis of Qualitative
Data. Vol. I: Introductory Topics. Aca-
demic, New York (1978)

Pearson, K.: On the theory of contingency
and its relation to association and normal
correlation. Drapers’ Company Research
Memoirs, Biometric Ser. I., pp. 1–35
(1904)

Analysis of Residuals

An analysis of residuals is used to test the
validity of thestatisticalmodeland to control
the assumptions made on the error term. It
may be used also for outlier detection.

HISTORY
The analysis of residuals dates back to Euler
(1749) and Mayer (1750) in the middle of
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the eighteenth century, who were confront-
ed with the problem of the estimation of
parameters from observations in the field
of astronomy. Most of the methods used to
analyze residuals are based on the works of
Anscombe (1961) and Anscombeand Tukey
(1963). In 1973, Anscombe also presented
an interesting discussion on the reasons for
using graphical methods of analysis. Cook
and Weisberg (1982) dedicated a complete
book to the analysis of residuals. Draper and
Smith (1981) also addressed this problem in
a chapter of their work Applied Regression
Analysis.

MATHEMATICAL ASPECTS
Consider a general model of multiple linear
regression:

Yi = β0 +
p−1∑
j=1

βjXij + εi , i = 1, . . . , n ,

where εi is the nonobservable random error
term.
The hypotheses for the errors εi are gener-
ally as follows:
• The errors are independent;
• They are normally distributed (they fol-

low a normal distribution);
• Their mean is equal to zero;
• Their variance is constant and equal to

σ 2.
Regression analysisgivesanestimation for
Yi,denoted Ŷi. If the chosen model is ade-
quate, the distribution of the residuals or
“observed errors” ei = Yi − Ŷi should con-
firm these hypotheses.
Methods used to analyze residuals are main-
ly graphical. Such methods include:
1. Representing the residuals by a frequency

chart (for example a scatter plot).

2. Plotting the residuals as a function of time
(if the chronological order is known).

3. Plotting the residuals as a function of the
estimated values Ŷi.

4. Plotting the residuals as a function of the
independent variables Xij.

5. Creating a Q–Q plot of the residuals.

DOMAINS AND LIMITATIONS
Tovalidatetheanalysis,someofthehypothe-
ses need to hold (like for example the nor-
mality of the residuals in estimations based
on the mean square).
Consider a plot of the residuals as a function
of the estimated values Ŷi. This is one of the
most commonly used graphical approaches
to verifying the validity of a model. It con-
sists of placing:
• The residuals ei = Yi − Ŷi in increasing

order;
• The estimated values Ŷi on the abscissa.
If the chosen model is adequate, the residu-
als are uniformly distributed on a horizontal
band of points.

However, if the hypotheses for the residu-
als are not verified, the shape of the plot can
be different to this. The three figures below
show the shapes obtained when:
1. The variance σ 2 is not constant. In this

case, it is necessary to perform a trans-
formation on the data Yi before tackling
the regression analysis.



A

Analysis of Residuals 7

2. The chosen model is inadequate (for
example, the model is linear but the con-
stant term was omitted when it was nec-
essary).

3. The chosen model is inadequate
(a parabolic tendency is observed).

Different statistics have been proposed in
order topermitnumericalmeasurements that
are complementary to the visual techniques

presented above, which include those giv-
en by Anscombe (1961) and Anscombe and
Tukey (1963).

EXAMPLES
In thenineteenthcentury,aScottishphysicist
named Forbe, James D. wanted to estimate
the altitude above sea level by measuring the
boiling point of water. He knew that the alti-
tude could be determined from the atmos-
pheric pressure; he then studied the relation
between pressure and the boiling point of
water. Forbe suggested that for an interval
of observed values, a plot of the logarithm of
the pressure as a function of the boiling point
of water should give a straight line. Since
the logarithm of these pressures is small and
varies little, we have multiplied these values
by 100 below.

X boiling point Y 100 · log (pressure)

194.5 131.79

194.3 131.79

197.9 135.02

198.4 135.55

199.4 136.46

199.9 136.83

200.9 137.82

201.1 138.00

201.4 138.06

201.3 138.05

203.6 140.04

204.6 142.44

209.5 145.47

208.6 144.34

210.7 146.30

211.9 147.54

212.2 147.80

Thesimple linear regression modelfor this
problem is:

Yi = β0 + β1Xi + εi , i = 1, . . . , 17 .
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Using the least squares method, we can find
the following estimation function:

Ŷi = −42.131+ 0.895Xi

where Ŷi is the estimated value of variable Y
for a given X.
For each of these 17 values of Xi, we have
an estimated value Ŷi. We can calculate the
residuals:

ei = Yi − Ŷi .

These results are presented in the following
table:

i Xi Yi Ŷi ei =
Yi − Ŷi

1 194.5 131.79 132.037 −0.247

2 194.3 131.79 131.857 −0.067

3 197.9 135.02 135.081 −0.061

4 198.4 135.55 135.529 0.021

5 199.4 136.46 136.424 0.036

6 199.9 136.83 136.872 −0.042

7 200.9 137.82 137.768 0.052

8 201.1 138.00 137.947 0.053

9 201.4 138.06 138.215 −0.155

10 201.3 138.05 138.126 −0.076

11 203.6 140.04 140.185 −0.145

12 204.6 142.44 141.081 1.359

13 209.5 145.47 145.469 0.001

14 208.6 144.34 144.663 −0.323

15 210.7 146.30 146.543 −0.243

16 211.9 147.54 147.618 −0.078

17 212.2 147.80 147.886 −0.086

Plotting the residuals as a function of the
estimated values Ŷi gives the previous
graph.
It is apparent from this graph that, except for
one observation (the 12th), where the value
of the residual seems to indicate an outli-
er, the residuals are distributed in a very thin
horizontal strip. In this case the residuals do
not provide any reason to doubt the validity
of the chosen model. By analyzing the stan-
dardizedresidualswecandeterminewhether
the 12th observation is an outlier or not.

FURTHER READING
� Anderson–Darling test
� Least squares
� Multiple linear regression
� Outlier
� Regression analysis
� Residual
� Scatterplot
� Simple linear regression

REFERENCES
Anscombe, F.J.: Examination of residuals.

Proc. 4th Berkeley Symp. Math. Statist.
Prob. 1, 1–36 (1961)

Anscombe, F.J.: Graphs in statistical analy-
sis. Am. Stat. 27, 17–21 (1973)

Anscombe, F.J., Tukey, J.W.: Analysis of
residuals. Technometrics 5, 141–160
(1963)

Cook, R.D., Weisberg, S.: Residuals and
InfluenceinRegression.Chapman&Hall,
London (1982)

Cook, R.D., Weisberg, S.: An Introduction
to Regression Graphics. Wiley, New York
(1994)

Cook, R.D., Weisberg, S.: Applied Regres-
sion Including Computing and Graphics.
Wiley, New York (1999)
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Draper, N.R., Smith, H.: Applied Regres-
sion Analysis, 3rd edn. Wiley, New York
(1998)

Euler, L.: Recherches sur la question des iné-
galités du mouvement de Saturne et de
Jupiter, pièce ayant remporté le prix de
l’année 1748, par l’Académie royale des
sciences de Paris. Republié en 1960, dans
Leonhardi Euleri, Opera Omnia, 2ème
série. Turici, Bâle, 25, pp. 47–157 (1749)

Mayer,T.:AbhandlungüberdieUmwälzung
desMondsumseineAchseunddieschein-
bare Bewegung der Mondflecken. Kos-
mographische Nachrichten und Samm-
lungen aufdasJahr17481, 52–183(1750)

Analysis of Variance

The analysis of variance is a technique that
consists of separating the total variation of
data set into logical components associat-
ed with specific sources of variation in order
to compare the mean of several popula-
tions. This analysis also helps us to test
certain hypotheses concerning the param-
eters of the model, or to estimate the compo-
nents of the variance. The sources of vari-
ation are globally summarized in a compo-
nent called error variance, sometime called
within-treatment mean square and another
component that is termed “effect” or treat-
ment, sometime called between-treatment
mean square.

HISTORY
Analysis of variance dates back to Fish-
er, R.A. (1925). He established the first fun-
damental principles in this field. Analysis of
variancewasfirst applied in thefieldsofbiol-
ogy and agriculture.

MATHEMATICAL ASPECTS
The analysis of variance compares the
means of three or more random samples
and determines whether there is a signif-
icant difference between the populations
from which the samples are taken. This
technique can only be applied if the random
samples are independent, if the population
distributions are approximately normal and
all have the same variance σ 2.
Having established that the null hypothesis,
assumes that the means are equal, while the
alternative hypothesis affirms that at least
one of them is different, we fix a significant
level. We then make two estimates of the
unknown variance σ 2:
• The first, denoted s2

E, corresponds to the
mean of the variances of each sample;

• The second, s2
Tr, is based on the variation

between the means of the samples.
Ideally, if the null hypothesis is verified,
these two estimationswillbeequal, and the F
ratio (F = s2

Tr/s2
E, as used in the Fisher test

and defined as thequotientof thesecond esti-
mation of σ 2 to the first) will be equal to 1.
The value of the F ratio, which is generally
more than 1 because of the variation from the
sampling, must be compared to the value in
the Fisher table corresponding to the fixed
significant level. The decision rule consists
of either rejecting the null hypothesis if the
calculated value isgreater thanorequal to the
tabulated value, or else the means are equal,
which shows that the samples come from the
same population.
Consider the following model:

Yij = μ+ τi + εij ,

i = 1, 2, . . . , t , j = 1, 2, . . . , ni .

Here

Yij represents the observation j receiving
the treatment i,



10 Analysis of Variance

μ is the general mean common to all treat-
ments,

τi is the actual effect of treatment i on the
observation,

εij is the experimental error for observa-
tion Yij.

In this case, the null hypothesis is expressed
in the following way:

H0 : τ1 = τ2 = . . . = τt ,

which means that the t treatments are iden-
tical.
The alternative hypothesis is formulated in
the following way:

H1 : the values of τi(i = 1, 2, . . . , t)

are not all identical .

The following formulae are used:

SSTr =
t∑

i=1

ni(Ȳi. − Ȳ..)
2 , s2

Tr =
SSTr

t − 1
,

SSE =
t∑

i=1

ni∑
j=1

(Yij − Ȳi.)
2 , s2

E =
SSE

N − t
,

and

SST =
t∑

i=1

ni∑
j=1

(Yij − Ȳ..)
2

or
SST = SSTr + SSE .

where

Ȳi. =
ni∑

j=1

Yij

ni
is the mean of
the ith set

Ȳ.. = 1

N

t∑
i=1

ni∑
j=1

Yij is the global mean
taken on all the
observations, and

N =
t∑

i=1

ni is the total number
of observations.

and finally the value of the F ratio

F = s2
Tr

s2
E

.

It iscustomary to summarize the information
from the analysis of variance in an analysis
of variance table:

Source
of varia-
tion

Degrees
of
freedom

Sum of
squares

Mean
of
squares

F

Among
treat-
ments

t − 1 SSTr s2
Tr

s2
Tr

s2
E

Within
treat-
ments

N − t SSE s2
E

Total N − 1 SST

DOMAINS AND LIMITATIONS
An analysis of variance is always associat-
ed with a model. Therefore, there is a dif-
ferent analysis of variance in each distinct
case. For example, consider the case where
the analysis of variance is applied to factori-
al experiments with one or several factors,
and these factorial experiments are linked to
several designs of experiment.
We can distinguish not only the number of
factors in the experiment but also the type
of hypotheses linked to the effects of the
treatments.Wethenhaveamodelwithfixed
effects, a model with variable effects and
a model with mixed effects. Each of these
requires a specific analysis, but whichev-
er model is used, the basic assumptions of
additivity, normality, homoscedasticity and
independencemustberespected.Thismeans
that:
1. The experimental errors of the model are

random variables that are independent
of each other;
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2. All of the errors follow a normal distri-
bution with a mean of zero and an
unknown variance σ 2.

All designs of experiment can be analyzed
using analysis of variance. The most com-
mon designs are completely randomized
designs, randomized block designs and
Latin square designs.
An analysis of variance can also be per-
formed with simple or multiple linear
regression.
If during an analysis of variance the null
hypothesis (the case for equality of means) is
rejected, a least significant difference test
is used to identify the populations that have
significantlydifferentmeans,which issome-
thing that an analysis of variance cannot do.

EXAMPLES
See two-way analysis of variance, one-
way analysis of variance, linear multiple
regression and simple linear regression.

FURTHER READING
� Design of experiments
� Factor
� Fisher distribution
� Fisher table
� Fisher test
� Least significant difference test
� Multiple linear regression
� One-way analysis of variance
� Regression analysis
� Simple linear regression
� Two-way analysis of variance

REFERENCES
Fisher, R.A.: Statistical Methods for

Research Workers. Oliver & Boyd, Edin-
burgh (1925)

Rao, C.R.: Advanced Statistical Methods
in Biometric Research. Wiley, New York
(1952)

Scheffé, H.: The Analysis of Variance.
Wiley, New York (1959)

Anderson, Oskar

Anderson, Oskar (1887–1960) was an
importantmemberof theContinentalSchool
of Statistics; his contributions touched upon
a wide range of subjects, including corre-
lation, time series analysis, nonparamet-
ric methods and sample survey, as well as
econometrics and statistical applications in
social sciences.
Anderson, Oskar received a bachelor degree
with distinction from the Kazan Gymnasium
and then studied mathematics and physics
for a year at the University of Kazan. He
then entered the Faculty of Economics at
the Polytechnic Institute of St. Petersburg,
where he studied mathematics, statistics and
economics.
The publications of Anderson, Oskar com-
bine the traditions of the Continental School
of Statistics with the concepts of the English
Biometric School, particularly in two of
his works: “Einführung in die mathema-
tische Statistik” and “Probleme der statis-
tischen Methodenlehre in den Sozialwis-
senschaften”.
In 1949, he founded the journal Mitteilungs-
blatt für Mathematische Statistik with
Kellerer, Hans and Münzner, Hans.

Some principal works of Anderson, Oskar:

1935 Einführung in die Mathematische
Statistik. Julius Springer, Wien

1954 Probleme der statistischen Metho-
denlehre in den Sozialwissenschaf-
ten. Physica-Verlag, Würzberg
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Anderson, Theodore W.
Anderson, Theodore Wilbur was born on
the 5th of June 1918 in Minneapolis, in the
state of Minnesota in the USA. He became
a Doctor of Mathematics in 1945 at the
University of Princeton, and in 1946 he
became a member of the Department of
Mathematical Statistics at the University of
Columbia, where he was named Professor
in 1956. In 1967, he was named Professor
of Statistics and Economics at Stanford Uni-
versity. He was, successively: Fellow of the
Guggenheim Foundation between 1947 and
1948; Editor of the Annals of Mathematical
Statistics from 1950 to 1952; Presidentof the
Institute of Mathematical Statistics in 1963;
and Vice-President of the American Statis-
tical Association from 1971 to 1973. He is
a member of the American Academy of Arts
and Sciences, of the National Academy of
Sciences, of the Institute of Mathematical
Statistics and of the Royal Statistical Soci-
ety. Anderson’s most important contribution
to statistics is surely in the domain of mul-
tivariate analysis. In 1958, he published the
book entitled An Introduction to Multivari-
ate Statistical Analysis. This book was the
reference work in this domain for over forty
years. It has been even translated into Rus-
sian.

Some of the principal works and articles of
Theodore Wilbur Anderson:

1952 (with Darling, D.A.) Asymptotic the-
ory of certain goodness of fit criteria
based on stochastic processes. Ann.
Math. Stat. 23, 193–212.

1958 An Introduction to Multivariate Sta-
tistical Analysis. Wiley, New York.

1971 The Statistical Analysis of Time
Series. Wiley, New York.

1989 Linear latent variable models and
covariance structures. J. Economet-
rics, 41, 91–119.

1992 (with Kunitoma, N.) Asymptotic
distributions of regression and auto-
regression coefficients with Martin-
gale difference disturbances. J. Mul-
tivariate Anal., 40, 221–243.

1993 Goodness of fit tests for spectral dis-
tributions. Ann. Stat. 21, 830–847.

FURTHER READING
� Anderson–Darling test

Anderson–Darling Test
TheAnderson–Darling test isagoodness-of-
fit test which allows to control the hypothe-
sis that the distribution of a random variable
observed in a sample follows a certain the-
oretical distribution. In particular, it allows
us to test whether the empirical distribution
obtained corresponds to a normal distri-
bution.

HISTORY
Anderson, Theodore W. and Darling D.A.
initially used Anderson–Darling statistics,
denoted A2, to test the conformity of a distri-
bution with perfectly specified parameters
(1952 and 1954). Later on, in the 1960s
and especially the 1970s, some other authors
(mostly Stephens) adapted the test to a wider
range of distributions where some of the
parameters may not be known.

MATHEMATICAL ASPECTS
Let us consider the random variable X,
which follows the normal distribution with
an expectation μ and a variance σ 2, and
has a distribution function FX(x; θ), where θ

is a parameter (or a set of parameters) that
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determine, FX . We furthermore assume θ to
be known.
An observation of a sample of size n issued
from the variable X gives a distribution func-
tion Fn(x). The Anderson–Darling statistic,
denoted by A2, is then given by the weight-
ed sum of the squared deviations FX(x; θ)−
Fn(x):

A2 = 1

n

(
n∑

i=1

(FX (x; θ)− Fn (x))2

)
.

Starting from the fact that A2 is a random
variable that follows a certain distribution
over the interval [0; +∞[, it is possible to
test, for a significance level that is fixed a pri-
ori, whether Fn(x) is the realization of the
random variable FX(X; θ); that is, whether X
follows the probability distribution with the
distribution function FX(x; θ).

Computation of A 2 Statistic
Arrange the observationsx1, x2, . . . , xn in the
sample issued from X in ascending order i.e.,
x1 < x2 < . . . < xn. Note that zi =
FX(xi; θ), (i = 1, 2, . . . , n). Then compute,
A2 by:

A2 = −1

n

( n∑
i=1

(2i− 1) (ln (zi)

+ ln(1− zn+1−i))

)
− n .

For the situation preferred here (X follows
the normal distribution with expectation μ

and varianceσ 2),wecan enumerate fourcas-
es, depending on the known parameters μ

and σ 2 (F is the distribution function of the
standard normal distribution):
1. μ and σ 2 are known, so FX(x; (μ, σ 2))

is perfectly specified. Naturally we then
have zi = F(wi) where wi = xi−μ

σ
.

2. σ 2 is known but μ is unknown and is esti-
mated using x = 1

n

(∑
i xi

)
, the mean of

the sample. Then, let zi = F(wi), where
wi = xi−x

σ
.

3. μ is known but σ 2 is unknown and is esti-
mated using s′2 = 1

n

(∑
i(xi − u)2

)
. In

this case, let zi = F(wi), where wi =
x(i)−μ

s′ .
4. μ and σ 2 are both unknown and are esti-

mated respectively using x and s2 =
1

n−1 (
∑

i(xi − x)2). Then, let zi = F(wi),

where wi = xi−x
s .

Asymptotic distributions were found for A2

by Anderson and Darling for the first case,
and by Stephens for the next two cases. For
last case, Stephens determined an asymptot-
ic distribution for the transformation: A∗ =
A2(1.0+ 0.75

n + 2.25
n2 ).

Therefore, as shown below, we can construct
a table that gives, depending on the case and
the significance level (10%, 5%, 2.5% or 1%
below), the limiting values of A2 (and A∗
for the case 4) beyond which the normality
hypothesis is rejected:

Significance level

Case: 0.1 0.050 0.025 0.01

1: A2 = 1.933 2.492 3.070 3.857

2: A2 = 0.894 1.087 1.285 1.551

3: A2 = 1.743 2.308 2.898 3.702

4: A∗ = 0.631 0.752 0.873 1.035

DOMAINS AND LIMITATIONS
As the distribution of A2 is expressed asymp-
totically, the testneeds thesamplesize n to be
large. If this is not the case then, for the first
two cases, the distribution of A2 is not known
and it is necessary to perform a transforma-
tion of the type A2 �−→ A∗, from which A∗
can be determined. When n > 20, we can
avoid such a transformation and so the data
in the above table are valid.
The Anderson–Darling test has the advan-
tage that it can be applied to a wide range
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of distributions (not just a normal distri-
bution but also exponential, logistic and
gamma distributions, among others). That
allowsusto tryoutawiderangeofalternative
distributions if the initial test rejects the null
hypothesis for the distribution of a random
variable.

EXAMPLES
The following data illustrate the application
of the Anderson–Darling test for the normal-
ity hypothesis:
Consider a sample of the heights (in cm) of
25 male students. The following table shows
the observations in the sample, and also wi

and zi. We can also calculate x and s from
these data: x = 177.36 and s = 4.98.
Assuming that F is a standard normal distri-
bution function, we have:

Obs: xi wi = xi −x
s zi = F

(
wi

)

1 169 −1.678 0.047

2 169 −1.678 0.047

3 170 −1.477 0.070

4 171 −1.277 0.100

5 173 −0.875 0.191

6 173 −0.875 0.191

7 174 −0.674 0.250

8 175 −0.474 0.318

9 175 −0.474 0.318

10 175 −0.474 0.318

11 176 −0.273 0.392

12 176 −0.273 0.392

13 176 −0.273 0.392

14 179 0.329 0.629

15 180 0.530 0.702

16 180 0.530 0.702

17 180 0.530 0.702

18 181 0.731 0.767

19 181 0.731 0.767

20 182 0.931 0.824

21 182 0.931 0.824

Obs: xi wi = xi −x
s zi = F

(
wi

)

22 182 0.931 0.824

23 185 1.533 0.937

24 185 1.533 0.937

25 185 1.533 0.937

We then get A2 ∼= 0.436, which gives

A∗ = A2 ·
(

1.0+ 0.75

25
+ 0.25

625

)

= A2 · (1.0336) ∼= 0.451 .

Since we have case 4, and a significance lev-
el fixed at 1%, the calculated value of A∗ is
much less then the value shown in the table
(1.035). Therefore, thenormality hypothesis
cannot be rejected at a significance level of
1%.

FURTHER READING
� Goodness of fit test
� Histogram
� Nonparametric statistics
� Normal distribution
� Statistics

REFERENCES
Anderson, T.W., Darling, D.A.: Asymptot-

ic theory of certain goodness of fit criteria
based on stochastic processes. Ann.Math.
Stat. 23, 193–212 (1952)

Anderson, T.W., Darling, D.A.: A test of
goodness of fit. J. Am. Stat. Assoc. 49,
765–769 (1954)

Durbin, J., Knott, M., Taylor, C.C.: Com-
ponents of Cramer-Von Mises statistics,
II. J. Roy. Stat. Soc. Ser. B 37, 216–237
(1975)

Stephens, M.A.: EDF statistics for goodness
of fit and some comparisons. J. Am. Stat.
Assoc. 69, 730–737 (1974)
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Arithmetic Mean
The arithmetic mean is a measure of cen-
tral tendency. It allows us to characterize
the center of the frequency distribution of
a quantitative variable by considering all
of the observations with the same weight
afforded to each (in contrast to the weighted
arithmetic mean).
It is calculated by summing the observations
and then dividing by the number of observa-
tions.

HISTORY
The arithmetic mean is one of the oldest
methods used to combine observations in
order to give a unique approximate val-
ue. It appears to have been first used by
Babylonian astronomers in the third centu-
ry BC. The arithmetic mean was used by the
astronomers to determine thepositionsof the
sun, the moon and the planets. According to
Plackett (1958), theconceptof thearithmetic
mean originated from the Greek astronomer
Hipparchus.
In 1755 Thomas Simpson officially pro-
posed the use of the arithmetic mean in a let-
ter to the President of the Royal Society.

MATHEMATICAL ASPECTS
Let x1, x2, . . . , xn be a set of n quantities
or n observations relating to a quantitative
variable X.
The arithmetic mean x̄ of x1, x2, . . . , xn is
the sum of these observations divided by the
number n of observations:

x̄ =

n∑
i=1

xi

n
.

When the observations are ordered in the
form of a frequency distribution, the arith-

metic mean is calculated in the following
way:

x̄ =

k∑
i=1

xi · fi
k∑

i=1
fi

,

where xi are the different values of the vari-
able, fi are the frequencies associated with
these values, k is the number of different val-
ues, and thesum of thefrequenciesequals the
number of observations:

k∑
i=1

fi = n .

To calculate the mean of a frequency distri-
bution where values of the quantitative vari-
able X are grouped in classes, we consid-
er that all of the observations belonging
to a certain class take the central value of
the class, assuming that the observations
are uniformly distributed inside the classes
(if this hypothesis is not correct, the arith-
metic mean obtained will only be an appro-
ximation.)
Therefore, in this case we have:

x̄ =

k∑
i=1

xi · fi
k∑

i=1
fi

,

where the xi are the class centers, the fi are
the frequencies associated with each class,
and k is the number of classes.

Properties of the Arithmetic Mean
• The algebraic sum of deviations between

every value of the set and the arithmetic
mean of this set equals 0:

n∑
i=1

(xi − x̄) = 0 .
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• The sum of square deviations from every
value to a given number “a” is smallest
when “a” is the arithmetic mean:

n∑
i=1

(xi − a)2 ≥
n∑

i=1

(xi − x̄)2 .

Proof:
We can write:

xi − a = (xi − x̄)+ (x̄− a) .

Finding the squares of both members of
the equality, summarizing them and then
simplifying gives:

n∑
i=1

(xi − a)2

=
n∑

i=1

(xi − x̄)2 + n · (x̄− a)2 .

As n · (x̄ − a)2 is not negative, we have
proved that:

n∑
i=1

(xi − a)2 ≥
n∑

i=1

(xi − x̄)2 .

• The arithmetic mean x̄ of a sample
(x1, . . . , xn) is normally considered to
be an estimator of the mean μ of the
population from which the sample was
taken.

• Assuming that xi are independent ran-
dom variables with the same distribution
function for the mean μ and the vari-
ance σ 2, we can show that
1. E [x̄] = μ,
2. Var (x̄) = σ 2

n ,
if these moments exist.
Since the mathematical expectation of
x̄ equals μ, the arithmetic mean is an esti-
matorwithoutbiasof themeanof thepop-
ulation.

• If thexi result from therandom sampling
without replacementofafinitepopulation
with a mean μ, the identity

E [x̄] = μ

is still valid, but the variance of x̄ must be
adjusted by a factor that depends on the
size N of the population and the size n of
the sample:

Var (x̄) = σ 2

n
·
[

N − n

N − 1

]
,

whereσ 2 is thevarianceof thepopulation.

Relationship Between the Arithmetic Mean
and Other Measures of Central Tendency
• Thearithmeticmeanisrelated to twoprin-

cipal measures of central tendency: the
mode Mo and the median Md.
If the distribution is symmetric and uni-
modal:

x̄ = Md = Mo .

If the distribution is unimodal, it is nor-
mally true that:
x̄ ≥ Md ≥ Mo if the distribution is
stretched to the right,
x̄ ≤ Md ≤ Mo if the distribution is
stretched to the left.
For a unimodal, slightly asymmetric
distribution, these three measures of the
central tendency often approximately
satisfy the following relation:

(x̄−Mo) = 3 · (x̄−Md) .

• In the same way, for a unimodal distri-
bution, if we consider a set of posi-
tive numbers, the geometric mean G is
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always smaller than or equal to the arith-
metic mean x̄, and is always greater than
or equal to the harmonic mean H. So we
have:

H ≤ G ≤ x̄ .

These three means are identical only if all
of the numbers are equal.

DOMAINS AND LIMITATIONS
The arithmetic mean is a simple measure
of the central value of a set of quantitative
observations. Finding the mean can some-
times lead to poor data interpretation:

If the monthly salaries (in Euros) of
5 people are 3000, 3200, 2900, 3500
and 6500, the arithmetic mean of the
salary is 19100

5 = 3820. This mean
gives us some idea of the sizes of the
salaries sampled, since it is situated
between the biggest and the smallest
one. However, 80% of the salaries are
smaller then the mean, so in this case
it is not a particularly good representa-
tion of a typical salary.

This case shows that we need to pay attention
to the form of the distribution and the relia-
bility of the observations before we use the
arithmetic mean as the measure of central
tendency for a particular set of values. If an
absurdobservationoccurs in thedistribution,
the arithmetic mean could provide an unrep-
resentative value for the central tendency.
If some observations are considered to be
less reliable then others, it could be useful
to make them less important. This can be
done by calculating a weighted arithmetic
mean, or by using the median, which is not
strongly influenced by any absurd observa-
tions.

EXAMPLES
In company A, nine employees have the fol-
lowing monthly salaries (in Euros):

3000 3200 2900 3440 5050

4150 3150 3300 5200

The arithmetic mean of these monthly
salaries is:

x̄ = (3000+ 3200+ · · · + 3300+ 5200)

9

= 33390

9
= 3710 Euros .

We now examine a case where the data are
presented in the form of a frequency distri-
bution.
The following frequency table gives the
number of days that 50 employees were
absent on sick leave during a period of one
year:

xi : Days of illness fi : Number of
employees

0 7

1 12

2 19

3 8

4 4

Total 50

Let us try to calculate the mean number of
days that the employees were absent due to
illness.
The total number of sick days for the
50 employees equals the sum of the product
of each xi by its respective frequency fi:

5∑
i=1

xi · fi = 0 · 7+ 1 · 12+ 2 · 19+ 3 · 8

+ 4 · 4 = 90 .
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The total number of employees equals:

5∑
i=1

fi = 7+ 12+ 19+ 8+ 4 = 50 .

L The arithmetic mean of the number of sick
days per employee is then:

x̄ =

5∑
i=1

xi · fi
5∑

i=1
fi

= 90

50
= 1.8

which means that, on average, the
50 employees took 1.8 days off for sick-
ness per year.
In the following example, the data are
grouped in classes.
We want to calculate the arithmetic mean of
the daily profits from the sale of 50 types of
grocery. The frequency distribution for the
groceries is given in the following table:

Classes
(profits
in Euros)

Mid-
points
xi

Frequencies
fi (number
of groceries)

xi · fi

500–550 525 3 1575

550–600 575 12 6900

600–650 625 17 10625

650–700 675 8 5400

700–750 725 6 4350

750–800 775 4 3100

Total 50 31950

The arithmetic mean of the profits is:

x̄ =

6∑
i=1

xi · fi
6∑

i=1
fi

= 31950

50
= 639 ,

which means that, on average, each of
the 50 groceries provide a daily profit of
639 Euros.

FURTHER READING
� Geometric mean
� Harmonic mean
� Mean
� Measure of central tendency
� Weighted arithmetic mean
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Simpson, T.: A letter to the Right Honorable
George Earl of Macclesfield, President of
theRoyalSociety,on theadvantageof tak-
ing the mean of a number of observations
inpracticalastronomy.Philos.Trans.Roy.
Soc. Lond. 49, 82–93 (1755)
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Arithmetic Triangle

The arithmetic triangle is used to determine
binomial coefficients (a + b)n when cal-
culating the number of possible combina-
tions of k objects out of a total of n objects
(Ck

n).

HISTORY
The notion of finding the number of combi-
nations of k objects from n objects in total
has been explored in India since the ninth
century. Indeed, there are traces of it in the
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Meru Prastara written by Pingala in around
200 BC.
Between the fourteenth and thefifteenth cen-
turies, al-Kashi, a mathematician from the
Iranian city of Kashan, wrote The Key to
Arithmetic. In this work he calls binomial
coefficients “exponent elements”.
In his work Traité du Triangle Arithmétique,
published in 1665, Pascal, Blaise (1654)
defined the numbers in the “arithmetic tri-
angle”, and so this triangle is also known as
Pascal’s triangle.
We should also note that the triangle was
made popular by Tartaglia, Niccolo Fontana
in 1556, and so Italians often refer to it as
Tartaglia’s triangle, even though Tartaglia
did not actually study the arithmetic triangle.

MATHEMATICAL ASPECTS
The arithmetic triangle has the following
form:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

. . .

Each element is a binomial coefficient

Ck
n =

n!

k! (n− k)!

= n · (n− 1) · . . . · (n− k+ 1)

1 · 2 · . . . · k .

This coefficient corresponds to the element
k of the line n+ 1, k = 0, . . . , n.
Any particular number is obtained by adding
together its neighboring numbers in the pre-
vious line.

For example:

C4
6 = C3

5 + C4
5 = 10+ 5 = 15 .

More generally, we have the relation:

Ck
n + Ck+1

n = Ck+1
n+1 ,

because:

Ck
n + Ck+1

n = n!

(n− k)! · k!

+ n!

(n− k − 1)! · (k + 1)!

= n! · [(k + 1)+ (n− k)]

(n− k)! · (k + 1)!

= (n+ 1)!

(n− k)! · (k + 1)!

= Ck+1
n+1 .

FURTHER READING
� Binomial
� Binomial distribution
� Combination
� Combinatory analysis
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ARMA Models

ARMA models (sometimes called Box-
Jenkins models) are autoregressive moving
average models used in time series analy-
sis. The autoregressive part, denoted AR,
consists of a finite linear combination of
previous observations. The moving aver-
age part, MA, consists of a finite linear
combination in t of the previous values for
a white noise (a sequence of mutually inde-
pendent and identically distributed random
variables).

MATHEMATICAL ASPECTS
1. AR model (autoregressive)

In an autoregressive process of order p,
the present observation yt is generated by
a weighted mean of the past observations
up to the pth period. This takes the follow-
ing form:

AR(1) : yt = θ1yt−1 + εt ,

AR(2) : yt = θ1yt−1 + θ2yt−2 + εt ,

...

AR(p) : yt = θ1yt−1 + θ2yt−2 + . . .

+ θpyt−p + εt ,

where θ1, θ2, . . . , θp are the positive or
negative parameters to be estimated and
εt is the error factor, which follows a nor-
mal distribution.

2. MA model (moving average)
In a moving average process of order q,
each observation yt is randomly generat-
ed by a weighted arithmetic mean until
the qth period:

MA(1) : yt = εt − α1εt−1

MA(2) : yt = εt − α1εt−1 − α2εt−2

· · ·
MA(p) : yt = εt − α1εt−1 − α2εt−2

− . . .− αqεt−q ,

where α1, α2, . . . , αq are positive or nega-
tive parameters and εt is the Gaussian ran-
dom error.
The MA model represents a time series
fluctuating about its mean in a random
manner, which gives rise to the term
“moving average”, because it smoothes
theseries, subtracting thewhitenoisegen-
erated by the randomness of the element.

3. ARMA model (autoregressive moving
average model)
ARMA models represent processes gen-
erated from a combination of past values
and past errors. They are defined by the
following equation:

ARMA(p, q) :

yt = θ1yt−1 + θ2yt−2 + . . .

+ θpyt−p + εt − α1εt−1 − α2εt−2

− . . .− αqεt−q ,

with θp �= 0, αq �= 0, and (εt, t ∈ Z) is
a weak white noise.
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FURTHER READING
� Time series
� Weighted arithmetic mean

REFERENCES
Box, G.E.P., Jenkins, G.M.: Time Series

Analysis: Forecasting and Control (Series
inTimeSeriesAnalysis).HoldenDay,San
Francisco (1970)

Arrangement
Arrangements are a concept found in com-
binatory analysis.
The number of arrangements is the number
of ways drawing k objects from n objects
where the order in which the objects are
drawn is taken into account (in contrast to
combinations).

HISTORY
See combinatory analysis.

MATHEMATICAL ASPECTS
1. Arrangements without repetitions

An arrangement without repetition refers
to the situation where the objects drawn
are not placed back in for the next draw-
ing. Each object can then only be drawn
once during the k drawings.
The number of arrangements of k objects
amongst n without repetition is equal to:

Ak
n =

n!

(n− k)!
.

2. Arrangements with repetitions
Arrangementswith repetition occurwhen
each object pulled out is placed back in
for the next drawing. Each object can then
be drawn r times from k drawings, r =
0, 1, . . . , k.

The number of arrangements of k objects
amongst n with repetitions is equal to n to
the power k:

Ak
n = nk .

EXAMPLES
1. Arrangements without repetitions

Consider an urn containing six balls num-
bered from 1 to 6. We pull out four balls
from the urn in succession, and wewant to
know how many numbers it is possible to
form from the numbers of the balls drawn.
We are then interested in the number of
arrangements (since we take into account
the order of the balls) without repetition
(since each ball can be pulled out only
once) of four objects amongst six. We
obtain:

Ak
n =

n!

(n− k)!
= 6!

(6− 4)!
= 360

possible arrangements. Therefore, it is
possible to form 360 different numbers
by drawing four numbers from the num-
bers 1,2,3,4,5,6 when each number can
appear only once in the four-digit number
formed.
Asasecond example, letus investigate the
arrangements without repetitions of two
letters from the letters A, B and C. With
n = 3 and k = 2 we have:

Ak
n =

n!

(n− k)!
= 3!

(3− 2)!
= 6 .

We then obtain:
AB, AC, BA, BC, CA, CB.

2. Arrangements with repetitions
Consider the same urn as described previ-
ously. We perform four successive draw-
ings, but this time we put each ball drawn
back in the urn.
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We want to know how many four-digit
numbers (or arrangements) are possible if
four numbers are drawn.
In thiscase,weare investigatingfthenum-
ber of arrangements with repetition (since
each ball is placed back in the urn before
the next drawing). We obtain

Ak
n = nk = 64 = 1296

different arrangements. It is possible to
form 1296 four-digit numbers from the
numbers 1,2,3,4,5,6 if each number can
appear more than once in the four-digit
number.
As a second example we again take the
three letters A, B and C and form an
arrangement of two letters with repeti-
tions. With n = 3 and k = 2, we have:

Ak
n = nk = 32 = 9 .

We then obtain:
AA, AB, AC, BA, BB, BC, CA, CB, CC.

FURTHER READING
� Combination
� Combinatory analysis
� Permutation

REFERENCES
See combinatory analysis.

Attributable Risk
The attributable risk is the difference
between the risk encountered by individ-
uals exposed to a particular factor and the
risk encountered by individuals who are not
exposed to it. This is the opposite to avoid-
able risk. It measures the absolute effect of
a cause (that is, the excess risk or cases of
illness).

HISTORY
See risk.

MATHEMATICAL ASPECTS
By definition we have:

attributable risk = risk for those exposed

− risk for those not exposed .

DOMAINS AND LIMITATIONS
The confidence interval of an attributable
risk is equivalent to the confidence interval
of the difference between the proportions
pE and pNE, where pE and pNE represent
the risksencountered by individualsexposed
and not exposed to the studied factor, respec-
tively. Take nE and nNE to be, respective-
ly, the size of the exposed and nonexposed
populations. Then, for a confidence level of
(1− α), is given by:

(pE − pNE)± zα

√
pE·(1−pE)

nE
+ pNE·(1−pNE)

nNE
,

wherezα thevalueobtainedfromthenormal
table (for example, for a confidence interval
of 95%, α = 0.05 and zα = 1.96). The con-
fidence interval for (1− α) for an avoidable
risk has bounds given by:

(pNE − pE)± zα

√
pE·(1−pE)

nE
· pNE·(1−pNE)

nNE
.

Here, nE and nNE need to be large. If the con-
fidenceinterval includeszero,wecannotrule
out an absence of attributable risk.

EXAMPLES
As an example, we consider a study of the
risk of breast cancer in women due to smok-
ing:
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Group Incidence
rate

Attributable to risk
from smoking

(/100000
/year)

(A) (/100000 /year)

Nonex-
posed

57.0 57.0− 57.0 = 0

Passive
smokers

126.2 126.2− 57.0 = 69.2

Active
smokers

138.1 138.1− 57.0 = 81.1

Total 114.7 114.7− 57.0 = 57.7

The risks attributable to passive and
active smoking are respectively 69 and 81
(/100000 year). In other words, if the
exposure to tobacco was removed, the
incidence rate for active smokers (138/

100000 per year) could be reduced by
81/100000 per year and that for pas-
sive smokers (126/100000 per year) by
69/100000 per year. The incidence rates in
both categories of smokers would become
equal to the rate for nonexposed women
(57/100000 per year). Note that the inci-
dence rate for nonexposed women is not
zero, due to the influence of other factors
aside from smoking.

Group No.
indiv.
observed
over two
years

Cases
attrib. to
smoking
(for
two-year
period)

Cases
attrib. to
smoking
(per
year)

Nonex-
posed

70160 0.0 0.0

Passive
smok-
ers

110860 76.7 38.4

Active
smok-
ers

118636 96.2 48.1

Total 299656 172.9 86.5

We can calculate the number of cases of
breast cancer attributable to tobacco expo-
sure by multiplying the number of individ-
uals observed per year by the attributable
risk. By dividing the number of incidents
attributable to smoking in the two-year peri-
od by two, we obtain the number of cases
attributable to smoking per year, and we can
then determine the risk attributable to smok-
ing in thepopulation,denotedPAR,asshown
in the following example. The previous table
shows the details of the calculus.
We describe the calculus for the pas-
sive smokers here. In the two-year study,
110860 passive smokers were observed.
The risk attributable to the passive smoking
was 69.2/100000 per year. This means that
the number of cases attributable to smok-
ing over the two-year period is (110860 ·
69.2)/100000 = 76.7. If we want to calcu-
late the number of cases attributable to pas-
sive smoking per year, we must then divide
the last value by 2, obtaining 38.4. More-
over, we can calculate the risk attributable
to smoking per year simply by dividing the
number of cases attributable to smoking for
the two-year period (172.9) by the number
of individuals studied during these two years
(299656 persons). We then obtain the risk
attributable to smoking as 57.7/100000 per
year. We note that we can get the same result
by taking the difference between the total
incidence rate (114.7/100000 per year, see
the examples under the entries for incidence
rate, prevalence rate) and the incidence
rate of the nonexposed group (57.0/100000
per year).
The risk of breast cancer attributable to
smoking in the population (PAR) is the ratio
of the number of the cases of breast can-
cer attributable to exposure to tobacco and
the number of cases of breast cancer diag-
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nosed in the population (see the above table).
The attributable risk in the population is
22.3% (38.4/172) for passive smoking and
28%(48.1/172) foractivesmoking.Forboth
forms of exposure, it is 50.3% (22.3% +
28%). So, half of the cases of breast cancer
diagnosed each year in this population are
attributable to smoking (active or passive).

Group Case
attrib. to
smoking
(for a two-
year period)

Case
attrib. to
smoking
(per year)

PAR

Nonex-
posed

0.0 20 0.0

Passive
smok-
ers

38.4 70 22.3

Active
smok-
ers

48.1 82 28.0

Total 86.5 172 50.3

FURTHER READING
� Avoidable risk
� Cause and effect in epidemiology
� Incidence rate
� Odds and odds ratio
� Prevalence rate
� Relative risk
� Risk

REFERENCES
Cornfield, J.: A method of estimating com-

parative rates from clinical data. Appli-
cations to cancer of the lung, breast, and
cervix. J. Natl. Cancer Inst. 11, 1269–75
(1951)

Lilienfeld, A.M., Lilienfeld, D.E.: Founda-
tions of Epidemiology, 2nd edn. Claren-
don, Oxford (1980)

MacMahon, B., Pugh, T.F.: Epidemiology:
Principles and Methods. Little Brown,
Boston, MA (1970)

Morabia, A.: Epidemiologie Causale. Editi-
ons Médecine et Hygiène, Geneva (1996)

Morabia, A.: L’Épidémiologie Clinique.
Editions “Que sais-je?”. Presses Univer-
sitaires de France, Paris (1996)

Autocorrelation

Autocorrelation, denoted ρk, is a measure of
the correlation of a particular time series
with the same time series delayed by k lags
(the distance between the observations that
are so correlated). It is obtained by dividing
the covariance between two observations,
separated by k lags, of a time series (auto-
covariance) by the standard deviation of yt

and yt−k. If the autocorrelation is calculated
for all values of k we obtain the autocorrela-
tion function. For a time series that does not
change over time, the autocorrelation func-
tion decreases exponentially to 0.

HISTORY
The first research into autocorrelation, the
partial autocorrelation and the correlogram
was performed in the 1920s and 1930s by
Yule, George, who developed the theory of
autoregressive processes.

MATHEMATICAL ASPECTS
We define the autocorrelation of time series
Yt by:

ρk = cov (yt, yt−k)

σyt σyt−k
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=

T∑
t=k+1

(yt − y) (yt−k − y)

√
T∑

t=k+1
(yt − y)2

√
T∑

t=k+1
(yt−k − y)2

.

Here y is the mean of the series calculated on
T − k lags, where T is the number of obser-
vations.
We find out that:

ρ0 = 1 and

ρk = ρ−k .

It is possible to estimate the autocorrelation
(denoted ρ̂k) provided the number of obser-
vations is large enough (T > 30) using the
following formula:

ρ̂k =

T∑
t=k+1

(yt − y) (yt−k − y)

T∑
t=1

(yt − y)2

.

The partial autocorrelation function for
a delay of k lags is defined as the auto-
correlation between yt and yt−k, the influ-
ence of other variables is moved by k lags
(yt−1, yt−2, . . . , yt−k+1).

Hypothesis Testing
When analyzing the autocorrelation func-
tion of a time series, it can be useful to know
the terms ρk that are significantly different
from 0. Hypothesis testing then proceeds as
follows:

H0 : ρk = 0

H1 : ρk �= 0 .

For a large sample (T > 30), the coefficient
ρk tends asymptotically to a normal distri-
bution with a mean of 0 and a standard devi-
ation of 1√

T
. The Student test is based on the

comparison of an empirical t and a theoret-
ical t.

The confidence interval for the coefficientρk

is given by:

ρk = 0± tα/2
1√
T

.

If the calculated coefficient ρ̂k does not fall
within this confidence interval, it is signifi-
cantly different from 0 at the level α (gener-
ally α = 0.05 and tα/2 = 1.96).

DOMAINS AND LIMITATIONS
The partial autocorrelation function is prin-
cipally used in studies of time series and,
more specifically, when we want to adjust an
ARMAmodel. These functionsarealso used
in spatial statistics, although in the context
of spatial autocorrelation, where we investi-
gate the correlation of a variable with itself
in space. If the presence of a phenomenon in
a particular spatial region affects the proba-
bility of the phenomenon being present in
neighboring regions, the phenomenon dis-
plays spatial autocorrelation. In this case,
positive autocorrelation occurs when the
neighboring regions tend to have identi-
cal properties or similar values (examples
include homogeneous regions and regular
gradients). Negative autocorrelation occurs
when the neighboring regions have differ-
ent qualities, or alternate between strong and
weak values for the phenomenon. Autocor-
relation measures depend on the scaling of
the variables which are used in the analysis
as well as on the grid that registers the obser-
vations.

EXAMPLES
We take as an example the national aver-
age wage in Switzerland from 1950 to 1994,
measured every two years.
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We calculate the autocorrelation function
between the data; we would like to find a pos-
itive autocorrelation. The following figures
show the presence of this autocorrelation.

We note that the correlation significance
peaks between the observation at time t and
theobservationattime t−1,andalsobetween
the observation at time t and the observation
at time t−2. This data configuration is typi-
cal of an autoregressive process. For two first
values, we can see that this autocorrelation
is significant, because the Student statistic t
for the T = 23 observations gives:

ρk = 0± 1.96
1√
23

.

Year National average wage

50 11999

52 12491

54 13696

56 15519

58 17128

60 19948

62 23362

64 26454

66 28231

68 30332

70 33955

72 40320

74 40839

76 37846

78 39507

80 41180

Year National average wage

82 42108

84 44095

86 48323

88 51584

90 55480

92 54348

94 54316

Source: Swiss Federal Office of Statistics

FURTHER READING
� Student test
� Time series

REFERENCES
Bourbonnais, R.: Econométrie, manuel et

exercices corrigés, 2nd edn. Dunod, Paris
(1998)

Box, G.E.P., Jenkins, G.M.: Time Series
Analysis: Forecasting and Control (Series
inTimeSeriesAnalysis).HoldenDay,San
Francisco (1970)

Chatfield, C.: The Analysis of Time Series:
An Introduction, 4th edn. Chapman &
Hall (1989)

Avoidable Risk

The avoidable risk (which, of course, is
avoidable if we neutralize the effect of expo-
sure to aparticularphenomenon) is theoppo-
site to the attributable risk. In other words,
it is the difference between the risk encoun-
tered by nonexposed individuals and that
encountered by individuals exposed to the
phenomenon.

HISTORY
See risk.
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MATHEMATICAL ASPECTS
By definition we have:

avoidable risk = risk if not exposed

− risk if exposed .

DOMAINS AND LIMITATIONS
The avoidable risk was introduced in order
to avoid the need for defining a negative
attributable risk. It allows us to calculate
the number of patients that will need to be
treated, because:

Number of patients
to be treated

= 1

Avoidable risk
.

See also attributable risk.

EXAMPLES
As an example, consider a study of the effi-
ciency of a drug used to treat an illness.
The 223 patients included in the study are
all at risk of contracting the illness, but they
have not yet done so. We separate them
into two groups: patients in the first group
(114 patients) received the drug; those in
the second group (109 patients) were given
a placebo. The study period was two years.
In total, 11 cases of the illness are diagnosed
in the first group and 27 in the placebo group.

Group Cases
of
illness

Number of
patients in
the group

Risk for
the
two-year
period

(A) (B) (A/B in %)

1st group 11 114 9.6%

2nd group 27 109 24.8%

So, theavoidableriskduetothedrugis24.8−
9.6 = 15.2% per two years.

FURTHER READING
� Attributable risk
� Cause and effect in epidemiology
� Incidence rate
� Odds and odds ratio
� Prevalence rate
� Relative risk
� Risk

REFERENCES
Cornfield, J.: A method of estimating com-

parative rates from clinical data. Appli-
cations to cancer of the lung, breast, and
cervix. J. Natl. Cancer Inst. 11, 1269–75
(1951)

Lilienfeld, A.M., Lilienfeld, D.E.: Founda-
tions of Epidemiology, 2nd edn. Claren-
don, Oxford (1980)

MacMahon, B., Pugh, T.F.: Epidemiology:
Principles and Methods. Little Brown,
Boston, MA (1970)

Morabia, A.: Epidemiologie Causale. Editi-
ons Médecine et Hygiène, Geneva (1996)

Morabia, A.: L’Épidémiologie Clinique.
Editions “Que sais-je?”. Presses Univer-
sitaires de France, Paris (1996)
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Bar Chart

Bar chart is a type of quantitative graph. It
consists of a series of vertical or horizontal
bars of identical width but with lengths rel-
ative to the represented quantities.
Bar charts are used to compare the cate-
goriesofacategorical qualitative variable
or to compare sets of data from different
years or different places for a particular vari-
able.

HISTORY
See graphic representation.

MATHEMATICAL ASPECTS
A vertical axis and a horizontal axis must be
defined in order to construct a vertical bar
chart.
The horizontal axis is divided up into differ-
ent categories; the vertical axis shows the
value of each category.
To construct a horizontal bar chart, the axes
are simply inverted.
The bars must all be of the same width since
only their lengths are compared.
Shading, hatching or color can be used to
make it easier to understand the the graph-
ic.

DOMAINS AND LIMITATIONS
A bar chart can also be used to represent neg-
ative category values. To be able to do this,
the scale of the axis showing the category
values must extend below zero.
There are several types of bar chart. The one
described above is called a simple bar chart.
A multiple bar chart is used to compare sev-
eral variables.
A composite bar chart is a multiple bar chart
where the different sets of data are stacked
on top of each other. This type of diagram is
used when the different data sets can be com-
bined into a total population, and we would
like to compare the changes in the data sets
and the total population over time.
There is another way of representing the sub-
setsofa totalpopulation. In thiscase, the total
population represents 100% and value given
for each subset is a percentage of the total
(also see pie chart).

EXAMPLES
Let us construct a bar chart divided into
percentages for the data in the following
frequency table:
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Marital status in a sample of the Australian
female population on the 30th June 1981 (in
thousands)

Marital
status

Fre-
quency

Relative
fre-
quency

Percent-
age

Bachelor 6587.3 0.452 45.2

Married 6836.8 0.469 46.9

Divorced 403.5 0.028 2.8

Widow 748.7 0.051 5.1

Total 14576.3 1.000 100.0

Source: ABS (1984) Australian Pocket Year
Book. Australian Bureau of Statistics, Canber-
ra, p. 11

FURTHER READING
� Graphical representation
� Quantitative graph

Barnard, George A.

Barnard, George Alfred was born in 1915,
in Walthamstow, Essex, England. He gained
a degree in mathematics from Cambridge
University in 1936. Between 1942 and 1945
he worked in the Ministry of Supply as a sci-
entificconsultant.Barnard joined theMathe-
matics Department at Imperial College Lon-
don from 1945 to 1966. From 1966 to 1975
he was Professor of Mathematics in the Uni-
versity of Essex, and from 1975 until his
retirement in1981hewasProfessorofStatis-
tics at the University of Waterloo, Canada.

Barnard, George Alfred received numerous
distinctions, including a gold medal from the
Royal Statistical Society and from the Insti-
tute of Mathematics and its Applications. In
1987 he was named an Honorary Member of
the InternationalStatistical Institute.Hedied
in 2002 in August.

Some articles of Barnard, George Alfred:

1954 Sampling inspection and statistical
decisions. J. Roy. Stat. Soc. Ser. B 16,
151–174.

1958 Thomas Bayes – A biographical note.
Biometrika 45, 293–315.

1989 On alleged gains in power from lower
p-values. Stat. Med., 8, 1469–1477.

1990 Must clinical trials be large? The
interpretation of p-values and the
combination of test results. Stat.
Med., 9, 601–614.

Bayes’ Theorem

If we consider the set of the “reasons” that
an event occurs, Bayes’ theorem gives a for-
mula for the probability that the event is the
direct result of a particular reason.
Therefore, Bayes’ theorem can be interpret-
ed as a formula for the conditional proba-
bility of an event.

HISTORY
Bayes’ theorem is named after Bayes,
Thomas, and was developed in the mid-
dle of eighteenth century. However, Bayes
did not publish the theorem during his life-
time; instead, it was presented by Price, R.
on the 23rd December 1763, two years after
his death, to the Royal Society of London,
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which Bayes was a member of during the
last twenty last years of his life.

MATHEMATICAL ASPECTS
Let{A1, A2, . . . , Ak}beapartitionof thesam-
ple space �. We suppose that each event
A1, . . . , Ak has a nonzero probability. Let E
be an event such that P(E) > 0.
So, for every i(1 ≤ i ≤ k), Bayes’ theorem
(for the discrete case) gives:

P(Ai|E) = P(Ai) · P(E|Ai)

k∑
j=1

P(Aj) · P(E|Aj)

.

In the continuous case, where X is a ran-
dom variable with density function f (x),
said also to be an a priori density function,
Bayes’ theorem gives the density a posteriori
according to

f (x|E) = f (x) · P(E|X = x)∫∞
−∞ f (t) · P(E|X = t)dt

.

DOMAINS AND LIMITATIONS
Bayes’ theorem has been the object of much
controversy, relating to the ability to use it
when the values of the probabilities used to
determine the probability function a poste-
riori arenotgenerally established in aprecise
way.

EXAMPLES
Threeurnscontain red,whiteandblackballs:
• Urn A contains 5 red balls, 2 white balls

and 3 black balls;
• Urn B contains 2 red balls, 3 white balls

and 1 black balls;
• Urn C contains 5 red balls, 2 white balls

and 5 black balls.

Randomly choosing an urn, we draw a ball
at random: it is white. We wish to determine
the probability that it was taken from urn A.
Let A1 correspond to the event where we
“choose urn A”, A2 be the event where we
“choose urn B,” and A3 be the event where
we “choose urn C.” {A1, A2, A3} forms a par-
tition of the sample space.
Let E be the event where “the ball taken is
white,” which has a strictly positive proba-
bility.
We have:

P(A1) = P(A2) = P(A3) = 1
3 ,

P(E|A1) = 2
10 , P(E|A2) = 3

6 ,

and P(E|A3) = 2
12 .

Bayes’ formula allows us to determine the
probability that the drawn white ball comes
from the urn A:

P (A1|E) = P(A1) · P(E|A1)

3∑
i=1

P(Ai) · P(E|Ai)

=
1
3 · 2

10
1
3 · 2

10 + 1
3 · 3

6 + 1
3 · 2

12

= 3
13 .

FURTHER READING
� Conditional probability
� Probability

REFERENCE
Bayes, T.: An essay towards solving a prob-

lem in the doctrine of chances. Philos.
Trans. Roy. Soc. Lond. 53, 370–418
(1763). Published, by the instigation of
Price, R., 2 years after his death. Repub-
lished with a biography by Barnard,
George A. in 1958 and in Pearson, E.S.,
Kendall, M.G.: Studies in the History of
Statistics and Probability. Griffin, Lon-
don, pp. 131–153 (1970)
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Bayes, Thomas
Bayes, Thomas (1702–1761) was the eldest
son ofBayes, Joshua,who wasoneof thefirst
six Nonconformist ministers to be ordained
in England, and was a member of the Royal
Society. He was privately schooled by pro-
fessors, as was customary in Nonconformist
families. In 1731 he became reverend of
the Presbyterian chapel in Tunbridge Wells,
a town located about 150 km south-west of
London. Due to some religious publications
he was elected a Fellow of the Royal Society
in 1742.
His interest in mathematics was well-known
to his contemporaries, despite the fact that
he had not written any technical publica-
tions, because he had been tutored by De
Moivre, A., one of the founders of the theo-
ry of probability. In 1763, Price, R. sorted
through the papers left by Bayes and had his
principal work published:

1763 An essay towards solving a prob-
lem in the doctrine of chances.
Philos. Trans. Royal Soc. London,
53, pp. 370–418. Republished with
a biography by Barnard, G.A. (1958).
In: Pearson, E.S. and Kendall, M
(1970). Studies in the History of
Statistics and Probability. Griffin,
London, pp. 131–153.

FURTHER READING
� Bayes’ theorem

Bayesian Statistics
Bayesien statistics is a large domain in the
field of statistics that differs due to an axiom-
atization of the statistics that gives it a certain
internal coherence.

The basic idea is to interpret the probability
of an event as it is commonly used; in other
words as the uncertainty that is related to it.
In contrast, the classical approach considers
the probability of an event to be the limit of
the relative frequency (see probability for
a more formal approach).
The most well-known aspect of Bayesian
inference is theprobabilityofcalculatingthe
joint probability distribution (or density
function) f (θ , X = x1, . . . , X = xn) of
one or many parameters θ (one parameter or
a vector of parameters) having observed the
data x1, . . . , xn sampled independently from
a random variable X on which θ depends. (It
is worth noting that it also allows us to cal-
culate the probability distribution for a new
observation xn+1).
Bayesian statistics treat the unknown param-
eters as random variables not because of
possible variability (in reality, the unknown
parameters are considered to be fixed), but
because of our ignorance or uncertainty
about them.
The posterior distribution f (θ |X = x1, . . . ,
X = xn) is direct to compute since it is
the prior ( f (θ)) times the likelihood f (X =
x1, . . . , X = xn|θ).

posterior ∝ prior x likelihood

The second expression does not cause prob-
lems, because it is a function that we often
use in classical statistics, known as the like-
lihood (see maximum likelihood).
In contrast, the first part supposes a prior
distribution for θ . We often use the initial
distribution of θ to incorporate possible sup-
plementary information about the param-
eters of interest. In the absence of this infor-
mation,weuseareferencefunctionthatmax-
imizes the lack of information (which is then
the most “objective” or “noninformative”
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function, following the common but not pre-
cise usage).
Once the distribution f (θ |x1, . . . , xn ) is
calculated, all of the information on the
parameters of interest is available. There-
fore,wecancalculateplausiblevaluesfor the
unknown parameter (the mean, the median
or some other measure of central ten-
dency), its standard deviation, confidence
intervals, or perform hypothesis testing on
its value.

HISTORY
See Bayes, Thomas and Bayes’ theorem.

MATHEMATICAL ASPECTS
Let D be the set of data X = x1, . . . , X =
xn independently sampled from a random
variable X of unknown distribution. We will
consider the simple case where there is only
one interesting parameter, θ , which depends
on X.
Then a standard Bayesian procedure can be
expressed by:
1. Identify the known quantities x1, . . . , xn.
2. Specify a model for the data; in oth-

er words a parametric family f (x |θ ) of
distributions that describe the generation
of data.

3. Specify the uncertainty concerning θ by
an initial distribution function f (θ).

4. We can then calculate the distribution
f (θ |D ) (called the final distribution)
using Bayes’ theorem.

The first two points are common to every sta-
tistical inference.
The third point is more problematic. In the
absenceofsupplementary informationabout
θ , the idea is to calculate a reference distri-
bution f (θ) by maximizing a function that
specifies the missing information on the

parameter θ . Once this problem is resolved,
the fourth point iseasily tackled with thehelp
of Bayes’ theorem.
Bayes’ theorem can be expressed, in its con-
tinuous form, by:

f (θ |D ) = f (D |θ ) · f (θ)

f (D)

= f (D |θ ) · f (θ)∫
f (D |θ ) f (θ) dθ

.

Since the xi are independent, we can write:

f (θ |D ) =

n∏
i=1

f (xi |θ ) · f (θ)

∫ n∏
i=1

f (xi |θ )f (θ) dθ

.

Now we have the means to calculate the den-
sity function of a new (independent) obser-
vation xn+1, given x1, . . . , xn:

f (X = xn+1 |D )

= f (X = x1, . . . , X = xn+1)

f (X = x1, . . . , X = xn)

=

∫
f (X = x1, . . . , X = xn+1 |θ )

·f (θ) dθ∫
f (D |θ ) · f (θ) dθ

=
∫ n+1∏

i=1
f (X = xi |θ ) · f (θ) dθ

∫ n∏
i=1

f (X = xi |θ ) · f (θ) dθ

=
∫

f (X = xn+1 |θ ) · f (θ |D ) dθ .

We will now briefly explain the methods that
allow us to:
• Find a value for the estimated parameter

that is more probable than the others;
• Find a confidence interval for θ , and;
• Perform hypothesis testing.
These methods are strictly related to deci-
sion theory, which plays a considerable role
in Bayesian statistics.
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Point Estimation of the Parameter
To get a point estimation for the param-
eter θ , we specify a loss function l(θ̂ , θ) that
comes from using θ̂ (the estimated value)
instead of the true value (the unknown) θ .
Then we minimize this function of θ̂ . For
example, if θ is real and “the loss is quadrat-
ic” (that is, l(θ̂ , θ) = (θ̂−θ)2), then the point
estimation of θ will be the mean of the cal-
culated distribution.

Confidence Intervals
The concept of a confidence interval is
replaced in bayesian statistics by the concept
of an α-credible region (where α is the “con-
fidence level”), which is simply defined as an
interval I such that:

∫

I
f (θ |D ) dθ = α .

Often, we also require that the width of the
interval is minimized.

Hypothesis Testing
The general approach to hypothesis testing:

H0 : θ ∈ I versus H1 : θ /∈ I .

is related to decision theory. Based on this,
we define a loss function l(a0, θ) that accepts
H0 (where the true value of the parameter is
θ ) and a loss function l(a1, θ) that rejects H0.
If the value for the true value obtained by
accepting H0, that is,

∫
l(a0, θ)dθ ,

is smaller than to the one obtained by reject-
ing H0, then we can accept H0.
Using this constraint, we reject the restric-
tions imposed on θ by the null hypothesis
(θ ∈ I).

EXAMPLES
The following example involves estimating
the parameter θ from the Bernoulli distri-
bution X with the help of n independent
observations x1, . . . , xn, taking the value 1 in
thecaseof successand 0 in thecaseof failure.
Let r be the number of successes and n − r
be the number of failures among the obser-
vations.
We have then:

L(θ) = P (X = x1, . . . , X = xn |θ )

=
n∏

i=1

P (X = xi |θ )

= θ r · (1− θ)n−r .

An estimation of the maximum likelihood
of θ , denoted by θ̂mle, maximizes this func-
tion. To do this, we consider the logarithm
of this function, in other words the log-
likelihood:

log L (θ) = r log (θ)+ (n− r) log (1− θ) .

We maximize this by setting its derivative by
θ equal to zero:

∂ (log L)

∂θ
= r

θ
− n− r

1− θ
= 0 .

This is equivalent to r (1− θ) = (n− r) θ ,
and it simplifies to θ̂mle = r

n . The estimator
for the maximum likelihood of θ is then sim-
ply the proportion of observed successes.
Now we return to the bayesian method.
In this case, the Bernoulli distribution, the
a priori reference distribution of the param-
eter θ , is expressed by:

f (θ) = c · (h (θ))
1
2 ,

where c is an appropriate constant (such as∫
f (θ)dθ = 1) and where h(θ) is called the
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Fisher information of X:

h(θ) = −E

[
∂2L

∂θ2

]

= −E

[
− X

θ2 −
1− X

(1− θ)2

]

= E [X]

θ2 +
1− E [X]

(1− θ)2

= θ

θ2 +
1− θ

(1− θ)2

= 1

θ
+ 1

1− θ
= 1

θ (1− θ)
.

The distribution will then be:

f (θ) = c · θ− 1
2 · (1− θ)−

1
2 .

The distribution function of θ , given the
observations x1, . . . , xn, can then be ex-
pressed by:

f (θ |X = x1, . . . , X = xn )

= 1

d

n∏
i=1

P (X = xi |θ ) · f (θ)

= 1

d
· θ r · (1− θ)n−r · c · θ− 1

2 · (1− θ)−
1
2

= c

d
· θ r− 1

2 · (1− θ)n−k− 1
2

= c

d
· θ(r+ 1

2 )−1 · (1− θ)(n−r+ 1
2 )−1 .

whichisabeta distributionwithparameters

α = r + 1

2
and β = n− r + 1

2
,

and with a constant of

c

d
= 
 (α + β)


 (α) 
 (β)
,

where 
 is the gamma function (see gamma
distribution).
We now consider a concrete case, where
we want to estimate the proportion of HIV-
positive students. We test 200 students and

noneof themisHIV-positive.Theproportion
of HIV-positive students is therefore esti-
mated to be 0 by the maximum likelihood.
Confidence intervals are not very useful in
this case, because (if we follow the usual
approach) they are calculated by:

0± 1.96 ·√p(1− p) .

In this case, as p is the proportion ofobserved
successes, the confidence interval reduces
to 0.
Following bayesian methodology, we obtain
the distribution, based only on the data,
that describes the uncertainty about the par-
ameters to be estimated. The larger n is, the
more sure we are about θ ; the final reference
distribution for θ is then more concentrated
around the true value of θ .
In this case, we find as a final referencedistri-
bution a beta distribution with parameters
α = 0.5 and β = 200.5, which summarizes
the information about θ (the values that cor-
respond to the spikes in the distribution are
themostprobable). It isoftenuseful tograph-
ically represent such results:

We can see from this that:
• The probability that the proportion of

interest is smaller then 0.015 is almost 1;
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• The probability that the proportion of
interest is smaller then 0.005 is approx-
imately 0.84, and;

• The median, which is chosen as the best
measure of the central tendency due to
the strong asymmetry of the distribution,
is 0.011.

We remark that there is a qualitative dif-
ference between the classical result (the
proportion can be estimated as zéro) and
the bayesian solution to the problem, which
allows us to calculate the probability distri-
bution of the parameter, mathematically
translating the uncertainty about it. This
method tell us in particular that, given cer-
tain information, the correct estimation for
the proportion of interest is 0.011. Note that
the bayesian estimation depends on (like the
uncertainty) the number of the observed cas-
es, and it is equivalent to observing 0 cases
of HIV among 2, 200 or 20.0 students in the
classical case.

FURTHER READING
� Bayes’ theorem
� Bayes, Thomas
� Conditional probability
� Inference
� Joint density function
� Maximum likelihood
� Probability
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Bernoulli Distribution
A random variable X follows a Bernoulli
distribution with parameter p if its proba-
bility function takes the form:

P(X = x) =
{

p for x = 1

q = 1− p for x = 0
.

where p and q represent, respectively, the
probabilities of “success” and “failure,”
symbolized by the values 1 and 0.

Bernoulli’s law, p = 0.3, q = 0.7

The Bernoulli distribution is a discrete
probability distribution.
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HISTORY
See binomial distribution.

MATHEMATICAL ASPECTS
The expected value of the Bernoulli distri-
bution is by definition:

E[X] =
1∑

x=0

x · P(X = x)

= 1 · p+ 0 · q = p .

The variance of the Bernoulli distribution is
by definition:

Var(X) = E[X2]− (E[X])2

= 12 · p+ 02 · q− p2

= p− p2 = pq .

DOMAINS AND LIMITATIONS
The Bernoulli distribution is used when
arandom experimenthasonly twopossible
results: “success” or “failure.” These results
are usually symbolized by 0 and 1.

FURTHER READING
� Binomial distribution
� Discrete probability distribution

Bernoulli Family

Originally from Basel, the Bernoulli fami-
ly contributed several mathematicians to sci-
ence. Bernoulli, Jacques (1654–1705) stud-
ied theology at the University of Basel,
according to the will of his father, and then
traveled for several years, teaching and con-
tinuing his own studies. Having resolute-
ly steered himself towards mathematics, he
became a professor at the University of
Basel in 1687. According to Stigler (1986),

Bernoulli, Jacques (called Bernoulli, James
in most the English works) is the father of the
quantification of uncertainty.
It was only in 1713, seven years after his
death, and on the instigation of his nephew
Nicolas, that his main work Ars Conjectandi
was published. This work is divided into four
parts: in the first the author comments upon
the famous treatise of Huygens; the second is
dedicated to the theory of permutations and
combinations; the third to solving diverse
problems about games of chance; and final-
ly the fourth discusses the application of the
theory of probability to questions of moral
interest and economic science.
A great number of the works of Bernoulli,
Jacques were never published.
Jean Bernoulli (1667–1748), who was more
interested in mathematics than the med-
ical career his father intended for him,
also became a university professor, first
in Groningen in the Netherlands, and then
in Basel, where he took over the chair left
vacant by the death of his brother.
The two brothers had worked on differential
and integral calculusandminimizationprob-
lems and had also studied functions.

REFERENCES
Stigler, S.: The History of Statistics, the

Measurement of Uncertainty Before
1900. Belknap, London (1986) pp. 62–71

Bernoulli, Jakob

Bernoulli, Jakob (or Jacques or Jacob or
James) (1655–1705) and his brother Jean
were pioneers of Leibniz calculus. Jakob
reformulated the problem of calculating an
expectation into probability calculus. He
also formulated the weak law of large num-
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bers, upon which modern probability and
statistics are based. Bernoulli, Jakob was
nominated maître ès lettres in 1671. During
his studies in theology, which he terminated
in 1676, he studied mathematics and astron-
omy, contrary to the will of his father (Niko-
laus Bernoulli).
In 1682, Leibniz published (in Acta Eru-
ditorium) a method that could be used to
determine the integrals of algebraic func-
tions, a brief discourse on differential cal-
culus in an algorithmic scheme, and some
remarks on the fundamental idea of integral
calculus. This paper attracted the attention
of Jakob and his brother, and they consider-
ably improved upon the work already done
by Leibniz. Leibniz himself recognized that
infinitesimal calculus was mostly founded
by theBernoullibrothers rather thanhimself.
Indeed, in 1690 Jakob introduced the term
“integral.”
In 1687, he was nominated Professor of
Mathematics at the University of Basel,
where he stayed until his death in 1705.
Ars conjectandi is the title of what is gen-
erally accepted as Bernoulli’s most original
work. It consists of four parts: the first con-
tains a reprint of Huygen’s De Ratiociniis
in Ludo Aleae (published in 1657), which
is completed via important modifications.
In the second part of his work, Bernoulli
addresses combinatory theory. The third part
comprises 24 examples that help to illustrate
the modified concept of the expected value.
Finally, the fourth part is the most interesting
and original, even though Bernoulli did not
have the time to finish it. It is in this part that
Bernoulli distinguishes two ways of defin-
ing (exactly or approximately) the classical
measure of probability.
Around 1680, Bernoulli, Jakob also became
interested in stochastics.Theevolution ofhis

ideas can be followed in his scientific journal
Meditations.
Some of the main works and articles of
Bernoulli, Jakob include:

1677 Meditationes, Annotationes, Ani-
madversiones Theologicae & Philo-
sophicae, a me JB. concinnatae &
collectae ab anno 1677. Universitäts-
bibliothek, Basel, L I a 3.

1713 Ars Conjectandi, Opus Posthumum.
Accedit Tractatus de Seriebus infini-
tis, et Epistola Gallice scripta de ludo
Pilae recticularis. Impensis Thurni-
siorum, Fratrum, Basel.

Bernoulli Trial

The Bernoulli trials are repeated tests of an
experiment that obey the following rules:
1. Each trial results in either success or fail-

ure;
2. The probability of success is the same

for each trial; the probability of success is
denoted by p, and the probability of fail-
ure by q = 1− p;

3. The trials are independent.

HISTORY
The Bernoulli trials take their name from
the Swiss mathematician Bernoulli, Jakob
(1713).
Bernoulli, Jakob (1654–1705) was the eldest
of four brothers and it was his father’s will
that he should study theology. When he had
finished his studies in theology in Basel in
1676, he briefly left the town only to return
in 1680 in order to devote himself to mathe-
matics. He obtained the Chair of Mathe-
matics at the University of Basel in 1687.
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EXAMPLES
The most simple example of a Bernoulli trial
is the flipping of a coin. If obtaining “heads”
isconsidered tobeasuccess(S)whileobtain-
ing “tails” is considered to be a failure (F),
we have:

p = P(S) = 1
2

and

q = P(F) = 1− p = 1
2 .

FURTHER READING
� Bernoulli distribution
� Binomial distribution
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Bernoulli’s Theorem

Bernoulli’s theoremsaysthat therelativefre-
quency of success in a sequence of Bernoul-
li trials approaches the probability of suc-
cessas thenumberof trials increases towards
infinity.
It is a simplified form of the law of large
numbers and derives from the Chebyshev
inequality.

HISTORY
Bernoulli’s theorem, sometimes called the
“weak law of large numbers,” was first
described by Bernoulli, Jakob (1713) in his

work Ars Conjectandi, which was published
(with the help of his nephew Nikolaus) seven
years after his death.

MATHEMATICAL ASPECTS
If S represents the number of successes
obtained during n Bernoulli trials, and if p
is the probability of success, then we have:

lim
n→∞P

(∣∣∣∣
S

n
− p

∣∣∣∣ ≥ ε

)
= 0 ,

or

lim
n→∞P

(∣∣∣∣
S

n
− p

∣∣∣∣ < ε

)
= 1 ,

where ε > 0 and arbitrarily small.
In an equivalent manner, we can write:

S

n
−→
n→∞ p ,

which means that the relative frequency of
success tends to the probability of success
when n tends to infinity.

FURTHER READING
� Bernoulli distribution
� Bernoulli trial
� Convergence
� Law of large numbers
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Beta Distribution
A random variable X follows a beta distri-
bution with parameters α and β if its den-
sity function is of the form:

f (x) = 1

B(α, β)
(x− a)α−1(b− x)β−1

· (b− a)−(α+β−1) ,

a ≤ x ≤ b , α > 0 and β > 0 ,

where:

B(α, β) =
∫ 1

0
tα−1(1− t)β−1dt

= 
(α)
(β)


(α + β)
,


 is the gamma function (see gamma distri-
bution).

Beta distribution α = 2, β = 3, a = 3, b = 7

Thebetadistribution isacontinuous proba-
bility distribution.

MATHEMATICAL ASPECTS
The density function of the standard beta
distribution is obtained by performing the
variable change Y = X−a

b−a :

f (y) =

⎧
⎪⎪⎨
⎪⎪⎩

1
B(α,β)

yα−1

·(1− y)β−1
if 0 < y < 1

0 if not

.

Consider X, a random variable that follows
the standard beta distribution. The expected

valueandthevarianceofX are,respectively,
given by:

E[X] = α

α + β
,

Var(X) = α · β
(α + β)2 · (α + β + 1)

.

DOMAINS AND LIMITATIONS
The beta distribution is one of the most fre-
quentlyused toadjustempiricaldistributions
where therange (orvariation interval) [a, b]
is known.
Herearesomeparticularcaseswhere thebeta
distribution is used, related to other contin-
uous probability distributions:
• If X1 and X2 are two independent random

variables each distributed according to
a gamma distribution with parameters
(α1, 1) and (α2, 1), respectively, the ran-
dom variable

X1

X1 + X2
,

is distributed according to a beta distri-
bution with parameters (α1, α2).

• The beta distribution becomes a uniform
distribution when

α = β = 1 .

• When the parameters α and β tends to-
wards infinity, the beta distribution tends
towards the standard normal distribu-
tion.

FURTHER READING
� Continuous probability distribution
� Gamma distribution
� Normal distribution
� Uniform distribution
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Bias

From a statistical point of view, the bias is
definedasthedifferencebetween theexpect-
ed value of a statistic and the true value
of the corresponding parameter. Therefore,
the bias is a measure of the systematic error
of an estimator. If we calculate the mean of
a large number of unbiased estimations, we
will find the correct value. The bias indicates
the distance of the estimator from the true
value of the parameter.

HISTORY
The concept of an unbiased estimator
comes from Gauss, C.F. (1821), during the
time when he worked on the least squares
method.

DOMAINS AND LIMITATIONS
We should not confuse the bias of an estima-
tor of a parameter with its degree of preci-
sion,which isameasurementof thesampling
error.
There are several types of bias, selection bias
(due to systematic differences between the
groups compared), exclusion bias (due to the
systematic exclusion of certain individuals
from the study) or analytical bias (due to the
way that the results are evaluated).

MATHEMATICAL ASPECTS
Consider a statistic T used to estimate
a parameter θ . If E[T] = θ + b(θ)

(where E[T] represents the expected value
of T), then the quantity b(θ) is called the
bias of the statistic T.
If b(θ) = 0, we have E[T] = θ , and T is an
unbiased estimator of θ .

EXAMPLES
Consider X1, X2, . . . , Xn, a sequence of inde-
pendent random variables distributed
according to the same law of probability
with a mean μ and a finite variance σ 2. We
can calculate the bias of the estimator

S2 = 1

n
·

n∑
i=1

(xi − x̄)2 ,

used to estimate the variance σ 2 of the pop-
ulation in the following way:

E[S2] = E

[
1

n

n∑
i=1

(xi − x̄)2

]

= E

[
1

n

n∑
i=1

(xi − μ)2 − (x̄− μ)2

]

= 1

n
E

[
n∑

i=1

(xi − μ)2

]
− E(x̄− μ)2

= 1

n

n∑
i=1

E(xi − μ)2 − E(x̄− μ)2

= Var(xi)− Var(x̄)

= σ 2 − σ 2

n
.

The bias of S2 is then equal to −σ 2

n .

FURTHER READING
� Estimation
� Estimator
� Expected value

REFERENCES
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Gauss, C.F.: Méthode des Moindres Car-
rés. Mémoires sur la Combinaison des
Observations. Traduction Française par J.
Bertrand. Mallet-Bachelier, Paris (1855)

Bienaymé, Irénée-Jules

Bienaymé, Irenée-Jules (1796–1878)
entered the French Ministry of Finance and
became the Inspector General for Finance
in 1836, although he lost his employment
in 1848 for political reasons. Shortly after
this, he began to give lessons in the Faculty
of Science in Paris.
A follower of Laplace, Pierre Simon
de, Bienaymé proved the Bienaymé–
Chebyshev inequality some years before
Chebyshev, Pafnutii Lvovich. The reedit-
ed version of Bienaymé’s paper from 1867
precedes the French version of Chebychev’s
proof. This inequality was then used in
Chebyshev’s incomplete proof of central
limit theorem, which was later finished by
Markov, Andrei Andreevich.
Moreover, Bienaymé correctly formulated
the theorem for branching processes in 1845.
His most famous public work is probably the
corrections he made to the use of Duvillard’s
mortality table.
Some principal works and articles of Bien-
aymé, Irénée-Jules:

1853 Considérations à l’appui de la décou-
vertedeLaplacesur la loideprobabil-
ité dans la méthode des moindres car-
rés. Comptes Rendus de l’Académie
des Sciences, Paris 37, 5–13; reedited
in 1867 in the Journal de Liouville
preceding theproofof theBienaymé–
Chebyshev inequality in J. Math.
Pure. Appl., 12, 158–176.

Binary Data

Binary dataoccurwhen thevariableof inter-
est can only take two values. These two val-
uesaregenerally representedby0and1,even
if the variable is not quantitative.
Gender, the presence or absence of a charac-
teristic and the success or failure of an exper-
iment are just a few examples of variables
that result in binary data. These variables are
called dichotomous variables.

EXAMPLES
A meteorologist wants to know how reliable
his forecasts are. To do this, he studies a ran-
dom variable representing the prediction.
This variable can only take two values:

X =
{

0 if the prediction was incorrect

1 if the prediction was correct
.

The meteorologist makes predictions for
a period of 50 consecutive days. The predic-
tion isfoundtobecorrect32 times,and incor-
rect 18 times.
To find out whether his predictions are better
than the ones that could have been obtained
by flipping a coin and predicting the weather
based on whether heads or tails are obtained,
he decides to test the null hypothesis H0,
that the proportion p of correct predictions is
equal to 0.5, against the alternative hypoth-
esisH1, that thisproportion isdifferentto0.5:

H0 : p = 0.5

H1 : p �= 0.5 .

Let us calculate the value of

χ2 =
∑

(
observed frequency
−theoretical frequency

)2

theoretical frequency
,
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where the observed frequencies are 18
and 32, and the theoretical frequencies are,
respectively, 25 and 25:

χ2 = (32− 25)2 + (18− 25)2

25

= 49+ 49

25
= 98

25
= 3.92 .

By assuming that the central limit theo-
rem applies, we compare this value with
the value of the chi-square distribution
with one degree of freedom. For a ’signifi-
cance level of 5%, we find in the chi-square
table:

χ2
1,0.95 = 3.84 .

Therefore, since 3.92 > 3.84, the null
hypothesis is rejected, which means that
the meteorologist predicts the weather bet-
ter than a coin.

FURTHER READING
� Bernoulli distribution
� Categorical data
� Contingency table
� Data
� Dichotomous variable
� Likelihood ratio test
� Logistic regression
� Variable

REFERENCES
Cox, D.R., Snell, E.J.: The Analysis

of Binary Data. Chapman & Hall
(1989)

Bishop, Y.M.M., Fienberg, S.E., Hol-
land, P.W.: Discrete Multivariate Anal-
ysis: Theory and Practice. MIT Press,
Cambridge, MA (1975)

Binomial
Algebraic sums containing variables are
called polynomials (from the Greek “poly,”
meaning “several”). An expression that con-
tains two terms is called a binomial (from the
Latin “bi”, meaning “double”). A monomial
(fromtheGreek“mono”,meaning“unique”)
is an expression with one term and a trino-
mial (from the Latin “tri”, meaning “triple”)
contains three elements.

HISTORY
See arithmetic triangle.

MATHEMATICAL ASPECTS
The square of a binomial is easily calculated
using

(a+ b)2 = a2 + 2ab+ b2 .

Binomial formulae for exponents higher
than two also exist, such as:

(a+ b)3 = a3 + 3a2b+ 3ab2 + b3 ,

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3

+ b4 .

Wecan writeageneralized binomial formula
in the following manner:

(a+ b)n = an + nan−1b

+ n(n− 1)

2
an−2b2

+ · · · + n(n− 1)

2
a2bn−2

+ nabn−1 + bn

= C 0
n an + C1

na n−1b+ C2
nan−2b2

+ · · · + Cn−1
n abn−1 + Cn

nbn

=
n∑

k=0

Ck
nan−kbk.
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DOMAINS AND LIMITATIONS
The binomial (p + q) raised to the power n
lends its name to the binomial distribution
because it corresponds to the total probabi-
lity obtained after n Bernoulli trials.

FURTHER READING
� Arithmetic triangle
� Binomial distribution
� Combination

Binomial Distribution

A random variable X follows a binomial
distribution with parameters n and p if its
probability function takes the form:

P(X = x) = Cx
n · px · qn−x ,

x = 0, 1, 2, . . . , n .

Therefore if an event comprises x “success-
es” and (n − x) “failures,” where p is the
probability of “success” and q = 1− p the
probability of “failure,” the binomial distri-
bution allows us to calculate the probability
of obtaining x successes from n independent
trials.

Binomial distribution, p = 0.3, q = 0.7, n = 3

The binomial distribution with param-
eters n and p, denoted B(n, p), is a discrete
probability distribution.

Binomial distribution, p = 0.5, q = 0.5, n = 4

HISTORY
The binomial distribution is one of the old-
est known probability distributions. It was
discovered by Bernoulli, J. in his work enti-
tled Ars Conjectandi (1713). This work is
divided into four parts: in the first, the author
comments on the treatise from Huygens; the
second part is dedicated to the theory of per-
mutations and combinations; the third is
devoted to solving various problems related
to games of chance; finally, in the fourth part,
he proposes applying probability theory to
moral questions and to the science of eco-
nomics.

MATHEMATICAL ASPECTS
If X1, X2, . . . , Xn are n independent random
variables following a Bernoulli distri-
bution with a parameter p, then the random
variable

X = X1 + X2 + . . .+ Xn

follows a binomial distribution B(n, p).
To calculate theexpected valueof X, the fol-
lowing property will be used, where Y and Z
are two random variables:

E[Y + Z] = E[Y]+ E[Z] .

We therefore have:

E[X] = E[X1 + X2 + . . .+ Xn]

= E[X1]+ E[X2]+ . . .+ E[Xn]

= p+ p+ . . .+ p = np .
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To calculate the variance of X, the following
property will be used, where Y and Z are two
independent variables:

Var(Y + Z) = Var(Y)+ Var(Z) .

We therefore have:

Var(X) = Var(X1 + X2 + . . .+ Xn)

= Var(X1)+ Var(X2)+ . . .

+ Var(Xn)

= pq+ pq+ . . .+ pq = npq .

Binomial distribution tables (for the proba-
bility distribution and the distribution
function) have been published by Rao
et al. (1985), as well as by the Nation-
al Bureau of Standards (1950). Extended
distribution function tables can be found in
the Annals of the Computation Laboratory
(1955).

EXAMPLES
A coin is flipped ten times. Consider the ran-
dom variable X, which represents the num-
ber of times that the coin lands on “tails.”
We therefore have:

number of trials: n = 10

probability of
one success:

p = 1
2

(tails obtained)

probability of one
failure:

q = 1
2

(heads obtained)

The probability of obtaining tails x times
amongst the ten trials is given by

P(X = x) = Cx
10 ·

(
1

2

)x

·
(

1

2

)10−x

.

The probability of obtaining tails exactly
eight times is therefore equal to:

P(X = 8) = C8
10 · p8 · q10−8

= 10!

8!(10− 8)!
·
(

1

2

)8

·
(

1

2

)2

= 0.0439 .

The random variable X follows the bino-
mial distribution B(10, 1

2 ).

FURTHER READING
� Bernoulli distribution
� Binomial table
� Discrete probability distribution
� Negative binomial distribution
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oratory, Harvard University Press, Cam-
bridge, MA (1955)
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Binomial Table
The binomial table gives the values for
the distribution function of a random
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variable that follows a binomial distri-
bution.

HISTORY
See binomial distribution.

MATHEMATICAL ASPECTS
Let the random variable X follow the bino-
mial distribution with parameters n and p.
Its probability function is given by:

P(X = x) = Cx
n · px · qn−x ,

x = 0, 1, 2, . . . , n ,

where Cx
n is the binomial coefficient, equal

to n!
x!(n−x)! , parameter p is the probability of

success, and q = 1−p is the complementary
probability that corresponds to the probabi-
lity of failure (see normal distribution).
The distribution function of the random
variable X is defined by:

P(X ≤ x) =
x∑

i=0

Ci
n · pi · qn−i ,

0 ≤ x ≤ n .

The binomial table gives the value of
P(X ≤ x) for various combinations of x,
n and p.
For largen, thiscalculation becomes tedious.
Thankfully, we can use some very good
approximations instead. If min(np, n(1 −
p)) > 10, we can approximate it with the
normal distribution:

P(X ≤ x) = φ

(
x+ 1

2 − np√
npq

)
,

where φ is the distribution function for the
standard normal distribution, and the conti-
nuity correction 1

2 is included.

DOMAINS AND LIMITATIONS
The binomial table is used to perform non-
parametric tests on statistics that are dis-
tributed according to binomial distri-
bution, especially the sign test and the
binomial test.
The National Bureau of Standards (1950)
published individual and cumulative bino-
mial distribution probabilities for n ≤ 49,
while cumulative binomial distribution
probabilities for n ≤ 1000 are given in the
Annals of the Computation Laboratory
(1955).

EXAMPLES
See Appendix B.
We can verify that for n = 2 and p = 0.5:

P(X ≤ 1) =
1∑

i=0

Ci
2(0.5)i(0.5)2−i

= 0.75 .

or that for n = 5 and p = 0.05:

P(X ≤ 3) =
3∑

i=0

Ci
5(0.05)i(0.95)5−i

= 1.0000 .

Foran exampleof theapplicationof thebino-
mial table, see binomial test.

FURTHER READING
� Binomial distribution
� Binomial test
� Sign test
� Statistical table

REFERENCES
National Bureau of Standards.: Tables of

the Binomial Probability Distribution.
U.S. Department of Commerce. Applied
Mathematics Series 6 (1950)



B

Binomial Test 47

Harvard University: Tables of the Cumu-
lative Binomial Probability Distribution,
vol. 35. Annals of the Computation Lab-
oratory, Harvard University Press, Cam-
bridge, MA (1955)

Binomial Test
The binomial test is a parametric hypoth-
esis test that applies when the population
can be divided into two classes: each obser-
vation of this population will belong to one
or the other of these two categories.

MATHEMATICAL ASPECTS
We consider a sample of n independent tri-
als. Each trial belongs to either the class C1

or the class C2. We note the number of obser-
vations n1 that fall into C1 and the number of
observations n2 that fall into C2.
Each trial has a probability p of belonging to
class C1, where p is identical for all n trials,
and a probability q = 1− p of belonging to
class C2.

Hypotheses
The binomial test can be either a two-sided
test or a one-sided test. If p0 is the presumed
value of p, (0 ≤ p0 ≤ 1), the hypotheses are
expressed as follows:

A: Two-sided case

H0 : p = p0 ,

H1 : p �= p0 .

B: One-sided case

H0 : p ≤ p0 ,

H1 : p > p0 .

C: One-sided case

H0 : p ≥ p0 ,

H1 : p < p0 .

Decision Rules
Case A

For n < 25, we use the binomial table with
n and po as parameters.
Therefore, we initially look for the closest
value to α

2 in this table (which we denoteα1),
where α is the significance level. We denote
the value corresponding to α1 by t1.
Next we find the value of 1−α1 = α2 in the
table. We denote the value corresponding to
α2 by t2.
We reject H0 at the level α if

n1 ≤ t1 or n1 > t2 ,

where n1 is the number of observations that
fall into the class C1.
When n is bigger then 25,we can use the nor-
mal distribution as an approximation for
the binomial distribution.
The parameters for the binomial distribution
are:

μ = n · p0 ,

σ = √n · p0 · q0 .

The random variable Z that follows the
standard normal distribution then equals:

Z = X − μ

σ
= X − n · p0√

n · p0 · q0
,

where X is a random binomial variable with
parameters n and p0.
The approximations for the values of t1 and
t2 are then:

t1 = n · p0 + zα1 ·
√

n · p0 · q0 ,

t2 = n · p0 + zα2 ·
√

n · p0 · q0 ,

where zα1 and zα2 are the values found in the
normal table corresponding to the levels α1

and α2.
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Case B

For n < 25, we take t to be the value in
the binomial table corresponding to 1 − α,
whereα is the significance level (or the clos-
est value), and n and p0 are the parameters
described previously. We reject H0at the lev-
el α if

n1 > t ,

where n1 is the number of the observations
that fall into the class C1.
For n ≥ 25 we can make the approximation:

t = n · p0 + zα
√

n · p0 · q0 ,

where zα can be found in the normal table for
1− α.
The decision rule in this case is the same as
that for the n < 25.

Case C

Forn < 25, t is thevalue in thebinomial table
corresponding to α, where α is the signifi-
cance level (or the closest value), and with n
and p0 the same parameters described previ-
ously.
We reject H0 at the level α if

n1 ≤ t ,

where n1 is the number of observations that
fall into the class C1.
For n ≥ 25, we make the approximation:

t = n · p0 + zα
√

n · p0 · q0 ,

where zα is found in the normal table for the
significance level α. Then, the decision rule
is the same as described previously.

DOMAINS AND LIMITATIONS
Two basic conditions that must be respected
when performing the binomial test are:

1. The n observations must be mutually
independent;

2. Every observation has a probability p of
falling into the first class. This probability
is also the same for all observations.

EXAMPLES
A machine is considered to be operational if
a maximum of 5% of the pieces that it pro-
duces are defective. The null hypothesis,
denoted H0, expresses this situation, while
thealternative hypothesis, denoted H1, sig-
nifies that the machine is failing:

H0 : p ≤ 0.05

H1 : p > 0.05 .

Performing the test, we take a sample of
10 pieces and we note that there are three
defective pieces (n1 = 3). As the hypotheses
correspond to the one-tailed test (case B),
decision rule B is used. If we choose a sig-
nificance level of α = 0.05, the value of t
in the binomial table equals 1 (for n = 10
and p0 = 0.05).
We reject H0 because n1 = 3 > t = 1, and
we conclude that the machine is failing.
Then we perform the test again, but on
100 pieces this time. We notice that there are
12 defective pieces. In this case, thevalue of t
can be approximated by:

t = n · p0 + zα
√

n · p0 · q0 ,

where zα can be found from the normal
table for 1− α = 0.95. We then have:

t = 100 · 0.05+ 1.64
√

100 · 0.05 · 0.95

= 8.57 .

We again reject H0, because n1 = 12 > t =
8.57.
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FURTHER READING
� Binomial table
� Goodness of fit test
� Hypothesis testing
� One-sided test
� Parametric test
� Two-sided test

REFERENCES
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Biostatistics

Biostatistics is the scientific field where
statistical methods are applied in order to
answer questions related to human biology
and medicine (the prefix “bio” comes from
Greek “bios,” which means “life”).
The domains of biostatistics are mainly
epidemiology, clinical and biological tri-
als, and it is also used when studying the
ethics of these trials.

HISTORY
Biostatistics began in the middle of the sev-
enteenth century, when Petty, Sir William
(1623–1687) and Graunt, John (1620–1674)
created new methods of analyzing the Lon-
don Bills of Mortality. They applied these
new methods of analysis to death rate,
birthrate and census studies, creating the
field of biometrics. Then, in the middle of
the nineteenth century, the works of Mendel,
Gregor studied inheretance in plants. His
observations and results were based on sys-
tematically gathered data, and also on the
applicationofnumericalmethodsofdescrib-
ing the regularity of hereditary transmission.

Galton, Francis and Pearson, Karl were
two of the most important individuals asso-
ciated with the development of this science.
They used the new concepts and statistical
methodswheninvestigatingtheresemblance
in physical, psychological and behavioral
data between parents and their children.
Pearson, Galton and Weldon, Walter Frank
Raphael (1860–1906) cofounded the jour-
nal Biometrika. Fisher, Ronald Aylmer,
during his agricultural studies performed at
Rothamsted ExperimentalStation,proposed
a method of random sampling where ani-
mals were partitioned into different groups
and allocated different treatments, marking
the first studies into clinical trials.

DOMAINS AND LIMITATIONS
The domains of biostatistics are principally
epidemiology, clinical trials and the ethical
questions related to them, as well as biologi-
cal trials. One of the areas where biostatisti-
cal concepts have been used to analyze a spe-
cific question was in indirect measurements
of the persistence of a substance (for exam-
ple vitamins and hormones) when adminis-
tered to a living creature. Biostatistics there-
fore mainly refer to statistics used to solve
problems that appear in the biomedical sci-
ences.
Thestatisticalmethodsmostcommonlyused
in biostatistics include resampling meth-
ods (bootstrap, jackknife), multivariate
analysis, various regression methods, eval-
uations of uncertainty related to estimation,
and the treatment of missing data.
The most well-known scientific journals
related to biostatistics are: Statistics in
Medicine, The Biometrical Journal, Con-
trolled Clinical Trials, The Journal of Bio-
pharmaceutical Statistics, Statistical Meth-
ods in Medical Research and Biometrics.
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FURTHER READING
� Demography
� Epidemiology
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edn. 1963)

Block

Blocks are sets where experimental units
are grouped in such a way that the units are
as similar as possible within each block.
We can expect that the experimental error
associated with a block will be smaller than
that obtained if the same number of units
were randomly located within the whole
experimental space.
The blocks are generally determined by tak-
ing into account both controllable causes
related by the factors studied and causes that

may be difficult or impossible to keep con-
stant over all of the experimental units.
The variations between the blocks are then
eliminated when we compare the effects of
the factors.
Several types of regroupings can be used to
reduce the effects of one or several sources of
error. A randomized block design results
if there is only one source of error.

HISTORY
The block concept used in the field of design
of experiment originated in studies madeby
Fisher, R.A. (1925) when he was Head of
theRothamstedExperimentalStation.When
working with agricultural researchers, Fish-
er realized that the ground(field) chosen for
the experiment was manifestly heteroge-
nous in the sense that the fertility varies
in a systematic way from one point on the
ground to another.

FURTHER READING
� Design of experiments
� Experimental Unit
� Factor
� Graeco-Latin square design
� Latin square designs
� Randomized block design

REFERENCES
Fisher, R.A.: Statistical Methods for

Research Workers. Oliver & Boyd, Edin-
burgh (1925)

Bonferroni, Carlo E.
Bonferroni, Carlo Emilio was born in 1892
in Bergamo, Italy. He obtained a degree in
mathematics in Turin and completedhisedu-
cation by spending a year at university in
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Vienna and at the Eidgenössiche Technische
Hochschule inZurich.HewasaMilitaryoffi-
cer during the First World War, and after the
war had finished became an assistant profes-
sor atTurin Polytechnic. In1923,he received
the Financial Mathematics Chair at the Eco-
nomics Institute in Bari, where he was the
Rector for seven years. He finally transferred
to Florence in 1933, where he held his chair
until his death.
Bonferroni tackled various subjects, includ-
ing actuarial mathemetics, probability and
statistical mathematics, analysis, geometry
and mechanics. He gave his name to the
two Bonferroni inequalities that facilitate the
treatment of statistical dependences. These
appeared for the first time in 1936, in the arti-
cle Teoria statistica delle classi e calcolo
delle probabilità. The development of these
inequalities prompted a wide range of new
literature in this area.
Bonferroni died in 1960 in Florence, Italy.
Principal article of Carlo Emilio Bonfer-
roni:

1936 Teoria statistica delle classi e calcolo
delle probabilità. Publ. R. Istit. Super.
Sci. Econ. Commerc. Firenze, 8, 1–
62.

Bootstrap
The term bootstrap describes a family of
techniques that are principally used to esti-
mate the standard error, the bias and the con-
fidence interval of a parameter (or more
than one parameter). It is based on n inde-
pendent observations of a random variable
with an unknown distribution function F,
and is particularly useful when the param-
eters to be estimated relate to a complicated
function of F.

The basic idea of bootstrap (which is some-
what similar to the idea behind the jackknife
method) is to estimate F using a possible
distribution F̂ and then to resample from F̂.
Bootstrap procedures usually require the use
of computers, since they can perform a large
number of simulations in a relatively short
time. In bootstrap methods, automatic sim-
ulationstake theplaceof theanalyticalcalcu-
lations used in the “traditional” methods of
estimation, and in certain cases they can pro-
vide more freedom, for example when we do
not want to (or we cannot) accept a hypothe-
sis for the structure of the distribution of the
data. Certain bootstrap methods are included
in statistical software such as S-PLUS, SAS
and MATLAB.

HISTORY
The origin of the use of the word “bootstrap”
in relation to the methods described here
neatly illustrates the reflexive nature of the
secondary samples generated by them (the
ones constructed from F̂). It originates from
the literary character Baron Munchausen
(from The Surprising Adventures of Baron
Munchausen by Raspe, R.E.), who fell into
a lake,butpulledhimselfoutbyhisownboot-
straps (his laces).
The history of bootstrap, like many self-
statistical techniques, starts in 1979 with
the publication of an article by Efron
(1979), which had a great impact on many
researchers. This article triggered the pub-
lication of a huge number of articles on the
theory and applications of bootstrap.

MATHEMATICAL ASPECTS
Different types of bootstrap have been pro-
posed; the goal here is not to review all of
theseexhaustively,but instead to givean idea
of the types of the methods used.
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Let x1, x2, . . . , xn be n independent observa-
tions of a random variable with an unknown
distribution function F.
We are interested in the estimation of an
unknown parameter δ that depends on F and
the reliability (in other words its bias, its
variance and its confidence interval). The
estimation of δ is afforded by the statistic
t = t(F), which is dependent on F. Since F
is unknown, we find an estimation F̂ for F
based on the sample x1, x2, . . . , xn, and we

estimate δ using t
(

F̂
)

. Classical examples

of t are the mathematical expectation, the
variance and the quantiles of F. We denote
the random variable corresponding to the
statistic t (which depends on x1, x2, . . . , xn)
by T.
We distinguish the following types of boot-
strap:
• Parametric bootstrap. If F = Fθ is

a member of the parametric family of
distribution functions, we can estimate
(the vector) θ using the estimator θ̂ of the
maximum likelihood. We naturally esti-
mate F by F

θ̂
.

• Nonparametric bootstrap. If F is not
a member of the parametric family, it is
estimated via an empirical distribution
function calculated based on a sample of
sizen.Theempiricaldistribution function
in x is defined by:

F̂(x) = number of observations xi ≤ x

n
.

The idea of the bootstrap is the following.
1. Consider R independent samples of type

x∗1, x∗2, . . . , x∗n of a random variable of the
distribution F̂.

2. Calculate the estimated values t∗1 , t∗2 , . . . ,
t∗R for the parameter δ based on the gen-
erated bootstrap samples. First calculate
the estimation F̂∗i based on the sample i

(i = 1, . . . , R), and then set:

t∗i = t
(

F̂∗i
)

.

Following the bootstrap method, the
bias b and the variance v of t are esti-
mated by:

bboot = t̄∗ − t =
(

1

R

R∑
i=1

t∗i

)
− t ,

vboot = 1

R− 1

R∑
i=1

(t∗i − t̄∗)2 .

We should remark that two types of errors
intervene here:
• A statistical error arising from the fact

thatweproceedbyconsidering thebias
and variance for F̂ and not the real F,
which is unknown.

• Asimulation error arising from the fact
that the number of simulations is not
high enough. In reality, it is enough
to resample between R = 50 and
200 times.

There there are many possible methods of
obtaining confidence intervals using boot-
strap, and we present only a few here:
1. Normal intervals. Suppose that T follows

the Gaussian (normal) distribution. Hop-
ing that T∗ also follows the normal distri-
bution, we then find the following confi-
dence interval for the (bias) corrected val-
ue tb = t − b of t:

[
tb −√vboot · z1−α/2,

tb +√vboot · z1−α/2

]
,

where zγ is the γ quantile of the Gaus-
sian distribution N(0, 1). For a tolerance
limit of α, we use the value from the nor-
mal table z1− α

2
, which gives α = 5% :

z1− 0.05
2
= 1.96.
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2. Bootstrap intervals. Suppose that T − δ

does not depend on an unknown variable.
In this case we calculate the α-quantile aα

of T−δ. To do this, we arrange the values
t∗1−t, t∗2−t, . . . , t∗R−t in increasing order:

t∗(1) − t, t∗(2) − t, . . . , t∗(R) − t ,

and then we read the quantiles of inter-
est aα = t∗((R+1)α) − t and a1−α =
t∗((R+1)(1−α)) − t.
And as far as

1− 2α = Pr (aα ≤ T − δ ≤ a1−α)

= Pr
(
2t− t∗((R+1)(1−α)) ≤ δ

≤ 2t − t∗((R+1)α)

)
,

the confidence interval for t at the signif-
icance level α is:

[
2t− t∗((R+1)(1−α)), 2t− t∗((R+1)α)

]
.

3. Studentized bootstrap intervals. It is pos-
sible to improve the previous estimation
by considering

Z = T − δ√
v

,

where v is the variance of t, which must be
estimated (normally using known meth-
ods like Delta methods or the jackknife
method). The confidence interval for t
is found in an analogous way to that
described previously:

[
t −√v · z∗((R+1)(1−α)),

t +√v · z∗((R+1)α)

]
,

where z∗((R+1)(1−α)) and z∗((R+1)α) are
“empirically” the (1 − α and α) quan-

tiles of
(

z∗i = t∗i −t
v∗

)
i=1,...,R

.

EXAMPLES
We consider a typical example of nonpara-
metric bootstrap (taken from the work of
Davison, A. and Hinkley, D.V. (1997)). The
data concern the populations of ten Ame-
rican cities in 1920 (U) and 1930 (X):

u 138 93 61 179 48
x 143 104 69 260 75

u 37 29 23 30 2
x 63 50 48 111 50

We are interested in the value δof the statistic
T = E(X)

E(U)
which will allow us to deduce the

populations in 1930 from those in 1920. We
estimate δ using t = x̄

ū = 1.52, but what is
the uncertainty in this estimation?
The bootstrap allows us to simulate the val-
ues t∗i (i = 1, . . . , R) of δ sampled from
a bivariate distribution Y = (U, X) with an
empirical distribution function F̂ that gives
a weight 1

10 to each observation.
Inpractice, this isamatterof resamplingwith
return the ten data values and calculating the
corresponding

t∗i =
∑10

j=1 x∗ij∑10
j=1 u∗ij

, i = 1, . . . , R ,

where x∗ij and u∗ij are the values of the vari-
ables X and U. This allows us to approximate
the bias and the variance of t using the for-
mulae given before.
The following table summarizes the simula-
tions obtained with R = 5:

j

1 2 3 4 5 6 7

u∗1j 93 93 93 61 61 37 29

x∗1j 104 104 104 69 69 63 50

u∗2j 138 61 48 48 37 37 29

x∗2j 143 69 75 75 63 63 50
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j

1 2 3 4 5 6 7

u∗3j 138 93 179 37 30 30 30

x∗3j 143 104 260 63 111 111 111

u∗4j 93 61 61 48 37 29 29

x∗4j 104 69 69 75 63 50 50

u∗5j 138 138 138 179 48 48 48

x5j∗ 143 143 143 260 75 75 75

j Sum

8 9 10

u∗1j 29 30 2
∑

u∗1j = 528

x∗1j 50 111 50
∑

x∗1j = 774

u∗2j 30 30 2
∑

u∗2j = 460

x∗2j 111 111 50
∑

x∗2j = 810

u∗3j 30 2 2
∑

u∗3j = 571

x∗3j 111 50 50
∑

x∗3j = 1114

u∗4j 23 23 2
∑

u∗4j = 406

x∗4j 48 48 50
∑

x∗4j = 626

u∗5j 29 23 30
∑

u∗5j = 819

x5j∗ 50 48 111
∑

x∗5j = 1123

So, the t∗i are:

t∗1 = 1.466 , t∗2 = 1.761 , t∗3 = 1.951 ,

t∗4 = 1.542 , t∗5 = 1.371 .

From this, it is easy to calculate the bias and
the variance of t using the formulae given
previously:

b = 1.62− 1.52 = 0.10 and v = 0.0553 .

It is possible to use these results to calcu-
late the normal confidence intervals, sup-
posing that T − δ is normally distributed,
N (0.1, 0.0553).Weobtain, forasignificance
level of 5%, the following confidence inter-
val for t: [1.16, 2.08].
The small number of cities considered and
simulations mean that we cannot have much
confidence in the values obtained.

FURTHER READING
� Monte Carlo method
� Resampling
� Simulation

REFERENCES
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Methods and Their Application. Cam-
bridge University Press, Cambridge
(1997)

Efron, B.: Bootstrap methods: another
look at the jackknife. Ann. Stat. 7, 1–26
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to the Bootstrap. Chapman & Hall, New
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Hall, P.: The Bootstrap and Edgeworth
Expansion. Springer, Berlin Heidelberg
New York (1992)
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Boscovich, Roger J.

Boscovich,RogerJosephwasbornatRagusa
(now Dubrovnik, Croatia) in 1711. He
attended the Collegium Ragusinum, then
he went to Rome to study in the Collegio
Romano; both colleges were Jesuitic. He
died in 1787, in Milano.
In 1760, Boscovich developed a geomet-
ric method for finding a simple regression
line L1 (in order to correct errors in stel-
lar observations). Laplace, Pierre Simon
de disapproved of the fact that Boscovich
used geometrical terminology and translat-
ed this method into an algebraic version in
1793.
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The principal work of Boscovich, Roger
Joseph:

1757 De Litteraria Expeditione per Pontifi-
ciam ditionem, et Synopsis amplioris
Operis, ac habentur plura eius ex
exemplaria etiam sensorum impres-
sa. Bononiensi Scientiarium et Ar-
tium Instituto Atque Academia Com-
mentarii, Tomus IV, pp. 353–396.

REFERENCES
Whyte, Lancelot Law: Roger Joseph

Boscovich, Studies of His Life and Work
on the 250th Anniversary of his Birth.
Allen and Unwin, London (1961)

Box, E.P. George
Box, George E.P. was born in 1919 in Eng-
land. He served as a chemist in the British
Army Engineers during World War II. After
the war he received a degree in mathematics
and statistics from University College Lon-
don. In the1950s,heworkedasavisitingpro-
fessor in the US at the Institute of Statistics
at the University of North Carolina. In 1960
he moved to Wisconsin, where he served as
the first chairman of the statistics depart-
ment. He received the British Empire Medal
in 1946, and the Shewhart Medal in 1968.
His main interest was in experimental statis-
tics and the design of experiments. His book
Statistics for Experimenters, coauthored
with Hunter, J. Stuart and Hunter, William
G., is one of the most highly recommend-
ed texts in this field. Box also wrote on time
series analysis.

Recommended publication of Box, George:

2005 (with Hunter, William G. and
Hunter, J. Stuart) Statistics for Exper-

imenters: Design, Innovation, and
Discovery, 2nd edn. Wiley, New York

FURTHER READING
� Design of experiments

Box Plot

The box plot is a way to represent the follow-
ing five quantities for a set of data: the medi-
an; the first quartile and the third quartile;
the maximum and minimum values.
The box plot is a diagram (a box) that illus-
trates:
• The measure of central tendency (in

principal the median);
• The variability, and;
• The symmetry.
It is often used to compare several sets of
observations.

HISTORY
The“box-and-whiskerplot,”orboxplot,was
introduced by Tukey in 1972,alongwith oth-
er methods of representing data semigraphi-
cally, one of the most famous of which is the
stem and leaf diagram.

MATHEMATICAL ASPECTS
Severalwaysof representing abox plotexist.
We will present it in the following way:

The central rectangle represents 50% of the
observations. It is known as the interquar-
tile range.Thelower limitof thisrectangle is
fixed at the first quartile, and the upper limit
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at the thirdquartile.Thepositionofthemedi-
an is indicated by a line through the rectan-
gle.
A line segment (a “whisker”) connects each
quartile to the corresponding extreme (min-
imum or maximum, unless outliers are
present; see below) value on each side of
the rectangle.
In this representation, outliers are treated
in a special way. When the observations are
very spread out we define two values called
the “internal limits” or “whiskers” by:

int.lim.1 = 1st quartile

− (1.5 · interquartile range)

int.lim.2 = 3rd quartile

+ (1.5 · interquartile range)

For each internal limit, we then select the
data value that is closest to the limit but still
inside the interval between the internal lim-
its. These two data values are known as adja-
cent points. Now, when we construct the box
plot, the line segments connect the quartiles
to the adjacent points. Observations outside
of the interval between the internal limits
(outliers) are represented by stars in the plot.

EXAMPLE
The following example presents the revenue
indexes per inhabitant for each Swiss canton
(Swiss revenue= 100) in 1993:

Canton Index Canton Index

Zurich 125.7 Schaffhouse 99.2

Bern 86.2 Appenzell
Rh.-Ext.

84.2

Luzern 87.9 Appenzell
Rh.-Int.

72.6

Uri 88.2 Saint-Gall 89.3

Canton Index Canton Index

Schwyz 94.5 Grisons 92.4

Obwald 80.3 Argovie 98.0

Nidwald 108.9 Thurgovie 87.4

Glaris 101.4 Tessin 87.4

Zoug 170.2 Vaud 97.4

Fribourg 90.9 Valais 80.5

Soleure 88.3 Neuchâtel 87.3

Bâle-City 124.2 Genève 116.0

Bâle-
Campaign

105.1 Jura 75.1

Source: Federal Office for Statistics (1993)

We now calculate the different quartiles:
The box plot gives us information on the cen-
tral tendency, on the dispersion of the distri-
bution and the degree of symmetry:
• Central tendency:

The median equals 90.10.
• Dispersion:

The interquartile interval indicates the
interval that contains50%of theobserva-
tions, and these observations are the clos-
est to the center of distribution.
In our example, we have:
– 50% of the cantons of Switzerland

have an index that falls in the interval
[102.33−87.03] (withawidthof15.3).

The limits of the box plot are the following:

lim.int.1 = 1st quartile

− (1.5 · interquartile interval)

= 87.03− 1.5 · 15.3 = 64.08 .

lim.int.2 = 3rd quartile

+ (1.5 · interquartile interval)

= 102.33+ 1.5 · 15.3 = 125.28 .

The values bigger then 125.28 are there-
fore outliers. There are two of them: 125.7
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(Zurich) and 170.2 (Zoug). The box plot is
then as follows:

FURTHER READING
� Graphical representation
� Exploratory data analysis

� Measure of location
� Measure of central tendency

REFERENCES
Tukey, J.W.: Some graphical and semigraph-

ical displays. In: Bancroft, T.A. (ed.) Sta-
tistical Papers in Honor of George W.
Snedecor. Iowa State University Press,
Ames, IA , pp. 293–316 (1972)
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Categorical Data
Categorical data consists of counts of obser-
vations falling into specified classes.
We can distinguish between various types of
categorical data:
• Binary, characterizing the presence or

absence of a property;
• Unordered multicategorical (also called

“nominal”);
• Ordered multicategorical (also called

“ordinal”);
• Whole numbers.
We represent the categorical data in the form
of a contingency table.

DOMAINS AND LIMITATIONS
Variables that are essentially continuous can
also be presented as categorical variables.
One example is “age”, which is a continuous
variable, but ages can still be grouped into
classes so it can still be presented as categor-
ical data.

EXAMPLES
In a public opinion survey for approving or
disapproving a new law, the votes cast can
be either “yes” or “no”. We can represent the
results in the form of a contingency table:

Yes No

Votes 8546 5455

If we divide up the employees of a business
into professions (and at least three profes-
sions are presented), the data we obtain is
unordered multicategorical data (there is no
natural ordering of the professions).
In contrast, if we are interested in the number
of people that have achieved various levels
of education, there will probably be a nat-
ural ordering of the categories: “primary,
secondary” and then university. Such data
would therefore be an example of ordered
multicategorical data.
Finally, if we group employees into cate-
gories based on the size of each employee’s
family (that is, the number of family mem-
bers), we obtain categorical data where the
categories are whole numbers.

FURTHER READING
� Analysis of categorical data

� Binary data

� Category

� Data

� Dichotomous variable

� Qualitative categorical variable

� Random variable

REFERENCES
See analysis of categorical data.
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Category

A category represents a set of people or
objects that have a common characteris-
tic.
If we want to study the people in a popu-
lation, we can sort them into “natural” cat-
egories, by gender (men and women) for
example, or into categories defined by other
criteria, such as vocation (managers, secre-
taries, farmers . . . ).

FURTHER READING
� Binary data
� Categorical data
� Dichotomous variable
� Population
� Random variable
� Variable

Cauchy Distribution

A random variable X follows a Cauchy
distribution if its density function is of the
form:

f (x) = 1

πθ
·
[

1+
(

x− α

θ

)2
]−1

,

θ > 0 .

The parametersα and θ are the location and
dispersion parameters, respectively.
The Cauchy distribution is symmetric about
x = α, which represents the median. The
first quartile and the third quartile are given
by α ± θ .
The Cauchy distribution is a continuous
probability distribution.

Cauchy distribution, θ = 1, α = 0

MATHEMATICAL ASPECTS
The expected value E[X] and the variance
Var(X) do not exist.
If α = 0 and θ = 1, the Cauchy distribution
is identical to the Student distribution with
one degree of freedom.

DOMAINS AND LIMITATIONS
Its importance in physics is mainly due to the
fact that it is the solution to the differential
equation describing force resonance.

FURTHER READING
� Continuous probability distribution
� Student distribution

REFERENCES
Cauchy, A.L.: Sur les résultats moyens

d’observations de même nature, et sur les
résultats les plus probables. C.R. Acad.
Sci. 37, 198–206 (1853)

Causal Epidemiology

Theaim ofcausalepidemiology is to identify
how cause is related to effect with regard to
human health.
In other words, it is the study of causes of ill-
ness, and involves attempting to find statis-
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tical evidence for a causal relationship or an
association between the illnessand the factor
proposed to cause the illness.

HISTORY
See epidemiology.

MATHEMATICAL ASPECTS
See cause and effect in epidemiology,
odds and odds ratio, relative risk, attri-
butable risk, avoidable risk, incidence
rate, prevalence rate.

DOMAINS AND LIMITATIONS
Studies of the relationship between tobac-
co smoking and the development of lungial
cancers and the relationship between HIV
and the AIDS are examples of causal epide-
miology. Research into a causal relation is
often very complex, requiring many stud-
ies and the incorporation and combination of
various data sets from biological and animal
experiments, to clinical trials.
While causes cannot always be identified
precisely, a knowledge of the risk factors
associated with an illness and therefore the
groups of people at risk allows us to inter-
vene with preventative measures that could
preserve health.

EXAMPLES
As an example, we can investigate the
relationship between smoking and the
development of lung cancer. Consider
a study of 2000 subjects: 1000 smokers and
1000 nonsmokers. The age distributions
and male/female proportions are identical
in both groups. Let us analyze a summary of
data obtained over many years. The results
are presented in the following table:

Smokers Non-
smokers

Number of cases of
lung cancer (/1000)

50 10

Proportion of
people in this group
that contracted
lung cancer

5% 1%

If we compare the proportion of smokers that
contract lungcancer to theproportionofnon-
smokers that do, we get 5%/1% = 5, so we
can conclude that the risk of developing lung
cancer is five times higher in smokers than
in nonsmokers. We generally also evaluate
the significance of this result computing p-
value. Suppose that thechi-square test gave
p < 0.001. It normally accepted that if the
p-value is smaller then 0.05, then the results
obtained are statistically significant.
Suppose that we perform the same study, but
the dimension of each group (smokers and
nonsmokers) is 100 instead of 1000, and we
observe the same proportions of people that
contract lung cancer:

Smokers Non-
smokers

Number of cases of
lung cancer (/100)

5 1

Proportion of
individuals in this
group that
contracted lungs
cancer

5% 1%

If we perform the same statistical test, the
p-value is found to be 0.212. Since this is
greater than 0.05, we can cannot draw any
solid conclud that there isabout theexistence
of a significant statistical relation between
smoking and lung cancer. This illustrates
that, in order to have a statistically signifi-
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cant level of difference between the results
for different populations obtained from epi-
demiological studies, it is usually necessary
to study large samples.

FURTHER READING
See epidemiology.

REFERENCES
See epidemiology.

Cause and Effect
in Epidemiology

In epidemiology, the “cause” is an agent
(microbial germs, polluted water, smoking,
etc.) that modifies health, and the “effect”
describes the the way that the health is
changed by the agent. The agent is often
potentially pathogenic (in which case it is
known as a “risk factor”).
The effect is therefore effectively a risk com-
parison. We can define two different types of
risk in this context:
• The absolute effect of a cause expresses

the increase in the risk or the additional
number of cases of illness that result or
could result from exposure to thiscause. It
is measured by the attributable risk and
its derivatives.

• The relative effect of a cause expresses
thestrengthof theassociationbetweenthe
causal agent and the illness.

A cause that produces an effect by itself is
called sufficient.

HISTORY
The terms “cause” and “effect” were defined
at thebirth ofepidemiology,which occurred
in the seventeenth century.

MATHEMATICAL ASPECTS
Formally, we have:

Absolute effect = Risk for exposed

− risk for unexposed .

The absolute effect expresses the excess risk
or cases of illness that result (or could result)
from exposure to the cause.

Relative effect = risk for exposed

risk for unexposed
.

The relative effect expresses the strength of
the association between the illness and the
cause. It is measured using the relative risk
and the odds ratio.

DOMAINS AND LIMITATIONS
Strictly speaking, the strength of an asso-
ciation between a particular factor and an ill-
ness is not enough to establish a causal rela-
tionship between them. We also need to con-
sider:
• The “temporality criterion” (we must be

sure that the supposed cause precedes the
effect), and;

• Fundamental and experimental research
elements that allow us to be sure that
the supposed causal factor is not actual-
ly a “confusion factor” (which is a factor
that is not causal, but is statistically relat-
ed to the unidentified real causal factor).

Two types of causality correspond to these
relativeandabsoluteeffects.Relativecausal-
ity is independent of the clinical or public
health impact of the effect; it generally does
not allow us to prejudge the clinical or pub-
lic health impact of the associated effect. It
can be strong when the risk of being exposed
is very high or when the risk of being unex-
posed is very low.
Absolute causality expresses the clinical or
public health impact of the associated effect,
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and therefore enables us to answer the ques-
tion: if we had suppressed the cause, what
level of impact on the population (in terms of
cases of illness) would have been avoided? If
thepatienthadstoppedsmoking,whatwould
the reduction in his risk of developing lung
cancer or having a myocardial infarction be?
A risk factor associated with a high relative
effect, but which concerns only a small num-
ber of individuals, will cause fewer illnesses
and deaths then a risk factor that is associated
with a smaller relative effect but where many
more individuals are exposed. It is there-
fore clear that the importance of a causal
relation varies depending on whether we
are considering relative or absolute causal-
ity.
We should also make an important point here
about causal interactions. There can be many
causes for the same illness. While all of these
causes contribute to the same result, they can
also interact. The main consequence of this
causal interaction is that we cannot prejudge
the effect of simultaneous exposure to caus-
es A and B (denoted A+B) based on what we
knowabout theeffectofexposure toonlyAor
onlyB. Incontrast to thecasefor independent
causes, we must estimate the joint effect, not
restrict ourselves with the isolated analyses
of the interacting causes.

EXAMPLES
The relative effect and the absolute effect are
subject to different interpretations, as the fol-
lowing example shows.
Suppose we have two populations P1 and P2,
each comprising 100000 individuals. Inpop-
ulation P1, the risk of contracting a given ill-
ness is 0.2% for the exposed and 0.1% for the
unexposed. In population P2, the risk for the
exposed is 20% and that for the unexposed
is 10%, as shown in the following table:

Popu-
lation

Risk for the
exposed (%)

Risk for the
unexposed (%)

A B

P1 0.2 0.1

P2 20 10

Popu-
lation

Relative
effect

Absolute
effect (%)

Avoidable
cases

A
B

C = A − B C×100000

P1 2.0 0.1 100

P2 2.0 10 10000

The relative effect is the same for popula-
tions P1 and P2 (the ratio of the risk for the
exposed to the risk for the unexposed is 2),
but the impact of the same prevention mea-
sures would be very different in the two pop-
ulations, because the absolute effect is ten
times more important in P2: the number of
potentially avoidable cases is therefore 100
in population P1 and 10000 in population P2.
Now consider the incidence rate of lung
cancer in a population of individuals who
smoke 35 or more cigarettes per day:
3.15/1000/year. While this rate may seem
small, it masks the fact that there is a strong
relative effect (the risk is 45 times bigger
for smokers then for nonsmokers) due to
the fact that lung cancer is very rare in non-
smokers (the incidence rate for nonsmokers
is 0.07/1000/year).

FURTHER READING
� Attributable risk

� Avoidable risk

� Incidence rate

� Odds and odds ratio

� Prevalence rate

� Relative risk
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Census
A census is an operation that consists of
observing all of the individuals in a popu-
lation. The word census can refer to a pop-
ulation census, in other words a population
count, but it can also refer to inquiries (called
“exhaustive” inquiries) where we retrieve
information about a population by observ-
ing all of the individuals in the population.
Clearly, such inquiries will be very expen-
sive for very large populations. That is why
exhaustive inquiries are rarely performed;
sampling, which consists of observing of
only a portion of the population (called the
sample), is usually preferred instead.

HISTORY
Censuses originated with the great civi-
lizations of antiquity, when the large areas
of empires and complexity associated with
governing them required knowledge of the
populations involved.
Among the most ancient civilizations, it
is known that censuses were performed
in Sumeria (between 5000 and 2000 BC),
where the people involved reported lists of
men and goods on clay tables in cuneiform
characters.

Censuses were also completed in Meso-
potamia (about 3000 BC), as well as in
ancient Egypt from the first dynasty on-
wards; these censuses were performed due
to military and fiscalobjectives.Under Ama-
sis II, everybody had to (at the risk of death)
declare their profession and source(s) of rev-
enue.
The situation in Israel was more complex:
censuses were sometimes compulsary and
sometimes forbidden due to the Old Testa-
ment. This influence on Christian civiliza-
tion lasted quite some time; in the Middle
Ages, St. Augustin and St. Ambroise were
still condemning censuses.
In China, censuses have been performed
since at least 200 BC, in different forms
and for different purposes. Hecht, J. (1987)
reported the main censuses:
1. Han Dynasty (200 years BC to 200 years

AD):populationcensuseswere related to
the system of conscription.

2. Three Kingdoms Period to Five Dynas-
ties (221–959 AD): related to the system
of territorial distribution.

3. Song and Yuan Dynasties (960–1368
AD): censuses were performed for fiscal
purposes.

4. Ming Dynasty (1368–1644 AD): “yellow
registers” were established for ten-year
censuses. They listed the name, profes-
sion, gender and age of every person.

5. Qing Dynasty (since 1644 AD): censuses
were performed in order to survey popu-
lation migration.

In Japan during the Middle Age, different
types of census have been used.The first cen-
sus was probably performed under the rule
of Emperor Sujin (86 BC).
Finally, in India, a political and economic
science treatise entitled “Arthasastra” (profit
treaty) gives some information about the use
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of an extremely detailed record. This treatise
was written by Kautilya, Prime Minister in
the reign ofChandraguptaMaurya (313–289
BC).
Another very important civilization, the
Incans, also used censuses. They used
a statistics system called “quipos”. Each
quipo was both an instrument and a reg-
istry of information. Formed from a series of
cords, the colors, combinations and knots on
the cords had precise meanings. The quipos
were passed to specially initiated guards that
gathered together all of these statistics.
In Europe, the ancient Greeks and Romans
also practiced censuses. Aristotle reported
that the Greeks donated a measure of wheat
per birth and a measure of barley per death to
thegoddessAthéna. InRome, thefirstcensus
was performed at the behest of King Servius
Tullius (578–534 BC) in order to monitor
revenues, and consequently raise taxes.
Later, depending on the country, census-
es were practiced with different frequencies
and on different scales.
In 786, Charlemagne ordered a count of all
of his subjects over twelve years old; pop-
ulation counts were also initiated in Italy in
the twelfth century; many cities performed
censuses of their inhabitants in the fifteenth
century, including Nuremberg (in 1449) and
Strasbourg (in 1470). In the sixteenth centu-
ry, France initiated marital status registers.
The seventeenth century saw the develop-
ment of three different schools of thought:
a German school associated with descrip-
tive statistics, a French school associated
with census ideology and methodology, and
an English school that led to modern statis-
tics.
In the history of censuses in Europe, there
is a country that occupies a special place. In
1665, Sweden initiated registers of parish-

ioners that were maintained by pastors; in
1668,adecreemadeitobligatorytobecount-
ed in theseregisters,and insteadofbeingreli-
gious, the registers became administrative.
1736 saw the appearance of another decree,
stating that the governor of each province
had to report any changes in the population
of the province to parliament. Swedish pop-
ulation statistics were officially recognized
on the 3rd of February 1748 due to creation
of the“Tabellverket” (administrative tables).
The first summary for all Swedish provinces,
realized in 1749, can be considered to be
the first proper census in Europe, and the
11th of November 1756 marked the creation
of the “Tabellkommissionen,” the first offi-
cial Division of Statistics. Since 1762, these
tables of figures have been maintained by the
Academy of Sciences.
Initially, the Swedish censuses were orga-
nized annually (1749–1751), and then every
threeyears (1754–1772),but since1775 they
have been conducted every five years.
At the end of the eighteenth century an offi-
cial institute for censuses was created in
France (in 1791). In 1787 the principle of
census has been registered in the Constitu-
tional Charter of the USA (C. C. USA).
See also official statistics.

FURTHER READING
� Data collection
� Demography
� Official statistics
� Population
� Sample
� Survey

REFERENCES
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la Révolution. Pour une histoire de la
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statistique, tome 1, pp. 21–82 . Econo-
mica/INSEE (1978)

Central Limit Theorem

The central limit theorem is a fundamental
theorem of statistics. In its simplest form, it
prescribes that the sum of a sufficiently large
number of independent identically distribut-
ed random variables approximately follows
a normal distribution.

HISTORY
The central limit theorem was first estab-
lished within the framework of binomi-
al distribution by Moivre, Abraham de
(1733). Laplace, Pierre Simon de (1810)
formulated the proof of the theorem.
Poisson, Siméon Denis (1824) also worked
on this theorem, and Chebyshev, Pafnu-
tii Lvovich (1890–1891) gave a rigorous
demonstration of it in the middle of the nine-
teenth century.
At the beginning of the twentieth centu-
ry, the Russian mathematician Liapounov,
Aleksandr Mikhailovich (1901) created the
generally recognized form of thecentral lim-
it theorem by introducing its characteris-
tic functions. Markov, Andrei Andreevich
(1908) also worked on it and was the first to
generalize the theorem to the case of inde-
pendent variables.
According to Le Cam, L. (1986), the qualifi-
er “central” was given to it by George Polyà
(1920) due to the essential role that it plays
in probability theory.

MATHEMATICAL ASPECTS
Let X1, X2, . . . , Xn be n independent ran-
dom variables that are identically distribut-

ed (with any distribution) with a meanμ and
a finite variance σ 2.
We define the sum Sn = X1+X2+ . . .+Xn

and we establish the ratio:

Sn − n · μ
σ · √n

,

where n·μandσ ·√n represent the mean and
the standard deviation of Sn, respectively.
The central limit theorem establishes that the
distribution of this ratio tends to the standard
normal distribution when n tends to infinity.
This means that:

P

(
Sn − n · μ

σ
√

n
≤ x

)
−→

n→+∞�(x)

where �(x) is the distribution func-
tion of the standard normal distribution,
expressed by:

�(x) =
∫ x

−∞
1√
2π

exp

(
−x2

2

)
dx ,

−∞ < x <∞ .

DOMAINS AND LIMITATIONS
The central limit theorem provides a simple
method of approximately calculating proba-
bilities related to the sums of random vari-
ables.
Besides its interest in relation to the sam-
pling theorem, where the sums and the
meansplayan important role, thecentral lim-
it theorem is used to approximate normal
distributions derived from summing iden-
tical distributions. We can for example, with
the help of the central limit theorem, use
the normal distribution to approximate the
binomial distribution, the Poisson distri-
bution, the gamma distribution, the chi-
square distribution, the Student distri-
bution, the hypergeometric distribution,
the Fisher distribution and the lognormal
distribution.
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EXAMPLES
Ina largebatchofelectrical items, theproba-
bility of choosing a defective item equals
p = 1

8 . What is the probability that 4 defec-
tive items are chosen when 25 items are
selected?
Let X the dichotomous variable be the
result of a trial:

X =
{

1 if the selected item is defective;
0 if it is not.

The random variable X follows a Bernoul-
li distribution with parameter p. Conse-
quently, the sum Sn = X1+X2+. . .+Xn fol-
lows a binomial distribution with a mean,
np and a variance np(1−p), which, follow-
ing the central limit theorem, can be approxi-
matedbyanormal distributionwithamean
μ = np and a variance σ 2 = np(1− p).
We evaluate these values:

μ = n · p = 25 · 1
8 = 3.125

σ 2 = n · p(1− p) = 25 · 1
8 ·

(
1− 1

8

)

= 2.734 .

We then calculate P(Sn > 4) in two different
ways:
1. With the binomial distribution:

From the binomial table, the probability
of P(Sn ≤ 4) = 0.8047. The probability
of P (Sn > 4) is then:

P(Sn > 4) = 1− P(Sn ≤ 4) = 0.1953 ,

2. With the normal approximation (obtained
from the central limit theorem):
In order to account for the discrete char-
acter of the random variable Sn, we must
make a continuity correction; that is, we
calculate the probability that Sn is greater
then 4+ 1

2 = 4.5

We have:

z = Sn − n · p√
n · p (1− p)

= 4.5− 3.125

1.654
= 0.832 .

From the normal table, we obtain the
probability:

P(Z > z) = P(Z > 0.832)

= 1− P(Z ≤ 0.832)

= 1− 0.7967 = 0.2033 .

FURTHER READING
� Binomial distribution
� Chi-square distribution
� Convergence
� Convergence theorem
� Fisher distribution
� Gamma distribution
� Hypergeometric distribution
� Law of large numbers
� Lognormal distribution
� Normal distribution
� Poisson distribution
� Probability
� Probability distribution
� Student distribution
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Chebyshev, Pafnutii Lvovich

Chhebyshev, Pafnutii Lvovich (1821–1894)
began studying at Moscow University in
1837, where he was influenced by Zernov,
Nikolai Efimovich (the first Russian to get
a doctorate in mathematical sciences) and
Brashman, Nikolai Dmitrievich. After gain-
ing his degree he could not find any teaching
work in Moscow, so he went to St. Peters-
bourg where he organized conferences on
algebra and probability theory. In 1859, he
took the probability course given by Buni-

akovsky, Viktor Yakovlevich at St. Peters-
bourg University.
His name lives on through the Chebyshev
inequality (also known as the Bienaymé–
Chebyshev inequality), which he proved.
This was published in French just after Bien-
aymé, Irénée-Jules had an article published
on the same topic in the Journal de Math-
ématiques Pures et Appliquées (also called
the Journal of Liouville).
He initiated rigorous work into establishing
a general version of the central limit theo-
rem and is considered to be the founder of
the mathematical school of St. Petersbourg.

Some principal works and articles of
Chebyshev, Pafnutii Lvovich:

1845 An Essay on Elementary Analysis of
the Theory of Probabilities (thesis)
Crelle’s Journal.

1867 Preuve de l’inégalité de Tchebychev.
J. Math. Pure. Appl., 12, 177–184.

FURTHER READING
� Central limit theorem

REFERENCES
Heyde, C.E., Seneta, E.: I.J. Bienaymé.

Statistical Theory Anticipated. Springer,
Berlin Heidelberg New York (1977)

Chebyshev’s Inequality
See law of large numbers.

Chi-Square Distance
Consider a frequency table with n rows
and p columns, it is possible to calculate row
profiles and column profiles. Let us then plot
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the n or p points from each profile. We can
define the distances between these points.
The Euclidean distance between the compo-
nents of the profiles, on which a weighting
is defined (each term has a weight that is the
inverse of its frequency), is called the chi-
square distance. The name of the distance is
derived from the fact that the mathematical
expression defining the distance is identical
to that encountered in the elaboration of the
chi square goodness of fit test.

MATHEMATICAL ASPECTS
Let (fij), be the frequency of the ith row and
jthcolumninafrequencytablewithn rowsan
p columns. The chi-square distance between
two rows i and i′ is given by the formula:

d(i, i′) =
√√√√

p∑
j=1

(
fij
fi.
− fi′j

fi′.

)2

· 1

f.j
,

where

fi. is the sum of the components of the ith
row;

f.j is the sum of the components of the jth
column;

[
fij
fi.

] is the ith row profile for j= 1, 2, . . . , p.

Likewise, the distance between two co-
lumns j and j′ is given by:

d(j, j′) =
√√√√

n∑
i=1

(
fij
f.j
− fij′

f.j′

)2

· 1

fi.
,

where [ fij
f.j

] is the jth column profile for j =
1, . . . , n.

DOMAINS AND LIMITATIONS
The chi-square distance incorporates
a weight that is inversely proportional to
the total of each row (or column), which

increases the importance of small devia-
tions in the rows (or columns) which have
a small sum with respect to those with more
important sum package.
The chi-square distance has the property of
distributional equivalence, meaning that it
ensures that the distances between rows and
columns are invariant when two columns (or
two rows) with identical profiles are aggre-
gated.

EXAMPLES
Consider a contingency table charting how
satisfied employees working for three differ-
entbusinessesare.Letusestablishadistance
table using the chi-square distance.
Values for thestudied variableX canfall into
one of three categories:
• X1: high satisfaction;
• X2: medium satisfaction;
• X3: low satisfaction.
Theobservationscollected from samplesof
individuals from the threebusinessesaregiv-
en below:

Busi-
ness 1

Busi-
ness 2

Busi-
ness 3

Total

X1 20 55 30 105

X2 18 40 15 73

X3 12 5 5 22

Total 50 100 50 200

The relative frequency table is obtained by
dividing all of the elements of the table by
200, the total number of observations:

Busi-
ness 1

Busi-
ness 2

Busi-
ness 3

Total

X1 0.1 0.275 0.15 0.525

X2 0.09 0.2 0.075 0.365

X3 0.06 0.025 0.025 0.11

Total 0.25 0.5 0.25 1
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We can calculate the difference in employ-
ee satisfaction between the the 3 enterprises.
The column profile matrix is given below:

Busi-
ness 1

Busi-
ness 2

Busi-
ness 3

Total

X1 0.4 0.55 0.6 1.55

X2 0.36 0.4 0.3 1.06

X3 0.24 0.05 0.1 0.39

Total 1 1 1 3

This allows us to calculate the distances
between the different columns:

d2(1, 2) = 1

0.525
· (0.4− 0.55)2

+ 1

0.365
· (0.36− 0.4)2

+ 1

0.11
· (0.24− 0.05)2

= 0.375423

d(1, 2) = 0.613

We can calculate d(1, 3) and d(2, 3) in a sim-
ilar way. The distances obtained are summa-
rized in the following distance table:

Busi-
ness 1

Busi-
ness 2

Busi-
ness 3

Business 1 0 0.613 0.514

Business 2 0.613 0 0.234

Business 3 0.514 0.234 0

We can also calculate the distances between
the rows, in other words the difference in
employee satisfaction; to do this we need the
line profile table:

Busi-
ness 1

Busi-
ness 2

Busi-
ness 3

Total

X1 0.19 0.524 0.286 1

X2 0.246 0.548 0.206 1

X3 0.546 0.227 0.227 1

Total 0.982 1.299 0.719 3

This allows us to calculate the distances
between the different rows:

d2(1, 2) = 1

0.25
· (0.19− 0.246)2

+ 1

0.5
· (0.524− 0.548)2

+ 1

0.25
· (0.286− 0.206)2

= 0.039296

d(1, 2) = 0.198

Wecan calculated(1, 3)and d(2, 3) ina simi-
lar way. The differences between the degrees
of employee satisfaction are finally summa-
rized in the following distance table:

X1 X2 X3

X1 0 0.198 0.835

X2 0.198 0 0.754

X3 0.835 0.754 0

FURTHER READING
� Contingency table
� Distance
� Distance table
� Frequency

Chi-square Distribution

A random variable X follows a chi-square
distribution with n degrees of freedom if its
density function is:

f (x) = x
n
2−1 exp

(− x
2

)

2
n
2 


( n
2

) , x ≥ 0 ,

where
 is the gamma function (see Gamma
distribution).
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χ2 distribution, ν = 12

The chi-square distribution is a continuous
probability distribution.

HISTORY
According to Sheynin (1977), the chi-square
distribution was discovered by Ernst Karl
Abbe in 1863. Maxwell obtained it for
three degrees of freedom a few years before
(1860),andBoltzmandiscoveredthegeneral
case in 1881.
However, according to Lancaster (1966),
Bienaymé obtained the chi-square distri-
bution in1838asthe limitof thediscreteran-
dom variable

k∑
i=1

(ni − npi)
2

npi
,

if (N1, N2, . . . , Nk) follow a joint multi-
nomial distribution of parameters n, p1,
p2, . . . , pk.
Ellis demonstrated in 1844 that the sum of
k random variables distributed according
to a chi-square distribution with two degrees
of freedom follows a chi-square distribution
with 2k degrees of freedom. The general
result was demonstrated in 1852 by Bien-
aymé.
The works of Pearson, Karl are very impor-
tant in this field. In 1900 he used the chi-
square distribution to approximate the chi-
square statistic used in different tests based
on contingency tables.

MATHEMATICAL ASPECTS
The chi-square distribution appears in the
theory of random variables distributed
according to a normal distribution. In this,
it is the distribution of the sum of squares of
normal, centered and reduced random vari-
ables (with a mean equal to 0 and a variance
equal to 1).
Consider Z1, Z2, . . . , Zn, n independent,
standard normal random variables. Their
sum of squares:

X = Z2
1 + Z2

2 + . . .+ Z2
n =

n∑
i=1

Z2
i

is a random variable distributed according to
a chi-square distribution with n degrees of
freedom.
The expected value of the chi-square distri-
bution is given by:

E[X] = n .

The variance is equal to:

Var(X) = 2n .

Thechi-squaredistribution is related to other
continuous probability distributions:
• The chi-square distribution is a particular

case of the gamma distribution.
• If two random variables X1 and X2 fol-

lowachi-squaredistributionwith, respec-
tively, n1 and n2 degrees of freedom,
then the random variable

Y = X1/n1

X2/n2

followsaFisher distributionwith n1 and
n2 degrees of freedom.

• When the number of degrees of free-
dom n tends towards infinity, the chi-
square distribution tends (relatively slow-
ly) towards a normal distribution.
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DOMAINS AND LIMITATIONS
The chi-square distribution is used in many
approaches to hypothesis testing, the most
important being the goodness of fit test
which involves comparing the observed fre-
quenciesandthehypothetical frequenciesof
specific classes.
It is also used for comparisons between the
observedvarianceandthehypotheticalvari-
ance of normally distributed samples, and to
test the independence of two variables.

FURTHER READING
� Chi-square goodness of fit test

� Chi-square table

� Chi-square test

� Continuous probability distribution

� Fisher distribution

� Gamma distribution

� Normal distribution

REFERENCES
Lancaster, H.O.: Forerunners of the Pear-

son chi-square. Aust. J. Stat. 8, 117–126
(1966)

Pearson, K.: On the criterion, that a given
system of deviations from the probable in
the case of a correlated system of vari-
ables is such that it can be reasonably sup-
posed to have arisen from random sam-
pling. In: Karl Pearson’s Early Statisti-
cal Papers. Cambridge University Press,
pp. 339–357. First published in 1900 in
Philos. Mag. (5th Ser) 50, 157–175 (1948)

Sheynin, O.B.: On the history of some statis-
tical laws of distribution. In: Kendall, M.,
Plackett, R.L. (eds.) Studies in the History
of Statistics and Probability, vol. II. Grif-
fin, London (1977)

Chi-square
Goodness of Fit Test

The chi-square goodness of fit test is, along
with the Kolmogorov–Smirnov test, one
of the most commonly used goodness of fit
tests.
This test aims to determine whether it is
possible to approximate an observed distri-
bution by a particular probability distri-
bution (normal distribution, Poisson
distribution, etc).

HISTORY
The chi-square goodness of fit test is the old-
est and most well-known of the goodness
of fit tests. It was first presented in 1900 by
Pearson, Karl.

MATHEMATICAL ASPECTS
LetX1, . . . , Xn beasampleofnobservations.
The steps used to perform the chi-square
goodness of fit test are then as follows:
1. State thehypothesis.The null hypothesis

will take the following form:

H0 : F = F0 ,

where F0 is the presumed distribution
function of the distribution.

2. Distribute the observations in k disjoint
classes:

[ai−1, ai] .

We denote the number of observations
contained in the ith class, i = 1, . . . , k,
by ni.

3. Calculate the theoretical probabilities for
every class on the base of the presumed
distribution function F0:

pi = F0(ai)− F0(ai−1) , i = 1, . . . , k .
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4. Obtain the expected frequencies for every
class

ei = n · pi , i = 1, . . . , k ,

where n is the size of the sample.
5. Calculate the χ2 (chi-square) statistic:

χ2 =
k∑

i=1

(ni − ei)
2

ei
.

If H0 is true, the χ2 statistic follows a chi-
square distribution with v degrees of
freedom, where:

v =
(

k − 1− number of estimated
parameters

)
.

For example, when testing the goodness
of fit to a normal distribution, the num-
ber of degrees of freedom equals:
• k − 1 if the mean μ and the stan-

dard deviation σ of the population
are known;

• k−2ifoneoutofμorσ isunknownand
will be estimated in order to proceed
with the test;

• k − 3 if both parameters μ and σ are
unknown and both are estimated from
the corresponding values of the sam-
ple.

6. Reject H0 if the deviation between the
observed and estimated frequencies is
big; that is:

if χ2 > χ2
v,α ,

where χ2
v,α is the value given in the chi-

square table for a particular significance
level α.

DOMAINS AND LIMITATIONS
To apply the chi-square goodness offit test, it
is important that n is big enough and that the

estimated frequencies, ei, are not too small.
We normally state that the estimated fre-
quencies must be greater then 5, except for
extreme classes, where they can be smaller
then 5 but greater then 1. If this constraint is
not satisfied, we must regroup the classes in
order to satisfy this rule.

EXAMPLES
Goodness of Fit to the Binomial
Distribution
We throw a coin four times and count the
number of times that “heads” appears.
This experiment is performed 160 times.
The observed frequencies are as follows:

Number of “heads” Number of
experiments

xi (ni )

0 17

1 52

2 54

3 31

4 6

Total 160

1. If theexperiment wasperformed correct-
ly and the coin is not forged, the distri-
bution of the number of “heads” obtained
should follow the binomial distribution.
We then state a null hypothesis that the
observed distribution can be approximat-
ed by the binomial distribution, and we
will proceed with a goodness of fit test in
order to determine whether this hypoth-
esis can be accepted or not.

2. In this example, the different number of
“heads” that can be obtained per experi-
ment (0, 1, 2, 3 and 4) are each considered
to be a class.
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3. The random variable X (number of
“heads” obtained after four throws of
a coin) follows a binomial distribution if

P(X = x) = Cx
n · px · qn−x ,

where:

n is the number of independent trials=
4;

p is the probability of a success
(“heads”)= 0.5;

q is the probability of a failure (“tails”)
= 0.5;

Cx
n is the number of combinations of

x objects from n.

We then have the following theoretical
probabilities for four throws:

P(X = 0) = 1
16

P(X = 1) = 4
16

P(X = 2) = 6
16

P(X = 3) = 4
16

P(X = 4) = 1
16

4. After the experiment has been performed
160 times, the expected number of heads
for each possible value of X is given by:

ei = 160 · P(X = xi) .

We obtain the following table:

Number of
“heads” xi

Observed
frequency
(ni )

Expected
frequency (ei )

0 17 10

1 52 40

2 54 60

3 31 40

4 6 10

Total 160 160

5. The χ2 (chi-square) statistic is then:

χ2 =
k∑

i=1

(ni − ei)
2

ei
,

where k is the number of possible values
of X.

χ2 = (17− 10)2

10
+ . . .+ (6− 10)2

10
= 12.725 .

6. Choosingasignificance levelαof5%,we
find that the value of χ2

v,α for k − 1 = 4
degrees of freedom is:

χ2
4,0.05 = 9.488 .

Since the calculated value of χ2 is greater
than the value obtained from the table,
we reject the null hypothesis and con-
clude that the binomial distribution does
not give a good approximation to our
observed distribution. We can then con-
clude that the coins were probably forged,
or that they were not correctly thrown.

Goodness of Fit to the Normal Distribution
The diameters of cables produced by a fac-
tory were studied.
A frequency table of the observed distri-
bution of diameters is given below:

Cable diameter Observed frequency

(in mm) ni

19.70–19.80 5

19.80–19.90 12

19.90–20.00 35

20.00–20.10 42

20.10–20.20 28

20.20–20.30 14

20.30–20.40 4

Total 140
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1. We perform a goodness of fit test for
a normal distribution. The null hypoth-
esis is therefore that the observed distri-
bution can be approximated by a normal
distribution.

2. The previous table shows the observed
diameters divided up into classes.

3. If the random variable X (cable diameter)
follows the normal distribution, the ran-
dom variable

Z = X − μ

σ

follows a standard normal distribution.
The mean μ and the standard devia-
tionσ of thepopulationareunknownand
are estimated using the mean x̄ and the
standard deviation S of the sample:

x̄ =

7∑
i=1

δi · ni

n
= 2806.40

140
= 20.05 ,

S =

√√√√√
7∑

i=1
ni · (δi − x̄)2

n− 1
=

√
2.477

139

= 0.134

where the δi are the centers of the class-
es (in this example, the mean diameter of
a class; for i = 1: δ1 = 19.75) and n is
the total number of observations.
We can then calculate the theoretical
probabilities associated with each class.
The detailed calculations for the first two
classes are:

p1 = P(X ≤ 19.8)

= P(Z ≤ 19.8− x̄

S
)

= P(Z ≤ −1.835)

= 1− P(Z ≤ 1.835)

p2 = P(19.8 ≤ X ≤ 19.9)

= P

(
19.8− x̄

S
≤ Z ≤ 19.9− x̄

S

)

= P(−1.835 ≤ Z ≤ −1.089)

= P(Z ≤ 1.835)− P(Z ≤ 1.089)

These probabilities can be found by con-
sulting the normal table. We get:

p1 = P(X ≤ 19.8) = 0.03325

p2 = P(19.8 ≤ X ≤ 19.9) = 0.10476

p3 = P(19.9 ≤ X ≤ 20.0) = 0.22767

p4 = P(20.0 ≤ X ≤ 20.1) = 0.29083

p5 = P(20.1 ≤ X ≤ 20.2) = 0.21825

p6 = P(20.2 ≤ X ≤ 20.3) = 0.09622

p7 = P(X > 20.3) = 0.02902

4. The expected frequencies for the classes
are then given by:

ei = n · pi ,

which yields the following table:

Cable
diameter
(in mm)

Observed
frequency
ni

Expected
frequency
ei

19.70–19.80 5 4.655

19.80–19.90 12 14.666

19.90–20.00 35 31.874

20.00–20.10 42 40.716

20.10–20.20 28 30.555

20.20–20.30 14 13.471

20.30–20.40 4 4.063

Total 140 140

5. The χ2 (chi-square) statistic is then:

χ2 =
k∑

i=1

(ni − ei)
2

ei
,
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where k = 7 is the number of classes.

χ2 = (5− 4.655)2

4.655

+ (12− 14.666)2

14.666

+ . . .+ (4− 4.063)2

4.063
= 1.0927 .

6. Choosing a significance level α = 5%,
we find that the value of χ2

v,α with k−3 =
7− 3 = 4 degrees of freedom in the chi-
square table is:

χ2
4,0.05 = 9.49 .

Since the value calculated from χ2 is
smaller then the value obtained from the
chi-square table, we do not reject the null
hypothesis and we conclude that the dif-
ferencebetween theobserveddistribution
and the normal distribution is not signif-
icant at a significance level of 5%.

FURTHER READING
� Chi-square distribution
� Chi-square table
� Goodness of fit test
� Hypothesis testing
� Kolmogorov–Smirnov test
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Chi-Square Table
The chi-square table gives the values
obtained from the distribution function
of a random variable that follows a chi-
square distribution.

HISTORY
One of the first chi-square tables was pub-
lished in 1902, by Elderton. It contains
distribution function values that are given
to six decimal places.
In 1922, Pearson, Karl reported a table of
values for the incomplete gamma function,
down to seven decimals.

MATHEMATICAL ASPECTS
Let X be a random variable that follows
a chi-square distribution with v degrees of
freedom. The density function of the ran-
dom variable X is given by:

f (t) = t
v
2−1 exp

(− t
2

)

2
v
2 


( v
2

) , t ≥ 0 ,

where 
 represents the gamma function (see
gamma distribution).
The distribution function of the random
variable X is defined by:

F(x) = P(X ≤ x) =
∫ x

0
f (t) dt .

The chi-square table gives the values of the
distribution function F(x) for different val-
ues of v.
Weoften use thechi-square table in theoppo-
site way, to find the value of x that corre-
sponds to a given probability.
We generally denote as χ2

v,α the value of the
random variable X for which

P(X ≤ χ2
v,α) = 1− α .

Note: the notation χ2 is read “chi-square”.
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EXAMPLES
See Appendix F.
The chi-square table allows us, for a given
number of degrees of freedom v, to deter-
mine:
1. The value of the distribution function

F(x), given x.
2. The value of χ2

v,α , given the probability
P(X ≤ χ2

v,α).

FURTHER READING
� Chi-square distribution
� Chi-square goodness of fit test
� Chi-square test
� Chi-square test of independence
� Statistical table

REFERENCES
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Pearson, K.: Tables of the Incomplete 
-
function. H.M. Stationery Office (Cam-
bridge University Press, Cambridge since
1934), London (1922)

Chi-Square Test
There are a number of chi-square tests, all of
which involve comparing the test results to
thevaluesfromthechi-square distribution.
The most well-known of these tests are intro-
duced below:
• The chi-square test of independence is

used to determine whether two qualita-
tive categorical variables associated with
a sample are independent.

• The chi-square goodness of fit test is
usedtodeterminewhether thedistribution
observed for a sample can be approxi-
mated by a theoretical distribution. We

mightwant to know, for example,whether
the distribution observed for the sam-
ple corresponds to a particular probabi-
lity distribution (normal distribution,
Poisson distribution, etc).

• The chi-square test for an unknown vari-
ance is used when we want to test whether
this variance takes a particular constant
value.

• The chi-square test is used to test for
homogeneity of the variances calculated
for many samples drawn from a normally
distributed population.

HISTORY
In 1937, Bartlett, M.S. proposed a method of
testing the homogeneity of the variance for
many samples drawn from a normally dis-
tributed population.
See also chi-square test of independence
and chi-square goodness of fit test.

MATHEMATICAL ASPECTS
The mathematical aspects of the chi-square
test of independence and those of the chi-
square goodness of fit test are dealt with in
their corresponding entries.
The chi-square test used to check whether
an unknown variance takes a particular con-
stant value is the following:
Let (x1, . . . , xn) be a random sample com-
ing from a normally distributed population
of unknown mean μ and of unknown vari-
ance σ 2.
We have good reason to believe that the vari-
ance of the population equals a presumed
value σ 2

0 . The hypotheses for each case are
described below.

A: Two-sided case:

H0 : σ 2 = σ 2
0

H1 : σ 2 �= σ 2
0
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B: One-sided test:

H0 : σ 2 ≤ σ 2
0

H1 : σ 2 > σ 2
0

C: One-sided test:

H0 : σ 2 ≥ σ 2
0

H1 : σ 2 < σ 2
0

We then determine the statistic of the given
chi-square test using:

χ2 =

n∑
i=1

(xi − x̄)2

σ 2
0

.

This statistic is, under H0, chi-square dis-
tributed with n − 1 degrees of freedom. In
other words, we look for the value of χ2

n−1,α
in the chi-square table, and we then com-
pare that value to the calculated value χ2.
The decision rules depend on the case, and
are as follows.

Case A

If χ2 ≥ χ2
n−1,α1

or if χ2 ≤ χ2
n−1,1−α2

we
reject the null hypothesis H0 for the alter-
native hypothesis H1, where we have split
the significance level α into α1 and α2 such
thatα1+α2 = α. Otherwise we do not reject
the null hypothesis H0.

Case B

If χ2 < χ2
n−1,α we do not reject the null

hypothesis H0. If χ2 ≥ χ2
n−1,α we reject the

nullhypothesisH0for thealternativehypoth-
esis H1.

Case C

If χ2 > χ2
n−1,1−α we do not reject the

null hypothesis H0. If χ2 ≤ χ2
n−1,1−α we

reject the null hypothesis H0 for the alterna-
tive hypothesis H1.
Other chi-square tests are proposed in the
work of Ostle, B. (1963).

DOMAINS AND LIMITATIONS
χ2 (chi-square) statistic must be calculated
using absolute frequencies and not relative
ones.
Note that thechi-square testcanbeunreliable
for small samples, especially when some of
the estimated frequencies are small (< 5).
This issue can often be resolved by group-
ing categories together, if such grouping is
sensible.

EXAMPLES
Consider a batch of items produced by
a machine. They can be divided up into
classes depending on their diameters (in
mm), as in the following table:

Diameter (mm) xi Number of items ni

59.5 2

59.6 6

59.7 7

59.8 15

59.9 17

60.0 25

60.1 15

60.2 7

60.3 3

60.4 1

60.5 2

Total N = 100

We have a random sample drawn from
a normally distributed population where the
mean and variance are not known. The ven-
dor of these items would like the variance σ 2

to be smaller than or equal to 0.05. We test
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the following hypotheses:

null hypothesis H0 : σ 2 ≤ 0.05

alternative hypothesis H1 : σ 2 > 0.05 .

In this case we use the one-tailed hypothesis
test.
We start by calculating the mean for the sam-
ple:

x̄ =
∑11

i=1 ni · xi

N
= 5995

100
= 59.95 .

We can then calculate the χ2 statistics:

χ2 =
∑11

i=1 ni · (xi − x̄)2

σ 2
0

= 2 · (−0.45)2 + . . .+ 2 · (0.55)2

0.05

= 3.97

0.05
= 79.4 .

Using a significance level of α = 5%, we
then find the value of χ2

99,0.05 (= 123.2) in
the chi-square table.
As χ2 = 79.4 < χ2

99,0.05, we do not reject
the null hypothesis, which means that the
vendor should be happy to sell these items
since they are not significantly different in
diameter.

FURTHER READING
� Chi-square distribution
� Chi-square goodness of fit test
� Chi-square table
� Chi-square test of independence
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Chi-square Test
of Independence

The chi-square test of independence aims to
determine whether two variables associated
with a sample are independent or not. The
variables studied are categorical qualitative
variables.
The chi-square independence test is per-
formed using a contingency table.

HISTORY
The first contingency tables were used only
for enumeration. However, encouraged by
the work of Quetelet, Adolphe (1849),
statisticians began to take an interest in the
associations between the variables used in
the tables. For example, Pearson, Karl
(1900)performed fundamentalworkon con-
tingency tables.
Yule, George Udny (1900) proposed
asomewhatdifferentapproachtothestudyof
contingency tables to Pearson’s, which lead
to a disagreement between them. Pearson
also argued with Fisher, Ronald Aylmer
about the number of degrees of freedom to
use in the chi-square test of independence.
Everyone used different numbers until Fish-
er, R.A. (1922) was eventually proved to be
correct.

MATHEMATICAL ASPECTS
Consider two qualitative categorical vari-
ables X and Y. We have a sample contain-
ing n observations of these variables.
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These observations can be presented in
a contingency table.
We denote the observed frequency of the
category iof thevariableX andthecategory j
of the variable Y as nij.

Categories of variable Y

Categories
of

variable X

Y1 . . . Yc Total
X1 n11 . . . n1c n1.

. . . . . . . . . . . . . . .
Xr nr1 . . . nrc nr.

Total n.1 . . . n.c n..

The hypotheses to be tested are:

Null hyp. H0 : the two variables
are independent,

Alternative hyp. H1 : the two variables
are not independent.

Steps Involved in the Test
1. Compute the expected frequencies,

denoted by eij, for each case in the con-
tingency table under the independence
hypothesis:

eij = ni. · n.j

n..
,

ni. =
c∑

k=1

nik and n.j =
r∑

k=1

nkj ,

wherec represents thenumberofcolumns
(or number of categories of variable X in
thecontingency table) andr thenumberof
rows (or the number of categories of vari-
able Y).

2. Calculate the value of the χ2 (chi-square)
statistic, which is really a measure of the
deviation of the observed frequencies nij

from the expected frequencies eij:

χ2 =
c∑

i=1

r∑
j=1

(nij − eij)
2

eij
.

3. Choose the significance levelα to beused
in the test and compare the calculated val-
ue of χ2 with the value obtained from
the chi-square table, χ2

v,α . The number
of degrees of freedom correspond to the
number of cases in the table that can take
arbitrary values; the values taken by the
other cases are imposed on them by the
row and column totals. So, the number of
degrees of freedom is given by:

v = (r − 1)(c− 1) .

4. If thecalculatedχ2 is smaller then theχ2
v,α

from the table, we do not reject the null
hypothesis. The two variables can be con-
sidered to be independent.
However, if the calculated χ2 is greater
then the χ2

v,α from the table, we reject the
null hypothesis for the alternative hypoth-
esis. We can then conclude that the two
variables are not independent.

DOMAINS AND LIMITATIONS
Certain conditions must be fulfilled in order
to be able to apply the chi-square test of inde-
pendence:

1. The sample, which contains n observa-
tions, must be a random sample;

2. Each individual observation can only
appear in one category for each vari-
able. In other words, each individu-
al observation can only appear in one
line and one column of the contingency
table.

Note that the chi-square test of indepen-
dence is not very reliable for small samples,
especially when the estimated frequencies
are small (< 5). To avoid this issue we can
group categories together, but only when this
groups obtained are sensible.
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EXAMPLES
We want to determine whether the propor-
tion of smokers is independent of gender.
The two variables to be studied are categor-
ical and qualitative and contain two cate-
gories each:
• Variable “gender:” M or F;
• Variable “smoking status:” “smokes” or

“does not smoke.”
The hypotheses are then:

H0 : chance of being a smoker is
independent of gender

H1 : chance of being a smoker is not
independent of gender.

The contingency table obtained from
a sample of 100 individuals (n = 100)
is shown below:

Smoking status

“smokes” “does
not
smoke”

Total

Gender M 21 44 65

F 10 25 35

Total 31 69 100

We now denote the observed frequencies as
nij (i = 1, 2, j = 1, 2).
We then estimate all of the frequencies in the
table based on the hypothesis that the two
variables are independent of each other. We
denote these estimated frequencies by eij:

eij = ni. · n.j

n..
.

We therefore obtain:

e11 = 65 · 31

100
= 20.15

e12 = 65 · 69

100
= 44.85

e21 = 35 · 31

100
= 10.85

e12 = 35 · 69

100
= 24.15 .

The estimated frequency table is given
below:

Smoking status

“smokes” “does
not
smoke”

Total

Gender M 20.15 44.85 65

F 10.85 24.15 35

Total 31 69 100

If the null hypothesis H0 is true, the statistic

χ2 =
2∑

i=1

2∑
j=1

(nij − eij)
2

eij

is chi-square-distributed with (r − 1)

(c− 1) = (2− 1) (2− 1) = 1 degree
of freedom and

χ2 = 0.036+ 0.016+ 0.066+ 0.030

= 0.148 .

If a significance level of 5% is selected, the
value of χ2

1,0.05 is 3.84, from the chi-square
table.
Since the calculated value of χ2 is smaller
then the value found in the chi-square table,
we do not reject the null hypothesis and we
conclude that the two variables studied are
independent.

FURTHER READING
� Chi-square distribution
� Chi-square table
� Contingency table
� Test of independence
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Classification

Classification is the grouping together of
similar objects. If each object is charac-
terized by p variables, classification can
be performed according to rational criteria.
Depending on the criteria used, an object
could potentially belong to several classes.

HISTORY
Classifying the residents of a locality or
a country according to their sex and oth-
er physical characteristics is an activity that
dates back to ancient times. The Hindus, the

ancient Greeks and the Romans all devel-
oped multiple typologies for human beings.
The oldest comes from Galen (129–199
A.D.).
Later on, the concept of classification spread
to the fields of biology and zoology; the
works of Linné (1707–1778) should be men-
tioned in this regard.
The first ideas regarding actual methods of
cluster analysis are attributed to Adanson
(eighteenth century). Zubin (1938), Tryon
(1939) and Thorndike (1953) also attempted
to develop some methods, but the true devel-
opment of classification methods coincides
with the advent of the computer.

MATHEMATICAL ASPECTS
Classification methods can be divided into
two large categories, one based on prob-
abilities and the other not.
The first category contains, for example, dis-
criminating analysis. The second category
can be further subdivided into two groups.
The first group contains what are known as
optimalclassificationmethods. In thesecond
group, we can distinguish between several
subtypes of classification method:
• Partitionmethodsthatconsistofdistribut-

ing n objects among g groups in such
awaythateachobjectexclusivelybelongs
to just one group. The number of groups g
is fixed beforehand, and the partition
applied most closely satisfies the classi-
fication criteria.

• Partition methods incorporating infring-
ing classes, where an object is allowed to
belong to several groups simultaneously.

• Hierarchical classification methods,
where the structure of the data at dif-
ferent levels of classification is taken into
account. We can then take account for the
relationships that exist between the dif-
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ferent groups created during the partition.
Two different kinds of hierarchical tech-
niques exist: agglomerating techniques
and dividing techniques.
Agglomerating methods start with sepa-
rated objects, meaning that the n objects
are initially distributed into n groups. Two
groups are agglomerated in each subse-
quent step until there is only one group
left.
In contrast, dividing methodsstartwith all
of the objects grouped together, meaning
that all of the n objects are in one single
group to start with. New groups are creat-
ed at each subsequent step until there are
n groups.

• Geometric classification, in which the
objects are depicted on a scatter plot and
then grouped according to position on the
plot. In a graphical representation, the
proximities of the objects to each other in
the graphic correspond to the similarities
between the objects.

The first three types of classification are gen-
erally grouped together under the term clus-
ter analysis. What they have in common
is the fact that the objects to be classified
must present a certain amount of structure
that allows us to measure the degree of sim-
ilarity between the objects.
Each type of classification contains a multi-
tudeofmethodsthatallowustocreateclasses
of similar objects.

DOMAINS AND LIMITATIONS
Classification can be used in two cases:
• Description cases;
• Prediction cases.
In the first case, the classification is done
on the basis of some generally accepted
standard characteristics. For example, pro-
fessions can be classified into freelance,

managers, workers, and so on, and one can
calculate average salaries, average frequen-
cy of health problems, and so on, for each
class.
In the second case, classification will lead to
a prediction and then to an action. For exam-
ple, if the foxes in a particular region exhibit
apathetic behavior and excessive salivation,
we can conclude that there is a new rabies
epidemic. This should then prompt a vaccine
campaign.

FURTHER READING
� Cluster analysis
� Complete linkage method
� Data analysis
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Cluster Analysis
Clustering is the partitioning of a data set
into subsets or clusters, so that the degree of
association isstrongbetweenmembersof the
same cluster and weak between members of
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different clusters according to some defined
distance measure.
Several methods of performing cluster
analysis exist:
• Partitional clustering
• Hierarchical clustering.

HISTORY
See classification and data analysis.

MATHEMATICAL ASPECTS
To carry out cluster analysis on a set of
n objects, we need to define a distance
between the objects (or more generally
a measure of the similarity between the
objects) that need to be classified. The exis-
tence of some kind of structure within the
set of objects is assumed.
To carry out a hierarchical classification of
a set E of objects {x1, x2, . . . , xn}, it is neces-
sary to define a distance associated with E
that can be used to obtain a distance table
between the objects of E. Similarly, a dis-
tance must also be defined for any subsets
of E.
One approach to hierarchical clustering is to
use theagglomeratingmethod. Itcanbesum-
marized in the following algorithm:
1. Locate the pair of objects (xi, xj) which

have the smallest distance between each
other.

2. Aggregate the pair of objects (xi, xj) into
a single element α and re-establish a new
distance table. This is achieved by sup-
pressing the lines and columns associat-
ed with xi and xj and replacing them with
a lineand acolumn associated withα. The
new distance table will have a line and
a column less than the previous table.

3. Repeat these two operations until the
desired number of classes are obtained or

until allof theobjectsaregathered into the
same class.

Note that the distance between the group
formed from aggregated elements and the
other elements can be defined in different
ways, leading to different methods. Exam-
ples include the single link method and the
complete linkage method.
The single link method is a hierarchical
classification method thatuses theEuclidean
distance to establish a distance table, and
the distance between two classes is given by
the Euclidean distance between the two clos-
est elements (the minimum distance).
In the complete linkage method, the dis-
tance between two classes is given by the
Euclidean distance between the two ele-
ments furthest away (the maximum dis-
tance).
Given that the only difference between these
two methods is that the distance between two
classes is either the minimum and the max-
imum distance, only the single link method
will be considered here.
For a set E = {X1, X2, . . . , Xn}, the distance
table for the elements of E is then estab-
lished.
Since this table is symmetric and null along
its diagonal, only one half of the table is con-
sidered:

d(X1, X2) d(X1, X3) . . . d(X1, Xn)

d(X2, X3) . . . d(X2, Xn)

. . . . . .
d(Xn−1, Xn)

where d(Xi, Xj) is the Euclidean distance
between Xi and Xj for i < j, where the values
of i and j are between 1 and n.
The algorithm for the single link method is
as follows:
• Search for the minimum d(Xi, Xj) for

i < j;
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• TheelementsXi andXj areaggregated into
a new group Ck = Xi ∪ Xj;

• The set E is then partitioned into

{X1}, . . . , {Xi−1}, {Xi, Xj}, {Xi+1}, . . . ,

{Xj−1}, {Xj+1}, . . . , {Xn} ;
• The distance table is then recreated

without the lines and columns associ-
ated with Xi and Xj, and with a line
and a column representing the distances
between Xm and Ck, m = 1, 2, . . . , n m �=
i and m �= j, given by:

d(Ck, Xm) = min{d(Xi, Xm); d(Xj, Xm)}.
The algorithm is repeated until the desired
number of groups is attained or until there
is only one group containing all of the ele-
ments.
In thegeneralcase, thedistancebetweentwo
groups is given by:

d(Ck, Cm) = min{d(Xi, Xj) with Xi

belonging to Ck and Xj to Cm} ,

The formula quoted previously applies to the
particular case when the groups are com-
posed, respectively, of two elements and one
single element.
This series of agglomerations can be repre-
sented by a dendrogram, where the abscis-
sa shows the distance separating the objects.
Note that we could find more than one pair
when we search for the pair of closest ele-
ments. In this case, the pair that is select-
ed for aggregation in the first step does not
influence later steps (provided the algorithm
does not finish at this step), because the oth-
er pair of closest elements will be aggre-
gated in the following step. The aggrega-
tion order is not shown on the dendrogram
because it reports the distance that separates
two grouped objects.

DOMAINS AND LIMITATIONS
The choice of the distance between the
group formed of aggregated elements and
the other elements can be operated in several
ways, according to the method that is used,
as for example in the single link method and
in the complete linkage method.

EXAMPLES
Let us illustrate how the single link method
of cluster analysis can be applied to the
examinationgradesobtainedbyfivestudents
each studying four courses: English, French,
maths and physics.
Wewant to divide thesefivestudents into two
groups using the single link method.
The grades obtained in the examinations,
which range from 1 to 6, are summarized in
the following table:

English French Maths Physics

Alain 5.0 3.5 4.0 4.5

Jean 5.5 4.0 5.0 4.5

Marc 4.5 4.5 4.0 3.5

Paul 4.0 5.5 3.5 4.0

Pierre 4.0 4.5 3.0 3.5

We then work out the Euclidian distances
between the students and use them to create
a distance table:

Alain Jean Marc Paul Pierre

Alain 0 1.22 1.5 2.35 2

Jean 1.22 0 1.8 2.65 2.74

Marc 1.5 1.8 0 1.32 1.12

Paul 2.35 2.65 1.32 0 1.22

Pierre 2 2.74 1.12 1.22 0

By only considering the upper part of this
symmetric table, we obtain:
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Jean Marc Paul Pierre

Alain 1.22 1.5 2.35 2

Jean 1.8 2.65 2.74

Marc 1.32 1.12

Paul 1.22

The minimum distance is 1.12, between
Marc and Pierre; we therefore form the first
group from these two students. We then cal-
culate the new distances.
For example, we calculate the new dis-
tance between Marc and Pierre on one side
and Alain on the other by taking the mini-
mum distance between Marc and Alain and
the minimum distance between Pierre and
Alain:

d({Marc,Pierre},Alain)

= min{d(Marc,Alain);d(Pierre,Alain)}
= min{1.5; 2} = 1.5 ,

also

d({Marc,Pierre},Jean)

= min{d(Marc,Jean);d(Pierre,Jean)}
= min{1.8; 2.74} = 1.8 ,

and

d({Marc,Pierre},Paul)

= min{d(Marc,Paul);d(Pierre,Paul)}
= min{1.32; 1.22} = 1.22 .

The new distance table takes the following
form:

Jean Marc and Paul

Pierre

Alain 1.22 1.5 2.35

Jean 1.8 2.65

Marc and Pierre 1.22

The minimum distance is now 1.22, between
Alain and Jean and also between the group

of Marc and Pierre on the one side and Paul
on the other side (in other words, two pairs
exhibit the minimum distance); let us choose
to regroup Alain and Jean first. The other
pair will be aggregated in the next step. We
rebuild the distance table and obtain:

d({Alain,Jean}, {Marc,Pierre})

= min{d(Alain,{Marc,Pierre}) ,

d(Jean,{Marc,Pierre})}

= min{1.5; 1.8} = 1.5

as well as:

d({Alain,Jean},Paul)

= min{d(Alain,Paul);d(Jean,Paul)}

= min{2.35; 2.65} = 2.35 .

This gives the following distance table:

Marc and Pierre Paul

Alain and Jean 1.5 2.35

Marc and Pierre 1.22

Notice that Paul must now be integrated in
the group formed from Marc and Pierre, and
the new distance will be:

d({(Marc,Pierre),Paul},{Alain,Jean})

= min{d({Marc,Pierre},{Alain,Jean}) ,

d(Paul,{Alain,Jean})}

= min{1.5; 2.35} = 1.5

which gives the following distance table:

Alain and Jean

Marc, Pierre and Paul 1.5

We finally obtain two groups:
{Alain and Jean} and {Marc, Pierre and
Paul} which are separated by a distance of
1.5.
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The following dendrogram illustrates the
successive aggregations:

FURTHER READING
� Classification
� Complete linkage method
� Dendrogram
� Distance
� Distance table
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Cluster Sampling
In cluster sampling, the first step is to divide
the population into subsets called clusters.
Each cluster consists of individuals that are
supposed to be representative of the popula-
tion.
Cluster sampling then involves choosing
arandomsampleofclustersandthenobserv-
ing all of the individuals that belong to each
of them.

HISTORY
See sampling.

MATHEMATICAL ASPECTS
Cluster sampling is the process of random-
ly extracting representative sets (known as
clusters) from a larger population of units
and then applying a questionnaire to all of
the units in the clusters. The clusters often
consist of geographical units, like city dis-
tricts. In thiscase, themethod involvesdivid-
ing a city into districts, and then selecting the
districts to be included in thesample.Finally,
all of the people or households in the chosen
district are questioned.
There are two principal reasons to perform
cluster sampling. In many inquiries, there is
no complete and reliable list of the popu-
lation units on which to base the sampling,
or it may be that it is too expensive to cre-
ate such a list. For example, in many coun-
tries, including industrialized ones, it is rare
to have complete and up-to-date lists of all of
the members of the population, households
or rural estates. In this situation, sampling
can be achieved in a geographical manner:
each urban region is divided up into districts
and each rural region into rural estates. The
districts and the agricultural areas are con-
sidered to be clusters and we use the com-
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plete list of clusters because we do not have
a complete and up-to-date list of all popu-
lation units. Therefore, we sample a requi-
site number of clusters from the list and then
question all of the units in the selected clus-
ter.

DOMAINS AND LIMITATIONS
The advantage of cluster sampling is that it
is not necessary to have a complete, up-to-
date list of all of the units of the population
to perform analysis.
For example, in many countries, there are no
updated lists of people or housing. The costs
of creating such lists are often prohibitive.
It is therefore easier to analyze subsets of the
population (known as clusters).
In general, cluster sampling provides esti-
mations that are not as precise as simple
random sampling, but this drop in accuracy
is easily offset by the far lower cost of cluster
sampling.
In order to perform cluster sampling as effi-
ciently as possible:
• The clusters should not be too big, and

there should be a large enough number of
clusters,

• cluster sizes should be as uniform as pos-
sible;

• The individuals belonging to each clus-
ter must be as heterogenous as possible
with respect to the parameter being ob-
served.

Another reason to use cluster sampling is
cost. Even when a complete and up-to-date
list of all population units exists, it may be
preferable to use cluster sampling from an
economic point of view, since it is complet-
ed faster, involves fewer workers and min-
imizes transport costs. It is therefore more
appropriate to use cluster sampling if the
money saved by doing so is far more signif-

icant than the increase in sampling variance
that will result.

EXAMPLES
Consider N, the size of the population of
town X. We want to study the distribution of
“Age” for town X without performing a cen-
sus. The population is divided into G parts.
Simple random sampling is performed
amongst these G parts and we obtain g parts.
The final sample will be composed of all the
individuals in the g selected parts.

FURTHER READING
� Sampling
� Simple random sampling

REFERENCES
Hansen, M.H., Hurwitz, W.N., Madow,

M.G.: Sample Survey Methods and The-
ory. Vol. I. Methods and Applications.
Vol. II. Theory. Chapman & Hall, Lon-
don (1953)

Coefficient
of Determination

The coefficient of determination, denoted
R2, is the quotient of the explained varia-
tion (sum of squares due to regression) to the
total variation (total sum of squares total SS
(TSS)) in a model of simple or multiple lin-
ear regression:

R2 = Explained variation

Total variation
.

It equals thesquareof thecorrelation coeffi-
cient, and it can take values between 0 and 1.
It is often expressed as a percentage.

HISTORY
See correlation coefficient.
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MATHEMATICAL ASPECTS
Consider the following model for multiple
regression:

Yi = β0 + β1Xi1 + · · · + βpXip + εi

for i = 1, . . . , n, where

Yi are the dependent variables,
Xij (i = 1, . . . , n, j = 1, . . . , p) are the inde-

pendent variables,
εi are the random nonobservable error

terms,
βj (j = 1, . . . , p) are the parameters to be

estimated.

Estimating the parameters β0, β1, . . . , βp

yields the estimation

Ŷi = β̂0 + β̂1Xi1 + · · · + β̂pXip .

The coefficient of determination allows us to
measure the quality of fit of the regression
equation to the measured values.
To determine the quality of the fit of the
regression equation, consider the gap
between the observed value and the esti-
mated value for each observation of the
sample. This gap (or residual) can also be
expressed in the following way:

n∑
i=1

(Yi − Ȳ)2 =
n∑

i=1

(Yi − Ŷi)
2

+
n∑

i=1

(Ŷi − Ȳ)2

TSS = RSS+ REGSS

where

TSS is the total sum of squares,
RSS the residual sum of squares and
REGSS the sum of the squares of the

regression.

These concepts and the relationships
between them are presented in the following
graph:

Using these concepts, we can define R2,
which is the determination coefficient. It
measures the proportion of variation in vari-
able Y, which is described by the regression
equation as:

R2 = REGSS

TSS
=

n∑
i=1

(Ŷi − Ȳ)2

n∑
i=1

(Yi − Ȳ)2

If the regression function is to be used to
make predictions about subsequent observa-
tions, it is preferable to have a high value
of R2, because the higher the value of R2, the
smaller the unexplained variation.

EXAMPLES
The following table gives values for the
Gross National Product (GNP) and the
demand for domestic products covering the
1969–1980 period for a particular country.

Year GNP
X

Demand for dom-
estic products Y

1969 50 6

1970 52 8

1971 55 9

1972 59 10
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Year GNP
X

Demand for dom-
estic products Y

1973 57 8

1974 58 10

1975 62 12

1976 65 9

1977 68 11

1978 69 10

1979 70 11

1980 72 14

We will try to estimate the demand for small
goods as a function of GNP according to the
model

Yi = a+ b · Xi + εi , i = 1, . . . , 12 .

Estimating the parameters a and b by the
least squares method yields the following
estimators:

b̂ =

12∑
i=1

(Xi − X̄)(Yi − Ȳ)

12∑
i=1

(Xi − X̄)2

= 0.226 ,

â = Ȳ − b̂ · X̄ = −4.047 .

The estimated line is written

Ŷ = −4.047+ 0.226 · X .

The quality of the fit of the measured points
to the regression line is given by the deter-
mination coefficient:

R2 = REGSS

TSS
=

12∑
i=1

(Ŷi − Ȳ)2

12∑
i=1

(Yi − Ȳ)2

.

We can calculate the mean using:

Ȳ =

12∑
i=1

Yi

n
= 9.833 .

Yi Ŷi (Yi − Ȳ )2 (Ŷi − Ȳ )2

6 7.260 14.694 6.622

8 7.712 3.361 4.500

9 8.390 0.694 2.083

10 9.294 0.028 0.291

8 8.842 3.361 0.983

10 9.068 0.028 0.586

12 9.972 4.694 0.019

9 10.650 0.694 0.667

11 11.328 1.361 2.234

10 11.554 0.028 2.961

11 11.780 1.361 3.789

14 12.232 17.361 4.754

Total 47.667 30.489

We therefore obtain:

R2 = 30.489

47.667
= 0.6396

or, in percent:

R2 = 63.96% .

We can therefore conclude that, according to
the model chosen, 63.96% of the variation in
the demand for small goods is explained by
the variation in the GNP.
Obviously the value of R2 cannot exceed
100%. While 63.96% is relatively high, it is
not close enough to 100% to rule out trying
to modify the model further.
This analysis also shows that other variables
apart from the GNP should be taken into
account when determining the function cor-
responding to the demand for small goods,
since the GNP only partially explains the
variation.
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FURTHER READING
� Correlation coefficient
� Multiple linear regression
� Regression analysis
� Simple linear regression

Coefficient of Kurtosis
The coefficient of kurtosis is used to mea-
sure the peakness or flatness of a curve. It
is based on the moments of the distribution.
This coefficient is one of the measures of
kurtosis.

HISTORY
See coefficient of skewness.

MATHEMATICAL ASPECTS
The coefficient of kurtosis (β2) is based
on the centered fourth-order moment of
a distribution which is equal to:

μ4 = E
[
(X − μ)4

]
.

In order to obtain a coefficient of kurtosis
that is independent of the units of measu-
rement, the fourth-order moment is divided
by the standard deviation of the popula-
tion σ raised to the fourth power. The coef-
ficient of kurtosis then becomes equal to:

β2 = μ4

σ 4 .

For a sample (x1, x2, . . . , xn), the estimator
of this coefficient is denoted by b2. It is equal
to:

b2 = m4

S4 ,

where m4 is the centered fourth-order
moment of the sample, given by:

m4 = 1

n
·

n∑
i=1

(xi − x̄)4 ,

where x̄ is the arithmetic mean, n is the total
number of observations and S4 is the stan-
dard deviation of the sample raised to the
fourth power.
For the case where a random vari-
able X takes values xi with frequencies
fi, i = 1, 2, . . . , h, the centered fourth-order
moment of the sample is given by the for-
mula:

m4 = 1

n
·

h∑
i=1

fi · (xi − x̄)4 .

DOMAINS AND LIMITATIONS
Foranormal distribution, thecoefficientof
kurtosis is equal to 3. Therefore a curve will
be called platikurtic (meaning flatter than the
normal distribution) if it has a kurtosis coef-
ficient smaller than 3. It will be leptokur-
tic (meaning sharper than the normal distri-
bution) if β2 is greater than 3.
Letusnowprove that thecoefficientofkurto-
sis is equal to 3 for the normal distribution.
We know that β2 = μ4

σ 4 , meaning that the
centered fourth-order moment is divided by
the standard deviation raised to the fourth
power. It can be proved that the centered sth
order moment, denoted μs, satisfies the fol-
lowing relation for a normal distribution:

μs = (s− 1)σ 2 · μs−2 .

This formula is a recursive formula which
expresses higher order moments as a func-
tion of lower order moments.
Given that μ0 = 1 (the zero-order moment
ofany random variable is equal to 1, since it
is the expected value of this variable raised
to the power zero) and that μ1 = 0 (the cen-
tered first-order moment is zero for any ran-
dom variable), we have:

μ2 = σ 2

μ3 = 0
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μ4 = 3σ 4

etc. .

The coefficient of kurtosis is then equal to:

β2 = μ4

σ 4 =
3σ 4

σ 4 = 3 .

EXAMPLES
Wewant tocalculate thekurtosisof thedistri-
bution of daily turnover for 75 bakeries. Let
us calculate the coefficient of kurtosis β2

using the following data:

Table categorizing the daily turnovers of 75
bakeries

Turnover Frequencies

215–235 4

235–255 6

255–275 13

275–295 22

295–315 15

315–335 6

335–355 5

355–375 4

The fourth-order moment of the sample is
given by:

m4 = 1

n

h∑
i=1

fi(xi − x̄)4 ,

where n = 75, x̄ = 290.60 and xi is the cen-
ter of class interval i. We can summarize the
calculations in the following table:

xi xi − x̄ fi fi (xi − x̄)4

225 −65.60 4 74075629.16

245 −45.60 6 25942428.06

265 −25.60 13 5583457.48

285 −5.60 22 21635.89

305 14.40 15 644972.54

325 34.40 6 8402045.34

345 54.40 5 43789058.05

365 74.40 4 122560841.32

281020067.84

Since S = 33.88, the coefficient of kurtosis
is equal to:

β2 =
1

75 (281020067.84)

(33.88)4 = 2.84 .

Since β2 is smaller than 3, we can conclude
that the distribution of the daily turnover in
75 bakeries is platikurtic, meaning that it is
flatter than the normal distribution.

FURTHER READING
� Measure of kurtosis
� Measure of shape

REFERENCES
See coefficient of skewness β1 de Pearson.

Coefficient of Skewness
The coefficient of skewness measures the
skewness of a distribution. It is based on the
notion of the moment of the distribution.
This coefficient is one of the measures of
skewness.

HISTORY
Between the end of the nineteenth centu-
ry and the beginning of the twentieth cen-
tury, Pearson, Karl studied large sets of
data which sometimes deviated significant-
ly from normality and exhibited consider-
able skewness.
He first used the following coefficient as
a measure of skewness:

skewness = x̄−mode

S
,

where x̄ represents thearithmetic mean and
S the standard deviation.
This measure is equal to zero if the data are
distributed symmetrically.



C

Coefficient of Skewness 93

He discovered empirically that for a mod-
erately asymmetric distribution (the gamma
distribution):

Mo − x̄ ≈ 3 · (Md − x̄) ,

where Mo and Md denote the mode and
the median of data set. By substituting this
expression into the previous coefficient, the
following alternative formula is obtained:

skewness = 3 · (x̄−Md)

S
.

Following this, Pearson, K. (1894,1895)
introduced a coefficient of skewness, known
as the β1 coefficient, based on calculations
of the centered moments. This coefficient
is more difficult to calculate but it is more
descriptive and better adapted to large num-
bers of observations.
Pearson, K. also created the coefficient of
kurtosis (β2), which is used to measure the
oblateness of a curve. This coefficient is also
based on the moments of the distribution
being studied.
Tables giving the limit values of the coeffi-
cients β1 and β2 can be found in the works
of Pearson and Hartley (1966, 1972). If the
sample estimates a fall outside the limit for
β1, β2, we conclude that the population is
significantly curved or skewed.

MATHEMATICAL ASPECTS
The skewness coefficient is based on the cen-
tered third-order moment of the distribution
in question, which is equal to:

μ3 = E
[
(X − μ)3

]
.

To obtain a coefficient of skewness that is
independent of the measuring unit, the third-
order moment is divided by the standard
deviation of the population σ raised to the

third power. The coefficient obtained, desig-
nated by

√
β1, is equal to:

√
β1 = μ3

σ 3 .

The estimator of this coefficient, calculat-
ed for a sample (x1, x2, . . . xn), is denoted by√

b1. It is equal to:
√

b1 = m3

S3
,

where m3 is the centered third-order
moment of the sample, given by:

m3 = 1

n
·

n∑
i=1

(xi − x̄)3 .

Here x̄ is the arithmetic mean, n is the total
number of observations and S3 is the stan-
dard deviation raised to the third power.
For the case where a random variable X
takes values xi with frequencies fi, i =
1, 2, . . . , h, the centered third-order moment
of the sample is given by the formula:

m3 = 1

n
·

h∑
i=1

fi · (xi − x̄)3 .

If the coefficient is positive, the distribution
spreads to the the right. If it is negative, the
distribution expands to the left. If it is close to
zero, the distribution is approximately sym-
metric.
If the sample is taken from a normal pop-
ulation, the statistic

√
b1 roughly follows

a normal distribution with a mean of 0 and
a standard deviation of

√
6
n . If the size of

the sample n is bigger than 150, the nor-
mal table can be used to test the skewness
hypothesis.

DOMAINS AND LIMITATIONS
This coefficient (similar to the other mea-
sures of skewness) is only of interest if it
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can be used to compare the shapes of two or
more distributions.

EXAMPLES
Suppose that we want to compare the shapes
of the daily turnover distributions obtained
for 75 bakeries for two different years. We
then calculate the skewness coefficient in
both cases.
The data are categorized in the table below:

Turnover Frequencies
for year 1

Frequencies
for year 2

215–235 4 25

235–255 6 15

255–275 13 9

275–295 22 8

295–315 15 6

315–335 6 5

335–355 5 4

355–375 4 3

The third-order moment of the sample is
given by:

m3 = 1

n
·

h∑
i=1

fi · (xi − x̄)3 .

For year 1, n = 75, x̄ = 290.60 and xi is the
center of each class interval i. The calcula-
tions are summarized in the following table:

xi xi − x̄ fi fi (xi − x̄)3

225 −65.60 4 −1129201.664

245 −45.60 6 −568912.896

265 −25.60 13 −218103.808

285 −5.60 22 −3863.652

305 14.40 15 44789.760

325 34.40 6 244245.504

345 54.40 5 804945.920

365 74.40 4 1647323.136

821222.410

Since S = 33.88, the coefficient of skewness
is equal to:

√
b1 =

1

75
(821222.41)

(33.88)3 = 10949.632

38889.307

= 0.282 .

For year 2, n = 75 and x̄ = 265.27. The
calculationsaresummarized in thefollowing
table:

xi xi − x̄ fi fi (xi − x̄)3

225 −40.27 25 −1632213.81

245 −20.27 15 −124864.28

265 −0.27 9 −0.17

285 19.73 8 61473.98

305 39.73 6 376371.09

325 59.73 5 1065663.90

345 79.73 4 2027588.19

365 99.73 3 2976063.94

4750082.83

Since S = 42.01, the coefficient of skewness
is equal to:

√
b1 =

1

75
(4750082.83)

(42.01)3 = 63334.438

74140.933

= 0.854 .

The coefficient of skewness for year 1 is
close to zero (

√
b1 = 0.282), so the daily

turnover distribution for the 75 bakeries for
year 1 is very close to being a symmetrical
distribution. For year 2, the skewness coef-
ficient is higher; this means that the distri-
bution spreads towards the right.

FURTHER READING
� Measure of shape
� Measure of skewness
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Coefficient of Variation

The coefficient of variation is a measure of
relative dispersion. It describes the stan-
dard deviation as a percentage of the arith-
metic mean.
This coefficient can be used to compare the
dispersions of quantitative variables that
arenotexpressed in thesameunits (forexam-
ple, when comparing the salaries in differ-
ent countries, given in different currencies),
or the dispersions of variables that have very
different means.

MATHEMATICAL ASPECTS
The coefficient of variation CV is defined as
the ratio of the standard deviation to the
arithmetic mean for a set of observations;

in other words:

CV = S

x̄
· 100

for a sample, where:

S is the standard deviation of the sample,
and

x̄ is the arithmetic mean of the sample,

or:
CV = σ

μ
· 100

for a population, where

σ is the standard deviation of the popula-
tion, and

μ is the mean of the population.

This coefficient is independent of the unit of
measurement used for the variable.

EXAMPLES
Let us study the salary distributions for two
companies from two different countries.
According to a survey, the arithmetic
means and the standard deviations of the
salaries are as follows:

Company A:

x̄ = 2500 CHF ,

S = 200 CHF ,

CV = 200

2500
· 100 = 8% .

Company B:

x̄ = 1000 CHF ,

S = 50 CHF ,

CV = 50

1000
· 100 = 5% .

The standard deviation represents 8% of
the arithmetic mean for company A, and
5% for company B. The salary distribution
is a bit more homogeneous for company B
than for company A.
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FURTHER READING
� Arithmetic mean
� Measure of dispersion
� Standard deviation

REFERENCES
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Collinearity

Variables are known to be mathematically
collinear if one of them is a linear com-
bination of the other variables. They are
known as statistically collinear if one of
them is approximately a linear combination
of other variables. In the case of a regres-
sion model where the explanatory variables
are strongly correlated to each other, we say
that there is collinearity (or multicollineari-
ty) between the explanatory variables. In the
first case, it is simply impossible to define
least squares estimators, and in the second
case, these estimators can exhibit consider-
able variance.

HISTORY
The term “collinearity” was first used in
mathematics at the beginning of the twen-
tieth century, due to the rediscovery of the
theorem of Pappus of Alexandria (a third-
century mathematician). Let A, B, C be three
points on a line and A’, B’, C’ be three points
on a different line. If we relate the pairs
using AB’.A’B,CA’.AC’and BC’.B’C, their
intersections will occur in a line; in other
words, the three intersection points will be
collinear.

MATHEMATICAL ASPECTS
In the case of a matrix of explanatory vari-
ables X, collinearity means that one of the
columns of X is (approximately) a linear
combination of the other columns. This
implies that X′X is almost singular. Con-
sequently, the estimator obtained by the
least squares method β̂ = (

X′X
)−1 X′Y

is obtained by inverting an almost singu-
lar matrix, which causes its components
to become unstable. The ridge regression
technique was created in order to deal with
these collinearity problems.
A collinear relation between more than two
variables will not always be the result of
observing the pairwise correlations between
the variables. A better indication of the pres-
ence of a collinearity problem is provided by
variance inflation factors, VIF. The variance
inflation factor of an explanatory variable Xj

is defined by:

VIFj = 1

1− R2
j

,

where R2
j is the coefficient of determina-

tion of the model

Xj = β0 +
∑
k �=j

βkXk + ε .

ThecoefficientVIF takesvaluesofbetween1
and∞. If the Xj are mathematically collinear
with other variables, we get R2

j = 1 and
VIFj = ∞. On the other hand, if the Xj are
reciprocally independent, we have R2

j = 0
and VIFj = 1. In practice, we consider that
there isa realproblem with collinearity when
VIFj is greater then 100, which corresponds
to a R2

j that is greater then 0.99.

DOMAINS AND LIMITATIONS
Inverting a singular matrix, similar to invert-
ing 0, is not a valid operation. Using the
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same principle, inverting an almost singu-
lar matrix is similar to inverting a very small
number. Some of the elements of the matrix
must therefore be very big. Consequently,
when the explanatory variables are collinear,
some elements of the matrix (X′X)−1 of β̂

will probably be very large. This is why
collinearity leads to unstable regression esti-
mators. Aside from this problem, collinear-
ity also results in a calculation problem; it is
difficult to precisely calculate the inverse of
an almost singular matrix.

EXAMPLES
Thirteen portions of cement are examined
in the following example. Each portion con-
tains four ingredients, as described in the
table. The goal of the experiment is to deter-
mine how the quantities X1, X2, X3 and X4,
corresponding to the quantities of these four
ingredients, affect the quantity Y of heat giv-
en out as the cement hardens.

Yi quantity of heat given out during the
hardening of the ith portion (in joules);

Xi1 quantity of ingredient 1 (tricalcium alu-
minate) in the ith portion;

Xi2 quantity of ingredient 2 (tricalcium sil-
icate) in the ith portion;

Xi3 quantity of the ingredient 3 (tetracalci-
um aluminoferrite) in the ith portion;

Xi4 quantity of ingredient 4 (dicalcium sil-
icate) in the ith portion.

Table: Heat given out by the cement portions
during hardening

Por-
tion

Ingre-
dient

Ingre-
dient

Ingre-
dient

Ingre-
dient

Heat

i 1 X1 2 X2 3 X3 4 X4 Y

1 7 26 6 60 78.5

2 1 29 12 52 74.3

Por-
tion

Ingre-
dient

Ingre-
dient

Ingre-
dient

Ingre-
dient

Heat

i 1 X1 2 X2 3 X3 4 X4 Y

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 54 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 48 4 26 115.9

11 1 40 23 34 83.9

12 11 66 9 12 113.3

13 10 68 8 12 109.4

Source: Birkes & Dodge (1993)

We start with a simple linear regression.
The model used for the linear regression
is:

Y = β0

+ β1X1 + β2X2 + β3X3 + β4X4

+ ε .

We obtain the following results:

Variable β̂i S.d. tc
Constant 62.41 70.07 0.89

X1 1.5511 0.7448 2.08

X2 0.5102 0.7238 0.70

X3 0.1019 0.7547 0.14

X4 −0.1441 0.7091 −0.20

We can see that only coefficient X1 is signif-
icantly greater then zero; in the other cases
tc < t(α/2,n−2) (value taken from the Student
table) for a significance level of α = 0.1.
Moreover, thestandarddeviationsof theesti-
mated coefficients β̂2, β̂3 and β̂4 are greater
then the coefficients themselves. When the
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variables are strongly correlated, it is known
that the effect of one can mask the effect of
another. Because of this, the coefficients can
appear to be insignificantly different from
zero.
To verify the presence of multicollinearity
foracoupleofvariables,wecalculatethecor-
relation matrix.

X1 X2 X3 X4

X1 1 0.229 −0.824 0.245

X2 0.229 1 −0.139 −0.973

X3 −0.824 −0.139 1 0.030

X4 0.245 −0.973 0.030 1

We note that a strong negative correlation
(−0.973) exists between X2 and X4. Look-
ing at the data, we can see the reason for
that. Aside from portions 1 to 5, the total
quantity of silicates (X2 + X4) is almost
constant across the portions, and is approx-
imately 77; therefore, X4 is approximately
77 − X2. this situation does not allow us
to distinguish between the individual effects
of X2 and those of X4. For example, we see
that the four largest values of X4 (60, 52, 47
and 44) correspond to values of Y smaller
then the mean heat 95.4. Therefore, at first
sight it seems that large quantities of ingre-
dient 4 will lead to small amounts of heat.
However, we also note that the four largest
values of X4 correspond to the four small-
est values of X2, giving a negative correla-
tion between X2 and X4. This suggests that
ingredient 4 taken alone has a small effect
on variable Y, and that the small quanti-
ties of 2 taken alone can explain the small
amount of heat emitted. Hence, the linear
dependence between two explanatory vari-
ables (X2 and X4) makes it more complicat-
ed to see the effect of each variable alone on
the response variable Y.

FURTHER READING
� Multiple linear regression
� Ridge regression
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Birkes, D., Dodge, Y.: Alternative Methods

of Regression. Wiley, New York (1993)

Bock, R.D.: Multivariate Statistical Meth-
ods in Behavioral Research. McGraw-
Hill, New York (1975)

Combination

A combination is an un-ordened collection
of unique elements or objects.
A k-combination is a subset with k elements.
The number of k-combinations from a set of
n elements is the number of arrangements.

HISTORY
See combinatory analysis.

MATHEMATICAL ASPECTS
1. Combination without repetition

Combination without repetition describe
the situation where each object drawn is
notplacedbackfor thenextdrawing.Each
object can therefore only occur once in
each group.
The number of combination without rep-
etition of k objects among n is given by:

Ck
n =

(
n
k

)
= n!

k! · (n− k)!
.

2. Combination with repetitions
Combination with repetitions (or with
remittance) are used when each drawn
object is placed back for the next draw-
ing. Each object can then occur r times in
each group, r = 0, 1, . . . , k.
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The number of combinations with repeti-
tions of k objects among n is given by:

Kk
n =

(
n+ k − 1

k

)
= (n+ k − 1)!

k! · (n− 1)!
.

EXAMPLES
1. Combinations without repetition

Consider the situation where we must
choose a committee of three people from
an assembly of eight people. How many
different committees could potentially be
picked from this assembly, if each person
can only be selected once in each group?
Here we need to calculate the number
of possible combinations of three people
from eight:

Ck
n =

n!

k! · (n− k)!
= 8!

3! · (8− 3)!

= 40320

6 · 120
= 56

Therefore, it is possible to form 56 dif-
ferent committees containing three peo-
ple from an assembly of eight people.

2. Combinations with repetitions Consider
an urn containing six numbered balls. We
carry out four successive drawings, and
place thedrawn ballback into theurn after
each drawing. How many different com-
binations could occur from this drawing?
In this case we want to find the number
of combinations with repetition (because
each drawn ball is placed back in the urn
before the next drawing). We obtain

Kk
n =

(n+ k− 1)!

k! · (n− 1)!
= 9!

4! · (6− 1)!

= 362880

24 · 120
= 126

different combinations.

FURTHER READING
� Arrangement
� Binomial distribution
� Combinatory analysis
� Permutation

Combinatory Analysis

Combinatory analysis refers to a group of
techniques that can be used to determine the
number of elements in a particular set with-
out having to count them one-by-one.
The elements in question could be the results
from a scientific experiment or the different
potential outcomes of a random event.
Three particular concepts are important in
combinatory analysis:
• Permutations;
• Combinations;
• Arrangements.

HISTORY
Combinatory analysis has interested mathe-
maticians for centuries. According to Takacs
(1982), such analysis dates back to ancient
Greece. However, the Hindus, the Per-
sians (including the poet and mathematician
Khayyâm, Omar) and (especially) the Chi-
nese also studied such problems. A 3000
year-old Chinese book “I Ching” describes
the possible arrangements of a set of n
elements, where n ≤ 6. In 1303, Chu, Shih-
chieh published a work entitled “Ssu Yuan
Yü Chien” (Precious mirror of the four
elements). The cover of the book depict-
sa triangle that shows the combinations of
k elements taken from a set of size n where
0 ≤ k ≤ n. This arithmetic triangle was also
explored by several European mathemati-
cians such as Stifel, Tartaglia and Hérigone,
and especially Pascal, who wrote the “Trai-
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té du triangle arithmétique” (Treatise of the
arithmetic triangle) in 1654 (although it was
not published until after his death in 1665).
Another document on combinations was
published in 1617 by Puteanus, Erycius
called “Erycii Puteani Pretatis Thaumata
in Bernardi Bauhusii è Societate Jesu Pro-
teum Parthenium”. However, combinatory
analysis only revealed its true power with
the works of Fermat (1601–1665) and Pas-
cal (1623–1662). The term “combinatory
analysis” was introduced by Leibniz (1646–
1716) in 1666. In his work “Dissertatio de
Arte Combinatoria,” he systematically stud-
ied problems related to arrangements, per-
mutations and combinations.
Otherworksin thisfieldshouldbementioned
here, such as thoseofWallis, J. (1616–1703),
reported in “The Doctrine of Permutations
and Combinations” (an essential and funda-
mental part of the “Doctrines of Chances”),
or thoseofBernoulli, J.,Moivre, A. de,Car-
dano, G. (1501–1576), and Galileo (1564–
1642).
In the second half of the nineteenth centu-
ry, Cayley (1829–1895) solved some prob-
lemsrelated to this typeofanalysisviagraph-
ics that he called “trees”. Finally, we should
also mention the important work of MacMa-
hon (1854–1929), “Combinatory Analysis”
(1915–1916).

EXAMPLES
See arrangement, combination and per-
mutation.

FURTHER READING
� Arithmetic triangle
� Arrangement
� Binomial
� Binomial distribution

� Combination
� Permutation

REFERENCES
MacMahon, P.A.: Combinatory Analysis,

vols. I and II.CambridgeUniversityPress,
Cambridge (1915–1916)

Stigler, S.: The History of Statistics, the
Measurement of Uncertainty Before
1900. Belknap, London (1986)

Takács, L.: Combinatorics. In: Kotz, S.,
Johnson, N.L. (eds.) Encyclopedia of Sta-
tistical Sciences, vol. 2. Wiley, New York
(1982)

Compatibility

Two events are said to be compatible if the
occurrence of the first event does not pre-
vent the occurrence of the second (or in other
words, if the intersection between the two
events is not null):

P(A ∩ B) �= 0 .

We can represent two compatible events A
and B schematically in the following way:

Two events A and B are incompatible (or
mutually exclusive) if the occurrence of A
prevents the occurrence of B, or vice versa.
We can represent this in the following way:
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This means that the probability that these
two events happen at the same time is zero:

A ∩ B = φ −→ P(A ∩ B) = 0 .

MATHEMATICAL ASPECTS
If two events A and B are compatible, the
probability that at least one of the events
occurs can be obtained using the following
formula:

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B) .

On the other hand, if the two events A and B
are incompatible, the probability that the
two events A and B happen at the same time
is zero:

P(A ∩ B) = 0 .

Theprobability thatat leastoneof theevents
occurs can be obtained by simply adding the
individual probabilities of A and B:

P(A ∪ B) = P(A)+ P(B) .

EXAMPLES
Consider a random experiment that
involves drawing a card from a pack of
52 cards. We are interested in the three fol-
lowing events:

A = “draw a heart”

B = “draw a queen”

C = “draw a club” .

The probabilities associated with each of
these events are:

P(A) = 13

52

P(B) = 4

52

P(C) = 13

52
.

The events A and B are compatible, because
it is possible to draw both a heart and a queen
at the same time (the queen of hearts). There-
fore, the intersection between A and B is the
queen of hearts. The probability of this event
is given by:

P(A ∩ B) = 1

52
.

The probability of the union of the two
events A and B (drawing either a heart or
a queen) is then equal to:

P(A ∪ B) = P(A)+ P(B)− P(A ∩ B)

= 13

52
+ 4

52
− 1

52

= 4

13
.

On the other hand, the events A and C
are incompatible, because a card cannot be
both a heart and a club! The intersection
between A and C is an empty set.

A ∩ C = φ .

The probability of the union of the two
events A and C (drawing a heart or a club) is
simply given by the sum of the probabilities
of each event:

P(A ∪ C) = P(A)+ P(C)

= 13

52
+ 13

52

= 1

2
.

FURTHER READING
Event
Independence
Probability
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Complementary
Consider the sample space � for a random
experiment.
For any event A, an element of �, we can
determine a new event B that contains all of
the elements of the sample space � that are
not included in A.
This event B is called the complement of A
with respect to� and is obtained by the nega-
tion of A.

MATHEMATICAL ASPECTS
Consider an event A, which is an element of
the sample space �.
The compliment of A with respect to � is
denoted Ā. It is given by the negation of A:

Ā = �− A

= {w ∈ �; w /∈ A} .

EXAMPLES
Consider a random experiment that con-
sists of flipping a coin three times.
The sample space of this experiment is

� = {TTT, TTH, THT, THH,

HTT, HTH, HHT, HHH} .
Consider the event

A = “Heads (H) occurs twice”

= {THH, HTH, HHT} .

The compliment of A with respect to � is
equal to

Ā = {TTT, TTH, THT, HTT, HHH}
= “Heads (H) does not occur twice” .

FURTHER READING
� Event
� Random experiment
� Sample space

Complete Linkage Method

The complete linkage method is a hierarchi-
cal classification method where the distance
between two classes is defined as the greatest
distance that could be obtained if we select
one element from each class and measure
the distance between these elements. In oth-
er words, it is the distance between the most
distant elements from each class.
For example, the distance used to construct
the distance table is the Euclidian distance.
Using the complete linkage method, the dis-
tance between two classes is given by the
Euclidian distance between the most distant
elements (the maximum distance).:

MATHEMATICAL ASPECTS
See cluster analysis.

FURTHER READING
� Classification
� Cluster analysis
� Dendrogram
� Distance
� Distance table

Completely
Randomized Design

A completely randomized design is a type of
experimental design where the experimental
units are randomly assigned to the different
treatments.
It is used when the experimental units are
believed to be “uniform;” that is, when there
is no uncontrolled factor in the experiment.

HISTORY
See design of experiments.
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EXAMPLES
We want to test five different drugs based on
aspirin. To do this, we randomly distribute
thefive typesofdrug to 40 patients.Denoting
the five drugs by A, B, C, D and E, we obtain
the following random distribution:

A is attributed to 10 people;

B is attributed to 12 people;

C is attributed to 4 people;

D is attributed to 7 people;

E is attributed to 7 people.

We have then a completely randomized
design where the treatments (drugs) are ran-
domly attributed to the experimental units
(patients), and each patient receives only one
treatment. We also assume that the patients
are “uniform:” that there are no differences
between them. Moreover, we assume that
there is no uncontrolled factor that inter-
venes during the treatment.
In this example, the completely randomized
design is a factorial experiment that uses
only one factor: the aspirin. The five types
of aspirin are different levels of the factor.

FURTHER READING
� Design of experiments
� Experiment

Composite
Index Number

Composite index numbers allow us to mea-
sure, with a single number, the relative varia-
tions within a group of variables upon mov-
ing from one situation to another.
The consumer price index, the wholesale
price index, the employment index and the

Dow-Jones index are all examples of com-
posite index numbers.
The aim of using composite index numbers
is to summarize all of the simple index num-
bers contained in a complex number (a value
formed from a set of simple values) in just
one index.
The most commonly used composite index
numbers are:
• The Laspeyres index;
• The Paasche index;
• The Fisher index.

HISTORY
See index number.

MATHEMATICAL ASPECTS
There are several methods of creating com-
posite index numbers.
To illustrate these methods, let us use a sce-
nario where a price index is determined for
the current period n with respect to a refer-
ence period 0.
1. Index number of the arithmetic means

(the sum method):

In/0 =
∑

Pn∑
P0
· 100 ,

where
∑

Pn is the sum of the prices of the
items at the current period, and

∑
P0 is

the sum of the prices of the items at the
reference period.

2. Arithmetic mean of simple index num-
bers:

In/0 = 1

N
·
∑(

Pn

P0

)
· 100 ,

where N is the number of goods consid-
ered and Pn

P0
is the simple index number

of each item.
In these two methods, each item has
the same importance. This is a situation
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which often does not correspond to real-
ity.

3. Index number of weighted arithmetic
means (the weighted sum method):
The general formula for an index number
calculated by the weighted sum method is
as follows:

In/0 =
∑

Pn · Q∑
P0 · Q · 100 .

Choosing the quantity Q for each item
considered could prove problematic here:
Q must be the same for both the numera-
tor and the denominator when calculating
a price index.
In the Laspeyres index, the value of Q
corresponding to the reference year is
used. In the Paasche index, thevalueofQ
for the current year is used. Other statisti-
cians have proposed using the value of Q
for a given year.

EXAMPLES
Consider the following table indicating
the(fictitious) prices of three consumer
goods in the reference year (1970) and their
current prices.

Price (francs)

Goods 1970 (P0) Now (Pn )

Milk 0.20 1.20

Bread 0.15 1.10

Butter 0.50 2.00

Using these numbers, we now examine the
three main methods of constructing compos-
ite index numbers.
1. Index number of arithmetic means (the

sum method):

In/0 =
∑

Pn∑
P0
· 100

= 4.30

0.85
· 100 = 505.9 .

According to this method, the price index
has increased by 405.9% (505.9 − 100)
between thereferenceyearand thecurrent
year.

2. Arithmetic mean of simple index num-
bers:

In/0 = 1

N
·
∑(

Pn

P0

)
· 100

= 1

3
·
(

1.20

0.20
+ 1.10

0.15
+ 2.00

0.50

)
· 100

= 577.8 .

This method gives a slightly different
result from the previous one, since we
obtain an increase of 477.8% (577.8 −
100) in the price index between the ref-
erence year and the current year.

3. Index number of weighted arithmetic
means (the weighted sum method):

In/0 =
∑

Pn · Q∑
P0 · Q · 100 .

This method is used in conjunction with
the Laspeyres index or the Paasche
index.

FURTHER READING
� Fisher index
� Index number
� Laspeyres index
� Paasche index
� Simple index number

Conditional Probability

Theprobabilityofaneventgiventhatanother
event is known to have occured.
The conditional probability is denoted
P(A|B), which is read as the “probability
of A conditioned by B.”
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HISTORY
The concept of independence dominated
probability theory until the beginning of
the twentieth century. In 1933, Kolmogorov,
Andrei Nikolaievich introduced the concept
of conditional probability; this concept now
plays an essential role in theoretical and
applied probability and statistics.

MATHEMATICAL ASPECTS
Consider a random experiment for which
we know the sample space �. Consider two
eventsAand B from this space.Theprobabi-
lity of A, P(A) depends on the set of possible
events in the experiment (�).

Now consider that we have supplementary
information concerning the experiment: that
the event B has occurred. The probability of
the event A occurring will then be a function
of thespaceB rather thana functionof�.The
probability of A conditioned by B is calculat-
ed as follows:

P(A|B) = P(A ∩ B)

P(B)
.

If A and B are two incompatible events,
the intersection between A and B is an
empty space. We will then have P(A|B) =
P(B|A) = 0.

DOMAINS AND LIMITATIONS
The concept of conditionalprobability is one
of themost importantones in probability the-

ory. This importance is mainly due to the fol-
lowing points:
1. We are often interested in calculating the

probability of an event when some infor-
mation about the result is already known.
In this case, the probability required is
a conditional probability.

2. Even when partial information on the
result is not known, conditional probabi-
lities can be useful when calculating the
probabilities required.

EXAMPLES
Consider a group of 100 cars distributed
according to two criteria, comfort and speed.
We will make the following distinctions:

a car can be

{
fast

slow
,

a car can be

{
comfortable

uncomfortable
.

A partition of the 100 cars based on these cri-
teria is provided in the following table:

fast slow total

comfortable 40 10 50

uncomfortable 20 30 50

total 60 40 100

Consider the following events:

A = “a fast car is chosen”

and B = “a comfortable car is chosen.”

The probability of these two events are:

P(A) = 0.6 ,

P(B) = 0.5 .

The probability of choosing a fast car is then
of 0.6, and that of choosing a comfortable car
is 0.5.
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Now imagine that we are given supplemen-
tary information: a fast car was chosen.
What, then, is the probability that this car is
also comfortable?
We calculate the probability of B knowing
that A has occurred, or the conditional proba-
bility of B depending on A:
We find in the table that

P(A ∩ B) = 0.4 .

⇒ P(B|A) = P(A ∩ B)

P(A)
= 0.4

0.6
= 0.667 .

The probability that the car is comfortable,
given that we know that it is fast, is there-
fore 2

3 .

FURTHER READING
� Event
� Probability
� Random experiment
� Sample space

REFERENCES
Kolmogorov, A.N.: Grundbegriffe der

Wahrscheinlichkeitsrechnung. Springer,
Berlin Heidelberg New York (1933)

Kolmogorov, A.N.: Foundations of the The-
ory of Probability. Chelsea Publishing
Company, New York (1956)

Confidence Interval
A confidence interval is any interval con-
structed around an estimator that has a par-
ticular probability of containing the true
value of the corresponding parameter of
a population.

HISTORY
According to Desrosières, A. (1988), Bow-
ley,A.L.wasoneof thefirst tobeinterested in

the concept of the confidence interval. Bow-
leypresentedhisfirstconfidence intervalcal-
culations to the Royal Statistical Society in
1906.

MATHEMATICAL ASPECTS
In order to construct a confidence interval
that contains the true value of the param-
eter θ with a given probability, an equation
of the following form must be solved:

P(Li ≤ θ ≤ Ls) = 1− α ,

where

θ is the parameter to be estimated,
Li is the lower limit of the interval,
Ls is the upper limit of the interval and
1 − α is the given probability, called the

confidence level of the interval.

The probabilityα measures the error risk of
the interval, meaning the probability that the
interval does not contain the true value of the
parameter θ .
In order to solve this equation, a function
f (t, θ) must be defined where t is an estima-
tor of θ , for which the probability distri-
bution is known.
Defining this interval for f (t, θ) involves
writing the equation:

P(k1 ≤ f (t, θ) ≤ k2) = 1− α ,

where the constants k1 and k2 are given by
the probability distribution of the function
f (t, θ). Generally, the error risk α is divid-
ed into two equal parts at α

2 distributed on
each side of the distribution of f (t, θ). If, for
example, the function f (t, θ) follows a cen-
tered and reduced normal distribution, the
constantsk1 andk2 willbesymmetricandcan
be represented by −z α

2
and +z α

2
, as shown

in the following figure.
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Once the constants k1 and k2 have been
found, the parameter θ must be isolated in
the equation given above. The confidence
interval θ is found in this way for the con-
fidence level 1− α.

DOMAINS AND LIMITATIONS
One should be very careful when interpret-
ing a confidence interval. If, for a confidence
level of 95%, we find a confidence interval
for a mean of μ where the lower and upper
limits are k1 and k2 respectively, we can con-
clude the following (for example):
“On the basis of the studied sample, we can
affirm that it is probable that the mean of
the population can be found in the interval
established.”
It would not be correct to conclude that there
is a 95% chance of finding the mean of the
population in the interval. Indeed, since μ

and the limitsk1 andk2 of the intervalarecon-
stants, the interval may or may not containμ.
However, if the statistician has the ability
to repeat the experiment (which consists of
drawing a sample from the population) sev-
eral times, 95% of the intervals obtained will
contain the true value of μ.

EXAMPLES
A business that fabricates lightbulbs wants
to test the average lifespan of its lightbulbs.
The distribution of the random variable X,
which represents the life span in hours, is
a normal distribution with mean μ and
standard deviation σ = 30.

In order to estimate μ, the business burns out
n = 25 lightbulbs.
It obtains an average lifespan of x̄ = 860
hours. It wants to establish a confidence
interval around the estimator x̄ at a confi-
dence level of 0.95. Therefore, the first step
is to obtain a function f (t, θ) = f (x̄, μ) for
the known distribution. Here we use:

f (t, θ) = f (x̄, μ) = x̄− μ
σ√

n

,

which follows a centered and reduced nor-
mal distribution. The equation P(k1 ≤
f (t, θ) ≤ k2) = 1− α becomes:

P

(
−z0.025 ≤ x̄− μ

σ√
n

≤ z0.025

)
= 0.95 ,

because the error risk α has been divided
into two equal parts at α

2 = 0.025.
The table for the centered and reduced nor-
mal distribution, the normal table, gives
z0.025 = 1.96. Therefore:

P

(
−1.96 ≤ x̄− μ

σ√
n

≤ 1.96

)
= 0.95 .

To obtain the confidence interval for μ at
a confidence level of 0.95, μ must be iso-
lated in the equation above:

P

(
−1.96 ≤ x̄− μ

σ√
n

≤ 1.96

)
= 0.95

P

(
−1.96

σ√
n
≤ x̄− μ ≤ 1.96

σ√
n

)

= 0.95

P

(
x̄− 1.96

σ√
n
≤ μ ≤ x̄+ 1.96

σ√
n

)

= 0.95 .
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By replacing x̄, σ and n with their respective
values, we obtain:

P

(
860− 1.96

30√
25
≤ μ ≤ 860

+ 1.96
30√
25

)
= 0.95

P(848.24 ≤ μ ≤ 871.76) = 0.95 .

The confidence interval for μ at the confi-
dence level 0.95 is therefore:

[848.24, 871.76] .

This means that we can affirm with a proba-
bility of 95% that this interval contains the
true value of the parameter μ that corre-
sponds to the average lifespan of the light-
bulbs.

FURTHER READING
� Confidence level
� Estimation
� Estimator

REFERENCES
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Confidence Level
The confidence level is the probability that
the confidence interval constructed around
an estimator contains the true value of the
corresponding parameter of the popula-
tion.

We designate the confidence level by (1 −
α), where α corresponds to the risk of error;
that is, to the probability that the confidence
interval does not contain the true value of the
parameter.

HISTORY
The first example of a confidence inter-
val appears in the work of Laplace (1812).
According to Desrosières, A. (1988), Bow-
ley, A.L. was one of the first to become inter-
ested in the concept of the confidence inter-
val.
See hypothesis testing.

MATHEMATICAL ASPECTS
Let θ be a parameter associated with a pop-
ulation. θ is to be estimated and T is its esti-
mator from a random sample. We evaluate
the precision of T as the estimator of θ by
constructing a confidence interval around
the estimator, which is often interpreted as
an error margin.
In order to construct this confidence interval,
we generally proceed in the following man-
ner. From the distribution of the estimator T,
we determine an interval that is likely to con-
tain the true value of the parameter. Let us
denote this interval by (T − ε, T + ε) and
the probability of true value of the paramter
being in this interval as (1−α). We can then
say that the error margin ε is related to α by
the probability:

P(T − ε ≤ θ ≤ T + ε) = 1− α .

The level of probability associated with an
intervalofestimation iscalled theconfidence
level or the confidence degree.
The interval T − ε ≤ θ ≤ T + ε is called
theconfidenceinterval forθat theconfidence
level 1−α. Let us use, for example,α = 5%,
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which will give the confidence interval of the
parameter θ to a probability level of 95%.
This means that, if we use T as an estima-
tor of θ , then the interval indicated will on
average contain the true value of the param-
eter 95 times out of 100 samplings, and it will
not contain it 5 times.
The quantity εof the confidence interval cor-
responds to half od the length of the interval.
This parameter therefore gives us an idea of
theerrormargin for theestimator.Foragiven
confidence level 1−α, the smaller the confi-
dence interval, more efficient the estimator.

DOMAINS AND LIMITATIONS
The most commonly used confidence levels
are 90%, 95% and 99%. However, if neces-
sary, other levels can be used instead.
Although we would like to use the highest
confidence level in order to maximize the
probability that the confidence interval con-
tains the true value of the parameter, but if
we increase theconfidence level,the interval
increases as well. Therefore, what we gain in
terms of confidence is lost in terms of preci-
sion, so have to find a compromise.

EXAMPLES
A company that produces ligthtbulbs wants
to study the mean lifetime of its bulbs. The
distribution of the random variable X that
represents the lifetime in hours is a normal
distribution of mean μ and standard devi-
ation σ = 30.
In order to estimateμ, thecompanyburnsout
a random sample of n = 25 bulbs.
The company obtains an average bulb life-
time of x̄ = 860 hours. It then wants to
construct a 95% confidence interval for μ

around the estimator x̄.

The standard deviation σ of the population
is known; the value of ε is zα/2 ·σX̄ . The val-
ue of zα/2 is obtained from the normal table,
and it depends on the probability attributed
to the parameter α. We then deduce the con-
fidence interval of the estimator of μ at the
probability level 1− α:

X̄ − zα/2σX̄ ≤ μ ≤ X̄ + zα/2σX̄ .

From the hypothesis that the bulb lifetime X
follows a normal distribution with mean μ

and standard deviation σ = 30, we deduce
that the expression

x̄− μ
σ√

n

follows a standard normal distribution.
From this we obtain:

P

[
−z0.025 ≤ x̄− μ

σ√
n

≤ z0.025

]
= 0.95 ,

where the risk of error α is divided into two
parts that both equal α

2 = 0.025.
The table of the standard normal distribution
(the normal table) gives z0.025 = 1.96. We
then have:

P

(
−1.96 ≤ x̄− μ

σ√
n

≤ 1.96

)
= 0.95 .

To get the confidence interval for μ, we must
isolate μ in the following equation via the
following transformations:

P

(
−1.96

σ√
n
≤ x̄− μ ≤ 1.96

σ√
n

)

= 0.95 ,

P

(
x̄− 1.96

σ√
n
≤ μ ≤ x̄+ 1.96

σ√
n

)

= 0.95 .
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Substituting x̄, σ and n for their respective
values, we evaluate the confidence interval:

860− 1.96 · 30√
25

≤ μ ≤ 860+ 1.96 · 30√
25

848.24 ≤ μ ≤ 871.76 .

We can affirm with a confidence level of 95%
that this interval contains the true value of
the parameter μ, which corresponds to the
mean bulb lifetime.

FURTHER READING
� Confidence interval
� Estimation
� Estimator
� Hypothesis testing

Contingency Table
A contingency table is a crossed table con-
taining various attributes of a population or
an observed sample.Contingency tableanal-
ysis consists of discovering and studying
the relations (if they exist) between these
attributes.
A contingency table can be a two-dimen-
sional table with r lines and c columns relat-
ing to two qualitative categorical variables
possessing, respectively, r and c categories.
It can also be multidimensional when the
number of qualitative variables is greater
then two: if, for example, the elements of
a population or a sample are characterized
by three attributes, the associated contingen-
cy table has the dimensions I×J×K, where I
represents the number of categories defining
the first attribute, J the number of categories
of the second attribute and K the number of
the categories of the third attribute.

HISTORY
The term “contingency,” used in relation to
a crossed table of categorical data, seems to
have originated with Pearson, Karl (1904),
who used he term “contingency” to mean
a measure of the total deviation relative to
the independence.
See also chi-square test of independence.

MATHEMATICAL ASPECTS
If we consider a two-dimensional table, con-
taining entries for two qualitative categori-
cal variables X and Y that have, respectively,
r and c categories, the contingency table is:

Categories of the variable Y

Categories
of the

variable X

Y1 . . . Yc Total
X1 n11 . . . n1c n1.

. . . . . . . . . . . . . . .
Xr nr1 . . . nrc nr.

Total n.1 . . . n.c n..

where

nij represents the observed frequency for
category i of variable X and category j
of variable Y;

ni. represents the sum of the frequencies
observed for category i of variable X,

n.j represents the sum of the observed fre-
quencies for category jofvariableY, and

n.. indicates the total number of observa-
tions.

In the case of a multidimensional table, the
elements of the table are denoted by nijk, rep-
resenting the observed frequency for catego-
ry i of variable X, category j of variable Y and
category k of variable Z.

DOMAINS AND LIMITATIONS
The independence of two categorical quali-
tativevariables represented in thecontingen-
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cy table can be assessed by performing a chi-
square test of independence.

FURTHER READING
� Chi-square test of independence
� Frequency distribution

REFERENCES
Fienberg, S.E.: The Analysis of Cross-

Classified Categorical Data, 2nd edn.
MIT Press, Cambridge, MA (1980)

Pearson, K.: On the theory of contingency
and its relation to association and normal
correlation. Drapers’ Company Research
Memoirs, Biometric Ser. I., pp. 1–35
(1904)

Continuous Distribution
Function

The distribution function of a continuous
random variable is defined to be the proba-
bility that the random variable takes a value
less than or equal to a real number.

HISTORY
See probability.

MATHEMATICAL ASPECTS
The function defined by

F(b) = P(X ≤ b) =
∫ b

−∞
f (x)dx .

is called the distribution function of a con-
tinuous random variable.
In other words, the density function f is
the derivative of the continuous distribution
function.

Properties of the Continuous Distribution
Function
1. F(x) is a continually increasing function

for all x;
2. F takes its values in the interval [0, 1];
3. lim

b→−∞F(b) = 0;

4. lim
b→∞F(b) = 1;

5. F(x) is a continuous and differentiable
function.

This distribution function can be graphical-
ly represented on a system of axes. The dif-
ferent values of the random variable X are
plotted on the abscissa and the correspond-
ing values of F(x) on the ordinate.

DOMAINS AND LIMITATIONS
The probability that the continuous ran-
dom variable X takes a value in the inter-
val ]a, b] for all a < b, meaning that P(a <

X ≤ b), is equal to F(b)− F(a), where F is
the distribution function of the random vari-
able X.
Demonstration: The event {X ≤ b} can be
written as the union of two mutually exclu-
sive events: {X ≤ a} and {a < X ≤ b}:
{X ≤ b} = {X ≤ a} ∪ {a < X ≤ b} .

By finding the probability on each side of
the equation, we obtain:

P(X ≤ b) = P({X ≤ a} ∪ {a < X ≤ b})
= P(X ≤ a)+ P(a < X ≤ b) .
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The sum of probabilities result from the fact
that the two events are exclusive.
By subtracting P(X ≤ a) on each side, we
have:

P(a < X ≤ b) = P(X ≤ b)− P(X ≤ a) .

Finally, from the definition of the distri-
bution function, we obtain:

P(a < X ≤ b) = F(b)− F(a) .

EXAMPLES
Consider a continuous random variable X
for which the density function is given by:

f (x) =
{

1 if 0 < x < 1

0 if not
.

The probability that X takes a value in the
interval [a, b], with 0 < a and b < 1, is as
follows:

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx

=
∫ b

a
1dx

= x
∣∣∣ba

= b− a .

Therefore, for 0 < x < 1 the distribution
function is:

F(x) = P(X ≤ x)

= P(0 ≤ X ≤ x)

= x .

This function is presented in the following
figure:

FURTHER READING
� Density function
� Probability
� Random experiment
� Random variable
� Value

Continuous Probability
Distribution

Every random variable has a correspond-
ing frequency distribution. For a continu-
ous random variable, this distribution is con-
tinuous too.
A continuous probability distribution is
a model that represents the frequency
distribution of a continuous variable in
the best way.

MATHEMATICAL ASPECTS
The probability distribution of a continu-
ous random variable X is given by its den-
sity function f (x) or its distribution func-
tion F(x).
It can generally be characterized by its
expected value:

E[X] =
∫

D
x · f (x) dx = μ

and its variance:

Var(X) =
∫

D
(x− μ)2 · f (x)dx

= E
[
(X − μ)2

]

= E
[
X2]− E[X]2 ,
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where D represents the interval covering the
range of values that X can take.
One essential property of a continuous ran-
dom variable is that the probability that it
will take a specific numerical value is zero,
whereas the probability that it will take a val-
ue over an interval (finite or infinite) is usu-
ally nonzero.

DOMAINS AND LIMITATIONS
The most famous continuous probability
distribution is the normal distribution.
Continuous probability distributions are
often used to approximate discrete proba-
bility distributions. They are used in model
construction just as much as they are used
when applying statistical techniques.

FURTHER READING
� Beta distribution
� Cauchy distribution
� Chi-square distribution
� Continuous distribution function
� Density function
� Discrete probability distribution
� Expected value
� Exponential distribution
� Fisher distribution
� Gamma distribution
� Laplace distribution
� Lognormal distribution
� Normal distribution
� Probability
� Probability distribution
� Random variable
� Student distribution
� Uniform distribution
� Variance of a random variable

REFERENCES
Johnson, N.L., Kotz, S.: Distributions in

Statistics: Continuous Univariate Distri-

butions, vols. 1 and 2. Wiley, New York
(1970)

Contrast
In analysis of variance a contrast is a linear
combination of the observations or factor
levels or treatments in a factorial experi-
ment, where the sum of the coefficients is
zero.

HISTORY
According to Scheffé,H. (1953),Tukey,J.W.
(1949 and 1951) was the first to propose
a method of simultaneously estimating all
of the contrasts.

MATHEMATICAL ASPECTS
Consider T1, T2, . . . , Tk, which are the sums
of n1, n2, . . . , nk observations. The linear
function

cj = c1j · T1 + c2j · T2 + · · · + ckj · Tk

is a contrast if and only if

k∑
i=1

ni · cij = 0 .

If each ni = n,meaning that if Ti is the sumof
the same number of observations, the con-
dition is reduced to:

k∑
i=1

cij = 0 .

DOMAINS AND LIMITATIONS
In most experiments involving several
treatments, it is interesting for the exper-
imenter to make comparisons between the
different treatments. The statistician uses
contrasts to carry out this type of compari-
son.
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EXAMPLES
When an analysis of variance is carried out
for a three-level factor, some contrasts of
interest are:

c1 = T1 − T2

c2 = T1 − T3

c3 = T2 − T3

c4 = T1 − 2 · T2 + T3 .

FURTHER READING
� Analysis of variance
� Experiment
� Factorial experiment

REFERENCES
Ostle, B.: Statistics in Research: Basic Con-

cepts and Techniques for Research Work-
ers. Iowa State College Press, Ames, IA
(1954)

Scheffé, H.: A method for judging all con-
trasts in theanalysisofvariance.Biometri-
ka 40, 87–104 (1953)
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ference Papers 1951. American Society
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Convergence

In statistics, the term “convergence” is relat-
ed to probability theory.This statistical con-
vergence is often termed stochastic conver-
gence in order to distinguish it from classical
convergence.

MATHEMATICAL ASPECTS
Different types of stochastic convergence
can be defined. Let {xn}n∈N be a set of ran-
dom variables. The most important types of
stochastic convergence are:
1. {Xn}n∈� converges in distribution to

a random variable X if

lim
n→∞FXn(z) = FX(z) ∀z ,

where FXn and FX are the distribution
functions of Xn and X, respectively.
This convergence is simply the point con-
vergence (well-known in mathematics)of
the set of the distribution functions of
the Xn.

2. {Xn}n∈� converges in probability to a ran-
dom variable X if:

lim
n→∞P (|Xn − X| > ε) = 0 ,

for every ε > 0 .

3. {Xn}n∈� exhibits almost sure conver-
gence to a random variable X if:

P
({

w| lim
n→∞Xn(w) = X(w)

})
= 1 .

4. Suppose that all elements of Xn have
a finite expectancy. The set {Xn}n∈� con-
verges in mean square to X if:

lim
n→∞E

[
(Xn − X)2

]
= 0 .

Note that:
• Almost sure convergence and mean

square convergence both imply a con-
vergence in probability;

• Convergence in probability (weak con-
vergence) implies convergence in distri-
bution.
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EXAMPLES
Let Xi be independent random variables uni-
formly distributed over [0, 1]. We define the
following set of random variables from Xi:

Zn = n · min
i=1,...,n

Xi .

We can show that the set {Zn}n∈� converges
in distribution to an exponential distri-
bution Z with a parameter of 1 as follows:

1− FZn(t) = P(Zn > t)

= P

(
min

i=1,...,n
Xi >

t

n

)

= P
(

X1 >
t

n
and X2 >

t

n
and

. . . Xn >
t

n

)

ind.=
n∏

i=1

P
(

Xi >
t

n

)
=

(
1− t

n

)n
.

Now, for limn→∞,
(
1− t

n

)n = exp (−t)
since:

lim
n→∞FZn = lim

n→∞P(Zn ≤ t)

= 1− exp(−t) = FZ .

Finally, let Sn be the number of success-
es obtained during n Bernoulli trials with
a probability of success p. Bernoulli’s theo-
rem tells us that Sn

n converges in probability
to a “random” variable that takes the value p
with probability 1.

FURTHER READING
� Bernoulli’s theorem
� Central limit theorem
� Convergence theorem
� De Moivre–Laplace Theorem
� Law of large numbers
� Probability
� Random variable
� Stochastic process

REFERENCES
Le Cam, L.M., Yang, C.L.: Asymptotics
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(1990)

Staudte, R.G., Sheater, S.J.: Robust Esti-
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(1990)

Convergence Theorem

The convergence theorem leads to the most
important theoretical results in probability
theory. Among them, we find the law of
large numbers and the central limit the-
orem.

EXAMPLES
The central limit theorem and the law of
large numbers are both convergence the-
orems.
The law of large numbers states that the
mean of a sum of identically distributed ran-
dom variables converges to their common
mathematical expectation.
On the other hand, the central limit theorem
states that the distribution of the sum of a suf-
ficiently large number of random variables
tends to approximate the normal distri-
bution.

FURTHER READING
� Central limit theorem
� Law of large numbers

Correlation Coefficient

The simple correlation coefficient is a mea-
sure of the strength of the linear relation
between two random variables.
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The correlation coefficient can take val-
ues that occur in the interval [−1; 1]. The
two extreme values of this interval represent
a perfectly linear relation between the vari-
ables, “positive” in the first case and “nega-
tive” in the other. The value 0 (zero) implies
the absence of a linear relation.
The correlation coefficient presented here is
also called the Bravais–Pearson correlation
coefficient.

HISTORY
The concept of correlation originated in the
1880s with the works of Galton, F.. In his
autobiographyMemories of My Life (1890),
he writes that he thought of this concept dur-
ing a walk in the grounds of Naworth Castle,
when a rain shower forced him tofindshelter.
According to Stigler, S.M. (1989), Por-
ter, T.M. (1986) was carrying out historical
research when he found a forgotten article
written by Galton in 1890 in TheNorth Ame-
rican Review, under the title “Kinship and
correlation”. In this article, which he pub-
lished right after its discovery, Galton (1908)
explained the nature and the importance of
the concept of correlation.
Thisdiscovery wasrelated to previousworks
of the mathematician, notably those on
heredity and linear regression. Galton had
been interested in this field of study since
1860. He published a work entitled “Natural
inheritance” (1889), which was the starting
point for his thoughts on correlation.
In 1888, in an article sent to the Royal Statis-
tical Society entitled “Co-relations and their
measurement chiefly from anthropometric
data,” Galton used the term “correlation” for
the first time, although he was still alter-
nating between the terms “co-relation” and
“correlation” and he spoke of a “co-relation
index.” On the other hand, he invoke the con-

cept of a negative correlation. According to
Stigler (1989), Galton only appeared to sug-
gest that correlation was a positive relation-
ship.
Pearson, Karl wrote in 1920 that correla-
tion had been discovered by Galton, whose
work “Natural inheritance” (1889) pushed
him to study this concept too, along with two
other researchers, Weldon and Edgeworth.
Pearson and Edgeworth then developed the
theory of correlation.
Weldon thought the correlation coefficient
shouldbecalled the“Galtonfunction.”How-
ever, Edgeworth replaced Galton’s term “co-
relation index” and Weldon’s term “Galton
function” by the term “correlation coeffi-
cient.”
According to Mudholkar (1982), Pear-
son, K. systemized the analysis of correla-
tion and established a theory of correlation
for three variables. Researchers from Uni-
versity College, most notably his assistant
Yule, G.U., were also interested in develop-
ing multiple correlation.
Spearman published the first study on rank
correlation in 1904.
Among the works that were carried out
in this field, it is worth highlighting those
of Yule, who in an article entitled “Why
do we sometimes get non-sense-correlation
between time-series” (1926) discussed the
problem of correlation analysis interpre-
tation. Finally, correlation robustness was
investigated by Mosteller and Tukey (1977).

MATHEMATICAL ASPECTS
Simple Linear Correlation Coefficient
Simple linear correlation is the term used to
describe a linear dependence between two
quantitative variables X and Y (see simple
linear regression).
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If X and Y are random variables that fol-
low an unknown joint distribution, then the
simple linear correlation coefficient is equal
to the covariance between X and Y divid-
ed by the product of their standard devia-
tions:

ρ = Cov(X, Y)

σXσY
.

Here Cov(X, Y) is the measured covariance
between X and Y; σX and σY are the respec-
tive standard deviations of X and Y.
Given a sample of size n, (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) from the joint distri-
bution, the quantity

r =

n∑
i=1

(Xi − X̄)(Yi − Ȳ)

√√√√
n∑

i=1

(Xi − X̄)2
n∑

i=1

(Yi − Ȳ)2

is an estimation of ρ; it is the sampling cor-
relation.
If we denote (Xi − X̄) by xi and (Yi − Ȳ) by
yi, we can write this equation as:

r =

n∑
i=1

xiyi

√√√√
(

n∑
i=1

x2
i

)(
n∑

i=1

y2
i

) .

Test of Hypothesis
To test the null hypothesis

H0 : ρ = 0

against the alternative hypothesis

H1 : ρ �= 0 ,

we calculate the statistic t:

t = r

Sr
,

where Sr is the standard deviation of the
estimator r:

Sr =
√

1− r2

n− 2
.

Under H0, the statistic t follows a Student
distribution with n−2 degrees of freedom.
For a given significance level α, H0 is reject-
ed if |t| ≥ t α

2 ,n−2; the value of t α
2 ,n−2 is the

critical value of the testgiven in theStudent
table.

Multiple Correlation Coefficient
Known as the coefficient of determina-
tion denoted by R2, determines whether
the hyperplane estimated from a multiple
linear regression is correctly adjusted to
the data points.
The value of the multiple determination
coefficient R2 is equal to:

R2 = Explained variation

Total variation

=

n∑
i=1

(Ŷi − Ȳ)2

n∑
i=1

(Yi − Ȳ)2

.

It corresponds to the square of the multiple
correlation coefficient. Notice that

0 ≤ R2 ≤ 1 .

In the case of simple linear regression, the
following relation can be derived:

r = sign(β̂1)
√

R2 ,
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where β̂1 is the estimator of the regression
coefficient β1, and it is given by:

β̂1 =

n∑
i=1

(Xi − X̄)(Yi − Ȳ)

n∑
i=1

(Xi − X̄)2

.

DOMAINS AND LIMITATIONS
If there is a linear relation between two vari-
ables, the correlation coefficient is equal to
1 or −1.
A positive relation (+) means that the two
variables vary in the same direction. If the
individuals obtain high scores in the first
variable (for example the independent
variable), they will have a tendency to
obtain high scores in the second variable
(the dependant variable). The opposite is
also true.
A negative relation (−) means that the indi-
viduals that obtain high scores in the first
variable will have a tendency to obtain low
scores in the second one, and vice versa.
Note that if thevariablesare independent the
correlation coefficient is equal to zero. The
reciprocal conclusion is not necessarily true.
The fact that two or more variables are relat-
ed in a statistical way is not sufficient to con-
clude that a cause and effect relation exists.
The existence of a statistical correlation is
not a proof of causality.
Statistics provides numerous correlation
coefficients. The choice of which to use for
a particular set of data depends on different
factors, such as:
• The type of scale used to express the vari-

able;
• The nature of the underlying distribution

(continuous or discrete);

• The characteristics of the distribution of
the scores (linear or nonlinear).

EXAMPLES
The data for two variables X and Y are
shown in the table below:

No of x = y =
order X Y X − X̄ Y − Ȳ xy x2 y2

1 174 64 −1.5 −1.3 1.95 2.25 1.69

2 175 59 −0.5 −6.3 3.14 0.25 36.69

3 180 64 4.5 −1.3 −5.85 20.25 1.69

4 168 62 −7.5 −3.3 24.75 56.25 10.89

5 175 51 −0.5 −14.3 7.15 0.25 204.49

6 170 60 −5.5 −5.3 29.15 30.25 28.09

7 170 68 −5.5 2.7 −14.85 30.25 7.29

8 178 63 2.5 −2.3 −5.75 6.25 5.29

9 187 92 11.5 26.7 307.05 132.25 712.89

10 178 70 2.5 4.7 11.75 6.25 22.09

Total 1755 653 358.5 284.5 1034.1

X̄ = 175.5 and Ȳ = 65.3 .

We now perform the necessary calculations
to obtain the correlation coefficient between
the two variables. Applying the formula
gives:

r =

n∑
i=1

xiyi

√√√√
(

n∑
i=1

x2
i

)(
n∑

i=1

y2
i

)

= 358.5√
284.5 · 1034.1

= 0.66 .

Test of Hypothesis
We can calculate the estimated standard
deviation of r:

Sr =
√

1− r2

n− 2
=

√
0.56

10− 2
= 0.266 .
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Calculating the statistic t gives:

t = r − 0

Sr
= 0.66

0.266
= 2.485 .

If we choose a significance level α of 5%,
the value from the Student table, t0.025,8, is
equal to 2.306.
Since |t| = 2.485 > t0.025,8 = 2.306, the
null hypothesis

H0 : ρ = 0

is rejected.

FURTHER READING
� Coefficient of determination
� Covariance
� Dependence
� Kendall rank correlation coefficient
� Multiple linear regression
� Regression analysis
� Simple linear regression
� Spearman rank correlation coefficient
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Correspondence Analysis

Correspondence analysis is a data analysis
technique that is used to describe contingen-
cy tables (or crossed tables). This analysis
takes the form of a graphical representa-
tion of the associations and the “correspon-
dence” between rows and columns.

HISTORY
Thetheoreticalprinciplesofcorrespondence
analysis date back to the works of Hart-
ley, H.O. (1935) (published under his orig-
inal name Hirschfeld) and of Fisher, R.A.
(1940) on contingency tables. They were
first presented in the framework of inferen-
tial statistics.
The term “correspondence analysis” first
appeared in the autumn of 1962, and the first
presentation of this method that referred to
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this term was given by Benzécri, J.P. in the
winter of 1963. In 1976 the works of Ben-
zécri, J.P., which retraced twelve years of his
laboratory work, were published, and since
then the algebraic and geometrical proper-
ties of this descriptive analytical tool have
become more widely known and used.

MATHEMATICAL ASPECTS
Consider a contingency table relating to two
categorial qualitative variables X and Y
that have, respectively, r and c categories:

Y1 Y2 . . . Yc Total

X1 n11 n12 . . . n1c n1.

X2 n21 n22 . . . n2c n2.

. . . . . . . . . . . . . . . . . .

Xr nr1 nr2 . . . nrc nr.

Total n.1 n.2 . . . n.c n..

where

nij represents the frequency that category i
of variable X and category j of variable
Y is observed,

ni. represents the sum of the observed fre-
quencies for category i of variable X,

n.j represents the sum of the observed fre-
quencies for category j of variable Y,

n.. represents the total number of observa-
tions.

We will assume that r ≥ c; if not we take
the transpose of the initial table and use
this transpose as the new contingency table.
The correspondence analysis of a contingen-
cy table with more lines than columns, is per-
formed as follows:
1. Tables of row profiles XI and column pro-

files XJ are constructed..
For a fixed line (column), the line (col-
umn) profile is the line (column) obtained

by dividing each element in this row (col-
umn)by thesum of theelements in the line
(column).
The line profile of row i is obtained by
dividing each term of row i by ni., which
is the sum of the observed frequencies in
the row.
The table of row profiles is constructed
by replacing each row of the contingency
table with its profile:

Y1 Y2 . . . Yc Total

X1
n11
n1.

n12
n1.

. . . n1c
n1.

1

X2
n21
n2.

n22
n2.

. . . n2c
n2.

1

. . . . . . . . . . . . . . . . . .

Xr
nr1
nr.

nr2
nr.

. . . nrc
nr.

1

Total n′.1 n′.2 . . . n′.c r

It is also common to multiply each ele-
mentof the tableby 100inorder toconvert
the terms into percentagesand tomake the
sum of terms in each row 100%.
The column profile matrix is constructed
in a similar way, but this time each col-
umn of the contingency table is replaced
with its profile: the column profile of col-
umn j is obtained by dividing each term of
column j by n.j, which is the sum of fre-
quencies observed for the category cor-
responding to this column.

Y1 Y2 . . . Yc Total

X1
n11
n.1

n12
n.2

. . . n1c
n.c

n′1.

X2
n21
n.1

n22
n.2

. . . n2c
n.c

n′2.

. . . . . . . . . . . . . . . . . .

Xr
nr1
n.1

nr2
n.2

. . . nrc
n.c

n′r.
Total 1 1 . . . 1 c

Thetablesof rowprofilesandcolumnpro-
files correspond to a transformation of the
contingency table that is used to make
the rows and columns comparable.
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2. Determine the inertia matrix V .
This is done in the following way:
• The weighted mean of the r column

coordinates is calculated:

gj =
r∑

i=1

ni.

n..
· nij

ni.
= n.j

n..
, j = 1, . . . , c .

• The c obtained values gj are written
r times in the rows of a matrix G;

• The diagonal matrix DI is constructed
with diagonal elements of ni.

n..
;

• Finally, the inertia matrix V is calcu-
lated using the following formula:

V = (XI − G)′ · DI · (XI − G) .

3. Using the matrix M, which consists of n..
n.j

terms on its diagonal and zero terms else-
where, we determine the matrix C:

C = √M · V · √M .

4. Find the eigenvalues (denoted kl) and
the eigenvectors (denoted vl) of this
matrix C.
The c eigenvalues kc, kc−1, . . . , k1 (writ-
ten in decreasing order) are the iner-
tia. The corresponding eigenvectors are
called the factorial axes (or axes of iner-
tia).
Foreach eigenvalue,wecalculate thecor-
responding inertiaexplained bythe facto-
rial axis. For example, the first factorial
axis explains:

100 · k1
c∑

l=1

kl

(in %) of inertia.

In the same way, the two first factorial
axes explain:

100 · (k1 + k2)
c∑

l=1

kl

(in %) of inertia.

If we want to know, for example, the num-
ber of eigenvalues and therefore the fac-
torial axes that explain at least 3/4 of the
total inertia, we sum the explained iner-
tia from each of the eigenvalues until we
obtain 75%.
We then calculate the main axes of inertia
from these factorial axes.

5. The main axes of inertia, denoted ul, are
then given by:

ul =
√

M−1 · vl ,

meaning that its jth component is:

ujl =
√

n.j

n..
· vjl .

6. We then calculate the main components,
denoted by yk, which are the orthogonal
projections of the row coordinates on the
main axes of inertia: the ith coordinate of
the lth main component takes the follow-
ing value:

yil = xi ·M · ul ,

meaning that

yil =
c∑

j=1

nij

ni.

√
n..

n.j
· vjl

is the coordinate of row i on the lth axis.
7. After the main components yl (of the

row coordinates) have been calculated,
we determine the main components of the
column coordinates (denoted by zl) using
the yl, thanks to the transaction formulae:

zjl = 1√
kl

r∑
i=1

nij

n.j
· yil ,

for j = 1, 2, . . . , c;

yil = 1√
kl

c∑
i=1

nij

ni.
· zjl ,

for i = 1, 2, . . . , r .
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zjl is the coordinate of the column j on
the lth factorial axis.

8. The simultaneous representation of the
row coordinates and the column coordi-
nates on a scatter plot with two factori-
al axes, gives a signification to the axis
depending on the points it is related to.
Thequality of the representation is related
to the proportion of the inertia explained
by the two main axes used. The closer the
explained inertia is to 1, the better the
quality.

9. It can be useful to insert additional point-
rows or column coordinates (illustrative
variables) along with the active variables
used for the correspondence analysis.
Consider an extra row-coordinate:

(ns1, ns2, ns3, . . . , nsc)

of profile-row
(

ns1

ns.
,

ns2

ns.
, . . . ,

nsc

ns.

)
.

The lth main component of the extra row-
dot is given by the second formula of
point 7):

yil = 1√
kl

c∑
j=1

nsj

ns.
· zjl ,

for i = 1, 2, . . . , r .

We proceed the same way for a column
coordinate, but apply the first formula of
point 7 instead.

DOMAINS AND LIMITATIONS
When simultaneously representing the row
coordinate and the column coordinate, it
is not advisable to interpret eventual prox-
imities crossed between lines and columns
because the two points are not in the same
initial space. On the other hand it is interest-
ing to interpret the position of a row coor-
dinate by comparing it to the set of column
coordinate (and vice versa).

EXAMPLES
Consider the example of a company that
wants to find out how healthy its staff. One
of the subjects covered in the question-
naire concerns the number of medical visits
(dentists included) per year. Three possible
answers are proposed:
• Between 0 and 6 visits;
• Between 7 and 12 visits;
• More than 12 visits per year.
The staff questioned are distributed into five
categories:
• Managerial staff members over 40;
• Managerial staff members under 40;
• Employees over 40;
• Employees under 40;
• Office personnel.
The resultsare reported in the followingcon-
tingency table, to which margins have been
added:

Number of visits
per year

0 to 6 7 to 12 > 12 Total

Managerial
staff members
> 40

5 7 3 15

Managerial
staff members
< 40

5 5 2 12
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Number of visits
per year

0 to 6 7 to 12 > 12 Total

Employees
> 40

2 12 6 20

Employees
< 40

24 18 12 54

Office
personnel

12 8 4 24

Total 48 50 27 125

Using these data we will describe the eight
main steps that should be followed to obtain
a graphical representation of employee
health via correspondence analysis.
1. Wefirstdetermine the tableof lineprofiles

matrix XI, by dividing eachelementby the
sum of the elements of the line in which
it is located:

0.333 0.467 0.2 1
0.417 0.417 0.167 1
0.1 0.6 0.3 1
0.444 0.333 0.222 1
0.5 0.333 0.167 1
1.794 2.15 1.056 5

and the table of column profiles by divid-
ing each element by the sum of the ele-
ments in the corresponding column:

0.104 0.14 0.111 0.355

0.104 0.1 0.074 0.278

0.042 0.24 0.222 0.504

0.5 0.36 0.444 1.304

0.25 0.16 0.148 0.558

1 1 1 3

2. We then calculate the matrix of inertia V
for the frequencies (given by ni.

n..
for val-

ues of i from 1 to 5) by proceeding in the
following way:

• We start by calculating the weighted
mean of the five line-dots:

gj =
5∑

i=1

ni.

n..
· nij

ni.
= n.j

n..

for j = 1, 2 and 3;
• We then write these three values five

times in thematrix G, as shown below:

G =

⎡
⎢⎢⎢⎢⎢⎣

0.384 0.400 0.216
0.384 0.400 0.216
0.384 0.400 0.216
0.384 0.400 0.216
0.384 0.400 0.216

⎤
⎥⎥⎥⎥⎥⎦

.

• We then construct a diagonal matrix
DI containing the ni.

n..
;

• Finally, we calculate the matrix of
inertia V , as given by the following
formula:

V = (XI − G)′ · DI · (XI − G) ,

which, in this case, gives:

V =
⎡
⎣

0.0175 −0.0127 −0.0048
−0.0127 0.0097 0.0029
−0.0048 0.0029 0.0019

⎤
⎦ .

3. We define a third-order square matrix M
that contains n..

n.j
terms on its diagonal and

zero terms everywhere else:

M =
⎡
⎣

2.604 0 0
0 2.5 0
0 0 4.630

⎤
⎦ .

The square root of M, denoted
√

M, is
obtained by taking the square root of each
diagonal element of M. Using this new
matrix, we determine

C = √M · V · √M

C =
⎡
⎣

0.0455 −0.0323 −0.0167
−0.0323 0.0243 0.0100
−0.0167 0.0100 0.0087

⎤
⎦ .
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4. The eigenvalues of C are obtained by
diagonalizing the matrix. Arranging
these values in decreasing order gives:

k1 = 0.0746

k2 = 0.0039

k3 = 0 .

The explained inertia is determined for
each of these values. For example:

k1 :
0.0746

0.0746+ 0.0039
= 95.03% ,

k2 :
0.0039

0.0746+ 0.0039
= 4.97% .

For the last one, k3, the explained inertia
is zero.
The first two factorial axes, associated
with the eigenvalues k1 and k2, explain all
of the inertia. Since the third eigenvalue
is zero it is not necessary to calculate the
eigenvector that is associated with it. We
focus on calculating the first two normal-
ized eigenvectors then:

v1 =
⎡
⎣

0.7807
−0.5576
−0.2821

⎤
⎦ and

v2 =
⎡
⎣

0.0807
0.5377
−0.8393

⎤
⎦ .

5. We then calculate the main axes of inertia
by:

ui =
√

M−1 · vi , for i = 1 and 2 ,

where
√

M−1 is obtained by inverting the
diagonal elements of

√
M.

We find:

u1 =
⎡
⎣

0.4838
−0.3527
−0.1311

⎤
⎦ and

u2 =
⎡
⎣

0.0500
0.3401
−0.3901

⎤
⎦ .

6. We then calculate the main components
by projecting the rows onto the main
axes of inertia. Constructing an auxiliary
matrix U formed from the two vectors u1

and u2, we define:

Y = XI ·M ·U

=

⎡
⎢⎢⎢⎢⎢⎣

−0.1129 0.0790
0.0564 0.1075
−0.5851 0.0186

0.1311 −0.0600
0.2349 0.0475

⎤
⎥⎥⎥⎥⎥⎦

.

Wecansee thecoordinatesof thefiverows
written horizontally in this matrix Y; for
example, the first column indicates the
components related to the first factorial
axis and the second indicates the compo-
nents related to the second axis.

7. We then use the coordinates of the rows to
findthoseof thecolumnsvia thefollowing
transition formulae written as matrices:

Z = K · Y ′ · XJ ,

where:

K is the second-order diagonal matrix
that has 1/

√
ki terms on its diagonal

and zero terms elsewhere;

Y′ is the transpose of the matrix contain-
ing the coordinates of the rows, and;

XJ is the column profile matrix.
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We obtain the matrix:

Z =
[

0.3442 −0.2409 −0.1658
0.0081 0.0531 −0.1128

]
,

where each column contains the compo-
nents of one of the three column coor-
dinates; for example, the first line corre-
sponds to each coordinate on the first fac-
torial axis and the second line to each
coordinate on the second axis.
We can verify the transition formula that
gives Y from Z:

Y = XI · Z′ · K

using the same notation as seen previous-
ly.

8. We can now represent the five categories
of people questioned and the three cate-
gories of answers proposed on the same
factorial plot:

We can study this factorial plot at three dif-
ferent levels of analysis, depending:
• The set of categories for the people ques-

tioned;
• The set of modalities for the medical vis-

its;
• Both at the same time.
In the first case, close proximity between
tworows(betweentwocategoriesofperson-
nel) signifies similar medical visit profiles.
On the factorial plot, this is the case for the

employees under 40 (Y4) and the office per-
sonnel (Y5). We can verify from the table of
line profiles that the percentages for these
two categories are indeed very similar.
Similarly, the proximity between two
columns (representing two categories relat-
ed to the number of medical visits) indicates
similar distributions of people within the
business for these categories. This can be
seen for the modalities Z2 (from 7 to 12
medical visits per year) and Z3 (more than
12 visits per year).
If we consider the rows and the columns
simultaneously (and not separately as we did
previously), it becomes possible to identi-
fy similarities between categories for cer-
tain modalities. For example, the employ-
ees under 40 (Y4) and the office personnel
(Y5) seem to have the same behavior towards
health: high proportions of them (0.44 and
0.5 respectively) go to the doctor less than
6 times per year (Z1).
In conclusion, axis 1 is confronted on one
side with the categories indicating an aver-
ageorhigh numberofvisits (Z2 and Z3)—the
employees or the managerial staff members
over 40 (Y1 and Y3)—and on the other side
with themodalitiesassociatedwith lownum-
bersofvisits (Z1):Y2,Y4 and Y5.Thefirst fac-
tor can then be interpreted as the importance
of medical control according to age.

FURTHER READING
� Contingency table
� Data analysis
� Eigenvalue
� Eigenvector
� Factorial axis
� Graphical representation
� Inertia matrix
� Matrix
� Scatterplot
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Covariance
The covariance between two random vari-
ables X and Y is the measure of how much
two random variables vary together.
If X and Y are independent random vari-
ables, the covariance of X and Y is zero. The
converse, however, is not true.

MATHEMATICAL ASPECTS
Consider X and Y, two random variables
defined in the same sample space �. The
covarianceofX andY,denotedbyCov(X, Y),
is defined by

Cov(X, Y) = E[(X − E[X])(Y − E[Y])] ,

where E[.] is the expected value.

Developing the right side of the equation
gives:

Cov(X, Y) = E[XY − E[X]Y − XE[Y]

+ E[X]E[Y]]

= E[XY]− E[X]E[Y]

− E[X]E[Y]+ E[X]E[Y]

= E[XY]− E[X]E[Y] .

Properties of Covariance
Consider X, Y and Z, which are random
variables defined in the same sample space
�, and a, b, c and d, which are constants. We
find that:
1. Cov(X, Y) = Cov(Y, X)

2. Cov(X, c) = 0
3. Cov(aX + bY, Z) =

a Cov(X, Z)+ bCov(Y, Z)

4. Cov(X, cY + dZ) =
c Cov(X, Y)+ dCov(X, Z)

5. Cov(aX + b, cY + d) = ac Cov(X, Y).

Consequences of the Definition
1. If X and Y are independent random vari-

ables,
Cov(X, Y) = 0 .

In fact E[XY] = E[X]E[Y], meaning that:

Cov(X, Y) = E[XY]− E[X]E[Y] = 0 .

The reverse is not generally true:
Cov(X, Y) = 0 does not necessarily
imply that X and Y are independent.

2. Cov(X, X) = Var(X)

where Var(X) represents the variance
of X.
In fact:

Cov(X, X) = E[XX]− E[X]E[X]

= E[X2]− (E[X])2

= Var(X) .
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DOMAINS AND LIMITATIONS
Consider two random variables X and Y,
and their sum X + Y. We then have:

E[X + Y] = E[X]+ E[Y] and

Var(X + Y) = Var(X)+ Var(Y)

+ 2Cov(X, Y) .

We now show these results for discrete vari-
ables. If Pji = P(X = xi, Y = yj) we have:

E[X + Y] =
∑

i

∑
j

(xi + yj)Pji .

=
∑

i

∑
j

xiPji +
∑

i

∑
j

yjPji

=
∑

i

xi

⎛
⎝∑

j

Pji

⎞
⎠

+
∑

j

yj

(∑
i

Pji

)

=
∑

i

xiPi +
∑

j

yjPj

= E[X]+ E[Y] .

Moreover:

Var(X + Y) = E[(X + Y)2]− (E[X + Y])2

= E[X2]+ 2E[XY]+ E[Y2]

− (E[X + Y])2

= E[X2]+ 2E[XY]+ E[Y2]

− (E[X]+ E[Y])2

= E[X2]+ 2E[XY]+ E[Y2]

− (E[X])2 − 2E[X]E[Y]− (E[Y])2

= Var(X)+ Var(Y)+ 2(E[XY]

− E[X]E[Y])

= Var(X)+ Var(Y)+ 2Cov(X, Y) .

These results can be generalized for n
random variables X1, X2, . . . , Xn, with xi

having an expected value equal to E(Xi)

and a variance equal to Var(Xi). We then
have:

E[X1 + X2 + · · · + Xn]

= E[X1]+ E[X2]+ · · · + E[Xn]

=
n∑

i=1

E[Xi] .

Var(X1 + X2 + · · · + Xn)

= Var(X1)+ Var(X2)+ · · · + Var(Xn)

+ 2[Cov(X1, X2)+ · · · + Cov(X1, Xn)

+ Cov(X2, X3)+ · · · + Cov(X2, Xn)

+ · · · + Cov(Xn−1, Xn)]

=
n∑

i=1

Var(Xi)+ 2
n−1∑
i=1

∑
j>i

Cov(Xi, Xj) .

EXAMPLES
Consider two psychological tests carried
out in succession. Each subject receives
a grade X of between 0 and 3 for the first test
and a grade Y of between 0 and 2 for the sec-
ond test. Given that the probabilities of X
being equal to 0, 1, 2 and 3 are respectively
0.16, 0.3, 0.41 and 0.13, and that theprobabi-
lities of Y being equal to 0, 1 and 2 are respec-
tively 0.55, 0.32 and 0.13, we have:

E[X] = 0 · 0.16+ 1 · 0.3+ 2 · 0.41

+ 3 · 0.13

= 1.51

E[Y] = 0 · 0.55+ 1 · 0.32+ 2 · 0.13

= 0.58

E[XY] = 0 · 0 · 0.16 · 0.55

+ 0 · 1 · 0.16 · 0.32+ . . .

+ 3 · 2 · 0.13 · 0.13

= 0.88 .
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We can then calculate the covariance of X
and Y:

Cov(X, Y) = E[XY]− E[X]E[Y]

= 0.88− (1.51 · 0.58)

= 0.00428 .

FURTHER READING
� Correlation coefficient
� Expected value
� Random variable
� Variance of a random variable

Covariance Analysis

Covariance analysis is a method used to esti-
mate and test the effects of treatments. It
checks whether there is a significant differ-
ence between the means of several treat-
ments by taking into account the observed
values of the variable before the treatment.
Covariance analysis is a precise way of per-
forming treatment comparisons because it
involves adjusting the response variable Y to
a concomitant variable X which corresponds
to the values observed before the treatment.

HISTORY
Covariance analysis dates back to 1930. It
was first developed by Fisher, R.A. (1932).
After that, other authors applied covariance
analysis to agricultural and medical prob-
lems. For example, Bartlett, M.S. (1937)
applied covariance analysis to his studies on
cottoncultivation inEgyptandonmilkyields
from cows in winter.
Delurry, D.B. (1948) used covariance anal-
ysis to compare the effects of different med-
ications (atropine, quinidine, atrophine) on
rat muscles.

MATHEMATICAL ASPECTS
We consider here a covariance analysis of
a completely randomized design implying
one factor.
The linear model that we will consider is the
following:

Yij = μ+ τi + βXij + εij ,

i = 1, 2, . . . , t , j = 1, 2, . . . , ni

where

Yij represents observation j, receiving
treatment i,

μ is the general mean common to all treat-
ments,

τi is the actual effect of treatment i on th
observation,

Xij is the value of the concomitant variable,
and

εij is the experimental error in observation
Yij.

Calculations
In order to calculate the F ratio that will help
us to determine whether there is a significant
difference between treatments, we need to
work out sums of squares and sums of prod-
ucts. Therefore, if X̄i. and Ȳi. are respectively
the means of the X values and the Y values
for treatment i, and if X̄.. and Ȳ.. are respec-
tively the means of all the values of X and Y,
we obtain the formulae given below.
1. The total sum of squares for X:

SXX =
t∑

i=1

ni∑
j=1

(Xij − X̄..)
2 .

2. The total sum of squares for Y (SYY)
is calculated in the same way as SXX, but X
is replaced by Y.
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3. The total sum of products of X and Y:

SXY =
t∑

i=1

ni∑
j=1

(Xij − X̄..)(Yij − Ȳ..) .

4. The sum of squares of the treatments for
X:

TXX =
t∑

i=1

ni∑
j=1

(X̄i. − X̄..)
2 .

5. The sum of squares of the treatments for Y
(TYY )
is calculated in the same way as TXX, but X
is replaced by Y.

6. The sum of the products of the treatments
of X and Y:

TXY =
t∑

i=1

ni∑
j=1

(X̄i. − X̄..)(Ȳi. − Ȳ..) .

7. The sum of squares of the errors for X:

EXX =
t∑

i=1

ni∑
j=1

(Xij − X̄i.)
2 .

8. Thesum of thesquaresof theerrors forY:
is calculated in thesameway asEXX, butX
is replaced by Y.

9. Thesumofproductsof theerrorsX andY:

EXY =
t∑

i=1

ni∑
j=1

(Xij − X̄i.)(Yij − Ȳi.) .

Substituting in appropriate values and calcu-
lating theseformulaecorrespondstoananal-
ysis of variance for each of X, Y and XY.
The degrees of freedom associated with
these different formulae are as follows:

1. For the total sum:
t∑

i=1

ni − 1.

2. For the sum of the treatments: t − 1.

3. For the sum of the errors:
t∑

i=1

ni − t.

Adjustment of the variable Y to the con-
comitant variable X yields two new sums of
squares:
1. The adjusted total sum of squares:

SStot = SYY − S2
XY

SXX
.

2. The adjusted sum of the squares of the
errors:

SSerr = EYY − E2
XY

EXX
.

The new degrees of freedom for these two
sums are:
1.

∑t
i=1 ni − 2;

2.
∑t

i=1 ni− t− 1, where a degree of free-
dom is subtracted due to the adjustment.

The third adjusted sum ofsquares, theadjust-
ed sum of the squares of the treatments, is
given by:

SStr = SStot − SSerr .

Thishasthesamenumberofdegrees of free-
dom t − 1 as before.

Covariance Analysis Table
We now have all of the elements needed to
establish the covariance analysis table. The
sums of squares divided by the number of
degrees of freedom gives the means of the
squares.

Source
of var-
iation

Degrees
of free-
dom

Sum of squares
and of products

t∑

i=1
x2

i

t∑

i=1
xi yi

t∑

i=1
y2

i

Treat-
ments

t − 1 TXX TXY TYY

Errors
∑t

i=1 ni−t EXX EXY EYY

Total
∑t

i=1 ni−1 SXX SXY SYY
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Note: the numbers in the
∑

x2
i and

∑
y2

i
columns cannot be negative; on the other
hand, the numbers in the

∑t
i=1 xiyi column

can be negative.

Adjustment

Source
of var-
iation

Degrees of
freedom

Sum of
squares

Mean of
squares

Treat-
ments

t− 1 SStr MCtr

Errors
∑t

i=1 ni−t−1 SSerr MCerr

Total
∑t

i=1 ni − 2 TSS

F Ratio: Testing the Treatments
The F ratio, used to test the null hypothesis
that there is a significant difference between
the means of the treatments once adjusted
to the variable X, is given by:

F = MCtr

MCerr
.

The ratio follows a Fisher distribution with
t−1 and

∑t
i=1 ni−t−1 degrees of freedom.

The null hypothesis

H0 : τ1 = τ2 = . . . = τt

will be rejected at the significance level α if
the F ratio is superior or equal to the value
of the Fisher table, in other words if:

F ≥ Ft−1,
∑t

i=1 ni−t−1,α .

It is clear that we assume that the β coeffi-
cient is different from zero when perform-
ing covarianceanalysis. If this isnot thecase,
a simple analysis of variance is sufficient.

Test Concerning the β Slope
So, we would like to know whether there is
a significant effect of the concomitant vari-

ables before the application of the treatment.
To test this hypothesis, we will assume the
null hypothesis to be

H0 : β = 0

and the alternative hypothesis to be

H1 : β �= 0 .

The F ratio can be established:

F = E2
XY/EXX

MCerr
.

It follows a Fisher distribution with 1 and∑t
i=1 ni − t − 1 degrees of freedom. The

null hypothesis will be rejected at the sig-
nificance level α if the F ratio is superior to
or equal to the value in the Fisher table, in
other words if:

F ≥ F1,
∑t

i=1 ni−t−1,α .

DOMAINS AND LIMITATIONS
The basic hypotheses that need to be con-
structed before initiating a covariance anal-
ysisare thesameasthoseusedforananalysis
of variance or a regression analysis. These
are the hypotheses of normality, homogene-
ity (homoscedasticity), variances and inde-
pendence.
In covariance analysis, as in an analysis of
variance, the null hypothesis stipulates that
the independent samples come from differ-
ent populations that have identical means.
Moreover, since there are always conditions
associated with any statistical technique,
those that apply to covariance analysis are as
follows:
1. The population distributions must be

approximately normal, if not completely
normal.
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2. The populations from which the samples
are taken must have the same variance
σ 2, meaning:

σ 2
1 = σ 2

2 = . . . = σ 2
k ,

where k is the number of populations to
be compared.

3. The samples must be chosen random-
ly and all of the samples must be inde-
pendent.

We must also add a basic hypothesis specif-
ic to covariance analysis, which is that the
treatments that were carried out must not
influence thevaluesof theconcomitantvari-
able X.

EXAMPLES
Consider an experiment consisting of com-
paring the effects of three different diets on
a population of cows.
The data are presented in the form of a table,
which includes the three different diets, each
of which was administered to five porch. The
initial weights are denoted by the concomi-
tantvariableX (inkg),andthegains inweight
(after treatment) are denoted by Y:

Diets

1 2 3

X Y X Y X Y

32 167 26 182 36 158

29 172 33 171 34 191

22 132 22 173 37 140

23 158 28 163 37 192

35 169 22 182 32 162

Wefirstcalculate thevarioussumsof squares
and products:
1. The total sum of squares for X:

SXX =
3∑

i=1

5∑
j=1

(Xij − X̄..)
2

= (32− 29.8667)2 + . . .

+ (32− 29.8667)2

= 453.73 .

2. The total sum of squares for Y:

SYY =
3∑

i=1

5∑
j=1

(Yij − Ȳ..)
2

= (167− 167.4667)2 + . . .

+ (162− 167.4667)2

= 3885.73 .

3. The total sum of the products of X and Y:

SXY =
3∑

i=1

5∑
j=1

(Xij − X̄..)(Yij − Ȳ..)

= (32− 29.8667)

· (167− 167.4667)+ . . .

+ (32− 29.8667)

· (162− 167.4667)

= 158.93 .

4. The sum of the squares of the treatments
for X:

TXX =
3∑

i=1

5∑
j=1

(X̄i. − X̄..)
2

= 5(28.2− 29.8667)2

+ 5(26.2− 29.8667)2

+ 5(35.2− 29.8667)2

= 223.33 .

5. The sum of the squares of the treatments
for Y:

TYY =
3∑

i=1

5∑
j=1

(Ȳi. − Ȳ..)
2
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= 5(159.6− 167.4667)2

+ 5(174.2− 167.4667)2

+ 5(168.6− 167.4667)2

= 542.53 .

6. The sum of the products of the treatments
of X and Y:

TXY =
3∑

i=1

5∑
j=1

(X̄i. − X̄..)(Ȳi. − Ȳ..)

= 5(28.2− 29.8667)

· (159.6− 167.4667)+ . . .

+ 5(35.2− 29.8667)

· (168.6− 167.4667)

= −27.67 .

7. The sum of the squares of the errors for X:

EXX =
3∑

i=1

5∑
j=1

(Xij − X̄i.)
2

= (32− 28.2)2 + . . .+ (32− 35.2)2

= 230.40 .

8. The sum of the squares of the errors for Y:

EYY =
3∑

i=1

5∑
j=1

(Yij − Ȳi.)
2

= (167− 159.6)2 + . . .

+ (162− 168.6)2

= 3343.20 .

9. The sum of the products of the errors of X
and Y:

EXY =
3∑

i=1

5∑
j=1

(Xij − X̄i.)(Yij − Ȳi.)

= (32− 28.2)(167− 159.6)+ . . .

+ (32− 35.2)(162− 168.6)

= 186.60 .

The degrees of freedom associated with
these different calculations are as follows:
1. For the total sums:

3∑
i=1

ni − 1 = 15− 1 = 14 .

2. For the sums of treatments:

t − 1 = 3− 1 = 2 .

3. For the sums of errors:

3∑
i=1

ni − t = 15− 3 = 12 .

Adjusting the variable Y to the concomitant
variable X yields two new sums of squares:
1. The total adjusted sum of squares:

SStot = SYY − S2
XY

SXX

= 3885.73− 158.932

453.73
= 3830.06 .

2. The adjusted sum of the squares of the
errors:

SSerr = EYY − E2
XY

EXX

= 3343.20− 186.602

230.40
= 3192.07 .

The new degrees of freedom for these two
sums are:
1.

∑3
i=1 ni − 2 = 15− 2 = 13;

2.
∑3

i=1 ni − t − 1 = 15− 3− 1 = 11.
The adjusted sum of the squares of the treat-
ments is given by:

SStr = SStot − SSerr

= 3830.06− 3192.07

= 637.99 .
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Thishasthesamenumberofdegrees of free-
dom as before:

t − 1 = 3− 1 = 2 .

We now have all of the elements required in
order to establish acovarianceanalysis table.
The sums of squares divided by the degrees
of freedom gives the means of the squares.

Source
of var-
iation

Degrees
of free-
dom

Sum of squares
and of products

3∑

i=1
x2

i

3∑

i=1
xi yi

3∑

i=1
y2

i

Treat-
ments

2 223.33 −27.67 543.53

Errors 12 230.40 186.60 3343.20

Total 14 453.73 158.93 3885.73

Adjustment

Source of
variation

Degrees
of free-
dom

Sum of
squares

Mean of
squares

Treat-
ments

2 637.99 318.995

Errors 11 3192.07 290.188

Total 13 3830.06

The F ratio, which is used to test the null
hypothesis that there is no significant differ-
ence between the means of the treatments
once adjusted to the variable Y, is given by:

F = MCtr

MCerr
= 318.995

290.188
= 1.099 .

Ifwechooseasignificance levelofα = 0.05,
the value of F in the Fisher table is equal to:

F2,11,0.05 = 3.98 .

Since F < F2,11,0.05, we cannot reject the
null hypothesis and so we conclude that
there is no significant difference between the
responses to the three diets once the vari-
able Y is adjusted to the initial weight X.

FURTHER READING
� Analysis of variance
� Design of experiments
� Missing data analysis
� Regression analysis
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Covariation

It is often interesting, particularly in eco-
nomics, to compare two time series.
Since we wish to measure the level of depen-
dence between two variables, this is some-
what reminiscent of the concept of correla-
tion. However, in this case, since the time
series are bound by a third variable, time,
finding the correlation coefficient would
only lead to an artificial relation.
Indeed, if two time series are considered, xt

and yt, which represent completely inde-
pendent phenomenaand are linear functions
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of time:
xt = a · t + b ,

yt = c · t + d ,

where a, b, c and d are constants, it is
always possible to eliminate the time fac-
tor t between the two equations and to obtain
a functional relation of the type y = e ·
x+ f . This relation states that there is a lin-
ear dependence between the two time series,
which is not the case.
Therefore, measuring the correlation
between the evolutions of two phenome-
na over time does not imply the existence of
a link between them. The term covariation is
thereforeused instead ofcorrelation, and this
dependence is measured using a covariation
coefficient. We can distinguish between:
• The linear covariation coefficient;
• The tendency covariation coefficient.

HISTORY
See correlation coefficient and time series.

MATHEMATICAL ASPECTS
In order to compare two time series yt and xt,
the first step is to attempt to represent them
on the same graphic.
However,visualcomparison isgenerally dif-
ficult. The following change of variables is
performed:

Yt = yt − ȳ

Sy
and Xt = xt − x̄

Sx
,

which are the centered and reduced variables
where Sy and Sx are the standard deviations
of the respective time series.
We can distinguish between the following
covariation coefficients:
• The linear covariation coefficient

The form of this expression is identical to
the one for the correlation coefficient r,

but here the calculations do not have the
same grasp because the goal is to detect
the eventual existence of relation between
variations that are themselves related to
time and to measure the order of magni-
tude

C =

n∑
t=1

(xt − x̄) · (yt − ȳ)

√√√√
n∑

t=1

(xt − x̄)2 ·
n∑

t=1

(yt − ȳ)2

.

This yields values of between−1 and+1.
If it is close to ±1, there is a linear rela-
tion between the time evolutions of the
two variables.
Notice that:

C =

n∑
t=1

Xt · Yt

n
.

Here n is the number of observations,
while Yt and Xt are the centered and
reduced series obtained by a change of
variable, respectively.

• The tendency covariation coefficient
The influence exerted by the means is
eliminated by calculating:

K =

n∑
t=1

(xt − Txt) · (yt − Tyt)

√√√√
n∑

t=1

(xt − Txt )
2 ·

n∑
t=1

(yt − Tyt)
2

.

The means x̄ and ȳ have simply been
replaced with the values of the secular
trends Txt and Tyt of each time series.
The tendency covariation coefficient K
also takes values between−1 to +1, and
the closer it gets to ±1, the stronger the
covariation between the time series.
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DOMAINS AND LIMITATIONS
There are many examples of the need to
compare two time series in economics: for
example, when comparing the evolution of
the price of a product to the evolution of
the quantity of the product on the market,
or the evolution of the national revenue to
the evolution of real estate transactions. It
is important to know whether there is some
kind of dependence between the two phe-
nomena that evolve over time: this is the goal
of measuring the covariation.
Visually comparing two time series is an
important operation, but this is often a dif-
ficult task because:
• The data undergoing comparison may

come from very different domains and
present very different orders of magni-
tude, so it is preferable to study the devi-
ations from the mean.

• The peaks and troughs of two time series
may have very different amplitudes; it is
then preferable to homogenize the dis-
persions by linking the variations back
to the standard deviation of the time
series.

Visual comparison is simplified if we
consider the centered and reduced vari-
ables obtained via the following variable
changes:

Yt = yt − ȳ

Sy
and Xt = xt − x̄

Sx
.

Also, in a similar way to the correlation
coefficient, nonlinear relations can exist
between two variables that give a C value
that is close to zero.
It is therefore important to becautiousduring
interpretation.
The tendency covariation coefficient is pref-
erentiallyusedwhentherelationbetweenthe
time series is not linear.

EXAMPLES
Let us study the covariation between two
time series.
The variable xt represents the annual pro-
duction of an agricultural product; the vari-
able yt is its average annual price per unit in
constant euros.

t xt yt

1 320 5.3

2 660 3.2

3 300 2.2

4 190 3.4

5 320 2.7

6 240 3.5

7 360 2.0

8 170 2.5

8∑
t=1

xt = 2560 ,
8∑

t=1

yt = 24.8 ,

giving x̄ = 320 and ȳ = 3.1.

xt − x̄ (xt − x̄)2 yt − ȳ (yt − ȳ)2

0 0 2.2 4.84

340 115600 0.1 0.01

−20 400 −0.9 0.81

−130 16900 0.3 0.09

0 0 −0.4 0.16

−80 6400 0.4 0.16

40 1600 −1.1 1.21

−150 22500 0.6 0.36

8∑
t=1

(xt − x̄)2 = 163400 ,

8∑
t=1

(yt − ȳ)2 = 7.64 ,

giving σx = 142.9 and σy = 0.98.
The centered and reduced values Xt and Yt

are then calculated.
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Xt Yt Xt · Yt Xt · Yt−1

0.00 2.25 0.00 5.36

2.38 0.10 0.24 −0.01

−0.14 −0.92 0.13 0.84

−0.91 0.31 −0.28 0.00

0.00 −0.41 0.00 0.23

−0.56 0.41 −0.23 0.11

0.28 −1.13 −0.32 1.18

−1.05 −0.61 0.64

The linear covariation coefficient is then cal-
culated:

C =

8∑
t=1

Xt · Yt

8
= 0.18

8
= 0.0225 .

If the observations Xt are compared
with Yt−1, meaning the production this year
is compared with that of the previous year,
we obtain:

C =

8∑
t=2

Xt · Yt−1

8
= 7.71

8
= 0.964 .

The linear covariation coefficient for a shift
of one year is very strong. There is a strong
(positive) covariation with a shift of one year
between the two variables.

FURTHER READING
� Correlation coefficient
� Moving average
� Secular trend
� Standard deviation
� Time series
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George Waddel, her professor, in his sta-
tistical laboratory, which led to her becom-
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she started studying for a doctorate in psych-
ology. In 1933, before finishing her doctor-
ate, Snedecor, George, then the director of
the Iowa State Statistical Laboratory, con-
vinced her to become his assistant, which

she agreed to, although she remained in the
field of psychology because she worked on
the evaluation of statistical test in psych-
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data.
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director of the Department of Experimental
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Cp Criterion

The Cpciterion is a model selection citerion
in linear regression. For a linear regression
model with p parameters including any con-
stant term, in the model, a rule of thumb is
to select a model in which the value of Cp is
close to the number of terms in the model.

HISTORY
Introduced by Mallows, Colin L. in 1964, the
model selection criterion Cp has been used
ever since as a criterion for evaluating the
goodness of fit of a regression model.
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MATHEMATICAL ASPECTS
Let Yi = β0 + ∑p−1

j=1 Xjiβj + εi, i =
1, . . . , n be a multiple linear regression
model. Denote the mean square error as
MSE(̂yi). The criterion introduced in this
section can be used to choose the model with
the minimal sum of mean square errors:

∑
MSE (̂yi) =

∑(
E

(
(̂yi − yi)

2
)

− σ 2 (1− 2hii)

)

= E
(∑

(̂yi − yi)
2
)

− σ 2
∑

(1− 2hii)

= E(RSS)− σ 2(n− 2p) ,

where

n is the number of observations,
p is the number of estimated parameters,
hii are the diagonal elements of the hat

matrix, and
ŷi is the estimator of yi.

Recall the following property of the hii:

∑
hii = p .

Define the coefficient


p =
∑

MSE (̂yi)

σ 2

= E (RSS)− σ 2 (n− 2p)

σ 2

= E (RSS)

σ 2 − n+ 2p .

If the model is correct, we must have:

E (RSS) = (n− p) σ 2 ,

which implies


p = p .

In practice, we estimate 
p by

Cp = RSS

σ̂ 2
− n+ 2p ,

where σ̂ 2 is an estimator of σ 2. Here we esti-
mate σ 2 using the s2 of the full model. For
this full model, we actually obtain Cp = p,
which is not an interesting result. Howev-
er, for all of the other models, where we use
onlyasubsetof theexplanatoryvariables, the
coefficient Cp can have values that are differ-
ent from p. From the models that incorporate
onlyasubsetof theexplanatoryvariables,we
then choose those for which the value of Cp

is the closest to p.
If we have k explanatory variables, we can
also define the coefficient Cp for a model that
incorporates a subset X1, . . . , Xp−1, p ≤ k of
the k explanatory variables in the following
manner:

Cp = (n− k) RSS
(
X1, . . . , Xp−1

)

RSS (X1, . . . , Xk)

− n+ 2p ,

where RSS
(
X1, . . . , Xp−1

)
is the sum of the

squares of the residuals related to the mod-
el with p − 1 explanatory variables, and
RSS (X1, . . . , Xk) is the sum of the squares of
the residuals related to the model with all k
explanatory variables. Out of the two models
that incorporate p−1 explanatory variables,
wechoose, according to thecriterion, theone
forwhich thevalueof thecoefficientCp is the
closest to p.

DOMAINS AND LIMITATIONS
The Cp criterion is used when selecting vari-
ables. When used with the R2 criterion, this
criterion can tell us about the goodness of
fit of the chosen model. The underlying idea
of such a procedure is the following: instead
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of trying to explain one variable using all
of the available explanatory variables, it is
sometimes possible to determine an under-
lying model with a subset of these variables,
and the explanatory power of this model is
almost the same as that of the model contain-
ing all of the explanatory variables. Anoth-
er reason for this is that the collinearity of
the explanatory variables tends to decrease
estimator precision, and so it can be useful
to delete some superficial variables.

EXAMPLES
Consider some data related to the Chicago
fires of 1975. We denote the variable cor-
responding to the logarithm of the number
of fires per 1000 households per district i of
Chicago in 1975 by Y, and the variables cor-
responding to the proportion of households
constructed before 1940, to the number of
thefts and to the median revenue per district
i by X1, X2 and X3, respectively.
Sincethissetcontainsthreeexplanatoryvari-
ables, we have 23 = 8 possible models. We
divide the eight possible equations into four
sets:
1. Set A contains the only equation without

explanatory variables:

Y = β0 + ε .

2. Set B contains three equations with one
explanatory variable:

Y = β0 + β1X1 + ε

Y = β0 + β2X2 + ε

Y = β0 + β3X3 + ε .

3. Set C contains three equations with two
explanatory variables:

Y = β0 + β1X1 + β2X2 + ε

Y = β0 + β1X1 + β3X3 + ε

Y = β0 + β2X2 + β3X3 + ε .

4. Set D contains one equation with three
explanatory variables:

Y = β0 + β1X1 + β2X2 + β3X3 + ε .

District X1 X2 X3 Y

i xi1 xi2 xi3 yi

1 0.604 29 11.744 1.825

2 0.765 44 9.323 2.251

3 0.735 36 9.948 2.351

4 0.669 37 10.656 2.041

5 0.814 53 9.730 2.152

6 0.526 68 8.231 3.529

7 0.426 75 21.480 2.398

8 0.785 18 11.104 1.932

9 0.901 31 10.694 1.988

10 0.898 25 9.631 2.715

11 0.827 34 7.995 3.371

12 0.402 14 13.722 0.788

13 0.279 11 16.250 1.740

14 0.077 11 13.686 0.693

15 0.638 22 12.405 0.916

16 0.512 17 12.198 1.099

17 0.851 27 11.600 1.686

18 0.444 9 12.765 0.788

19 0.842 29 11.084 1.974

20 0.898 30 10.510 2.715

21 0.727 40 9.784 2.803

22 0.729 32 7.342 2.912

23 0.631 41 6.565 3.589

24 0.830 147 7.459 3.681

25 0.783 22 8.014 2.918

26 0.790 29 8.177 3.148

27 0.480 46 8.212 2.501

28 0.715 23 11.230 1.723

29 0.731 4 8.330 3.082

30 0.650 31 5.583 3.073

31 0.754 39 8.564 2.197

32 0.208 15 12.102 1.281

33 0.618 32 11.876 1.609

34 0.781 27 9.742 3.353
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District X1 X2 X3 Y

i xi1 xi2 xi3 yi

35 0.686 32 7.520 2.856

36 0.734 34 7.388 2.425

37 0.020 17 13.842 1.224

38 0.570 46 11.040 2.477

39 0.559 42 10.332 2.351

40 0.675 43 10.908 2.370

41 0.580 34 11.156 2.380

42 0.152 19 13.323 1.569

43 0.408 25 12.960 2.342

44 0.578 28 11.260 2.747

45 0.114 3 10.080 1.946

46 0.492 23 11.428 1.960

47 0.466 27 13.731 1.589

Source: Andrews and Herzberg (1985)

Wedenote theresultingmodels in thefollow-
ing way: 1 for X1, 2 for X2, 3 for X3, 12 for
X1 and X2, 13 for X1 and X3, 23 for X2 and
X3, and 123 for the full model. The follow-
ing table represents the results obtained for
the Cp criterion for each model:

Model Cp

1 32.356

2 29.937

3 18.354

12 18.936

13 14.817

23 3.681

123 4.000

If we consider a model from group B (con-
taining one explanatory variable), the num-
ber of estimated parameters is p = 2 and
none of the Cp values for the three models
approaches 2. If we now consider a model
from group C (with two explanatory vari-
ables), p equals 3 and the Cp of model 23
approaches this. Finally, for the complete
model we find that Cp = 4, which is

also the number of estimated parameters, but
this is not an interesting result as previous-
ly explained. Therefore, the most reasonable
choice for the model appears to be:

Y = β0 + β2X2 + β3X3 + ε .

FURTHER READING
� Coefficient of determination
� Collinearity
� Hat matrix
� Mean squared error
� Regression analysis
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Cramér, Harald

Cramér, Harald (1893–1985) entered the
University of Stockholm in 1912 in order
to study chemistry and mathematics; he
became a student of Leffler, Mittag and
Riesz, Marcel. In 1919, Cramér was named
assistantprofessorat theUniversityofStock-
holm. At the same time, he worked as an
actuary for an insurance company, Svenska
Life Assurance, which allowed him to study
probability and statistics.
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His main work in actuarial mathematics is
Collective Risk Theory. In 1929, he was
asked to create a new department in Stock-
holm, and he became the first Swedish pro-
fessor of actuarial and statistical mathe-
matics. At the end of the Second World War
he wrote his principal work Mathematical
Methods of Statistics, which was published
for the first time in 1945 and was recently (in
1999) republished.
SomeprincipalworksandarticlesofCramér,
Harald

1946 Mathematical Methods of Statistics.
Princeton University Press, Prince-
ton, NJ.

1946 Collective Risk Theory: A Survey of
the Theory from the Point of View of
the Theory of Stochastic Processes.
Skandia Jubilee Volume, Stockholm.

Criterion Of Total
Mean Squared Error

The criterion of total mean squared error
is a way of comparing estimations of the
parameters of a biased or unbiased model.

MATHEMATICAL ASPECTS
Let

β̂ = (
β̂1, . . . , β̂p−1

)

beavectorofestimatorsfor theparametersof
a regression model. We define the total mean
square error, TMSE, of the vector β̂ of esti-
mators as being the sum of the mean squared
errors (MSE) of its components.
We recall that

MSE
(
β̂j
) = E

((
β̂j − βj

)2
)

= V
(
β̂j
)+ (

E
(
β̂j
)− βj

)2
,

where E (.) and V (.) are the usual symbols
used for the expected value and the vari-
ance. We define the total mean squared error
as:

TMSE(β̂j) =
p−1∑
j=1

MSE
(
β̂j
)

=
p−1∑
j=1

E
((

β̂j − βj
)2

)

=
p−1∑
j=1

[
Var

(
β̂j
)+(

E
(
β̂j
)−βj

)2
]

= (p− 1)σ 2 · Trace (V)

+
p−1∑
j=1

(
E

(
β̂j
)− βj

)2
.

where V is the variance-covariance matrix
of β̂.

DOMAINS AND LIMITATIONS
Unfortunately,whenwewant tocalculate the
total mean squared error

TMSE
(
β̂
) =

p−1∑
j=1

E
((

β̂j − βj
)2

)

of a vector of estimators

β̂ = (
β̂1, . . . , β̂p−1

)

for the parameters of the model

Yi = β0 + β1Xs
i1 + . . .+ βp−1Xs

ip−1 + εi ,

we need to know the values of the model
parametersβj,which areobviously unknown
for all real data. The notation Xs

j means that
the data for the jth explanatory variable were
standardized (see standardized data).
Therefore, in order to estimate these TMSE
we generate data from a structural similarly
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model. Using a generator of pseudo-random
numbers, we can simulate all of the data
for the artificial model, analyze it with dif-
ferent models of regression (such as simple
regression or ridge regression), and calcu-
late what we call the total squared error,
TSE, of the vectors of the estimators β̂ relat-
ed to each method:

TSE(β̂) =
p−1∑
j=1

(β̂j − βj)
2 .

We repeat this operation 100 times, ensur-
ing that the 100 data sets are pseudo-
independent. For each model, the average
of 100 TSE gives a good estimation of the
TMSE. Note that some statisticians prefer
the model obtained by selecting variables
due to its simplicity. On the other hand, other
statisticians prefer the ridge method because
it uses all of the available information.

EXAMPLES
We can generally compare the following
regression methods: linear regression by
mean squares, ridge regression, or the vari-
able selection method.
In the following example, thirteen portions
of cement have been examined.Each portion
is composed of four ingredients, given in the
table. The aim is to determine how the quan-
tities xi1, xi2, xi3 and xi4 of these four ingredi-
ents influence the quantity yi, the heat given
out due to the hardening of the cement.
Heat given out by the cement

Portion Ingredient Heat

1 2 3 4

i xi1 xi2 xi3 xi4 yi

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

Portion Ingredient Heat

1 2 3 4

i xi1 xi2 xi3 xi4 yi

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 47 4 26 115.9

11 1 40 23 34 83.9

12 11 66 9 12 113.3

13 10 68 8 12 109.4

yi quantity of heat given out due to the
hardening of the ith portion (in joules);

xi1 quantity of ingredient 1 (tricalcium alu-
minate) in the ith portion;

xi2 quantity of ingredient 2 (tricalcium sil-
icate) in the ith portion;

xi3 quantity of ingredient 3 (tetracalcium
alumino-ferrite) in the ith portion;

xi4 quantity of ingredient 4 (dicalcium sil-
icate) in the ith portion.

In this paragraph we will compare the esti-
mators obtained by least squares (LS)
regression with those obtained by ridge
regression (R) and those obtained with the
variable selection method (SV) via the total
mean squared error TMSE. The three esti-
mation vectors obtained from each method
are:

ŶLS = 95.4+ 9.12X1
s + 7.94X2

s

+ 0.65X3
s − 2.41X4

s

ŶR = 95.4+ 7.64X1
s + 4.67X2

s

− 0.91X3
s − 5.84X4

s

ŶSV = 95.4+ 8.64X1
s + 10.3X2

s

We note here that all of the estimations
were obtained from standardized explanato-
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ry variables. We compare these three estima-
tions using the total mean squared errors of
the three vectors:

β̂LS =
(
β̂LS1 , β̂LS2 , β̂LS3 , β̂LS4

)′

β̂R =
(
β̂R1 , β̂R2 , β̂R3 , β̂R4

)′

β̂SV =
(
β̂SV1 , β̂SV2 , β̂SV3 , β̂SV4

)′
.

Here the subscript LS corresponds to the
method of least squares, R to the ridge
method and SV to the variable selection
method, respectively. For this latter method,
theestimationsfor thecoefficientsof theuns-
elected variables in the model are considered
to be zero. In our case we have:

β̂LS = (9.12, 7.94, 0.65,−2.41)′

β̂R = (7.64, 4.67,−0.91,−5.84)′

β̂SV = (8.64, 10.3, 0, 0)′ .

We have chosen to approximate the under-
lying process that results in the cement data
by the following least squares equation:

YiMC = 95.4+ 9.12Xs
i1 + 7.94Xs

i2

+ 0.65Xs
i3 − 2.41Xs

i4 + εi .

The procedure consists of generating
13 random error terms ε1, . . . , ε13 100
times based on a normal distribution with
mean 0 and standard deviation 2.446 (recall
that 2.446 is the least squares estimator
of σ for the cement data). We then cal-
culate Y1LS, . . . , Y13LS using the Xs

ij val-
ues in the data table. In this way, we gen-
erate 100 Y1LS, . . . , Y13LS samples from
100 ε1, . . . , ε13 samples.
The three methods are applied to each of
these 100 Y1LS, . . . , Y13LS samples(always
using the same values for Xs

ij), which yields

100 estimators β̂LS, β̂R and β̂SV. Note that

these three methods are applied to these
100 samples without any influence from the
results from the equations

ŶiLS = 95.4+ 9.12Xs
i1 + 7.94Xs

i2

+ 0.65Xs
i3 − 2.41Xs

i4 ,

ŶiR = 95.4+ 7.64Xs
i1 + 4.67Xs

i2

− 0.91Xs
i3 − 5.84Xs

i4 and

ŶiSV = 95.4+ 8.64Xs
i1 + 10.3Xs

i2

obtained for the original sample. Despite the
fact that the variable selection method has
chosen the variables Xi1 and Xi2 in ŶiSV =
95.4+ 8.64Xs

i1+ 10.3Xs
i2, it is possible that,

for one of these 100 samples, the method has
selected better Xi2 and Xi3 variables, or only
Xi3, or all of the subset of the four available
variables. In the same way, despite the fact
that the equation ŶiR = 95.4 + 7.64Xs

i1 +
4.67xXs

i2− 0.91Xs
i3− 5.84Xs

i4 was obtained
with k = 0.157, the value of k is recalculat-
ed for each of these 100 samples (for more
details refer to theridgeregressionexample).
From these 100 estimations of β̂LS, β̂SV and
β̂R, we can calculate 100 ETCs for each
method, which we label as:

ETCLS =
(
β̂LS1 − 9.12

)2

+
(
β̂LS2 − 7.94

)2

+
(
β̂LS3 − 0.65

)2

+
(
β̂LS4 + 2.41

)2

ETCR =
(
β̂R1 − 9.12

)2

+
(
β̂R2 − 7.94

)2

+
(
β̂R3 − 0.65

)2

+ (
βR4 + 2.41

)2
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ETCSV =
(
β̂SV1 − 9.12

)2

+
(
β̂SV2 − 7.94

)2

+
(
β̂SV3 − 0.65

)2

+
(
β̂SV4 + 2.41

)2
.

Themeansof the100valuesofETCLS,ETCR

and ETCSV are the estimations of TMSELS,
TMSESV and TMSER: the TMSE estimations
for the three considered methods.
After this simulation was performed, the fol-
lowing estimations were obtained:

TMSELS = 270 ,

TMSER = 75 .

TMSESV = 166 .

These give the following differences:

TMSELS − TMSESV = 104 ,

TMSELS − TMSER = 195 ,

TMSESV − TMSER = 91 .

Since the standard deviations of 100 ob-
served differences are respectively 350,
290 and 280, we can calculate the approxi-
mate 95% confidence intervals for the differ-
ences between the TMSEs of two methods

TMSELS − TMSESV = 104± 2 · 350√
100

,

TMSELS − TMSER = 195± 2 · 290√
100

,

TMSESV − TMSER = 91± 2 · 280√
100

.

We get

34 < TMSELS − TMSESV < 174 ,

137 < TMSELS − TMSER < 253 ,

35 < TMSESV − TMSER < 147 .

We can therefore conclude (at least for the
particular model used to generate the simu-
lated data, and taking into account our aim—
to geta smallTMSE), that the ridgemethod is
the best of the methods considered, followed
by the varible selection procedure.

FURTHER READING
� Bias
� Expected value
� Hat matrix
� Mean squared error
� Ridge regression
� Standardized data
� Variance
� Variance–covariance matrix
� Weighted least-squares method
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Critical Value

Inhypothesis testing, thecriticalvalue is the
limit value at which we take the decision to
reject thenull hypothesisH0, foragivensig-
nificance level.

HISTORY
The concept of a critical value was intro-
duced by Neyman, Jerzy and Pearson,
Egon Sharpe in 1928.

MATHEMATICAL ASPECTS
The critical value depends on the type of
the test used (two-sided test or one-sided
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test on the right or the left), the probability
distribution and the significance level α.

DOMAINS AND LIMITATIONS
The critical value is determined from the
probability distribution of the statistic
associated with the test. It is determined by
consulting the statistical table correspond-
ing to this probability distribution (normal
table, Student table, Fisher table, chi-
square table, etc).

EXAMPLES
A company produces steel cables. Using
a sample of size n = 100, it wants to ver-
ify whether the diameters of the cables con-
form closely enough to the requireddiameter
0.9 cm in general.
The standard deviation σ of the popula-
tion is known and equals 0.05 cm.
In this case, hypothesis testing involves
a two-sided test. The hypotheses are the fol-
lowing:

null hypothesis H0 : μ = 0.9

alternative hypothesis H1 : μ �= 0.9 .

To a significance level of α = 5%, by look-
ing at the normal table we find that the crit-
ical value z α

2
equals 1.96.

FURTHER READING
� Confidence interval
� Hypothesis testing
� Significance level
� Statistical table

REFERENCE
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Cyclical Fluctuation

Cyclical fluctuations is a term used to
describe oscillations that occur over long
periods about the secular trend line or curve
of a time series.

HISTORY
See time series.

MATHEMATICAL ASPECTS
Consider Yt, a time series given by its com-
ponents; Yt can be written as:
• Yt = Tt ·St ·Ct ·It (multiplicative model),

or;
• Yt = Tt + St + Ct + It (additive model).
where

Yt is the data at time t;
Tt is the secular trend at time t;
St is the seasonal variation at time t;
Ct is the cyclical fluctuation at time t, and;
It is the irregular variation at time t.

Thefirststepwheninvestigatinga timeseries
is always to determine the secular trend Tt,
and then to determine the seasonal varia-
tion St. It is then possible to adjust the initial
data of the time series Yt according to these
two components:

• Yt

St · Tt
= Ct · It (multiplicative model);

• Yt − St − Tt = Ct + It (additive model).
To avoid cyclical fluctuations, a weighted
moving average is established over a few
months only. The use of moving averages
allows use to smooth the irregular varia-
tions It by preserving the cyclical fluctua-
tions Ct.
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The choice of a weighted moving average
allows us to give more weight to the cen-
tral values compared to the extreme val-
ues, in order to reproduce cyclical fluctua-
tionsinamoreaccurateway.Therefore, large
weights will be given to the central values
and small weights to the extreme values.
For example, for a moving average con-
sidered for an interval of five months, the
weights−0.1, 0.3, 0.6, 0.3 and−0.1 can be
used; since their sum is 1, there will be no
need for normalization.
If the values of Ct · It (resulting from the
adjustments performed with respect to the
secular trend and to the seasonal varia-
tions) are denoted by Xt, the value of the
cyclical fluctuation for the month t is deter-
mined by:

Ct = −0.1 · Xt−2 + 0.3 · Xt−1 + 0.6 · Xt

+ 0.3 · Xt+1 − 0.1 · Xt+2 .

DOMAINS AND LIMITATIONS
Estimating cyclical fluctuations allows us to:
• Determine the maxima or minima that

a time series can attain.
• Perform short- or medium-term forecast-

ing.
• Identify the cyclical components.
The limitations and advantages of the use of
weightedmoving averageswhenevaluating
cyclical fluctuations are the following:
• Weighted moving averages can smooth

a curve with cyclical fluctuations which
still retaining most of the original fluc-
tuation, because they preserve the ampli-
tudes of the cycles in an accurate way.

• The use of an odd number of months to
establish the moving average facilitates
better centering of the values obtained.

• It is difficult to study the cyclical fluctu-
ation of a time series because the cycles

usually vary in length and amplitude.This
isdue to thepresenceofamultitudeof fac-
tors, where the effects of these factors can
change from one cycle to the other. None
of the models used to explain and predict
such fluctuations have been found to be
completely satisfactory.

EXAMPLES
Let us establish a moving average con-
sidered over five months of data adjusted
according to the secular trend and seasonal
variations.
Letusalsouse theweights−0.1,0.3,0.6,0.3,
−0.1; since their sum is equal to 1, there is
no need for normalization.
Let Xi be the adjusted values of Ci · Ii:

Ci = −0.1 · Xi−2 + 0.3 · Xi−1 + 0.6 · Xi

+ 0.3 · Xi+1 − 0.1 · Xi+2 .

The table below shows the electrical pow-
er consumed by street lights every month in
millions of kilowatt hours during the years
1952 and 1953. The data have been adjusted
according to the secular trend and seasonal
variations.

Year Month Data
Xi

Moving average
for 5 months Ci

1952 J 99.9

F 100.4

M 100.2 100.1

A 99.0 99.1

M 98.1 98.4

J 99.0 98.7

J 98.5 98.3

A 97.8 98.3

S 100.3 99.9

O 101.1 101.3

N 101.2 101.1

D 100.4 100.7
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Year Month Data
Xi

Moving average
for 5 months Ci

1953 J 100.6 100.3

F 100.1 100.4

M 100.5 100.1

A 99.2 99.5

M 98.9 98.7

J 98.2 98.2

J 98.4 98.5

A 99.7 99.5

S 100.4 100.5

O 101.0 101.0

N 101.1

D 101.1

Nosignificantcyclicaleffectsappear in these
data and non significant effects do not mean
no effects. The beginning of an economic

cycle is often sought, but this only appears
every 20 years.

FURTHER READING
� Forecasting
� Irregular variation
� Moving average
� Seasonal variation
� Secular trend
� Time series
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Daniels, Henry E.

Daniels, Henry Ellis was born in London in
October 1912. After graduating from Edin-
burgh University in 1933, he continued his
studies at Cambridge University. After gain-
ing his doctorate at Edinburgh University, he
wentback toCambridgeaslecturer inmathe-
matics in 1947. In 1957, Daniels, Henry
became the first professor of mathematics at
Birmingham University, a post he held until
1978, up to his retirement. The research field
that interested Daniels, Henry were infer-
ential statistics, saddlepoint approximations
in statistics, epidemiological modeling and
statistical theory as applied to textile tech-
nology. When he was in Birmingham, he
founded the annual meeting of statisticians
in Gregynog Hall in Powys. These annu-
al meetings gradually became one of the
most well-received among English statisti-
cians.
From 1974 to 1975 he was president of
the Royal Statistical Society, which awarded
him the Guy Medal in silver in 1957 and in
gold in 1984. In 1980 he was elected a mem-
ber of the Royal Society and in 1985 an hon-
ored member of the International Statistical
Society. He died in 2000.

Some principal works and articles of
Daniels, Henry E.:

1954 Saddlepointapproximations in statis-
tics. Ann. Math. Stat. 25, 631–650.

1955 Discussion of a paper by Box, G.E.P.
and Anderson, S.L.. J. Roy. Stat. Soc.
Ser. B 17, 27–28.

1958 Discussion of paper by Cox, D.R..
J. Roy. Stat. Soc. Ser. B 20, 236–238.

1987 Tail probability approximations. Int.
Stat. Rev. 55, 137–48.

Data

A datum (plural data) is the result of an
observation made on a population or on
a sample.
The word “datum” is Latin, and means
“something given;” it is used in mathematics
to denote an item of information (not neces-
sarily numerical) from which a conclusion
can be made.
Note that a number (or any other form of
description)thatdoesnotnecessarilycontain
any information should not be confused with
a datum, which does contain information.
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The data obtained from observations are
related to the variable being studied. These
data are quantitative, qualitative, discrete or
continuous if the corresponding variable is
quantitative, qualitative, discrete or contin-
uous, respectively.

FURTHER READING
� Binary data
� Categorical data
� Incomplete data
� Observation
� Population
� Sample
� Spatial data
� Standardized data
� Value
� Variable

REFERENCES
Federer, W.T.: Data collection. In: Kotz, S.,

Johnson, N.L. (eds.) Encyclopedia of Sta-
tistical Sciences, vol. 2. Wiley, New York
(1982)

Data Analysis
Often, one of the first steps performed
in scientific research is to collect data.
These data are generally organized into two-
dimensional tables. This organization usu-
ally makes it easier to extract information
about the data—in other words, to analyze
them.
In its widest sense, data analysis can be con-
sidered to be the essence of statistics to
which all other aspects of the subject are
linked.

HISTORY
Since data analysis encompasses many dif-
ferent methods of statistical analysis, it is

difficult to briefly overview the history of
data analysis. Nevertheless, we can rapid-
ly review the chronology of the most funda-
mental aspects of the subject:
• The first publication on exploratory data

analysis dates back to 1970–1971, and
was written by Tukey, J.W.. This was the
firstversion of hiswork ExploratoryData
Analysis, published in 1977.

• The theoretical principles of correspon-
dence analysis are due to Hartley, H.O.
(1935) (published under his original
German name Hirschfeld) and to Fish-
er, R.A. (1940). However, the theory
was largely developed in the 1970s by
Benzécri, J.P.

• The first studies on classification were
carried out in biology and in zoology.
The oldest form of typology was con-
ceived by Galen (129–199 A.D.). Numer-
ical classification methods derive from
the ideas of Adanson (in the eighteenth
century), and were developed, amongst
others, by Zubin (1938) and Thorndike
(1953).

DOMAINS AND LIMITATIONS
The field of data analysis comprises many
different statistical methods.
Types of data analysis can be classified in the
following way:
1. Exploratory data analysis, which

involves (as its name implies) exploring
the data, via:
• Representing the data graphically,
• Data transformation (if required),
• Detecting outlier observations,
• Elaborating research hypotheses that

were not envisaged at the start of the
experiment,

• Robust estimation.
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2. Initial data analysis, which involves:
• Choosing the statistical methods to be

applied to the data.
3. Multivariate data analysis, which in-

cludes:
• Diseriminant analysis,
• Data transformation, which reduces

the number of dimensions and facili-
tates interpretation,

• Searching for structure.
4. Specific forms of data analysis that are

suited to different analytical tasks; these
forms include:
• Correspondence analysis,
• Multiple correspondence analysis,
• Classification.

5. Confirmatory data analysis, which in-
volves evaluating and testing analytical
results; this includes:
• Parameter estimation,
• Hypotheses tests,
• The generalization and the conclu-

sion.

FURTHER READING
� Classification
� Cluster analysis
� Correspondence analysis
� Data
� Exploratory data analysis
� Hypothesis testing
� Statistics
� Transformation
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Data Collection

When collecting data, we need to consider
several issues. First, it is necessary to define
why we need to collect the data, and what
the data will be used for. Second, we need to
consider the type of data that should be col-
lected: it is essential that the data collected
arerelated to thegoalof thestudy.Finally,we
must consider how the data are to be collect-
ed. There are three approaches to data col-
lection:
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1. Register
2. Sampling and census
3. Experimental research

1. Register
One form of accessible data is a registered
one. For example, there are registered data
on births, deaths, marriages, daily tempera-
tures, monthly rainfall and car sales.
There are no general statistical methods that
ensure that valuable conclusions are drawn
from these data. Each set of data should be
considered on its own merits, and one should
be careful when making inference on the
population.

2. Sampling and census
Sampling methods can be divided into two
categories: random methods and nonrandom
methods.
Nonrandom methods involve constructing,
by empirical means, a sample that resem-
bles the population from which it is taken as
much as possible. The most commonly used
nonrandom method is quota sampling.
Random methods use a probabilistic proce-
dure toderiveasample fromthepopulation.
Given the fact that the probability that a giv-
en unit is selected in the sample is known, the
error due to sampling can then be calculated.
The main random methods are simple ran-
dom sampling, stratified sampling, sys-
tematic sampling and batch sampling.
In a census, all of the objects in a popula-
tionareobserved,yieldingdatafor thewhole
population.Clearly, this typeof investigation
is very costly when the population is very
large.This iswhycensusesarenotperformed
very often.

3. Experimental research
In an experiment, data collection is per-
formed based upon a particular experiment-

al design. These experimental designs are
applied to data collection in all research
fields.

HISTORY
It is likely that the oldest form of data collec-
tion dates back to population censuses per-
formed in antiquity.
Antille and Ujvari (1991) mention the exis-
tence of a position for an official statistician
in China during the Chow dynasty (111–211
B.C.).
The Roman author Tacitus says that Emper-
or Augustus ordered all of the soldiers, ships
and wealth in the Empire to be counted.
Evidence for censuses can also be found in
the Bible; Saint Luke reports that “Caesar
Augustusordered adecreeprescribingacen-
sus of the whole world (. . .) and all went to
be inscribed, each in his own town.”
A form of statistics can also be found during
this time. Its name betrays its administrative
origin, because it comes from the Latin word
“status:” the State.

FURTHER READING
� Census
� Design of experiments
� Sampling
� Survey

REFERENCES
Antille, G., Ujvari, A.: Pratique de la Statis-

tique Inférentielle. PAN, Neuchâtel,
Switzerland (1991)

Boursin, J.-L.: Les structures du hasard.
Seuil, Paris (1986)

Decile
Deciles are measures of position calculated
on a set of data.
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The deciles are the values that separate
adistribution into ten equalparts,whereeach
part contains the same number of observa-
tions). The decile is a member of the wider
family of quantiles.
The xth decile indicates the value where
10x% of the observations occur below this
value and (100 − 10x)% of the observa-
tionsoccurabovethisvalue.Forexample, the
eighth decile is the value where 80% of the
observations fall below this and 20% occur
above it.
The fifth decile represents the median.
There will therefore be nine deciles for a giv-
en distribution:

MATHEMATICAL ASPECTS
The process used to calculate deciles is sim-
ilar to that used to calculate the median or
quartiles.
When all of the raw observations are avail-
able, the process used to calculate deciles is
as follows:

1. Organize the n observations into a fre-
quency distribution

2. The deciles correspond to the observa-
tions for which the cumulative relative
frequencies exceed 10%, 20%, 30%,. . . ,
80%, 90%.
Someauthorsproposeusingthefollowing
formula to precisely determine the values
of the different deciles:
Calculating the jth decile:
Take i to be the integer part of j · n+1

10 and
k the fractional part of j · n+1

10 .
Take xi and xi+1 to be the values of the
observations at the ith and (i+1)th posi-

tions (when the observations are arranged
in increasing order).
The jth decile is then equal to:

Dj = xi + k · (xi+1 − xi) .

When the observations are grouped into
classes, the deciles are determined in the fol-
lowing way:
1. Determine the class containing the

desired decile located:
• First decile: the first class for which

the cumulative relative frequency
exceeds 10%.

• Second decile: the first class for which
the cumulative relative frequency
exceeds 20%.
. . .

• Ninth decile: the first class for which
the cumulative relative frequency
exceeds 90%.

2. Calculate the value of the decile based on
the hypothesis that the observations are
uniformly distributed in each class:

decile = L1 +
[
(N · q)−∑

finf

fdecile

]
· c .

where

L1 = lower limit of the class of the
decile

N = total number of observations

q = 1/10 for the first decile

q = 2/10 for the second decile

. . .

q = 9/10 for the ninth decile∑
finf = sum of the frequencies lower

than the class of the decile

fdecile = frequency of the class of the
decile

c = size of the interval of the class
of the decile
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DOMAINS AND LIMITATIONS
The calculation of deciles only has meaning
for aquantitative variable that can takeval-
ues over a given interval.
The number of observations needs to be
relatively high, because the calculation of
deciles involves dividing the set of observa-
tions into ten parts.
Deciles are relatively frequently used in
practice; for example, when interpreting
the distribution of revenue in a city or
state.

EXAMPLES
Consider an example where the deciles are
calculated for a frequency distribution of
a continuous variable where the observa-
tions are grouped into classes.
The following frequency table represents
theprofits (in thousandsofeuros)of500bak-
eries:

Profit (in
thousands
of euros)

Fre-
quen-
cies

Cumu-
lated
frequency

Relative
cumulated
frequency

100–150 40 40 0.08

150–200 50 90 0.18

200–250 60 150 0.30

250–300 70 220 0.44

300–350 100 320 0.62

350–400 80 400 0.80

400–450 60 460 0.92

450–500 40 500 1.00

Total 500

The first decile is in the class 150–200 (this
is where the cumulative relative frequency
exceeds 10%).
By assuming that the observations are dis-
tributed uniformly in each class, we obtain

the following value for the first decile:

1st decile = 150+
[

(500 · 1
10 )− 40

50

]
· 50

= 160 .

The second decile falls in the 200–250 class.
The value of the second decile is equal to

2nd decile = 200+
[

(500 · 2
10 )− 90

60

]
· 50

= 208.33 .

Wecan calculate theotherdeciles in thesame
way, which yields:

Decile Class Value

1 150–200 160.00

2 200–250 208.33

3 200–250 250.00

4 250–300 285.71

5 300–350 315.00

6 300–350 340.00

7 350–400 368.75

8 350–400 400.00

9 400–450 441.67

We can conclude, for example, that 10% of
the 500 bakeries make a profit of between
100000 and 160000 euros, 50% make a prof-
it that is lower than 315000 euros, and
10% make a profit of between 441670 and
500000 euros.

FURTHER READING
� Measure of location
� Median
� Percentile
� Quantile
� Quartile
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Degree of Freedom

The number of degrees of freedom is
a parameter from the chi-square distri-
bution. It is also a parameter used in other
probability distributions related to the
chi-square distribution, such as the Student
distribution and the Fisher distribution.
In another context, the number of degrees
of freedom refers to the number of linear-
ly independent terms involved when calcu-
lating the sum of squares based on n inde-
pendent observations.

HISTORY
The term “degree of freedom” was intro-
duced by Fisher, R.A. in 1925.

MATHEMATICAL ASPECTS
Let Y1, Y2, . . . , Yn be a random sample of
size n taken from a population with an
unknown mean Ȳ. The sum of the deviations
of n observations with respect to their arith-
metic mean is always equal to zero:

n∑
i=1

(Yi − Ȳ) = 0 .

Thisrequirement isaconstraintoneachdevi-
ation Yi− Ȳ used when calculating the vari-
ance:

S2 =

n∑
i=1

(Yi − Ȳ)2

n− 1
.

This constraint implies that n − 1 devia-
tions completely determine the nth devia-
tion. The n deviations (and also the sum of
their squares and the variance in the S2 of the
sample) therefore have n−1 degrees of free-
dom.

FURTHER READING
� Chi-square distribution
� Fisher distribution
� Parameter
� Student distribution
� Variance

REFERENCES
Fisher, R.A.: Applications of “Student’s”

distribution. Metron 5, 90–104 (1925)

Deming, W. Edwards

Deming, W. Edwards was born in 1900, in
Sioux City, in Iowa. He studied science at
Wyoming University, graduating in 1921,
and at Colorado University, where he com-
pleted his Master degree in mathematics
and physics in 1924. Then he went to Yale
University, where he received his doctorate
in physics in 1928. After his doctorate, he
worked for ten years in the Laboratory of
the Ministry for Agriculture. In 1939, Dem-
ing moved to the Census Bureau in Wash-
ington. There he used his theoretical knowl-
edge to initiate the first censuses to be per-
formed by sampling. These censuses used
techniques that laterprovidedanexample for
similar censuses performed around the rest
of the world. He left the Census Bureau in
1946 to becomeconsultant in statistical stud-
ies and a professor of statistics at New York
University. He died in Washington D.C. in
1993.
For a long time (up to 1980), the theories
of Deming, W.E. were ignored by Ame-
rican companies. In 1947, Deming went to
Tokyo as a consultant to apply his techniques
of sampling. From 1950 onwards, Japanese
industry adopted the management theories
of Deming. Within ten years many Japanese
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products were being exported to America
because they were better and less expensive
thanequivalentproductsmanufacturedinthe
United States.

Some principal works and articles of Dem-
ing, W. Edwards:

1938 Statistical Adjustment of Data.
Wiley, New York.

1950 Some Theory of Sampling. Wiley,
New York.

1960 SampleDesign inBusinessResearch.
Wiley, New York.

Demography
Demography is the study of human pop-
ulations. It involves analyzing phenomena
such as births, deaths, migration, marriages,
divorces, fertility rate, mortality rate and age
pyramids.
These phenomena are treated from both bio-
logical and socio-economic points of view.
The methods used in demography are
advanced mathematics and statistics as well
as many fields of social science.

HISTORY
The first demographic studies date back to
the middle of the seventeenth century. In this
period, Graunt, John, an English scientist,
analyzed the only population data available:
a list of deaths in the London area, classi-
fied according to their cause. In 1662 he pub-
lishedastudy inwhichhetried toevaluate the
average size of a family, the importance of
migrational movement, and other elements
related to the structure of the population.
In collaboration with Petty, Sir William,
Graunt proposed that more serious studies of

thepopulationshouldbemadeandthatacen-
ter where statistical data would be gathered
should be created.
During theeighteenthcentury thesametypes
ofanalyseswereperformed andprogressive-
ly improved,but itwasn’tuntil thenineteenth
century that several European countries as
well as the United States undertook national
censuses and established the regular records
of births, marriages and deaths.
These reports shows that different regions
offered different chances of survival for their
inhabitants. These conclusions ultimately
resulted in improved working and hygiene
conditions.
Using the demographic data gathered, pre-
dictions became possible, and the first
demographic journals and reviews appeared
aroundtheendof thecentury.These included
“Demography” in the United States, “Popu-
lation” in France and “Population Studies”
in Great Britain.
In the middle of the twentieth century demo-
graphic studies began to focus on the glob-
al population, as the demographic problems
of the Third World became an important
issue.

FURTHER READING
� Census
� Population

REFERENCES
Cox, P.R.: Demography, 5th edn. Cambridge

University Press, Cambridge (1976)

Hauser, P.M., Duncan, O.D.: The Study of
Population: An Inventory and Appraisal.
University of Chicago Press, Chicago, IL
(1959)
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Dendrogram

A dendrogram is a graphical representation
ofdifferentaggregationsmadeduring aclus-
ter analysis. It consists of knots that corre-
spond to groups and branches that represent
theassociationsmadeateach step.Thestruc-
ture of the dendrogram is determined by the
order in which the aggregations are made.
If a scale is added to the dendrogram it is pos-
sible to represent the distances over which
the aggregations took place.

HISTORY
In a more general sense, a dendrogram (from
the Greek “dendron”, meaning tree) is a tree
diagram that illustrates the relations that
exist between the members of a set.
The first examples of dendrograms were the
phylogenetic trees used by systematic spe-
cialists. The term “dendrogram” seems to
have been used for the first time in the work
of Mayr et al. (1953).

MATHEMATICAL ASPECTS
During cluster analysis on a set of objects,
aggregations are achieved with the help of
a distance table and the chosen linkage
method (single linkage method, complete
linkage method, etc.).
Each extremepointof thedendrogramrepre-
sents a different class produced by automatic
classification.
The dendrogram is then constructed by rep-
resenting each group by a knot placed at
a particular position with respect to the hor-
izontal scale, where the position depends
upon the distance over which the aggregate
is formed.
The objects are placed at the zero level of the
scale. To stop the branches connecting the

knots from becoming entangled, the proce-
dure of drawing a dendrogram is performed
in a systematic way.
• Thefirst twogroupedelementsareplaced,

one on top of the other, at the zero lev-
el of the scale. A horizontal line is then
drawn next to each element, from the zero
level to the aggregation distance for each
element. The resulting class is then repre-
sented by a vertical line that connects the
endsof the lines for theelements (forming
a “knot”). The middle of this vertical line
provides the starting point for a new hori-
zontal line for this class when it is aggre-
gated with anotherclass.Thedendrogram
therefore consists of branches construct-
ed from horizontal and vertical lines.

• Two special cases can occur during the
next step:
1. Two classes that each consist of one

element are aggregated; these class-
es are placed at the zero level and the
resulting knot is located at the aggre-
gation distance, as described previous-
ly;

2. An element is aggregated to a class
formed previously. The element is
aggregated from the zero level, and
is inserted between existing classes
if necessary). The knot representing
this aggregation is placed at the (hori-
zontal) distance corresponding to the
aggregation distance between the class
and the element.

This procedure continues until the desired
configuration is obtained. If there are still
classes consisting of a single element at the
end of the aggregation process, they are sim-
ply added from the zero level of the dendro-
gram.Whentheclassificationhasbeencom-
pleted, each class will corresponds to a par-
ticular part of the dendrogram.
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DOMAINS AND LIMITATIONS
The dendrogram describes the ordered path
of the set of operations performed during
cluster analysis. It illustrates this type of
classification in a very precise manner.
This strictly defined approach to construct-
ing a dendrogram is sometimes modified due
to circumstances. For example, as we will
see in one of the examples below, the aggre-
gation distances of two or more successive
steps may be the same, and so the procedure
must then be changed to make sure that the
branchesof thedendrogram do notgetentan-
gled.
In the case that we have described above, the
dendrogram is drawn horizontally. Obvious-
ly, it is also possible to plot a dendrogram
from top to bottom, or from bottom to top.
The branches can even consist of diagonal
lines.

EXAMPLES
We will perform a cluster analysis using the
single link method and establish the corre-
sponding dendrogram, illustrating thediffer-
ent aggregations that may occur.
Consider thegradesobtainedbyfivestudents
during examinations for fourdifferentcours-
es: English, French, maths and physics.
We would like to separate these five stu-
dents into two groups using the single link
method, in order to test a new teaching
method.
These grades, which can take values from 1
to 6, are summarized in the following table:

English French Maths Physics

Alain 5.0 3.5 4.0 4.5

Jean 5.5 4.0 5.0 4.5

Marc 4.5 4.5 4.0 3.5

Paul 4.0 5.5 3.5 4.0

Pierre 4.0 4.5 3.0 3.5

The distance table is obtained by calculat-
ing the Euclidean distances between the stu-
dents and adding them to the following table:

Alain Jean Marc Paul Pierre

Alain 0 1.22 1.5 2.35 2

Jean 1.22 0 1.8 2.65 2.74

Marc 1.5 1.8 0 1.32 1.12

Paul 2.35 2.65 1.32 0 1.22

Pierre 2 2.74 1.12 1.22 0

Using the single link method, based on
the minimum distance between the objects
in two classes, the following partitions are
obtained at each step:
First step: Marc and Pierre are grouped at
an aggregation distance of 1.12: {Alain},
{Jean}, {Marc,Pierre}, {Paul} Second step:
We revise the distance table. The new dis-
tance table is given below:

Jean Marc and Pierre Paul

Alain 1.22 1.5 2.35

Jean 1.8 2.65

Marc and
Pierre

1.22

Alain and Jean are then grouped at a distance
of 1.22, and we obtain the following parti-
tion: {Alain, Jean}, {Marc, Pierre}, {Paul}
Third step: The new distance table is given
below:

Marc and Pierre Paul

Alain and Jean 1.5 2.35

Marc and Pierre 1.22

Paul is then grouped with Marc and Pierre at
adistanceof1.22,yielding thefollowingpar-
tition: {Alain, Jean}, {Marc, Pierre, Paul}
Fourth step: The two groups are aggregated
at a distance of 1.5.
This gives the following dendrogram:
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Notice that Paul must be positioned before
thegroup ofMarcand Pierre in order toavoid
entangling the branches of the diagram.

FURTHER READING
� Classification
� Cluster analysis
� Complete linkage method
� Distance
� Distance table

REFERENCES
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Density Function

The density function of a continuous ran-
dom variable allows us to determine the
probability that a random variable X takes
values in a given interval.

HISTORY
See probability.

MATHEMATICAL ASPECTS
Consider P(a ≤ X ≤ b), the probability
that a continuous random variable X takes
avalue in the interval [a, b].Thisprobability
is defined by:

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx .

where f (x) is the density function of the ran-
dom variable X.
The density function is graphically repre-
sented on an axis system. The different val-
ues of the random variable X are placed on
theabscissa,and those takenbythefunction f
are placed on the ordinate.
The graph of the function f does not allow us
to determine the probability for one partic-
ular point, but instead to visualize the proba-
bility for an interval on a surface.
The total surface under the curve corre-
sponds to a value of 1:

∫
f (x)dx = 1 .

The variable X is a continuous random vari-
able if there is a non-negative function f that
is defined for real numbers and for which the
following property holds for every interval
[a, b]:

P (a ≤ X ≤ b) =
∫ b

a
f (x) dx ,

HereP (a ≤ X ≤ b) is theprobability func-
tion.Therefore, theprobability that thecon-
tinuous random variable X takes a value in
the interval [a, b] can be obtained by inte-
grating the probability function over [a, b].
There is also the following condition on f :
∫ ∞
−∞

f (x) dx = P (∞ ≤ X ≤ ∞) = 1 .

We can represent the density function graph-
ically on the system of axes. The different
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values of the random variable X are placed
on the abscissa, and those of the function f
on the ordinate.

DOMAINS AND LIMITATIONS
If a = b in P(a ≤ X ≤ b) = ∫ b

a f (x)dx, then

P(X = a) =
∫ a

a
f (x)dx = 0 .

This means that the probability that a con-
tinuous random variable takes an isolated
fixed value is always zero.
It therefore does not matter whether we
include or exclude the boundaries of the
interval when calculating the probability
associated with an interval.

EXAMPLES
Consider X, a continuous random variable,
for which the density function is

f (x) =
{

3
4 (−x2 + 2x) , if 0 < x < 2

0 , if not
.

We can calculate the probability of X being
higher than 1. We obtain:

P(X > 1) =
∫ ∞

1
f (x)dx ,

which can be divided into:

P(X > 1) =
∫ 2

1

3

4
(−x2 + 2x)dx

+
∫ ∞

2
0dx

= 3

4

(
−x3

3
+ x2

∣∣∣∣
2

1

)

= 1

2
.

The density function and the region where
P(X > 1) can be represented graphically:

The shaded surface represents the region
where P(X > 1).

FURTHER READING
� Continuous distribution function
� Continuous probability distribution
� Joint density function
� Probability

Dependence

The concept of dependence can have two
meanings. The first concerns the events of
a random experiment. It is said that two
events are dependent if the occurrence ofone
depends on the occurrence of the other.
The second meaning of the word concerns
the relation, generally a functional relation,
that can exist between random variables.
This dependence can be measured, and in
most cases these measurements require ran-
dom varible covariance.
The most commonly used measure of depen-
dence is the correlation coefficient. The
null hypothesis, which states that the
two random variables X and Y are inde-
pendent, can be tested against the alterna-
tive hypothesis of dependence. Tests that
are used for this purpose include the chi-
square test of independence, as well as
tests based on the Spearman rank corre-
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lation coefficient and the Kendall rank
correlation coefficient.

FURTHER READING
� Chi-square test of independence
� Correlation coefficient
� Covariance
� Kendall rank correlation coefficient
� Spearman rank correlation coefficient
� Test of independence

Dependent Variable

The dependent variable (or response vari-
able) in a regression model is the variable
that is considered to vary depending on the
other variables called independent variables
incorporated into the analysis.

FURTHER READING
� Independent variable
� Multiple linear regression
� Regression analysis
� Simple linear regression

Descriptive
Epidemiology

Descriptive epidemiology involves descri-
bing the frequencies and patterns of illnesses
among the population.
It is based on the collection of health-related
information (in mortality tables, morbidity
registers, illnesses that must be declared . . . )
and on information that may have an impact
on thehealth of thepopulation(dataonatmo-
spheric pollution, risk behavior . . . ), which
are used to obtain a statistical picture of the
general health of the population.

HISTORY
See epidemiology.

MATHEMATICAL ASPECTS
See cause and effect in epidemiology,
odds and odds ratio, relative risk, at-
tributable risk, avoidable risk, incidence
rate, prevalence rate.

DOMAINS AND LIMITATIONS
Despite the fact that descriptive epide-
miology only yields “elementary” infor-
mation, it is still vitally important:
• It allows us to study the scales and the pat-

terns of health phenomenona (by study-
ing theirprevalenceand their incidence),
and it facilitates epidemiological surveil-
lance,

• It aids decision-making related to the
planning and administration of health
establishments and programs,

• Itcan lead tohypothesesontheriskfactors
of an illness (example: the increased rate
of incidence of skin cancers in the south
of France, believed to be related to the
increased intensity of the sun’s rays in the
south of France compared to the north.).

Descriptive epidemiology cannot be used to
relateacause to an effect; it isnotapredictive
tool.

FURTHER READING
See epidemiology.

REFERENCES
See epidemiology.

Descriptive Statistics
Theinformationgathered inastudycanoften
take different forms, such as frequency data
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(for example, the number of votes cast for
a candidate in elections) and scale data.
These data are often initially arranged or
organized in such a way that they aredifficult
to read and interpret.
Descriptive statistics offers us some proce-
dures that allow us to represent data in a read-
able and worthwhile form.
Some of these procedures allow us to obtain
a graphical representation of the data, for
example in the following forms:
• Histogram,
• Bar chart,
• Pie chart,
• Stem and leaf,
• Box plot, etc.
whileothersallowus to obtain asetofparam-
eters that summarize important properties of
the basic data:
• Mean,
• Standard deviation,
• Correlation coefficient,
• Index number, etc.
The descriptive statistics also encompasses
methods of data analysis, such as the corre-
spondence analysis, that consist of graphi-
cally representing the associations between
the rows and the columns of a contingency
table.

HISTORY
Thefirstknownformofdescriptivestatistics
was the census. Censuses were ordered by
the rulers of ancient civilizations, who want-
ed to count their subjects and to monitor their
professions and goods.
See statistics and graphical representa-
tion.

FURTHER READING
� Box plot

� Census
� Correspondence analysis
� Data analysis
� Dendrogram
� Graphical representation
� Histogram
� Index number
� Line chart
� Pie chart
� Stem-and-leaf diagram

Design of Experiments

Designing an experiment is like program-
ming the experiment in some ways. Each
factor involved in the experiment can
take a certain number of different values
(called levels), and the experimental design
employed specifies the levels of the one or
many factors (or combinations of factors)
used in the experiment.

HISTORY
Experimental designs were first used in the
1920s, mostly in the agricultural domain.
Sir Fisher, Ronald Aylmer was the first to
use mathematical statistics when designing
experiments. In 1926 he wrote a paper out-
lining the principles of experimental design
in non-mathematical terms.
Federer, W.T. and Balaam, L.N. (1973) pro-
vided a very detailed bibliography of liter-
ature related to experimental design before
1969, incorporating 8000 references.

DOMAINS AND LIMITATIONS
The goal of the experimental design is to find
with the most efficient and economic meth-
ods that allow us to reach solid and adequate
conclusions on the results from the experi-
ment.
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The most frequently applied experimental
designs are the completely randomized
design, the randomized block design and
the Latin square design.
Each design implies a different mathe-
matical analysis to those used for the other
designs, since the designs really correspond
to differentmathematicalmodels. Examples
of these types of analysis include variance
analysis, covariance analysis and regres-
sion analysis.

FURTHER READING
� Analysis of variance
� Experiment
� Model
� Optimal design
� Regression analysis

REFERENCES
Federer, W.T., Balaam, L.N.: Bibliography

on Experimentand TreatmentDesign Pre-
1968. Hafner, New York (1973)

Fisher, R.A.: The arrangement of field expe-
riments. J. Ministry Agric. 33, 503–513
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Determinant

Any square matrix A of order n has a spe-
cial number associated with it, known as the
determinant of matrix A.

MATHEMATICAL ASPECTS
Consider A = (aij), a square matrix
of order n. The determinant of A, denot-
ed det(A) or |A|, is given by the following
sum:

det(A) =
∑

(±)a1i · a2j · . . . · anr ,

where the sum is made overall of the permu-
tations of the second index . The sign is posi-
tive if the number of inversions in (i, j, . . . , r)
is even (an even permutation) and it is neg-
ative if the number is odd (an odd permuta-
tion).
The determinant can also be defined by
“developing” along a line or a column. For
example,wecandevelopthematrixalongthe
first line:

det(A) =
n∑

j=1

(−1)1+j · a1j · A1j ,

where A1j is the determinant of the square
“submatrix” of order n− 1 obtained from A
by erasing the first line and the jth column.
A1j is called the cofactor of element a1j.
Since we can arbitrarily choose the line or
column, we can write:

det(A) =
n∑

j=1

(−1)i+j · aij · Aij

for a fixed i (developing along the ith line),
or

det(A) =
n∑

i=1

(−1)i+j · aij · Aij

for a fixed j (developing along the jth col-
umn).
This second way of defining the determi-
nant is recursive, because the determinant of
a square matrix of order n is calculated using
the determinants of the matrices of order
n− 1.

Properties of the Determinant
• The determinant of a square matrix A is

equal to thedeterminantof its transposed
matrix A′:

det(A) = det(A′) .
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• If two lines (or two columns) are
exchanged in matrix A, the sign of the
determinant changes.

• If allof theelementsofa line(oracolumn)
are zero, the determinant is also zero.

• If a multiple of a line from matrix A is
added to another line from A, the determi-
nant remains the same. This means that if
two lines from A are identical, it is easy to
obtain a line where all of the elements are
zero simply by subtracting one line from
the other; because of the previous proper-
ty, the determinant of A is zero. The same
situation occurs when one line is a multi-
ple of another.

• The determinant of a matrix that only has
zeros under (or over) the diagonal is equal
to the product of the elements on the diag-
onal (such a matrix is denoted “triangu-
lar”).

• Consider A and B, two square matrices of
order n. The determinant of the product of
the two matrices is equal to the product of
the determinants of the two matrices:

det(A · B) = det(A) · det(B) .

EXAMPLES
1) Consider A, a square matrix of order 2:

A =
[

a b
c d

]

det(A) = a · d − b · c .

2) Consider B, a square matrix of order 3:

B =
⎡
⎣

3 2 1
4 −1 0
2 −2 0

⎤
⎦ .

By developing along the last column:

det(B) = 1 ·
∣∣∣∣

4 −1
2 −2

∣∣∣∣+ 0 ·
∣∣∣∣

3 2
2 −2

∣∣∣∣

+ 0 ·
∣∣∣∣

3 2
4 −1

∣∣∣∣
= 1 · {4 · (−2)− (−1) · 2}
= −8+ 2

= −6 .

FURTHER READING
� Inversion
� Matrix
� Permutation

Deviation
Theconceptofdeviationdescribes thediffer-
ence between an observed value and a fixed
value from the set of possible values of
a quantitative variable.
This fixed value is often the arithmetic
mean of the set of values or the median.

MATHEMATICAL ASPECTS
Consider the set of values x1, x2, . . . , xn. The
arithmetic mean of these values is denoted
by x̄. The deviation of a given value xi with
respect to the arithmetic mean is equal to:

deviation = (xi − x̄) .

In a similar way, if the median of these same
values isdenoted by m, thedeviation ofaval-
ue xi with respect to the median is equal to:

deviation = (xi − m) .

FURTHER READING
� Mean absolute deviation
� Standard deviation
� Variance
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Dichotomous Variable

A variable is called dichotomous if it can
take only tow values.
The simplest example is that of the qualita-
tive categorical variable “gender,” which
can take two values, “male” and “female”.
Note that quantitative variables can always
be reduced and dichotomized. The variable
“revenue” can, for example, be reduced to
two categories: “lowrevenue”and “highrev-
enue”.

FURTHER READING
� Binary data
� Category
� Qualitative categorical variable
� Variable

Dichotomy

Dichotomy is the division of the individuals
of a population or a sample into two groups,
as a function of predetermined criteria.
A variable is called dichotomous when it
can only take two values. Such data are
called binary data.

FURTHER READING
� Binary data
� Dichotomous variable

Discrete Distribution Function

The distribution function of a discrete ran-
dom variable is defined for all real numbers
as the probability that the random variable
takes a value less than or equal to this real
number.

HISTORY
See probability.

MATHEMATICAL ASPECTS
The function F, defined by

F(b) = P(X ≤ b) .

is called the distribution function of the dis-
crete random variable X.
Given a real number b, the distribution func-
tion thereforecorrespondstotheprobability
that X is less than or equal to b.
The distribution function can be graphical-
ly represented on a system of axes. The dif-
ferent values of the discrete random vari-
able X are displayed on the abscissa and the
cumulative probabilities corresponding to
the different values of X, F(x), are shown on
the ordinate.

In the case where the possible values of the
discrete random variable are b1, b2,. . . with
b1 < b2 < . . . , the discrete distribution
function is a step function. F(bi) is constant
over the interval [bi, bi+1[.

Properties of the Discrete
Distribution Function
1. F is a nondecreasing function; in other

words, if a < b, then F(a) ≤ F(b)

2. F takes values from the interval [0, 1].
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3. lim
b→−∞F(b) = 0.

4. lim
b→∞F(b) = 1.

EXAMPLES
Consider a random experiment that con-
sists of simultaneously throwing two dice.
Consider the discrete random variable X,
corresponding to the total score from the two
dice.
Let us search for the probability of the event
{X ≤ 7}, which is by definition the value of
the distribution function for x = 7.
The discrete random variable X takes its
values from the set E = {2, 3, . . . , 12}.
The probabilities associated with each val-
ue of X are given by the following table:

X 2 3 4 5 6

P (X )
1
36

2
36

3
36

4
36

5
36

X 7 8 9 10 11 12

P (X )
6
36

5
36

4
36

3
36

2
36

1
36

To establish the distribution function, we
have to calculate, for each value b of X,
the sum of the probabilities for all values
less than or equal to b. We therefore create
a new table containing the cumulative proba-
bilities:

b 2 3 4 5 6 7

P (X ≤ b )
1
36

3
36

6
36

10
36

15
36

21
36

b 8 9 10 11 12

P (X ≤ b )
26
36

30
36

33
36

35
36

36
36
= 1

The probability of the event {X ≤ 7} is
therefore equal to 21

36 .

We can represent the distribution function
of the discrete random variable X as fol-
lows:

FURTHER READING
� Probability
� Probability function
� Random experiment
� Value

Discrete Probability Distribution

If each possible value of a discrete random
variable is associated with a certain proba-
bility, we can obtain the discrete probability
distribution of this random variable.

MATHEMATICAL ASPECTS
The probability distribution of a discrete
random variable X is given by its probabi-
lity function P(x) or its distribution func-
tion F(x).
It can generally be characterized by its
expected value:

E[X] =
∑

D

x · P(X = x) ,

and its variance:

Var(X) =
∑

D

(x− E[X])2 · P(X = x) ,

where D represents the set from which X can
take its values.
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EXAMPLES
The discrete probability distributions that
are most commonly used are the Bernoul-
li distribution, the binomial distribution,
the negative binomial distribution, the
geometric distribution, the multinomial
distribution, the hypergeometric distri-
bution and the Poisson distribution.

FURTHER READING
� Bernoulli distribution
� Binomial distribution
� Continuous probability distribution
� Discrete distribution function
� Expected value
� Geometric distribution
� Hypergeometric distribution
� Joint probability distribution function
� Multinomial distribution
� Negative binomial distribution
� Poisson distribution
� Probability
� Probability distribution
� Probability function
� Random variable
� Variance of a random variable

REFERENCES
Johnson, N.L., Kotz, S.: Distributions in

Statistics: Discrete Distributions. Wiley,
New York (1969)

Discrete Uniform
Distribution

The discrete uniform distribution is a dis-
crete probability distribution. The corre-
sponding continuous probability distri-
bution is the (continuous) uniform distri-
bution.
Consider n events, each of which have the
same probability P(X = x) = 1

n ; the ran-

dom variable X follows a discrete uniform
distribution and its probability function is:

P(X = x) =
{

1
n , if x = x1, x2, . . . , xn

0 , if not
.

Discrete uniform distribution, n = 4

MATHEMATICAL ASPECTS
The expected value of the discrete uniform
distributionover thesetoffirstnnaturalnum-
bers is, by definition, given by:

E[X] =
n∑

x=1

x · P(X = x)

= 1

n
·

n∑
x=1

x

= 1

n
· (1+ 2+ · · · + n)

= 1

n
· n2 + n

2

= n+ 1

2
.

The variance of this discrete uniform distri-
bution is equal to:

Var(X) = E
[
X2]− (E[X])2 .

Since

E[X2] =
n∑

x=1

x2 · P(X = x)

= 1

n
·

n∑
x=1

x2
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= 1

n
·
(

12 + 22 + · · · + n2
)

= 1

n
· n(n+ 1)(2n+ 1)

6

= 2n2 + 3n+ 1

6
,

and

(E[X])2 = (n+ 1)2

22
,

we have:

Var(X) = 2n2 + 3n+ 1

6
− (n+ 1)2

22

= n2 − 1

12
.

DOMAINS AND LIMITATIONS
The discrete uniform distribution is often
used togeneraterandom numbers fromany
discrete or continuous probability distri-
bution.

EXAMPLES
Consider the random variable X, the score
obtained by throwing a die. If the die is
not loaded, the probability of obtaining any
particular score is equal to 1

6 .Therefore, we
have:

P(X = 1) = 1
6

P(X = 2) = 1
6

. . .

P(X = 6) = 1
6 .

The number of possible events is n = 6. We
therefore have:

P(X = x) =
{

1
6 , for x = 1, 2, . . . , 6

0 , if not
.

In other words, the random variable X fol-
lows the discrete uniform distribution.

FURTHER READING
� Discrete probability distribution
� Uniform distribution

Dispersion

See measure of dispersion.

Distance

Distance is a numerical description of the
spacing between two objects. A distance
therefore corresponds to a real number:
• Zero, if both objects are the same;
• Strictly positive, if not.

MATHEMATICAL ASPECTS
Consider three objects X, Y and Z, and the
distance between X and Y, d(X, Y).
A distance has following properties:
• It is positive,

d(X, Y) > 0 ,

or zero if and only if the objects are the
same

d(X, Y) = 0 ⇔ X = Y .

• It is symmetric, meaning that

d(X, Y) = d(Y, X) .

• It verifies the following inequality, called
the triangular inequality:

d(X, Z) ≤ d(X, Y)+ d(Y, Z) .

Thissays that thedistance fromoneobject
to another is smaller or equal to the dis-
tance obtained by passing through a third
object.

Consider X and Y, which are two vectors
with n components,

X = (xi)
′ and Y = (yi)

′ ,
for i = 1, 2, . . . , n .
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A family of distances that is often used in
such a case is given below:

d(X, Y) = p

√√√√
n∑

i=1

|xi − yi|p with p ≥ 1 .

These distances are called Minkowski dis-
tances.
The distance for p = 1 is called the absolute
distance or the L1 norm.
The distance for p = 2 is called the
Euclidean distance, and it is defined by:

d(X, Y) =
√√√√

n∑
i=1

(xi − yi)2 .

The Euclidean distance is the most frequent-
ly used distance.
When the type of distance being used is not
specified, it is generally the Euclidean dis-
tance that is being referred to.
There are also the weighted Minkowski dis-
tances, defined by:

d(X, Y)= p

√√√√
n∑

i=1

wi · |xi − yi|p with p ≥ 1 ,

where wi, i = 1, . . . , n represent the different
weights, which sum to 1.
When p = 1 or 2, we obtain the weighted
absoluteand Euclidean distances respective-
ly.

DOMAINS AND LIMITATIONS
For a set of r distinct objects X1, X2, . . . , Xr,
the distance between object i and object j for
each pair (Xi, Xj) can be calculated. These
distances are used to create a distance table
or more generally a dissimilarity table con-
taining terms that can be generalized to

dij = d(Xi, Xj) , for i, j = 1, 2, . . . , r ,

as used in methods of cluster analysis.
Note that the term measure of dissimilari-
ty is used if the triangular inequality is not
satisfied.

EXAMPLES
Consider the example based on the grades
obtained by five students in their
English, French, maths and physics exami-
nations.
These grades, which can take any value from
1 to 6, are summarized in the following table:

English French Maths Physics

Alain 5.0 3.5 4.0 4.5

Jean 3.5 4.0 5.0 5.5

Marc 4.5 4.5 4.0 3.5

Paul 6.0 5.5 5.5 5.0

Pierre 4.0 4.5 2.5 3.5

The Euclidean distance between Alain and
Jean, denoted by d2, is given by:

d2(Alain, Jean)

=
√

(5.0− 3.5)2 + · · · + (4.5− 5.5)2

= √2.25+ 0.25+ 1+ 1

= √4.5 = 2.12 .

The absolute distance between Alain and
Jean, denoted by d1, is given by:

d1(Alain, Jean) = |5.0− 3.5| + · · ·
+ |4.5− 5.5|
= 1.5+ 0.5+ 1+ 1

= 4.0 .

Continuing the calculations, we obtain:

d2(Alain, Marc) = √2.25 = 1.5

d2(Alain, Paul) = √7.5 = 2.74
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d2(Alain, Pierre) = √5.25 = 2.29

d2(Jean, Marc) = √6.25 = 2.5

d2(Jean, Paul) = √9 = 3

d2(Jean, Pierre) = √10.75 = 3.28

d2(Marc, Paul) = √7.75 = 2.78

d2(Marc, Pierre) = √2.5 = 1.58

d2(Paul, Pierre) = √16.25 = 4.03

d1(Alain, Marc) = 2.5

d1(Alain, Paul) = 5.0

d1(Alain, Pierre) = 4.5

d1(Jean, Marc) = 4.5

d1(Jean, Paul) = 5.0

d1(Jean, Pierre) = 5.5

d1(Marc, Paul) = 6.5

d1(Marc, Pierre) = 2.0

d1(Paul, Pierre) = 7.5 .

The Euclidean distance table is obtained by
placing these results in the following table:

Alain Jean Marc Paul Pierre

Alain 0 2.12 1.5 2.74 2.29

Jean 2.12 0 2.5 3 3.28

Marc 1.5 2.5 0 2.78 1.58

Paul 2.74 3 2.78 0 4.03

Pierre 2.29 3.28 1.58 4.03 0

Similarly, we can obtain the following abso-
lute distance table:

Alain Jean Marc Paul Pierre

Alain 0 4 2.5 5 4.5

Jean 4 0 4.5 5 5.5

Marc 2.5 4.5 0 6.5 2

Paul 5 5 6.5 0 7.5

Pierre 4.5 5.5 2 7.5 0

Note that the order of proximity of the indi-
viduals can vary depending on the chosen

distance. For example, if the Euclidean dis-
tance is used, it is Alain who is closest to
Marc (d2(Alain, Marc) = 1.5), whereas
Alain comes in second place if the absolute
distance is used, (d1(Alain, Marc) = 2.5),
and it is Pierre who is closest to Marc, with
a distance of 2 (d1(Pierre.Marc) = 2).

FURTHER READING
� Chi-square distance
� Cluster analysis
� Distance table
� Mahalanobis distance
� Measure of dissimilarity

REFERENCES
Abdi, H.: Distance. In: Salkind, N.J. (ed.)

Encyclopedia of Measurement and Statis-
tics. Sage, Thousand Oaks (2007)

Distance Table

For a set of r individuals, the distance table
is a square matrix of order r, and the gen-
eral term (i, j) equals the distance between
the ith and the jth individual. Thanks to the
properties of distance, the distance table is
symmetrical and its diagonal is zero.

MATHEMATICAL ASPECTS
Suppose we have r individuals, denoted
X1, X2, . . . , Xr; the distance table construct-
ed from these r individuals is a square
matrix D of order r and the general term is

dij = d
(
Xi, Xj

)
,

where d
(
Xi, Xj

)
is the distance between the

ith and the jth individual.
The properties of distance allow us to state
that:
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• The diagonal elements dii of D are zero
because d (Xi, Xi) = 0 (for i = 1, 2,
. . . , r),

• D is symmetrical; that is, dij = dji for each
i and for values of j from 1 to r.

DOMAINS AND LIMITATIONS
Usingadistancetableprovidesatypeofclus-
ter analysis, where the aim is to identify
the closest or the most similar individuals in
order to be able to group them.
The distances entered into distance table
are generally assumed to be Euclidian dis-
tances, unlessadifferent typeofdistancehas
been specified.

EXAMPLES
Let us take the example of the grades
obtained by five students in four exami-
nations: English, French, mathematics and
physics.
These grades, which can take any multiple of
0.5 from 1 to 6, are summarized in the fol-
lowing table:

English French Maths Physics

Alain 5.0 3.5 4.0 4.5

Jean 3.5 4.0 5.0 5.5

Marc 4.5 4.5 4.0 3.5

Paul 6.0 5.5 5.5 5.0

Pierre 4.0 4.5 2.5 3.5

We attempt to measure the distances that
separate pairs of students. To do this, we
compare two lines of the table (correspond-
ing to two students) at a time: to be pre-
cise, each grade in thesecond line is subtract-
ed from the corresponding grade in the first
line.
For example, if we calculate the distance
from Alain to Jean using the Euclidian dis-

tance, we get:

d(Alain.Jean) = ((5.0− 3.5)2

+ (3.5− 4.0)2 + (4.0

− 5.0)2 + (4.5− 5.5)2)
1
2

= √2.25+ 0.25+ 1+ 1

= √4.5 = 2.12 .

In the same way, the distance between Alain
and Marc equals:

d(Alain, Marc) = ((5.0− 4.5)2

+ (3.5− 4.5)2

+ (4.0− 4.0)2

+ (4.5− 3.5)2)
1
2

= √0.25+ 1+ 0+ 1

= √2.25 = 1.5 .

And so on,

d(Alain, Paul) = √7.5 = 2.74

d(Alain, Pierre) = √5.25 = 2.29

d(Jean, Marc) = √6.25 = 2.5

d(Jean, Paul) = √9 = 3

d(Jean, Pierre) = √10.75 = 3.28

d(Marc, Paul) = √7.75 = 2.78

d(Marc, Pierre) = √2.5 = 1.58

d(Paul, Pierre) = √16.25 = 4.03 .

By organizing these results into a table, we
obtain the following distance table:

Alain Jean Marc Paul Pierre

Alain 0 2.12 1.5 2.74 2.29

Jean 2.12 0 2.5 3 3.28

Marc 1.5 2.5 0 2.78 1.58

Paul 2.74 3 2.78 0 4.03

Pierre 2.29 3.28 1.58 4.03 0
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We can see that the values along the diago-
nal equal zero and that the matrix is sym-
metrical. This means that the distance from
each student to the same student is zero, and
the distance that separates the first student
from the second is identical to the distance
that separates the second from the first. So,
d (Xi, Xi) = 0 and d

(
Xi, Xj

) = d
(
Xj, Xi

)
.

FURTHER READING
� Cluster analysis
� Dendrogram
� Distance
� Matrix

Distribution Function

The distribution function of a random vari-
able is defined for each real number as the
probability that the random variable takes
a value less than or equal to this real num-
ber.
Depending on whether the random vari-
able is discrete or continuous, we obtain
a discrete distribution function or a con-
tinuous distribution function.

HISTORY
See probability.

MATHEMATICAL ASPECTS
We define the distribution function of a ran-
dom variable X at value b (with 0 < b <

∞) by:

F(b) = P(X ≤ b) .

FURTHER READING
� Continuous distribution function
� Discrete distribution function
� Probability

� Random variable
� Value

Dot Plot

The dot plot is a type of frequency graph.
When the data set is relatively small (up to
about 25 data points), the data and their fre-
quencies can be represented in a dot plot.
This type of graphical representation is
particularly useful for identifying outliers.

MATHEMATICAL ASPECTS
The dot plot is constructed in the following
way.Ascale isestablished thatcontainsallof
the values in the data set. Each datum is then
individually marked on the graph as a dot
above the corresponding value; if there are
several data with the same value, the dots are
aligned one on top of each other.

EXAMPLES
Consider the following data:

5, 2, 4, 5, 3, 2, 4, 3, 5, 2, 3, 4, 3, 17 .

To construct the dot plot, we establish a scale
from 0 to 20.
We then represent the data with dots above
each value. We obtain:

Note that this series includes an outlier, at
17.
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FURTHER READING
� Line chart
� Frequency distribution
� Histogram
� Graphical representation

Durbin–Watson Test
The Durbin–Watson test introduces a statis-
tic d that is used to test the autocorrelation of
the residuals obtained from a linear regres-
sion model. This is a problem that often
appears during the application of a linear
model to a time series, when we want to test
the independenceof the residualsobtained in
this way.

HISTORY
Durbin, J. and Watson, G.S. invented this test
in 1950.

MATHEMATICAL ASPECTS
Consider the case of a multiple linear
regression model containing p − 1 inde-
pendent variables. The model is written:

Yt = β0 +
p−1∑
j=1

βjXjt + εt , t = 1, . . . , T ,

where

Yt is the dependent variable,

Xjt, with j = 1, . . . , p − 1 are the inde-
pendent variables

βj, with j = 1, . . . , p−1 are the parameters
to be estimated,

εt with t = 1, . . . , T is an unobservable
random error term.

In the matrix form, the model is written as:

Y = Xβ + ε ,

where

Y is the vector (n × 1) of the observa-
tions related to the dependent variable
(n observations),

β is a vector (p× 1) of the parameters to
be estimated,

ε is a vector (n× 1) of the errors,

andX =
⎛
⎜⎝

1 X11 . . . X1(p−1)

...
...

...
1 Xn1 . . . Xn(p−1)

⎞
⎟⎠ is the

matrix (n×p) of the design associated with
the independent variables.
The residuals, obtained by the method of the
least squares, are given by:

e = Y− Ŷ =
[
I − X

(
X′X

)−1 X′
]

Y .

The statistic d is defined as follows:

d =
∑T

t=2 (et − et−1)
2

∑T
t=1 e2

t

.

The statistic d tests the hypothesis that the
errorsare independentagainst thealternative
that they follow a first-order autoregressive
process:

εt = ρεt−1 + ut ,

where |ρ| < 1 and theut are independentand
are normally distributed with a mean of zero
and a variance of σ 2. We call the term ρ the
autocorrelation. In terms of ρ, the hypoth-
esis testing is written as follows:

H0 : ρ = 0

H1 : ρ �= 0 .

DOMAINS AND LIMITATIONS
The construction of this statistic means that
it can take values between 0 and 4. We have
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d = 2 when ρ̂ = 0. We denote the sam-
ple estimate of the observation of ρ by ρ̂. In
order to test the hypothesis H0, Durbin and
Watson tabulated the critical values of d at
a significance level of 5%; these critical val-
ues depend on the number of observations
T and the number of explanatory variables
(p− 1). The table to test the positive auto-
correlation at theα-level, the statistic test d is
compared to lower and upper critical values
(dL,dU), and
• reject H0 : p = 0 if d < dL

• do not reject H0 if d > dU

• for dL < d < dU the test is inconclusive.
Similarily to test negative autocorrelation at
the α-level the statistic 4-d is compared to
lower and upper critical values (dL, dU), and
• reject H0 : p = 0 if H4 − d < dL

• do not reject H0 if 4− d > dU

• for dL < 4 − d < dU the test is noncon-
clusive.

Note that the model must contain a constant
term, because established Durbin–Watson
tables generally apply to models with a con-
stant term. The variable to be explained
should not be among the explanatory vari-
ables.

EXAMPLES
We consider an example of the number of
highway accidents in the United States per
million miles traveled by car between 1970
and 1984. The data for these years are given
below:

4.9, 4.7, 4.5, 4.3, 3.6, 3.4,
3.3, 3.4, 3.4, 3.5, 3.5, 3.3,
2.9, 2.7, 2.7.

The following figure illustrates how the data
are distributed with time. On the horizontal
axis, zero corresponds to the year 1970, and
the 15 to the year 1984.

Number of accidents = a+ b · t ,

with t = 0, 1, . . . , 14.
The equation for the simple linear regression
line obtained for these data is given below:

Number of accidents = 4.59− 0.141 · t .

We then obtain the following residuals:

0.31, 0.25, 0.19, 0.13,−0.43,−0.49,
−0.45,−0.21,−0.07, 0.17, 0.32, 0.26,

0.00,−0.06, 0.08.

The value of the statistic d is 0.53. In the
Durbin–Watson table for a one-variable
regression, we find the values:

dL,0.05 = 1.08

dU,0.05 = 1.36 .

Therefore, we have the case where 0 < d <

dL, so we reject the H0 hypothesis in the
favor of positive autocorrelation between the
residuals of the model. The following figure
illustrates the positive correlation between
the residuals with time:
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FURTHER READING
� Autocorrelation
� Multiple linear regression
� Residual
� Simple linear regression
� Statistics
� Time series
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Econometrics
Econometrics concerns the application
of statistical methods to economic data.
Economists use statistics to test their theo-
ries or to make forecasts.
Since economic data are not experimental in
nature, and often contain some randomness,
econometrics uses stochastic models rather
than deterministic models.

HISTORY
The advantages of applying mathematics
and statistics to the field of economics
were quickly realized. In the second part of
the seventeenth century, Petty, Sir William
(1676) published an important article intro-
ducing the methodological foundations of
econometrics.
According to Jaffé, W. (1968),Walras, Léon,
professor at the University of Lausanne,
is recognized as having originated gener-
al equilibrium economic theory, which pro-
vides the theoretical basis for modern econo-
metrics.
On the 29th December 1930, in Cleveland,
Ohio, a group of economists, statisticians
and mathematicians founded an Economet-
rics Society to promote research into mathe-
matical and statistical theories associated
with the fields of economics. They creat-
ed the bimonthly review “Econometrica,”

which appeared for the first time in January
1933.
The development of simultaneous equation
models that could be used in time series
for economic forecasts was the moment at
which econometrics emerged as a distinct
field, and it remains an important part of
econometrics today.

FURTHER READING
� Multiple linear regression
� Simple linear regression
� Time series
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Edgeworth, Francis Y.

Edgeworth, Francis Ysidro was born in 1845
at Edgeworthstown (Ireland) and died in
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1926. He contributed to various subjects,
such as morality, economic sciences, proba-
bility and statistics. His early and important
work on indices and the theory ofutility were
later followedbyastatisticalwork that isnow
sometimes called “Bayesian”.
The terms “module” and “fluctuation” orig-
inated with him.
He became the first editor of the Economic
Journal in 1881.

Principal work of Edgeworth, Francis
Ysidro:

1881 Mathematical Physics: An Essay on
the Application of Mathematics to
theMoralSciences.Kegan Paul,Lon-
don.

Efron, Bradley

Efron, Bradley was born in St. Paul, Min-
nesota in May 1938, to Efron, Esther and
Efron, Miles, Jewish–Russian immigrants.
He graduated in mathematics in 1960. Dur-
ing that year he arrived at Stanford, where
he obtained his Ph.D. under the direction
of Miller, Rupert and Solomon, Herb in the
statisticsdepartment.Hehastakenupseveral
positions at the University: Chair of Statis-
tics, Associate Dean of Science, Chairman
of the University Advisory Board, and Chair
of the Faculty Senate. He is currently Profes-
sor of Statistics and Biostatistics at Stanford
University.
He has been awarded many prizes, includ-
ing the Ford Prize, the MacArthur Prize and
the Wilks Medal for his research work into
the use of computer applications in statis-
tics, particularly regarding bootstrap and the
jackknife techniques. He is a Member of the

NationalAcademy ofSciencesand theAme-
ricanAcademyofArtsandScience.Heholds
a fellowship in the IMS and the ASA. He also
becamePresidentof theAmericanStatistical
Association in 2004.
The term “computer intensive statistical
methods” originated with him and Diaco-
nis, P. His research interests cover a wide
range of statistical topics.

Some principal works and articles of Efron,
Bradley:

1993 (with Tibshirani, R.J.) An Intro-
duction to the Bootstrap. Chapman
& Hall.

1983 Estimating the error rate of a pre-
diction rule: Improvement on cross-
validation. J. Am. Stat. Assoc. 78,
316-331.

1982 Jackknife, the Bootstrap and Other
Resampling Plans. SIAM, Philadel-
phia, PA.

FURTHER READING
� Bootstrap
� Resampling

Eigenvalue
LetAbeasquarematrix ofordern. If there is
a vector x �= 0 that gives a multiple (k ·x) of
itself when multiplied by A, then this vec-
tor is called an eigenvector and the multi-
plicative factor k is called an eigenvalue of
the matrix A.

MATHEMATICAL ASPECTS
Let A be a square matrix of order n and x be
a nonzero eigenvector. k is an eigenvalue of
A if

A · x = k · x .



E

Eigenvector 179

that is, (A− k · In) · x = 0, where In is the
identity matrix of order n.
As x is nonzero, we can determine the pos-
sible values of k by finding the solutions of
the equation |A− k · In| = 0.

DOMAINS AND LIMITATIONS
For a square matrix A of order n, the
determinant |A− k · In| is a polynomial of
degree n in k that has at the most n not neces-
sarily unique solutions. There will therefore
be n eigenvalues at the most; some of these
may be zeros.

EXAMPLES
Consider the following square matrix of
order 3:

A =
⎡
⎣

4 3 2
0 1 0
−2 2 0

⎤
⎦

A− k · I3 =
⎡
⎣

4 3 2
0 1 0
−2 2 0

⎤
⎦

− k ·
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

A− k · I3 =
⎡
⎣

4− k 3 2
0 1− k 0
−2 2 −k

⎤
⎦ .

The determinant of A− k · I3 is given by:

|A− k · I3| = (1− k) · [(4− k)

· (−k)− 2 · (−2)]

= (1− k) · (k2 − 4 · k + 4)

= (1− k) · (k − 2)2 .

The eigenvalues are obtained by finding the
solutions of the equations (1−k)·(k−2)2 =

0. We find

k1 = 1 and

k2 = k3 = 2 .

Therefore, two of the three eigenvalues are
confounded.

FURTHER READING
� Determinant
� Eigenvector
� Matrix
� Vector

Eigenvector

Let A be a square matrix of order n. An
“eigenvector” of A is a vector x containing n
components (not all zeros) where the matrix
product of A by x is a multiple of x, for exam-
ple k · x.
We say that the eigenvector x is associated
with an eigenvalue k.

DOMAINS AND LIMITATIONS
Let A be a square matrix of order n; then the
vector x (not zero) is an eigenvector of A if
there is a number k such that

A · x = k · x .

As x is nonzero, we determine the possible
values of k by finding solutions to the equa-
tion |A− k · In| = 0,whereIn is the identity
matrix of order n.
We find the corresponding eigenvectors by
resolving thesystemofequationsdefinedby:

(A− k · In) · x = 0 .

Every nonzero multiple of an eigenvector
can be considered to be an eigenvector. If c
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is a nonzero constant, then

A · x = k · x
c · (A · x) = c · (k · x)

A · (c · x) = k · (c · x) .

Therefore, c · x is also an eigenvector if c is
not zero.
It is possible to call an eigenvector, thevector
of thenorm1 orunitvectoron theaxisofc·x,
and the eigenvector will be on the factorial
axis. This vector is unique (up to a sign).

EXAMPLES
We consider the following square matrix of
order 3:

A =
⎡
⎣

4 3 2
0 1 0
−2 2 0

⎤
⎦ .

Theeigenvaluesof thismatrixAareobtained
by making the determinant of (A− k · I3)

equal to zero

A− k · I3 =
⎡
⎣

4 3 2
0 1 0
−2 2 0

⎤
⎦

− k ·
⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦

A− k · I3 =
⎡
⎣

4− k 3 2
0 1− k 0
−2 2 −k

⎤
⎦ .

The determinant of A− k · I3 is given by:

|A− k · I3| = (1− k) · [(4− k)

· (−k)− 2 · (−2)]

= (1− k) ·
(

k2 − 4 · k+ 4
)

= (1− k) · (k − 2)2 .

Hence, the eigenvalues are equal to :

k1 = 1 and

k2 = k3 = 2 .

Wenowcomputetheeigenvectorsassociated
with the eigenvalue k1:

k1 = 1 ,

A− k1 · I3 =
⎡
⎣

4− 1 3 2
0 1− 1 0
−2 2 −1

⎤
⎦

=
⎡
⎣

3 3 2
0 0 0
−2 2 −1

⎤
⎦ .

Denoting the components of the eigenvec-
tor x as

x =
⎡
⎣

x1

x2

x3

⎤
⎦ .

we then need to resolve the following system
of equations:

(A− k1 · I3) · x = 0
⎡
⎣

3 3 2
0 0 0
−2 2 −1

⎤
⎦ ·

⎡
⎣

x1

x2

x3

⎤
⎦ =

⎡
⎣

0
0
0

⎤
⎦ .

that is

3x1 + 3x2 + 2x3 = 0

−2x1 + 2x2 − x3 = 0 .

where the second equation has been elimi-
nated because it is trivial.
The solution to this system of equations
depending on x2 is given by:

x =
⎡
⎣

7 · x2

x2

−12 · x2

⎤
⎦ .

Thevectorx is an eigenvector of thematrixA
for every nonzero valueof x2.To find theunit
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eigenvector, we let:

1 =‖ x ‖2= (7 · x2)
2 + (x2)

2 + (−12 · x2)
2

= (49+ 1+ 144) · x2
2 = 194 · x2

2 .

from where x2
2 =

1

194
,

and so x2 = 1√
194
= 0.0718.

The unit eigenvector of the matrix A associ-
ated with the eigenvalue k1 = 1 then equals:

x =
⎡
⎣

0.50
0.07
−0.86

⎤
⎦ .

FURTHER READING
� Determinant
� Eigenvalue
� Eigenvector
� Factorial axis
� Matrix

REFERENCES
Dodge, Y.: Mathématiques de base pour

économistes. Springer, Berlin Heidelberg
New York (2002)

Meyer, C.D.: Matrix analysis and Applied
Linear Algebra, SIAM (2000)

Epidemiology

Epidemiology (the word derives from the
Greekwords“epidemos”and“logos,”mean-
ing “study of epidemics”) is the study of the
frequency and distribution of illness, and the
parametersand the risk factors thatdefine the
state of health of a population, in relation to
time, space and groups of individuals.

HISTORY
Epidemiology originated in the seventeenth
century, when Petty, William (1623–1687),
an English doctor, economist and scien-
tist, collected information on the popula-
tion, which he described in the work Polit-
ical Arithmetic. Graunt, John (1620–1694)
proposed the first rigorous analysis of caus-
es of death in 1662. Quetelet, Adolphe
(1796–1874),Belgian astronomerandmath-
ematician, is considered to be the foundor
of modern population statistics, the mother
disciplineof epidemiology,statistics, econo-
metrics and other quantitative disciplines
describing social and biological character-
istics of human life. With the work of Farr,
William (1807–1883), epidemiology was
recognized as a separate field from statis-
tics, since he studied the causes of death and
the way it varied with age, gender, season,
place of residence and profession. The Scot-
tish doctor Lind, James (1716–1794) proved
that eating citrus fruit stopped scurvy, which
marked an important step in the history of
the epidemiology. Snow, John (1813–1858),
a doctor in London, showed theat epidemics
propagated by contagions, which was under-
lined by an in situ study that proved that
drinking Thames water polluted by refuse
from sewers contributes to the dissemination
of cholera.

MATHEMATICAL ASPECTS
See cause and effect in epidemiology,
odds and odds ratio, relative risk, att-
ributable risk, avoidable risk, incidence
rate, prevalence rate.

EXAMPLES
Let us take an example involving the mor-
tality rates in two fictitious regions. Suppose
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that we want to analyze the annual mortali-
ty in two regions A and B, each populated
with 10000 inhabitants. The mortality data
are indicated in the following table:

Region A Region B

Deaths/Total
population

500/

10000
1000/

10000

Total mortality per
year

5% 10%

Annual mortality rate
among those < 60
years old

5% 5%

Annual mortality rate
among those > 60
years old

15% 15%

% of population
< 60 years old

100% 50%

From these data, can we state that the inhab-
itants of region B encounter an increased
chance of mortality than the inhabitants of
region A? In other words, would we recom-
mend that people leave region A to live in B?
If we divide both populations by age, we
note that, in spite, the different total mortal-
ity rates of regions A and B do not seem to
be explained by the different age structures
of A and B.
The previous example highlights the multi-
tude of factors that should be considered dur-
ing data analysis. The principal factors that
we should consider during an epidemiologi-
cal study include: age (as an absolute age and
as the generation that the individual belongs
to), gender and ethnicity, among others.

FURTHER READING
� Attributable risk
� Avoidable risk
� Biostatistics
� Cause and effect in epidemiology
� Incidence rate

� Odds and odds ratio
� Prevalence rate
� Relative risk

REFERENCES
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tions of Epidemiology, 2nd edn. Claren-
don, Oxford (1980)

MacMahon, B., Pugh, T.F.: Epidemiology:
Principles and Methods. Little Brown,
Boston, MA (1970)

Morabia, A.: Epidemiologie Causale. Editi-
ons Médecine et Hygiène, Geneva (1996)

Rothmann, J.K.: Epidemiology. An Intro-
duction. Oxford University Press (2002)

Error

The error is the difference between the esti-
mated value and the true value (or reference
value) of the concerned quantity.

HISTORY
The error distributions are the probabi-
lity distributions which describe the error
that appears during repeated measures of
a same quantity under the same conditions.
They were introduced in the second half
of the eighteenth century to illustrate how
the arithmetic mean can be used to obtain
a good approximation of the reference value
of the studied quantity.
In a letter to the President of the Royal Soci-
ety, Simpson, T. (1756) suggested that the
probability of obtaining a certain error dur-
ing an observationcan bedescribedbyadis-
crete probability distribution. He pro-
posed the first two error distributions. Oth-
er discrete distributions were proposed and
studied by Lagrange, J.L. (1776).
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Simpson,T. (1757) also proposed continu-
ous error distributions, as did Laplace, P.S.
(1774 and 1781). However, the most impor-
tant error distribution, the normal distri-
butionwasproposed by Gauss, C.F. (1809).

MATHEMATICAL ASPECTS
In the field of metrology, the following types
of errors can be distinguished:
• The absolute error, which is the abso-

lute value of the difference between the
observed value and the reference value of
a certain quantity;

• The relative error, which is the ratio
between the absolute error and the value
of the quantity itself. It characterizes the
accuracy of a physical measure;

• The accidental error, which is not relat-
ed to the measuring tool but to the exper-
imenter himself;

• The experimental error, which is the error
due to uncontrolled variables;

• The random error, which is the chance
error resulting from a combination of
errors due to the instrument and/or the
user. The statistical properties of random
errors and their estimation are studied
using probabilities;

• The residual error, which corresponds
to the difference between the estimated
value and the observed value. The term
residual is sometimes used for this error;

• The systematic error, the error that comes
from consistent causes (for example
the improper calibration of a measuring
instrument), and which always happens
in the same direction. The bias used in
statistics is a particular example of this;

• The rounded error, which is the error
that is created when a numerical value
is replaced by a truncated value close
to it. When performing calculations with

numbers that have n decimal places, the
value of the rounded error is located
between

− 1
2 · 10−n and 1

2 · 10−n .

During long calculation procedures,
rounded errors can accumulate and pro-
duce very imprecise results. This type
of error is often encountered when using
a computer.

Every error that occurs in a statistical prob-
lem is a combination of the different types of
errors listed above.
In statistics, and more specifically during
hypothesis testing, there is also:
• Type I error, corresponding to the error

committed when the null hypothesis is
rejected when it is true;

• Type II error, the error committed when
the null hypothesis is not rejected when it
is false.

FURTHER READING
� Analysis of residuals
� Bias
� Estimation
� Hypothesis testing
� Residual
� Type I error
� Type II error
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ifs à cette matière. Misc. Taurinensia 5,
167–232 (1776)

Laplace, P.S. de: Mémoire sur la probabi-
lité des causes par les événements. Mem.
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P.S. de (1891) Œuvres complètes, vol 8.
Gauthier-Villars, Paris, pp. 27–65)
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(1781) (or Laplace, P.S. de (1891) Œuvres
complètes, vol. 9. Gauthier-Villars, Paris,
pp. 385–485.)

Simpson, T.: A letter to the Right Honorable
George Earl of Macclesfield, President of
theRoyalSociety,on theadvantageof tak-
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inpracticalastronomy.Philos.Trans.Roy.
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Estimation

Estimation is the procedure that is used to
determine the value of a particular param-
eter associated with a population. To esti-
mate the parameter, a sample is drawn from
thepopulation and thevalueof theestimator
for the unknown parameter is calculated.
Estimation is divided into two large cate-
gories: point estimation and interval esti-
mation.

HISTORY
The concept of estimation dates back to
the first works on mathematical statistics,

notably by Bernoulli, Jacques (1713),
Laplace, P.S. (1774) and Bernoulli, Daniel
(1778).
The greatest advance in the theory of esti-
mation, after the introduction of the least
squares method, was probably the formula-
tion of the moments method by Pearson, K.
(1894, 1898). However, the foundations of
the theory of estimation is due to Fish-
er, R.A.. In his first work of 1912, he intro-
duced the maximum likelihood method.
In 1922 he wrote a fundamental paper that
clearly described what estimation really is
for the first time.
Fisher, R.A. (1925) also introduced a set
of definitions that were adopted to describe
estimators. Terms such as “biased,” “effi-
cient”and “sufficient” estimatorswere intro-
duced by him in his estimation theory.

DOMAINS AND LIMITATIONS
The following graph shows the relationship
between sampling and estimation. “Sam-
pling” is the process of obtaining a sample
from a population, while “estimation” is the
reverse process: from the sample to the pop-
ulation.

FURTHER READING
� Confidence interval
� Estimator
� L1 estimation
� Point estimation
� Robust estimation
� Sample
� Sampling
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Estimator

Any statistical function of a sample used to
estimate an unknown parameter of the pop-
ulation is called an estimator.
Any value obtained from this estimator is an
estimate of the parameter of the popula-
tion.

HISTORY
See estimation.

MATHEMATICAL ASPECTS
Consider θ , an unknown parameter defined
for a population, and (X1, X2, . . . , Xn),
a sample taken from this population. A sta-
tistical function (or simply a statistic) of this
sample g(X1, . . . , Xn) is used to estimate θ .
To distinguish the statistic g(X1, . . . , Xn),
which is a random variable, from the value
that it takes in a particular case, it is common
to call the statistic g(X1, . . . , Xn) the estima-
tor, and the value that is taken by it in a par-
ticular case is called an estimate.
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An estimator should not be confused with
a method of estimation.
A parameter of a population is usually
denoted by a Greek letter, and its estima-
tor by this same letter but with a circumflex
accent (ˆ) or a hat, to distinguish it from the
parameter of the population. Sometimes the
corresponding Roman letter is used instead.

DOMAINS AND LIMITATIONS
When calculating an estimator, such as the
arithmetic mean, it is expected that the val-
ueof thisestimatorwillapproach thevalueof
the trueparameter (themeanof thepopula-
tion in this case) as the sample size increas-
es.
It is thereforeclear thatagoodestimatormust
be close to the true parameter. The closer
the estimators cluster around the true param-
eters, the better the estimators.
In this sense, good estimators are strongly
related to statistical measures of dispersion
such as the variance.
In general estimators, should possess certain
qualities, such as those described below.
1. Estimator without bias:

An estimator θ̂ of an unknown param-
eter θ is said to be without bias if its
expected value is equal to θ ,

E[θ̂] = θ .

The mean x̄ and the variance S2 of a sam-
ple are estimators without bias, respec-
tively, of the mean μ and of the variance
σ 2 of the population, with

x̄ = 1

n
·

n∑
i=1

xi and

S2 = 1

n− 1
·

n∑
i=1

(xi − x̄)2 .

2. Efficient estimator:
An estimator θ̂ of a parameter θ is said to
be efficient if the variance of θ̂ is smaller
than the variance of any other estimator
of θ .
Therefore, for twoestimatorswithoutbias
of θ , one will be more efficient than the
other if its variance is smaller.

3. Consistent estimator:
An estimator θ̂ of a parameter θ is said to
be consistent if the probability that it dif-
fers from θ decreases as the sample size
increases.
Therefore, an estimator is consistent if

lim
n→∞P(|θ̂ − θ | < ε̂) = 1 ,

however small the number ε̂ > 0 is.

EXAMPLES
Consider (x1, x2, . . . , xn), a sample drawn
from a population with a mean of μ and
a variance of σ 2.
The estimator x̄, calculated from the sam-
ple and used to estimate the parameter μ of
the population, is an estimator without bias.
Then:

E[x̄] = E

[
1

n

n∑
i=1

xi

]

= 1

n
E

[
n∑

i=1

xi

]

= 1

n

n∑
i=1

E[xi]

= 1

n

n∑
i=1

μ

= 1

n
n · μ

= μ .
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To estimate the variance σ 2 of the popula-
tion, it is tempting to use the estimator S2

calculated from the sample (x1, x2, . . . , xn),
which is defined here by:

S2 = 1

n

n∑
i=1

(xi − x̄)2 .

This estimator is a biased estimatorσ 2 since:

n∑
i=1

(xi − x̄)2 =
n∑

i=1

(xi − μ)2 − n(x̄− μ)2

in the following way:

n∑
i=1

(xi − x̄)2

=
n∑

i=1

[(xi − μ)− (x̄− μ)]2

=
n∑

i=1

[
(xi − μ)2 − 2(xi − μ)(x̄− μ)

+ (x̄− μ)2]

=
n∑

i=1

(xi − μ)2 − 2(x̄− μ) ·
n∑

i=1

(xi − μ)

+ n(x̄− μ)2

=
n∑

i=1

(xi − μ)2 − 2(x̄− μ)
( n∑

i=1

xi−n · μ
)

+ n(x̄− μ)2

=
n∑

i=1

(xi − μ)2 − 2(x̄− μ)(n · x̄− n · μ)

+ n(x̄− μ)2

=
n∑

i=1

(xi − μ)2 − 2n(x̄− μ)(x̄− μ)

+ n(x̄− μ)2

=
n∑

i=1

(xi − μ)2 − 2n(x̄− μ)2 + n(x̄−μ)2

=
n∑

i=1

(xi − μ)2 − n(x̄− μ)2 .

Hence:

E
[
S2] = E

[
1

n

n∑
i=1

(xi − x̄)2

]

= E

[
1

n

n∑
i=1

(xi − μ)2 − (x̄− μ)2

]

= 1

n
E

[
n∑

i=1

(xi − μ)2

]
−E

[
(x̄−μ)2]

= 1

n

n∑
i=1

E
[
(xi − μ)2]−E

[
(x̄− μ)2]

= Var(xi)− Var(x̄)

= σ 2 − σ 2

n

= n− 1

n
σ 2 �= σ 2 .

Therefore, to get an estimator of the vari-
ance σ 2 that is not biased, we avoid using S2

and use the same value divided by n−1
n

instead:

S′2 = n

n− 1
S2

= n

n− 1
· 1

n

n∑
i=1

(xi − x̄)2

= 1

n− 1

n∑
i=1

(xi − x̄)2 .

FURTHER READING
� Bias
� Estimation
� Sample
� Sampling

REFERENCES
Hogg, R.V., Craig, A.T.: Introduction

to Mathematical Statistics, 2nd edn.
Macmillan, New York (1965)
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Lehmann, E.L.: Theory of Point Estimation,
2nd edn. Wiley, New York (1983)

Event
In a random experiment, an event is a sub-
set of the set the sample space. In other
words, an event is a set of possible outcome
in a random experiment.

MATHEMATICAL ASPECTS
Consider �, the sample space of a random
experiment. Any subset of � is called an
event.

Different Types of Events
• Impossible events

An impossible event corresponds to an
empty set. The probability of an impos-
sible event is equal to 0:

if B = φ , P(B) = 0 .

• Sure event
A sure event is an event that corresponds
to the sample space. The probability of
a sure event is equal to 1:

P(�) = 1 .

• Simple event
A simple event is an event that only con-
tains one outcome.

Operations on Events
• Negation of an event

Consider the event E. The negation of this
event is another event, called the opposite
event of E, which is realized when E is
not realized and vice versa. The opposite
eventof E isdenoted by theset Ē, thecom-
plement of E:

E = �\E = {ω ∈ �;ω /∈ E} .

• Intersection of events
Consider the two events E and F. The
intersection between these two events is
another event that is realized when both
events are realized simultaneously. It is
called the “E and F” event, and it is denot-
ed by E ∩ F.

E ∩ F = {ω ∈ �;ω ∈ E and ω ∈ F} .

In a more general way, if E1, E2, . . . , Er

are r events, then

r⋂
i=1

Ei = {ω ∈ �;ω ∈ Ei, ∀i = 1, . . . , n}

is defined as the intersection of the
r events, which is realized when all of
the r events are realized simultaneously.

• Union of events
Consider the two same events E and F.
The union of these two events is anoth-
er event, which is realized when at least
one of the two events E or F is realized.
It is sometimes called the “E or F” event,
and it is denoted by E ∪ F:

E ∪ F = {ω ∈ �;ω ∈ E or ω ∈ F} .

Properties of Operations on the Events
Consider the three events E, F and G. The
intersection and theunion of theseevents sat-
isfy the following properties:
• Commutativity:

E ∩ F = F ∩ E ,

E ∪ F = F ∪ E .

• Associativity:

E ∩ (F ∩ G) = (E ∩ F) ∩ G ,

E ∪ (F ∪ G) = (E ∪ F) ∪ G .
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• Idempotence:

E ∩ E = E ,

E ∪ E = E .

The distributivity of the intersection with
respect to the union is:

E ∩ (F ∪ G) = (E ∩ F) ∪ (E ∩ G) .

The distributivity of the union with respect
to the intersection is:

E ∪ (F ∩ G) = (E ∪ F) ∩ (E ∪ G) .

The main negation relations are:

E ∩ F = Ē ∪ F̄ ,

E ∪ F = Ē ∩ F̄ .

EXAMPLES
Consider a random experiment which
involves simultaneously throwing a yellow
die and a blue die.
The sample space of this experiment is
formed from the set of pairs of possible
scores from the two dice:

� = {(1, 1), (1, 2), (1, 3), . . . , (2, 1) ,

(2, 2), . . . , (6, 5), (6, 6)} .

where, for example: (1, 2) = “1′′ on the yel-
low die and “2” on the blue die. The num-
ber of pairs (or simple events) that can be
formed is given by the number of arrange-
ments with repetition of two objects among
six which is 36. For this sample space, it is
possible to describe the following events, for
example:
1. The sum of points is equal to six:

A = {(1, 5), (2, 4), (3, 3), (4, 2), (5, 1)} .

2. The sum of points is even:

B = {(1, 1), (1, 3), (1, 5),

(2, 2), (2, 4), . . . , (6, 4), (6, 6)} .
3. The sum of points is less than 5:

C = {(1, 1), (1, 2), (1, 3),

(2, 1), (2, 2), (3, 1)} .
4. The sum of points is odd:

D = {(1, 2), (1, 4), (1, 6),

(2, 1), (2, 3), . . . , (6, 5)} = B̄ .

5. The sum of points is even and less than 5:

E = {(1, 1), (1, 3), (2, 2), (3, 1)}
= B ∩ C .

6. The blue die lands on “2”:

F = {(1, 2), (2, 2), (3, 2),

(4, 2), (5, 2), (6, 2)} .
7. The blue die lands on “2” or the total score

is less than 5:

G = {(1, 2), (2, 2), (3, 2), (4, 2), (5, 2),

(6, 2), (1, 1), (1, 3), (2, 1), (3, 1)}
= F ∪ C .

8. A and D are incompatible.
9. A implies B.

FURTHER READING
� Compatibility
� Conditional probability
� Independence
� Probability
� Random experiment
� Sample space
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Expected Value

The expected value of a random variable
is the weighted mean of the values that the
random variable can take, where the weight
is the probability that a particular value is
taken by the random variable.

HISTORY
The mathematical principle of the expect-
ed value first appeared in the work entitled
De Ratiociniis in Aleae Ludo, published in
1657 by the Dutch scientist Huygens, Chris-
tiaan (1629–1695).His thoughts on the sub-
ject appear to have heavily influenced the lat-
er works of Pascal and Fermat on probabi-
lity.

MATHEMATICAL ASPECTS
Depending on whether the random vari-
able is discrete or continuous, we refer to
either the expected value of a discrete ran-
dom variable or the expected value of a con-
tinuous random variable.
Consider a discrete random variable X
that has a probability function p(X). The
expected value of X, denoted by E[X] or μ,
is defined by

μ = E[X] =
n∑

i=1

xip(xi)

if X can take n values.
If the random variable X is continuous, the
expected value becomes

μ = E[X] =
∫

D
xf (x)dx ,

if X takes values over the interval D, where
f (x) is the density function of X.

Properties of the Expected Value
Consider the two constants a and b, and the
random variable X. We then have:
1. E[aX + b] = aE[X]+ b;
2. E[X + Y] = E[X]+ E[Y];
3. E[X − Y] = E [X]− E [Y];
4. If X and Y are independent, then:

E[X · Y] = E[X] · E[Y] .

EXAMPLES
We will consider two examples, one con-
cerning adiscreterandom variable, theoth-
er concerning a continuous random variable.
Consider a game of chance where a die is
thrown and thescorenoted.Suppose thatyou
win a euro if it lands on an even number, two
euros if it lands on a “1” or a “3,” and lose
three euros if it lands on a 5.
The random variable X considered here is
the number of euros that are won or lost. The
following table represents the different val-
ues of X and their respective probabilities:

X −3 1 2

P (X ) 1/6 3/6 2/6

The expected value is therefore equal to:

E[X] =
3∑

i=1

xip(xi)

= −3 · 1
6 + 1 · 3

6 + 2 · 2
6

= 2
3 .

In other words, the player wins, on average,
2
3 of a euro per throw.
Consider a continuous random variable X
with the following density function:

f (x) =
{

1 for 0 < x < 1

0 elsewhere.
.
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The expected value of this random vari-
able X is equal to:

E[X] =
∫ 1

0
x · 1dx

= x2

2

∣∣∣∣
1

0

= 1

2
.

FURTHER READING
� Density function
� Probability function
� Weighted arithmetic mean

Experiment

An experiment is an operation conducted
under controlled conditions in order to dis-
cover a previously unknown effect, to test
or establish a hypothesis, or to demonstrate
a known law.
The goal of experimenting is to clarify the
relationbetween thecontrollableconditions
and the result of the experiment.
Experimental analysis is performed on ob-
servationswhich areaffected notonly bythe
controllable conditions, but also by uncon-
trolled conditions and measurement errors.

DOMAINS AND LIMITATIONS
When the possible results of the experiment
canbedescribed,and it ispossible toattribute
a probability of realization to each possible
outcome, the experiment is called a random
experiment. The set of all possible outcome
of an experiment is called the sample space.
A factorial experiment is when the exper-
imenter organizes an experiment with two
or more factors. The factors are the control-
lable conditions of the experiment. Experi-

mentalerrorscomefromuncontrolledcondi-
tions and from measurement errors that are
present in any type of experiment.
An experimental design is established,
depending on the aim of the experimentor
or the possible resources that are available.

EXAMPLES
See random experiment and factorial ex-
periment.

FURTHER READING
� Design of experiments
� Factorial experiment
� Hypothesis testing
� Random experiment

REFERENCES
Box, G.E.P., Hunter, W.G., Hunter, J.S.:

Statistics for Experimenters. An Intro-
duction to Design, Data Analysis, and
Model Building. Wiley, New York (1978)

Rüegg, A.: Probabilités et statistique. Press-
es Polytechniques Romandes, Lausanne,
Switzerland (1985)

Experimental Unit

An experimental unit is the smallest part of
the experimental material to which we apply
treatment.
The experimental design specifies the num-
ber of experimental units submitted to the
different treatments.

FURTHER READING
� Design of experiments
� Experiment
� Factor
� Treatment
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Exploratory
Data Analysis

Exploratory data analysis is an approach to
data analysis where the features and char-
acteristics of the data are reviewed with
an “open mind”; in other words, without
attempting to apply any particular model to
the data. It is often used upon first contact
with the data, before any models have been
chosen for the structural or stochastic com-
ponents, and it is also used to look for devi-
ations from common models.

HISTORY
Exploratory data analysis is a set of tech-
niques that have been principally developed
byTukey, John Wildersince1970.Thephi-
losophy behind this approach is to examine
the data before applying a specific proba-
bility model. According to Tukey, J.W.,
exploratory data analysis is similar to detec-
tive work. In exploratory data analysis, these
clues can be numerical and (very often)
graphical. Indeed, Tukey introduced sev-
eral new semigraphical data representation
tools to help with exploratory data analysis,
including the “box and whisker plot” (also
known as the box plot) in 1972, and the stem
and leaf diagram in 1977. This diagram is
similar to the histogram, which dates from
the eighteenth century.

MATHEMATICAL ASPECTS
Agood way to summarize theessential infor-
mation in a data with exploratory data analy-
sis is provided by the five-number summary,
which is presented in the form of a table as
follows:

Median

First quartile Third quartile

Minimum Maximum

Let n be the number of observations; we
arrange the data in ascending order. We
define:

median rank = n+ 1

2

quartile rank = �median rank� + 1

2
,

where �x� is the value of x truncated down
to the next smallest whole number.
In his book, Tukey, J.W. calls the first and
the fourth quartiles “hinges”.

DOMAINS AND LIMITATIONS
In the exploratory data analysis defined by
Tukey, J.W., there are four principal top-
ics. These are graphical representation,
re-expression (which is simply the trans-
formation of variables), residuals and resis-
tance (which is synonymous to the concept
of robustness). The resistance is a measure
of sensitivity of the analysis or summary to
“bad data”. The need to study the resistance
reflects the fact that even “good data rarely
contains less then 5% error and so it is impor-
tant to be able to protect the analysis against
the adverse effects of error”. Tukey’s resis-
tant line gives a robust fit to a set of points,
which means that this line is not overly sensi-
tive to any particular observation. The medi-
an is highly resistant, but the mean is not.
Graphical representations are used to ana-
lyze the behavior of the data, data fits, diag-
nosticmeasuresand residuals. In thisway we
can spot any unexpected characteristics and
recognizableir regularity in the data.
The development of the exploratory data
analysis isclosely associated with an empha-
sis on visual representation and the use of
a variety of relatively new graphical tech-
niques, such as the stem and leaf diagram
and the box plot.
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EXAMPLES
Income indices for Swiss cantons in 1993

Canton Index Canton Index

Zurich 125.7 Schaffhouse 99.2

Bern 86.2 Appenzell
Rh.-Ext.

84.3

Lucern 87.9 Appenzell
Rh.-Int.

72.6

Uri 88.2 Saint-Gall 89.3

Schwytz 94.5 Grisons 92.4

Obwald 80.3 Argovie 98.0

Nidwald 108.9 Thurgovie 87.4

Glaris 101.4 Tessin 87.4

Zoug 170.2 Vaud 97.4

Fribourg 90.9 Valais 80.5

Soleure 88.3 Neuchatel 87.3

Basel-Stadt 124.2 Geneva 116.0

Basel-Land 105.1 Jura 75.1

The table provides the income indices of
Swiss cantons per inhabitant (Switzerland
= 100) in 1993. We can calculate the five-
number summary statistics:

median rank = n+ 1

2
= 26+ 1

2
= 13.5 .

Therefore, the median Md is the mean of the
thirteenth and the fourteenth observations:

Md = 89.3+ 90.9

2
= 90.1 .

Then we calculate:

quartile rank = 13+ 1

2
= 7 .

The first quartile will be the seventh observa-
tion from the start of the data (when arranged
in ascending order) and the third quartile will
be the seventh observation from the end of
the data:

first quartile = 87.3

third quartile = 101.4 .

Theminimumandmaximumare, respective-
ly: 72.6 and 170.2.
Thisgivesusthefollowingfive-numbersum-
mary:

90.1

87.3 101.4

72.6 170.2

Resistance (or Robustness) of the Median
with Respect to the Mean
We consider the following numbers: 3, 3, 7,
7, 11, 11.
Wefirst calculate themean of thesenumbers:

x =
∑n

i=1 xi

n

= 3+ 3+ 7+ 7+ 11+ 11

6
= 7 .

Then we calculate the median Md:

median rank = n+ 1

2
= 6+ 1

2
= 3.5

Md = 7+ 7

2
= 7 .

We note that, in this case, the mean and the
median both equal 7.
Now suppose that we add another number:
−1000. We therefore recalculate the mean
and the median of the following numbers:
−1000, 3, 3, 3, 7, 11, 11. The mean is:

x =
∑n

i=1 xi

n

= −1000+ 3+ 3+ 7+ 7+ 11+ 11

7
= −136.86 .

It is clear that the presence of even one “bad
datum” can affect the mean to a large degree.
The median is:

median rank = n+ 1

2
= 7+ 1

2
= 4

Md = 7 .
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Unlike the mean, the median does not
change, which tells us that the median is
more resistant to extremevalues (“bad data”)
than the mean.

FURTHER READING
� Box plot
� Graphical representation
� Residual
� Stem-and-leaf diagram
� Transformation

REFERENCES
Tukey, J.W.: Some graphical and semigraph-
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Exponential
Distribution

A random variable X follows an exponen-
tial distribution with parameter θ if its den-
sity function is given by:

f (x) =
{

θ · e−θx if x ≥ 0; θ > 0

0 if not
.

Exponential distribution, θ = 1, σ = 2

The exponential distribution is also called
the negative exponential.
The exponential distribution is a continuous
probability distribution.

MATHEMATICAL ASPECTS
The distribution function of a random
variableX that followsanexponentialdistri-
bution with parameter θ is as follows:

F(x) =
∫ x

0
θ · e−θ t dt

= 1− e−θx .

The expected value is given by:

E[X] = 1

θ
.

Since we have

E
[
X2] = 2

θ2 .

the variance is equal to:

Var(X) = E
[
X2]− (E[X])2

= 2

θ2 −
1

θ2 =
1

θ2 .

The exponential distribution is the continu-
ous probability distribution analog to the
geometric distribution.
It is actually a particular case of the gamma
distribution, where the parameter α of the
gamma distribution is equal to 1.
It becomes a chi-square distribution with
two degrees of freedom when the param-
eter θ of the exponential distribution is equal
to 1

2 .

DOMAINS AND LIMITATIONS
The exponential distribution is used to
describe random events in time. For exam-
ple, lifespan is a characteristic that is fre-
quently represented by an exponential ran-
dom variable.
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FURTHER READING
� Chi-square distribution
� Continuous probability distribution
� Gamma distribution
� Geometric distribution

Extrapolation

Statistically speaking, an extrapolation is an
estimation of the dependent variable for
valuesof independentvariable thatare locat-
ed outside of the set of observations.
Extrapolation is often used in time series
when a model that is determined from the
values u1, u2, . . . , un observed at times
t1, t2, . . . , tn (with t1 < t2 < . . . < tn) is
used to predict the value of the variable at
time tn+1.

Generally, a simple linear regression func-
tion based on the observations (Xi, Yi), i =
1, 2, . . . , n can be used to estimate values of
Y for values of X that are located outside of
the set X1, X2, . . . , Xn. It is also possible to
obtain extrapolations from amultiple linear
regression model.

DOMAINS AND LIMITATIONS
Caution is required when using extrapola-
tions because they are obtained based on the
hypothesis that the model does not change
for the values of the independent variable
used for the extrapolation.

FURTHER READING
� Forecasting
� Multiple linear regression
� Simple linear regression
� Time series
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Factor

A factor is the term used to describe any con-
trollable condition in an experiment. Each
factor can take a predetermined number of
values, called the levels of the factor.
Experiments that use factors are called fac-
torial experiments.

EXAMPLES
A sociologist wants to find out the opinions
of the inhabitants of a city about the drug
problem. He is interested in the influence
of gender and income on the attitude to this
issue.
The levels of the factor “gender” are:
male (M) and female (F); the levels of the
factor “income” correspond to low (L), aver-
age (A) and high (H), where the divisions
between these levels are set by the experi-
menter.
The factorial space G of this experiment
is composed of the following six combina-
tions of the levels of the two factors:

G = {(M,L); (M,A); (M,H); (F,L);
(F,A); (F,H)} .

In this example, the factor “gender” is qual-
itative and takes nominal values; whereas
the factor “income” is quantitative, and takes
ordinal values.

FURTHER READING
� Analysis of variance
� Design of experiments
� Experiment
� Factorial experiment
� Treatment

REFERENCES
Raktoe, B.L. Hedayat, A., Federer, W.T.:

Factorial Designs. Wiley, New York
(1981)

Factor Level

The levels of a factor are the different values
that it can take. The experimental design
determines which levels, out of all of the pos-
sible combinations of such levels, are used in
the experiment.

FURTHER READING
� Design of experiments
� Experiment
� Factor
� Treatment

Factorial Axis

Consider S, a square matrix of order n. If Xi

is the eigenvector of S, associated with the
eigenvalue ki, we say that Xi is the ith fac-
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torial axis; more precisely it is the axis that
carries the vector Xi.
We generally arrange eigenvalues in
decreasing order, which explains the need
to number the factorial axes.

HISTORY
See correspondence analysis.

DOMAINS AND LIMITATIONS
The concept of a factorial axis is used in cor-
respondence analysis.

FURTHER READING
� Correspondence analysis
� Eigenvalue
� Eigenvector
� Inertia

REFERENCES
See correspondence analysis.

Factorial Experiment

A factorial experiment is an experiment in
which all of the possible treatments that can
be derived from two or more factors, where
each factor has two or more levels, are stud-
ied, in a way such that the main effects and
the interactions can be investigated.
Theterm“factorialexperiment”describesan
experiment where all of the different factors
are combined in all possible ways, but it does
not specify the experiment design used to
perform such an experiment.

MATHEMATICAL ASPECTS
In a factorial experiment, a model equation
can be used to relate thedependent variable
to the independent variable.

Therefore, if the factorial experiment impli-
cates two factors, the associated model is as
follows:

Yijk = μ+ αi + βj + (αβ)ij + εijk ,

i = 1, 2, . . . , a (levels of factor A) ,

j = 1, 2, . . . , b (levels of factor B) ,

k = 1, 2, . . . , nij

⎛
⎜⎜⎝

number of ex-
perimental units
receiving the
treatment ij

⎞
⎟⎟⎠ ,

where:

μ is the general mean common to all
of the treatments,

αi is the effect of the ith level of fac-
tor A,

βj is theeffectof the jth leveloffactorB,
(αβ)ij is the effect of the interaction be-

tween ith level of A jth level of B,
and

εijk is the experimental error in the
observation Yijk.

In general, μ is a constant and εijk is a ran-
dom variable distributed according to the
normal distribution with a mean of zero
and a variance of σ 2.
If the interaction term (αβ)ij is suppressed,
an additive model is obtained, meaning that
the effect of each factor is a constant that
adds up to the general mean μ, and this does
not depend on the level of the other factor.
This is known as a model without interac-
tions.

DOMAINS AND LIMITATIONS
In a factorial experiment where all of the
factors have the same number of levels, the
number of treatments employed in theexper-
iment is usually given by the number of lev-
els raised to a power equal to the number
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of factors. For example, for an experiment
that employs three factors, eachwith two lev-
els, the experiment is known as a 23 facto-
rial experiment, which employs eight treat-
ments.
The most commonly used notation for the
combinations of treatments used in a facto-
rial experiment can be described as follows.
Use a capital letter to designate the factor
and a numerical index to designate its level.
Consider for example a factorial experiment
with three factors: a factor A with two levels,
a factor B with two levels, and a factor C with
three levels. The 12 combinations will be:

A1B1C1 , A1B1C2 , A1B1C3 ,
A1B2C1 , A1B2C2 , A1B2C3 ,
A2B1C1 , A2B1C2 , A2B1C3 ,
A2B2C1 , A2B2C2 , A2B2C3 .

Sometimes only the indices (written in the
same order as the factors) are stated:

111 , 112 , 113 ,
121 , 122 , 123 ,
211 , 212 , 213 ,
221 , 222 , 223 .

Double-factorial experiments, or more gen-
erally multiple-factorial experiments, are
important for the following reasons:
• A double-factorial experiment uses

resources more efficiently than two expe-
riments that each employ a single factor.
The first one takes less time and requires
fewer experimental units to achieve
a given level of precision.

• A double-factorial experiment allows the
influence of one factor to be studied at
each level of the other factor because the
levelsofbothfactorsarevaried.This leads
to conclusions that are valid over a larger
range of experimental conditions than if
a series of one-factor designs is used.

• Finally, simultaneous research on two
factors is necessary when interactions
between the factors are present, meaning
that the effect of a factor depends on the
level of the other factor.

FURTHER READING
� Design of experiments
� Experiment

REFERENCES
Dodge, Y.: Principaux plans d’expériences.

In: Aeschlimann, J., Bonjour, C., Stock-
er, E. (eds.) Méthodologies et techniques
de plans d’expériences: 28ème cours de
perfectionnement de l’Association vau-
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Fisher Distribution
The random variable X follows a Fisher
distribution if its density function takes the
form:

f (x) = 

(m+n

2

)



(m

2

)



( n
2

)
(m

n

)m
2

· x
m−2

2

(
1+ m

n x
)m+n

2
,

where 
 is the gamma function (see gam-
ma distribution) and m, n are the degrees
of freedom (m, n = 1, 2, . . .).

Fisher distribution, m = 12, n = 8
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The Fisher distribution is a continuous
probability distribution.

HISTORY
The Fisher distribution was discovered by
Fisher, R.A. in 1925. The symbol F, used
to denote the Fisher distribution, was intro-
duced by Snedecor in 1934, in honor of Fish-
er, R.A..

MATHEMATICAL ASPECTS
If U and V are two independent random
variables each following a chi-square
distribution, with respectively m and n
degrees of freedom, then the random vari-
able:

F = U/m

V/n

follows a Fisher distribution with m and n
degrees of freedom.
Theexpected valueofarandom variableF
that follows a Fisher distribution is given by:

E[F] = n

n− 2
for n > 2 ,

and the variance is equal to:

Var (F) = 2n2 (m+ n− 2)

m (n− 2)2 (n− 4)
n > 4 .

The Fisher distribution with 1 and v degrees
of freedom is identical to the square of the
Student distribution with v degrees of free-
dom.

DOMAINS AND LIMITATIONS
The importance of the Fisher distribution in
statistical theory is related to its application
to the distribution of the ratio of independent
estimators of the variance. Currently, this
distribution is most commonly used in the
standard tests associated with analysis of
variance and regression analysis.

FURTHER READING
� Analysis of variance
� Chi-square distribution
� Continuous probability distribution
� Fisher table
� Fisher test
� Student distribution

REFERENCES
Fisher, R.A.: Statistical Methods for

Research Workers. Oliver & Boyd, Edin-
burgh (1925)

Snedecor, G.W.: Calculation and Interpre-
tation of Analysis of Variance and Covari-
ance. Collegiate, Ames, IA (1934)

Fisher Index

TheFisher index isacomposite index num-
ber which allows us to study the increase in
the cost of living (inflation). It is the geomet-
ric mean of two index numbers:
• The Laspeyres index, and
• The Paasche index.

Fisher index =
√

(Laspeyres index)
× (Paasche index)

.

HISTORY
In 1922, the economist and mathematician
Fisher, Irving established a model based on
the Fisher index in order to circumvent some
issues related to the use of the index num-
bers of Laspeyres and Paasche:
Since the Laspeyres index always uses the
quantityofgoodssold initiallyasareference,
it can overestimate any increase in the cost
of living (because the consumption of more
expensive goods may drop over time).
Conversely, since the Paasche index always
uses the quantity of goods sold in the current
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periodasareference, itcanunderestimatethe
increase in the cost of living.
Because the Fisher index is the geometric
mean of these two indices, it can be con-
sidered to be an ideal compromise between
them.

MATHEMATICAL ASPECTS
Using thedefinitionsof theLaspeyres index
and thePaasche index, theFisher index Fn/0

is calculated in the following way:

Fn/0 = 100 ·
√∑

PnQ0 ·∑PnQn∑
P0Q0 ·∑P0Qn

,

where Pn and Qn represent the price of goods
and the quantity of them sold in the current
period n, while P0 and Q0 are the price and
quantity sold of the same goods during refer-
ence period 0. Different values are obtained
for different goods.
Notice that the Fisher index is reversible,
meaning that:

Fn/0 = 1

F0/n
.

DOMAINS AND LIMITATIONS
Even though the Fisher index is a kind
of “ideal compromise index number,” it is
rarely used in practice.

EXAMPLES
Consider the following fictitious table indi-
cating thepricesand therespectivequantities
sold of threeconsumergoodsat the reference
year 0 and at the current year n.

Quantities
(thousands)

Price
(euros)

Goods 1970 1988 1970 1988

(Q0) (Qn) (P0) (Pn)

Milk 50.5 85.5 0.20 1.20

Bread 42.8 50.5 0.15 1.10

Butter 15.5 40.5 0.50 2.00

From the following table, we have:
∑

PnQn = 239.15 ,
∑

P0Qn = 44.925 ,
∑

PnQ0 = 138.68 and
∑

P0Q0 = 24.27 .

Goods
∑

Pn Qn
∑

P0Qn
∑

Pn Q0
∑

P0Q0

Milk 102.60 17.100 60.60 10.10

Bread 55.55 7.575 47.08 6.42

Butter 81.00 20.250 31.00 7.75

Total 239.15 44.925 138.68 24.27

We can then find the Paasche index:

In/0 =
∑

Pn ·Qn∑
P0 ·Qn

· 100

= 239.15

44.925
· 100 = 532.3 ,

and the Laspeyres index:

In/0 =
∑

Pn ·Q0∑
P0 ·Q0

· 100

= 138.68

24.27
· 100 = 571.4 .

The Fisher index is the square root of the
product of the index numbers of Paasche and
of Laspeyres (or the geometric mean of the
two index numbers):

Fisher index = √532.3× 571.4 = 551.5 .

According to the Fisher index, the price of
the goods considered has risen by 451.5%
(551.5−100)between thereferenceyearand
the current year.

FURTHER READING
� Composite index number
� Index number
� Laspeyres index
� Paasche index
� Simple index number
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REFERENCES
Fisher, I.: The Making of Index Numbers.

Houghton Mifflin, Boston (1922)

Fisher, Irving

Fisher, Irving was born in New York on the
27th February 1867.He obtained his doctor-
ate at Yale University in 1892. His mathe-
matical approach to the theory of values and
prices,firstdescribed in his thesis, resulted in
him becoming knownasoneof thefirstAme-
rican mathematical economists. He founded
theEconometricSociety in1930withFrisch,
Ragnar and Roos, Charles F., and became
its first president. Fisher, I. stayed at Yale
University throughout his career. He began
by teaching mathematics, then economics.
After a stay in Europe, he was named Pro-
fessor of Social Sciences in 1898, and died
in New York in 1947.
Fisher was a prolific author: his list of pub-
lications contains more then 2000 titles. He
was interested in both economic theory and
scientific research. In 1920, he proposed
econometrical and statistical methods for
calculating indices. His “ideal index”, which
we now call the Fisher index, is the geo-
metric mean of the Laspeyres index and the
Paasche index.

Some principal works and articles of Fish-
er, Irving:

1892 Mathematical Investigations in the
Theory of Value and Prices. Con-
necticut Academy of Arts and Sci-
ence, New Haven, CT.

1906 The Nature of Capital and Income.
Macmillan, New York.

1907 The Rate of Interest: Its Nature,
Determination and Relation to Eco-
nomic Phenomena. Macmillan, New
York.

1910 Introduction to Economic Science.
Macmillan, New York.

1911 The Purchasing Power of Money.
Macmillan, New York.

1912 Elementary Principles of Economics.
Macmillan, New York.

1921 The best form of index number. Am.
Stat. Assoc. Quart., 17, 533–537.

1922 The Making of Index Numbers.
Houghton Mifflin, Boston, MA.

1926 A statistical relation between unem-
ployment and price changes. Int.
Labour Rev., 13, 785–792.

1927 A statistical method for measuring
“marginal utility” and testing the
justice of a progressive income tax.
In: Hollander, J.H. (ed) Economic
Essays Contributed in Honor of John
Bates Clark. Macmillan, New York.

1930 The Theory of Interest as Determined
by Impatience to Spend Income and
Opportunity to Invest It Macmillan,
New York.

1932 Booms and Depressions. Adelphi,
New York.

1933 The debt-deflation theory of great
depressions. Econometrica, 1, 337–
357.

1935 100% Money. Adelphi, New York.

FURTHER READING
� Fisher index
� Index number
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Fisher, Ronald Aylmer

Born in 1890 in East Finchley, near London,
Fisher, Ronald Aylmer studied mathematics
atHarrowand atGonvilleand CaiusCollege,
Cambridge. He began his statistical career
in 1919 when he started work at the Insti-
tute of Agricultural Research at Rothamsted
(“Rothamsted Experimental Station”). The
time he spent there, which lasted until 1933,
was very productive. In 1933, he moved to
become Professor of Eugenics at University
College London, and then from 1943 to 1957
he took over the Balfour Chair of Genetics at
Cambridge. Even after he had retired, Fish-
er performed some research for the Mathe-
matical Statistics Division of the Common-
wealth Scientific and Industrial Research
Organisation in Adelaide, Australia, where
he died in 1962.
Fisher is recognized as being one of the
founders of modern statistics. Well known
in the field of genetics, he also contributed
importantwork to thegeneral theory of max-
imum likelihood estimation. His work on
experimental design, required for the study
of agricultural experimental data, is also
worthy of mention, as is his development of
the technique used for the analysis of vari-
ance.
Fisher originated the principles of random-
ization, randomized blocks, Latin square
designs and factorial arrangements.
Some of the main works and articles of Fi-
sher, R.A.:

1912 Onanabsolutecriterionforfittingfre-
quency curves.Mess.Math., 41,155–
160.

1918 The correlation between relatives on
the supposition of Mendelian inher-

itance. Trans. Roy. Soc. Edinburgh,
52, 399–433.

1920 A mathematical examination of
methods of determining the accu-
racy of an observation by the mean
error and by the mean square error.
Mon. Not. R. Astron. Soc., 80, 758–
770.

1921 On the “probable error” of a coef-
ficient of correlation deduced from
a small sample. Metron, 1(4), 1–32.

1922 On the mathematical foundation of
theoretical statistics. Phil. Trans. A,
222, 309–368.

1925 Theory of statistical estimation. Proc.
Camb. Philos. Soc., 22, 700–725.

1925 Statistical Methods for Research
Workers. Oliver & Boyd, London.

1934 Probability, likelihood and quantity
of information in the logic of uncer-
tain inference.Proc.Roy.Soc.A,146,
1–8.

1935 The Design of Experiments. Oliver &
Boyd, Edinburgh.

1971–1974 Bennett, J.H. (ed) Collected
Papers of R.A. Fisher. Univ. Ade-
laide, Adelaide, Australia

FURTHER READING
� Fisher distribution
� Fisher table
� Fisher test

REFERENCES
Fisher-Box, J.: R.A. Fisher, the Life of a Sci-

entist. Wiley, New York (1978)
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Fisher Table

The Fisher table gives the values of the
distribution function of a random vari-
able that follows a Fisher distribution.

HISTORY
See Fisher distribution.

MATHEMATICAL ASPECTS
Let the random variable X follow a Fisher
distribution with m and n degrees of free-
dom. The density function of the random
variable X is given by:

f (t) = 

(m+n

2

)



(m

2

)



( n
2

)
(m

n

)m
2

· t
m−2

2

(
1+ m

n t
)m+n

2

, t ≥ 0 ,

where 
 represents the gamma function (see
gamma distribution).
Given the degrees of freedom m and n, the
Fisher table allows us to determine the val-
ue x for which the probability P(X ≤ x)
equals a particular value.
The most commonly used Fisher tables give
the values of x for

P(X ≤ x) = 95% and

(X ≤ x) = 97.5% .

We generally use (x =) Fm,n,α to symbolize
the value of the random variable X for which

P
(
X ≤ Fm,n,α

) = 1− α .

DOMAINS AND LIMITATIONS
The Fisher table is used in hypothesis test-
ing when it involves statistics distributed

according to a Fisher distribution, and
especially during analysis of variance and
in simple and multiple linear regression
analysis.
Merrington and Thompson (1943) provided
Fisher tables for values up to five decimal
places long, and Fisherand Yates (1938)pro-
duced tables up to two decimal places long.

EXAMPLES
If X follows a Fisher distribution with m =
10 and n = 15 degrees of freedom, the value
of x that corresponds to a probability of 0.95
is 2.54:

P(X ≤ 2.54) = 0.95 .

In the same way, the value of x that corre-
sponds to a probability of 0.975 is 3.06:

P(X ≤ 3.06) = 0.975 .

For an example of the use of the Fisher table,
see Fisher test.

FURTHER READING
� Analysis of variance
� Fisher distribution
� Multiple linear regression
� Simple linear regression
� Statistical table

REFERENCES
Fisher, R.A., Yates, F.: Statistical Tables

for Biological, Agricultural and Medical
Research. Oliver and Boyd, Edinburgh
and London (1963)

Merrington, M., Thompson, C.M.: Tables of
percentage points of the inverted beta (F)
distribution. Biometrika 33, 73–88 (1943)
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Fisher Test
A Fisher test is a hypothesis test on the
observed value of a statistic of the form:

F = U

m
· n

V
,

where U and V are independent random vari-
ables that each follow a chi-square distri-
bution with, respectively, m and n degrees
of freedom.

HISTORY
See Fisher distribution.

MATHEMATICAL ASPECTS
We consider a linear model with one factor
applied at t levels:

Yij = μ+ τi + εij ,

i = 1, 2, . . . , t ; j = 1, 2, . . . , ni ,

where

Yij represents the jth observation receiving
the treatment i,

μ is the general mean common to all treat-
ments,

τi is the real effect of the treatment i on the
observation, and

εij is the experimental error in the obser-
vation Yij.

Therandomvariablesεijareindependentand
distributed normally with mean 0 and vari-
ance σ 2 : N(0, σ 2).
In this case, the null hypothesis that affirms
that there is a significant difference between
the t treatments, is as follows:

H0 : τ1 = τ2 = . . . = τt .

The alternative hypothesis is as follows:

H1 : the values of τi(i = 1, 2, . . . , t)
are not all identical.

To compare the variability of within treat-
ment also called error or residuals with the
variability between the treatments, we con-
struct a ratio where the numerator is an esti-
mation of the variance between treatment
and the denominator an estimation of the
variance within treatment or error. The Fish-
er test statistic, also called theF-ratio, is then
given by:

F =

t∑
i=1

ni ·
(
Ȳi. − Ȳ..

)2

t − 1

t∑
i=1

ni∑
j=1

(
Yij − Ȳi.

)2

N − t

,

where

ni is thenumberofobservations in ith treat-
ment (i = 1, . . . , t)

N =
t∑

i=1
ni is the total number of observa-

tions,

Ȳi. =
ni∑

j=1

Yij
ni

is the mean of the ith treatment,

for i = 1, . . . , t, and

Ȳ.. = 1
N

t∑

i=1

ni∑

j=1
Yij is the global mean.

After choosing a significance level α

for the test, we compare the calculat-
ed value F with the appropriate criti-
cal value in the Fisher table for t − 1
and N − t degrees of freedom, denoted
Ft−1,N−t,α.
IfF ≥ Ft−1,N−t,α,wereject thenullhypothe-
sis, which means that at least one of the treat-
ments differs from the others.
If F < Ft−1,N−t,α, we do not reject the null
hypothesis; in other words, the treatments
present no significant difference, which also
meansthatthe t samplesderivefromthesame
population.
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DOMAINS AND LIMITATIONS
The Fisher test is most commonly used dur-
ing the analysis of variance, in covariance
analysis, and in regression analysis.

EXAMPLES
See one-way analysis of variance and two-
way analysis of variance.

FURTHER READING
� Analysis of variance
� Fisher distribution
� Fisher table
� Hypothesis testing
� Regression analysis

Forecasting

Forecasting is the utilization of statistical
data, economic theory and noneconomic
conditions in order to form a reasonable
opinion about future events.
Numerous methods are used to forecast the
future.Theyareallbasedonarestrictednum-
ber of basic hypotheses.
One such hypothesis affirms that the signifi-
cant tendencies that have been observed his-
torically will continue to hold in the future.
Another one states that measurable fluctu-
ations in a variable will be reproduced at
regular intervals, so that these variations will
become predictable.
The time series analysis performed in a fore-
cast process is based on two hypotheses:
1. Long-term forecast:

Whenwemakelong-termforecasts(more
than five years into the future), analysis
and extrapolation of the secular tenden-
cy become important.
Long-term forecasts based on the secular
tendency normally do not take cyclic fluc-

tuations into account. Moreover, season-
al variations do not influence annual data
andarenotconsidered ina long-termfore-
cast.

2. Mean-term forecast:
In order to take the probable effect of
cyclic fluctuations into account in the
mechanism used to derive a mean-term
forecast (one to fiveyearsahead), wemul-
tiply the value of the projection of the sec-
ular tendency by the cyclic fluctuation,
which gives the forecasted value. This, of
course, assumes that the same data struc-
tures that produce the cyclic variations
will hold in the future, and so theobserved
variationswill continue to recur regularly.
In reality, subsequent cycles have the ten-
dency to vary enormously in termsof their
periodicity, their amplitude and the mod-
els that they follow.

3. Short-term forecast:
The seasonal index must be taken into
account in a short-term forecast (a few
months ahead), along with the projected
values for the secular tendency and cyclic
fluctuations.
Generally, we do not try to forecast irreg-
ular variations.

MATHEMATICAL ASPECTS
Let Y be a time series. We can describe it
using the following components:
• The secular tendency T;
• The seasonal variations S;
• The cyclic fluctuations C;
• The irregular variations I.
We distinguish between:
• The multiplicative model Y = T ·S ·C · I;
• The additive model Y = T + S+ C + I.
For a value of t that is greater than the time
taken to perform an observation, we specify
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that:

Yt is a forecast of the value Y at time t;
Tt is a projection of the secular tendency at

time t;
Ct is the cyclic fluctuation at time t;
St is the forecast for the seasonal variation

at time t.

In this case:
1. For a long-term forecast, the value of the

time series can be estimated using:

Yt = Tt .

2. For a mid-term forecast, the value of the
time series can be estimated using:

Yt = Tt · Ct (multiplicative model)

or Yt = Tt + Ct (additive model) .

3. For a short-term forecast, the value of the
time series can be estimated using:

Yt = Tt · Ct · St

(for the multiplicative model)

or Yt = Tt + Ct + St

(for the additive model).

DOMAINS AND LIMITATIONS
Planning and making decisions are two
activities that involve predicting the future,
to some degree. In other words, the adminis-
trators that perform these tasks have to make
forecasts.
It is worth noting that obtaining forecasts
via time series analysis is worthwhile, even
though the forecast usually turns out to be
inaccurate. In reality, even when it is inac-
curate, the forecast obtained in this way
will probably be more accurate than anoth-
er forecast based only on intuition. There-
fore, despite its limitations and problems,
time series analysis is a useful tool in the pro-
cess of forecasting.

EXAMPLES
The concept of a “forecast” depends on the
subject being investigated. For example:
• In meteorology:

– A short-term forecast looks hours
ahead,

– Along-termforecast looksdaysahead.
• In economics:

– A short-term forecast looks months
ahead;

– A mid-term forecast looks one to five
years ahead;

– A long-term forecast looks more then
five years ahead.

FURTHER READING
� Cyclical fluctuation
� Irregular variation
� Seasonal index
� Seasonal variation
� Secular trend
� Time series

Fractional Factorial Design

A fractional factorial experimental design is
a factorial experiment in which only a frac-
tion of the combinations of the factor levels
possible is realized.
This type of design is used when an experi-
ment contains a number of factors that are
believed to be more important than the oth-
ers, and/or there are a large number of factor
levels. The design allows use to reduce the
number of experimental units needed.

EXAMPLES
For a factorial experiment containing two
factors, each with three levels, there are
nine possible combinations. If four of these
observations are suppressed, a fraction of
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the observations are left that can be schema-
tized in the following way:

Factor B

Factor A

1 2 3
1 Y11 Y12 Y13
2 Y21
3 Y31

where Yij represents the observation taken
for the ith level of factor A and the jth level
of factor B.

FURTHER READING
� Design of experiments
� Experiment

REFERENCES
Yates,F.:Thedesign and analysisof factorial

experiments, Techn. comm. 35, Imperial
BureauofSoilScience,Harpenden(1937)

Frequency
The frequency or absolute frequency corre-
spondsto thenumberofappearancesofapar-
ticular observation or result in an experi-
ment.
The absolute frequency can be distinguished
from the relative frequency.The relative fre-
quency of an observation is defined as the
ratioof thenumberofappearances to the total
number of observations.
For certain analyses, it is desirable to know
the number of observations for which the
value is, say, “less than or equal to” or “high-
er than” a given value. The number of values
less than or equal to this given value is called
the cumulative frequency.
The percentage of observations in which
the value is “less than or equal to” or “more
than” a given value may also be desired. The
proportion of values less than or equal to this

given value is called the cumulative relative
frequency.

EXAMPLES
Consider, for example, the following
16 observations, which represent the
heights (in cm) of a group of individuals:

174 169 172 174
171 179 174 176
177 161 174 172
177 168 171 172

Here, thefrequencyofobserving171cmis2;
whereas the frequency of observing 174 cm
is 4.
In thisexample, the relative frequency of174
is 4

16 = 0.25 (or 25% of all of the observa-
tions). The absolute frequency is 4 and the
total number of observations is 16.

FURTHER READING
� Frequency curve
� Frequency distribution
� Frequency table

Frequency Curve

If a frequency polygon is smoothed, a curve
is obtained, called the frequency curve.
This smoothing can be performed if the
number of observations in the frequency
distribution becomes infinitely large and
the widths of the classes become infinitely
small.
The frequency curve corresponds to the limit
shape of a frequency polygon.

HISTORY
Towards the end of the nineteenth centu-
ry, the general tendency was to consider all
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distributions to be normal distributions.
Histograms that presented several modes
were adjusted to form a set of normal fre-
quency curves, and those that presented
asymmetry were analyzed by transforming
the data in such a way that the histogram
resulting from this transformation could be
compared to a normal curve.
In 1895 Pearson, K. proposed creating a set
of various theoretical frequency curves in
order to be able to obtain better approxima-
tions to the histograms.

FURTHER READING
� Continuous probability distribution
� Frequency distribution
� Frequency polygon
� Normal distribution

REFERENCES
Pearson, K.: Contributions to the mathe-

matical theory of evolution. II: Skew
variation in homogeneous material. In:
Karl Pearson’s Early Statistical Papers.
Cambridge University Press, Cambridge,
pp. 41–112 (1948). First published in
1895 in Philos. Trans. Roy. Soc. Lond.
Ser. A 186, 343–414

Frequency Distribution
The distribution of a population can be
expressed in relative terms (for example as
a percentage), in fractions or in absolute
terms. In all of these cases, the result is called
the frequency distribution.
We also obtain either a discrete frequency
distribution or a continuous frequency distri-
bution, depending on whetherthe variable
being studied is discrete or continuous.
The number of appearances of a specific val-
ue, or the number of observations for a spe-

cificclass, iscalled the frequency of thatval-
ue or class.
The frequency distribution that is obtained
in this manner can be represented either as
a frequency table or in a graphical way, for
example as a histogram, a frequency poly-
gon or a line chart.
Any frequency distribution has a corre-
sponding relative frequency distribution,
which is the distribution of each value or
each class with respect to the total number
of observations.

HISTORY
See graphical representation.

DOMAINS AND LIMITATIONS
In practice, frequency distributions can vary
considerably. For example:
• Somearesymmetric;othersareasymmet-

ric:

Symmetric distribution

Asymmetric distribution

• Some only have one mode (unimodal
distributions); others have several (pluri-
modal distributions):
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Unimodal distribution

Bimodal distribution

This means that frequency distributions can
be classified into four main types:
1. Unimodal symmetric distributions;
2. Unimodal asymmetric distributions;
3. J-shaped distributions;
4. U-shaped distributions.
During statistical studies, it is often neces-
sary to compare two distributions. If both
distributions are of the same type, it is possi-
ble tocompare thembyexamining theirmain
characteristics, such as the measure of cen-
tral tendency, the measure of dispersion
or the measure of form.

EXAMPLES
The following data represent the heights,
measured incentimeters,observedforapop-
ulation of 27 students from a junior high-
school class:

169 177 178 181 173
172 175 171 175 172
173 174 176 170 172
173 172 171 176 176
175 168 167 166 170
173 169

By ordering and regrouping these observa-
tions by value, we obtain the following fre-
quency distribution:

Height Frequency Height Frequency

166 1 174 1

167 1 175 3

168 1 176 3

169 2 177 1

170 2 178 1

171 2 179 0

172 4 180 0

173 4 181 1

Here is another example, which concerns
the frequency distribution of a continuous
variable. After retrieving and classifying the
personal incomes among the population of
Neuchâtel (a state in Switzerland), for the
period 1975–1976, we obtain the following
frequency table:

Net revenue
(in thousands of
Swiss Francs)

Fre-
quencies

Relative
frequency

0–10 283 0.0047

10–20 13175 0.2176

20–50 40316 0.6661

50–80 5055 0.0835

80–120 1029 0.0170

120+ 670 0.0111
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FURTHER READING
� Frequency
� Frequency curve
� Frequency polygon
� Frequency table
� Histogram
� Interval
� Line chart

Frequency Polygon

A frequency polygon is a graphical rep-
resentation of a frequency distribution,
which fits to the histogram of the frequency
distribution. It is a type of frequency plot.
It takes theformofasegmented line that joins
the midpoint of the top of each rectangle in
a histogram.

MATHEMATICAL ASPECTS
We construct a frequency polygon by plot-
ting a point for each class of the frequency
distribution. Each point corresponds to the
midpoint of the class along the abscisse and
the frequency of theclassalong theordinate.
Then we connect each point to its neighbor-
ing points by lines. The lines therefore effec-
tively link the midpoint of the top of each
rectangle in the histogram of the frequency
distribution.

Normally we close the frequency polygon at
the two ends of the distribution by choosing
appropriate points on the horizontal axis and
connecting them to the points for the first and
last classes.

DOMAINS AND LIMITATIONS
A frequency polygon is usually construct-
ed from data that has been grouped into
intervals. In this case, it is preferable to
employ intervals of the same width. If we fit
a smooth curve to a frequency polygon, we
get a frequency curve. This smoothing pro-
cess involves regrouping the data such that
the class width is as small as possible, and
then replotting the distribution.
Clearly, we can only perform this type of
smoothing if the number of units in the pop-
ulation is large enough to give a significant
number of observations in each class after
regrouping.

EXAMPLES
The frequency table below gives the annual
mean precipitations for 69 cities in the USA:

Annual mean precipitation
(in inches)

Frequency

0–10 4

10–20 9

20–30 5

30–40 24

40–50 21

50–60 4

60–70 2

Total 69

Thefrequency polygonisconstructedvia the
histogram of the frequency distribution:
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To construct the frequency polygon, we plot
a point for each class. The position of this
point along the abscisse is given by the mid-
point of the class, and its position along the
ordinate is given by the frequency of the
class. In other words, each point occurs at
the midpoint of the top of the rectangle for
the class in the histogram. Each point is then
joined to its nearest neighbors by lines. In
order to close the polygon, a point is placed
on the abscisse one class-width before the
midpoint of the first class, and another point
is placed on the abscisse one class-width
after the midpoint of the last class. These
points are then joined by lines to the points
for the first and last classes, respectively. The
frequency polygon we obtain from this pro-
cedure is as follows:

FURTHER READING
� Frequency distribution
� Frequency table
� Graphical representation
� Histogram
� Ogive

Frequency Table

The frequency table is a tool used to repre-
sent a frequency distribution. It provides
the ability to represent statistical observa-
tions.
The frequency of a value of a variable is
the number of times that this value appears in
a population. A frequency distribution can
then be defined as the list of the frequencies
obtained for the different values taken by the
variable.

MATHEMATICAL ASPECTS
Consider a set of n units described by a vari-
able X that can take k values x1, x2, . . . , xk.
Letni be thenumberofunitshaving thevalue
xi; ni is then the frequency of value xi.
The relative frequency of xi is fi = ni

n .
Since thevaluesaredifferentand exhaustive,
the sum of all of the frequencies ni equals the
total number n of units in the set, or the sum
of the relative frequencies fi equals unity; in
other words:

k∑
i=1

ni = n and
k∑

i=1

fi = 1 .

The corresponding frequency table for this
scenario is as follows:

Values of the
variable X

Frequencies Relative
frequencies

x1 n1 f1

x2 n2 f2

. . . . . . . . .

xk nk fk

Total n 1

Sometimes the concept of cumulative fre-
quency is important (see the second example
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for instance). This is the sum of all frequen-

cies up to and including frequency fi :
i∑

j=1
fj.

DOMAINS AND LIMITATIONS
Constructing a frequency table is the sim-
plest and the most commonly used approach
to representing data. However, there are
some rules that should be respected when
creating such a table:
• The table must have a comprehensive and

concise title, which mentions the units
employed;

• The names of the lines and columns must
be precise and short;

• The column totals should be provided;
• The source of the data given in the table

must be indicated.
In general, the table must be comprehensi-
ble enough to understand without needing to
read the accompanying text.
The number of classes chosen to represent
thedatadependson thesizeof theset studied.
Using a large number of classes for a small
set will result in irregular frequencies due to
the small number of units per class. On the
otherhand,using smallnumberofclasses for
a large set results in the loss of information
about the structure of the data.
However, there is no general rule for deter-
mining the number of classes that should be
used to construct a frequency table. For rel-
atively small sets (n ≤ 200), between 7 and
15 classes are recommended, although this
rule is not absolute.
To simplify, it is frequent to use classes of
thesamewidth,and theclass intervalsshould
not overlap. In certain cases, for example if
we have a variable that can take a large range
of values, but a certain interval of values is
expected tobefarmorefrequent thantherest,

it can be useful to use an open class, such as
“1000 or more.”

EXAMPLES
Frequency distribution of Australian resi-
dents (in thousands) according to their mat-
rimonial statuses, on the 30th June 1981 is
given in the following table.

Matrimonial
status

Frequency
(in thousands)

Relative
frequency

Single 6587 0.452

Married 6837 0.469

Divorced 403 0.028

Widowed 749 0.051

Total 14576 1.000

Source: ABS (1984) Pocket Year Book Aus-
tralia. Australian Bureau of Statistics, Canberra,
p. 11.

Thedata ispresented in theformofafrequen-
cy table. The variable “Matrimonial status”
can take four different values: single, mar-
ried, divorced or widowed. The frequency,
expressed in thousands, and the relative fre-
quency are given for each value.
In the following example, we consider the
case where observations are grouped into
classes. This table represents the classifi-
cation of 3014 people based on their incomes
in 1955.

Income Frequency

ni Relative Relative
Cumulative

Less than
1000

261 0.0866 0.0866

1000–1999 331 0.1098 0.1964

2000–2999 359 0.1191 0.3155

3000–3999 384 0.1274 0.4429

4000–4999 407 0.1350 0.5780
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Income Frequency

ni Relative Relative
Cumulative

5000–7499 703 0.2332 0.8112

7500–9999 277 0.0919 0.9031

10000 or
more

292 0.0969 1.0000

Total 3014 1.0000

From this table, we can see that 57.8% of
these 3014 people have incomes that are
smaller then 5000 dollars.

FURTHER READING
� Frequency
� Frequency distribution
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Galton, Francis was born in 1822 near Birm-
ingham, England, to a family of intellectu-
als: Darwin, Charles was his cousin, and his
grandfatherwasamemberof theRoyalSoci-
ety.
His interest in science first manifested itself
in the fields of geography and meteorology.
Elected as a member of the Royal Society
in 1860, he began to become interested in
genetics and statistical methods in 1864.
Galton was close friends with Pearson, K..
Indeed, Pearson came to his financial aid
when Galton founded the journal “Biometri-
ka.” Galton’s “Eugenics Record Office”
merged with Pearson’s biometry laborato-
ry at University College London and became
known as the “Galton Laboratory.”
He died in 1911, leaving more than 300 pub-
lications including 17 books, most notably
on statistical methods related to regression
analysis and the concept of correlation,
both of which are attributed to him.

Some of the main works and articles of Gal-
ton, F.:

1869 Hereditary Genius: An Inquiry into
its Laws and Consequences. Macmil-
lan, London.

1877 Typical laws in heredity. Nature, 15,
492–495, 512–514, 532–533.

1889 Natural Inheritance. Macmillan,
London.

1907 Probability, theFoundationofEugen-
ics. Henry Froude, London.

1908 Memories of my Life. Methuen, Lon-
don.

1914–1930 Pearson, K. (ed) The Life, Let-
ters and Labours of Francis Galton.
Cambridge University Press, Cam-
bridge

FURTHER READING
� Correlation coefficient
� Regression analysis

Gamma Distribution

A random variable X follows a gamma
distribution with parameter α if its density
function is given by

f (x) = βα


(α)
xα−1 · e−βx ,

if x > 0 , α > 0 , β > 0 ,

where 
(α) is the gamma function.
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Gamma distribution, α = 2, β = 1

The standard form of the gamma distribution
is obtained by putting β = 1, which gives

f (x) = 1


(α)
xα−1 · e−x ,

if x > 0 , α > 0 .

The gamma function (
) appears frequently
in statistical theory. It is defined by:


(α) =
∫ ∞

0
tα−1 e−t dt .

In statistics, we are only interested in values
of α > 0.
Integrating by parts, we obtain:


(α + 1) = α
(α) .

Since

(1) = 1 ,

we have


(α+1) = α! for every positive integer α.

HISTORY
According to Lancaster (1966), this contin-
uous probability distribution was origi-
nated by Laplace, P.S. (1836).

MATHEMATICAL ASPECTS
The expected value of the gamma distri-
bution is given by:

E[X] = 1

β
· 
(α + 1)


(α)
= α

β
.

Since

E
[
X2] = 1

β2
· 
(α + 2)


(α)
= α(α + 1)

β2
,

the variance is equal to:

Var(X) = E
[
X2]− (E[X])2

= α(α + 1)− α2

β2

= α

β2 .

The chi-square distribution is a particular
case of the gamma distribution where α = n

2
and β = 1

2 , and n is the number of degrees
of freedom of the chi-square distribution.
The gamma distribution with parameter
α = 1 gives the exponential distribution:

f (x) = β · e−βx .

FURTHER READING
� Chi-square distribution
� Continuous probability distribution
� Exponential distribution

REFERENCES
Lancaster, H.O.: Forerunners of the Pear-

son chi-square. Aust. J. Stat. 8, 117–126
(1966)

Laplace, P.S. de: Théorie analytique des
probabilités, suppl. to 3rd edn. Courcier,
Paris (1836)

Gauss, Carl Friedrich
Gauss, Carl Friedrich was born in 1777 in
Brunswick in Germany. He quickly became
a renowned astronomer and mathematician
and is still considered to be on a par with
Archimedes and Newton as one of the great-
est mathematicians of all time.
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He obtained his doctorate in 1799, and then
worked at the University of Helmsted. In
1807, he moved to Göttingen, where he
became Laboratory Director. He spent the
rest of his life in Göttingen, where he died
in 1855.
His contributions to science, particularly
physics, are of great importance. In statis-
tics, his works concerned the theory of esti-
mation, and the least squares method and
the application of the normal distribution
to problems related to measurement errors
both originated with him.

Some of the main works and articles of
Gauss, C.F.:

1803–1809 Disquisitiones de elementis
ellipticis pallidis. Werke, 6, 1–24.

1809 Theoria motus corporum coelestium.
Werke, 7. (1963 English translation
by Davis, C.H., published by Dover,
New York).

1816 Bestimmung der Genauigkeit der
Beobachtungen. Werke, 4, 109–117.

1821, 1823 and 1826 Theoria combinatio-
nis observationum erroribus minimis
obnoxiae,parts1,2 and suppl.Werke,
4, 1–108.

1823 Anwendungen der Wahrschein-
lichkeitsrechnung auf eine Aufgabe
der praktischen Geometrie. Werke,
9, 231–237.

1855 Méthode des Moindres Carrés:
Mémoires sur la Combinaison des
Observations. French translation of
theworkofGauss,C.F.byBertrand,J.
(authorized by Gauss, C.F. himself).
Mallet-Bachelier, Paris.

1957 Gauss’ Work (1803–1826). On The
Theory of Least Squares. English
translation by Trotter, H.F. Technical

Report No. 5, Statistical Techniques
Research Group, Princeton, NJ.

FURTHER READING
� De Moivre, Abraham
� Gauss–Markov theorem
� Normal distribution

Gauss–Markov Theorem

The Gauss–Markov theorem postulates that
when the error probability distribution is
unknown in a linear model, then, amongst
all of the linear unbiased estimators for the
parameters of the linear model, the esti-
mator obtained using the method of least
squares is the one that minimizes the vari-
ance. The mathematical expectation of
each error is assumed to be zero, and all of
them have the same (unknown) variance.

HISTORY
Gauss, Carl Friedrich provided a proof
of this theorem in the first part of his
work “Theoria combinationis observation-
um erroribus minimis obnoxiae” (1821).
Markov, Andrei Andreyevich rediscovered
this theorem in 1900.
A version of the Gauss–Markov theorem
written in modern notation, was provided by
Graybill in 1976.

MATHEMATICAL ASPECTS
Consider the linear model

Y = X · β + ε ,

where

Y is the n× 1 vector of the observations,
X is the n × p matrix of the independent

variables that are considered fixed,
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β is the p×1 vector of the unknown param-
eters, and

ε is the n× 1 vector of the random errors.

If the error probability distribution is
unknown but the following conditions are
fulfilled:
1. The mathematic expectation E[ε] = 0,
2. The variance Var(ε) = σ 2 · In, where In

is the identity matrix,
3. The matrix X has a full rank,
then the estimator of β,

β̂ = (
X′X

)−1
X′Y ,

derived via the least squares method is the
linear estimator without bias of β that has
least variance.

FURTHER READING
� Estimator
� Least squares

REFERENCES
Gauss, C.F.: Theoria Combinationis Obser-

vationum Erroribus Minimis Obnoxiae,
Parts 1, 2 and suppl. Werke 4, 1–108
(1821, 1823, 1826)

Graybill, F.A.: Theory and Applications of
the Linear Model. Duxbury, North Scit-
uate, MA (Waldsworth and Brooks/Cole,
Pacific Grove, CA ) (1976)

Rao, C.R.: Linear Statistical Inference and
Its Applications, 2nd edn. Wiley, New
York (1973)

Generalized Inverse
The generalized inverse is analogous to the
inverseofanonsingularsquarematrix,but is
used for a matrix of any dimension and rank.
The generalized inverse is used in the reso-
lution of systems of linear equations.

HISTORY
It appears that Fredholm (1903) was the
first to consider the concept of a generalized
inverse. Moore defined a single generalized
inverse in his book General Analysis (1935),
published after his death. However, his work
was not used until the 1950s, when it experi-
enced a surge in interest due to the applica-
tion of the generalized inverse to problems
related to least squares.
In 1955 Penrose, reusing and enlarging upon
work published in 1951 by Bjerhammar,
showed that the Moore’s generalized inverse
is a unique matrix G that satisfies the follow-
ing four equations:

1. A = A ·G ·A;
2. G = G ·A ·G;
3. (A ·G)′ = A ·G;
4. (G · A)′ = G ·A.

This unique generalized inverse is known as
the Moore–Penrose inverse, and is denoted
by A+.

MATHEMATICAL ASPECTS
Then×mmatrixG is thegeneralized inverse
of the m× n matrix A if

A = A ·G ·A .

The matrix G is unique if and only if m = n
and A is not singular.
The most common notation used for the gen-
eralized inverse of a matrix A is A−.

FURTHER READING
� Inverse matrix
� Least squares

REFERENCES
Bjerhammar, A.: Rectangular reciprocal

matrices with special reference to geode-



G

Generalized Linear Regression 219

tic calculations. Bull. Geod. 20, 188–220
(1951)

Dodge, Y., Majumdar, D.: An algorithm for
finding least square generalized invers-
es for classification models with arbitrary
patterns. J. Stat. Comput. Simul. 9, 1–17
(1979)

Fredholm, J.: Sur une classe d’équations
fonctionnelles. Acta Math. 27, 365–390
(1903)

Moore, E.H.: General Analysis, Part I.
Mem. Am. Philos. Soc., Philadelphia,
PA, pp. 147–209 (1935)

Penrose, R.: A generalized inverse for matri-
ces. Proc. Camb. Philos. Soc. 51, 406–413
(1955)

Rao, C.R.: A note on generalized inverse of
a matrix with applications to problems in
mathematical statistics. J. Roy. Stat. Soc.
Ser. B 24, 152–158 (1962)

Rao,C.R.:Calculusofgeneralized inverseof
matrices. I. General theory. Sankhya A29,
317–342 (1967)

Rao, C.R., Mitra, S.K.: Generalized Invers-
es of Matrices and its Applications. Wiley,
New York (1971)

Generalized Linear Regression

An extension of the linear regression mod-
el to settings more flexible in underly-
ing assumptions that the linear regression
requires. For example, instead of assuming
that the errors should have equal variances,
we could have the following forms:
• Heteroscedasticity: theerrorsobserved in

the model (also called residuals) can have
different variances among the observa-

tions (or among the different groups of
observations);

• Autocorrelation: there can be some cor-
relation between the errors in the differ-
ent observations.

MATHEMATICAL ASPECTS
Weconsiderageneralmodelofmultiple lin-
ear regression:

Yi = β0 +
p−1∑
j=1

βjXij + εi , i = 1, . . . , n ,

where

Yi is the dependent variable,
Xji, j = 1, . . . , p − 1 are the independent

variables,
βj, j = 0, . . . , p − 1 are the parameters to

be estimated, and
εi is the random nonobservable error

term.

In matrix form, we write:

Y = Xβ + ε ,

where:

Y is the vector (n× 1) of the observations
related to the dependent variable (n
observations),

β is the vector (p×1) of the parameters to
be estimated

ε is the vector (n× 1) of the errors,

and

X =
⎛
⎜⎝

1 X11 . . . X1(p−1)

...
...

...
1 Xn1 . . . Xn(p−1)

⎞
⎟⎠
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is the matrix (n × p) related to the inde-
pendent variables.
In an ordinary regression model, the
hypotheses used for the errors εi are gen-
erally as follows:
• Each expectation equals zero (in other

words, the observations are not biased),
• They are independent and are not corre-

lated,
• their variance V(εi) is constant and

equals σ 2 (we suppose that the errors
are of the same size).

If the chosen model is appropriate, the
distribution of residuals must confirm these
hypotheses (see analysis of variance).
If we find that this is not the case, or if
we obtain supplementary information that
indicates that the errors are correlated, then
we can use generalized linear regression to
obtain a more precise estimation for the
parameters β0, . . . , βp−1. We then introduce
the variance–covariance matrix V(ε) of (of
dimension n × n) of the errors, which is
defined by the following equation for row i
and column j:
• V(εi) if i = j (variance in εi),
• Cov

(
εi, εj

)
(covariance between εi and

εj) if i �= j.
Often this matrix needs to be estimated, but
we first consider the simplest case, where
V (ε) is known. We use the usual term for
variance, σ 2 : V(ε) = σ 2V.

Estimation of the Vector β

when V Is Known
By transforming our general model into an
ordinary regression model, it is possible to
estimate the parameters of the generalized
model using:

β̂ =
(

X′V−1X
)−1

X′V−1Y .

We can prove that:
1. The estimation is not biased; that is:

E(β̂) = β.
2. The following equality is verified:

V
(
β̂
)
= σ̂ 2

(
X′V−1X

)−1
,

with σ̂ 2 = 1

n− p
ε′V−1ε.

3. β̂ is thebest (meaning that it has thesmall-
est variance) unbiased estimator ofβ; this
result is known as the generalized Gauss–
Markov theorem.

Estimation of the Vector β

when V Is Unknown
When the variance–covariance matrix is not
known, the model used is called generalized
regression. The first step consists of express-
ing V as a function of a parameter θ , which
allows us to estimate V using V̂ = V(θ̂ ).
The estimations for the parameters are then
obtained by substituting V with V̂ in the for-
mula given above:

β̂ = (X′V̂−1X)−1X′V̂−1Y .

Transformation of V in Three Typical Cases
a) Heteroscedasticity
We assume that the observations have vari-
ance σ 2

wi
, where wi is the weight, which can

be different for each i = 1, . . . , n. So:

V = σ 2

⎛
⎜⎜⎜⎜⎜⎝

1
w1

0 . . . 0

0 1
w2

. . . 0
...

...
. . .

...

0 0 . . . 1
wn

⎞
⎟⎟⎟⎟⎟⎠

.

By making

Yw =WY

Xw =WX

εw =Wε ,
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where W is the following square matrix of
order n:

W =

⎛
⎜⎜⎜⎝

√
w1 0 . . . 0

0
√

w2 . . . 0
...

...
. . .

...
0 0 . . .

√
wn

⎞
⎟⎟⎟⎠ ,

such that W′W = V−1, we obtain the equiv-
alent model:

V(εw) = V(Wε) =WV(ε)W′

= σ 2WVW = σ 2In ,

where In is the identity matrix of dimen-
sion n. Since the variances of all of the errors
are the same in this new model, we can apply
the least squares method and we obtain the
vector of the estimators:

β̂w = (X′wXw)−1X′wYw

= (X′W′WX)−1X′W′WY

= (X′V−1X)−1X′V−1Y ,

so the vector of the estimated values for Y=
W−1Yw is:

Ŷ =W−1Ŷw

=W−1WX(X′V−1X)−1X′V−1Y

= Xβ̂w .

b) Heteroscedasticity by groups
We suppose that the observations fall into
three groups (of size n1, n2, n3) with respec-
tive variances σ 2

1 , σ 2
2 and σ 2

3 . So:

V =
⎛
⎜⎝

σ 2
1 In1 On2×n1 On3×n1

On1×n2 σ 2
2 In2 On3×n2

On1×n3 On2×n3 σ 2
3 In3

⎞
⎟⎠ ,

where Inj is the identity matrix of order nj

and Oni×nj is the null matrix of order ni×nj.

The variances σ 2
1 , σ 2

2 , σ 2
3 can be estimat-

ed by performing ordinary regressions on
the different groups of observations and by
estimating σ 2 using S2 (see multiple linear
regression).

c) First-order autocorrelation
We assume that there is correlation between
the errors in different observations. In partic-
ular, we assume first-order autocorrelation;
that is the error εi for observation i depends
ontheerrorεi−1for thepreviousobservation.
We then have:

εi = ρεi−1 + ui , i = 2, . . . , n ,

where the usual hypotheses used for the
errors of a regression model are applied to
the ui.
In this case, the variance–covariance matrix
of errors can be expressed by:

V(ε) = σ 2V

= σ 2 1

1− ρ2

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 ρ ρ2 . . . ρn−1

ρ 1 ρ . . . ρn−2

... ρ
. . .

. . .
...

...
...

. . .
. . . ρ

ρn−1 ρn−2 . . . ρ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

WecanestimateVbyreplacing thefollowing
estimation of ρ in the matrix V:

ρ̂ =
∑n

i=2 eiei−1∑n
i=2 e2

i−1

(empirical correlation) ,

where the ei are the estimated error (residu-
als), with an ordinary regression.
We can test the first-order autocorrelation
by performing a Durbin–Watson test on the
residuals (as described under the entry for
serial correlation).
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EXAMPLES
Correction for heteroscedasticity when the
data represent means
In order to test the efficiency of a new sup-
plement on the growth of chickens, 40 chick-
ens were divided into five groups (of size
n1, n2, . . . , n5) and given the different doses
of the supplement. The growth data obtained
are summarized in the following table:

Group
i

Number of
chickens ni

Mean
weight Yi

Mean
dose Xi

1 12 1.7 5.8

2 8 1.9 6.4

3 6 1.2 4.8

4 9 2.3 6.9

5 5 1.8 6.2

Since thevariables representmeans, thevari-

ance of the error εi is σ 2

ni
.

The variance–covariance matrix of errors is
then:

V(ε) = σ 2

⎛
⎜⎜⎜⎜⎜⎜⎝

1
12 0 0 0 0

0 1
8 0 0 0

0 0 1
6 0 0

0 0 0 1
9 0

0 0 0 0 1
5

⎞
⎟⎟⎟⎟⎟⎟⎠

= σ 2V .

The inverse matrix V−1 is then:

V−1 =

⎛
⎜⎜⎜⎜⎜⎝

12 0 0 0 0
0 8 0 0 0
0 0 6 0 0
0 0 0 9 0
0 0 0 0 5

⎞
⎟⎟⎟⎟⎟⎠

,

and theestimations for theparametersβ0and
β1 in the model

Yi = β0 + β1Xi + εi

are:
β̂0 = −1.23

β̂1 = 0.502 .

This result is the same as that obtained using
the weighted least squares method.

FURTHER READING
� Analysis of variance
� Gauss–Markov theorem
� Model
� Multiple linear regression
� Nonlinear regression
� Regression analysis

REFERENCES
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land, P.W.: Discrete Multivariate Anal-
ysis: Theory and Practice. MIT Press,
Cambridge, MA (1975)

Graybill, F.A.: Theory and Applications of
the Linear Model. Duxbury, North Scit-
uate, MA (Waldsworth and Brooks/Cole,
Pacific Grove, CA ) (1976)

Rao, C.R.: Linear Statistical Inference and
Its Applications, 2nd edn. Wiley, New
York (1973)

Generation
of Random Numbers

Random numbers generation involves pro-
ducing a series of numbers with no recogniz-
able patterns or regularities, that is, appear
random. These random numbers are often
then used to perform simulations and to
solve problems that are difficult or impossi-
ble to resolve analytically, using the Monte
Carlo method.
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HISTORY
The first works concerning random num-
ber generation were those of von Neumann,
John (1951), who introduced the “middle
four square” method. Lehmer (1951) intro-
duced the simple congruence method, which
is still used today.
Sowey published three articles giving a clas-
sified bibliography on random number gen-
eration and testing (Sowey, E.R. 1972, 1978
and 1986).
In 1996, Dodge, Yadolah proposed a natu-
ral method of generating random numbers
from the digits after the decimal point in π .
Some decimals of π presented in Appen-
dix A.

MATHEMATICAL ASPECTS
There are several ways of generating ran-
dom numbers. The first consists of pulling
out notes that are numbered from 0 to 9 from
anurnonebyone,and thenputting themback
in the urn.
Certain physical systems can be used to gen-
erate random numbers: for example the
roulette wheel. The numbers obtained can
be listed in a random number table. These
tables are useful if several simulations need
to be performed for different models in order
to test which one is the best. In this case,
the same series of random numbers can be
reused.
Some computers use electronic circuits or
electromechanical means to provide the
series of random numbers. Since these
lists are not reproducible, von Neumann,
John and Lehmer, D.H. proposed methods
that are fully deterministic but give a series
ofnumbers thathave theappearanceofbeing
random. Such numbers are known as pseu-
dorandom numbers.

These pseudorandom numbers are calcu-
lated from a predetermined algebraic for-
mula. For example, the Lehmer method
allows a series of pseudorandom numbers
x0, x1, . . . , xn, . . . to be calculated from

xi = a · xi−1 (modulo m) , i = 1, 2, . . . ,

where x0 = b and a, b, m are given.
The choice of a, b, m influences the quality
of the sample of pseudorandom numbers.
Independence between the pseudorandom
numbers dictates that the length of the cycle,
meaning the quantity of numbers generated
before the same sequence is restarted, must
be long enough. To obtain the longest possi-
ble cycle, the following criteria must be sat-
isfied:
- a must not divide m,
- x0 must not divide m,
- m must be large.

DOMAINS AND LIMITATIONS
If the simulation requires observations
derivedfromnonuniformdistributions, there
are several techniques that can generate any
law from a uniform distribution. Some of
these methods are applicable to many distri-
butions; others are more specific and are
used for a particular distribution.

EXAMPLES
Let us use the Lehmer method to calculate
the first pseudorandom numbers of the series
created with a = 33, b = 7, and m = 1000:

x0 = 7

x1 = 7 · 33 (mod1000) = 231

x2 = 231 · 33 (mod1000) = 623

x3 = 623 · 33 (mod1000) = 559

etc.
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A series of numbers ri for which the distri-
bution does not significantly differ from
a uniform distribution is obtained by divid-
ing xi by m:

ri = xi

m
, i = 1, 2, . . .

Therefore: r0 = 0.007

r1 = 0.231

r2 = 0.623

r3 = 0.559

etc.

FURTHER READING
� Kendall, Maurice George
� Monte Carlo method
� Random number
� Simulation
� Uniform distribution

REFERENCES
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Math. 31, 153–163 (1990)

Genetic Statistics
In genetic statistics, genetic data analysis is
performed using methods and concepts of
classical statistics as well as those derived
from the theory of stochastic processes.
Genetics is the study of hereditary charac-
ter and accidental variations; it is used to
help explain transformism, in the practical
domain, to the improvement of the units.

HISTORY
Genetics and statistics have been related for
over 100 years. Sir Galton, Francis was

very interested in studiesof thehumangenet-
ics, and particularly in eugenics, the study
of methods that could be used improve the
geneticqualityofahumanpopulation,which
obviously requires knowledge of heredity.
Galton also invented regression and corre-
lation coefficients in order to use them as
statistical tools when investigating genet-
ics. These methods were later developed fur-
ther by Pearson, Karl. In 1900, the work
of Mendel was rediscovered and classical
mathematical and statistical tools for inves-
tigating Mendel genetics were put forward
by Sir Fisher, Ronald Aylmer, Wright,
Sewall and Haldane, J.B.S. in the period
1920–1950.

DOMAINS AND LIMITATIONS
Genetic statistics is used in domains such
as biomathematics, bioinformatics, biology,
epidemiology and genetics. Standard meth-
ods of estimation and hypothesis testing are
used in order to estimate and test genetic
parameters. The theory of stochastic pro-
cesses is used to study the units of the evo-
lution of a subject of a population, taking in
account the random changes in the frequen-
cies of genes.

EXAMPLES
The Hardy–Weinberg law is the central the-
oretical model used in population genetics.
Formulated independently by the English
mathematician Hardy, Godfrey H. and the
German doctor Weinberg, W. (1908), the
equations of this law show that when genet-
ic variations first appear in some individu-
als in a population, they do not disappear
upon hereditary transmission,butare instead
maintained in future generations in the same
proportions, conforming to Mendel laws.
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The Hardy–Weinberg law allows us, under
certain conditions, to calculate genotyp-
ic frequencies from allelic frequencies.
By genotype, we mean the genetic prop-
erties of an individual that are received
during hereditary transmission from the
individual’s parents. For example, iden-
tical twins have the same genotype. An
allele is a possible version of a gene, con-
structed from a nucleotide chain. There-
fore, a particular gene can occur in many
different allelic forms in a given popu-
lation. In an individual, if each gene is
represented by two alleles that are com-
posed of identical nucleotides, the individ-
ual is then homozygous for this gene, and
if the alleles have different compositions,
the individual is then heterozygous for this
gene.
In the original version, the law tells that if
a gene is controlled by two alleles A and B,
that occur with frequencies p and q = 1− p
respectively in thepopulation atgeneration t,
then the frequencies of the genotypes at gen-
eration t+1 are given by the following equa-
tion:

p2AA+ 2pqAB+ q2BB .

The basic hypothesis is that the size of the
population N is big enough to minimizesam-
pling variations; there also must be no selec-
tion, no mutation, no migration (no acquisi-
tion/loss of an allele), and successive gener-
ations must be discrete (no generation cross-
ing).
To get an AA genotype, the individual must
receiveonealleleof typeA frombothparents.
If thisprocess is random(so thehypothesisof
independence holds), this event will occur
with a probability of:

P (AA) = pp = p2 .

The same logic applies to the probability of
obtaining the genotype BB:

P (BB) = qq = q2 .

Finally, for the genotype AB, two cases are
possible: the individual received A fromtheir
father and B from their mother or vice versa,
so:

P (AB) = pq+ qp = 2pq .

Therefore, in an ideal population, the
pHardy–Weinberg proportions are given
by:

AA AB BB
p2 2pq q2 .

This situation can be generalized to a gene
with many alleles A1, A2, . . . , Ak. The
frequency that homozygotes (AiAi) occur
equals:

f (AiAi) = p2
i , i = 1, . . . , k ,

and the frequency that heterozygotes (AiAj)
occur equals:

f
(
AiAj

) = 2pipj ,

i �= j , i = 1, . . . , k , j = 1, . . . , k .

The frequency p′ of allele A in generation
t+1 may also beof interest.By simplecount-
ing we have:

p′ = 2p2N + 2pqN

2N
= p2 + pq

= p · (p+ q) = p · (1− q+ q) = p .

The frequency of the allele A in generation
t+1 is identical to the frequency of this allele
in thepreviousgeneration and the initialgen-
eration.

FURTHER READING
� Data
� Epidemiology
� Estimation
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� Hypothesis testing
� Independence
� Parameter
� Population
� Statistics
� Stochastic process
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Geometric Distribution

Consider a process involving k+1 Bernoul-
li trials with a probability of success p and
a probability of failure q.
The random variable X, corresponding to
the number of failures k that occur when the
process is repeated until the first success, fol-
lows a geometric distribution with param-
eter p, and so we have:

P(X = k) = p · qk .

The geometric distribution is a discrete
probability distribution.

Geometric distribution, p = 0.3, q = 0.7

Geometric distribution, p = 0.5, q = 0.5

This distribution is called “geometric”
because the successive terms of the proba-
bility function described above form a geo-
metric progression with a ratio of q.
The geometric distribution is a particular
case of the negative binomial distribution
where r = 1, meaning that the process con-
tinues until the first success.

MATHEMATICAL ASPECTS
The expected value of the geometric distri-
bution is by definition equal to:

E[X] =
∞∑

x=0

x · P(X = x)

=
∞∑

x=0

x · p · qx

= q

p
.

Indeed:

E [X] =
∞∑

x=0

x · qx−1 · p
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= p ·
∞∑

x=0

x · qx−1

= 0+ p
(

1+ 2 · q+ 3 · q2 + . . .
)

.

Hencewehave:1+2·q+3·q2+. . . = 1
(1−q)2

since:

q+ q2 + q3 + . . . = q

1− q
(

q+ q2 + q3 + . . .
)′
=

(
q

1− q

)′

1+ 2 · q+ 3 · q2 + . . . = 1

(1− q)2 .

The variance of the geometric distribution
is by definition equal to:

Var(X) = E
[
X2]− (E[X])2

=
∞∑

x=0

x2 · P(X = x)−
(

q

p

)2

=
∞∑

x=0

x2 · p · qx −
(

q

p

)2

= p · q(1+ 22 · q+ 32q2 + . . .)

−
(

q

p

)2

= q

p2 .

Indeed, the sum 1+22·q+32q2+. . . = 1+q
p2 ,

since:
(

q
(

1+ 2 · q+ 3 · q2 + . . .
))′

=
(

q

(1− q)2

)′

1+ 22 · q+ 32 · q2 + . . .

= 1+ q

(1− q)2
= 1+ q

p2
.

DOMAINS AND LIMITATIONS
The geometric distribution is used relative-
ly frequently in meteorological models. It is

also used in stochastic processes and the the-
ory of waiting lines.
The geometric distribution can also be
expressed in the following form:

P(X = k) = p · qk−1 ,

where therandom variableX represents the
number of tasks required to attain the first
success (including the success itself).

EXAMPLES
A fair die is thrown and we want to know the
probability thata“six”willbe thrownforthe
first time on the fourth throw.
We therefore have:

p = 1
6 (probability that a six is thrown)

q = 5
6 (probability that a six is not thrown)

k = 3 (since the fourth throw is a success,
we have three failures)

Therefore, the probability is as follows:

P(X = 3) = 1

6
·
(

5

6

)3

= 0.0965 .

FURTHER READING
� Bernoulli distribution
� Discrete probability distribution
� Negative binomial distribution

Geometric Mean

Thegeometricmean isdefinedasthenthroot
of the product of n non-negative numbers.

HISTORY
According to Droesbeke, J.-J. and Tassi, Ph.
(1990), the geometric mean and the har-
monic mean were introduced by Jevons,
William Stanley in 1874.
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MATHEMATICAL ASPECTS
Let x1, x2, . . . , xn be a set of n non-negative
quantities, or of n observations related to
a quantitative variable X. The geometric
mean G of this set is:

G = n
√

x1 · x2 · . . . · xn .

The geometric mean is sometimes expressed
in a logarithmic form:

ln (G) =

n∑
i=1

ln (xi)

n
,

or

G = exp

[
1

n
·

n∑
i=1

ln (xi)

]
.

We note that the logarithm of the geometric
meanofasetofpositivenumbers is thearith-
metic mean of the logarithms of these num-
bers (or the weighted arithmetic mean in
the case of grouped observations).

DOMAINS AND LIMITATIONS
In practice, the geometric mean is mainly
used to calculate the mean of a group of
ratios, or particularly the mean of a group of
indices.
Just like thearithmetic mean, thegeometric
mean takes every observation into account
individually. However, it decreases the influ-
ence of outliers on the mean, which is why
it is sometimes preferred to the arithmetic
mean.
One important aspect of the geometric mean
is that it only applies to positive numbers.

EXAMPLES
Here we have an example of how the geo-
metric mean is used: in 1987, 1988 and

1989, a businessman achieves profits of
10.000, 20.000 and 160.000 euros, respec-
tively. Based on this information, we want to
determine the mean rate at which these prof-
its are increasing.
From 1987 to 1988, the profit doubled, and
from 1988 to 1989 it increased eight-fold. If
we simply calculate the arithmetic mean of
these two numbers, we get

x = 2+ 8

2
= 5 ,

and we conclude that, on average, the prof-
it increased five-fold annually. However, if
we take the profit in 1987 (10000 euros) and
multiply it by five annually, we obtain profits
of 50000 in 1988 and 250000 euros in 1989.
These two profits are much too large com-
pared to the real profits.
On the other hand, if we calculate the mean
using the geometric mean of these two
increases instead of the arithmetic mean,
we get:

G = √2 · 8 = √16 = 4 ,

and we can correctly say that, on average, the
profits quadrupled annually. Applying this
mean rate of increase to the initial profit of
10000 euros in 1987, we obtain 40000 euros
in 1988 and 160000 euros in 1989. Even if
the profit in 1988 is too high, it is less so than
the previous result, and the profit for 1989 is
now correct.
To illustrate the use of the formula for the
geometric mean in the logarithmic form, we
will now find the mean of the following
indices:

112, 99, 105, 96, 85, 100 .
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We calculate (using a table of logarithms):

log (112) = 2.0492
log (99) = 1.9956

log (105) = 2.0212
log (96) = 1.9823
log (85) = 1.9294

log (100) = 2.0000
11.9777

We get then:

log (G) = 11.9777

6
= 1.9963 .

Therefore G = 99.15.

FURTHER READING
� Arithmetic mean
� Harmonic mean
� Mean
� Measure of central tendency

REFERENCES
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es universitaires de France, Paris (1990)

Jevons, W.S.: The Principles of Science:
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Geometric
Standard Deviation

The geometric standard deviation of a set
of quantitative observations is a measure
of dispersion. It corresponds to the devia-
tion of observations around the geometric
mean.

HISTORY
See L1 estimation.

MATHEMATICAL ASPECTS
Let x1, x2, . . . , xn be a set of n observations
related to a quantitative variable X. The
geometricstandarddeviation,denotedbyσg,
is calculated as follows:

log σg =
[

1

n

n∑
i=1

(log xi − log G)2

] 1
2

.

where G = n
√

x1 · x2 · . . . · xn is the geomet-
ric mean of the observations.

FURTHER READING
� L1 estimation
� Measure of dispersion
� Standard deviation

Geostatistics

Geostatistics is the application of statis-
tics to problems in geology and hydrolo-
gy. Geostatistics naturally treat spatial data
withknowncoordinates.Spatialhierarchical
models follow the principle: model locally,
analyze globally. Simple conditional models
are constructed on all levels of the hierarchy
(local modeling). The result is a joint mod-
el that can be very complex, but analysis is
still possible (global analysis). Geostatistics
encompasses the set used in the theory, as
well as the techniques and statistical applica-
tions used to analyze and forecast the distri-
bution of the values of the variable in space
and (eventually) time.

HISTORY
The term geostatistics was first used by Hart
(1954) in a geographical context, in order
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to highlight the application of particular sta-
tistical techniques to observations covering
a regional distribution. The first geostatisti-
cal concepts were formulated by Matheron
(1963) at the Ecole des Mines de Paris in
order to estimate the reserves of a miner-
al from spatially distributed data (observa-
tions).

DOMAINS AND LIMITATIONS
Geostatistics is used in a wide variety of
domains, including forecasting (of precip-
itation, ground porosity, concentrations of
heavy metals) and when treating images
from satellites.

FURTHER READING
� Spatial data
� Spatial statistics
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Gini, Corrado
Gini,Corrado (1884–1965)wasborn inMat-
ta di Livenza, Italy. Although hegraduated in
law in 1905, he took courses in mathematics
and biology during his studies. His subse-
quent inclinations towards both science and
statistics led him to become a temporary pro-
fessor of statistics at Cagliari University in
1909 and, in 1920 he acceded to the Chair
of Statistics at the same university. In 1913,
he began teaching at Padua University, and
acceded to the Chair of Statistics at the Uni-
versity of Rome in 1927.
Between 1926 and 1932, he was also the
President of the Central Institute of Statistics
(ISTAT).
He founded two journals. The first one,
Metron (founded in 1920), is an internation-
al journal of statistics, and the second one,
Genus (founded in 1934), is the Journal of
the Italian Committee for the Study of Pop-
ulation Problems.
The contributions of Gini to the field of
statistics principally concern mean values
and the variability, as well as associations
between the random variables. He also con-
tributed original works to economics, soci-
ology, demography and biology.

Some principal works and articles of Gini,
Corrado:

1910 Indici di concentrazione e di depen-
denza. Atti della III Riunione della
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Societa Italiana per il Progresso delle
Scienze, R12, 3–210.

1912 Variabilità e mutabilità. Studi
economico-giuridici, Università di
Cagliari, III 2a, R12, 211–382.

Gini Index

The Gini index is the most commonly used
inequality index; it allows us to measure
the degree of inequality in the distribution
of incomes for a given population. Graph-
ically, the Gini index is represented by the
surface area between a line at 45◦ and the
Lorenz curve (a graphical representation
of the cumulative percentage of the total
income versus the cumulative percentage
of the population that receives that income,
where income increases left to right). Divid-
ing the surface area between the line at 45◦
and the Lorenz curve (area A in the follow-
ing diagram) by the total surface area under
the line (A+ B) gives the Gini coefficient:

IG = A

A+ B
.

The Gini coefficient is zero if there is no
inequality in income distribution and a value
of 1 if the income distribution is complete-
ly unequal, so 0 ≤ IG ≤ 1. The Gini index
is simply the Gini coefficient multiplied by
100, in order to convert it into a percentage.
Therefore, thecloser theindexisto100%,the
more unequal the income distribution is. In
developed countries, valuesof theGini index
are around 40% (see the example).

HISTORY
The Gini coefficient was invented in 1912
by the Italian statistician and demographer
Gini, Corrado.

MATHEMATICAL ASPECTS
The total surface area under the line at 45◦
(A+ B) equals 1

2 , and so we can write:

IG = A

A+ B
= A

1
2

= 2A

= 2

(
1

2
− B

)
⇒ IG = 1− 2B

(1)

To calculate the value of the Gini coefficient,
we thereforeneed to workoutB (total surface
under the Lorenz curve).

a) Gini index: discrete case
For a discrete Lorenz curve where
the income distribution is arranged in
increasing order (x1 ≤ . . . ≤ xn), the
Lorenz curve has the following profile:

To calculate B, we need to divide thesur-
face under the Lorenz curve into a series
of polygons (where the first polygon is
a triangle and others is are trapezia).
The surface of the triangle is:

1

2n

x1

X
.

The surface of the jth trapezium is:

1

2n

⎡
⎣

j−1∑
i=1

xi

X
+

j∑
i=1

xi

X

⎤
⎦

= 1

2nX

⎡
⎣2 ·

j−1∑
i=1

xi + xj

⎤
⎦ ,
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with j = 2, . . . , n. We then have

B = 1

2n
· x1

X

+
n∑

j=2

1

2nX

⎡
⎣2 ·

j−1∑
i=1

xi + xj

⎤
⎦ ,

where:

x1, . . . , xn are the incomes;

X is the total revenue;
x1 + . . . + xn

X
is the total cumulated

revenue, in %.

After developing this equation, we get:

B = 1

2nX

·
[
−X + 2 ·

n∑
i=1

(n− i+ 1)xi

]
.

(2)
Using Eq. (1), we can then get the Gini
index:

IG = 1− 2B

= 1

− 2

2nX

[
−X + 2·

n∑
i=1

(n− i+ 1)xi

]

= 1+ 1

n
− 2 ·

n∑
i=1

(n− i+ 1) xi

nX

= 1+ 1

n
− 2

n2λ (x)

n∑
i=1

ixn−i+1 ,

where λ (x) = 1
n

n∑
i=1

xi = mean income

of the distribution.
TheGinicoefficientcanbereformulated
in many ways. We could use, for exam-
ple:

IG =
n∑

i=1

n∑
j=1

∣∣xi − xj
∣∣

2n2λ (x)
.

b) Gini index: continuous case
In this case, B corresponds to the inte-
gral from 0 to 1 of the Lorenz function.
Therefore, we only need to insert this
integral into Eq. (1):

IG = 1− 2B = 1− 2

1∫

0

L (P) dP ,

whereP = F (y) =
y∫

0
f (x) dx is theper-

centage of the population with incomes
smaller then y. For example,

IG =
1∫

0

(
1− (1− P)

α−1
α

)
dP

= 1− α

2α − 1

= 1− 2

(
1− α

2α − 1

)
.

DOMAINS AND LIMITATIONS
The Gini index (or coefficient) is the param-
eter most commonly used to measure the
extent of inequality in an income distri-
bution. It can also be used to measure the dif-
ferences in unemploymentbetween regions.

EXAMPLES
As an example of how to calculate the Gini
coefficient (or index), let us take the discrete
case.
We have: IG = 1− 2B
Recall that, in this case, we find surface B by
calculating the sum of a series of polygons
under the Lorenz curve.
The income data for a particular popula-
tion in 1993–1994 are given in the follow-
ing table, along with the areas associated the
income intervals:
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Population Income Surface Area

0 0

94569 173100.4 0.000013733

37287 527244.8 0.000027323

186540 3242874.9 0.000726701

203530 4603346.0 0.00213263

266762 7329989.6 0.005465843

290524 9428392.6 0.010037284

297924 11153963.1 0.015437321

284686 12067808.2 0.02029755

251155 11898201.1 0.022956602

216164 11317647.7 0.023968454

182268 10455257.4 0.023539381

153903 9596182.1 0.022465371

127101 8560949.7 0.020488918

104788 7581237.4 0.018311098

85609 6621873.3 0.01597976

70108 5773641.3 0.013815408

57483 5021336.9 0.011848125

47385 4376126.7 0.010140353

39392 3835258.6 0.008701224

103116 11213361.3 0.024078927

71262 9463751.6 0.017876779

46387 7917846.5 0.012313061

50603 20181113.8 0.0114625049

So, the surface B equals:

B = 1

2nX
·
[
−X + 2 ·

n∑
i=1

(n− i+ 1) · xi

]

= 0.315246894 .

We then have:

IG = 1− 2B = 1− 2 · 0.315246894

= 0.369506212 .

FURTHER READING
� Gini, Corrado
� Simple index number
� Uniform distribution

REFERENCES
Greenwald, D. (ed.): Encyclopédie

économique. Economica, Paris, pp. 164–
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Flückiger, Y.: Analyse socio-économique
des différences cantonales de chômage.
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Goodness of Fit Test

Performing a goodness of fit test on a sam-
ple allows us to determine whether the
observed distribution corresponds to a par-
ticular probability distribution (such as the
normal distribution or the Poisson distri-
bution). This allows us to find out whether
the observed sample was drawn from a pop-
ulation that follows this distribution.

HISTORY
See chi-square goodness of fit test and
Kolmogorov–Smirnov test.

MATHEMATICAL ASPECTS
The goal of the goodness of fit test is to
determine whether an observed sample was
drawn from a population that follows a par-
ticular probability distribution.
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The process used usually involves some
hypothesis testing:

Null hypothesis H0 : F = F0

Alternative hypothesis H1 : F �= F0

where F is an unknown distribution func-
tion of the underlying population and F0 is
the presumed distribution function.
The goodness of fit test involves comparing
the empirical distribution with the presumed
distribution. We reject the null hypothesis if
theempiricaldistribution isnotcloseenough
to the presumed distribution. The precise
rules that govern whether the null hypothesis
is rejected or accepted depend on the type of
the test used.

EXAMPLES
There are many goodness of fit tests, includ-
ing the chi-square goodness of fit test and
the Kolmogorov–Smirnov test.

FURTHER READING
� Chi-square goodness of fit test
� Hypothesis testing
� Kolmogorov–Smirnov test

Gosset, William Sealy

Gosset, William Sealy, better known by his
pen name, “Student”, was born in Can-
terbury, England in 1876. After studying
mathematics and chemistry at New College,
Oxford, he started working as a brewer for
GuinnessBreweriesinDublinin1899.Guin-
ness was a business that favored research,
and made its laboratories available to its
brewers and its chemists. Indeed, in 1900 it
opened the “Guinness Research Laborato-
ry,” which had one of the greatest chemists

around at that time, Horace Brown, as direc-
tor. Work that was carried out in this labora-
tory was related to the quality and costs of
the many varieties of barley and hop.
It was in this environment that Gosset devel-
oped his interest in statistics.
At Oxford, Gosset had studied mathematics,
and so he was often called upon by his col-
leagues at Guinness when certain mathe-
maticalproblemsrose.That led tohimstudy-
ing the theory of errors, and he consulted
Pearson, K., whom he met in July 1905, on
this topic.
The main difficulty encountered by Gosset
during his work was small sample sizes. He
therefore decided to attempt to find an appro-
priate method for handling the data from
these small samples.
In 1906–1907, Gosset spent a year collabo-
rating with Pearson, K., in Pearson’s lab-
oratory in the University College London,
attempting to develop methods related to the
probable error of the mean.
In 1907, Gosset was made responsible for
Guinness’ Experimental Brewery, and he
used the Student table that he had pre-
viously derived experimentally in order to
determine the best variety of barley to use
for brewing. Guinness, wary of publishing
trade secrets, only allowed Gosset to pub-
lish his work under the pseudonym of either
“Pupil” or “Student”, and so he chose the lat-
ter.
He died in 1937, leaving important works,
which were all published under thepen name
of “Student”.
Gosset’s work remained largely ignored for
many years, with few scientists using his
table aside from the researchers at Guinness’
breweries and those at Rothamsted Experi-
mental Station (where Fisher, R.A. worked
as a statistician).
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Some of the main works and articles of
Gosset, W.S.:

1907 On the error of counting with
a haemacytometer. Biometrika 5,
351–360.

1908 The probable error of a mean.
Biometrika 6, 1–25

1925 Newtablesfor testingthesignificance
of observations. Metron 5, 105–120.

1942 Pearson, E.S. and Wishart, J. (eds)
Student’s collected papers (foreword
by McMullen, L.). Cambridge Uni-
versity Press, Cambridge (Issued by
the Biometrika Office, University
College London).

FURTHER READING
� Student distribution
� Student table
� Student test

REFERENCES
Fisher-Box,J.:Guinness,Gosset,Fisher,and

small samples. Stat. Sci. 2, 45–52 (1987)

McMullen, L., Pearson, E.S.: William Sealy
Gosset, 1876–1937. In: Pearson, E.S.,
Kendall, M. (eds.) Studies in the History
ofStatisticsand Probability,vol. I.Griffin,
London (1970)

Plackett,R.L.,Barnard,G.A. (eds.):Student:
A Statistical Biography of William Sealy
Gosset (Based on writings of E.S. Pear-
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Graeco-Latin Squares

See Graeco-Latin square design.

Graeco-Latin Square Design

A Graeco-Latin square design is a design
of experiment in which the experimental
units are grouped in three different ways. It is
obtained by superposing two Latin squares
of the same size.
If every Latin letter coincides exactly once
with a Greek letter, the two Latin square
designs are orthogonal. Together they form
a Graeco-Latin square design.
In this design, each treatment (Latin letter)
appears just once in each line, once in each
column and once with each Greek letter.

HISTORY
The construction of a Graeco-Latin square,
was originated by Euler, Leonhard (1782).
A book by Fisher, Ronald Aylmer and
Yates, Frank (1963) gives Graeco-Latin
tables of order 3 up to order 12 (not includ-
ing the order of six). The book by Denes and
Keedwell (1974) also contained compre-
hensive information on Graeco-Latin square
designs. Dodge and Shah (1977) treat the
case of the estimation when data is missing.

DOMAINS AND LIMITATIONS
Graeco-Latin square designs are used to
reduce the effects of three sources of system-
atic error.
There are Graeco-Latin square designs for
any size n except for n = 1, 2 and 6.

EXAMPLES
We want to test three different types of
gasoline. To do this, we have three drivers
and three vehicles. However, the test is too
involved to perform in one day: we have
to perform the experiment over three days.
In this case, using drivers and vehicles over
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three separatedayscould result in systematic
errors. Therefore, in order to eliminate these
errors we construct a Graeco-Latin square
experimental design. In this case, each type
of gasoline (treatment) will be tested just
oncewith each driver, oncewith each vehicle
and once each day.
In this Graeco-Latin square design, we rep-
resent the different types of gasoline by the
Latin letters A, B and C and the different days
by α, β and γ .

Drivers

Vehicles

1 2 3
1 Aα Bβ Cγ

2 Bγ Cα Aβ

3 Cβ Aγ Bα

An analysis of variance will then tell us
whether, after eliminating the effects of the
lines (vehicles), the columns (drivers) and
the greek letters (days), there is a significant
difference between the types of gasoline.

FURTHER READING
� Analysis of variance
� Design of experiments
� Latin square designs

REFERENCES
Dénes, J., Keedwell, A.D.: Latin squares and

their applications. Academic, New York
(1974)

Dodge, Y., Shah, K.R.: Estimation of param-
eters in Latin squares and Graeco-latin
squares with missing observations. Com-
mun. Stat. Theory A6(15), 1465–1472
(1977)

Euler, L.: Recherches sur une nouvelle
espèce de carrés magiques. Verh. Zeeuw.
Gen. Weten. Vlissengen 9, 85–239 (1782)

Fisher, R.A., Yates, F.: Statistical Tables
for Biological, Agricultural and Medical

Research, 6th edn. Hafner (Macmillan),
New York (1963)

Graphical Representation

Graphical representations encompass a wide
variety of techniques that are used to clarify,
interpret and analyze data by plotting points
and drawing line segments, surfaces and oth-
er geometric forms or symbols.
The purpose of a graph is a rapid visual-
ization of a data set. For instance, it should
clearly illustrate the general behavior of the
phenomenon investigated and highlight any
important factors. It can be used, for exam-
ple, as a means to translate or to complete
a frequency table.
Therefore, graphical representation is a form
of data representation.

HISTORY
The concept of plotting a point in coordi-
nate space dates back to at least the ancient
Greeks, but we had to wait until the work
of Descartes, René for mathematicians to
investigate this concept.
According to Royston, E. (1970), a Ger-
man mathematician named Crome, A.W.
was among the first to use graphical repre-
sentation in statistics. He initially used it as
a teaching tool.
In his works Geographisch-statistische
Darstellung der Staatskräfte (1820) and
Ueber die Grösse und Bevölkerung der
sämtlichen Europäischen Staaten (1785),
Crome employed different types of graph-
ical representation, among them the pie
chart.
Royston, E. (1970) also cites Playfair, W.,
whose work The Commercial and Polit-
ical Atlas (1786) also referred to various
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graphical representations, especially the line
chart. Playfair was very interested in the
international trade balance, and illustrated
his studies using different graphics such as
the histogram and the pie chart.
The term histogram was used for the first
time by Pearson, Karl, and Guerry (1833)
appears to have been among the first to use
the the line chart; in his Essai sur la Statis-
tique Morale de la France, published in
Paris in 1833, he described the frequencies
of crimes by their characteristics; this study
constituted one of the first uses of a frequen-
cy distribution.
Schmid, Calvin F. (1954) illustrates and
describes thedifferent typesofgraphical rep-
resentations in his Handbook of Graphic
Presentation.

MATHEMATICAL ASPECTS
The type of graphic employed depends upon
the kind of data to be presented, the nature
of the variable studied, and the goal of the
study:
• A quantitative graphic is particularly

useful for representing qualitative cate-
gorical variables. Such graphics include
the pie chart, the line chart and the pic-
togram.

• A frequency graphic allows us to rep-
resent the (discrete or continuous) fre-
quency distribution of a quantitative
variable. Such graphics include the his-

togram and the stem and leaf diagram.
• A cartesian graphic, employs a system of

axes that are perpendicular to each other
and intersect at a point known as the “ori-
gin.” Such a coordinate system is termed
“cartesian”.

FURTHER READING
� Frequency table
� Quantitative graph

REFERENCES
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Schmid, C.F.: Handbook of Graphic Presen-
tation. Ronald Press, New York (1954)
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Hájek, Jaroslav

Hájek, Jaroslav was born in 1926 in Pode-
brady, Bohemia. A statistical engineer by
profession, he obtained his doctorate in
1954. From 1954 to 1964, he worked as
a researcher at the Institute of Mathematics
of the Czechoslovakian Academy of Sci-
ences. He then joined Charles University in
Prague, where he was a professor from 1966
until his premature death in 1974. The prin-
cipal works of Hájek, J. concern sampling
probability theory and the rank test theory. In
particular, he developed an asymptotic the-
ory of the statistics of linear ranks. He was
the first to apply the concept of invariance
to the theory of rank testing.

Some principal works and articles of Hájek,
Jaroslav:

1955 Some rank distributions and their
applications. Cas. Pest. Mat. 80, 17–
31 (in Czech); translation in (1960)
Select. Transl. Math. Stat. Probab.,
2, 41–61.

1958 Some contributions to the theory of
probability sampling. Bull. Inst. Int.
Stat., 36, 127–134.

1961 Some extensions of the Wald–
Wolfowitz–Noether theorem. Ann.
Math. Stat. 32, 506–523.

1964 Asymptotic theory of rejective sam-
pling with varying probabilities from
a finite population. Ann. Math. Stat.
35, 1419–1523.

1965 Extension of the Kolmogorov–
Smirnov test to regression alterna-
tives. In: Neyman, J. and LeCam, L.
(eds) Bernoulli–Bayes–Laplace:
Proceedings of an International Sem-
inar, 1963. Springer, Berlin Heidel-
berg New York, pp. 45–60.

1981 Dupac,V. (ed)SamplingfromaFinite
Population. Marcel Dekker, New
York.

Harmonic Mean

The harmonic mean of n observations is
defined as n divided by the sum of the invers-
es of all of the observations.

HISTORY
See geometric mean.
The relationship between the harmonic
mean, the geometric mean and the arith-
metic mean isdescribed by Mitrinovic,D.S.
(1970).

MATHEMATICAL ASPECTS
Let x1, x2, . . . , xn be n nonzero quantities,
or n observations related to a quantitative
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variable X. The harmonic mean H of these
n quantities is calculated as follows:

H = n
n∑

i=1

1
xi

.

If {xi}i=1,...,n represents a finite series of pos-
itive numbers, we state that:

min
i

xi ≤ H ≤ G ≤ x̄ ≤ max
i

xi .

DOMAINS AND LIMITATIONS
The harmonic mean is rarely used in statis-
tics. However, it can sometimes be useful,
such as in the following cases:
• If a set of investments are invested at dif-

ferent interest rates, and they all give the
same income, the unique rate at which all
of the capital tied up in those investments
must be invested to produce the same rev-
enue as given by the set of investments is
equal to the harmonic mean of the indi-
vidual rates.

• Say we have a group of different materi-
als, and each material can be purchased
at a given price per amount of material
(where the price per amount can be differ-
ent for each material). We then buy a cer-
tainamountofeachmaterial, spendingthe
same amount of money on each. In this
case, the mean price per amount across all
materials is given by the harmonic mean
of thepricesperamountforallof themate-
rials.

• One property of the harmonic mean is that
it is largely insensitive tooutliers thathave
much larger values than the other data.
For example, consider the following val-
ues: 1, 2, 3, 4, 5 and 100. Here the har-
monic mean equals 2.62 and the arith-
metic mean equals 19.17. However, the
harmonic mean is much more sensitive

to outliers when they have much small-
er values than the rest of the data. So, for
the observations 1, 6, 6, 6, 6, 6, we get
H = 3.27 whereas the arithmetic mean
equals 5.17.

EXAMPLES
Three investments that each yield the same
incomehave the following interest rates:5%,
10% and 15%.
The harmonic mean gives the interest rate
at which all of the capital would need to be
invested in order to produce the same total
income as the three separate investments:

H = 3[
1
5 + 1

10 + 1
15

] = 3
11

30

= 8.18% .

We note that this result is different from the
arithmetic mean of 10% (5+ 10+ 15)/3.
A representative buys three lots of coffee,
each of a different grade (quality), at 3, 2 and
1.5 euros per kg respectively. He buys 200
euros of each grade.
The mean price per kg of coffee is then
obtained by dividing the total costby the total
quantity bought:

mean price = total cost

total quantity

= 3 · 200

66.66+ 100+ 133.33
= 2 .

This corresponds to the harmonic mean of
the prices of the three different grades of cof-
fee:

mean price = 3[
1
3 + 1

2 + 1
1.5

] = 6

3
= 2 .

FURTHER READING
� Arithmetic mean
� Geometric mean
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� Mean
� Measure of central tendency

REFERENCES
Mitrinovic,D.S. (with Vasic,P.M.):Analytic

Inequalities. Springer, Berlin Heidelberg
New York (1970)

Hat Matrix
The hat matrix is a matrix used in regres-
sion analysis and analysis of variance. It
is defined as the matrix that converts values
from the observed variable into estimations
obtained with the least squares method.
Therefore, when performing linear regres-
sion in the matrix form, if Ŷ is the vector
formed from estimations calculated from the
least squares parameters, and Y is a vector of
observations related to the dependent vari-
able, then Ŷ is given by vector Y multiplied
by H, that is, Ŷ = HY converts to Y’s into
Ŷ’s.

HISTORY
The hat matrix H was introduced by
Tukey, John Wilder in 1972. An article
by Hoaglin, D.C. and Welsch, R.E. (1978)
gives the properties of the matrix H and also
many examples of its application.

MATHEMATICAL ASPECTS
Consider the following linear regression
model:

Y = X · β + ε .

where

Y is an (n × 1) vector of observations on
the dependent variable;

X is the (n×p)matrix of independent vari-
ables (therearep independentvariables);

ε is the (n× 1) vector of errors, and;

β is the (p× 1) vector of parameters to be
estimated.

The estimation β̂ of the vector β is given by

β̂ = (
X′ ·X)−1 ·X′ ·Y .

and we can calculate the estimated values Ŷ
of Y if we know β̂:

Ŷ = X · β̂ = X · (X′ ·X)−1 ·X′ · Y .

The matrix H is then defined by:

H = X · (X′ · X)−1 ·X′ .
In particular, the diagonal element hii will be
defined by:

hii = xi ·
(
X′ · X)−1 · x′i .

where xi is the ith line of X.

DOMAINS AND LIMITATIONS
The matrix H, which allows us to obtain n
estimations of the dependent variable from
n observations, is an idempotent symmetric
square matrix of order n. The element (i, j)
of this matrix measures the influence of the
jth observation on the ith predicted value.
In particular, the diagonal elements evaluate
the effects of the observations on the corre-
sponding estimations of the dependent vari-
ables. The value of each diagonal element of
the matrix H ranges between 0 and 1.
WritingH = (hij) for i, j = 1, . . . , n,wehave
the relation:

hii = h2
ii +

n∑
i=1
i �=j

n∑
j=1

h2
ij .

which is obtained based on the idempotent
nature of H; in other words H = H2.
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Therefore tr(H) =
n∑

i=1
hii = p = number of

parameters to estimate.
The matrix H is used to determine leverage
points in regression analysis.

EXAMPLES
Consider the following table where Y is
a dependent variable related to the inde-
pendent variable X:

X Y

50 6

52 8

55 9

75 7

57 8

58 10

The model of simple linear regression is
written in the following manner in the matrix
form:

Y = X · β + ε .

where

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

6
8
9
7
8

10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 50
1 52
1 55
1 75
1 57
1 58

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

ε is the (6× 1) vector of errors, and β is the
(2× 1) vector of parameters.
We find the matrix H using the result:

H = X · (X′ · X)−1 ·X′ .
By stepwise matrix calculations, we obtain:

(X′ ·X)−1 = 1

2393
·
[

20467 −347
−347 6

]

=
[

8.5528 −0.1450
−0.1450 0.0025

]
.

and finally:

H = X · (X′ · X)−1 · X′

=

⎡
⎢⎢⎢⎢⎢⎣

0.32 0.28 0.22 −0.17 0.18 0.16
0.28 0.25 0.21 −0.08 0.18 0.16
0.22 0.21 0.19 0.04 0.17 0.17
−0.17 −0.08 0.04 0.90 0.13 0.17

0.18 0.18 0.17 0.13 0.17 0.17
0.16 0.16 0.17 0.17 0.17 0.17

⎤
⎥⎥⎥⎥⎥⎦

.

We remark, for example, that the weight of
y1 used during the estimation of ŷ1 is 0.32.
We then verify that the traceof Hequals 2; in
other words, it equals the number of param-
eters of the model.

tr(H) = 0.32+ 0.25+ 0.19+ 0.90

+ 0.17+ 0.17

= 2 .

FURTHER READING
� Leverage point
� Matrix
� Multiple linear regression
� Regression analysis
� Simple linear regression
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Histogram
The histogram is a graphical representa-
tion of the distribution of data that has been
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grouped into classes. It consists of a series of
rectangles, and is a type of frequency chart.
Each data value is sorted and placed in an
appropriate class interval. The number of
datavalueswithineachclass intervaldictates
the frequency (or relative frequency) of that
class interval.
Each rectangle in the histogram represents
a class of data. The width of the rectangle
corresponds to the width of the class interval,
and thesurfaceof therectanglerepresents the
weight of the class.

HISTORY
The term histogram was used for the first
time by Pearson, Karl in 1895.
Also see graphical representation.

MATHEMATICAL ASPECTS
The first step in the construction of a his-
togram consists of presenting the data in the
form of a frequency table.
This requires that the class intervals are
established and thedatavaluesare sorted and
placed in theclasses,which makes itpossible
to calculate the frequencies of the classes.
The class intervals and frequencies are then
added to the frequency table.
We then make use of the frequency table in
order to construct the histogram. We divide
the horizontal axis of the histogram into
intervals, where the widths of these intervals
correspond to those of the class intervals. We
then draw the rectangles on the histogram.
Thewidth ofeach rectangle is thesameas the
width of the class that it corresponds to. The
height of the rectangle is such that the sur-
face area of the rectangle is equal to the rel-
ative frequency of the corresponding class.
The sum of the surface areas of the rectan-
gles must be equal to 1.

DOMAINS AND LIMITATIONS
Histograms are used to present a data set in
a visual form that is easy to understand. They
allow certain general characteristics (such as
typical values, the range or the shape of the
data) to be visualized and extracted.
Reviewing the shape of a histogram can
allow us to detect the probability model
followed by the data (normal distribution,
log-normal distribution, . . . ).
It isalsopossibletodetectunexpectedbehav-
ior or abnormal values with a histogram.
This type of graphical representation is
most frequently used in economics, but since
it is an extremely simple way of visualizing
a data set, it is used in many other fields too.
We can also illustrate relative frequency in
a histogram. In this case, the height of each
rectangle equals the relative frequency of the
corresponding class divided by the length of
the class interval. In this case, if we sum the
surface areas of all of the rectangles in the
histogram, we obtain unity.

EXAMPLES
The following table gives raw data on the
average annual precipitation in 69 cities of
the USA. We will use these data to establish
a frequency table and then a corresponding
histogram.

Annual average precipitations in 69 cities of the
USA (in inches)

Mob. 67.0 Chic. 34.4 St.L. 35.9

Sacr. 17.2 Loui. 43.1 At.C. 45.5

Wash. 38.9 Detr. 31.0 Char. 42.7

Boise 11.5 K.C. 37.0 Col. 37.0

Wich. 30.6 Conc. 36.2 Prov. 42.8

Bost. 42.5 N.Y. 40.2 Dall. 35.9

Jack. 49.2 Clev. 35.0 Norf. 44.7

Reno 7.2 Pitt. 36.2 Chey. 14.6
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Buff. 36.1 Nash. 46.0 L.R. 48.5

Cinc. 39.0 Burl. 32.5 Hart. 43.4

Phil. 39.9 Milw. 29.1 Atl. 48.3

Memp. 49.1 Phoen. 7.0 Indi. 38.7

S.L. 15.2 Denv. 13.0 Port. 40.8

Char. 40.8 Miami 59.8 Dul. 30.2

Jun. 54.7 Peor. 35.1 G.Fls 15.0

S.F. 20.7 N.Or. 56.8 Albq 7.8

Jack. 54.5 S.S.M. 31.7 Ral. 42.5

Spok. 17.4 L.A. 14.0 Omaha 30.2

Ok.C. 31.4 Wilm. 40.2 Alb. 33.4

Col. 46.4 Hon. 22.9 Bism. 16.2

El Paso 7.8 D.Mn. 30.8 Port. 37.6

S-Tac 38.8 Balt. 41.8 S.Fls 24.7

S.J. 59.2 Mn-SP 25.9 Hstn. 48.2

Source: U.S. Census Bureau (1975) Statisti-
cal Abstract of the United States. U.S. Census
Bureau, Washington, DC.

These data can be represented by the follow-
ing frequency table:

Class Frequency Relative Frequency

0–10 4 0.058

10–20 9 0.130

20–30 5 0.072

30–40 24 0.348

40–50 21 0.304

50–60 4 0.058

60–70 2 0.030

Total 69 1.000

We can now construct the histogram:
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Histogram of C1

Thehorizontal axis isdivided upintoclasses,
and in this case the relative frequencies are
givenbytheheightsof therectanglesbecause
the classes all have the same width.

FURTHER READING
� Frequency distribution
� Frequency polygon
� Frequency table
� Graphical representation
� Ogive
� Stem-and-leaf diagram
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pp. 41–112 (1948). First published in
1895 in Philos. Trans. Roy. Soc. Lond.
Ser. A 186, 343–414

Homogeneity Test

One issue that often needs to be considered
when analyzing categorical data obtained
for many groups is that of the homogene-
ity of the groups. In other words, we need
to find out whether there are significant
differences between these groups in rela-
tion to one or many qualitative categori-
cal variables. A homogeneity test can show
whether the differences are significant or
not.
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MATHEMATICAL ASPECTS
Weconsider thechi-squarehomogeneity test
here, which is a specific type of chi-square
test.
Let I be the number ofgroups considered and
J the number of categories considered.
Let:

ni. =
J∑

j=1
nij correspond to the size of group

i;

n.j =
I∑

i=1
nij;

n =
I∑

i=1

J∑
j=1

nij be the total number of

observations
nij be the empirical frequency (that is, the

number of occurrences observed) corre-
sponding to group i and category j;

mij is the theoretical frequency correspond-
ing to group i and category j, which,
assuming homogeneity among the
groups, equals:

mij = ni. · n.j

n
.

If we represent the data in the form of a con-
tingency table with I lines and J columns,
we can calculate the ni. that contribute to the
sum of the elements of line i and the n.j that
contribute to the sum of all of the elements
of column j.
We calculate

χ2
c =

I∑
i=1

J∑
j=1

(
nij − mij

)2

mij
.

and the chi-square homogeneity test is
expressed in the following way: we reject the
homogeneity hypothesis (at a significance
level of 5%) if the value χ2

c is greater then
the value of the χ2 (chi-square) distribution
with (J − 1) · (I − 1) degrees of freedom.

Note: We have assumed here that the same
number of units are tested for each combina-
tion ofgroup andcategory.However,wemay
want to testdifferentnumbersofunits fordif-
ferent combinations. In this case, if we have
a proportion pij of units for group i and cat-
egory j, it is enough to replace mij by ni. ·pij.

EXAMPLES
We consider a study performed in the phar-
maceutical domain that concerns 100 peo-
ple suffering from a particular illness. In
order to examine the effect of a medical
treatment, 100 people were chosen at ran-
dom. Half of them were placed in a con-
trol group and received a placebo. The oth-
er patients received the medical treatment.
Then the number of healthy people in each
group was monitored for 24 hours following
administration the treatment. The results are
provided in the following table.

Observed
frequency

Healthy
for 24
hours

Not
healthy

Total

Placebo 2 48 50

Treatment 9 41 50

The theoretical frequencies are obtained by
assuming that the general state of health
would have been the same for both groups if
no treatment had been applied. In this case
we obtain m11 = m21 = 50·11

100 = 5.5 and
m12 = m22 = 50·89

100 = 44.5.
We calculate the value of χ2 by comparing
the theoretical frequencies with theobserved
frequencies:

χ2
c =

(2− 5.5)2

5.5
+ (48− 44.5)2

44.5

+ (9− 5.5)2

5.5
+ (41− 44.5)2

44.5
= 5.005 .
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Ifwethenrefer to theχ2 distribution tablefor
one degree of freedom, we obtain the value
χ2

0.05 = 3.84 for a significance level of 5%,
which is smaller then the value we calculat-
ed,χ2

c = 5.005. We conclude that the groups
were not homogeneous and the treatment is
efficient.

FURTHER READING
� Analysis of categorical data
� Analysis of variance
� Categorical data
� Chi-square distribution
� Chi-square test
� Frequency

REFERENCE
See analysis of categorical data.

Hotelling, Harold

Hotelling, Harold (1895–1973) is consid-
ered to be one of the pioneers in the field
of economical mathematics over the period
1920–1930.He introduced the T2 multivari-
ate test, principal components analysis and
canonical correlation analysis.
He studied at University of Washington,
where he obtained a B.A. in journalism in
1919. He then moved to Princeton Univer-
sity, obtaining a doctorate in mathematics
from there in 1924. The began teaching
at Stanford University that same year. His
applications of mathematics to the social
sciences initially concerned journalism and
political science, and then he moved his
focus to population and predictian.
In 1931, he moved to Colombia University,
where he actively participated in the cre-
ation of its statistical department. During the

Second World War, he performed statistical
research for the military.
In 1946, he was hired by North CarolinaUni-
versity at Chapel Hill to create a statistics
department there.

Some principal works and articles of Hotel-
ling, Harold:

1933 Analysis of a complex of statistical
variables with principal components.
J. Educ. Psychol., 24, 417–441 and
498–520.

1936 Relation between two sets of variates.
Biometrika 28, 321–377.

Huber, Peter J.

Huber, Peter J. was born at Wohlen (Switzer-
land) in 1934. He performed brilliantly dur-
ing his studies and his doctorate in mathe-
matics at the Federal Polytechnic School of
Zurich, where he received the Silver Medal
for the scientific quality of his thesis. He
worked as Professor of Mathematical Statis-
tics at the Federal Polytechnic School of
Zurich. He then moved to the USA and
worked at the most prestigious universities
(Princeton,Yale,Berkeley)asan invitedpro-
fessor. In 1977 he was named Professor of
Applied Mathematics at the Massachusetts
Institute of Technology. He is member of
the prestigious American Academy of Arts
and Sciences, the Bernoulli Society and the
National Science Foundation in the USA, in
which foreign members are extremely rare.
Since the publication of his article “Robust
estimation of a location parameter” in 1964,
he has been considered to be the founder of
robust statistics.
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Huber, Peter J. received the title of Docteur
Honoris Causa from Neuchâtel University in
1994.

Some principal works and publications of
Huber, Peter J.:

1964 Robust estimation of a location
parameter. Ann. Math. Stat. 35, 73–
101.

1968 Robust statistical procedures.
SIAMCBMS-NSF Reg. Conf. Ser.
Appl. Math.,

1981 Robust Statistics. Wiley, New York.

1995 Robustness: Where are we now? Stu-
dent, Vol.1, 75–86.

Hypergeometric Distribution
The hypergeometric distribution describes
the probability of success if a series of
objects are drawn from a population (which
contains some objects that represent failure
while the others represent success), without
replacement.
It is therefore used to describe a random
experiment where there are only two pos-
sible results: “success” and “failure.”
Consider a set of N events in which there are
M “successes” and N − M “failures.” The
random variable X, corresponding to the
number of successes obtained if we draw n
events without replacement follows a hyper-
geometric distribution with parameters N,
M and n, denoted by H(N, M, n).
The hypergeometric distribution is a dis-
crete probability distribution.
The number of ways that n events can be
drawn from N events is equal to:

Cn
N =

(
N
n

)
= n!

N! · (n− N)!
.

The number of elementary events depends
on X and is:

Cx
M · Cn−x

N−M .

which gives the following probability func-
tion:

P (X = x) = Cx
M · Cn−x

N−M

Cn
N

,

for x = 0, 1, . . . , n

(where Cu
v = 0 if u < vby convention) .

Hypergeometric distribution, N = 12, M = 7,
n = 5

MATHEMATICAL ASPECTS
Consider the random variable X = X1 +
X2 + . . .+ Xn, where:

Xi =
{

1 if the ith drawing is a success

0 if the ith drawing is a failure
.

In this case, the probability distribution for
Xi is:

Xi 0 1

P (Xi )
N −M

N
M
N

The expected value of Xi is therefore given
by:

E[Xi] =
2∑

j=1

xjP(xi = xj)

= 0 · N −M

N
+ 1 · M

N

= M

N
.
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Utilizing the fact thatX = X1+X2+. . .+Xn,
we have:

E[X] =
n∑

i=1

E[Xi] =
n∑

i=1

M

N
= n

M

N
.

The variance of Xi is, by definition:

Var(Xi) = E
[
X2

i

]− (E[Xi])2

= M

N
−

(
M

N

)2

= M(N −M)

N2 .

Since the Xi, i = 1, 2, . . . , n are dependent
random variables, the covariance should
be taken into account when calculating the
variance of X.
The probability that Xi and Xj (i �= j) are
both successes is equal to:

P(Xi = 1, Xj = 1) = M(M − 1)

N(N − 1)
.

If we put V = Xi ·Xj, the values of V and the
associated probabilities are:

V 0 1

P (V ) 1− M(M− 1)

N(N − 1)

M(M− 1)

N(N − 1)

The expected value of V is therefore:

E[V] = 0 ·
(

1− M(M − 1)

N(N − 1)

)

+ 1 · M(M − 1)

N(N − 1)
.

The covariance of Xi and Xj is, by definition,
equal to:

Cov(Xi, Xj) = E[Xi · Xj]− E[Xi] · E[Xj]

= M(M − 1)

N(N − 1)
−

(
M

N

)2

= −M(N −M)

N2(N − 1)

= − 1

N − 1
Var(Xi) .

We can now calculate the variance of X:

Var(X) =
n∑

i=1

Var(Xi)

+ 2
n∑

j=1

∑
i<j

Cov(Xi, Xj)

=
n∑

i=1

Var(Xi)

+ n(n− 1)Cov(Xi, Xj)

= n

[
Var(Xi)− n− 1

N − 1
Var(Xi)

]

= nVar(Xi)
N − n

N − 1

= n
M(N −M)

N2

N − n

N − 1

= N − n

N − 1
n

M

N

(
1− M

N

)
.

DOMAINS AND LIMITATIONS
The hypergeometric distribution is often
used in quality control.
Suppose that a production line produces N
products, which are then submitted to verifi-
cation. A sample of size n is taken from this
batch of products, and the number of defec-
tive products in this sample is noted. It is pos-
sible to to use this to obtain (by inference)
information on the probable total number of
defective products in the whole batch.

EXAMPLES
A box contains 30 fuses, and 12 of these are
defective. If we take five fuses at random, the
probability that none of them is defective is
equal to:

P(X = 0) = Cx
MCn−x

N−M

Cn
N

= C0
12C5

18

C5
30

= 0.0601 .
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FURTHER READING
� Bernoulli distribution
� Binomial distribution
� Discrete probability distribution

Hypothesis

A statistical hypothesis is an assertion
regarding the distribution(s) of one or sev-
eral random variables. It may concern the
parameters of a given distribution or the
probability distribution of a population
under study.
Thevalidity of thehypothesis isexamined by
performing hypothesis testing on observa-
tions collected for a sample of the studied
population.
When performing hypothesis testing on the
probability distribution of the population
being studied, the hypothesis that the studied
population followsagiven probability distri-
bution is called the null hypothesis. The
hypothesis that affirms that the population
does not follow a given probability distri-
bution is called the alternative hypothesis
(or opposite hypothesis).
If we perform hypothesis testing on the
parameters of a distribution, the hypothe-
sis that thestudiedparameter isequal toagiv-
en value is called the null hypothesis. The
hypothesis that states that the value of the
parameter is different to this given value is
called the alternative hypothesis.
The null hypothesis is usually denoted by
H0 and the alternative hypothesis by H1.

HISTORY
In hypothesis testing, the hypothesis that
is to be tested is called the null hypothe-
sis. We owe the term “null” to Fisher, R.A.

(1935). Introducing this concept, he men-
tioned the well-known tea tasting problem,
where a lady claimed to be able to recog-
nize by taste whether the milk or the tea was
poured into her cup first. The hypothesis to
be tested was that the tastewasabsolutely not
influenced by the order in which the tea was
made.
Originally, the null hypothesis was usually
taken to mean that a particular treatment
has no effect, or that there was no differ-
ence between the effects of different treat-
ments.
Nowadays the null hypothesis is mostly used
to indicate the hypothesis has that to be test-
ed, in contrast to the alternative hypothesis.
Also see hypothesis testing.

EXAMPLES
Many problems involve repeating an exper-
iment that has two possible results.
One example of this is the gender of a new-
born child. In this case we are interested in
the proportion of boys and girls in a given
population. Consider p, the proportion of
girls, which we would like to estimate from
an observed sample. To determine whether
theproportionsofnewborn boysandgirlsare
the same, we make the statistical hypothesis
that p = 1

2 .

FURTHER READING
� Alternative hypothesis
� Analysis of variance
� Hypothesis testing
� Null hypothesis

REFERENCES
Fisher, R.A.: The Design of Experiments.

Oliver & Boyd, Edinburgh (1935)
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Hypothesis Testing
Hypothesis testing is a procedure that allow,
us to (depending on certain decision rules)
confirmastarting hypothesis, called thenull
hypothesis, or to reject this null hypothesis
in favor of the alternative hypothesis.

HISTORY
The theory behind hypothesis testing devel-
oped under study. The first steps were tak-
en when works began to appear that dis-
cussed the significance (or insignificance)
of a group of observations. Some exam-
ples of such works date from the eigh-
teenth century, including those by Arbuth-
nott, J. (1710), Bernoulli, Daniel (1734) and
Laplace, Pierre Simon de (1773). These
works were seen more frequently in the nine-
teenth century, such as those by Gavarett
(1840) and Edgeworth, Francis Y. (1885).
The development of hypothesis testing
occurred in parallel with the theory of
estimation. Hypothesis testing seems to
have been first elaborated by workers in the
experimental sciences and the management
domain. For example, the Student test was
developed by Gosset, William Sealy during
his time working for Guinness.
Neyman, JerzyandPearson, Egon Sharpe
developed the mathematical theory of
hypothesis testing, which they presented
in an article published in 1928 in the review
Biometrika. They were the first to recognize
that the rational choice to be made during
hypothesis testing had to be between the null
hypothesis that we want to test and an alter-
native hypothesis. A second fundamental
article on the theory of hypothesis testing
was published in 1933 by the same math-
ematicians, where they also distinguished
between a type I error and a type II error.

The works resulting from the collaboration
between Neyman, J. and Pearson, E.S. are
described in Pearson (1966) and in the biog-
raphy of Neyman, published by Reid (1982).

MATHEMATICAL ASPECTS
Hypothesis testing of a sample generally
involves the following steps:
1. Formulate the hypotheses:
• The null hypothesis H0,
• The alternative hypothesis H1.

2. Determine the significance level α of the
test.

3. Determine the probability distribution
that corresponds to the sampling distri-
bution.

4. Calculate the critical value of the null
hypothesis and deduce the rejection
region or the acceptance region.

5. Establish the decision rules:
• If the statistics observed in the sample

are located in the acceptance region,
wedo not reject thenullhypothesisH0;

• If the statistics observed on the sam-
ple are located in the rejection region,
we reject the null hypothesis H0 for the
alternative hypothesis H1.

6. Take the decision to accept or to reject
the null hypothesis on the basis of the
observed sample.

DOMAINS AND LIMITATIONS
The most frequent types of hypothesis test-
ing are described below.
1. Hypothesis testing of a sample: We want

to test whether the value of a parameter
θ of the population is identical to a pre-
sumed value. The hypotheses will be as
follows:

H0 : θ = θ0 ,

H1 : θ �= θ0 .
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where θ0 is the presumed value of the
unknown parameter θ .

2. Hypothesis testing on two samples: The
goal in this case is to find out whether
twopopulations thatarebothdescribedby
a particular parameter are different. Let θ1

and θ2 be parameters that describe popu-
lations 1 and 2 respectively. We can then
formulate the following hypotheses:

H0 : θ1 = θ2 ,

H1 : θ1 �= θ2 .
or

H0 : θ1 − θ2 = 0 ,

H1 : θ1 − θ2 �= 0 .

3. Hypothesis testing of more than two
samples: As for a test performed on two
samples, hypothesis testing is performed
on more than two samples to determine
whether these populations are different,
based on comparing the same parameter
from all of the populations being tested.
Inthiscase,wetest thefollowinghypothe-
ses:

H0 : θ1 = θ2 = . . . = θk ,

H1 : The values of θi (i = 1, 2, . . . , k)
are not all identical.

Here θ1, . . . , θk are the unknown param-
eters of the populations and k is the num-
ber of populations to be compared.

In hypothesis testing theory, and in prac-
tice, we can distinguish between two types
of tests: a parametric test and a nonparamet-
ric test.

Parametric Tests
A parametric test is a hypothesis test thatpre-
supposes a particular form for each of the
distributions related to the underlying popu-
lations. This case applies, for example, when
these populations follow a normal distri-
bution.

TheStudent test is an exampleofaparamet-
ric test. This test compares the means of two
normally distributed populations.

Nonparametric Test
A nonparametric test is a hypothesis test
where it is not necessary to specify the
parametric form of the distribution of the
underlying population.
There are many examples of this type of
test, including the sign test, the Wilcoxon
test, the signed Wilcoxon test, the Mann–
Whitney test, the Kruskal–Wallis test, and
the Kolmogorov–Smirnov test.

EXAMPLES
For examples of parametric hypothesis test-
ing, see binomial test, Fisher test or Stu-
dent test. For examples of nonparamet-
ric hypothesis testing, see Kolmogorov–
Smirnov test, Kruskal–Wallis test,
Mann–Whitney test, Wilcoxon test,
signed Wilcoxon test and sign test.

FURTHER READING
� Acceptance region
� Alternative hypothesis
� Nonparametric test
� Null hypothesis
� One-sided test
� Parametric test
� Rejection region
� Sampling distribution
� Significance level
� Two-sided test

REFERENCES
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Idempotent Matrix

See matrix.

Identity Matrix

See matrix.

Incidence

See incidence rate.

Incidence Rate

The incidence of an illness is defined as
being the number of new cases of illness
appearingduringadeterminedperiodamong
the individuals of a population. This notion
is similar to that of “stream.”
The incidence rate is defined as being rela-
tive to the dimension of the population and
the time; this value is expressed by relation
to a number of individuals and to a duration.
The incidence rate is the incidence I divided
by thenumberofpeopleat risk for the illness.

HISTORY
See prevalence rate.

MATHEMATICAL ASPECTS
Formally we have:

incidence rate = risk

duration of observation
.

DOMAINS AND LIMITATIONS
An accurate incidence rate calculated in
a population and during a given period will
be interpreted as the index of existence of an
epidemic in this population.

EXAMPLES
Let us calculate the incidence rate of breast
cancer in a population of 150000 women
observed during 2 years, according to the fol-
lowing table:

Number
of
cases

Number
of
subjects

Incidence
rate /
100000 /
year

Group [A] [B] [ A
2B ]

Non-
exposed

40 35100 57.0

Passive
smokers

140 55500 126.1

Active
smokers

164 59400 138.0

Total 344 150000 114.7

The numerator of the incidence rate is the
same as that of the risk: the number of new
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cases (or incident cases) of breast cancer
during 2 years of observation among the
preference group. The denominator of the
incidence rate is obtained by multiplying
the number of individuals in the preference
group by the duration of observation (here
2 years). Normally, the rate is expressed as
1 year.

FURTHER READING
� Attributable risk
� Avoidable risk
� Cause and effect in epidemiology
� Odds and odds ratio
� Prevalence rate
� Relative risk
� Risk

REFERENCES
Lilienfeld, A.M., Lilienfeld, D.E.: Founda-

tions of Epidemiology, 2nd edn. Claren-
don, Oxford (1980)

MacMahon, B., Pugh, T.F.: Epidemiology:
Principles and Methods. Little Brown,
Boston, MA (1970)

Morabia, A.: Epidemiologie Causale. Editi-
ons Médecine et Hygiène, Geneva (1996)

Morabia, A.: L’Épidémiologie Clinique.
Editions “Que sais-je?”. Presses Univer-
sitaires de France, Paris (1996)

Incomplete Data

See missing data.

Independence

The notion of independence can have two
meanings: the first concerns the events of
a random experiment. Two events are said

to be independent if the realizationof thesec-
ond event does not depend on the realization
of the first.
The independencebetween two eventsAand
B can be determined by probabilities: if the
probability of event A when B is realized is
identical to the probability of A when B is not
realized, thenAandBarecalledindependent.
The second meaning of the word indepen-
dence concerns the relation that can exist
between random variables. The indepen-
dence of two random variables can be test-
ed with the Kendall test and the Spearman
test.

HISTORY
The independence notion was implicitly
used long before a formal set of probabi-
lity axioms was established. According to
Maistrov, L.E. (1974), Cardano was already
using the multiplication rule of probabilities
(P (A ∩ B) = P (A) · P (B)). Maistrov, L.E.
also mentions that the notions of indepen-
denceanddependencebetween eventswere
very familiar to Pascal, Blaise, de Fermat,
Pierre, and Huygens, Christiaan.

MATHEMATICAL ASPECTS
Mathematically, we can say that event A is
independent of event B if

P (A) = P (A | B) ,

where P(A) is the probability of realiz-
ing event A and P(A|B) is the conditional
probability ofevent A as a function of the
realization of B, meaning the probability that
A happens knowing that B has happened.
Using the definition of conditional proba-
bility, the previous equation can be written
as:

P (A) = P (A ∩ B)

P (B)
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or

P (A) · P (B) = P (A ∩ B) ,

which gives

P (B) = P (A ∩ B)

P (A)
= P (B | A) .

With this simple transformation, we have
demonstrated that if A is independent of B,
then B is also independent of A. We will say
that events A and B are independent.

DOMAINS AND LIMITATIONS
If two events A and B are independent, then
they arealwayscompatible.Theprobability
that both events A and B happen simultane-
ously can be determined by multiplying the
individual probabilities of the two events:

P (A ∩ B) = P (A) · P (B) .

But if A and B are dependent, they can
be compatible or incompatible. There is no
absolute rule.

EXAMPLES
Consider a box containing four notes num-
bered from 1 to 4 from which we will make
two successive drawings without putting the
first note back in the box before drawing the
second note.

The sample space can be represented by the
following 12 pairs:

� = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 3),

(2, 4), (3, 1), (3, 2), (3, 4),

(4, 1), (4, 2), (4, 3)} .

Consider the following two events:

A = “pull out note No. 3 on the
first drawing”

= {(3, 1), (3, 2), (3, 4)}
B = “pull out note No. 3 on the

second drawing”

= {(1, 3), (2, 3), (4, 3)}
Are these two events dependent or inde-
pendent? If they are independent, the proba-
bility of event B must be identical to the
probabilityofeventA, regardlessof theresult
of event A.
If A happens, then the following notes will
remain in the box for the second drawing:

The probability that B happens is then null
because note No. 3 is no longer in the box.
On the other hand, if A is not fulfilled (for
example, note No. 2 was drawn in the first
drawing), the second drawing will have the
following notes in the box:

The probability that B will be fulfilled is 1
3 .

We can therefore conclude that the probabi-
lity of event B is dependent on event A or that
events A and B are dependent.
We can verify our conclusion in the follow-
ing way: if A and B are independent, the fol-
lowing equation must be verified:

P (A ∩ B) = P (A) · P (B) .

In our example, P(A) = 3
12 and P(B) = 3

12 .
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The intersection between A and B is null.
Therefore we have

P (A ∩ B) = 0 �= P (A) · 1
16 = P (B) .

If the equation is not confirmed, then
events A and B are not independent. There-
fore they are dependent.
Consider now a similar experiment, but by
putting the drawn note back in the box before
the second drawing.
The sample space of this new random
experiment is composed of the following 16
pairs:

� = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1),

(2, 2), (2, 3), (2, 4), (3, 1), (3, 2),

(3, 3), (3, 4), (4, 1), (4, 2), (4, 3),

(4, 4)} .
In these conditions, the second drawing will
be done from a box that is identical to that of
the first drawing:

EventsAand Bcontain the followingresults:

A = {(3, 1), (3, 2), (3, 3), (3, 4)} ,
B = {(1, 3), (2, 3), (3, 3), (4, 3)} .

Theprobability of A, aswell asofB, is there-
fore 4

16 . The intersection between A and B is
givenbytheeventA∩B= {(3, 3)}; itsproba-
bility is 1

16 . Therefore we have

P (A ∩ B) = 1
16 = P (A) · P (B) .

Since P(A∩ B) = P(A) · P(B), we can con-
clude that event B is independent of event A,
or that the events A and B are independent.

FURTHER READING
� Chi-square test of independence
� Compatibility
� Conditional probability
� Dependence
� Event
� Kendall rank correlation coefficient
� Probability
� Spearman rank correlation coefficient
� Test of independence

REFERENCES
Maistrov, L.E.: Probability Theory—A His-

tory Sketch (transl. and edit. by Kotz, S.).
Academic, New York (1974)

Independent Variable

In a regression model the variables which are
considered to influence the dependent vari-
ables or to explain the variations of the latter,
are all independent variables.

FURTHER READING
� Dependent variable
� Multiple linear regression
� Regression analysis
� Simple linear regression

Index Number

In its most general definition, an index num-
ber is a value representing the relative vari-
ation of a variable between two determined
periods (or situations).
The simple index numbers should be dis-
tinguished from the composite index num-
bers.
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• Simple index numbers describe the rel-
ative change of a single variable.

• Composite index numbers allow one to
describe with a single number the com-
parison of the set of values that several
variables take in a certain situation with
respect to the set of values of the same
variables in a reference situation.

The reference situation defines the basis of
the index number. We can say, for exam-
ple, that for reference year (basis year) 1980,
a certain index number has a value of 120 in
1982.

HISTORY
The first studies using index numbers date
back to the early 18th century.
In 1707, the Anglican Bishop Fleetwood
undertook thestudy of theevolution ofprices
between theyears1440and1700.Thisstudy,
whose results are presented in his work
Chronicon Preciosum (1745), was done for
a very specific purpose: during the founding
ofacollege in1440–1460,anessentialclause
was established stipulating that any admitted
memberhad to leave thecollege ifhis fortune
exceeded £5 per year. Fleetwood wanted to
know if, taking into account the price evolu-
tion, such a promise could still be kept three
centuries later.
He considered four products—wheat, meat,
drink, and clothing—and studied the evolu-
tion of their prices. At the end of his work, he
came to the conclusion that 5 pounds (£) in
1440–1460 had the same value as 30 pounds
(£) in 1700.
Later, in 1738, Dutot, C. studied the diminu-
tion of the value of money in a work entitled
Réflexions politiques sur les finances et le
commerce. For this he studied the incomes
of two kings, Louis XII and Louis XV. The
two kings had the following incomes:

Louis XII: £ 7650000 in 1515

Louis XV: £100000000 in 1735

To determinewhich of thesovereignshad the
highest disposable income, Dutot, C. noted
the different prices, at the considered dates,
of a certain number of goods: a chicken,
a rabbit, a pigeon, the value of a day’s work,
etc.
Dutot’s measurement was the following:

I =
∑

P1∑
P0

,

where
∑

P1 and
∑

P0 are the sums of the
noted prices at the respective dates. Notice
that this index number is not ponderated.
Dutot came to the conclusion that the wealth
ofLouisXIIwas lower than thatofLouisXV.
The diminution of the value of money was
also the object of a study by Carli, Gian
Rinaldo. In 1764 the astronomy professor of
Padoue studied the evolution of prices since
the discovery of the Americas.
He took three products as references—
grains, wine, and cooking oil—studied the
prices on these products in the period 1500–
1750.
Carli’s measurement was the following:

I = 1

n
·
∑ P1

P0
.

The obtained index number is an arithmetic
mean of the relative prices for each observed
product.
In 1798 a work entitled An Account of Some
Endeavours to Ascertain a Standard of
Weight and Measure, signed by Sir George
Shuckburgh Evelyn, was published. This
precursor to index numbers defines a price
index number covering the years 1050 to
1800 by introducing the notions of refer-
ence year (1550) and relative prices. He also
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included the price of certain services in his
observations.
It is Lowe, Joseph who should be seen,
according to Kendall, M.G. (1977), as the
true father of index numbers. His work, pub-
lished in 1822, called The present state of
England, treated many problems relative to
the creation of index numbers. Among oth-
er things, he introduced the notion of price
ponderation at different dates (P1 and P0) by
the quantities observed at the first date (Q0).
The Lowe measurement is the following:

I =
∑

(P1 · Q0)∑
(P0 · Q0)

.

Later on this index number would be known
as the Laspeyres index.
In the second half of the 19th century, statis-
ticians made many advances in this field.
In 1863, with ‘A Serious Fall in the Value
of Gold Ascertained and Its Social Effects
Set Forth, Jevons, W.S. studied the type of
mean to be used during the creation of an
index number. He recommended the use of
the geometrical mean.
Between 1864 and 1880, three German sci-
entists, Laspeyres, E. (1864, 1871), Dro-
bisch, M.W. (1871), and Paasche, H. (1874),
worked on the evolution of prices of mate-
rial goods in Hamburg, without taking ser-
vices into account. All three are nonponder-
ated calculation methods.
The Paasche index is determined by the fol-
lowing formula:

I =
∑

(P1 · Q1)∑
(P0 · Q1)

.

Palgrave, R.H.I (1886) proposed to ponder-
ate the relative prices by the total value of the
concerned good; this method leads to calcu-

lating the index number as follows:

I =
∑(

P1 · Q1 · P1
P0

)
∑

(P1 ·Q1)
.

It was the works of statisticians such as
I. Fisher who defined in 1922 an index num-
ber that carries his name and that constitutes
thegeometric meanof theLaspeyres index
and the Paasche index:

I =
√∑

(P1 · Q0)
∑

(P1 ·Q1)∑
(P0 · Q0)

∑
(P0 ·Q1)

,

whereas in the same period, Marshall, A. and
Edgeworth,F.W.proposed the followingfor-
mula:

I =
∑

(P1 (Q1 + Q0))∑
(P0 (Q1 + Q0))

.

Notice that with this formula it is the mean
of the weights that is calculated.
Modern statistical studies still largely call
upon the index numbers that have been
defined here.

DOMAINS AND LIMITATIONS
The calculation of index numbers is a usu-
al method of describing the changes in eco-
nomic variables. Even if the most current
index numbers essentially concern the price
variable and the quantity variable, they can
also be calculated for values, qualities, etc.
Generally associated with the field of busi-
ness and economy, index numbers are also
widely used in other spheres of activity.

FURTHER READING
� Composite index number
� Fisher index
� Laspeyres index
� Paasche index
� Simple index number
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Indicator

An indicator is a statistic (official statistic)
whoseobjective is to givean indicationabout
the state, behavior, and changing nature dur-
ing some period of an economic or politi-
cal phenomenon. An indicator must inform
about the variations in the values as well as
changes in the nature of the observed phe-
nomena and must serve to instruct the deci-
sion makers.
At its most accurate, an indicator reflects the
social or economic process and suggests the
changes that should be made. It is an alarm
signal that attracts attention and and serves
as a call to action (pilotage). Many indicators
are generally necessary for providing a glob-
al reflection of given phenomena and of the
politics that one wishes to evaluate. A set
of indicators provides information about the
same subject and is called a system of indi-
cators.
Not all statistics are indicators; indicators
must:
1. Be quantifiable, which, strictly speak-

ing, does not mean measurable.
2. Be unidimensional (avoid overlap with

other indicators).
3. Cover the set of priority objectives.
4. Directly evaluate the performance of

a policy.
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5. Show ways to improve.
6. Refer to major aspects of the system and

be changeable with changes in the polit-
ical system.

7. Be verifiable.
8. Be relatable to each other.
9. Be as economic as possible.
10. Be readily available.
11. Beeasily understood by thegeneralpub-

lic.
12. Be recognizable by everybody as valid

and reliable.

DOMAINS AND LIMITATIONS
Construction of Indicators
Indicators, like all measures of social phe-
nomena, cannotbeexactandexhaustive.The
construction of indicators involves philoso-
phical considerations (judgement of values)
and technicaland scientificknowledge,but it
is also based on logic and often reflects polit-
ical preoccupations.

Collection and Choice of Indicators
To collect good indicators, an appropriate
model of economic, social, and educational
systems is needed. The model as generally
adapted by the OCDE is a systemic model:
in a given environment, we study a sys-
tem’s resources, process, and effects. But
the choice of indicators united in a system
of indicators also depends on the logistical
feasibility of data collection. This explains
the large difference among indicators. The
number of indicators necessary for a good
pilotage of an economic or social system
is difficult to evaluate. If too numerous, the
indicators lose importance and risk not play-
ing an important role. But together they
must represent the system to be evaluated.
A too small number risks making the system
invalid and unrepresentative.

Interpretation of Indicators
The interpretation of indicators is as impor-
tant for the system as their choice, construc-
tion, and collection. Having the significance
that the indicators can take for the politically
responsible, for thefinancing andthesuccess
of certain projects, all precautions must be
taken to assure the interpretative integrality,
the quality, and the neutrality of the indica-
tors.

Validation of Indicators
Before using these statistics as indicators
of the performance, quality, and health of
an economic, social, or educational system,
they should be validated. If indicators’ val-
uesarecalculated scientifically using mathe-
maticalmethodsand instruments, their influ-
ence on the system to be described and their
reliability as the foundation for a plan of
action are not always scientifically proven.
Moreover, when a set of indicators is used,
it is still far from clear how these indica-
tors combine their effects to produce the
observed results. The methods for validating
indicators have yet to be developed.

EXAMPLES
Economic Indicators
These include gross domestic product
(GDP), national revenue, consumer price
index, producer price index, unemployment
rate, total employment, long-term and short-
term interest rates, exports and imports of
produced goods, and balance of payments.

Education Indicators
These include the cost of education, the
actives in thesystem of teaching, the scholar-
ization expectancy, the geographical dispar-
ities in access to the undergraduate level, the
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general level of draftees, the level of educa-
tion of young people following high school
graduation, the benefits of an undergraduate
degree with respect to finding employment,
compulsory schooling of children from 2 to
5 years of age, and educational expenses for
continuing education.

Science and Technology Indicators
These include Gross domestic expenditures
on research and development (GDERD),
per-capita GDERD, GDERD as a percent-
age of GDP, total personnel R&D expen-
ditures, total university diplomas, percent-
age of GDERD financing by businesses, per-
centage of GDERD financed by the govern-
ment, percentage of GDERD financed from
abroad, and national patent applications.

FURTHER READING
� Official statistics

REFERENCES
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Inertia

Inertia is a notion that is used largely in
mechanics. The more inertia a body has
around an axis, the more energy has to be
used to put this body in rotation around this
axis. The mass of the body and the (squared)
distance from the body to the axis are used
in the calculation of the inertia. The defini-
tion of variance can be recognized here if

“mass” is replaced by “frequency” and “dis-
tance” by “deviation.”

MATHEMATICAL ASPECTS
Suppose that we have a cloud of n points cen-
tered in a space of dimension p; the inertia
matrix V can be constructed with the coor-
dinates and frequencies of the points.
The eigenvalues k1, . . . , kp (written in
decreasing order) of matrix V are the iner-
tia explained by the p factorial axes of the
cloud of points. Their sum, equal to the trace
of V , is equal to the total inertia of the cloud.
We will say, for example, that the first fac-
torial axis (or inertia axis) explains:

100 · k1
p∑

i=1

ki

(as %) of inertia .

The first two inertia axes, for example,
explain:

100 · k1 + k2
p∑

i=1

ki

(in %) of inertia .

DOMAINS AND LIMITATIONS
Thenotionof inertiaor,morespecifically, the
inertia matrix of a cloud of points is used,
among other things, to performacorrespon-
dence analysis between considered points.

FURTHER READING
� Correspondence analysis
� Distance
� Eigenvalue
� Factorial axis
� Frequency
� Inertia matrix
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Inertia Matrix
Consider a cloud of points in a space of p
dimensions. We suppose that this cloud is
centered in the origin of the reference sys-
tem; if not, it is enough to cause a change in
variables by subtracting from each point the
center of the cloud. Let us designate by A the
matrix of the coordinates multiplied by the
square root of the frequency associated to
each point. Such a matrix will be, for n dif-
ferent points, of dimension (n×p). Suppose
that p is smaller than or equal to n; otherwise
we use the transpose of matrix A as a new
matrix of coordinates.
We obtain the inertia matrix V by multiply-
ing A by the transpose of A, A′. V is a sym-
metric matrix of order p.
The trace of this matrix V, is exactly the total
inertia (or total variance).

MATHEMATICAL ASPECTS
Let n be different points Xi of p components

Xi =
(
xi1, xi2, . . . , xip

)
, i = 1, 2, . . . , n ,

each point Xi has one frequency fi (i =
1, 2, . . . , n).
If the points are not centered around the ori-
gin, then we should make the changing vari-
ables correspond to the shift to the origin of
the center of the cloud:

X′i = Xi − Y ,

where Y = (
y1, y2, . . . , yp

)
with

yj = 1
n∑

i=1
fi

·
(

n∑
i=1

fi · xij

)
.

The general term of inertia matrix V is then:

vij =
n∑

k=1

fk · (xki − yi) ·
(
xkj − yj

)
.

In matrix form, V = A′ ·A, where the coef-
ficients of matrix A are:

aki =
√

fk · (xki − yi) .

The total inertia of the cloud of points is
obtained by calculating the trace of the iner-
tia matrix V, which equals:

Itot = tr (V) =
p∑

i=1

vii

=
p∑

i=1

n∑
k=1

fk · (xki − yi)
2 .

DOMAINS AND LIMITATIONS
The inertia matrix of a cloud of points is
used to perform a correspondence analysis
between two considered points.

EXAMPLES
Consider the following points in the space of
three dimensions:

(2; 0; 0.5)

(3; 1; 2)

(−2;−1; −1)

(−1;−1;−0.5)

(−1;−1;−0.5)

(−1;−1;−0.5)

There are four different frequencies
equalling 1, 1, 1, and 3.
The center of the cloud formed by its points
is given by:

y1 = 2+ 3− 2+ 3 · (−1)

6
= 0 ,

y2 = 1− 1+ 3 · (−1)

6
= −0.5 ,

y3 = 0.5+ 2− 1+ 3 · (−0.5)

6
= 0 .



I

Inferential Statistics 263

The new coordinates of our four different
points will be given by:

(2; 0.5; 0.5)(3; 1.5; 2) (−2; −0.5; −1)

(−1; −0.5; −0.5)of frequency 3 ,

from which A, the matrix of the coordinates
multiplied by the square root of the frequen-
cy, is calculated:

A =

⎡
⎢⎢⎢⎢⎣

2 0.5 0.5
3 1.5 2
−2 −0.5 −1

−√3 −
√

3

2
−
√

3

2

⎤
⎥⎥⎥⎥⎦

and V, the inertia matrix:

V = A′ ·A =
⎡
⎣

20 8 10.5
8 3.5 4.5

10.5 4.5 6

⎤
⎦ .

The inertia of the cloud of points equals:

Itot = tr (V) = 20+ 3.5+ 6 = 29.5 .

FURTHER READING
� Correspondence analysis
� Frequency
� Matrix
� Trace
� Transpose
� Variance

REFERENCES
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Inference

Inference is a form of reasoning by induction
done on the basis of information collected on

a sample from the perspective of generaliz-
ing the information to the population asso-
ciated to this sample.

HISTORY
See inferential statistics.

FURTHER READING
� Inferential statistics

Inferential Statistics

Inferential or deductive statistics is comple-
mentary to descriptive statistics because
the goal of most research is not to establish
a certain number of indicators on a given
sample but rather to estimate a certain num-
ber of parameters characterizing the popula-
tion associated to the treated sample.
In inferential statistics, hypotheses are for-
mulated in the parameters of a population.
These hypotheses are then tested on the basis
of observations made on a representative
sample of the population.

HISTORY
The origins of inferential statistics coincide
with those of probability theory and cor-
respond to the works of Bayes, Thomas
(1763), de Moivre, Abraham (1718),
Gauss, Carl Friedrich (1809), and de
Laplace, Pierre Simon (1812).
At that time, there were numerous
researchers in the field of inferential statis-
tics. We mention, for example, the works of
Galton, Francis (1889) in relation to the
correlation as well as the development of
hypothesis testing due principally to Pear-
son, Karl (1900) and Gosset, William
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Sealey,whowasknownas“Student”(1908).
Neyman, Jerzy, Pearson, Egon Sharpe
(1928), and Fisher, Ronald Aylmer (1956)
also contributed in a fundamental way to the
development of inferential statistics.

FURTHER READING
� Bayes’ theorem
� Descriptive statistics
� Estimation
� Hypothesis testing
� Maximum likelihood
� Optimization
� Probability
� Sampling
� Statistics
� Survey
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Inner Product
The innerproductof x andy, denotedbyx′·y,
is the sum of products, component by com-
ponent, of two vectors.
Geometrically, the inner product of two vec-
tors of dimension n corresponds, in the space
of n dimensions, to the number obtained by
multiplying the norm of one by those of
the projection of another. This definition is
equivalent to saying that thescalarproductof
two vectors is obtained by making the prod-
uct of their norms and cosines of the angle
determined by two vectors.

MATHEMATICAL ASPECTS
Let x and y be two vectors of dimension n,
given by their components:

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ and y =

⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦ .
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The scalar product of x and y, denoted by x′ ·
y, is defined by:

x′ · y = [x1 x2 . . . xn] ·

⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦ ,

x′ · y = x1 · y1 + x2 · y2 + . . .+ xn · yn ,

x′ · y =
n∑

i=1

xi · yi .

The scalar product of a vector x with itself
corresponds to its square norm (or length),
denoted by ‖ x ‖2:

‖ x ‖2= x′ · x =
n∑

i=1

x2
i .

With the help of the norm, we can calculate
the scalar product

x′ · y =‖ x ‖ · ‖ y ‖ · cos α ,

where α is the angle between vectors x and
y.
The scalar product of two vectors has the fol-
lowing properties:
• It is commutative, that is, for two vectors

of the same dimension x and y, x′ · y =
y′ ·x. In other words, there is no difference
if we project x onto y or vice versa.

• We can take the negative values if, for
example, theprojectionsof twovectorson
which we made the projection have oppo-
site directions.

EXAMPLES
We consider two vectors in the space of three
dimensions, given by their components:

x =
⎡
⎣

1
2
3

⎤
⎦ and y =

⎡
⎣

0
2
−1

⎤
⎦ .

The scalar product of x and y, denoted by x′ ·
y, is defined by:

x′ · y =
⎡
⎣

1
2
3

⎤
⎦
′

·
⎡
⎣

0
2
−1

⎤
⎦

= [1 2 3] ·
⎡
⎣

0
2
−1

⎤
⎦ ,

x′ · y = 1 · 0+ 2 · 2+ 3 · (−1) = 4− 3 ,

x′ · y = 1 .

The norm of x, denoted by ‖ x ‖, is given
by the square root of the scalar product by
itself. Thus:

x′ · x =
⎡
⎣

1
2
3

⎤
⎦
′

·
⎡
⎣

1
2
3

⎤
⎦

= [1 2 3] ·
⎡
⎣

1
2
3

⎤
⎦ ,

x′ · x = 12 + 22 + 32 = 1+ 4+ 9 ,

x′ · x = 14 ,

from which ‖ x ‖= √14 ≈ 3.74.

Vector x has a length of 3.74 in the space of
three dimensions.
In the same way, we can calculate the norm
of vector y. It is given by:

‖ y ‖2= y′ · y =
3∑

i=1

y2
i = 22 + (−1)2 = 5

and equals ‖ y ‖= √5.
Thus we can determine the angle α situated
between the two vectors with the help of the
relation:

cos α = x′ · y
‖ x ‖ · ‖ y ‖ =

1√
14 · √5

≈ 0.1195 .

This gives an approximative angle of 83.1◦
between vectors x and y.
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FURTHER READING
� Matrix
� Transpose
� Vector

Interaction
The term interaction is used in design of
experiment methods, more precisely in fac-
torial experiments, where a certain number
of factors can be studied simultaneously. It
appears when the effect on the dependent
variable of a change in the level ofone factor
depends on levels of other factors.

HISTORY
The interaction concept in design of exper-
iment methodology is due to Fisher, R.A.
(1925, 1935).

MATHEMATICAL ASPECTS
The model of a two-way classification
design with interaction is as follows:

Yijk = μ+ αi + βj + (αβ)ij + εijk ,

i = 1, 2, . . . , a ,

j = 1, 2, . . . , b , and

k = 1, 2, . . . , nij ,

where Yijk is the kth observation receiving
treatment ij,μ is the general mean common
toall treatments,αi is theeffectof the ith level
of factor A, βj is the effect of the jth level of
factor B, (αβ)ij is the effect of the interaction
between ith level of factor A and jth level of
factor B, and εijk is the experimental error
of observation Yijk.

DOMAINS AND LIMITATIONS
The interactions between two factors are
called first-order interactions, those between

three factors are called second-order interac-
tions, and so forth.

EXAMPLES
See two-way analysis of variance.

FURTHER READING
� Analysis of variance
� Design of experiments
� Experiment
� Fisher distribution
� Fisher table
� Fisher test
� Two-way analysis of variance

REFERENCES
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burgh (1925)
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Interquartile Range

The interquartile range is a measure of
dispersion corresponding to the difference
between the first and the third quartiles.
It therefore corresponds to the interval that
contains 50% of the most centered observa-
tions of the distribution.

MATHEMATICAL ASPECTS
Consider Q1 and Q3 the first and third quar-
tiles of a distribution. The interquartile range
is calculated as follows:

Interquartile range = Q3 − Q1 .
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DOMAINS AND LIMITATIONS
The interquartile range is a measure of vari-
ability that does not depend on the number of
observations. Moreover, and at the opposite
end of the range, this measure is less sensi-
tive to outliers.

EXAMPLES
Consider the following set of ten observa-
tions:

0 1 1 2 2 2 3 3 4 5

The first quartile Q1 is equal to 1 and the
third quartile Q3 to 3. The interquartile range
is therefore equal to:
Interquartile range = Q3−Q1 = 3−1 = 2 .
We can therefore conclude that 50% of the
observations are located in an interval of
length 2, meaning the interval between 1
and 3.

FURTHER READING
� Measure of dispersion
� Quartile
� Range

Interval

An interval isdetermined by two boundaries,
a and b. These are called the limit values of
the interval.
Intervals can be closed, open, semiopen, and
semiclosed.
– Closed interval:

denoted [a, b], represents the set of x with:

a ≤ x ≤ b .

– Open interval:
denoted ]a, b[, represents the set of x with:

a < x < b .

– Interval that is semiopen on left or semi-
closed interval on right:
– denoted ]a, b], represents the set of x
with:

a < x ≤ b .

– Interval that is semiopen on right or
semiclosed on left:
denoted [a, b[, represents the set of x with:

a ≤ x < b .

FURTHER READING
� Frequency distribution
� Histogram
� Ogive

Inverse Matrix

For a square matrix A of order n, we call
the inverse matrix of A the square matrix of
ordern such that the resultof thematrix prod-
uct of A and its inverse (like those of the
inverse-multiplying A) equals the identity
matrix of order n. For any square matrix, the
inverse matrix, if it exists, is unique. To have
an invertiblesquarematrixA, itsdeterminant
should be other than zero.

MATHEMATICAL ASPECTS
Let A be a square matrix of order n of nonze-
ro determinant. We call the inverse of A the
unique square matrix of order n, denoted
A−1, such as:

A ·A−1 = A−1 · A = In ,

where In is the identity matrix of order n. So
we say that the matrix is non-singular. When
det (A) = 0, that is, thematrixA isnotinvert-
ible, we say that it is singular.
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The condition that the determinant of A can-
not be zero is explained by the properties of
the determinant:

1 = det (In) = det
(

A ·A−1
)

= det (A) · det
(

A−1
)

,

that is, det
(
A−1

) = 1
det(A)

.

On the other hand, the expression A−1, from
A, is obtained with the help of 1

det(A)
(which

must be defined) and equals:

A−1 = 1

det (A)
· [(−1)i+j · Dij

]
,

where Dij is the determinant of order n− 1,
which we obtain by deleting in A′ (the trans-
pose of A) line i and column j. Dij is called
the cofactor of the element aij.

DOMAINS AND LIMITATIONS
The inverse matrix is principally used in lin-
ear regression in matrix form to determine
the parameters estimates.
Generally, we can say that the notion of the
inverse matrix allows to resolve a system of
linear equations.

EXAMPLES
Letustreat thegeneralcaseofasquarematrix

of order 2: Let A =
[

a b
c d

]
. The deter-

minant of A is given by:

det (A) = a · d − b · c .

If the latter is not zero, we define:

A−1 = 1

a · d − b · c ·
[

d −b
−c a

]
.

So we can verify that A·A−1 = A−1 ·A = I2

by direct calculation.

Let B be a square matrix of order 3:

B =
⎡
⎣

3 2 1
4 −1 0
2 −2 0

⎤
⎦ ,

and let us determine the inverse matric, B−1,
of B if it exists.
Let us calculate first the determinant of B by
developing according to the last column:

det (B) = 1 · [4 · (−2)− (−1) · 2] ,

det (B) = −8+ 2 = −6 .

The latter being non zero, we can calculate
B−1 by determining the Dij, that is, the deter-
minants of order 2 obtained by deleting the
ith line and the jth column of the transpose
B′ of B:

B′ =
⎡
⎣

3 4 2
2 −1 −2
1 0 0

⎤
⎦

D11 = −1 · 0− (−2) · 0 = 0 ,

D12 = 2 · 0− (−2) · 1 = 2 ,

D13 = 2 · 0− (−1) · 1 = 1 ,

...

D33 = 3 · (−1)− 4 · 2 = −11 .

Thus we obtain the inverse matrix B−1 by
adjusting the correct sign to the element Dij

[that is, (−) if the sum of i and j is even and
(+) if it is odd]:

B−1 = 1

−6
·
⎡
⎣

0 −2 1
0 −2 4
−6 10 −11

⎤
⎦

= 1

6
·
⎡
⎣

0 2 −1
0 2 −4
6 −10 11

⎤
⎦ .
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FURTHER READING
� Determinant
� Generalized inverse
� Matrix
� Multiple linear regression
� Transpose

Inversion

Consider a permutation of the integers
1, 2, . . . , n. When in a pair of elements (not
necessarily adjacent) of the permutation the
first element is bigger than the second, it is
called inversion. This way it is possible to
count in a permutation the number of inver-
sions, which is the number of pairs in which
the big integer precedes the small one.

MATHEMATICAL ASPECTS
Consider a permutation of the integers
1, 2, . . . , n given by σ1, σ2, . . . , σn; the num-
ber of inversions is determined by counting
the number of pairs (σi, σj) with σi > σj.
To make sure we do not forget any, we start
by taking σ1 and count the σi, i > 1, smaller
thanσ1,andthenwetakeσ2 andcounttheele-
ments thatare inferior to it located to its right,
proceeding like this until σn−1; the number
of inversions of the considered permutation
is then obtained.

DOMAINS AND LIMITATIONS
The number of inversions is used to calcu-
late thedeterminantofasquarematrix.The
notation aij is used for the element of the
matrix that is located at the intersection of
the ith line and the jth column. By carrying
out the product a1i · a1j · . . . · a1r, for exam-
ple, the parity of the number of inversions of
the permutation i j . . . r determines the sign

attributed to the product for the calculation
of the determinant.
For a permutation of the elements
1, 2, . . . , n, the number of inversions is
always an integer located between 0 and
n·(n−1)

2 .

EXAMPLES
Consider the integers1,2,3,4,5; a permuta-
tion of these five integers is given, for exam-
ple, by:

1 4 5 2 3 .

Thenumberof inversionsof thispermutation
can be determined by writing down the pairs
where there is an inversion:

(4, 2)

(4, 3)

(5, 2)

(5, 3) ,

which gives a number of inversions equal
to 4.
For the permutation 1 2 3 4 5 (identity per-
mutation) we find that there is no inversion.
For the permutation 5 4 3 2 1 we obtain 10
inversions, because each pair is an inversion
and therefore the number of inversions is
equal to the number of combinations of two
of five elements chosen without repetition,
meaning:

C2
5 =

5!

2! · 3!
= 10 .

FURTHER READING
� Determinant
� Permutation

Irregular Variation
Irregular variations or random variations
constitute one of four components of a time
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series. They correspond to the movements
that appear irregularly and generally during
short periods.
Irregularvariationsdo not followaparticular
model and are not predictable.
In practice, all the components of time series
that cannot be attributed to the influence of
cyclic fluctuations or seasonal variations or
those of the secular tendency are classed as
irregular.

HISTORY
See time series.

MATHEMATICAL ASPECTS
Let Yt be a time series; we can describe it
with the help of its components:
• Secular tendency Tt

• Seasonal variations St

• Cyclic fluctuations Ct

• Irregular variations It

We distinguish:
• Multiplicative model: Yt = Tt ·St ·Ct · It.
• Additive model: Yt = Tt + St + Ct + It.
When the secular tendency, the seasonal
variations, and the cyclic fluctuations are
determined, it is possible to adjust the ini-
tial data of the time series according to these
three components. So we obtain the values
of the irregular variations at each time t by
the following expressions:

Yt

St · Tt · Ct
= It (multiplicative model)

Yt − St − Tt − Ct = It (additive model) .

DOMAINS AND LIMITATIONS
The study of the components of time series
shows that the irregular variations can be
classed into two categories:

• The most numerous can be attributed to
a large number of small causes, especially
errors of measure that provoke variations
of small amplitude.

• Those resulting from isolated acci-
dental events of greater scale such as
strikes, administrative decisions, finan-
cial booms, natural catastrophes, etc.
In this case, to apply this method of the
moving average we make a first data treat-
ment to correct as well as we can the raw
data.

Even if we normally suppose that the irreg-
ular variations do not produce durable vari-
ations, but only in a short time interval, we
can imagine that they are strong enough to
take the walk of cyclic or other fluctuations.
In practice, we find that the irregular varia-
tions have a tendency to have a small ampli-
tude and to follow a normal distribution.
That means that there are frequently small
deviations and rarely large ones.

FURTHER READING
� Cyclical fluctuation
� Normal distribution
� Seasonal variation
� Secular trend
� Time series

REFERENCES
Bowerman, B.L., O’Connel, R.T.: Time

Series and Forecasting: An Applied
Approach. Duxbury, Belmont, CA
(1979)

Harnett, D.L., Murphy, J.L.: Introducto-
ry Statistical Analysis. Addison-Wesley,
Reading, MA (1975)
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Jackknife Method

During point estimations by confidence
interval, it is often difficult to estimate the
bias or standard error of the used estima-
tor. The reasons are generally summarized
in two points: (1) the lack of information
about the form of the theoretical data distri-
bution and (2) the complexity of the theoret-
ical model if the hypothesis is considered to
be too strong. The jackknife method permits
a reduction of bials in numerical estimation
of the standard error as well as a confidence.
interval. It is usually made by generating
artificial subsamples from the data of the
complete sample.

HISTORY
The jackknife method was developed by
Quenouille (1949, 1956) and John Wilder
Tukey (1958). It is now the most widely used
method thanks to computers, which can gen-
erate a large amount of data in a very short
time.
The creation of the jackknife denomination
is attributed to Tukey, J.W. (1958). The name
of this method issued from a scout knife with
many blades ready to be used in a variety of
situations.

MATHEMATICAL ASPECTS
Let x1, . . . , xn, be a number of independent
observations of a random variable. We
want to estimate a parameter θ of the popu-
lation.Thejackknife techniqueisthefollow-
ing: the estimator θ̂ of θ is calculated from
the initial sample.The latter is separated into
J groups with m = n

J observations in each of
them (to simplify the problem, we suppose
that n is a multiple of J).
The estimator of θ by the jackknife method
is the mean of the pseudovalues:

ˆ̄θ = 1

J
·

J∑
j=1

θ̂j ,

where θ̂j is called the pseudovalue and
defined by:

θ̂j = J · θ̂ − (J − 1) · θ̂(j)

and the estimators θ̂(j) (j = 1, . . . , J) are cal-
culated in the same way as θ̂ , but with the jth
group deleted.
The estimation of the variance is defined
by:

S2 = Var( ˆ̄θ) =
J∑

j=1

(θ̂j − ˆ̄θ)2

(J − 1) · J .
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The estimator of the bias is:

B( ˆ̄θ) = (J − 1) · (θ̂(.) − θ̂ ) ,

where θ̂(.) is defined as follows:

θ̂(.) = 1

J
·

J∑
j=1

θ̂(j) .

The confidence interval at the significance
level α is given by:

[
ˆ̄θ − S · tn−1,1− α

2√
n

; ˆ̄θ + S · tn−1,1− α
2√

n

]
.

One of the important properties of the jack-
knife method is the fact that we delete from
the bias the term of order 1

n .
Suppose that a1, a2, . . . are functions of θ ;
we can pose as a mathematical expectation
of θ̂ :

E[θ̂] = θ + a1

n
+ a2

n2 + . . .

= θ + a1

m · J +
a2

(m · J)2
+ . . .

and

E[θ̂j] = J · E[θ̂ ]− (J − 1) · E[θ̂(j)]

= J ·
[
θ + a1

m · J +
a2

(m · J)2 + . . .

]

− (J − 1) ·
[
θ + a1

m · (J − 1)
+ . . .

]

= J · θ + a1

m
+ a2

m2 · J + . . .− J · θ
+ θ − a1

m
− a2

m2 · (J − 1)
− . . .

= θ − a2 · 1

m2 · J · (J − 1)
+ . . . .

DOMAINS AND LIMITATIONS
The ideabehind the jackknifemethod,which
is relatively old, became modern thanks to
informatics. The Jackknife generates sam-
ples from the original data and determine

the confidence interval at a chosen signifi-
cance level of an unknown statistic.
In practical cases, the groups are composed
only in an observation (m = 1). The esti-
mators θ̂(j) are calculated by deleting the jth
observation.

EXAMPLES
Alargechain of storeswants todetermine the
evolution of its turnover between 1950 and
1960.
To obtain a correct estimation, we take
a sample of 8 points of sale where we know
the respective turnovers.
The data are summarized in the following
table:

Point of sale Turnover (mill $)

1950 1960

1 6.03 7.59

2 12.42 15.65

3 11.89 14.95

4 3.12 5.03

5 8.17 11.08

6 13.34 18.48

7 5.30 7.98

8 4.23 5.61

The total turnover of the 8 points of sale
increased from 64.5 in 1950 to 86.37 mill $
in 1960.
Thus the estimation of the increasing factor
equals:

θ̂ = 86.37

64.5
= 1.34 .

We want to calculate the bias of this estima-
tion as well as its standard deviation.
We calculate the θ̂(j) for j going from 1 to
8, that is, the factors of increase calculated
without the data of the jth point of sale. We
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obtain:

θ̂(1) = 86.37− 7.59

64.5− 6.03
= 1.347 ,

θ̂(2) = 1.358 θ̂(6) = 1.327

θ̂(3) = 1.358 θ̂(7) = 1.324

θ̂(4) = 1.325 θ̂(8) = 1.340

θ̂(5) = 1.337 .

So we can calculate θ̂(.):

θ̂(.) = 1

J
·

J∑
j=1

θ̂(j) = 1

8
· (10.716) = 1.339 .

We calculate the pseudovalues θ̂j. Recall that
θ̂j is calculated as follows:

θ̂j = J · θ̂ − (J − 1) · θ̂(j) .

We find:

θ̂1 = 1.281 θ̂5 = 1.356

θ̂2 = 1.207 θ̂6 = 1.423

θ̂3 = 1.210 θ̂7 = 1.443

θ̂4 = 1.436 θ̂8 = 1.333 .

We calculate the estimator of θ by the jack-
knife method:

ˆ̄θ = 1

J
·

J∑
j=1

θ̂j = 1

8
· (10.689) = 1.336 .

So we determine the bias:

B( ˆ̄θ) = (J − 1) · (θ̂(.) − θ̂ )

= (8− 1) · (1.339− 1.34)

= −0.0035 .

The standard error is given by:

S = √Var( ˆ̄θ)

=
√√√√

J∑
j=1

(θ̂j − ˆ̄θ)2

(J − 1) · J

=
√

0.0649

7 · 8 = 0.034 .

So we can calculate the confidence inter-
val of the increase factor between 1950 and
1960 of the turnover of the chain. For a sig-
nificance level α of 5%, the critical value of
the Student table for 7◦ of freedom is:

t7,0.975 = 2.365 .

The confidence interval for the estimation of
the increase factor is:

[
ˆ̄θ − S · t7,0.975√

n
; ˆ̄θ + S · t7,0.975√

n

]

[
1.34− 0.034 · 2.365√

8
,

1.34+ 0.034 · 2.365√
8

]
,

that is:
[1.312, 1.368] .

So we can affirm that the mean increase
in the turnover is approximately contained
between 31% and 37% during the period
1950–1960.

FURTHER READING
� Bias
� Confidence interval
� Estimation
� Estimator
� Point estimation
� Standard error
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Jeffreys, Harold

Jeffreys, Harold was born in Fatfield, Eng-
land in 1891. He studied mathematics,
physics, physical chemistry, and geology at
Armstrong College in Newcastle, where he
obtained his degree in 1910. He then joined
St. John’s College at Cambridge University,
wherehebecameaFellowin1914andstayed
there for 75 years. He died there in 1989.
He published his first paper (about photo-
graphy) in 1910. History has preserved two
of his works in particular:

1939 Theory of Probability. Oxford Uni-
versity Press, Oxford.

1946 (with Jeffreys, B.S.) Methods
of Mathematical Physics. Cam-
bridge University Press, Cambridge;
Macmillan, New York.

Joint Density Function

Suppose X1, X2 are continuous random vari-
ables defined on the same sample space and
that

F (x1, x2) = P(X1 ≤ x1, X2 ≤ x2)

=
xk∫

−∞

x1∫

−∞
f (t1, t2) dt1, dt2

for all x1, xk. Then f (x1, x2) is the joint
density function of (X1, X2) provided
f (x1, x2) ≥ 0 and that

∞∫

−∞

∞∫

−∞
f (x1x2) dx1dx2 = 1 .

Suppose (X1, . . . , Xk) are continuous ran-
dom variables defined on the same sample
space and

F(x1, . . . , xk) = P(X1 ≤ x1, . . . , Xk ≤ xk)

=
x1∫

−∞

xk∫

−∞
f (t1, . . . , tk) dt1 . . . dtk

for all x1, . . . , xk. Then f (x1, . . . , xk) is the
joint density function of (x1, . . . , xk) provid-
ed f (x1, . . . , xk) ≥ 0 and

∞∫

−∞

∞∫

−∞
f (x1, . . . , xk) dx1 . . . dxk = 1 .

REFERENCES
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Joint Distribution Function

The joint distribution function of a pair of
random variables is defined, as the proba-
bility that the first random variable takes
a value inferior or equal to the first real num-
ber and that simultaneously the second vari-
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able takes a value inferior or equal to the sec-
ond real number.

HISTORY
See probability.

MATHEMATICAL ASPECTS
Consider two random variables X and Y.
The joint distribution function is defined as
follows:

Fxy (a, b) = P (X ≤ a, Y ≤ b) ,

−∞ < a, b <∞ .

FURTHER READING
� Distribution function
� Marginal distribution function
� Pair of random variables
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to Mathematical Statistics, 2nd edn.
Macmillan, New York (1965)

Ross, S.M.: Introduction to Probability
Models, 8th edn. John Wiley, New York
(2006)

Joint Probability
Distribution Function

Suppose thatX1,X2 arediscrete random vari-
ables defined on the same sample space.
Then the joint probability distribution func-
tion of X = (X1, X2) is defined to be

f (x1, x2) = P(X1 = x1, X2 = x2) .

The joint probability distribution function
must satisfy the following conditions:

∑
x1,x2

f (x1, x2) = 1 .

A multiple joint probability distribution
function of X = (X1, . . . , Xk) is defined to be
f (x1, . . . , xk) = P(X1 = x1, . . . , Xk = xk)

satisfying

∑
(x1, ..., xk)

f (x1, . . . , xk) = 1 .

REFERENCES
Casella, G., Berger, R.L.: Statistical Infer-

ence. Duxbury, Pacific Grove (2001)
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Kendall, Maurice George

Kendall, Maurice was born in 1907 in Ket-
tering,Northamptonshire,England.Hestud-
ied Mathematics at St. John’s College, Cam-
bridge. After graduation as a Mathematics
Wrangler in 1929, he joined the British Civ-
il Service in the Ministry of Agriculture. He
was elected a Fellow of the Society in 1934.
In 1937, he worked with G. Udny Yule in the
revision of his standard statistical textbook,
Introduction to the Theory of Statistics. He
also work on the rank correlation coefficient
which bears his name, Kendall’s tau, which
eventually led to a monograph on Rank Cor-
relation in 1948.
In 1938 and 1939 he began work, along with
Bernard Babington Smith, on the problem
of random number generation, develop-
ing both one of the first early mechanical
devices to produce random digits, and for-
mulated a series of tests such as frequency
test, serial test and a poker test, for statisti-
cal randomness in a given set of digits.
During the war he managed to produce vol-
umeoneoftheAdvancedTheoryofStatistics
in 1943 and a second volume in 1946.
In 1957, he published Multivariate Analysis
and in the same year he also developed, with
W.R. Buckland, a Dictionary of Statistical
Terms.

In 1953, he published The Analytics of Eco-
nomic Time Series, and in 1961 he left the
University of London and took a position as
the Managing Director of a consulting com-
pany, Scientific Control Systems, and in the
sameyearbeganatwo-year termasPresident
of the Royal Statistical Society.
In 1972, he became Director of the World
Fertility Survey, a project sponsored by the
International Statistical Institute and the
United Nations. He continued this work
until 1980, when illness forced him to retire.
He was knighted in 1974 for his services
to the theory of statistics, and received the
Peace Medal of the United Nations in 1980
in recognition for his work on the World Fer-
tility Survey. He was also elected a fellow of
the British Academy and received the high-
est honor of the Royal Statistical Society, the
Guy Medal in Gold. At the time of his death
in 1983, he was Honorary President of the
International Statistical Institute.

Some principal works and articles of Ken-
dall, Maurice George:

1938 (with Babington Smith, B.) Random-
ness and Random Sampling Num-
bers. J. Roy. Stat. Soc. 101:1, 147–
166.

1979 (with Stuart, A.) Advanced theory of
Statistics. Arnold.
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1957 (with Buckland, W.R.) A Dictionary
of Statistical Terms. Internation-
al Statistical Institute, The Hague,
Netherland.

1973 Time Series, Griffin, London.

FURTHER READING
� Kendall rank correlation coefficient
� Random number generation

Kendall Rank
Correlation Coefficient

The Kendall rank correlation coefficient
(Kendall τ ) is a nonparametric measure of
correlation.

HISTORY
This rank correlation coefficient was dis-
cussed as far back as the early 20th century
by Fechner, G.T. (1897), Lipps, G.F. (1906),
and Deuchler, G. (1914).
Kendall, M.G. (1938) not only rediscov-
ered it independently but also studied it
using a (nonparametric) approach. His 1970
monographcontainsacompletedetailedpre-
sentation of the theory aswell asabiography.

MATHEMATICAL ASPECTS
Consider two random variables (X, Y)
observed on a sample of size n with n
pairs of observations (X1, Y1), (X2, Y2),
. . . , (Xn, Yn). An indication of the correla-
tion between X and Y can be obtained by
ordering the values Xi in increasing order
and by counting the number of correspond-
ing values Yi not satisfying this order.
Q will denote the number of inversions
among the values of Y that are required to

obtain the same (increasing) order as the val-
ues of X.
Since there are n(n−1)

2 distinct pairs that can

be formed, 0 ≤ Q ≤ n(n−1)
2 ; the value 0 is

obtained when all the values Yi are already
in increasing order, and the value n(n−1)

2 is
reached when all the values Yi are in inverse
order of Xi, each pair having to be switched
to obtain the desired order.
The Kendall rank correlation coefficient,
denoted by τ , is defined by:

τ = 1− 4Q

n(n− 1)
.

If all the pairs are in increasing order, then:

τ = 1− 4 · 0
n(n− 1)

= 1 .

If all the pairs are in reverse order, then:

τ = 1− 4 · 1
2 · n(n− 1)

n(n− 1)
= −1 .

An equivalent definition of the Kendall rank
coefficient can be given as follows: two
observations are called concording if the
two members of one observation are larg-
er than the respective members of the oth-
er observation. For example, (0.9, 1.1) and
(1.5, 2.4) are two concording observations
because0.9 < 1.5and1.1 < 2.4.Twoobser-
vations are said to be discording if the two
members of one observation are in opposite
order to the respective members of the other
observation.Forexample, (0.8,2.6) and(1.3,
2.1) are two discordingobservationsbecause
0.8 < 1.3 and 2.6 > 2.1.
Let Nc and Nd denote the total number of
pairs of concording and discording observa-
tions, respectively.
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Two pairs for which Xi = Xj and Yi = Yj

are neither concording nor discording and
are therefore not counted either in Nc or in
Nd .
With this notation the Kendall rank coeffi-
cient is given by:

τ = 2(Nc − Nd)

n(n− 1)
.

Notice that when there are no pairs for which
Xi = Xj or Yi = Yj, the two formulations of
τ are exactly the same. In the opposite situa-
tion, the values given by both formulas can
be different.

Hypothesis Test
The Kendall rank correlation coefficient is
often used as a statistical test to determine
if there is a relation between two random
variables. The test can be a two-sided test
or a one-sided test. The hypotheses are:

A: Two-sided case:

H0: X and Y are mutually independent.

H1: There is either a positive or a neg-
ative correlation between X and Y.

There is a positive correlation when the
large values of X tend to be associated
with the large values of Y and the small
values of X with the small values of Y.
There is a negative correlation when the
large values of X tend to be associated
with thesmallvaluesofY andviceversa.

B: One-sided case:

H0: X and Y are mutually independent.

H1: There is a positive correlation
between X and Y.

C: One-sided case:

H0: X and Y are mutually independent.

H1: There is a negative correlation
between X and Y.

The statistical test is defined as follows:

T = Nc − Nd .

Decision Rules
Thedecisionrulesaredifferentdependingon
the hypotheses that are made. That is why
there are decision rules A, B, and C relative
to the previous cases.
Decision rule A
Reject H0 at the sigificant level α if

T > tn,1− α
2

or T < tn, α
2

,

where t is the critical value of the test given
by the Kendall table; otherwise accept H0.
Decision rule B
Reject H0 at the sigificant level α if

T > tn,1−α .

otherwise accept H0.
Decision rule C Reject H0 at the sigificant
level α if

T < tn,α .

otherwise accept H0.
It is also possible to use

τ = 1− 4Q

n(n− 1)

as a statistical test.
When X and Y are independently distributed
in a population, the exact distribution of τ

hasanexpected valueofzeroandavariance
of:

σ 2
τ =

2(2n+ 5)

9n(n− 1)

and tends very quickly toward a normal
distribution, the approximation being good
enough for n ≥ 10.
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In this case, to test independence at a 5%
level, for example, it is enough to verify if τ

is located outside the bounds

±1.96 · στ

and to reject the independence hypothesis if
that is the case.

DOMAINS AND LIMITATIONS
The Kendall rank correlation coefficient is
used as a hypothesis test to study the depen-
dence between two random variables. It
canbeconsideredasa test of independence.
As a nonparametric correlation measu-
rement, it can also be used with nominal
or ordinal data.
A correlation measurement between two
variables must satisfy the following points:
1. Its values are between −1 and +1.
2. There is a positive correlation between X

and Y if the value of the correlation coef-
ficient is positive; a perfect positive cor-
relation corresponds to a value of +1.

3. There is a negative correlation between
X and Y if the value of the correlation
coefficient is negative; a perfect nega-
tive correlation corresponds to a value
of −1.

4. There is a null correlation between X and
Y when the correlation coefficient is close
to zero; one can also say that X and Y are
not correlated.

The Kendall rank correlation coefficient has
the following advantages:
• The data can be nonnumerical observa-

tions as long as they can be classified
according to a determined criterion.

• It is easy to calculate.
• The associated statistical test does not

make a basic hypothesis based on the

shape of the distribution of the popula-
tion from which the samples are taken.

The Kendall table gives the theoretical val-
ues of the statistic τ of the Kendall rank cor-
relation coefficient used as a statistical test
under the independence hypothesis of two
random variables.
AKendall tablecanbefoundinKaarsemaker
and van Wijngaarden (1953).
Here is a sample of the Kendall table for n =
4, . . . , 10 and α = 0.01 and 0.05:

n α = 0.01 α = 0.05

4 6 4

5 8 6

6 11 9

7 15 11

8 18 14

9 22 16

10 25 19

EXAMPLES
In this example eight pairs of real twins take
intelligence tests. The goal is to see if there is
independence between the tests of the one
who is born first and those of the one who is
born second.
The data are given in the table below; the
highest scores correspond to the best results.

Pair of twins First
born Xi

Second
born Yi

1 90 88

2 75 79

3 99 98

4 60 66

5 72 64

6 83 83

7 83 88

8 90 98
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The pairs are then classified in increasing
order for X, and the concording and discord-
ing pairs are determined. This gives:

Pair of twins
(Xi , Yi )

Concording
pairs

Discording
pairs

(60,66) 6 1

(72,64) 6 0

(75,79) 5 0

(83,83) 3 0

(83,88) 2 0

(90,88) 1 0

(90,98) 0 0

(99,98) 0 0

Nc = 23 Nd = 1

The Kendall rank correlation coefficient is
given by:

τ = 2(Nc − Nd)

n(n− 1)

= 2(23− 1)

8 · 7
= 0.7857 .

Notice that since there are several observa-
tions for which Xi = Xj or Yi = Yj, the value
of the coefficient given by:

τ = 1− 4Q

n(n− 1)
= 1− 4 · 1

56
= 0.9286

is different.
Inbothcases,wenoticeapositivecorrelation
between the intelligence tests.
We will now carry out the hypothesis test:

H0: There is independence between the
intelligence tests of a pair of twins.

H1: There is a positive correlation between
the intelligence tests.

We chose a significant level of α = 0.05.
Since we are in case B, H0 is rejected if

T > t8,0.95 ,

where T = Nc−Nd and t8,0.95 is the value of
the Kendall table. Since T = 22 and t8,0.95 =
14, H0 is rejected.
We can then conclude that there is a positive
correlation between the results of the intel-
ligence tests of a pair of twins.

FURTHER READING
� Hypothesis testing
� Nonparametric test
� Test of independence
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Kiefer, Jack Carl
Kiefer, Jack Carl was born in Cincinnati,
Ohio in 1924. He entered the Massachusetts
Institute of Technology in 1942, but after
1 year of studying engineering and eco-
nomics he left to take on war-related work
during World War II. His master’s thesis,
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Sequential Determination of the Maxi-
mum of a Function, was supervised by
Harold Freeman. It has been the basis for
his paper “Sequential minimax search for
a maximum” which appeared in 1953 in
the “Proceedings of the American Mathe-
matical Society”. In 1948 he went to the
Department of Mathematical Statistics at
Columbia University, where Abraham Wald
was preeminent in a department that includ-
ed Ted Anderson, Henry Scheffé, and Jack
Wolfowitz. He wrote his doctoral thesis in
decision theory under Wolfowitz and went
to Cornell University in 1951 with Wol-
fowitz. In 1973 Kiefer was elected the first
Horace White Professor at Cornell Univer-
sity, a position he held until 1979, when he
retired and joined the faculty at the Univer-
sity of California at Berkeley. He died at the
age of 57 in 1981.
Kiefer’s research area was the design of
experiments. Most of his 100 publications
dealt with that topic. He also wrote papers
ontopicsinmathematicalstatisticsincluding
decision theory, stochastic approximation,
queuing theory, nonparametric inference,
estimation, sequential analysis, and condi-
tional inference.
Kiefer was a fellow of the Institute of Mathe-
matical Statistics and the American Statis-
tical Association and president of the Insti-
tuteofMathematicalStatistics(1969–1970).
He was elected to the American Academy of
Artsand Sciences in 1972 and to theNational
Academy of Sciences (USA) in 1975.

Selected works and publications of Jack
Carl Kiefer:

1987 Introduction to Statistical Inference.
Springer, Berlin Heidelberg New
York
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� Design of experiments
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Kolmogorov,
Andrei Nikolaevich

Born in Tambov, Russia in 1903, Kol-
mogorov, Andrei Nikolaevich is one of the
founders of modern probability. In 1920,
he entered Moscow State University and
studied mathematics, history, and metallur-
gy. In 1925, he published his first article in
probability on the inequalities of the partial
sums of random variables, which became the
principal reference in the field of stochas-
tic processes. He received his doctorate in
1929 and published 18 articles on the law of
large numbers as well as on intuitive logic.
He was named professor at Moscow State
University in 1931. In 1933, he published
his monograph on probability theory.
In1939hewaselectedmemberof theAcade-
my of Sciences of the USSR. He received
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the Lenin Prize in 1965 and the Order of
Lenin on six different occasions, as well as
theLobachevskyPrize in1987.Hewaselect-
ed member of many other foreign academies
including the Romanian Academy of Sci-
ences (1956), the Royal Statistical Society
of London (1956), the Leopoldina Academy
of Germany (1959), the American Acade-
my of Arts and Sciences (1959), the Lon-
don Mathematical Society (1959), the Ame-
rican Philosophical Society (1961), the Indi-
an Institute of Statistics(1962), the Hol-
land Academy of Sciences (1963), the Roy-
al Society of London (1964), the National
AcademyoftheUnitedStates(1967),andthe
Académie Française des Sciences (1968).

Selected principal works of Kolmogorov,
Andrei Nikolaevich:

1933 Grundbegriffe der Wahrschein-
lichkeitsrechnung. Springer, Berlin
Heidelberg New York.

1933 Sulla determinazione empirica di
una lege di distribuzione. Giornale
dell’Instituto Italiano degli Attuari,
4, 83–91 (6.1).

1941 Local structure of turbulence in
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Reynolds number. Dan SSSR, 30,
229.

1941 Dissipation of energy in locally
isotropic turbulence. Dokl. Akad.
Nauk. SSSR, 32, 16–18.

1958 (with Uspenskii, V.A.) K oprede-
leniyu algoritma. (Toward the def-
inition of an algorithm). Uspekhi
Matematicheskikh Nauk 13(4):3–
28, American Mathematical Society
Translations Series 2(29):217–245,
1963.

1961 (with Fomin, S.V.) Measure,
Lebesgue integrals and Hilbert space.
Natascha Artin Brunswick and Alan
Jeffrey. Academic, New York.

1963 On the representation of continu-
ous functions of many variables by
superposition of continuous func-
tions of one variable and addition.
Doklady Akademii Nauk SSR, 114,
953–956, 1957. English translation.
Mathematical Society Transactions,
28, 55–59.

1965 Three approaches to the quantita-
tive definition of information. Prob-
lems of Information Transmission,
1, 1–17. Translation of Problemy
peredachi informatsii 1(1), 3–11
(1965).

1987 (with Uspenskii, V.A.) Algorithms
and randomness. Teoria veroyatnos-
tey i ee primeneniya (Probability the-
ory and its applications), 3(32):389–
412.

FURTHER READING
� Kolmogorov–Smirnov test

Kolmogorov–Smirnov Test

The Kolmogorov–Smirnov test is a nonpara-
metric goodness-of-fit test and is used to
determine wether two distributions differ,
or whether an underlying probability distri-
bution differes from a hypothesized distri-
bution. It is used when we have two sam-
plescomingfromtwopopulationsthatcanbe
different. Unlike the Mann–Whitney test
and the Wilcoxon test where the goal is to
detect the difference between two means or
medians, the Kolmogorov–Smirnov test has
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the advantage of considering the distribution
functions collectively. The Kolmogorov–
Smirnov test can also be used as a goodness-
of-fit test. In this case, we have only one
random sample obtained from a population
where the distribution function is specific
and known.

HISTORY
The goodness-of-fit test for a sample
was invented by Andrey Nikolaevich Kol-
mogorov (1933).
The Kolmogorov–Smirnov test for two sam-
ples was invented by Vladimir Ivanovich
Smirnov (1939).
In Massey (1952) we find a Smirnov table
for the Kolmogorov–Smirnov test for two
samples, and in Miller (1956) we find a Kol-
mogorov table for the goodness-of-fit test.

MATHEMATICAL ASPECTS
Consider two independent random samples:
(X1, X2, . . . , Xn), a sample of size n coming
from a population 1, and (Y1, Y2, . . . , Ym),
a sample of dimension m coming froma pop-
ulation 2. We denote by, respectively, F (x)
and G (x) their unknown distribution func-
tions.

Hypotheses
The hypotheses to test are as follows:

A: Two-sided case:

H0: F (x) = G (x) for each x

H1: F (x) �= G (x) or at least one value
of x

B: One-sided case:

H0: F (x) ≤ G (x) for each x

H1: F (x) > G (x) for at leastonevalue
of x

C: One-sided case:

H0: F (x) ≥ G (x) for each x

H1: F (x) < G (x) for at leastonevalue
of x

In case A, we make the hypothesis that
there is no difference between the distri-
bution functions of these two populations.
Both populations can then be seen as one
population.
In case B, we make the hypothesis that
the distribution function of population 1 is
smaller than those of population 2.We some-
times say that, generally, X tends to be small-
er than Y.
In case C, we make the hypothesis that X is
greater than Y.
We denote by H1 (x) the empirical
distribution function of the sample
(X1, X2, . . . , Xn) and by H2 (x) the empir-
ical distribution function of the sample
(Y1, Y2, . . . , Ym). The statistical test are de-
fined as follows:

A: Two-tail case
The statistical test T1 is defined as the great-
est vertical distance between two empirical
distribution functions:

T1 = sup
x
|H1 (x)− H2 (x) | .

B: One-tail case
The statistical test T2 is defined as the great-
est vertical distance when H1 (x) is greater
than H2 (x):

T2 = sup
x

[H1 (x)− H2 (x)] .

C: One-tail case
The statistical test T3 is defined as the great-
est vertical distance when H2 (x) is greater
than H1 (x):

T3 = sup
x

[H2 (x)− H1 (x)] .
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Decision Rule
We reject H0 at the significance levelα if the
appropriate statistical test (T1, T2, or T3) is
greater than the value of the Smirnov table
having for parameters n, m, and 1−α, which
we denote by tn,m,1−α, that is, if

T1(or T2or T3) > tn,m,1−α .

If we want to test the goodness of fit of an
unknown distribution functionF (x)of a ran-
dom sample from a population with a spe-
cific and known distribution function Fo (x),
then the hypotheses will be the same as those
for testing two samples, except that F (x)and
G (x) are replaced by F (x) and Fo (x).
If H (x) is the empirical distribution function
of a random sample, then the statistical tests
T1, T2, and T3 are defined as follows:

T1 = sup
x
|Fo (x)− H (x)| ,

T2 = sup
x

[Fo (x)− H (x)] ,

T3 = sup
x

[H (x)− Fo (x)] .

The decision rule is as follows: reject H0 at
the significance level α if T1 (or T2 or T3)
is greater than the value of the Kolmogorov
table having for parameters n and 1 − α,
which we denote by tn,1−α, that is, if

T1(or T2or T3) > tn,1−α .

DOMAINS AND LIMITATIONS
To perform the Kolmogorov–Smirnov test,
the following must be observed:
1. Both samples must be taken randomly

from their respective populations.
2. There must be mutual independence

between two samples.
3. Themeasurescalemustbeat leastordinal.

4. To perform an exact test, the random vari-
ables must be continuous; otherwise the
test is less precise.

EXAMPLES
The first example treats the Kolmogorov–
Smirnov test for two samples and the second
one for the goodness-of-fit test.
In a class, we count 25 pupils: 15 boys and
10 girls. We perform a test of mental calcula-
tions to see if the boys tend to be better than
the girls in this domain.
The data are presented in the following table;
the highest scores correspond to the results
of the test.

Boys (Xi ) Girls (Yi )

19.8 17.5 17.7 14.1

12.3 17.9 7.1 23.6

10.6 21.1 21.0 11.1

11.3 16.4 10.7 20.3

13.3 7.7 8.6 15.7

14.0 15.2

9.2 16.0

15.6

We test the hypothesis according to which
the distributions of the results of the girls and
those of the boys are identical. This means
that the population from which the sample
of X is taken has the same distribution func-
tionas thepopulation from which thesample
of Y is taken. Hence the null hypothesis:

H0 : F (x) = G (x) for each x .

If the two-tail case is applied here, we calcu-
late:

T1 = sup
x
|H1 (x)− H2 (x)| ,

where H1 (x) and H2 (x) are the empiri-
cal distribution functions of the samples
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(X1, X2, . . . , X15) and (Y1, Y2, . . . , Y10),
respectively. In the following table, we have
classed the observations of two samples in
increasing order to simplify the calculations
of H1 (x)− H2 (x).

Xi Yi H1 (x) − H2 (x)

7.1 0− 1/10= − 0.1

7.7 1/15− 1/10= − 0.0333

8.6 1/15− 2/10= − 0.1333

9.2 2/15− 2/10= − 0.0667

10.6 3/15− 2/10= 0

10.7 3/15− 3/10= − 0.1

11.1 3/15− 4/10= − 0.2

11.3 4/15− 4/10= − 0.1333

12.3 5/15− 4/10= − 0.0667

13.3 6/15− 4/10= 0

14.0 7/15− 4/10= 0.0667

14.1 7/15− 5/10= − 0.0333

15.2 8/15− 5/10= 0.0333

15.6 9/15− 5/10= 0.1

15.7 9/15− 6/10= 0

16.0 10/15− 6/10= 0.0667

16.4 11/15− 6/10= 0.1333

17.5 12/15− 6/10= 0.2

17.7 12/15− 7/10= 0.1

17.9 13/15− 7/10= 0.1667

19.8 14/15− 7/10= 0.2333

20.3 14/15− 8/10= 0.1333

21.0 14/15− 9/10= 0.0333

21.1 1− 9/10= 0.1

23.6 1− 1= 0

We have then:

T1 = sup
x
|H1 (x)− H2 (x)|

= 0.2333 .

The value of the Smirnov table for n =
15, m = 10, and 1 − α = 0.95 equals
t15,10,0.95 = 0.5.
Thus T1 = 0.2333 < t15,10,0.95 = 0.5,
and H0 cannot be rejected. This means that

there is no significant difference in the level
of mental calculations of girls and boys.
Consider the following random sample of
dimension 10: X1 = 0.695, X2 = 0.937,
X3 = 0.134, X4 = 0.222, X5 = 0.239,
X6 = 0.763, X7 = 0.980, X8 = 0.322,
X9 = 0.523, X10 = 0.578.
We want to verify by the Kolmogorov–
Smirnovtest if thissamplecomesfromauni-
form distribution. The distribution func-
tion of the uniform distribution is given by:

Fo (x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 0

x if 0 ≤ x < 1

1 otherwise .

.

The null hypothesis H0 is then as fol-
lows, where F (x) is the unknown distri-
bution function of the population associated
to the sample:

H0 : F (x) = Fo (x) for each x .

If the two-tail case is applied, we calculate:

T1 = sup
x
|Fo (x)− H (x)| ,

where H (x) is the empirical distribution
function of the sample (X1, X2, . . . , X10).
In the following table, we class the 10 obser-
vations in increasing order to simplify the
calculation of F0 (x)− H (x).

Xi Fo (x) H (x) Fo (x) − H (x)

0.134 0.134 0.1 0.134− 0.1= 0.034

0.222 0.222 0.2 0.222− 0.2= 0.022

0.239 0.239 0.3 0.239− 0.3= − 0.061

0.322 0.322 0.4 0.322− 0.4= − 0.078

0.523 0.523 0.5 0.523− 0.5= 0.023

0.578 0.578 0.6 0.578− 0.6= − 0.022

0.695 0.695 0.7 0.695− 0.7= − 0.005

0.763 0.763 0.8 0.763− 0.8= − 0.037

0.937 0.937 0.9 0.937− 0.9= 0.037

0.980 0.980 1.0 0.980− 1.0= − 0.020
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We obtain then:

T1 = sup
x
|Fo (x)− H (x)| = 0.078 .

The value of the Kolmogorov table for n =
10 and 1− α = 0.95 is t10,0.95 = 0.409.
If T1 is smaller than t10,0.95 (0.078 < 0.409),
then H0 cannot be rejected. That means that
the random sample could come from a uni-
formly distributed population.

FURTHER READING
� Goodness of fit test
� Hypothesis testing
� Nonparametric test
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Kruskal-Wallis Table
The Kruskal–Wallis table gives the theoreti-
cal values of the statistic H of the Kruskal–
Wallis test under the hypothesis that there

is no difference among the k (k ≥ 2) popu-
lations that we want to compare.

HISTORY
See Kruskal–Wallis test.

MATHEMATICAL ASPECTS
Let k be the number of samples of probably
different sizes n1, n2, . . . , nk. We designate
by N the total number of observations:

N =
k∑

i=1

ni .

We class the N observations in increasing
order without taking into account which
samples they belong to. We then give rank 1
to the smallest value, rank 2 to the next great-
est value, and so on until rank N, which is
given to the greatest value.
We denote by Ri the sum of the ranks given
to the observations of sample i:

Ri =
ni∑

j=1

R
(
Xij

)
, i = 1, 2, . . . , k ,

where Xij represents observation j of sample
i and R(Xij) the corresponding rank. When
many observations are identical and of the
same rank, we give them a mean rank (see
Kruskal–Wallis test). If there are no mean
ranks, the statistical test is defined in the fol-
lowing way:

H =
(

12

N(N + 1)

k∑
i=1

R2
i

ni

)
− 3 (N + 1) .

On what to do if there are mean ranks, see
Kruskal–Wallis test.
The Kruskal–Wallis table gives the values of
the statistic H of the Kruskal–Wallis test in
the case of three samples, for different values
of n1, n2, and n3 (with n1, n2, n3 ≤ 5).
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DOMAINS AND LIMITATIONS
The Kruskal–Wallis table is used for non-
parametric tests that use ranks and particu-
larly for tests with the same name.
When the number of samples i is greater
than 3, we can make an approximation of the
value of the Kruskal–Wallis table by the chi-
square table with k−1 degrees of freedom.

EXAMPLES
See Appendix D.
For an example of the use of the Kruskal–
Wallis table, see Kruskal–Wallis test.

FURTHER READING
� Chi-square table
� Kruskal-Wallis test
� Statistical table
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Kruskal, W.H., Wallis, W.A.: Use of ranks

in one-criterion variance analysis. J. Am.
Stat. Assoc. 47, 583–621 and errata, ibid.
48, 907–911 (1952)

Kruskal-Wallis Test

The Kruskal–Wallis test is a nonparamet-
ric test that has as its goal to determine if all
k populations are identical or if at least one
of the populations tends to give observations
that are different from those of other popu-
lations.
The test isusedwhenwehavek samples,with
k ≥ 2, coming from k populations that can
be different.

HISTORY
The Kruskal–Wallis test was developed in
1952 by Kruskal, W.H. and Wallis, W.A.

MATHEMATICAL ASPECTS
The data are represented in k samples. We
designate by ni the dimension of the sample
i, for i = 1, . . . , k, and by N the total number
of observations:

N =
k∑

i=1

ni .

We class the N observations in increasing
order without taking into account whether or
not they belong to thesamesamples.We then
give rank 1 to thesmallestvalue, rank 2 to the
next greatest value, and so on until N, which
is given to the greatest value.
Let Xij be the jth observation of sample i, and
set i = 1, . . . , k and j = 1, . . . , ni; we then
denote the rank given to Xij by R

(
Xij

)
.

If many observations have the same value,
we give them a mean rank. The sum of the
ranks given to the observations of sample i
is denoted by Ri, and we have:

Ri =
ni∑

j=1

R
(
Xij

)
, i = 1, . . . , k .

If there are no mean ranks (or if there is a lim-
ited number of them), then the statistical test
is defined as follows:

H =
(

12

N(N + 1)

k∑
i=1

R2
i

ni

)
− 3 (N + 1) .

If, on the contrary, there are many mean
ranks, it isnecessary tomakeacorrectionand
to calculate:

H̃ = H

1−
∑g

i=1

(
t3i − ti

)

N3 − N

,

where g is the number of groups of mean
ranks and ti the dimension of ith such group.

Hypotheses
The goal of the Kruskal–Wallis test is to
determine if all the populations are identical
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or if at least one of the populations tends to
give observations different from other pop-
ulations. The hypotheses are as follows:

H0: There isno differenceamongthek pop-
ulations.

H1: At least one of the populations differs
from the other populations.

Decision Rule
If there are 3 samples, each having a dimen-
sion smaller or equal to 5, and if there are no
mean ranks (that is, if H is calculated), then
we use the Kruskal–Wallis table to test H0.
The decision rule is the following: We reject
the null hypothesis H0 at the significance
level α if T is greater than the value of the
table with parameters ni, k − 1, and 1 − α,
denoted hn1,n2,n3,1−α, and if there is no avail-
able exact table or if there are mean ranks, we
can make an approximation of the value of
the Kruskal–Wallis table by the distribution
of the chi-square with k− 1 degrees of free-
dom (chi-square distribution), that is, if:

H > hn1,n2,n3,1−α (Kruskal–Wallis table)

or H > χ2
k−1,1−α (chi-square table) .

The corresponding decision rule is based on
H̃ > χ2

k−1,1−α (chi-quare table).

DOMAINS AND LIMITATIONS
The following rules should be respected to
make the Kruskal–Wallis test:
1. All the samples must be random samples

taken from their respective populations.
2. In addition to the independence inside

each sample, there must be mutual inde-
pendence among the different samples.

3. The scale of measure must be at least ordi-
nal.

If the Kruskal–Wallis test makes us reject the
null hypothesis H0, we can use the Wilcox-
on test for all the samples taken in pairs to
determine which pairs of populations tend to
be different.

EXAMPLES
We cook potatoes in 4 different oils. We want
to verify if the quantity of fat absorbed by
potatoes depends on the type of oil used. We
conduct 5 different experiments with oil 1, 6
with oil 2, 4 with oil 3, and 5 with oil 4, and
we obtain the following data:

Type of oil

1 2 3 4

64 78 75 55

72 91 93 66

68 97 78 49

77 82 71 64

56 85 70

77

In this example, the number of samples
equals 4 (k = 4) with the following respec-
tive dimensions:

n1 = 5 ,

n2 = 6 ,

n3 = 4 ,

n4 = 5 .

The number of observations equals:

N = 5+ 6+ 4+ 5 = 20 .

We class the observations in increasing order
and give them a rank from 1 to 20 taking into
account the mean ranks. We obtain the fol-
lowing tablewith therankoftheobservations
in parentheses and at the end of each sample
the sum of the ranks given to the correspond-
ing sample:
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Type of oil

1 2 3 4

64 (4.5) 78 (14.5) 75 (11) 55 (2)

72 (10) 91 (18) 93 (19) 66 (6)

68 (7) 97 (20) 78 (14.5) 49 (1)

77 (12.5) 82 (16) 71 (9) 64 (4.5)

56 (3) 85 (17) 70 (8)

77 (12.5)

R1 = 37 R2 = 98 R3 = 53.5 R4 = 21.5

We calculate:

H =
(

12

N (N + 1)

k∑
i=1

R2
i

ni

)
− 3 (N + 1)

= 12

20 (20+ 1)

·
(

372

5
+ 982

6
+ 53.52

4
+ 21.52

5

)

− 3 (20+ 1)

= 13.64 .

Ifwemakeanadjustment to take intoaccount
the mean ranks, we get:

H̃ = H

1−
∑g

i=1

(
t3i − ti

)

N3 − N

= 13.64

1− 8− 2+ 8− 2+ 8− 2

203 − 20
= 13.67 .

We see that the difference between H and H̃
is minimal.

The hypotheses are as follows:

H0: There is no difference between the four
oils.

H1: At least one of the oils differs from the
others.

The decision rule is as follows: Reject the
null hypothesis H0 at the significance level
α if

H > χ2
k−1,1−α ,

where χ2
k−1,1−α is the value of the chi-

square table at level 1 − α and k − 1 = 3
degrees of freedom.
If we choose α = 0.05, then the value of
χ2

3,0.95 is 7.81, and if H is greater than χ2
3,0.95

(13.64 > 7.81), then we reject the hypothe-
sis H0.
If H0 is rejected, we can use the procedure
of multiple comparisons to see which pairs
of oils are different.

FURTHER READING
� Hypothesis testing
� Nonparametric test
� Wilcoxon test

REFERENCE
Kruskal, W.H., Wallis, W.A.: Use of ranks

in one-criterion variance analysis. J. Am.
Stat. Assoc. 47, 583–621 and errata, ibid.
48, 907–911 (1952)
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L1 Estimation
The L1 estimation method is an alternative
to the least-squares method used in linear
regression for the estimation of the param-
eters of a model. Instead of minimizing the
residual sum of squares, the sum of the
residual absolute values is minimized.
The L1 estimators have the advantage of not
being as sensitive to outliers as the least-
squares method.

HISTORY
The use of the L1 estimation method, in
a very basic form, dates back to Galileo in
1632, who used it to determine the distance
between the earth and a star that had recently
been discovered.
Boscovich,R.J. (1757)proposed twocriteria
for adjusting a line:
• The respective sums of the positive and

negative residuals must be equal, and the
optimal line will pass by the centroid of
the observations.

• The sum of the residuals in absolute value
must be minimal.

Boscovich, R.J. proposed a geometrical
method to solve the equations resulting from
his criteria. The analytical procedure used
for the estimation of the parameters for
the two criteria of Boscovich, R.J. is due
to Laplace, P.S. (1793). Edgeworth, F.Y.

(1887) suppressed the first condition, say-
ing that the sum of the residuals must be
null, and developed a method that could be
used to treat the case of multiple linear
regression.
During the first half of the 20th century,
statisticians were not very interested in lin-
ear regression based on L1 estimation. The
main reasons were:
• The numerical difficulties due to the

absence of a closed formula.
• The absence of asymptotic theory for L1

estimation in the regression model.
• The estimation by the least-squares

method is satisfactory for small samples,
and it is not certain that L1 estimation is
any better.

Starting in 1970, the field of L1 estima-
tion became the pole of research for a mul-
titude of statisticians, and many works
were published. We mention Basset, G.
and Koenker, R. (1978), who developed the
asymptotic theory of L1 estimators. In 1987,
a congress dedicated to these problems was
held in Neuchâtel (Switzerland): The First
International Conference on Statistical Data
Analysis Based on the L1-norm and Related
Methods.

MATHEMATICAL ASPECTS
In the one-dimensional (1D) case, the L1 es-
timation method consists in estimating the
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parameter β0 in the model

yi = β0 + εi ,

so that thesumof theerrors inabsolutevalue
is minimal:

min
β0

n∑
i=1

|εi| = min
β0

n∑
i=1

|yi − β0| .

This problem boils down to findingβ0so that
n∑

i=1

|yi − β0| is minimal. The value ofβ0 that

minimizes this sum is the median of the 1D
sample y1, y2, . . . , yn.
In the simple linear regression model

yi = β0 + β1 · xi + εi ,

the parameters β0 and β1 estimated using
the L1 estimation method are usually calcu-
lated by an iterative algorithm that is used
to minimize

n∑
i=1

|yi − β0 − β1 · xi| .

Using linear programming techniques it is
possible today to calculate the L1 estima-
tors in a relatively easy way, especially in the
multiple linear regression model.

DOMAINS AND LIMITATIONS
The problem of L1 estimation lies in the
absence of a general formula for the estima-
tion of the parameters, unlike the situation
with the least-squares method. For a set of
1D data, the measure of central tendency
determined by L1 estimation is the median,
which is by definition the value that mini-
mizes the sum of the absolute deviations.

FURTHER READING
� Error
� Estimation
� Estimator
� Least squares
� Mean absolute deviation
� Parameter
� Residual
� Robust estimation

REFERENCES
Basset, G., Koenker, R.: Asymptotic theory

of least absolute error regression. J. Am.
Stat. Assoc. 73, 618–622 (1978)

Boscovich, R.J.: De Litteraria Expeditione
per Pontificiam ditionem, et Synopsis
amplioris Operis, ac habentur plura eius
ex exemplaria etiam sensorum impres-
sa. Bononiensi Scientiarium et Artium
Instituto Atque Academia Commentarii,
vol. IV, pp. 353–396 (1757)

Dodge, Y. (ed.): Statistical Data Analysis
Based on the L1-norm and Related Meth-
ods. Elsevier, Amsterdam (1987)

Edgeworth F.Y.: A new method of reducing
observations relating to severalquantities.
Philos. Mag. (5th Ser) 24, 222–223 (1887)

Lagrange Multiplier

The Lagrange multiplier method is a clas-
sical optimization method that allows to
determine the local extremes of a function
subject to certain constraints. It is named
after the Italian-French mathematician and
astronomer Joseph-Louis Lagrange.

MATHEMATICAL ASPECTS
Let f (x, y) be the objective function to
be maximized or minimized subject to
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g(x, y) = 0. We form the auxiliary func-
tion, the Lagrangian:

F(x, y, θ) = f (x, y)− θg(x, y) ,

where θ is an unknown variable called the
Lagrange multiplier. We search the minima
or the maxima of function F by equating to
zero the partial derivatives with respect to x,
y, and θ :

∂F

∂x
= ∂ f

∂x
− θ

∂g

∂x
= 0

∂F

∂y
= ∂ f

∂y
− θ

∂g

∂y
= 0

∂F

∂θ
= g(x, y) = 0 .

These three equations can be solved for x, y,
andθ .Thesolutionprovides thepointswhere
the constrained function has a minimum or
a maximum. We have to decide if there is
a maximum or a minimum.
We get a maximum if

[
∂2F

∂x2

]
·
[
∂2F

∂y2

]
−

[
∂2F

∂x∂y

]2

> 0 ,

∂2F

∂x2
< 0 and

∂2F

∂y2
< 0 .

We get a minimum if

[
∂2F

∂x2

]
·
[
∂2F

∂y2

]
−

[
∂2F

∂x∂y

]2

> 0 ,

∂2F

∂x2 > 0 and
∂2F

∂y2 > 0 .

When

[
∂2F

∂x2

]
·
[
∂2F

∂y2

]
−

[
∂2F

∂x∂y

]2

≤ 0 ,

the test breaks down, and to determine if
thereisaminimumoramaximum,wehaveto
examine the functions neighboring in (x, y).

The Lagrange multiplier method is
extended to a function of n variables,
f (x1, x2, . . . , xn), that are subject to k
constraints gj (x1, x2, . . . , xn) = 0, j =
1, 2, . . . , k with k ≤ n. Similarly, in the
bivariate case, we define the Lagrangian:

F = f (x1, x2, . . . , xn)

−
k∑

j=1

θj · gj (x1, x2, . . . , xn) ,

with the parameters θ1, . . . , θk being the
Lagrange multipliers. We establish the par-
tial derivatives that lead to n + k equations
on n + k unknown parameters. These lead
to the coordinates of the function extremes
(minimum or maximum), if they exist.

DOMAINS AND LIMITATIONS
It isnotpossible to apply theLagrangemulti-
plier method when the functions are not dif-
ferentiable or when the imposed constraints
are inequalities. In this case we can use oth-
er optimization methods properly chosen
from linear programming.

EXAMPLES
Let

f (x, y) = 5x2 + 6y2 − x · y
be the objective function and

g (x, y) = x+ 2y− 24 = 0

the imposed constraint. We form the Lag-
rangian

F (x, y, θ) = f (x, y)− θg (x, y)

= 5x2 + 6y2 − x · y
− θ · (x+ 2y− 24) ,

and we set to zero the partial derivatives

∂F

∂x
= 10x− y− θ = 0 , (1)
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∂F

∂y
= 12y− x− 2θ = 0 , (2)

∂F

∂θ
= x+ 2y− 24 = 0 . (3)

By deleting θ of (1) and (2):

20x− 2y− 2θ = 0

−x+ 12y− 2θ = 0

21x− 14y = 0

3x− 2y = 0

and by replacing 2y with 3x in (3):

0 = x+ 2y− 24 = x+ 3x− 24

= 4x− 24

wegetx = 6.By replacing thisxvalue in (3),
we get y = 9. The critical point has coordi-
nates (6, 9). We compute the partial deriva-
tives of second order to verify whether it is
a maximum or a minimum. We get:

∂2F

∂x2 = 10 ,
∂2F

∂y2 = 12 ,
∂2F

∂x∂y
= −1 ,

[
∂2F

∂x2

]
·
[
∂2F

∂y2

]
−

[
∂2F

∂x∂y

]2

= 10 · 12− (−1)2 = 119 > 0 ,

∂2F

∂x2 > 0 ,
∂2F

∂y2 > 0 .

Note that the point (6, 9) corresponds to
a minimum for the objective function f sub-
ject to the constraints above. This minimum
yields f (6, 9) = 180+ 486− 54 = 612.

FURTHER READING
� Linear programming
� Optimization

REFERENCES
Dodge, Y. (2004) Optimization Appliquée.

Springer, Paris

Laplace Distribution

The random variable X follows a Laplace
distribution if its density function is of the
following form:

f (x) = 1

2�
· exp

[(
−|x− θ |

�

)]
� > 0 ,

where � is the dispersion parameter and θ

is the expected value.

Laplace distribution, θ = 0, � = 1

The Laplace distribution is symmetric
around its expected value θ , which is also the
mode and the median of the distribution.
The Laplace distribution is a continuous
probability distribution.

HISTORY
This continuous probability distribution
carries the name of its author. In 1774,
Laplace, P.S. wrote a fundamental article
about symmetric distributions with a view to
describing the errors of measurement.

MATHEMATICAL ASPECTS
The expected value of a random variable
X following a Laplace distribution is given
by:

E [X] = θ

and the variance is equal to:

Var (X) = 2 ·�2 .
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The standard form of the density function
of the Laplace distribution is written:

f (x) = 1

σ
√

2
· exp

[(
−√2 · |x− μ|

σ

)]

σ > 0 ,

with

μ = θ and σ = √2 ·� .

This permits one to write the distribution
function of the Laplace distribution given
by:

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2
exp

[(
x− θ

�

)]

if x ≤ θ ,

1− 1

2
exp

[(
−x− θ

�

)]

if x ≥ θ .

FURTHER READING
� Continuous probability distribution

REFERENCES
Laplace, P.S. de: Mémoire sur la probabi-

lité des causes par les événements. Mem.
Acad. Roy. Sci. (presented by various sci-
entists) 6, 621–656 (1774) (or Laplace,
P.S. de (1891) Œuvres complètes, vol 8.
Gauthier-Villars, Paris, pp. 27–65)

Laplace, Pierre Simon De
Born inFrance in1749toamiddle-classfam-
ily, Marquis Pierre Simon de Laplace was
one of the pioneers of statistics. Interest-
ed in mathematics, theoretical astronomy,
probability, and statistics, his first publica-
tionsappeared in theearly 1770s.Hebecame
a member of the Academy of Science in

1785, and he also directed the Longitudes
Bureau. In 1799, he was named Minister of
Interior Affairs by Bonaparte, who in 1806
conferred upon himthetitleof count.Elected
to the French Academy in 1816, he pursued
his scientific work until his death, in Paris,
in 1827.

Some main works and articles of de La-
place, P.S.:

1774 Mémoire sur la probabilité des caus-
es par les événements. Oeuvres com-
plètes, Vol. 8, pp. 27–65 (1891). Gau-
thier-Villars, Paris.

1781 Mémoire sur les probabilités. Oeu-
vres complètes, Vol. 9 pp. 383–485
(1891). Gauthier-Villars, Paris.

1805 Traité de Mécanique Céleste. Vol. 1–
4. Duprot, Paris. Vol. 5. Bachelier,
Paris.

1812 Théorie analytique des probabilités.
Courcier, Paris.

1878–1912 Oeuvres complètes. 14 vol-
umes. Gauthier-Villars, Paris.

Laspeyres Index

The Laspeyres index is a composite index
number of price constructed by the weight-
ed sum method. This index number repre-
sents the ratio of the sum of prices in the
actual period n to the price sum in the ref-
erence period 0, these sums being weight-
ed by the respective quantities of the ref-
erence period. Therefore the index number
measures the relative price change of the
goods, the respective quantities being con-
sideredunchanged.TheLaspeyres indexdif-
fers from the Paasche index on the choice of
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theweights: in thePaasche index, theweight-
ing is done by the sold quantities of the cur-
rent period Qn, whereas in the Laspeyres
index, it is done by the quantities sold in the
reference period Q0.

HISTORY
Laspeyres, Etienne, German economist and
statistician of French origin, reformulated
the index number developed by Lowe that
wouldbecomeknownastheLaspeyres index
in the mid-19th century. During the years
1864–1871 Laspeyres, Etienne worked on
goods and their prices in Hamburg (he
excluded services).

MATHEMATICAL ASPECTS
The Laspeyres index is calculated as fol-
lows:

In/0 =
∑

Pn · Q0∑
P0 · Q0

,

where Pn and Qn are the prices and quantities
sold in the current period and P0 and Q0 are
the prices and quantities sold in the reference
period, expressed in base 100:

In/0 =
∑

Pn · Q0∑
P0 · Q0

· 100 .

The sum concerns the considered goods.
The Laspeyres model can also be used to
calculate a quantity index (also called vol-
ume index). In this case, it is the prices that
are constants and the quantities that are vari-
ables:

In/0 =
∑

Qn · P0∑
Q0 · P0

· 100 .

EXAMPLES
Consider the following table indicating the
respective prices of three consumer goods in
reference year 0 and in the current year n, as

well as the quantities sold in the reference
year:

Product Quantity sold Price (euros)

in 1970 (Q0) 1970 1988

(thousands) (P0) (Pn )

Milk 50.5 0.20 1.20

Bread 42.8 0.15 1.10

Butter 15.5 0.50 2.00

From the following table we have

∑
PnQ0 = 138.68 and

∑
P0Q0 = 24.27 .

Product
∑

PnQ0
∑

P0Q0

Milk 60.60 10.10

Bread 47.08 6.42

Butter 31.00 7.75

Total 138.68 24.27

We can then find the Laspeyres index:

In/0 =
∑

Pn · Q0∑
P0 · Q0

· 100

= 138.68

24.27
· 100 = 571.4 .

In other words, according to the Laspeyres
index, the price index of these goods has
increased 471.4% (571.4− 100) during the
considered period.

FURTHER READING
� Composite index number
� Fisher index
� Index number
� Paasche index

REFERENCES
Laspeyres, E.: Hamburger Warenpreise

1850–1863 und die kalifornisch-austra-
lischen Geldentdeckung seit 1848. Jahrb.
Natl. Stat. 3, 81–118, 209–236 (1864)
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Laspeyres, E.: Die Berechnung einer mit-
tleren Waarenpreissteigerung. Jahrb.
Natl. Stat. 16, 296–314 (1871)

Latin Square

See latin square designs.

Latin Square Designs

A Latin square design is the arrangement of
t treatments, each one repeated t times, in
suchawaythateach treatmentappearsexact-
ly one time in each row and each column in
the design. We denote by Roman characters
the treatments. Therefore the design is called
a Latin square design. This kind of design is
used to reduce systematic error due to rows
(treatments) and columns.

HISTORY
According to Preece (1983), the history of
Latin squaredatesback to 1624. In statistics,
Fisher, Ronald Aylmer (1925) introduced
the Latin square designs.

EXAMPLES
A farmer has in his property two fields where
he wants to cultivate corn. He wishes to con-
duct an experiment involving his four differ-
ent typesofcorn (treatments).Furthermore,
he knows that his fields do not receive the
same sunshine and humidity. There are two
systematic error sources given that sunshine
and humidity affect corn cultivation.
The farmer associates to each small piece of
land a certain type of corn in such a way that
each one appears once in each line and col-

umn:
A : grain 1

B : grain 2

C : grain 3

D : grain 4 .

The following figure shows the 4× 4 Latin
square where the Roman letters A, B, C, and
D represent the four treatments above:

A B C D
B C D A
C D A B
D A B C

.

An analysis of variance will indicate
whether, after deleting the lines (sun) and the
column (humidity) effects, there exists a sig-
nificant difference between the treatments.

FURTHER READING
� Analysis of variance
� Design of experiments

REFERENCES
Fisher, R.A.: Statistical Methods for

Research Workers. Oliver & Boyd, Edin-
burgh (1925)

Preece, D.A.: Latin squares, Latin cubes,
Latin rectangles, etc. In: Kotz, S., John-
son, N.L. (eds.) Encyclopedia of Statis-
tical Sciences, vol. 4. Wiley, New York
(1983)

Law of Large Numbers
The law of large numbers stipulates that the
mean of a sum of independent and identical-
ly distributed random variables converges
toward the expected value of their distri-
bution when the sample size tends toward
infinity.
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HISTORY
The law of large numbers was first estab-
lished by Bernoulli, J. in his work enti-
tled Ars Conjectandi, published in 1713,
in the framework of an empirical definition
of probability. He stated that the relative
frequency of an event converges, during
the repetition of identical tasks (Bernoulli
distribution), toward a number that consists
in its probability.
The inequality of Bienaymé–Tchebychev
was initially discovered by Bienaymé, J.
(1853), before Tchebychev, P.L. (1867) dis-
covered completely independently a few
years later.
The general version of the law of large num-
bers is attributed to the Russian mathemati-
cian Khintchin, A. (1894–1959).

MATHEMATICAL ASPECTS
Let us first present the inequality of
Bienaymé–Tchebychev:
Consider X a random variable with expect-
ed value μ and variance σ 2, both finite. For
every real ε > 0, there is:

P (|X − μ| ≥ ε) ≤ σ 2

ε2
,

which means that the probability that a ran-
dom variable X deviates from its expected
valueby an amountε itsexpected valuecan-
not be larger than σ 2/ε2.
The importance of this inequality lies in the
fact that it allows one to limit the value of
certain probabilities in cases where only the
expected value of the distribution is known,
ultimately its variance. It is obvious that if
the distribution itself is known, there is no
need to use these limits since the exact value
of these probabilities can be computed. With
this inequality it is possible to compute the

convergenceof the observed mean of a ran-
dom variable toward its expected value.
Consider n independent and identically dis-
tributed random variables X1, X2, . . . , Xn

with expected value μ and variance σ 2;
then for every ε > 0:

P

(∣∣∣∣
X1 + X2 + . . .+ Xn

n
−μ

∣∣∣∣>ε

)
−→
n→∞0.

DOMAINS AND LIMITATIONS
The law of large numbers underlines the fact
that there persists a probability, even if very
small, of substantial deviation between the
empirical mean of a series of events and its
expected value. It is for this reason that the
term weak law of large numbers is used.
In fact, it ispossible todemonstratethat this is
not the case and that the convergence is qua-
sicertain. This result, stronger than the pre-
vious one, is called the strong law of large
numbers and is written:

P
(

lim
n→∞ X̄ = μ

)
= 1 .

EXAMPLES
The law of large numbers states that it is
always possible to find a value for n so that
theprobability that X̄ is included in an inter-
val μ± ε is as large as desired.
Let us give an example of a probability
distribution with variance σ 2 = 1. By
choosing an interval ε = 0.5 and a proba-
bility of 0.05, we can write:

P
(∣∣X̄ − μ

∣∣ ≥ 0.5
) = 0.05 .

By the inequality of Tchebychev, we know
that

P
(∣∣X̄ − μ

∣∣ ≥ ε
) ≤ σ 2

nε2 .

We can therefore establish the following
inequality:

0.05 ≤ 1

n · 0.25
,
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from which:

0.05 · 0.25 ≤ 1/n ,

n ≥ 80 .

FURTHER READING
� Central limit theorem
� Convergence theorem
(Théorème de convergence)

REFERENCES
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ludo Pilae recticularis. Impensis Thurni-
siorum, Fratrum, Basel (1713)
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probabilité dans la méthode des moindres
carrés. Comptes Rendus de l’Académie
des Sciences, Paris 37, 5–13 (1853);
réédité en 1867 dans le journal de Liou-
ville précédant la preuve des Inégalités de
Bienaymé-Chebyshev, Journal de Math-
ématiques Pures et Appliquées 12, 158–
176

Tchebychev, P.L.: Des valeurs moyennes.
J. Math. Pures Appl. 12(2), 177–184
(1867). Publié simultanément en Russe,
dans Mat. Sbornik 2(2), 1–9

Least Absolute
Deviation Regression

The least absolute deviations method (the
LAD method) is one of the principal alter-
natives to the least-squares methods when
one seeks to estimate regression parameters.
The goal of the LAD regression is to provide
a robust estimator.

HISTORY
The least absolute deviation regression was
introduced around 50 years before the least-
squares method, in 1757, by Roger Joseph
Boscovich. He used this procedure while
trying to reconcile incoherent measures that
were used to estimate the shape of the
earth. Pierre Simon de Laplace adopt-
ed this method 30 years later, yet it was
obscured under the shadow of the least-
squaresmethoddevelopedbyAdrienMarie
Legendre and Carl Friedrich Gauss. The
easy calculus of the least-squares method
made least squares much more popular than
theLADmethod.Yet in recentyearsandwith
advances in statistical computing, the LAD
method can be easily used.

MATHEMATICAL ASPECTS
We treat here only simple LAD regression
cases.
Consider the simple regression model: yi =
β0 + β1xi + εi. The LAD method imple-
ments the following criterion: choose β̂0 and
β̂1 such that they minimize the sum of the
residual absolute values, that is,

∑
|ei| =

∑∣∣yi − β̂0 − β̂1xi
∣∣ ,

where ei denotes the ith residual. The partic-
ularity of this method is the fact that there is
no explicit formula to compute β̂0 and β̂1.
LAD estimates can be computed by apply-
ing an iterative algorithm.

Simple LAD Algorithm
The essential point that is used by the LAD
algorithm is the fact that the regression line
always crosses at least two data points.
Let (x1, y1) be our chosen data point. We
search the best line that passes through this
point. This line crosses at least one other
point, (x2, y2).
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The next step is to search the best line, with
respect to the sum

∑ |ei|, that crosses this
time (x2, y2). This line crosses now at least
one other point, (x3, y3). We iteratively con-
tinue and seek the best line that crosses
(x3, y3) and so forth. During the iterations,
the quantity

∑ |ei|decreases. If, for an itera-
tion, the obtained line is identical to the pre-
vious one, we can conclude that this is the
best line.

Construction of Best Line Crossing (x1, y1)

in Terms of
∑ |ei |

Since this line crosses another data point, we
should find the point (xk, yk) for which the
line

ŷ (x) = y1 + yk − y1

xk − x1
(x− x1) ,

with slope

β̂1 = yk − y1

xk − x1

and intercept

β̂0 = y1 − β̂1x1 ,

is the best one in terms of
∑ |ei|. To find

that point, we rename the (n− 1) candidate
points (x2, y2) , . . . , (xn, yn) in such a way
that

y2 − y1

x2 − x1
≤ y3 − y1

x3 − x1
≤ . . . ≤ yn − y1

xn − x1
.

We define T =
n∑

i=1
|xi − x1|. The searched

point (xk, yk) is now determined by the index
k for which
⎧
⎪⎪⎨
⎪⎪⎩

|x2 − x1| + . . .+ |xk−1 − x1| < T
2

|x2 − x1| + . . .

+ |xk−1 − x1| + |xk − x1|
> T

2 .

This condition guarantees that β̂1 minimizes
the quantity

n∑
i=1

∣∣(yi − y1)− β̂1 (xi − x1)
∣∣

analogously to
∑ |ei| for the regression lines

passing through (x1, y1). The β̂0 is computed
in such a way that the regression line crosses
(x1, y1). We can equally verify that it passes
through the data point (xk, yk). We just have
to rename the point (xk, yk) by (x2, y2) and
restart.

DOMAINS AND LIMITATIONS
Two particular cases can appear when one
runs the LAD regression: the nonunique
solution and the degeneracy. Nonunique
solutionmeansthat thereareat least twolines
minimizing the sum of the residual abso-
lute values. Degeneracy means that the LAD
regression linepasses through more than two
data points.

EXAMPLES
Let us take an example involving 14 North
andCentralAmericancountries.Thefollow-
ing table contains the data for each country,
the birthrate (number of births per 1000 peo-
ple) together with the urbanization rate (per-
centage of population living in cities with
more than 100000 inhabitants) in 1980.

Table: Urbanization rate and birthrate

Obs. i Country Urbaniza-
tion rate xi

Birth-
rate yi

1 Canada 55.0 16.2

2 Costa Rica 27.3 30.5

3 Cuba 33.3 16.9

4 USA 56.5 16.0

5 El Salvador 11.5 40.2
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Obs. i Country Urbaniza-
tion rate xi

Birth-
rate yi

6 Guatemala 14.2 38.4

7 Haiti 13.9 41.3

8 Honduras 19.0 43.9

9 Jamaica 33.1 28.3

10 Mexico 43.2 33.9

11 Nicaragua 28.5 44.2

12 Trinidad/
Tobago

6.8 24.6

13 Panama 37.7 28.0

14 Dominican
Republic

37.1 33.1

Source: Birkes and Dodge (1993)

We try to estimate the birthrate yi as a func-
tion of the urbanization rate xi using LAD
regression, which is to construct the LAD
regression model

yi = β0 + β1xi + εi .

To use the LAD algorithm to estimate β0 and
β1, in the fist step we must search for the
best linecrossingat leastonepoint, forexam-
ple Canada (randomly chosen). We have
(x1, y1) = (55.0, 16.2). We compute the
slopes yi−16.2

xi−55.0 for all 13 remaining countries.
For example, for Costa Rica, the obtained
result is 30.5−16.2

27.3−55.0 = −0.5162. The 13 coun-
tries are now reordered in ascending order
according to the computed slopes, as can be
seen in the table below. The point (x2, y2)

is Mexico, the point (x3, y3) is Nicaragua,
and so forth. In what follows we compute the
quantity T = ∑ |xi − 55.0| = 355.9 and
T
2 = 177.95. This has to do with defining
the country k that satisfies the condition
⎧
⎪⎪⎨
⎪⎪⎩

|x2 − x1| + . . .+ |xk−1 − x1| < T
2 ,

|x2 − x1| + . . .

+ |xk−1 − x1| + |xk − x1|
> T

2 .

Since
8∑

j=2

∣∣xj − x1
∣∣ = 172.5 <

T

2

and
9∑

j=2

∣∣xj − x1
∣∣ = 216.0 >

T

2
,

we can conclude that k = 9 and that the
best regression line passes through Canada
(x1, y1) and El Salvador (x9, y9). Hence:

β̂1 = y9 − y1

x9 − x1
= 40.2− 16.2

11.5− 55.0
= −0.552 ,

β̂0 = y1 − β̂1x1 = 16.2− (−0.552) · 55.0

= 46.54 ,

and the LAD regression line is:

ŷ(x) = 46.54− 0.552x .

Table: Computation to find LAD regression line

Obs. i Country yi −y1
xi −x1

|xi − x1|
i∑

j=2

∣
∣xj − x1

∣
∣

2 Mexico −1.5000 11.8 11.8

3 Nicaragua −1.0566 26.5 38.3

4 Domin.
Rep.

−0.9441 17.9 56.2

5 Honduras −0.7694 36.0 92.2

6 Panama −0.6821 17.3 109.5

7 Haiti −0.6107 41.1 150.6

8 Jamaica −0.5525 21.9 172.5

9 El Salvador −0.5517 43.5 216.0

10 Guatemala −0.5447 40.8 256.8

11 Costa Rica −0.5162 27.7 284.5

12 Trinidad/
Tobago

−0.1743 48.2 332.7

13 USA −0.1333 1.5 334.2

14 Cuba −0.0323 21.7 355.9

To improve our first estimate, the next step
consists in finding the best line crossing El



302 Least Significant Difference Test

Salvador. We rename this point (x1, y1) =
(11.5, 40.2) and reorder the 13 countries in
ascending order according to their slopes
yi−11.5
xi−40.2 , and, similarly, we obtain the best
regression line that passes through El Sal-
vador as well as through the United States.
Hence,

β̂1 = 40.2− 16.0

11.5− 56.5
= −0.538 ,

β̂0 = 40.2− (−0.538) · 11.5 = 46.38 ,

and the regression line is

ŷ(x) = 46.38− 0.538x .

The third step consists in finding the best
line passing through the United States. Since
we find (in a similar way as above) that this
regression line passes through El Salvador,
our algorithm stops and the regression line
ŷ(x) = 46.38 − 0.538x is the LAD regres-
sion line of our problem.
Wenotehere that the linecomputed using the
least-squares method for these data is given
by

ŷ(x) = 42.99− 0.399x .

Note that with this regression line Cuba,
Nicaragua, and Trinidad/Tobago have
abnormally large residual values. By delet-
ing these three points and recomputing the
least-squares regression line, we obtain

ŷ (x) = 48.52− 0.528x ,

which is very close to the LAD regression
line.

FURTHER READING
� Analysis of variance
� Least squares
� Multiple linear regression
� Regression analysis

� Residual
� Robust estimation
� Simple linear regression

REFERENCES
Birkes, D., Dodge, Y.: Alternative Methods

of Regression. Wiley, New York (1993)

Least Significant
Difference Test

The least significant difference (LSD) test is
used in the context of the analysis of vari-
ance, when the F-ratio suggests rejection of
the null hypothesis H0, that is, when the dif-
ference between the population means is sig-
nificant.
This test helps to identify the populations
whose means are statistically different. The
basic idea of the test is to compare the pop-
ulations taken in pairs. It is then used to pro-
ceed in a one-way or two-way analysis of
variance, given that the null hypothesis has
already been rejected.

HISTORY
The LSD test was developed by Fisher,
Ronald Aylmer (1935), who wanted to
know which treatments had a significant
effect in an analysis of variance.

MATHEMATICAL ASPECTS
If in an analysis of variance the F-ratio
leads to rejection of the null hypothesis H0,
wecanperformtheLSDtest inorder todetect
which means have led H0 to be rejected.
The test consists in a pairwise comparison
of the means. In general terms, the stan-
dard deviation of the difference between
the mean of group i and the mean of group j,
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for i �= j, is equal to:

√
s2

I

(
1

ni
+ 1

nj

)
,

where s2
I is the estimation of the variance

inside the groups

s2
I =

SCI

N − k
=

k∑
i=1

ni∑
j=1

(
Yij − Ȳi.

)
2

N − k
,

where SCI is the sum of squares inside the
groups,N is the totalnumberofobservations,
k is the number of groups, Yij is the jth obser-
vation of group i, Ȳi. is the mean of group i,
ni is the number of observations in group i,
and nj is the number of observations in group
j.
The ratio

Ȳi. − Ȳj.√
s2

I

(
1
ni
+ 1

nj

)

follows the Student distribution with N − k
degrees of freedom. The difference between
a pair of means is significant when

∣∣Ȳi. − Ȳj.
∣∣ ≥

√
s2

I

(
1

ni
+ 1

nj

)
· tN−k,1− α

2
,

with tN−k,1− α
2

denoting the value of a Stu-
dent variate with N − k degrees of freedom
for a significance level set to α.

The quantity
√

s2
I (

1
ni
+ 1

nj
) · tN−k,1− α

2
is

called the LSD.

DOMAINS AND LIMITATIONS
Like the analysis of variance, the LSD test
demands independent and identically dis-
tributed normal variables with constant vari-
ance.

EXAMPLES
During boiling, all-butter croissants absorb
fat in variable quantities. We want to veri-
fy whether the absorbed quantity depends on
the type of fat content (animal or vegetable
fat). We prepare for our experiment four dif-
ferent types of fat, and we boil six all-butter
croissants for each croissant type.
Here are the results of our experiment:

Type of fat

1 2 3 4

64 78 75 55

72 91 93 66

68 97 78 49

77 82 71 64

56 85 63 70

95 77 76 68

We run a one-way analysis of variance that
permits us to test the null hypothesis

H0 : μ1 = μ2 = μ3 = μ4 ,

which is evidently rejected.
Since H0 is rejected, we run the LSD test
seeking to identify which means caused the
rejection of H0.
In this example, the number of observations
is the same for each group (n1 = n2 = n3 =
n4 = n = 6). Consequently,

√
s2

I

(
1
ni
+ 1

nj

)

is simplified to
√

2s2
I

n .
The value for the corresponding LSD test is
equal to:

√
2s2

I

n
· tN−k,1− α

2
.

The results of the analysis of variance pro-
vide the computational elements needed to
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find the value of s2
I :

s2
I =

SCI

N − k
=

k∑
i=1

ni∑
j=1

(
Yij − Ȳi.

)
2

N − k

= 2018

20
= 100.9 .

If we choose a significance level α = 0.05,
the Student value for N − k = 20 degrees
of freedom is equal to:

tN−k,1− α
2
= t20,0.975 = 2.086 .

Hence the value for the LSD statistic is:

LSD =
√

2s2
I

n
· t20,0.975

=
√

2 · 100.9

6
· 2.086

= 12.0976 .

The difference between a pair of means Ȳi

and Ȳj is significant if
∣∣Ȳi. − Ȳj.

∣∣ ≥ 12.0976 .

We can summarize the results in a table con-
taining the mean differences, the values for
the LSD statistic, and the conclusion.

Difference LSD Signi-
ficant∣∣∣Ȳ1.−Ȳ2.

∣∣∣ = |72− 85| = 13 12.0976 Yes∣∣∣Ȳ1.−Ȳ3.

∣∣∣ = |72− 76| = 4 12.0976 No∣∣∣Ȳ1.−Ȳ4.

∣∣∣ = |72− 62| = 10 12.0976 No∣∣∣Ȳ2.−Ȳ3.

∣∣∣ = |85− 76| = 9 12.0976 No∣∣∣Ȳ2.−Ȳ4.

∣∣∣ = |85− 62| = 23 12.0976 Yes∣∣∣Ȳ3.−Ȳ4.

∣∣∣ = |76− 62| = 14 12.0976 Yes

We verify that only the differences Ȳ1. −
Ȳ2., Ȳ2. − Ȳ4., and Ȳ3. − Ȳ4. are significant.

FURTHER READING
� Analysis of variance
� Student distribution
� Student table

REFERENCES
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mance of non-parametric and normal
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Sankhya B42, 11–27 (1980)

Fisher, R.A.: The Design of Experiments.
Oliver & Boyd, Edinburgh (1935)

Miller, R.G., Jr.: Simultaneous Statistical
Inference, 2nd edn. Springer, Berlin Hei-
delberg New York (1981)

Least Squares
See least-squares method.

Least-Squares Method
The least-squares method consists in mini-
mizing the sum of the squared residuals. The
latter correspond to the squared deviations
between estimated and observed values.

HISTORY
The least-squares method was introduced by
Legendre, Adrien-Marie (1805).

MATHEMATICAL ASPECTS
Consider the multiple linear regression
model:

Yi = β0 +
p−1∑
j=1

βj · Xji + εi, i = 1, . . . , n ,

where Yi is the dependent variable, Xji, j =
1, . . . , p − 1 are the explanatory or inde-
pendent variables, βj, j = 0, . . . , p − 1 are
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the parameters to be estimated, and εi is the
error term.
Parameter estimation using the least-
squares method consists in minimizing the
sum of the squared errors (residuals):

minimum f
(
β0, . . . , βp−1

)
,

where:

f
(
β0, . . . , βp−1

) =
n∑

i=1

ε2
i .

The residual sum of squares is equal to:

f
(
β0, . . . , βp−1

) =
n∑

i=1

ε2
i

=
n∑

i=1

⎛
⎝Yi − β0 −

p−1∑
j=1

βj · Xji

⎞
⎠

2

.

Wefind theestimated parametersof the func-
tionbyequatingtozerothepartialderivatives
of this function with respect to each param-
eter:

∂ f
(
β0, . . . , βp−1

)

β0
= 0 ,

∂ f
(
β0, . . . , βp−1

)

β1
= 0 ,

...

∂ f
(
β0, . . . , βp−1

)

βp−1
= 0 .

Suppose we have n observations and that
p = 2:

(X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) .

TheequationrelatingYiandXi canbedefined
from the linear model:

Yi = β0 + β1 · Xi + εi , i = 1, . . . , n .

The sum of the squared deviations from the
estimated regression line is:

f (β0, β1) =
n∑

i=1

ε2
i

=
n∑

i=1

(yi − β0 − β1 · Xi)
2 .

Mathematically, we determine β0 and β1 by
taking the partial derivatives of function f
with respect to parametersβ0 and β1 and set-
ting them equal to zero.
Partial derivative with respect to β0:

∂ f

∂β0
= −2 ·

n∑
i=1

(Yi − β0 − β1 · Xi) .

Partial derivative with respect to β1:

∂ f

∂β1
= −2 ·

n∑
i=1

Xi · (yi − β0 − β1 · Xi) .

Hence, the estimated values for β0 and β1,
denotedas β̂0 and β̂1,aregivenasthesolution
to the following equations:

n∑
i=1

(
Yi − β̂0 − β̂1 · Xi

)
= 0 ,

n∑
i=1

Xi ·
(

Yi − β̂0 − β̂1 · Xi

)
= 0 .

Developing these two equations, we obtain:

n∑
i=1

Yi = n · β̂0 + β̂1 ·
n∑

i=1

Xi

and

n∑
i=1

(Xi · Yi) = β̂0 ·
n∑

i=1

Xi + β̂1 ·
n∑

i=1

X2
i ,

which we call the normal equations of the
least-squares regression line.
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Given

X̄ =
∑n

i=1 Xi

n
and Ȳ =

∑n
i=1 Yi

n
,

the solution of thenormalequationsprovides
the estimates of the following parameters:

β̂0 = Ȳ − β̂1 · X̄ ,

β̂1 =
n ·∑n

i=1 (Xi · Yi)−
(∑n

i=1 Xi
) · (∑n

i=1 Yi
)

n ·∑n
i=1 X2

i −
(∑n

i=1 Xi
)2

=
∑n

i=1

(
Xi − X̄

) (
Yi − Ȳ

)
∑n

i=1

(
Xi − X̄

)2 .

The least-squares estimates for the depen-
dent variable are:

Ŷi = β̂0 + β̂1 · Xi , i = 1, . . . , n

or

Ŷi = Ȳ + β̂1 ·
(
Xi − X̄

)
, i = 1, . . . , n .

According to this equation, the least-squares
regression line passes through the point(
X̄, Ȳ

)
, which is called the barycenter or cen-

ter of gravity for the scatter cloud of the data
points.
We can, equally, express the multiple lin-
ear regression model in terms of vectors and
matrices:

Y = X · β + ε ,

where Y is the (n× 1) response vector (the
dependent variable), X is the (n × p) inde-
pendent variables matrix, ε is the (n × 1)

vector of the error term, and β is the (p× 1)

vector of the parameters to be estimated.
The application of the least-squares method
consists in minimizing the following equa-

tion:

ε′ · ε = (Y− X · β)′ · (Y− X · β)

= Y′ ·Y− β ′ ·X′ ·Y− Y′ ·X · β
+ β ′ ·X′ ·X · β
= Y′ ·Y− 2 · β ′ · X′ · Y
+ β ′ ·X′ ·X · β .

The normal equations are given, in matrix
form, by:

X′ · X · β̂ = X′ ·Y .

If X′ · X is invertible, the parameters β are
estimated by:

β̂ = (
X′ · X)−1 · X′ · Y .

EXAMPLES
See simple linear regression.

FURTHER READING
� Estimation
� Multiple linear regression
� Regression analysis
� Simple linear regression

REFERENCES
Legendre, A.M.: Nouvelles méthodes pour

la détermination des orbites des comètes.
Courcier, Paris (1805)

Legendre, Adrien Marie

Born in 1752 in Paris, French mathemati-
cian Legendre, Adrien Marie succeeded de
Laplace, P.S. as professor in mathematics,
first at the Ecole Militaire and then at the
Ecole Normale of Paris. He was interest-
ed in the theory and practice of astronomy
and geodesy. From 1792 he was part of the
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French commission in charge of measuring
the length of a meridian quadrant from the
North Pole to the Equator passing through
Paris.
He died in 1833, but in the history of statis-
tics his name remained attached to the pub-
lication of his work in 1805, which included
an appendix titled ”On the least-squares
method.” This publication was at the root
of the controversy that opposed him to
Gauss, C.F., who vied with him over credit
for the discovery of this method.

Main work of Legendre, A.M.:

1805 Nouvelles méthodes pour la déter-
mination des orbites des comètes.
Courcier, Paris.

REFERENCES
Plackett, R.L.: Studies in the history of

probability and statistics. In: Kendall, M.,
Plackett, R.L. (eds.) The discovery of the
method of least squares. vol. II. Griffin,
London (1977)

Lehmann, Erich
Lehmann, Erich was born in Strasbourg,
France, in 1917 and went to the United
States in 1940. He has made fundamental
contributions to the theory of statistics. His
research interests are the statistical theory
and history and philosophy of statistics. He
is the author of Basic Concepts of Probabi-
lity and Statistics,Elements of Finite Proba-
bility, Nonparametrics: Statistical Meth-
ods Based on Ranks, Testing Statistical
Hypotheses, and Theory of Point Estima-
tion. He is a member of the American Acade-
my of Arts and Sciences and of the Nation-
al Academy of Science (NAS), having been

elected to the NAS in 1978. He has been
editor of the Annals of Mathematical Statis-
tics and President of the Institute of Mathe-
matical Statistics.

Selected works and publications of Erich
Lehmann:

1983 Theory of Point Estimation, 2nd edn.
Wiley, NY.

1986 Testing Statistical Hypotheses. 2nd
edn. In: Series in Probability and
Mathematical Statistics. Wiley, NY.

1993 (withHodges,J.L.)TestingStatistical
Hypotheses. Chapman & Hall, NY.

FURTHER READING
� Estimation
� Hypothesis testing

Level of Significance

See significance level.

Leverage Point

In regression analysis, we call the leverage
point an observation i for which the esti-
mated response value Ŷi is influenced by
the value of the corresponding independent
variable Xi. The notion of leverage point is
equivalent to thatof leverage in physics.That
is, even a small modification to the value of
observation i can seriously affect the estima-
tion of ŷi.

MATHEMATICAL ASPECTS
The diagonal elements of matrix H in
regression analysis reflect the influence
of the observation on the estimation of
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the response. We associate in principle the
diagonal elements hii of matrix H with the
notion of the leverage point. Since the trace
of matrix H is equal to the number of param-
eters to estimate, we expect to have hii close
to p/n. The hii should be close to p/n if all
the observations have the same influence
on the estimates. If for an observation i we
obtain hii larger than p/n, then observation i
is considered a leverage point. In practice,
an observation i is called a high leverage
point if:

hii >
2p

n
.

Consider the following linear regression
model in matrix notation:

Y = X · β + ε ,

where Y is the (n× 1) response vector (the
dependent variable), X is the (n × p) inde-
pendent variables matrix, ε is the (n × 1)

vector of the error term, and β is the (p× 1)

vector of the parameters to be estimated.
The estimation β̂ of vector β is given by:

β̂ = (
X′X

)−1 X′Y .

Matrix H is defined by:

H = X
(
X′X

)−1 X′ .

In particular, the diagonal elements hii are
defined by:

hii = xi
(
X′X

)−1
x′i ,

where xi is the ith line of X.
We call the leverage point each observation i
for which:

hii = xi
(
X′X

)−1
x′i > 2 · p

n
.

DOMAINS AND LIMITATIONS
Huber (1981) refers to leverage points
when the diagonal element of the matrix
X

(
X′X

)−1 X′ is larger than 0.2, the critical
limit not being dependent either on the num-
ber of the parameters p or on the number of
observations n.

EXAMPLES
Consider the following table, where Y is
a dependent variable explained by the
independent variable X:

X Y

50 6

52 8

55 9

75 7

57 8

58 10

The linear regression model in matrix nota-
tion is:

Y = X · β + ε ,

where

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

6
8
9
7
8

10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 50
1 52
1 55
1 75
1 57
1 58

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

ε is the (6× 1) residual vector, and β is the
(2× 1) parameter vector.
We get matrix H by:

H = X
(
X′X

)−1 X′ .

We find:

H =

⎡
⎢⎢⎢⎢⎢⎣

0.32 0.28 0.22 −0.17 0.18 0.16
0.28 0.25 0.21 −0.08 0.18 0.16
0.22 0.21 0.19 0.04 0.17 0.17
−0.17 −0.08 0.04 0.90 0.13 0.17

0.18 0.18 0.17 0.13 0.17 0.17
0.16 0.16 0.17 0.17 0.17 0.17

⎤
⎥⎥⎥⎥⎥⎦

.
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Wewrite thediagonalofmatrix Hon thevec-
tor h:

h =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.32
0.25
0.19
0.90
0.17
0.17

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

In this case there are two parameters (p =
2) and six observations (n = 6), that is, the
critical value equals 4

6 = 0.67.
Comparing the components of h to this val-
ue, we notice that, with the exception of
observation i = 4, all observations have
hii < 0.67. The fourth observation is a lever-
age point for the problem under study. The
following figure,wherevariablesX and Yare
represented on the two axes, illustrates the
fact that the point (75, 7) is a high leverage
point.

Inspecting this figure we notice that the
regression line is highly influenced by this
leverage point and does not represent cor-
rectly the data set under study.
In the following figure we have deleted this
point from the data set. We can see that the
new regression line gives a much better rep-
resentation of the data set.

FURTHER READING
� Hat matrix
� Matrix
� Multiple linear regression
� Regression analysis
� Simple linear regression

REFERENCES
Huber, P.J.: Robust Statistics. Wiley, New

York (1981)

Mosteller, F., Tukey, J.W.: Data Analysis
and Regression: A Second Course in
Statistics. Addison-Wesley, Reading, MA
(1977)

Likelihood Ratio Test

The likelihood ratio test is a hypothesis test.
It allows to test general hypotheses concern-
ing the parameters of interest of a paramet-
ric family as well as to test two different
models built on the same data. The main
idea of this test is the following: compute the
probability of observing the data under the
null hypothesis H0 and under the alternative
hypothesis using the likelihood function.

HISTORY
It is Neyman, Jerzy and Pearson, Egon
Sharpe (1928) who came up with the idea
of using the likelihood ratio statistic to test
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hypotheses. Wald, Abraham (1941) general-
ized the likelihood ratio test to more com-
plicated hypotheses. The asymptotic results
on the distribution of this statistic (subject to
certain regularity conditions) were first pre-
sented by Wilks, Samuel Stanley (1962).

MATHEMATICAL ASPECTS
In the likelihood ratio test, the null hypoth-
esis is rejected if the likelihood under the
alternative hypothesis is significantly larg-
er than the likelihood under the null hypoth-
esis. Hence, the problem is not finding the
most adequate parameter but knowing if
under the alternative hypothesis we get a sig-
nificantly better estimate.
The Neyman–Pearson theorem states that,
for all significant levels α, the likelihood
ratio test (for testing the simple hypothesis)
has more power than any other test.
Let x1, x2, . . . , xn be n independent obser-
vations (n > 1) of a random variable
X following a probability distribution with
parameter θ (or a parameter vector θ ). We
denote by L (θ;x1, x2, . . . , xn) the likelihood
function that, for fixed xi, depends only upon
θ , and we denote by � the space of all possi-
ble values of θ and �0, with �1 are subspace
of �.
We distinguish between:

Simple Null Hypothesis
vs. a Simple Alternative Hypothesis

H0 : θ = θ0

vs. H1 : θ = θ1 .

In this case, the likelihood ratio is:

λ = λ (x1, x2, . . . , xn)

= L (θ0;x1, x2, . . . , xn)

L (θ1;x1, x2, . . . , xn)
.

The likelihood ratio for a significance level
α is defined by the decision rule:

Reject H0 if λ > λ0 ,

where λ0 is the critical value defined by the
significance level (α) and the distribution of
λ under the null hypothesis:

α = P (λ (x1, x2, . . . , xn) ≥ λ0|H0) .

The problem here is to find the critical
region since there is no generally accepted
procedure to do so. The idea is to search for
a statistic whose distribution is known.

Simple Null Hypothesis
vs. a General Alternative

H0 : θ = θ0

vs. H1 : θ ∈ �1(for example θ < θ0) .

We pose:

λ = supθ∈�1
L (θ0;x1, x2, . . . , xn)

L (θ1;x1, x2, . . . , xn)
,

where supθ∈�1
L(θ; x1, x2, . . . , xn) repre-

sents the value of the likelihood function
for the parameter that maximizes this like-
lihood function in the restricted parameter
space (θ ∈ �1), and we search again for the
distribution of λ under H0.
If the alternative hypothesis H1 is θ �= θ0,
we can write λ as:

L
(
θ̂;x1, x2, . . . , xn

)

L (θ0;x1, x2, . . . , xn)
,

where θ̂ is the maximum likelihood estimate
for θ .

General Hypothesis H0 : θ ∈ �0

vs. Alternative Hypothesis
H1 : θ ∈ �\�0 = {θ ∈ �; θ /∈ �0}
Consider the following statistic:

λ = supθ∈�0
L (θ;x1, x2, . . . , xn)

supθ∈� L (θ;x1, x2, . . . , xn)
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and search the rejection region as in the pre-
vious cases.
The supθ∈�0

L(θ;x1, x2, . . . , xn) represents
the value of the likelihood function for
the parameter that maximizes the likeli-
hoodfunction(themaximumlikelihoodesti-
mate) on the restricted space of the param-
eters. The supθ∈� L (θ;x1, x2, . . . , xn) repre-
sents the same thing but for thewhole param-
eter space. The larger the difference between
these two values, the more inappropriate will
be therestrictedmodel(andH0 willbereject-
ed).
Under H0, the distribution of −2 log (λ)

follows asymptotically a chi-square distri-
bution with u degrees of freedom, with u =
dim � − dim �0 (that is, the number of
parameters specified by H0). In other words:

− 2 lim
n→∞log

(
supθ∈� L (θ;x1, x2, . . . , xn)

supθ∈�0
L (!θ;x1, x2, . . . , xn)

)

= χ2 (u) .

For the particular cases treated earlier, the
result is:

− 2 log λ∼χ2 on 1 degree of freedom

if n→∞ .

DOMAINS AND LIMITATIONS
If the data distribution is normal, the like-
lihood ratio test is equivalent to the Fisher
test. The advantage of the latter (when it can
beexplicitlyconstructed) is that itguarantees
the best performance and power [according
to the Neyman–Pearson theorem] to test the
simple hypothesis.

EXAMPLES
Example 1
LetX beanormalrandomvariablewithmean
μ and variance σ 2. We want to test the fol-

lowing hypothesis:

H0 : μ = 0 , σ 2 > 0

H1 : μ �= 0 , σ 2 > 0 .

By considering the parameter space � =
{(μ, σ 2); −∞ < μ < ∞, 0 < σ 2 < ∞}
and a subspace �1 = {(μ, σ 2) ∈ �;μ =
0}, the hypothesis can be now written as:

H0 : θ =
(
μ, σ 2

)
∈ �0

H1 : θ =
(
μ, σ 2

)
∈ �\�0 .

Consider now x1, . . . , xn n observations of
variable X (n > 1). The likelihood func-
tion is (see example under maximum like-
lihood):

L (θ; x1, . . . , xn) = L
(
μ, σ 2; x1, . . . , xn

)

=
(

1

2πσ 2

)n/2

· exp

⎛
⎜⎜⎝−

n∑
i=1

(xi − μ)2

2σ 2

⎞
⎟⎟⎠ .

We estimate the sample mean and variance
by using the maximum likelihood estimates:

μ̂ = 1

n
·

n∑
i=1

xi = x ,

σ̂ 2 = 1

n
·

n∑
i=1

(xi − μ)2 .

Hence, the likelihood functions are, for the
null hypothesis:

L
(

0, σ̂ 2; x1, . . . , xn

)

=

⎛
⎜⎜⎝

n

2π
n∑

i=1
x2

i

⎞
⎟⎟⎠

n/2

· exp

⎛
⎜⎜⎝−

n
n∑

i=1
x2

i

2
∑n

i=1 x2
i

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

n

2π
n∑

i=1
x2

i

⎞
⎟⎟⎠

n/2

exp
(
−n

2

)
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=

⎛
⎜⎜⎝

n exp (−1)

2π
n∑

i=1
x2

i

⎞
⎟⎟⎠

n/2

,

and for the alternative hypothesis:

L
(
μ̂, σ̂ 2; x1, . . . , xn

)

=

⎛
⎜⎜⎝

n

2π
n∑

i=1
(xi − x)2

⎞
⎟⎟⎠

n/2

· exp

⎛
⎜⎜⎝−

n
n∑

i=1
(xi − x)2

2
n∑

i=1
(xi − x)2

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

1

2π
n∑

i=1
(xi − x)2

⎞
⎟⎟⎠

n/2

· exp
(
−n

2

)

=

⎛
⎜⎜⎝

n exp (−1)

2π
n∑

i=1
(xi − x)2

⎞
⎟⎟⎠

n/2

,

so the likelihood ratio is:

λ = λ (x1, x2, . . . , xn)

= L
(
0, σ̂ 2; x1, x2, . . . , xn

)

L
(
μ̂, σ̂ 2; x1, x2, . . . , xn

)

=

⎛
⎜⎜⎝

n exp (−1)

2π
n∑

i=1
x2

i

⎞
⎟⎟⎠

n/2 /

⎛
⎜⎜⎝

n exp (−1)

2π
n∑

i=1
(xi − x)2

⎞
⎟⎟⎠

n/2

=

⎛
⎜⎜⎝

n∑
i=1

(xi − x)2

∑n
i=1 x2

i

⎞
⎟⎟⎠

n/2

.

One must find at this point the distribution

of λ. To do so we recall that
n∑

i=1
x2

i =
n∑

i=1
(xi − x)2 + nx2, and we obtain:

λ =

⎛
⎜⎜⎝

n∑
i=1

(xi − x)2

n∑
i=1

(xi − x)2 + nx2

⎞
⎟⎟⎠

n/2

= 1

/
⎛
⎜⎜⎝1+ nx2

n∑
i=1

(xi − x)2

⎞
⎟⎟⎠

n/2

.

We search for λ0 for which the null hypoth-
esis is not rejected if λ ≤ λ0, which we can
write as:

λ ≤ λ0

or 1

/
⎛
⎜⎜⎝1+ nx2

n∑
i=1

(xi − x)2

⎞
⎟⎟⎠

n/2

≤ λ0

or

⎛
⎜⎜⎝1+ nx2

n∑
i=1

(xi − x)2

⎞
⎟⎟⎠

n/2

≥ λ−1
0

or
nx2

n∑
i=1

(xi − x)2
≥ λ
−2/n
0 − 1 .

By multiplying each term of the inequality
by (n− 1), we obtain:

λ ≤ λ0 or √
n |x|√

n∑
i=1

(xi − x)2 /
(n− 1)

≥
√

(n− 1)
(
λ
−2/n
0 − 1

)
.
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Since the random variable

T = X − μ

σ̂
/
(n− 1)

,

where σ̂ 2 is the sample variance, follows
a t distribution with (n− 1) degrees of free-
dom; we can equivalently write:

T =
√

n
(
X − μ

)
√

nσ̂ 2
/
(n− 1)

,

which, for mean set to zero, gives:

T =
√

nX√
nσ̂ 2

/
(n− 1)

=
√

nX√
n∑

i=1
x2

i

/
(n− 1)

.

One must search now for the value λ0 for

which c :=
√

(n− 1)
(
λ
−2/n
0 − 1

)
is the

value of a Student variable for a chosen sig-
nificance level α:

λ0 =
(

c2

n− 1
+ 1

)−n/2

.

For example, given a sample of size n = 6,
and for α = 0.05, we find z5,0.05/2 = 2.751,
so it is sufficient to see that:

λ ≤
(

(2.751)2

5
+ 1

)−3

= 0.063

for the null hypothesis to be true.

Example 2
Two independent random samples
X1, . . . , Xn and Y1, . . . , Ym (m + n > 2)
follow normal distributions with parameters

(
μ1, σ 2

)
and

(
μ2, σ 2

)
, respectively.Wewish

to test the following hypothesis:

H0 : μ1 = μ2

H1 : μ1 �= μ2 .

We define the sets:

� = {
(μ1, μ2, σ 2); −∞ < μ1, μ2

<∞, 0 < σ 2 <∞}
,

�1 =
{
(μ1, μ2, σ 2) ∈ �;μ1 = μ2

}
.

We can now write the hypothesis as follows:

H0 :
(
μ1, μ2, σ 2

)
∈ �1

H1 :
(
μ1, μ2, σ 2

)
∈ �\�1 .

So the likelihood functions are:

L
(
μ1, μ1, σ 2; x1, . . . , xn, y1, . . . , ym

)

=
(

1√
2πσ

)n+m

· exp

⎛
⎜⎜⎝−

n∑
i=1

(xi − μ1)
2 +

m∑
i=1

(yi − μ1)
2

2σ 2

⎞
⎟⎟⎠,

L
(
μ1, μ2, σ 2; x1, . . . , xn, y1, . . . , ym

)

=
(

1√
2πσ 2

)n+m

· exp

⎛
⎜⎜⎝−

n∑
i=1

(xi − μ1)
2 +

m∑
i=1

(yi − μ2)
2

2σ 2

⎞
⎟⎟⎠.

By using the maximum likelihood estimates,
which are for the null hypothesis:

μ̂1 =

n∑
i=1

xi +
m∑

i=1
yi

n+ m
= nx+ my

n+ m
,

σ̂ 2 =

n∑
i=1

(xi − μ̂1)
2 +

m∑
i=1

(yi − μ̂1)
2

n+ m
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and for the alternative hypothesis:

μ̂′1 =

n∑
i=1

xi

n
= x ,

μ̂2 =

m∑
i=1

yi

m
= y ,

σ̂ ′2 =

n∑
i=1

(xi − x)2 +
m∑

i=1
(yi − y)2

n+ m
,

we get the likelihood ratio:

λ = L
(
μ̂1, μ̂1, σ̂ 2; x1, . . . , xn, y1, . . . , ym

)

L
(
μ̂′1, μ̂′2, σ̂ ′2; x1, . . . , xn, y1, . . . , ym

)

=
(

2π

n+ m

)−(n+m)/2

exp

(
−n+ m

2

)

·
[

n∑
i=1

(
xi − nx+ my

n+ m

)2

+
m∑

i=1

(
yi − nx+ my

n+ m

)2
]−(n+m)/2

·
(

2π

n+ m

)(n+m)/2

exp

(
n+ m

2

)

[
n∑

i=1

(xi − x)2 +
m∑

i=1

(yi − y)2

](n+m)/2

=
(

n∑
i=1

(
xi − nx+ my

n+ m

)2

+
m∑

i=1

(
yi − nx+ my

n+ m

)2
)−(n+m)/2

·
(

n∑
i=1

(xi − x)2 +
m∑

i=1

(yi − y)2

)(n+m)/2

=
(

n∑
i=1

(xi − x)2 +
m∑

i=1

(yi − y)2

)(n+m)/2

/(
n∑

i=1

(
xi − nx+ my

n+ m

)2

+
m∑

i=1

(
yi − nx+ my

n+ m

)2
)(n+m)/2

.

The statistic λ2/(n+m) is given by:

n∑
i=1

(
Xi − X

)2 +
m∑

i=1

(
Yi − Y

)2

n∑
i=1

(
Xi − nX+mY

n+m

)2 +
m∑

i=1

(
Yi − nX+mY

n+m

)2
.

To find the distribution of this statistic,
we use the following arguments (note that

n∑
i=1

(
Xi − X

) = 0):

n∑
i=1

(
Xi − nX + mY

n+ m

)2

=
n∑

i=1

((
Xi − X

)+
(

X − nX + mY

n+ m

))2

=
n∑

i=1

(
Xi − X

)2 + n

(
X − nX + mY

n+ m

)2

=
n∑

i=1

(
Xi − X

)2 + nm2

(n+ m)2

(
X − Y

)2
.

The same holds for Y:

m∑
i=1

(
Yi − nX + mY

n+ m

)2

=
m∑

i=1

(
Yi − Y

)2 + mn2

(n+ m)2

(
X − Y

)2
.
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We can now write:

λ2/(n+m)

=
(

n∑
i=1

(
Xi − X

)2 +
m∑

i=1

(
Yi − Y

)2

)

·
( n∑

i=1

(
Xi − X

)2 +
m∑

i=1

(
Yi − Y

)2

+ nm

n+ m

(
X − Y

)2
)−1

=

⎛
⎜⎜⎝1+

nm
n+m

(
X − Y

)2

n∑
i=1

(
Xi − X

)2 +
m∑

i=1

(
Yi − Y

)2

⎞
⎟⎟⎠

−1

.

If the null hypothesis is true, then the random
variable

T =
√

nm
n+m

(
X − Y

)
√

n∑
i=1

(Xi−X)
2+

m∑
i=1

(Yi−Y)
2

n+m−2

follows the Student distribution with n+m−
2 degrees of freedom. Therefore, we obtain:

λ2/(n+m) = 1

1+ (n+ m− 2) T2

= n+ m− 2

n+ m− 2+ T2 .

We search for λ0 for which the null hypoth-
esis is rejected given λ ≤ λ0 ≤ 1:

λ =
(

n+ m− 2

n+ m− 2+ T2

)2/(n+m)

≤ λ0

⇔ |T| ≥

√√√√√
(

λ
− n+m

2
0 − 1

)

(n+ m− 2)

:= c .

It is now sufficient to take the critical value c
from the table of a Student random variable
withα fixed (the one we want) and n the sam-
ple size. For example, with n = 10, m = 6,

and α = 0.05, we find:

c = z14,0.025 = 2.145 ,

λ0 =
(

c2

n+ m− 2
− 1

)−2/(n+m)

=
(

(2.145)2

14
− 1

)−1/8

= −1.671 .

FURTHER READING
� Alternative hypothesis
� Fisher test
� Hypothesis
� Hypothesis testing
� Maximum likelihood
� Null hypothesis

REFERENCES
Cox,D.R.,Hinkley,D.V.: TheoreticalStatis-

tics. Chapman & Hall, London (1973)

Edwards, A.W.F.: Likelihood. An account
of the statistical concept of likelihood
and its application to scientific inference.
Cambridge University Press, Cambridge
(1972)

Kendall, M.G., Steward, A.: The Advanced
Theory of Statistics, vol. 2. Griffin, Lon-
don (1967)

Neyman, J., Pearson, E.S.: On the use and
interpretation of certain test criteria for
purposes of statistical inference, Parts I
and II. Biometrika 20A, 175–240, 263–
294 (1928)

Wald, A.: Asymptotically Most Powerful
Tests of Statistical Hypotheses. Ann.
Math. Stat. 12, 1–19 (1941)

Wald, A.: Some Examples of Asymptotical-
ly Most Powerful Tests. Ann. Math. Stat.
12, 396–408 (1941)



316 Line Chart

Wilks, S.S.: Mathematical Statistics. Wiley,
New York (1962)

Line Chart

The line chart is a special type of frequency
graph. It is useful in representing a frequen-
cy distribution of a discrete random vari-
able. The values of the variable are given in
abscissa and the frequencies corresponding
to these values are displayed in ordinate.

HISTORY
See graphical representation.

MATHEMATICAL ASPECTS
The line chart has two axes. The values xi of
the discrete random variable are given in
abscissa. A line is drawn over each xi value
with a length that is equal to the frequency
ni (or relative frequency fi) corresponding to
this value.

EXAMPLES
The distribution of the shoesizes ofa sample
of 84 men are given in the following table.

Shoe size Frequency

5 3

6 1

7 13

8 16

9 21

10 19

11 11

Total 84

Here is the line chart established from this
table:

FURTHER READING
� Dot plot
� Frequency distribution
� Graphical representation
� Histogram

Linear Programming

Mathematical programming concerns the
optimal allocation of limited resources in
order to reach thedesiredobjectives. Inlinear
programmingthemathematicalmodelunder
study is expressed by using linear relations.
A linear programming problem appears in
the form of a set of linear equations (or ine-
qualities), called constraints, and a linear
function that states the objective, which is
called the objective function.

HISTORY
Mathematical programming appeared in
the field of economics around 1930. Some
remarkable works on linear programming
were published by John Von Neumann
(1935–1936). In 1947, George B. Dantzig
presented the simplex method for solving
linear programming problems.

MATHEMATICAL ASPECTS
A linear programming problem can be
defined as follows.
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Find a set of values for the variables
x1, x2, . . . , xn that maximizes (or minimizes)
linearly the objective function:

z = c1 · x1 + c2 · x2 + . . .+ cn · xn

subject to the linear constraints:

a11 · x1 + a12 · x2 + . . .

+ a1n · xn

⎧⎨
⎩
≤
=
≥

⎫⎬
⎭ b1 ,

a21 · x1 + a22 · x2 + . . .

+ a2n · xn

⎧⎨
⎩
≤
=
≥

⎫⎬
⎭ b2 ,

...

am1 · x1 + am2 · x2 + . . .

+ amn · xn

⎧⎨
⎩
≤
=
≥

⎫⎬
⎭ bm ,

and to the nonnegative constraints:

xj ≥ 0 , j = 1, 2, . . . , n ,

where aij, bi, and cj are known constants.
In otherwords, thismeans that ina linearpro-
gramming problem we seek a nonnegative
solution that satisfies the posed constraints
and optimizes the objective function.
We can write a linear programming problem
using the following matrix notation:

Maximize (or minimize) z = c′ · x

subject to A · x
⎧
⎨
⎩
≤
=
≥

⎫
⎬
⎭ b

and x ≥ 0 ,

where c′ is a (1×n) line vector, x is an (n×1)

column vector, A is an (m× n) matrix, b is

an (m× 1) column vector, and 0 is the null
vector with n components.
The principal tool for solving a linear pro-
gramming problem is the simplex method.
This consists of a set of rules that should be
followed to obtain the solution to a given
problem. It is an iterative method that pro-
vides an exact solution in a finite number of
iterations.

DOMAINS AND LIMITATIONS
Linear programming seeks an optimal allo-
cation of these resources that can produce
one or more goods. This is done by maxi-
mizing (or minimizing) functions such as
the profit (or cost). Therefore, the objective
function’s coefficients are often called the
“prices” associated to the variables.

EXAMPLES
A firm manufactures tables and chairs using
two machines, A and B. Each product is
made on both machines. To make a chair, 2 h
of machine A and 1 h of machine B are need-
ed. To make a table, 1 h of machine A and
2 h of machine B are needed. The firm
makes a profit of 3.00CHF on each chair and
4.00 CHF on each table. The two machines
are available for a maximum of 12 h daily.
Given the above data, we search for the dai-
ly production schedule that guarantees the
maximum profit. In other words, the firm
wants to know the optimal production pro-
gram, that is, the amount of chairs and tables
that must be produced per day to reach the
maximum profit.
We denote by x1 the number of chairs and
by x2 the number of tables that must be pro-
duced per day. The daily profit is given by
the following function:

z = 3 · x1 + 4 · x2 .
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This objective function has to be maximized.
We know that the product x1 requires 2 h of
machine A, while product x2 requires 1 h of
machine A. Hence, the total daily hours for
machine A is:

2 · x1 + 1 · x2

since x1 chairs and x2 tables are produced.
Yet the total time for machine A cannot
exceed 12 h. In mathematical terms this
means:

2x1 + x2 ≤ 12 .

In the same manner for machine B, we find:

x1 + 2x2 ≤ 12 .

We have two constraints. Furthermore, we
cannot produce negative values of chairs
and tables, so two additional constraints are
added:

x1 ≥ 0 and x2 ≥ 0 .

We wish to find the values for the variables x1

and x2 that satisfy the constraints and maxi-
mize the profit. We can finally represent the
mathematical problem in the following way:

max z = 3x1 + 4x2 ,

s.t. 2x1 + x2 ≤ 12 ,

x1 + 2x2 ≤ 12 ,

and x1, x2 ≥ 0

(s.t. means subject to). The maximum prof-
it is given by the pair (x1, x2) = (4, 4);
28.00 CHF of profit by the production of
4 chairs and 4 tables. For this problem, the
result can be found by computing the profit
for each possible pair (there are fewer than
36 of them.)

FURTHER READING
� Operations research
� Optimization
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Logarithmic Transformation

One of the most useful and common trans-
formations is the logarithmic transfor-
mation. Indeed, before running a linear
regression, it might be wise to replace
the dependent variable Y by its loga-
rithm log (Y) or by a linear combination
of the latter a + b · log (Y) (a and b being
constants adjusted by the least squares).
Such an operation would stabilize the vari-
ance of Y and would make the distribution
of the transformed variable closer to nor-
mal.
A logarithmic transformation would also
allow one to shift from a multiplicative to an
additive model with estimates that are easier
to define and simpler to interpret. On the oth-
er hand, the logarithmic transformation of
a gamma random variable Y results in a new
random variable that is closer to the normal
distribution. The latter could be easily adapt-
ed in a regression analysis.
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FURTHER READING
� Analysis of variance
� Dependent variable
� Regression analysis

Logistic Regression

Given a binary dependent variable, logis-
tic regression offers the possibility of fitting
a regression model. It permits one to study
the relation between a proportion and a set
of explanatory variables, either quantitative
or qualitative.

MATHEMATICAL ASPECTS
The logistic regression model with depen-
dent variable Y and independent variables
X1, X2, . . . , _p is expressed by:

logit π
((

Xij
)

i=1,...,p

)
= log

(
P
(
Yj = 1

)

P
(
Yj = 0

)
)

= β0 +
p∑

i=1

βiXij ,

j = 1, . . . , n ,

where Yj (j = 1, . . . , n) corresponds to
the observations of variables Y and Xij to
theobservationsoftheindependentvariables
and π is the probability (of success) function
of the logistic regression:

π
((

Xij
)

i=1,...,p

)
=

exp
(
β0 +∑p

i=1 βiXij
)

1+ exp
(
β0 +∑p

i=1 βiXij
) .

Equivalently, we can write:

P
(
Yj = 1

) = exp
(
β0 +∑p

i=1 βiXij
)

1+ exp
(
β0 +∑p

i=1 βiXij
) ,

which permits one to compute the probabi-
lity that variable Y takes a value of 1 depend-
ing upon the realization of the independent
variables X1, X2, . . . , Xp.
An interesting property is that the model
parameters (β0, β1, . . . , βp) can take any val-
ue, sinceallvaluesof the logit transformation

logit (π (Y)) = log
(

π(Y)
1−π(Y)

)
correspond to

a number between 0 and 1 for P (Y = 1).
The model parameters can be estimated
using the maximum likelihood method,
thereby maximizing the following function:

L (β0, β1, . . . , βn) =
n∏

j=1

π
((

Xij
)

i=1,...,p

)Yi ·

·
(

1− π
((

Xij
)

i=1,...,p

))1−Yj

or, in an easier way, by maximizing the log-
likelihood function:

log L (β0, β1, . . . , βn)

=
n∑

j=1

Yj log π
((

Xij
)

i=1,...,p

)

+ (
1− Yj

)
log

(
1− π

((
Xij

)
i=1,...,p

))
.

Wecan thereforedo hypothesis testing onthe
parameter values (for example β0 = 0, β3 =
β2, etc.) by using the likelihood ratio test.
The interpretation of the regression coeffi-
cients corresponding to binary independent
variables is described in the next paragraph.
When an independent variable X is contin-
uous, the regression coefficient reflects the
relativeriskofaone-unit increase inX.When
the independentvariableX hasmore thanone
class, we must transform it into binary vari-
ables. The coefficient’s interpretation is then
clear and straightforward.
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DOMAINS AND LIMITATIONS
Logistic regression is often used in epide-
miology since:
• Its sigmoidal shape (of thepreviously giv-

en expression P
(
Yj = 1

)
) fits very well

the relation usually observed between
a dose X and the frequency of a disease
Y: exp(x)

1+exp(x) .
• It is easy to interpret: the association mea-

sure between a disease and a risk factor
M (corresponding to a binary variable Xi)
is expressed by the odds ratio. This is
a good approximation of the relative risk
when the probabilities P (Y = 1 |Xi = 1 )

and P (Y = 1 |Xi = 0 ) are small and it is
computed simply as theexponentialof the
parameter that is associated with the vari-
able Xi; thus:

odds− ratio of the factor M = exp (βi) .

EXAMPLES
We take an example given by Hosmer and
Lemeshow. The dependent variable indi-
cates the presence or absence of heart dis-
ease for 100 subjects, and the independent
variable is age.
The resulting logistic regression model is:

π (X) = −5.3+ 0.11 · X

with astandard deviation for theconstantand
theβ (coefficient of the independentvariable
X) equal to 1.1337 and 0.241, respectively.
The two estimated parameters are statistical-
ly significant.
The risk of having heart disease increases by
exp (0.11) = 1.12 with every year.
It is also possible to compute the confidence
interval by taking the exponential of the

interval for β:

(exp (1.11− 1.96 · 0.241) ,
exp(1.11+ 1.96 · 0.241))

= (1.065, 1.171) .

The following table gives the values for the
log-likelihood as well as the parameter val-
ues thatareestimatedbymaximizing the log-
likelihood function in an iterative algorithm:

Log-likelihood Constant β

1 −54.24 −4.15 0.872

2 −53.68 −5.18 1.083

3 −53.67 −5.31 1.109

4 −53.67 −5.31 1.109

FURTHER READING
� Binary data
� Contingency table
� Likelihood ratio test
� Maximum likelihood
� Model
� Odds and odds ratio
� Regression analysis
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Lognormal Distribution

A random variable Y follows a lognormal
distribution if the values of Y are a function
of the values of X according to the equation:

y = exp (x) ,

where therandom variableX followsanor-
mal distribution.
The density function of the lognormal
distribution is given by:

f (y) = 1

σy
√

2π

· exp

([
− (log y− μ)2

2σ 2

])
.

Lognormal distribution, μ = 0, σ = 1

The lognormal distribution is a continuous
probability distribution.

HISTORY
The lognormal distribution is due to the
works of Galton, F. (1879) and McAlis-
ter, D. (1879), who obtained expressions
for the mean, median, mode, variance,
and certain quantiles of the resulting distri-
bution. Galton, F. went from n independent
positive random variables and constructed
the product and, with the help of the loga-
rithm, passed from the product to a sum of
new random variables.

Kapteyn, J.C. (1903) reconsidered the con-
struction of a random variable following
a lognormal distribution with van Uven,M.J.
(1916). They developed a graphical method
for the estimation of parameters. Since that
time, many works relative to the lognor-
mal distribution have been published. An
exhaustive list is given by Johnson, N.L. and
Kotz, S. (1970).

MATHEMATICAL ASPECTS
The expected value of the lognormal distri-
bution is given by:

E [Y] = exp

(
μ+ 1

2σ 2

)
.

The variance is equal to:

Var (X) = exp (2μ)

·
[
exp

(
2σ 2

)
− exp

(
σ 2

)]
.

If the random variable Y follows a lognor-
mal distribution, the random variable

X = ln Y

follows a normal distribution.

DOMAINS AND LIMITATIONS
The lognormal distribution is largely applied
in common statistical practice. For example,
the critical proportioning in pharmaceutical
applications, the length of a visit to the doc-
tor, and the distribution of economic forces
all follow a lognormal distribution.
The lognormal distribution can be used as an
approximation of the normal distribution.
As σ gets small, the lognormal distribution
tends toward the normal distribution.

FURTHER READING
� Continuous probability distribution
� Normal distribution
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Longitudinal Data
Longitudinal data are data collected on sub-
jects over time. These correspond to mul-
tiple observations per subject as the same
units are repeatedly measured on more than
one occasion. Repeated measures, in biolo-
gy and medicine, as well as panel studies,
in social and economic sciences, are charac-
teristic examples of longitudinal data stud-
ies.

HISTORY
See history of panel data.

MATHEMATICAL ASPECTS
A very general way to write the linear mod-
el in longitudinal data analysis is the follow-
ing:

yi = Xiβ +Wiγi + εi ,

where yi is the ni× 1 column response vec-
tor for the subject i, Xi is an ni × b design

matrix usually consisting of dummy coded
variables, β is the ni × b regression coeffi-
cient vector, Wi is an b×1 design matrix for
random effectsγi, and εi are the subject error
terms.
The general model above is a mixed model
since it includes both fixed (β) and random
effects (γi).
Parameter estimation is often done by means
of maximum likelihood estimation with
the likelihood function strongly dependent
on the assumptions made on the covariance
structure of γi and εi. It is straightforward
to construct statistical tests on the estimated
parameters, to obtain confidence intervals,
and to measure prediction. Model-selection
techniques are also used to test nested mod-
els.

EXAMPLE
Two groups of people follow two different
treatments for the blood pressure, and they
have been followed for a period of 5 months.
Each group consists of five individuals. The
measures of interest are given in the table
below:

Month (Jan to May)

105 68 95 86 93

100 92 98 74 35

1st group 102 85 95 62 82

70 81 72 35 39

98 34 34 37 40

83 25 31 42 38

69 44 41 30 32

2nd group 84 64 77 80 82

63 54 55 47 44

93 77 44 38 40

Each row corresponds to observations taken
over time for the same individual.
Below is the figure that plots the group mean
curves±1 standard error.
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The simplest approach in this case would
be to ignore the random effects (γi = 0)
and to construct a simple model with fixed
effect only, that is, the group where a subject
belongs. In such a case the model reduces to

yij = βj + εij ,

with j indicating the group and being a sim-
ple dummy variable. If there is a significant
differencebetween individuals, thenrandom
effect γi is added to the model above.

DOMAINS AND LIMITATIONS
Longitudinal data are mostly used in epide-
miology and medical statistics, as well as in
socioeconomic studies. In the former cas-
es longitudinal data represent repeated mea-
surements for different treatment groups in
clinical trials. In the latter we note the panel
studies that usually measure social and eco-

nomic indexes, such as income, consump-
tion, and job satisfaction, in different time
periods.
There are many possible complications in
longitudinal data analysis. Firstly, data are
correlated since the same subjects are mea-
sured over time. This must be accounted for
in thefinalanalysis in order to provideproper
results. Moreover, missing data often appear
in such data analysis since not all of the sub-
jects are measured during the whole time
period. The latter becomes more problemat-
ic, for example, in survival analysis and fol-
lowup studieswhere thesubjects (usually the
patients) die off or quit the trials and abandon
the treatments.

FURTHER READING
� Panel
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Mahalanobis Distance

The Mahalanobis distance is the distance
from X to the quantity μ defined as:

d2
M(X, μ) = (X− μ)t

∑−1
(X− μ) .

This distance is based on the correla-
tion between variables or the variance–
covariance matrix.
It differs from the Euclidean distance in that
it takes into account the correlation of the
data set and does not depend on the scale
of measurement. Mahalanobis distance is
widely used in cluster analysis and other
classification methods.

HISTORY
The Mahalanobis distance was introduced
by Mahalanobis, P.C. in 1936.

MATHEMATICAL ASPECTS
If μi denotes E(Xi), then by definition the
expected value of X = (X1, . . . , Xp) vector:

E[X] = μ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

μ1

μ2

.

.

.
μp

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The variance–covariance matrix Σ of X is
defined by:

Σ =

⎡
⎢⎢⎢⎢⎣

σ 2
1 cov(X1, X2) . . . cov(X1, Xp)

σ 2
2

...
. . .

...

σ 2
p

⎤
⎥⎥⎥⎥⎦

= E[XX′]− μμ′ .

It is a square symmetrical matrix of order p.
If the Xi variables are standardized, then Σ

is identical to the correlation matrix:

⎡
⎢⎢⎢⎢⎢⎢⎣

1 ρ12 ρ13 . . . ρ1p

1 ρ23 . . . ρ2p

1 . . . ρ3p

. . .
...
1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Then Σ−1/2. Y = Σ−1/2(X − μ) is a ran-
dom standardized vector with noncorrelat-
ed components. The random variable (X −
μ)′Σ−1(X−μ) = D2 has expected value of
p. In fact, D2 = ∑p

i=1 Y2
i , where the Yi are

of random variables with mean 0 and 1. D is
called a Mahalanobis distance from X to μ.
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FURTHER READING
� Classification
� Cluster analysis
� Correspondence analysis
� Covariance analysis
� Distance

REFERENCES
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Mahalanobis, Prasanta Chandra

Prasanta Chandra Mahalanobis (1893–
1972) studied in school at Calcutta until
1908. In 1912, he received his B.Sc. in
physics at the Presidential College of Cal-
cutta. In 1915, he went to England to earn
a Tripos (B.Sc. received at Cambridge) in
mathematics and physics at King’s Col-
lege of Cambridge. Before beginning his
research, he returned to Calcutta on holiday,
but he did not return to England because of
the war.
As a statistician, Mahalanobis did not use
statistics as an end in itself but mostly as
a tool for comprehending and interpret-
ing scientific data as well as for making
decisions regarding society’s well-being. He
used statistics first in his study of anthropol-
ogy (about1917)and then floods. In 1930,he
published an article on the D2 statistic called
“Test and Measures of Group Divergence”.
His greatest contribution to statistics is sure-
ly the large-scale census. He made many
contributions in this area such as the opti-

mal choice of sampling using variance and
cost functions. He was named president of
the United Nations Subcommission on Sta-
tistical Sampling in 1947, a position he held
until 1951.
His friendship with Ronald Aylmer Fisher,
which lasted from 1926 until Fisher’s death,
is also notable.

Principal works and articles of Prasanta
Chandra Mahalanobis:

1930 On tests and meassures of groups
divergence.Part I.Theoretical formu-
lae. Journal of the Asiatic Society of
Bengal, 26 pp. 541–588.

1936 On the generalized distance in statis-
tics, Proc. Natn. Inst. Sci. India 2, 49–
55.

1940 A sample survey of the acreage under
jute in Bengal. Sankhya 4, 511–530.

1944 On large-scale sample surveys. Phi-
los. Trans. Roy. Soc. Lond. Ser. B
231329-451.

1963 The Approach of Operational
Research to Planning in India. Asia
Publishing House, Bombay.

FURTHER READING
� Mahalanobis distance

Main Effect

In a factorial experiment, a main effect is
the contribution of a factor level specific to
the response variable.

MATHEMATICAL ASPECTS
The linearmodel thatonly takes into account
the main effects of factors and that ignores
the interactions among factors is called an
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additive model. Consider the additive model
of a double classification design:

Yij = μ+ αi + βj + εij ,

i = 1, 2, . . . , a and j = 1, 2, . . . , b ,

where Yij is the response receiving the treat-
ment ij, μ is the mean common to all the
treatments,αi is the main effect of the ith lev-
el of factor A, βj is the main effect of the jth
level of factor B, and εij is the experimental
error of the observation Yij.
If a = b = 2, then the principal effects of
factorsAandB,denotedaandb, respectively,
are given by:

a = (α1 − α0) (β1 + β0)

2
,

b = (α1 + α0) (β1 − β0)

2
.

FURTHER READING
� Analysis of variance
� Estimation
� Factor
� Factorial experiment
� Hypothesis testing
� Interaction
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Mann–Whitney Test

TheMann–Whitney test isanonparametric
test that aims to test theequality of two popu-
lations. It is used when we have two samples
coming from two populations.

HISTORY
The Mann–Whitney test was first introduced
for the case m = n by Wilcoxon, Frank
(1945).Then, theWilcoxontestwasextend-
ed to the case of samples of different dimen-
sions by White, C. (1952).
Note that a test equivalent to those of the
Wilcoxon test was developed independent-
ly and introduced by Festinger, L. (1946).
Mann, H.B. and Whitney, D.R. (1947) were
the first to consider the samples of different
dimensions and to provide the tables adapted
to small samples.

MATHEMATICAL ASPECTS
Let (X1, X2, . . . , Xn) be a sample of dimen-
sion n coming from a population 1, and let
(Y1, Y2, . . . , Ym) be a sample of dimension m
coming from a population 2.
We get N = n+m observations that we class
in increasing order noting each time the sam-
ple to which a given observation belongs.
The Mann and Whitney statistic, denoted by
U, is defined as the total number of times that
an Xi precedes a Yj in the classification in
increasingorderof theN observations.When
the dimension of the sample is big enough,
the determination of U becomes long, but we
canuse thefollowingrelation thatgives iden-
tical results:

U = mn+ n (n+ 1)

2
− T ,

where T is the sum of ranks attributed to the
X from the Wilcoxon test.

Hypotheses
The hypotheses corresponding to the
Mann–Whitney test can be formulated as
follows, according to the one-tail or two-tail
case:
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A: Two-sided case:

H0 : P (X < Y) = 1
2

H1 : P (X < Y) �= 1
2 .

B: One-sided case:

H0 : P (X < Y) ≤ 1
2

H1 : P (X < Y) > 1
2 .

C: One-sided case:

H0 : P (X < Y) ≥ 1
2

H1 : P (X < Y) < 1
2 .

In case A, the null hypothesis corresponds
to the situation where there is no difference
between the populations. In case B, the null
hypothesismeans thatpopulation 1 isgreater
than population 2. In case C, the null hypoth-
esis indicates that population 1 is smaller
than population 2.

Decision Rules
Ifm, n < 12,wecomparestatisticU with the
value found in the Mann–Whitney table to
test H0. On the other hand, if m, n≥ 12, then
the sampling distribution of U approach-
es very quickly the normal distribution with

mean μ = m · n
2

and standard deviation

σ =
√

mn (m+ n+ 1)

12
.

Thus we can determine the meaning of the
observed value of U by:

Z = U − μ

σ
,

where Z is a random standardized variable.
In other words, we can compare the value of
Z thus obtained with the normal table.
Moreover, the decision rules are different
and depend on the posed hypotheses. In this
way we have rules A, B, and C relative to the
previous cases A, B, and C.

Decision rule A

Wereject thenullhypothesisH0at the signif-
icance level α if U is smaller than the value
in the Mann–Whitney table with parameters
n, m, and α

2 denoted by tn,m,1− α
2
, or if U is

greater than the value in the Mann–Whitney
table for n, m, and 1− α

2 , denoted tn,m, α
2

, that
is, if

tn,m,1− α
2

< U < tn,m, α
2

.

Decision rule B

Wereject thenullhypothesisH0 at the signif-
icance level α if U is smaller than the value
in the Mann–Whitney table with parameters
n, m, and α, denoted by tn,m,α, that is, if

U < tn,m,α .

Decision rule C

We reject the null hypothesis H0 at the sig-
nificance level α if U is greater than the value
in the Mann–Whitney table with parameters
n, m, and 1− α, denoted by tn,m,1−α, that is,
if

U > tn,m,1−α .

DOMAINS AND LIMITATIONS
As there exists a linear relation between the
Wilcoxon test and the Mann–Whitney test
(U = mn+n(n+1)/2−T), these two tests
are equivalent.
Thus they have two commonproperties, and-
both must be respected:
1. Both samples are random samples taken

from their respective populations.
2. In addition to the independence inside

each sample, there is mutual indepen-
dence between samples.

3. The scale of measurement is at least ordi-
nal.
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EXAMPLES
In a class, we count nine pupils: five boys and
four girls. The class takes a test on mental
calculation to see if the boys are, in general,
better than the girls in this domain.
The data are in the following table, the high-
est scorecorresponding to thebest test result.

Boys (Xi ) Girls (Yi )

9.2 11.1

11.3 15.6

19.8 20.3

21.1 23.6

24.3

We class the score in increasing order noting
each time the sample to which agivenobser-
vation belongs.

Score Sample Rank Number of times X
precedes Y

9.2 X 1 4

11.1 Y 2 –

11.3 X 3 3

15.6 Y 4 –

19.8 X 5 2

20.3 Y 6 –

21.1 X 7 1

23.6 Y 8 –

24.3 X 9 0

We find U = 4 + 3 + 2 + 1 = 10. In the
same way, if we use the relation U = mn+
n(n+1)

2 − T, then we have:

T =
n∑

i=1

R(Xi) = 1+ 3+ 5+ 7+ 9 = 25

and U = 5 · 4+ 5·6
2 − 25 = 10.

The hypotheses to be tested are as follows:

H0: Boys are not generally better than girls
in mental calculation.

H1: Boys are generally better than girls in
mental calculation.

The null hypothesis may be restated as fol-
lows: H0: P(X < Y) ≥ 1/2 and corresponds
tocaseC.Thedecisionrule is thenasfollows:
Reject H0 at significance level α if

U > tn,m,1−α ,

where tn,m,1−α is the value in the Mann–
Whitney table with parameters n, m, and 1−
α. Recall that in our case, m = 4 and n = 5.
As we have a relation between the Wilcox-
on test and the Mann–Whitney test, instead
of using the U table, we use the Wilcoxon
table for T. If we choose α = 0.05, then the
value of the Wilcoxon table equals 32. As
T = 25 < 32, we do not reject H0 and we
conclude that boys are not generally better
than girls in mental calculation.

FURTHER READING
� Hypothesis testing
� Nonparametric test
� Wilcoxon test

REFERENCE
Festinger, L.: The significance of differ-

ence between means without reference to
the frequency distribution function. Psy-
chometrika 11, 97–105 (1946)

Mann, H.B., Whitney, D.R.: On a test
whether one of two random variables is
stochastically larger than the other. Ann.
Math. Stat. 18, 50–60 (1947)

White,C.:Theuseof ranks in a testof signifi-
cance for comparing two treatments. Bio-
metrics 8, 33–41 (1952)

Wilcoxon, F.: Individual comparisons by
ranking methods. Biometrics 1, 80–83
(1945)



330 Marginal Density Function

Marginal Density Function
In the case of a pair of random variables
(X, Y), when random variable X (or Y) is
considered by itself, its density function is
called the marginal density function.

HISTORY
See probability.

MATHEMATICAL ASPECTS
In the case of a pair of continuous random
variables (X, Y) with a joint density func-
tion f (x, y), the marginal density function
of X is obtained by integration:

P(X ≤ a,−∞ < Y <∞)

=
∫ a

−∞

∫ ∞
−∞

f (x, y)dydx

=
∫ a

−∞
fX(x)dx ,

where fX(x) =
∫ ∞
−∞

f (x, y)dy is the density

of X.
The marginal density function of Y is
obtained in the same way:

fY(y) =
∫ ∞
−∞

f (x, y) dx .

FURTHER READING
� Density function
� Joint density function
� Pair of random variables
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Marginal Distribution Function
In the case of a pair of random variables
(X, Y), when random variable X (or Y) is
considered by itself, its distribution func-
tion is called the marginal distribution func-
tion.

MATHEMATICAL ASPECTS
Considerapair of random variables (X, Y)

and their joint distribution function:

F (a, b) = P (X ≤ a, Y ≤ b) .

The marginal distribution function of X is
equal to:

FX(a) = P(X ≤ a)

= P(X ≤ a, Y <∞)

= P[ lim
b→∞(X ≤ a, Y ≤ b)]

= lim
b→∞P(X ≤ a, Y ≤ b)

= lim
b→∞F(a, b)

= F(a,∞) .

In a similar way, the marginal distribution
function of Y is equal to:

FY (b) = F (∞, b) .

FURTHER READING
� Distribution function
� Joint distribution function
� Pair of random variables

Markov, Andrei Andreevich
Markov, Andrei Andreevich was born in
1856 in Ryazan and died in 1922 in St. Pe-
tersburg.
This student of Tchebychev, Pafnutii
Lvovichmadeimportantcontributionsto the
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field of probability calculus. He gave a rig-
orous proof of the central limit theorem.
Through his works on Markov chains, the
concept of Markovian dependence evolved
into the modern theory and application of
random processes. The globalism of his
work has influenced the development of
probability and international statistics.
He studied mathematics at St. Petersburg
University, where he received his bach-
elor degree, and his doctorate in 1878.
He then taught, continuing the courses of
Tchebychev, Pafnutii Lvovich after Tcheby-
chev, P.L. left the university. In 1886, he was
elected member of the School of Mathe-
matics founded by Tchebychev, P.L. at the
St. Petersburg Academy of Sciences. He
became a full member of the Academy in
1886 and in 1905 retired from the university,
where he continued teaching.
Markov and Liapunov were famous students
of Tchebychev, P.L. and were ever striving to
establishprobabilityasanexactandpractical
mathematical science.
The first appearance of Markov chains in
Markov’s work happened in Izvestiia (Bul-
letin) of the Physico-Mathematical Soci-
ety of Kazan University. Markov complet-
ed the proof of the central limit theorem that
Tchebychev started but did not finish. He
approached it using the method of moments,
and the proof was published in the third edi-
tion of Ischislenie Veroiatnostei (Probability
Calculus).

Principal work of Markov, Andrei Andree-
vich:

1899 Application des functions continues
au calcul des probabilités, Kasan. Bull.
9(2), 29–34.

FURTHER READING
� Central limit theorem
� Gauss–Markov theorem

REFERENCES
Markov, A.A.: Application des functions

continues au calcul des probabilités.
Kasan. Bull. 9(2), 29–34 (1899)

Matrix

A rectangular table with m lines and n
columns is called an (m×n) matrix. The ele-
ments figuring in the table are called coeffi-
cients or components of the matrix.

MATHEMATICAL ASPECTS
A matrix can be represented as follows:

A =

⎡
⎢⎢⎢⎣

a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn

⎤
⎥⎥⎥⎦ .

An element is characterized by its value
and position. Therefore aij is an element of
matrix A where i indicates the line number
and j the column number. A matrix with m
lines and n columns is of order (m×n).There
are different types of matrices:
• Square matrix of order n

A matrix is called a square matrix of order
n if it hasasmany linesascolumns(denot-
ed by n).

• Null matrix
The matrix on which all the elements are
null is called the null matrix. It will be
denoted by O.

• Identity matrix
For any square matrix of order n, the ele-
ments that have the same index for the line
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as for the column [meaning the elements
in position (i, i)] form the main diagonal.
An identity matrix is a square matrix
that has “1” on the main diagonal and
“0” everywhere else. It is denoted by I or
sometimes by In, where n is the order of
the identity matrix.

• Symmetric matrix
A square matrix A is symmetric if A = A′,
where A′ is the transpose of matrix A.

• Antisymmetric matrix
A square matrix A is antisymmetric if A=
−A′, where A′ is the transpose of matrix
A; this condition leads to the elements on
the main diagonal aij for i = j being null.

• Scalar matrix
A square matrix A is called a scalar matrix
if

aij = β for i = j ,

aij = 0 for i �= j ,

where β is a scalar.
• Diagonal matrix

A square matrix A is called a diagonal
matrix if aij = 0 for i �= j and where aij

is any number.
• Triangular matrix

A square matrix A is called upper triangu-
lar if aij = 0 for i > j, or lower triangular
if aij = 0 for i < j.

Operations on Matrices
• Addition of matrices

IfA = (aij)andB = (bij)aretwomatrices
of order (m× n), then their sum A+ B is
defined by the matrix C = (cij) of order
(m×n) of which each element is the sum
of corresponding elements of A and B:

C = (
cij

) = (
aij + bij

)
.

• Multiplication of a matrix by a scalar
If α is a scalar and A a matrix, the product
αA is the matrix of the same order as A

obtained by multiplying each element aij

of A by the scalar α:

αA = Aα = (
α · aij

)
.

• Multiplication of matrices
Let A and B be two matrices; the product
AB is defined if and only if the number of
columns of A is equal to the number of
lines of B. If A is of order (m × n) and
B of order (n× q), then the product AB is
defined by the matrix C of order (m× q)

whose elements are obtained by calculat-
ing:

cij =
n∑

k=1

aik · bkj

for i = 1, . . . , m and j = 1, . . . , q .

Thismeans that theelementsof the ith line
of A are multiplied by the corresponding
elements of the jth column of B, and the
results are added.

• Integer power of square matrices
Let A be a square matrix; if p is a positive
integer, the pth power of A is defined by:

Ap = A · A · . . . · A p times .

Normally, for p = 0, we pose A0 = I,
where I is the identity matrix of the same
order as A.

• Square root of a diagonal matrix
Let A be a diagonal matrix of nonnegative
coefficients. We denote by

√
A the square

root of A, defined by the diagonal matrix
of thesameorderasA, inwhichwereplace
each element by its square root:

√
A =

⎡
⎢⎢⎢⎣

√
a11 0 . . . 0
0

√
a22 . . . 0

...
...

. . .
...

0 . . . 0
√

ann

⎤
⎥⎥⎥⎦ .
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DOMAINS AND LIMITATIONS
The use of matrices, or generally matrix cal-
culus, is widely used in regression analysis,
in analysis of variance, and in many other
domains of statistics. It allows to describe in
the most concise manner a system of equa-
tions and facilitates greatly the notations.
For the same reasons, the matrices appear
in analyses of data where we generally
encounter large data tables.

EXAMPLES
Let A and B be two square matrices of
order 2:

A =
[

1 2
1 3

]
and B =

[
6 2
−2 1

]
.

The sum of two matrices is defined by:

A+ B =
[

1 2
1 3

]
+

[
6 2
−2 1

]

=
[

1+ 6 2+ 2
1− 2 3+ 1

]

=
[

7 4
−1 4

]
.

The multiplication of matrix A by 3 gives:

3 ·A = 3 ·
[

1 2
1 3

]
=

[
3 · 1 3 · 2
3 · 1 3 · 3

]

=
[

3 6
3 9

]
.

The matrix product of A and B equals:

A · B =
[

1 2
1 3

]
·
[

6 2
−2 1

]

=
[

1 · 6+ 2 · (−2) 1 · 2+ 2 · 1
1 · 6+ 3 · (−2) 1 · 2+ 3 · 1

]

A · B =
[

2 4
0 5

]
.

Remark: A · B and B · A are generally not
equal, which illustrates the noncommutativ-
ity of the matrix multiplication.
The square of matrix A is obtained by mul-
tiplying A by A. Thus:

A2 = A · A =
[

1 2
1 3

]
·
[

1 2
1 3

]

=
[

12 + 2 · 1 1 · 2+ 2 · 3
12 + 3 · 1 1 · 2+ 3 · 3

]

A2 =
[

3 8
4 11

]
.

Let D be the following diagonal matrix of
order 2:

D =
[

9 0
0 2

]
.

We define the square root of square matrix
D, denoted

√
D, by:

√
D =

[ √
9 0

0
√

2

]
=

[
3 0

0
√

2

]
.

FURTHER READING
� Correspondence analysis
� Data analysis
� Determinant
� Hat matrix
� Inertia matrix
� Inverse matrix
� Multiple linear regression
� Regression analysis
� Trace
� Transpose

REFERENCES
Balestra, P.: Calcul matriciel pour

économistes. Editions Castella, Albeuve,
Switzerland (1972)
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Graybill, F.A.: Theory and Applications of
the Linear Model. Duxbury, North Scit-
uate, MA (Waldsworth and Brooks/Cole,
Pacific Grove, CA ) (1976)

Searle, S.R.: Matrix Algebra Useful for
Statistics. Wiley, New York (1982)

Maximum Likelihood

The term maximum likelihood refers to
a method of estimating parameters of a pop-
ulation from a random sample. It is applied
when we know the general form of distri-
bution of the population but when one or
more parameters of this distribution are
unknown. The method consists in choosing
an estimator of unknown parameters whose
values maximize the probability of obtain-
ing the observed sample.

HISTORY
Generally the maximum likelihood method
is attributed to Fisher, Ronald Aylmer.
However, the method can be traced back
to the works of the 18th-century scientists
Lambert, J.H. and Bernoulli, D. Fisher, R.A.
introduced the method of maximum likeli-
hood in his first statistical publications in
1912.

MATHEMATICAL ASPECTS
Consider a sample of n random variables
X1, X2, . . . , Xn, where each random vari-
able is distributed according to a probabi-
lity distribution giving a density function
f (x, θ), with θ ε �, where � is the param-
eter space. The joint density function of
X1, X2, . . . , Xn is

f (x1, θ) · f (x2, θ) · . . . · f (xn, θ) .

For fixed x, this function is a function of θ

and is called likelihood function L:

L (θ; x1, x2, . . . , xn) = f (x1, θ) · f (x2, θ)

· . . . · f (xn, θ) .

An estimator is the maximum likelihood
estimator of θ̂ if it maximizes the likeli-
hood function. Note that this function L can
be maximized by setting to zero the first
partial derivative by θ and resolving the
equations thus obtained. Moreover, when
each function L and lnL are maximized
for each value of θ , it is often possible to
resolve:

∂ ln L (θ; x1, x2, . . . , xn)

∂θ
= 0 .

Finally, the maximum likelihood estima-
tors are not always unique and this method
does not always give unbiased estima-
tors.

EXAMPLES
Let X1, X2, . . . , Xn be a random sample com-
ing from the normal distribution with the
mean μ and the variance σ 2. The method
of estimation of maximum likelihood con-
sists in choosing as estimators of unknown
parameters μ and σ 2 the values that maxi-
mize the probability of having the observed
sample.
Thus maximizing the likelihood function
entails the following:

L
(
μ, σ 2; x1 . . . , xn

)

= 1(
σ
√

2π
)n exp

⎛
⎜⎜⎝
−

n∑
i=1

(xi − μ)2

2σ 2

⎞
⎟⎟⎠ ,
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or, which is the same thing, its natural loga-
rithm:

ln L = ln

⎡
⎢⎢⎣

1(
σ
√

2π
)n

· exp

⎛
⎜⎜⎝
−

n∑
i=1

(xi − μ)2

2σ 2

⎞
⎟⎟⎠

⎤
⎥⎥⎦

= ln
(
σ
√

2π
)−n −

n∑
i=1

(xi − μ)2

2σ 2

= ln (2π)−
n
2 + ln (σ )−n

−

n∑
i=1

(xi − μ)2

2σ 2

= −n

2
· ln (2π)− n · ln(σ )

−

n∑
i=1

(xi − μ)2

2σ 2 .

We set equal to zero the partial derivatives
∂ ln L

∂μ
and

∂ ln L

∂σ
:

∂ lnL

∂μ
= 1

σ 2 ·
n∑

i=1

(xi − μ) = 0 , (1)

∂ lnL

∂σ
= − n

σ
+ 1

σ · σ 2 ·
n∑

i=1

(xi − μ)2

= 0 .

(2)

From (1) we deduce:

1

σ 2 ·
n∑

i=1

(xi − μ) = 0 ,

n∑
i=1

(xi − μ) = 0 ,

n∑
i=1

xi − n · μ = 0 ,

μ̂ = 1

n
·

n∑
i=1

xi = x̄ .

Thusfor thenormal distribution, thearith-
metic mean is the maximum likelihood esti-
mator.
From (2) we get:

− n

σ
+ 1

σ · σ 2 ·
n∑

i=1

(xi − μ)2 = 0 ,

1

σ · σ 2
·

n∑
i=1

(xi − μ)2 = n

σ
,

σ̂ 2 = 1

n
·

n∑
i=1

(xi − μ)2 .

We find in this case as maximum likelihood
estimator the empirical variance of the sam-
ple.
Note that the maximum likelihood estima-
tion for the mean is without bias and those of
the variance are biased (divided by n instead
of n− 1). We find that for the normal distri-
bution, the mean and variance of the sam-
ple are the maximum likelihood estimators
of the mean and variance of the population.
This is not necessarily true for other dis-
tributions: consider, for example, the case
of the uniform distribution in the interval
[a, b], where a and b are unknown and where
the parameter to be estimated is the mean of
the distribution μ = (a+ b) /2. We can ver-
ify that the estimator of the maximum like-
lihood of μ equals:

μ̂ = x1 + xn

2
,

where x1 and xn are the smallest and
the largest observations of the sample
(x1, x2, . . . , xn), respectively. This estimator
is the middle point of the interval with the
limits x1 and xn. We see that in this case, the
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maximum likelihood estimator is different
from the mean of the sample:

μ̂ �= x̄ .

FURTHER READING
� Estimation
� Estimator
� Likelihood ratio test
� Robust estimation

REFERENCES
Fisher, R.A.: On an absolute criterium for

fitting frequency curves. Mess. Math. 41,
155–160 (1912)

Mean

The mean of a random variable is a central
tendency measureof thisvariable. It isalso
called the expected value. In practice, the
term mean is often used in the meaning of
the arithmetic mean.

HISTORY
See arithmetic mean.

MATHEMATICAL ASPECTS
Let X be a continuous random variable
whose density function is f (x). The mean
μ of X, if it exists, is given by:

μ =
∫

x · f (x) dx .

The mean of a discrete random variable X of
probability function P (X = x), if it exists,
is given by:

μ =
∑

x · P (X = x) .

DOMAINS AND LIMITATIONS
Empirically, the determination of the arith-
metic mean of a set of observations gives
us a measure of the central value of this set.
This measure gives us an estimation of the
mean μ of random variable X from which
the observations are given.

FURTHER READING
� Arithmetic mean
� Expected value
� Measure of central tendency
� Measure of kurtosis
� Measure of skewness
� Weighted arithmetic mean

Mean Absolute Deviation

The mean deviation of a set of quantitative
observations is a measure of dispersion
indicating the mean of the absolute values
of the deviations of each observation with
respect to a measure of position of the
distribution.

HISTORY
See L1 estimation.

MATHEMATICAL ASPECTS
Consider x1, x2, . . . , xn a set of n quantities or
of n observations related to a quantitative
variable X. According to the definition, the
mean deviation is calculated as follows:

EM =

n∑
i=1
|xi − x̄|

n
,

where x̄ is the arithmetic mean of the obser-
vations. When the observations are ordered
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in a frequency distribution, the mean devi-
ation is calculated as follows:

EM =

k∑
i=1

fi · |xi − x̄|
k∑

i=1
fi

,

where

xi represents the different values of the
variable,

fi is the frequencies associated to these
values, and

k is the number of different values.

DOMAINS AND LIMITATIONS
The mean absolute deviation is a measure
of dispersion more robust than the standard
deviation.

EXAMPLES
Fivestudents successively passed two exams
for which they obtained the following
grades:
Exam 1:

3.5 4 4.5 3.5 4.5 x̄ = 20

5
= 4

Exam 2:

2.5 5.5 3.5 4.5 4 x̄ = 20

5
= 4

The arithmetic mean x̄of the grades is iden-
tical for both exams. Nevertheless, the vari-
ability of the grades (or the dispersion) is not
the same.
For exam 1, the mean deviation is equal to:

Mean
deviation

= |3.5− 4|
5

+ |4− 4|
5

+ |4.5− 4|
5

+ |3.5− 4|
5

+ |4.5− 4|
5

= 2

5
= 0.4 .

Forexam2, themeandeviation ismuchhigh-
er:

Mean
deviation

= |2.5− 4|
5

+ |5.5− 4|
5

+ |3.5− 4|
5

+ |4.5− 4|
5

+ |4− 4|
5

= 4

5
= 0.8 .

The grades of the second exam are therefore
moredispersed around thearithmeticmean
than the grades of the first exam.

FURTHER READING
� L1 estimation
� Measure of dispersion
� Standard deviation
� Variance

Mean Squared Error

Let θ̂ be an estimator of parameter θ .
The squared error in estimating θ by θ̂ is(
θ − θ̂

)2
.

The mean squared error (MSE) is the mathe-
matical expectation of this value:

MSE(θ̂) = E

[(
θ − θ̂

)2
]

.

We can prove that the mean squared error
equals the sum of the variance of the esti-
mator and of the square of the bias:

MSE(θ̂) = Var
(
θ̂
)
+

(
E

[
θ̂
]
− θ

)2
.

Thus when the considered estimator is with-
out bias, the mean squared error corresponds
exactly to the variance of the estimator.
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HISTORY
In the early 19th century, de Laplace,
Pierre Simon (1820) and Gauss, Carl
Friedrich (1821) compared the estimation
of an unknown quantity, based on obser-
vations with random errors, with a chance
game. They drew a parallel between theerror
of the estimated value and the loss due to
such a game. Gauss, Carl Friedrich proposed
ameasureof inexactitude, thesquareoferror.
He recognized that his choice was random,
but he justified it by the mathematical sim-
plicity of the function “make the square”.

MATHEMATICAL ASPECTS
Let X1, X2, . . . , Xn a sample of dimension n
and θ̂ anestimatorofparameterθ ; thedevi-
ation (squares) of the estimation is given by(
θ − θ̂

)2
.

The mean squared error is defined by:

MSE
(
θ̂
)
= E

[(
θ − θ̂

)2
]

.

We can prove that:

MSE
(
θ̂
)
= Var

(
θ̂
)
+

(
E

[
θ̂
]
− θ

)2
,

that is, the mean squared error equals the
sum of the variance of the estimator and the
square of the bias.
In fact:

MSE(θ̂ ) = E

[(
θ − θ̂

)2
]

= E

[(
θ − E

[
θ̂
]
+ E

[
θ̂
]
− θ̂

)2
]

= E[
(
θ − E

[
θ̂
])2 +

(
E

[
θ̂
]
− θ̂

)2

+ 2 ·
(
θ − E

[
θ̂
])
·
(

E
[
θ̂
]
− θ̂

)
]

= E

[(
θ − E

[
θ̂
])2

]
+ E

[(
E

[
θ̂
]
−θ̂

)2
]

+ 2 ·
(
θ − E

[
θ̂
])
· (E

[
θ̂
]
− E

[
θ̂
]
)

= E

[(
E

[
θ̂
]
− θ̂

)2
]
+

(
θ − E

[
θ̂
])2

= Var
(
θ̂
)
+ (bias)2 ,

where the bias is E[θ̂]− θ .
Thus when the estimator θ̂ is without bias,
that is, E[θ̂] = θ , we get:

MSE
(
θ̂
)
= Var

(
θ̂
)

.

The efficiency of an estimator is inversely
proportional to its mean squared error.
We say that the estimator θ̂ is consistent if

lim
n→∞MSE(θ̂) = 0 .

In this case the variance and the bias of the
estimator tendto0whenthenumberofobser-
vations n tends to infinity.

DOMAINS AND LIMITATIONS
Certain authors prefer to use the mean devi-
ation in absolute value defined by E[|θ−θ̂|],
where θ̂ is the estimator of parameter θ .
The disadvantage of the last definition is at
the levelofmathematicalproperties,because
the function of absolute value cannot be dif-
ferentiated everywhere.

EXAMPLES
We consider a multiple linear regression in
matrix form:

Y = X · β + ε ,

where
Y is a vector of order n (n observations of

the independent variable),
X is a given matrix n× p,
β is the vector of order p of the coefficients

to be determined, and
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ε is the vector of errors that we suppose are
independentandeachfollowinganormal
distribution with mean 0 and variance
σ 2.

The vector β̂ = (X′ ·X)−1 ·X′ ·Y gives an
estimator without bias of β.
We then obtain:

MSE
(
β̂
)
= Var

(
β̂
)

.

FURTHER READING
� Bias
� Estimator
� Expected value
� Variance

REFERENCES
Gauss, C.F.: In: Gauss’s Work (1803–

1826) on the Theory of Least Squares.
Trans. Trotter, H.F. Statistical Techniques
Research Group, Technical Report No. 5.
Princeton University Press, Princeton, NJ
(1821)

Laplace, P.S. de: Théorie analytique des
probabilités, 3rd edn. Courcier, Paris
(1820)

Measure
of Central Tendency

A measure of central tendency is a statis-
tic that summarizes a set of data relative
to a quantitative variable. More precisely,
it allows to determine a fixed value, called
a central value, around which the set of data
has the tendency to group. The principal
measures of central tendencies are:
• Arithmetic mean
• Median
• Mode

MATHEMATICAL ASPECTS
The mean μ, median Md, and mode Mo are
measures of the center of distribution.
In a symmetric distribution, the mean, medi-
an, and mode coincide in a common value.
This value gives the center of symmetry of
the distribution. For a symmetric unimodal
distribution, we have:

μ = Md = Mo .

In thiscase, an estimationof thecenterof the
distribution can be given by the mean, medi-
an, or mode.
In an asymmetric distribution, the different
measures of central tendency have different
values. (Their comparison can be used as
a measure of skewness.)
For a unimodal distribution stretched to the
right, we generally have:

μ ≥ Md ≥ Mo .

This relation is inverted when the distri-
bution is unimodal and stretched to the left:

μ ≤ Md ≤ Mo .

For a unimodal distribution, moderately
asymmetric, it was empirically proved that
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the mode Mo, the median Md, and the mean
μ often satisfy the following relation, in an
approximative manner:

Mo − μ = 3 · (Md − μ) .

DOMAINS AND LIMITATIONS
In practice, the choice of the measure allow-
ing one to characterize at best the center of
a set of observations depends on the specif-
ic features of the statistical studies and the
information we wish to obtain.
Let us compare the arithmetic mean, the
mode, and the median depending on differ-
ent criteria:
1. The arithmetic mean:
• Depends on the value of all observa-

tions.
• Is simple to interpret.
• Is the most familiar and the most used

measure.
• Is frequently used as an estimator of

the mean of the population.
• Has a value that can be falsified by the

outliers.
• In addition, the sum of squared devia-

tions of each observation xi of a set of
data and a value α is minimal when α

equals the arithmetic mean:

min
α

n∑
i=1

(xi − α)2

⇒ α = arithmet. mean

2. The median:
• Is easy to determine because only one

data classification is needed.
• Is easy to understand but less used than

the arithmetic mean.
• Is not influenced by outliers, which

gives it an advantage over the arith-

metic mean, if the series really have
outliers.

• Is used as an estimator of central val-
ues of a distribution, especially when
it is asymmetric or has outliers.

• The sum of squared deviations in abso-
lute value between each observation xi

of a set of data and a valueα is minimal
when α equals the median:

min
α

n∑
i=1

|xi − α| ⇒ α = Md .

3. The mode:
• Has practical interest because it is the

most represented value of a set.
• Is in any event a rarely used measure.
• Has a value that is little influenced by

outliers.
• Has a value that is strongly influenced

by the fluctuations of a sampling. It
can strongly vary from one sample to
another.

In addition, there can be many (or no) modes
in a data set.

FURTHER READING
� Arithmetic mean
� Expected value
� Mean
� Measure of skewness
� Median
� Mode
� Weighted arithmetic mean

REFERENCES
Stuart,A.,Ord,J.K.:Kendall’sadvancedthe-

oryofstatistics.Vol. I.Distribution theory.
Wiley, New York (1943)

Dodge, Y.: Premiers pas en statistique.
Springer, Paris (1999)
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Measure of Dispersion

A measure of dispersion allows to describe
a set of data concerning a particular vari-
able, giving an indication of the variability
of the values inside the data set. The mea-
sure of dispersion completes the description
given by the measure of central tendency
of a distribution.
If we observe different distributions, we can
say that for some of them, all the data are
grouped in amoreor less shortdistance from
the central value; for others the distance is
much greater.
We can class the measures of dispersion into
two groups:
1. Measuresdefinedbythedistancebetween

two representative values of the distri-
bution:
• Range, also called the interval of vari-

ation

• Interquartile Range

2. Measures calculated depending on devia-
tions of each datum from a central value:
• Geometric deviation

• Median deviation

• Mean absolute deviation

• Standard deviation
Among measures of dispersion, the most
importantand mostused is thestandard devi-
ation.

DOMAINS AND LIMITATIONS
Except for the descriptive aspect allow-
ing one to characterize a distribution or
compare many distributions, the knowl-
edge of the dispersion or of the variabil-
ity of a distribution can have a consider-
able practical interest. What would happen
if our decisions were based on the mean
alone.

• Roads would be constructed to get only
the mean traffic, and the traffic jams dur-
ing holidays would be immeasurable.

• Houses would be constructed in such as
way as to resist the mean force of wind
with the consequences that would result
in the case of a strong storm.

These examples show that in certain cas-
es, having a measure of central tenden-
cy is not enough to be able to make a reli-
able decision. Moreover, the measure of
dispersion is an indication of the charac-
ter of the central tendency measure. The
smaller the variability of a given set, the
more the value of the measure of central
tendency will be representative of the data
set.

FURTHER READING
� Coefficient of variation
� Interquartile range
� Mean absolute deviation
� Measure of central tendency
� Range
� Standard deviation
� Variance

REFERENCES
Dodge, Y.: Premiers pas en statistique.

Springer, Paris (1999)

Measure of Dissimilarity

The measure of dissimilarity is a distance
measure that assigns to pair of objects a real
positive (or zero) number.
If we suppose, for example, that each object
is characterized by n variables, a measure
of dissimilarity between two objects would
consist in giving the number of different
points that represent two considered objects.
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This number is a whole number between 0
and n and equals n when two objects have
no common point.

MATHEMATICAL ASPECTS
Let � be a population on which we would
like to define a measure of dissimilarity s′.
We call a measure of dissimilarity s′ any
mapping of � × � to the real positive (or
zero) numbers, satisfying the following two
properties:
• For each w, w′ in �, s′(w, w′) = s′(w′, w);

that is, s′ is symmetric.
• For each w in �, s′(w, w) = 0, that is,

the measure of dissimilarity between an
object and itself is zero.

DOMAINS AND LIMITATIONS
As a measure of dissimilarity s′ on a finite
population, � is a limited application, that
is:

max
{
s′

(
w, w′

) ;w, w′ ∈ �
} = m <∞ .

We can define a measure of similarity on
the population � by:

s
(
w, w′

) = m− s′
(
w, w′

)
.

These two notions, measure of similarity and
measure of dissimilarity, can be considered
complementary.
We use the measure of dissimilarity to
resolve the problems of classification,
instead of a distance that is a particular
case of it and that has the so-called property
of triangular inequality.

EXAMPLES
We consider the population � composed of
three flowers

� = {w1, w2, w3}
on which the following three variables were
measured:

• v1: color of flower
• v2: number of petals
• v3: number of leaves
where

v1 is summarized here as a dichotomous
variable because we consider only red
(R) and yellow (Y) flowers and

v2 and v3 arediscrete random variables tak-
ing their values in cardinal numbers.

We have observed:

Variables

�

v1 v2 v3
w1 R 5 2
w2 Y 4 2
w3 R 5 1

We determine for each couple of flowers the
number of points that distinguish them. We
see that we have a measure of dissimilarity
for the set of three flowers:

s′ (w1, w1) = s′ (w2, w2) = s′ (w3, w3) = 0

because a flower is not different from itself;

s′ (w1, w2) = s′ (w2, w1) = 2

because the color and the number of petals
are different at w1 and w2;

s′ (w1, w3) = s′ (w3, w1) = 1

as only the number of leaves allows to dis-
tinguish w1 from w3;

s′ (w2, w3) = s′ (w3, w2) = 3

as w2 and w3 are different in each of the three
studied characteristics.
With thehelpof thesepossiblevalues,wecan
deduce that s′ satisfies the two properties of
a measure of dissimilarity.
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FURTHER READING
� Classification
� Distance
� Measure of similarity
� Population

REFERENCES
Celeux,G.,Diday,E.,Govaert,G.,Lecheval-

lier, Y., Ralambondrainy, H.: Classifi-
cation automatique des données—aspects
statistiques et informatiques. Dunod,
Paris (1989)

Hand, D.J.: Discrimination and classifi-
cation. Wiley, New York (1981)

Measure of Kurtosis

The measures of kurtosis are a part of the
measures of form and characterize an aspect
of the form of a given distribution. More pre-
cisely, they characterize the degree of kurto-
sis of the distribution toward a normal distri-
bution. Certain distributions are close to the
normal distribution without being totally
identical. It is very useful to be able to test if
the form of the distribution represents a devi-
ation from a kurtosis of the normal distri-
bution.
We talk about a platicurtical distribution if
the curve is more flattened than the normal
curve and of a leptocurtical distribution if it
is sharper than the normal curve.
To test the kurtosis of a curve, we use the
coefficient of kurtosis.

MATHEMATICAL ASPECTS
Given a random variable X with probability
distribution fx the coefficient of kurtosis is
defined as:

γ2 = μ4

σ 4
− 3 ,

whereμ4 stands for the fourth momentabout
themean, andσ 4 is thesquared variance.The
sample kurtosis is obtained by using sam-
pling analogues, that is:

γ̂ = μ̂4

σ̂ 4
− 3 .

FURTHER READING
� Coefficient of kurtosis
� Measure of shape
� Measure of skewness

REFERENCES
Joanes, D.N. & Gill, C.A.: Comparing mea-

sures of samp skewness and kurtosis,
JRSS.D 47(1), 183–189 (1998)

Measure of Location
A measure of location (or of position) is
a measure that proposes to synthesize a set of
statistical data by only one fixed value, high-
lighting aparticularpointof thestudied vari-
able. The most frequently used measures of
position are:
• Measures of central tendency (mean,

mode, median) that tend to determine
the center of a set of data.

• The quantiles (quartile, decile, centile),
which tend todeterminenot thecenter,but
a particular position of a subset of data.

DOMAINS AND LIMITATIONS
The measures of location, as well as those of
dispersion and of form, are used especially
to compare many sets of data or many fre-
quency distributions.

FURTHER READING
� Measure of central tendency
� Quantile
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Measure of Shape

We can try to characterize the form of a fre-
quency distribution with the help of appro-
priate coefficients. Certain frequency distri-
butions are close to the normal distribution
(“bell curve”). These distributions can also
represent an asymmetry or a kurtosis from
the normal curve. The two measures of form
are:
• Measure of asymmetry
• Measure of kurtosis.

HISTORY
Pearson, Karl (1894, 1895) was the first to
test the differences between certain distri-
butions and the normal distribution. We
have shown that deviations from the normal
curve can be characterized by moments of
order 3 and 4 of a distribution.
Before 1890, Gram, Jorgen Pedersen and
Thiele, Thorvald Nicolai of Denmark devel-
oped a theory about the symmetry of fre-
quency curves. After Pearson, Karl pub-
lished his sophisticated and extremely inter-
esting system (1894, 1895), many articles
were published on this subject.

FURTHER READING
� Measure of dispersion
� Measure of kurtosis
� Measure of location
� Measure of skewness

REFERENCES
Pearson, K.: Contributions to the mathe-

matical theory of evolution. I. In: Karl
Pearson’s Early Statistical Papers. Cam-
bridge University Press, Cambridge,
pp. 1–40 (1948). First published in 1894

as: On the dissection of asymmetrical fre-
quency curves. Philos. Trans. Roy. Soc.
Lond. Ser. A 185, 71–110

Pearson, K.: Contributions to the mathe-
matical theory of evolution. II: Skew
variation in homogeneous material. In:
Karl Pearson’s Early Statistical Papers.
Cambridge University Press, Cambridge,
pp. 41–112 (1948). First published in
1895 in Philos. Trans. Roy. Soc. Lond.
Ser. A 186, 343–414

Measure of Similarity
The measure of similarity is a distance mea-
sure assigns a real positive (or zero) number
correspond to a pair of objects of the studied
population. If we suppose, for example, that
each object is characterized by n variables,
a measure of similarity between two objects
would consist in giving the number of com-
mon points to two considered objects. This
number is a whole one between 0 and n and
equals n when the two objects are identical.

MATHEMATICAL ASPECTS
Let � be a population on which we would
like to define a measure of similarity s. We
call a measure of similarity s any mapping
from�×� to the realpositive (orzero)num-
bers, satisfying:
• For each w, w′ in �, s

(
w, w′

) = s
(
w′, w

)
,

that is, s is symmetric;
• For each w, w′ in �, with w �= w′

s (w, w) = s
(
w′, w′

)
> s

(
w, w′

)
,

that is, an object is more “similar” to itself
than to another object.

DOMAINS AND LIMITATIONS
As a measure of similarity s on a population,
� is a limited application, that is:
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max
{
s
(
w, w′

) ;w, w′ ∈ �
} =

s (w, w) <∞ ,

where w is any object of �; if we pose m =
s(w, w), thenwecandefineameasure of dis-
similarity of the population � by:

s′
(
w, w′

) = m− s
(
w, w′

)
.

These two notions, measure of similarity and
measure of dissimilarity, can be considered
complementary.
We use the measures of similarity, as well
as the measures of dissimilarity, for classi-
fication problems.

EXAMPLES
Let the population � be the forms of three
flowers

� = {w1, w2, w3}
on which we measure the three variables:
• v1: color of flower
• v2: number of petals
• v3: number of leaves
where

v1 is summarized here as a dichotomous
variable because we consider only red
(R) and yellow (Y) flowers and

v2 and v3 arediscrete random variables tak-
ing their values in cardinal numbers.

We have observed:

Variables

�

v1 v2 v3
w1 R 5 2
w2 Y 4 2
w3 R 5 1

We determine for each couple of flowers the
number of points that are common to them.
We see that we have a measure of similarity
of the set of three flowers:

s (w1, w1) = s (w2, w2) = s (w3, w3) = 3 ,

which corresponds to the number of vari-
ables;

s (w1, w2) = s (w2, w1) = 1

because the color and number of petals are
different at w1 and w2;

s (w1, w3) = s (w3, w1) = 2

as only the number of leaves allows us to dis-
tinguish w1 from w3;

s (w2, w3) = s (w3, w2) = 0

as w2 and w3 have no common points.
With thehelpof thesepossiblevalues,wecan
deduce that s satisfies the two properties of
a measure of similarity.

FURTHER READING
� Distance
� Measure of dissimilarity
� Population

REFERENCES
See measure of dissimilarity.

Measure of Skewness
In a symmetric distribution, the median,
arithmetic mean, and mode are in the same
central point. This is not true when the distri-
bution is skewed. In this case, the mode is
separate from the arithmetic mean, and the
median is between two of them. In conse-
quence, it is necessary to develop the mea-
suresof skewness to study thedegreeofdevi-
ation of the form of the distribution from the
symmetric distribution. The principal skew-
ness measures are:
• Yule and Kendall coefficient
• Coefficient of skewness
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MATHEMATICAL ASPECT
Given a random variable X with prob. distri-
bution fx, the coefficient of skewness is
defined as:

γ1 = μ3

σ 3

where μ3 stands for the third moment about
the mean, and σ 3 is the stand deviation.

HISTORY
See coefficient of skewness.

FURTHER READING
� Coefficient of skewness
� Measure of kurtosis
� Measure of shape
� Yule and Kendall coefficient

Median

Themedian isameasure of central tenden-
cy defined as the value that is in the center
of a set of ordered observations when it is in
increasing or decreasing order.
ForarandomvariableX, themedian,denoted
by Md, has the property that:

P (X ≤ Md) ≤ 1
2 and P (X ≥ Md) ≤ 1

2 .

Wefind then 50%of theobservationsoneach
side of the median:

If we have an odd number of observations,
the median corresponds to the values of the
middle observation. If we have an even num-
ber of observations, there is no unique obser-
vation in the middle. The median will be giv-
en by the arithmetic mean of the values of

two observations of the middle of ordered
observations.

HISTORY
In 1748, Euler, Leonhard and Mayer, Johann
Tobias proposed, independently, a method
that consists in dividing the observations of
a data set into two equal parts.

MATHEMATICAL ASPECTS
When the observations are given individual-
ly, the process of calculating the median is
simple:
1. Arrange the n observations in increasing

or decreasing order.
2. If the number of observations is odd:
• Find theobservationof themiddle n+1

2 .
• The median equals the value of the

middle observation.
3. If the number of observations is even:
• Find the two observations of the mid-

dle n
2 and n

2 + 1.
• The median equals the arithmetic

mean of the values of these two obser-
vations.

When we do not have individual observa-
tions but they are grouped into classes, the
median is determined as follows:
1. Determine the median class (the one that

contains the n
2 -th observation).

2. Calculate the median using the following
formula:

Md = L+
[ n

2 −
∑

finf

fMd

]
· c ,

where

L is the lower limit of the median
class,

n is the total number of observa-
tions,
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∑
finf is the sum of the frequencies

smaller than the median class,

fMd is the frequency of the median
class, and

c is the length of the interval of the
median class.

This formula is based on the hypothesis
according to which the observations are
uniformly distributed inside each class. It
also supposes that the lower and upper lim-
its of the median class are defined and
known.

Properties
The sum of deviations in absolute values
between each observation xi of a data set and
a valueα is minimal whenα equals the medi-
an:

minimize
α

n∑
i=1

|xi − α| ⇒ α = Md .

DOMAINS AND LIMITATIONS
In the calculation of the arithmetic mean,
we take into account thevalueof eachobser-
vation. Thus an outlier strongly influences
the arithmetic mean. On the other hand, in
the calculation of the median, we take into
account only the rank of the observations.
Thustheoutliersdonotinfluencethemedian.
When we have a strongly skewed frequen-
cy distribution, we are interested in choos-
ing the median as a measure of central ten-
dency and not the arithmetic mean in order
to neutralize the effect of the extreme val-
ues.

EXAMPLES
The median of a set of five numbers 42, 25,
75, 40, and 20 is 40 because 40 is the middle

number when the numbers are ordered:

20 25 40︸︷︷︸
median

42 75 .

If we add the number 62 to this set, the num-
ber of observations is even, and the median
equals the arithmetic mean of the two mid-
dle observations:

20 25 40 42︸ ︷︷ ︸
40+42

2 =41=median

62 75 .

We consider now the median of data grouped
into classes. Let us take, for example, the fol-
lowing frequency table that represents the
daily revenue of 50 grocery stores:

Class
(revenue
in euros)

Frequency fi
(number of
grocery stores)

Cumulated
frequency

500–550 3 3

550–600 12 15

600–650 17 32

650–700 8 40

700–750 6 46

750–800 4 50

Total 50

The median class is the class 600–650 as
it contains the middle observation (the 25th
observation).
Supposing that the observations are uni-
formly distributed in each class, the median
equals:

Md = 600+
50
2 − 15

17
· (650− 600)

= 629.41 .

This result means that 50% of the gro-
cery stores have daily revenues in excess of
629.41 euros and the other 50% have rev-
enues totaling less than 629.41 euros.
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FURTHER READING
� Mean
� Measure of central tendency
� Mode
� Quantile
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Median Absolute Deviation
The median absolute deviation of a set of
quantitative observations is a measure of
dispersion. It corresponds to themeanof the
absolute values of deviation of each observa-
tion relative to the median.

HISTORY
See L1 estimation.

MATHEMATICAL ASPECTS
Let x1, x2, . . . , xn be a set of n observa-
tions relative to a quantitative variable X.

The median absolute deviation, denoted by
EMAD, is calculated as follows:

EMAD =

n∑
i=1
|xi −Md|

n
,

where Md is the median of the observations.

DOMAINS AND LIMITATIONS
The median absolute deviation is a funda-
mental notion of the L1 estimation. The L1

estimation of a parameter of the measure
of central tendency θ is really a method of
estimation based on the minimum absolute
deviations of observations xi from param-
eter θ :

n∑
i=1

|xi − θ | .

The value that minimizes this expression is
the median of the sample. In the case of data
containing outliers, this method is more effi-
cient than the least-squares method.

FURTHER READING
� L1 estimation
� Measure of dispersion
� Standard deviation
� Variance

Method of Moments

The method of moments is used for esti-
mating the parameters of a distribution
from a sample. The idea is as follows. If
the number of parameters to be estimated
equals k, we pose the k first moments of
the distribution (whose expression depends
on unknown parameters) equal the corre-
sponding empirical moments, that is, to the
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estimators of the moments of order k cal-
culated on the sample. We should solve the
system of k equations with k unknown vari-
ables.

HISTORY
In the late 19th century, Pearson, Karl
used the method of moments to estimate the
parameters of a normal mixed model (with
parameters p1, p2, μ1, μ2, σ 2

1 , σ 2
2 ) given by

P (x) =
2∑

i=1

pi · gi (x) ,

where the gi are normally distributed with
the mean μi and variance σ 2

i . The method
was further developed and studied by
Chuprov, A.A. (1874–1926), Thiele, Thor-
vald Nicolai, Fisher, Ronald Aylmer, and
Pearson, Karl, among others.

MATHEMATICAL ASPECTS
Let θ1, . . . , θk be the k parameters to be esti-
mated for the random variable Xwith a given
distribution.
We denote by μj((θ1, . . . , θk)) = E

[
Xj

]
the

moment of order j of X expressed as a func-
tion of the parameters to be estimated.
The method of moments consists in solving
the following system of equations:

μj (θ1, . . . , θk) = mj for j = 1, . . . , k .

To distinguish between real parameters and
estimators, we denote the latter by θ̂1, . . . , θ̂k.

EXAMPLES
1. Let X be a random variable following an

exponential distribution with unknown
parameter θ . We have n observations
x1, . . . , xn of X, and we want to estimate
θ .

As the moment of order 1 is the mean of
the distribution, to estimate θ we should
equalize the theoretical and the empiri-
cal mean. We know that (see exponen-
tial distribution) the (theoretical) mean
equals 1

θ
. The desired estimator θ̂ satisfies

1
θ̂
= 1

n

n∑
i=1

xi.

2. According to the method of moments, the
mean μ and the variance σ 2 of a random
variable X following a normal distri-
bution are estimated by the empirical
mean x̄ and the variance

1

n

n∑
i=1

(xi − x̄)2

of a sample {x1, x2, . . . , xn} of X.

DOMAINS AND LIMITATIONS
First, we should observe if the system of
equations given previously has solutions.
It cannot have solutions if, for example,
the parameters to be estimated have one or
more particular constraints. In any case, the
method does not guarantee particularly effi-
cient estimators. For example, the estima-
tor found for the variance of a normal distri-
bution is biased.

FURTHER READING
� Chi-square distance
� Estimator
� Least squares
� Maximum likelihood
� Moment
� Parameter
� Sample

REFERENCES
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quency curves. Philos. Trans. Roy. Soc.
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Missing Data

Missing data occur in statistics when cer-
tain outcome are not present. This happens
when data are not available (the data were
destroyed by a saving error, an animal died
during an experiment, etc.).

HISTORY
Allan, F.E. and Wishart, J. (1930) were
apparently thefirst toconsider theproblemof
missing data in the analysis of experimental
design. Their works were followed by those
of Yates, Frank (1933).
Allan, F.E. and Wishart, J., as well as
Yates, F., tried to find an estimate of missing
data by the method of iteration. In a situation
where many observations are missing, the
proposed method does not give a satisfacto-
ry solution. Bartlett, M.S. (1937) used the

analysis of covariance to resolve the same
problem.
Since then, many other methods have
been proposed, among them the method of
Rubin, D.B. (1972). Birkes, D. et al. (1976)
presented an exact method for solving the
problem of missing data using the incidence
matrix. The generalized matrix approach
was proposed by Dodge, Y. and Majum-
dar, D. (1979). More details concerning
the historical aspects of missing data from
1933 to 1985 can be found in Dodge, Y.
(1985).

MATHEMATICAL ASPECTS
We can solve the problem of missing data
by repeating the experiment under the same
conditions and so obtain the values for the
missingdata.Suchasolution,despite thefact
that it is ideal, isnotalwayseconomicallyand
materially possible.
There exists also other approaches to solve
the problem of missing data in experiment-
al design. We mention the approach by the
generalized inverse or by the incidence
matrix, which indicates which observations
are missing in the design.

FURTHER READING
� Data
� Design of experiments
� Experiment
� Observation

REFERENCES
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Missing Data. Wiley, New York (1985)
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patterns. J. Stat. Comput. Simul. 9, 1–17
(1979)

Rubin, D.B.: A non-iterative algorithm for
least squares estimation of missing values
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Stat. 21, 136–141 (1972)
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riments when the field results are incom-
plete. Empire J. Exp. Agricult. 1, 129–142
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Missing Data Analysis

See missing data.

Mode

The mode is a measure of central tenden-
cy. The mode of a set of observations is the
value of the observation that have the high-
est frequency. According to this definition,
a distribution can have a unique mode (called
the unimodal distribution). In some situa-
tions a distribution may have many modes
(called the bimodal, trimodal, multimodal,
etc. distribution).

MATHEMATICAL ASPECTS
Consider a random variable X whose den-
sity function is f (x). Mo is a mode of the
distribution if f (x) has a local maximum at
Mo.
Empirically, the mode of a set of observa-
tions is determined as follows:
1. Establish the frequency distribution of

the set of observations.
2. The mode or modes are the values whose

frequency is greater or equals to the fre-
quency of the other observations.

For the distribution of observations
grouped into classes of the same range
(= maximum−minimum) whose limits are
known, the mode is determined as follows:
1. Determine themodalclasses—theclasses

with a frequency greater than or equal to
the frequencies of other classes. (If many
classeswith thesamefrequency,wegroup
these classes in such a way as to calculate
only one mode of this set of classes).

2. Calculate the mode Mo taking into
account the joint classes:

Mo = L+
(

d1

d1 + d2

)
· c ,

where

L is the smaller limit of the modal class,

d1 is the difference between the frequency
of the modal class and the frequency of
the previous class,

d2 is the difference between the frequency
of the modal class and the frequency of
the next class, and

c is the length of the modalclass, common
to all the classes.
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If the length of the classes is not identical,
the mode must be calculated by modifying
the division of the classes in order to obtain,
if possible, the classes of equal length.

DOMAINS AND LIMITATIONS
For a discrete variable, the mode has the
advantage of being easy to determine and
interpret. It isusedespeciallywhenthedistri-
bution is not symmetric.
For a continuous variable, the determination
of the mode is not always precise because it
depends on the grouping into classes. Gen-
erally, the mode is a good indicator of the
center of the data only if there is one dom-
inant value in the set of data. If there are
many dominant values, the distribution is
called plurimodal. In this case, the modes
are not the measure of central tendency.
A bimodal distribution generally indicates
that the considered population is in reali-
ty heterogeneous and is composed of two
subpopulations having different central val-
ues.

EXAMPLES
Let the set be the following numbers:

1 2 2 3 3 3 4 4 4 5 5 5 5 6 6 7 7 8 9 .

The frequency table derived from this set
is:

Values 1 2 3 4 5 6 7 8 9

Frequency 1 2 3 3 4 2 2 1 1

The mode of this set of numbers is 5 because
it appears with the greatest frequency (4).
Consider now the following frequency table,
which represents the daily revenues of 50
shops, grouped by class of revenue:

Class (revenue
in euros)

Frequency fi
(number of shops)

500–550 3

550–600 12

600–650 17

650–700 8

700–750 6

750–800 4

Total 50

We can immediately see that the modal class
is 600–650 because it has the greatest fre-
quency.
The mode is calculated as follows:

Mo = L1 +
(

d1

d1 + d2

)
· c

= 600+
(

5

5+ 9

)
· 50 = 617.86 .

Let us take once more the same example but
grouping the numbers into different classes:

Class (revenue
in euros)

Frequency fi
(number of shops)

500–600 15

600–650 17

650–700 8

700–800 10

Total 50

The classes do not have the same length. We
will do a new grouping to obtain classes of
the same length.
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Case 1
Let us take, for example, as reference the
class 600–650, whose length is 50, and sup-
pose that the revenues are uniformly dis-
tributed in a class.
The table producing this new grouping is the
following:

Class (revenue
in euros)

Frequency fi
(number of shops)

500–550 7.5

550–600 7.5

600–650 17

650–700 8

700–750 5

750–800 5

Total 50

The modal class is the class 600–650, and the
values of the mode are:

Mo = 600+
(

9.5

9.5+ 9

)
· 50 = 625.67 .

Case 2
We could also base our calculation on the
length of the first class; this yields the fol-
lowing table:

Class (revenue
in euros)

Frequency fi
(number of shops)

500–600 15

600–700 25

700–800 10

Total 50

The modal class is the class 600–700, and the
values of the mode are:

Mo = 600+
(

10

10+ 15

)
· 100 = 640 .

These results show that we should be careful
to the use of the mode because the obtained

results are different depending on how the
data are grouped into classes.

FURTHER READING
� Mean
� Measure of central tendency
� Measure of skewness
� Median

Model

A model is a theoretical representation of
a real situation. It is composed of mathe-
matical symbols. A mathematical model,
based on a certain number of observations
and hypotheses, tries to give thebestpossible
description of the phenomenon under study.
A mathematical model contains essential-
ly two types of elements: the directly or
indirectly observable variables that concern
the studied phenomenon and the param-
eters, which are fixed quantities, general-
ly unknown, that relate the variables among
them inside the model.

HISTORY
The notion of “model” first appeared in the
18th century, in three major problems:
1. Understanding the observed inequality

between the movements of Jupiter and
Saturn.

2. Determining and mathematically des-
cribing the movements of the moon.

3. Determining the shape of the earth.
These three problems used observations
fromastronomyandsometheoreticalknowl-
edge about gravitation. They occupied
many scientists, especially Euler, Leonhard
(1749), who first treated the problem, and
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Mayer, Tobias (1750), who was interested
in the movements of the moon. The third
problem was treated by Boscovich, Roger
Joseph and Maire, Christopher (1755).

MATHEMATICAL ASPECTS
There exist many types of models. Among
them, thedeterministmodel isamodelwhere
the relations are considered to be exact. On
the other hand, the stochastic model pre-
supposes that the relations are not exact but
established by a random process.
A stochastic model is principally deter-
mined by thenatureof independentvariables
(exogenous or explanatory). We speak about
continuous models when the independent
variables Xj are the quantitative continuous
variables. We try to express the dependent
variable Y (also called the endogenous or
response) by a function of the type:

Y = f
(
X1, . . . , Xp|β0, β1, . . . , βp−1

)+ ε ,

where the βj are the parameters (or coeffi-
cients) to be estimated and ε is a nonobserv-
able random error. Of this type of model, we
can distinguish linear models and nonlinear
models; the linearity is relative to the coeffi-
cients. A linear model can be written in the
form of a polynomial. For example:

Y = β0 + β1X + β2X2 + ε

is a linear model called “of the second order”
(the order comes from the greatest power of
variable X). The model

log V = β0 + β1

W

is also a linear model for parameters β0 and
β1. This model also becomes linear for vari-
ables posing:

Y = log V and X = 1

W
.

It gives:

Y = β0 + β1 · X .

On the other hand, the model

Y = β0

X + β1
+ ε

is a nonlinear model for the parameter β1.
There are many methods for estimating the
parameters of a model. Among these meth-
ods, we may cite the least-squares and the
L1 estimation methods.
Except for the continuous models, we talk
about discrete models when the studied pop-
ulation can be divided into subpopulations
on the basis of qualitative categorical vari-
ables (or factors) where each can have a cer-
tain number of levels. The type of model
depends on the established experimental
design. The objective of such a design is to
determine how the experimental conditions
influence theobserved valuesof the response
variable. We can distinguish different types
of discrete models:
• A model with fixed effects (model I) is

a linear model for which the factors are
fixed, that is, take a finite number of levels
all of which are represented in the estab-
lished experimental design. In this case,
the model can be written:

observed value =
⎛
⎝

linear function
of unknown
parameters

⎞
⎠

+ error ;

the errors are independent random vari-
ables mean equal to zero.

• A model with variable effects (model II)
isa linearmodel forwhich thestudied lev-
els of each factor were randomly chosen
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from a finite or nonfinite number of pos-
sible levels. In this case, we can write:

observed value = constant

+
(

linear function
of random variables

)
+ error ;

the random variables are independent
with mean equal to zero.

• A model with mixed effects (model III)
is a linear model that contains at the same
time fixed and random factors. Thus we
can write:

observed value =
⎛
⎝

linear function
of unknown
parameters

⎞
⎠

+
⎛
⎝

linear function
of random
variables

⎞
⎠+ error .

When the experimental design contains
a single factor, denoted by α, the model
can be written as:

Yij = μ+ αi + εij ,

i = 1, . . . , I and j = 1, . . . , ni ,

where I is the number of levels of a factor α,
ni is thenumberofobservationsateach level,
μ is the mean of the population, αi are the
effects associated to each level of the factor
α, and εij are the independent random errors,
normally distributed with mean to zero and
homogeneous variances σ 2.
Such a model can be of type I or type II,
dependingonthenatureofthefactorα: it isof
type I if the levels of the factorαare fixed and
if they all appear on the entire design. It is of
type II if α is a random variable independent
ofε, distributed according toany distribution
of zero mathematical expectancy and vari-

ance σ 2
α (if the levels of α are randomly cho-

sen from a finite or infinite number of possi-
ble levels).
When the experimental design contains
many factors, for example:

Yijk = μ+ αi + βj + (αβ)ij + εijk ,

i = 1, . . . , I ,

j = 1, . . . , J ,

and k = 1, . . . , nij ,

the model can be of type I (the level of all the
factors are fixed), II (all the factors are ran-
dom variables with the same restrictions as
in the previous model), or III (certain factors
havefixedlevelsandothersarevariable).The
term (αβ)ij represents here the effect of the
interaction between the I levels of the factor
α and the J levels of the factor β.
A model of type I can be analyzed using an
analysis of variance.

FURTHER READING
� Analysis of variance
� Dependent variable
� Design of experiments
� Independent variable
� Parameter
� Random variable
� Regression analysis
� Variable
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De Moivre, Abraham

Abraham de Moivre (1667–1754) first stud-
ied in Sedan and Saumur (both in France)
before continuing his studies in mathematics
and physics at the Sorbonne. Coming from
a Protestant family, he was forced to leave
France in 1685 due to the revocation of the
Edict of Nantes and was exiled to London.
After a rough start in his new homeland, he
was able to study mathematics. Hewas elect-
ed member of the Royal Society of London
in 1697.
His most important works were The Doc-
trine of Chances, which appeared in 1718
and was dedicated to questions that contin-
ue to play a fundamental role in modern
probability theory, and Miscellanea Analyt-
ica de Seriebus et Quadraturis, where for
the first time appeared the density func-
tion of the normal distribution in the con-
text of probability calculations for games
of hazard. Carl Friedrich Gauss took the
same density function and applied it to prob-
lems of measurement in astronomy. He also
made contributions to actuarial sciences and
mathematical analysis.

Principal works of Abraham De Moivre:

1718 The Doctrine of Chances: or,
A Method of Calculating the Proba-
bility of Events in Play. Pearson,
London.

1725 Annuities upon Lives. Pearson, Lon-
don.

1730 Miscellanea Analytica de Seriebus et
Quadraturis. Tonson and Watts, Lon-
don.

FURTHER READING
� De Moivre–Laplace theorem
� Normal distribution

De Moivre–Laplace Theorem
This theorem established the relation
between the binomial distribution with
parameters n and p and the normal distri-
bution for n that tends to infinity. Its utility
consists especially in the estimation of the
distribution function F (k) of the binomial
distribution by the distribution function of
the normal distribution, which is found to
be easier.

HISTORY
This theorem dates back to 1870, when
Pierre Simon de Laplace studied, with oth-
ers (among them de Moivre, Abraham),
problems related to the approximation of the
binomial distribution and to the theory of
errors.

MATHEMATICAL ASPECTS
Let X1, X2, . . . , Xn, . . . be a sequence of ran-
dom variables, independent and identical-
ly distributed, following a binomial distri-
bution with parameters n and p, where 0 <

p < 1.
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We consider the corresponding adjusted
variable Zn, n = 1, 2, . . . such as:

Zn = Xn − np√
npq

,

where np represents the mean of a binomi-
al distribution and

√
npq its variance (the

variable Zn corresponds to the normaliza-
tion of Xn).
The de Moivre–Laplace theorem is ex-
pressed as follows:

P (Zn ≤ x) −→n→∞ � (x) ,

where � is the distribution function of the
standard normal distribution.
The approximation can also be improved
using the factor of correction, “a half”.
Hence, the following approximation:

P (Xn ≥ x) ∼= 1−�

(
x− 1

2 − np√
npq

)

is better than those obtained without taking
into account the corrective factor 1

2 .

DOMAINS AND LIMITATIONS
This theorem is a particular case of the cen-
tral limit theorem. A binomial distri-
bution (such as was defined earlier) can be
written as a sum of n random variables dis-
tributed according to a Bernoulli distri-
bution of parameter p. The mean of a ran-
dom Bernoulli variable is equal to p and
its variance to p (1− p). The de Moivre–
Laplace theorem is easily deduced from the
central limit theorem.

EXAMPLES
Wewant to calculate theprobability ofmore
than 27 successes in a binomial experiment
of 100 trials, each trial having a probability
of success of p = 0.2. The desired binomial

probability can be expressed by the sum:

P (Xn > 27)

=
100∑

k=27

(
100

k

)
· (0.2)k(0.8)100−k .

The direct calculus of this probability
demands an evaluation of 74 terms, each
of the form

(
100

k

)
(0.2)k(0.8)100−k .

Using the de Moivre–Laplace theorem, this
probability can be approximately evaluated
taking into account the relation between the
binomial and normal distributions. Thus:

P (Xn > 27) ∼= 1−�

(
27− np√

npq

)

= 1−�

(
27− 100 · 0.2√

100 · 0.2 · 0.8

)

= 1−� (1.75) .

Referring to the normal table, we obtain
� (1.75) = 0.9599, and so:

P (Xn > 27) ∼= 0.0401 .

The exact value to 4 decimal places of the
probability is: P (Xn > 27) = 0.0558.
A comparison of the two values 0.0401 and
0.0558 shows that the approximation by the
normal distribution gives a result that is very
close to the exact value.
We obtain the following approximation
using the corrective factor:

P (Xn > x) ∼= 1−� (1.625) = 0.0521 .

The result is closer to the exact value 0.0558
than thoseobtained withoutusing thecorrec-
tive factor (0.0401).
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FURTHER READING
� Binomial distribution
� Central limit theorem
� Normal distribution
� Normalization
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Moment
We call the moment of order k of the random
variable X relative to any value x0 the mean
difference between the random variable and
x0, to the power k. If x0 = 0, we refer to
the moment (or initial moment) of order k.
If x0 = μ, where μ is the expected value
of random variable X, we refer to the central
moment of order k.

HISTORY
The concept of “moment” in statistics comes
from the concept of moment in physics

which isderived fromArchimedes (287–212
BC) discovery of the operating of the lever,
wherewespeak of themomentof forces.The
corrected formulas for the calculation of the
moments of grouped data were adapted by
Sheppard, W.F. (1886).

MATHEMATICAL ASPECTS
The initial moment of order k of a discrete
random variable X is expressed by:

E
[
Xk

]
=

n∑
i=1

xk
i P (xi) ,

if it exists, that is, if E
[
Xk

]
< ∞, where

P (x) is the probability function of the dis-
crete random variable X taking the n values
x1, . . . , xn.
In the case of a continuous random variable,
if the moment exists, it is defined by:

E
[
Xk

]
=

∫ ∞
−∞

xkf (x) dx ,

where f (x) is the density function of the
continuous random variable.
For k = 1, the initial moment is the same as
the expected value of the random variable
X (if this E(X) exists):

(X discrete) E [X] =
n∑

i=1

xiP (xi) ,

(X continuous) [X] =
∫ ∞
−∞

xf (x) dx .

The central moment of order k of a discrete
random variable X, if it exists, is expressed
by:

E
[
(X − E [X])k

]
=

n∑
i=1

(xi − E [X])k P (xi) .
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In the same way, in the case of a continuous
random variable, we have:

E
[
(X − E [X])k

]

=
∫ ∞
−∞

(x− E [X])k f (x) dx

if the integral is well defined.
It is evident that with any random variable X
having a finite mathematical expectancy, the
centered moment of order 1 is zero:

E [X − μ] =
n∑

i=1

(xi − μ) P (xi)

=
n∑

i=1

xiP (xi)− μ

n∑
i=1

P (xi)

= μ− μ = 0 .

On the other hand, if it exists, the central
moment of order 2 is the same as the vari-
ance of the random variable:

(X discrete) E
[
(X − μ)2

]

=
n∑

i=1

(xi − μ)2 P (xi) = Var (X) ,

(X continuous) E
[
(X − μ)2

]

=
∫ ∞
−∞

(x− μ)2 f (x) dx = Var (X) .

DOMAINS AND LIMITATIONS
The estimator of the moment of order k cal-
culated for a sample x1, x2, . . . , xn is denoted
by mk. It equals:

mk =

n∑
i=1

(xi − x0)
k

n
,

where n is the total number of observations.
Ifx0 = 0, then wehave themoment (or initial
moment) of order k.
If x0 = x̄, where x̄ is the arithmetic mean,
we have of the central moment of order k.

For the case where a random variable X
takes its values xi with the frequencies fi, i =
1, 2, . . . , h, themomentof orderk isgiven by:

mk =

h∑
i=1

fi (xi − x0)
k

h∑
i=1

fi

.

FURTHER READING
� Arithmetic mean
� Density function
� Expected value
� Probability function
� Random variable
� Variance
� Weighted arithmetic mean
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Monte Carlo Method

Any numerical technique for solving mathe-
matical problems that uses random or pseu-
dorandom numbers is called a Monte Car-
lo method. These mathematical or statistical
problems have no analytical solutions.

HISTORY
The name Monte Carlo comes from the city
of the same name in Monaco, famous for its
casinos. The roulette is one of the simplest
mechanisms for the generation of random
numbers.
According to Sobol, I.M. (1975), the Monte
Carlo method owes its existence to the
American mathematicians von Neumann,
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John (1951), Ulam, Stanislaw Marcin, and
Metropolis, Nicholas (1949). It was devel-
oped in around 1949, but it became practical
with the invention of computers.

EXAMPLES
Suppose that we like to compute the surface
of a figure S that is situated inside a square;
its side equals 1. We will generate N random
points inside the square. To do this, we note
the square on the system of perpendicular
axes whose origin is the lower left angle of
the square. This means that all the points that
we will generate inside the square will have
coordinates between 0 and 1. It is enough
to take uniform random variables to obtain
a point. The first random number will be
the abscissa and the second the ordinate.
In the following example, let us choose 40
random points. We will need two samples of
40 random numbers. The surface S that we
would like to estimate is the square of 0.75
of the side, in other words the exact value
equals 0.5625.
After producing of the 40 random points in
the unit square, it is sufficient to count the
number of points inside figure S (21 in this
case). The estimation of the searched sur-
face is obtained by the ratio 21

40 = 0.525.

It is possible to improve this estimate by per-
forming theexperimentmanytimesandtak-
ing the mean of the obtained surfaces.

FURTHER READING
� Generation of random numbers
� Jackknife method
� Random number
� Simulation
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Moving Average

We call the moving average of order k the
arithmetic mean calculated on k successive
values of time series. The rest of these arith-
metic means give the series of moving aver-
ages of order k. The process that consists in
replacing the initial series is called smooth-
ing of the time series.
Concerning the time series that are com-
prised of annual or monthly data, the aver-
ages take, respectively, the name of mov-
ing averages on k years or k months. When
we have monthly data, for example, calcu-
lating a moving average over 12 months, the
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obtained results correspond to the middle
of the considered period, at the end of the
sixth month (or on the first day of the sev-
enth month), instead of being affected in the
middle of a month as in the original data.
Wecorrect thisby making acentered moving
average over 12 months. Generally, a cen-
tered moving average of order k is calculated
making the moving average of order 2 of the
moving average of order k of the initial time
series.

HISTORY
See time series.

MATHEMATICAL ASPECTS
We have the time series Y1, Y2, Y3, . . ., YN ,
and we define the series of moving averages
of order k by the series of arithmetic means:

Y1 + Y2 + · · · + Yk

k
,

Y2 + Y3 + · · · + Yk+1

k
, . . . ,

YN−k+1 + YN−k+2 + · · · + YN

k
.

The sum of numerators is called moving
sums of order k.
We can use the weighted arithmetic means
with previously specified weights; the rest of
what is obtained in this way is called a series
of weighted moving averages of order k.

DOMAINS AND LIMITATIONS
The moving averages are used in the study of
time series, for the estimation of the secu-
lar tendency, of seasonal variations, and of
cyclic fluctuations.
The operation “moving average” as applied
to a time series allows to:

• Determine the seasonal variations in the
limits where they are rigorously periodi-
cal,

• Smooth irregular variations, and
• Approximately conserve theextraseason-

al movement.
Letusmention thedisadvantagesof themov-
ing average method:
• The data of the beginning and the end of

series are missing.
• Moving averages can cause cycles or oth-

er movements not present in the original
data.

• Moving averages are strongly influenced
by outliers and accidental values.

• When a graph of the studied time series
shows an exponential secular tendency
or, more generally, a strong curve, the
moving average method does not give
very precise results for the estimation of
extraseasonal movement.

EXAMPLES
With the time series 7, 2, 3, 4, 5, 0, 1 data,
we obtain the moving averages of order 3:

7+ 2+ 3

3
,

2+ 3+ 4

3
,

3+ 4+ 5

3
,

4+ 5+ 0

3
,

5+ 0+ 1

3
,

that is, 4, 3, 4, 3, 2.
In a moving average series, it is common
to localize each number on its relative posi-
tion to the original data. In this example, we
write:

Original data 7, 2, 3, 4, 5, 0, 1

Moving average

of order 3 4, 3, 4, 3, 2
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In the graph below each number of the mov-
ing average series is the arithmetic mean of
the three numbers immediately below it.

We propose to calculate the centered mov-
ing average over 4 years of themean monthly
production of oil in acountry. In thefirst step,
we calculate the moving sums over 4 years,
adding the data of 4 successive years. Then,
dividing each moving sum by 4, we obtain
moving averages over 4 years, the last cor-
responding to 1 January of the third yearcon-
sidered in different sums. Finally, we obtain
moving averages over 4 years, calculating
the arithmetic mean of two moving averages
over 4 successive years.

Average monthly oil production in a country in
millions of tons

Year Datum Moving
sum
over 4
years

Moving
average
over 4
years

Centered
moving
average
over 4
years

1948 41.4

1949 36.0

158.8 39.7

1950 39.3 39.6

158.0 39.5

1951 42.1 40.4

165.2 41.3

1952 40.6 40.7

160.4 40.1

1953 43.2 39.9

158.8 39.7

1954 34.5 39.3

155.6 38.9

1955 40.5 38.5

152.4 38.1

1956 37.4 38.2

153.2 38.3

1957 40.0

1958 35.3

FURTHER READING
� Arithmetic mean
� Time series
� Weighted arithmetic mean

Multicollinearity

Multicollinearity is a term used to describe
a situation where a variable is almost equal
to a linear combination of other variables.
Multicollinearity is sometimes present at
regression problems when there is a strong
corellation between the explanatory vari-
ables.
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The existence of linear or almost linear rela-
tions among independent variables causes
a big imprecision in the estimation of coef-
ficients of regression. If the relations are
rigorously linear, the coefficients would be
biased.

MATHEMATICAL ASPECTS
See ridge regression.

FURTHER READING
� Correlation coefficient
� Multiple linear regression

REFERENCES
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Multimodal Distribution

See frequency distribution.

Multinomial Distribution

Consider a random experiment with n
independent trials. Suppose that each trial
can only give one of event Ei, with a proba-
bility pi.
Random variable Xi represents the number
of appearances of event Ei.
The multinomial distribution with param-
eters n and pi is defined by the following
joint density function:

P (X1 = x1, X2 = x2, . . . , Xs = xs)

= n!
s∏

i=1
xi!

s∏
i=1

pxi
i ,

with the integers xi ≥ 0 such that
s∑

i=1

xi = n.

Indeed, the probability of obtaining the
sequence

E1, . . . , E1︸ ︷︷ ︸
x1

;E2, . . . , E2︸ ︷︷ ︸
x2

; . . . ;Es, . . . , Es︸ ︷︷ ︸
xs

is equal to
s∏

i=1

pxi
i .

The number of existing possibilities is the
number of permutations of n objects of
which x1 is event E1, x2 is event E2,. . . , xs is
event Es, meaning that:

n!
s∏

i=1
xi!

.

The multinomial distribution is a discrete
probability distribution.

MATHEMATICAL ASPECTS
For the multinomial distribution

s∑
i=1

pi = 1 and
s∑

i=1

xi = n ,

with 0 < pi < 1.
The expected value is calculated for each
random variable Xi.
We therefore have:

E [Xi] = n · pi .

Indeed each random variable can be con-
sidered individually as following a binomial
distribution.
We can make the same remark for the vari-
ance. It is then equal to:

Var (Xi) = n · pi · qi .

DOMAINS AND LIMITATIONS
The multinomial distribution has many
applications in the analysis of statistical
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data. It is used especially in situations where
the data must be classified into several cate-
gories of events (for example, in the analysis
of categorical data).

EXAMPLES
Consider the following random experi-
ment:
An urn contains nine balls, two white, three
red, and four black. A ball is chosen at ran-
dom; its color is noted and it is put back in
the urn. This is repeated 5 times.
We can describe this random experiment
as follows:
We have three possible events:

E1: choosing a white ball

E2: choosing a red ball

E3: choosing a black ball

and three random variables:

X1: number of white balls chosen

X2: number of red balls chosen

X3: number of black balls chosen

The probabilities associated to these three
events are:

p1 = 2
9 ,

p2 = 3
9 ,

p3 = 4
9 .

We will calculate the probability that on five
chosen balls (n = 5), one will be white, two
will be red, and two will be black.
The number of possibilities is equal to:

5!/(1!2!2!) .

The probability of obtaining the sequence
(w, r, r, b, b), where w, r, and b are, respec-
tively, white, red, and black balls, is:

3∏
i=1

pxi
i =

2

9
·
(

3

9

)2

·
(

4

9

)2

= 0.0049 .

Hence,

P (X1 = x1, X2 = x2, X3 = x3)

= 5!
3∏

i=1
xi!

·
(

2

9

)x1

·
(

3

9

)x2

·
(

4

9

)x3

,

where

P(X1 = 1, X2 = 2, X3 = 2) = 30 · 0.0049

= 0.147 .

FURTHER READING
� Binomial distribution
� Discrete probability distribution

Multiple Correlation Coefficient
See correlation coefficient.

Multiple Linear Regression
A regression analysis where independent
variable Y linearly depends on many inde-
pendent variables X1, X2, . . . , Xk is called
multiple linear regression.
A multiple linear regression equation is of
the form:

Y = f (X1, X2, . . . , Xk) ,

where f (X1, X2, . . . , Xk) is a linear function
of X1, X2, . . . , Xk.

HISTORY
See regression analysis.

MATHEMATICAL ASPECTS
A general model of multiple linear regres-
sion containing k = (p − 1) independent
variables (and n observations) is written as:

Yi = β0 +
p−1∑
j=1

Xjiβj + εi , i = 1, . . . , n ,
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where Yi is the dependent variable, Xji, j =
1, . . . , p− 1, are the independent variables,
βj, j = 0, . . . , p − 1, are the parameters to
be estimated, and εi is the term of random
nonobservable error.
In the matrix form, this model is written as:

Y = Xβ + ε ,

where Y is the vector (n×1) of observations
related to the dependent variable (n observa-
tions), β is the vector (p×1) of parameters to
be estimated, ε is the vector (n×1) of errors,

andX =
⎛
⎜⎝

1 X11 . . . X1(p−1)

...
...

...
1 Xn1 . . . Xn(p−1)

⎞
⎟⎠ is the

(n×p) matrix of the independent variables.

Estimation of Vector β

Starting from the model

Y = Xβ + ε ,

we obtain the estimate β̂ of the vector β by
the least-squares method:

β̂ = (X′X)−1X′Y ,

and we calculate an estimated value Ŷfor Y:

Ŷ = X · β̂ .

At this step, we can calculate the residuals,
denoted by vector e, that we find in the fol-
lowing manner:

e = Y− Ŷ .

Measure of Reliability of Estimation of Y
To know which measure to trust for the cho-
sen linear model, it is useful to conduct an
analysis of variance and to test thehypothe-
ses on vector β of the regression model. To
conduct these tests, we must make the fol-
lowing assumptions:

• For each value of Xji and for all i =
1, . . . , nand j = 1 . . . , p−1, there isaran-
dom variable Y distributed according to
the normal distribution.

• The variance of Y is the same for all Xji;
it equals σ 2 (unknown).

• The different observations on Y are inde-
pendentofoneanotherbutconditioned by
the values of Xji.

Analysis of Variance in Matrix Form
In the matrix form, the table of analysis of
variance for the regression is as follows:

Analysis of variance

Source
of
variation

Degrees
of
freedom

Sum of
squares

Mean of
squares

Regres-
sion

p− 1 β̂ ′X′Y−
nȳ2

β̂ ′X′Y− nŶ2

p− 1

Residual n− p Y′Y−
β̂ ′X′Y

Y′Y− β̂ ′X′Y
n− p

Total n− 1 Y′Y−nȳ2

If the model is correct, then

S2 = Y′Y− β̂ ′X′Y
n− p

is an unbiased estimator of σ 2.
The analysis of variance allows us to test the
null hypothesis:

H0 : βj = 0 for j = 1, . . . , p− 1

against the alternative hypothesis:

H1: at least one of the parametersβj, j �= 0,
is different from zero

calculating the statistic:

F = EMSE

RMSE
= EMSE

S2
,
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where EMSE is the mean of squares of the
regression, RMSE is the mean of squares of
residuals, and TMSE is the total mean of
squares.
This F statistic must be compared to the val-
ue Fα,p−1,n−p of the Fisher table, where α

is the significance level of the test:

⇒ if F ≤ Fα,p−1,n−p , we accept H0;

if F > Fα,p−1,n−p , we reject H0 for H1.

The coefficient of determination R2 is calcu-
lated in the following manner:

R2 = ESS

TSS
= β̂ ′X′Y− nȳ2

Y′Y− nȳ2
,

whereESS is thesumofsquaresof theregres-
sion and TSS is the total sum of squares.

DOMAINS AND LIMITATIONS
See analysis of regression.

EXAMPLES
The following data concern ten companies
of the chemical industry. We try to establish
a relation between the production, the hours
of work, and capital.

Production Work Capital

(100 tons) (h) (machine hours)

60 1100 300

120 1200 400

190 1430 420

250 1500 400

300 1520 510

360 1620 590

380 1800 600

430 1820 630

440 1800 610

490 1750 630

The matrix model is written as:

Y = Xβ + ε ,

where

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

60
120
190
250
300
360
380
430
440
490

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1100 300
1 1200 400
1 1430 420
1 1500 400
1 1520 510
1 1620 590
1 1800 600
1 1820 630
1 1800 610
1 1750 630

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

ε =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

ε9

ε10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, β =
⎡
⎣

β0

β1

β2

⎤
⎦ .

Theequationsthat formthemodelarethefol-
lowing:

60 = β0 + 1100β1 + 300β2 + ε1 ,

120 = β0 + 1200β1 + 400β2 + ε2 ,

. . .

490 = β0 + 1750β1 + 630β2 + ε10 .

We calculate the estimators β̂ using the
result:

β̂ = (
X′X

)−1 X′Y ,

with

(X′X) =
⎡
⎣

10 15540 5090
15540 24734600 8168700

5090 8168700 2720500

⎤
⎦ ,

(X′X)−1 =
⎡
⎣

6.304288 −0.007817 0.011677
−0.007817 0.000015 −0.000029

0.011677 −0.000029 0.000066

⎤
⎦ ,
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and

X′Y =
⎡
⎣

3020
5012000
1687200

⎤
⎦ .

That gives:

β̂ =
⎡
⎣
−439.269

0.283
0.591

⎤
⎦ =

⎡
⎢⎣

β̂0

β̂1

β̂2

⎤
⎥⎦ .

Thusweobtain theequationfor theestimated
line:

Ŷi = −439.269+ 0.283Xi1 + 0.591Xi2 .

Analysis of Variance in Matrix Form
The calculation of different elements of the
table gives us
1. Calculation of degrees of freedom:

dlreg = p− 1 = 3− 1 = 2 ,

dlres = n− p = 10− 3 = 7 ,

dltot = n− 1 = 10− 1 = 9 ,

where dlreg is the degrees of freedom of
the regression, dlres is the degrees of free-
dom of the residuals, and dltot is the total
degrees of freedom.

2. Calculation of the sum of squares:

ESS = β̂ ′X′Y− nȲ
2

= [−439.2690.2830.591]

·
⎡
⎣

3020
5012000
1687200

⎤
⎦− 912040

= 179063.39 .

TSS = Y′Y− nȲ
2

= [60 . . . 490] ·
⎡
⎢⎣

60
...

490

⎤
⎥⎦−912040

= 187160 .

RSS = Y′Y− β̂ ′X′Y′

= TSS− ESS

= 187160.00− 179063.39

= 8096.61 .

We obtain the following table:

Analysis of variance

Source
of
variation

Degree
of free-
dom

Sum of
squares

Mean of
squares

Regres-
sion

2 179063.39 89531.70

Residual 7 8096.61 1156.66 = S2

Total 9 187160.00

This allows us to test the null hypothesis:

H0 : β1 = β2 = 0 .

The calculated value of F is:

F = EMSE

RMSE
= EMSE

S2
= 89531.70

1156.66
= 77.41 .

The value of F in the Fisher table with a sig-
nificance level α = 0.05 is

F0.05,2,7 = 4.74 .

In consequence, the null hypothesis H0 is
rejected. The alternative hypothesis can be
one of the three following possibilities:

H1 : β1 �= 0 and β2 �= 0

H2 : β1 = 0 and β2 �= 0

H3 : β1 �= 0 and β2 = 0
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We can calculate the coefficient of determi-
nation R2:

R2 = ESS

TSS
= 179063.39

187160.00
∼= 0.96 .

FURTHER READING
� Analysis of residuals
� Analysis of variance
� Coefficient of determination
� Collinearity
� Correlation coefficient
� Hat matrix

� Least squares
� Leverage point
� Normal equations
� Regression analysis
� Residual
� Simple linear regression

REFERENCES
Weiseberg, S.: Applied linear regression.

Wiley, New York (2006)

Chatterjee, P., Hadi, A.S.: Regression Anal-
ysis by Example. Wiley, New York (2006)
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Negative Binomial Distribution

A random variable X follows a negative
binomialdistributionwithparametersk and
r if its probability function is of the form:

P (X = k) = Ck
r+k−1 · pr · qk ,

where p is the probability of success, q is the
probability of failure, and Cx

n is the number
of combinations of x objects among n.
In the situation where a “success–failure”
random experiment is repeated in an inde-
pendent way, the probability of success is
denoted by p and the probability of fail-
ure by q = 1 − p. The experiment
is repeated as many times as required to
obtain r successes. The number of obtained
failures before attaining this goal is a ran-
dom variable following a negative binomi-
al distribution described above. The negative
binomial distribution is a discrete binomial
distribution.

HISTORY
The first to treat the negative binomial distri-
bution was Pascal, Blaise (1679). Then de
Montmort, P.R. (1714) applied the negative
binomial distribution to represent the num-
ber of times that a coin should be flipped to
obtain a certain number of heads. Student
(1907) used the negative binomial distri-

bution as an alternative to thePoisson distri-
bution.
Greenwood, M. and Yule, G.U. (1920) and
Eggenberger, F. and Polya, G. (1923) found
applications of the negative binomial distri-
bution. Ever since, there has been an increas-
ing number of applications of this distri-
bution, and the statistical techniques based
on this distribution have been developed in
a parallel way.

MATHEMATICAL ASPECTS
If X1, X2, . . . , Xn are n independent random
variables following a geometric distri-
bution, then the random variable

X = X1 + X2 + . . .+ Xr

follows a negative binomial distribution.
To calculate theexpected valueof X, the fol-
lowing property is used, where Y and Z are
random variables:

E [Y + Z] = E [Y]+ E [Z] .

We therefore have:

E [X] = E [X1 + X2 + . . .+ Xr]

= E [X1]+ E [X2]+ . . .

+ E [Xr]

= q

p
+ q

p
+ . . .+ q

p

= r · q

p
.
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To calculate the variance of X, the follow-
ing property is used, where Y and Z are inde-
pendent variables:

Var (Y + Z) = Var (Y)+ Var (Z) .

We therefore have:

Var (X) = Var (X1 + X2 + . . .+ Xr)

= Var (X1)+ Var (X2)+ . . .

+ Var (Xr)

= q

p2 +
q

p2 + . . .+ q

p2

= r · q

p2 .

DOMAINS AND LIMITATIONS
Among the specific fields for which the neg-
ative binomial distribution has been applied
are accidents statistics, biological sciences,
ecology, market studies, medical research,
and psychology.

EXAMPLES
A coin is flipped several times. We are inter-
ested in the probability of obtaining heads
a third time on the sixth throw.
We then have:

Number of successes: r = 3

Number of failures: k = 6− r = 3

Probability of one success: p = 1

2
(obtaining heads)

Probability of one failure: q = 1

2
(obtaining tails)

The probability of obtaining k tails before
the third heads is given by:

P (X = k) = Ck
3+k−1 ·

(
1

2

)3

·
(

1

2

)k

.

Theprobabilityofobtaininga thirdheadson
the sixth throw, meaning the probability of
obtaining tails three times before obtaining
the third heads, is therefore equal to:

P(X = 3) = C3
3+3−1 ·

1

23 ·
1

23

= C3
5 ·

1

23 ·
1

23

= 5!

3!(5− 3)!
· 1

23 ·
1

23

= 0.1563 .

FURTHER READING
� Bernoulli distribution
� Binomial distribution
� Discrete probability distribution
� Poisson distribution

REFERENCES
Eggenberger, F. und Polya, G.: Über

die Statistik verketteter Vorgänge.
Zeitschrift für angewandte Mathematis-
che Mechanik 3, 279–289 (1923)

Greenwood, M., Yule, G.U.: An inquiry into
the nature of frequency distributions rep-
resentative of multiple happenings with
particular reference to the occurrence of
multiple attacks of disease or of repeat-
ed accidents. J. Roy. Stat. Soc. Ser. A 83,
255–279 (1920)

Montmort, P.R. de: Essai d’analyse sur les
jeux de hasard, 2nd edn. Quillau, Paris
(1713)

Pascal, B.: Varia Opera Mathematica. D.
Petri de Fermat. Tolosae (1679)

Gosset, S.W. (“Student”): On the error
of counting with a haemacytometer.
Biometrika 5, 351–360 (1907)
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Nelder, John A.
John Nelder was born in 1924 at Dulver-
ton (Somerset, England). After receiving his
diploma in mathematical statistics in Cam-
bridge, he was named president of the Sec-
tion of Statistiscs of the National Vegetable
Research Station at Wellesbourn, a position
he held from 1951 to 1968. He earned the
title of Doctor in sciences at Birmingham
and was then elected president of theStatisti-
cal Department at Rothamsted Experimental
Station in Harpenden from 1968 to 1984. He
is now invited professor in the Imperial Col-
legeofScience,Technology andMedicine in
London. He was elected member of the Roy-
al Society in 1984 and was president of two
prestigious societies: the International Bio-
metricSocietyandtheRoyalStatisticalSoci-
ety.
Nelder is the author of statistical computa-
tional systems Genstat and GLIM, now used
in more than 70 countries. Author of more
than 140 articles published in statistical and
biological reviews, he is also author of Com-
puters in Biology and coauthor with Peter
McCullaghofabooktreatingthegeneralized
linear model. Nelder also developed the idea
of generally balanced designs.

Selected works and articles of John A.
Nelder:

1965 (with Mead, R.) A simplex method
for function minimization. Computa-
tional Journal, 7, 303–333.

1971 Computers in Biology. Wykeham,
London and Winchester, pp. 149.

1972 (with Wedderburn, R.W.M.) Gener-
alized linearmodels. J.Roy.Stat.Soc.
Ser. A 135, 370–384.

1974 Genstat: a statistical system. In:
COMPSTAT: Proceedings in Com-

putational Statistics. Physica, Vien-
na.

1983 (with McCullagh, P.) Generalized
Linear Models. Chapman & Hall,
London, pp. 261.

FURTHER READING
� Statistical software

Newcomb, Simon
Newcomb, Simon was born in 1835 in Nova
Scotia (Canada)and died in 1909.Thisastro-
nomer of Canadian origin contributed to the
treatmentof outliers in statistics, to theappli-
cation of probability theory for the interpre-
tationofdata,and to thedevelopmentofwhat
we call today robust methods in statistics.
Until the age of 16 he studied essentially by
consulting the books that his father found for
him. After that, he began studying medicine
with plans of becoming a doctor. In 1857, he
wasengaged in theAmerican Ephemerisand
Nautical Almanac in Cambridge in the state
ofMassachussetts.At thesametime,hestud-
ied in Harvard and he graduated in 1858. In
1861, he became professor of mathematics
at the Naval Observatory.
The collection of Notes on the Theory of
Probabilities (Mathematics Monthly, 1859–
61) constitutes a work that today is still con-
sidered modern. Newcomb’s most remark-
able contribution to statistics is his approach
to the treatment of outliers in astronomical
data; affirming that the normal distribution
does not fit, he invented the normal contam-
inated distribution.

Selected works and articles of Newcomb,
Simon:

1859–61 Notes on the theory of probabi-
lities. Mathematics Monthly, 1, 136–
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139, 233–235, 331–355, 349–350; 2,
134–140, 272–275; 3, 68, 119–125,
341–349.

Neyman, Jerzy
Neyman, Jerzy (1894–1981) was one of the
founders of modern statistics. One of his
outstanding contributions was establishing,
with Pearson, Egon Sharpe, the basis of the
theory of hypothesis testing. Born in Russia,
Neyman, Jerzy studied physics and mathe-
matics at Kharkov University. In 1921, he
went to Poland, his ancestral country of ori-
gin, where he worked for a while as a statis-
tician at the National Institute of Agricul-
ture of Bydgoszcz. In 1924, he spent some
time in London,wherehecouldstudy in Uni-
versity College under the direction of Pear-
son, Karl. At this time he met Pearson, Egon
Sharpe Gosset, William Sealy, and Fish-
er, Ronald Aylmer. In 1937, at the end of
a trip to the United States, where he present-
ed papers at many conferences, he accept-
ed the position of professor at the Univer-
sity of California at Berkeley. He created the
DepartmentofStatisticsandfinishedhisbril-
liant career at this university.
Selected articles of Neyman, Jerzy:

1928 (with Pearson, E.S.) On the use and
interpretation of certain test crite-
ria for purposes of statistical infer-
ence, I, II. Biometrika 20A, 175–240,
pp. 263–295.

1933 (with Pearson, E.S.) Testing of statis-
tical hypotheses in relation to proba-
bilities a priori. Proc. Camb. Philos.
Soc. 29, 492–510.

1934 On the two different aspects of the
representative method: the method of

stratified sampling and the method of
purposive selection. J. Roy. Stat. Soc.
97, 558–606, discussion pp. 607–
625.

1938 Contribution to the theory of sam-
pling human populations. J. Am. Stat.
Assoc. 33, 101–116.

FURTHER READING
� Hypothesis testing

Nonlinear Regression

An analysis of regression where the depen-
dent variable Y depends on one or many
independent variables X1, . . . , Xk is called
a nonlinear regression if the equation of
regression Y = f

(
X1, . . . , Xk; β0, . . . , βp

)
is

not linear in parameters β0, . . . , βp.

HISTORY
Nonlinear regression dates back to the 1920s
to Fisher, Ronald Aylmer and Macken-
zie,W.A.However, theuseandmoredetailed
investigation of these models had to wait
for advances in automatic calculations in the
1970s.

MATHEMATICAL ASPECTS
Let Y1, Y2, . . . , Yr and X11, . . . , X1r,
X21, . . . , X2r, . . ., Xk1, . . . , Xkr be the r obser-
vations (respectively) of the dependent
variable Y and the independent variables
X1, . . . , Xk.
The goal is to estimate the parameters
β0, . . . , βp of the model:

Yi = f
(
X1i, . . . , Xki; β0, . . . , βp

)+ εi ,

i = 1, . . . , r .
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By the least-squares method and under
the corresponding hypothesis concerning
errors (see analysis of residuals), we esti-
mate the parameters β0, . . . , βp by the val-
ues β̂0, . . . , β̂p that minimize the sum of
squared errors, denoted by S

(
β0, . . . , βp

) =
r∑

i=1

(
Yi − f

(
X1i, . . . , Xki; β0, . . . , βp

))2:

min
β0,...,βp

r∑
i=1

ε2
i = min

β0,...,βp
S
(
β0, . . . , βp

)
.

If f is nonlinear, the resolution of the normal
equations (neither of which is linear):

r∑
i=1

(
Yi − f

(
X1i, . . . , Xki; β0, . . . , βp

))

·
[

∂ f
(
X1i, . . . , Xki; β0, . . . , βp

)

∂βj

]
= 0

(j = 0, . . . , p) can be difficult.
The problem is that the given equations do
not necessarily have a solution or have more
than one.
In what follows, we discuss the different
approaches to the resolution of the problem.
1. Gauss–Newton

The procedure, iterative in nature, con-
sists in the linearization of f with the help
of the Taylor expansion in the successive
estimationofparametersby linearregres-
sion.
We will develop this method in more
detail in the following example.

2. Steepest descent
The idea of this method is to fix, in an
approximate way, the parameters βj for
estimates and then to add an approxi-
mation of

−∂S
(
β0, . . . , βp

)

∂βj

that corresponds to the maximum of
descent from function S.
Iteratively, we determine the parameters
that minimize S.

3. Marquard–Levenburg This method, not
developed here, integrates the advan-
tages of two mentioned procedures forc-
ing and accelerating the convergence of
the approximations of parameters to be
estimated.

DOMAINS AND LIMITATIONS
In multiple linear regression, there are
functions that are not linear in parameters
but thatbecomelinear after a transformation.
If this is not the case, we call these func-
tions nonlinear and treat them with nonlinear
methods.
An example of a nonlinear function is given
by:

Y = β1

β1 − β2

[
exp (−β2X)− exp (−β1X)

]

+ ε .

EXAMPLES
Let P1 = (x1, y1), P2 = (x2, y2), and P3 =
(x3, y3) be three points on a graph and d1,
d2, and d3 the approximative distances (the
“approximations” being distributed accord-
ing to theGaussdistribution of thesamevari-
ance) between the data points and a point
P = (x, y) of unknown and searched coor-
dinates.
A possible regression model to estimate the
coordinates of P is as follows:

di = f (xi, yi; x, y)+ εi , i = 1, 2, 3 ,

where the function f represents the distance
between point Pi and point P, that is:

f (xi, yi; x, y) =
√

(x− xi)
2 + (y− yi)

2 .
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The distance function is clearly nonlinear
andcannotbetransformedinalinearform,so
the appropriate regression is nonlinear. We
apply the method of Gauss–Newton.
Considering f as a function of parameters x
and y to be estimated, the Taylor develop-
ment of f , until it becomes the linear term in
(x0, y0), is given by:

f (xi, yi; x, y)

� f (xi, yi; x0, y0)

+ ∂ f (xi, yi; x, y)

∂x

∣∣∣∣x=x0
y=y0

· (x− x0)

+ ∂ f (xi, yi; x, y)

∂x

∣∣∣∣x=x0
y=y0

· (y− y0) ,

where

∂ f (xi, yi; x, y)

∂x

∣∣∣∣x=x0
y=y0

= xi − x0

f (xi, yi; x0, y0)

and

∂ f (xi, yi; x, y)

∂x

∣∣∣∣x=x0
y=y0

= yi − y0

f (xi, yi; x0, y0)
.

Solet(x0, y0)beafirstestimationofP, found,
for example, geometrically.
The linearized regression model is thus
expressed by:

di = f (xi, yi; x0, y0)

+ xi − x0

f (xi, yi; x0, y0)
· (x− x0)

+ yi − y0

f (xi, yi; x0, y0)
· (y− y0)+ εi ,

i = 1, 2, 3 .

With the help of a multiple linear regres-
sion (withoutconstants),wecan estimate the
parameters (�x, �y) = (x− x0, y− y0) of

the following model (the “observations” of
the model appear in brackets):

[
di − f (xi, yi; x0, y0)

]

= �x ·
[

xi − x0

f (xi, yi; x0, y0)

]

+�y ·
[

yi − y0

f (xi, yi; x0, y0)

]
+ εi ,

i = 1, 2, 3 .

Let
(
�̂x, �̂y

)
be the estimation of (�x, �y)

that was found. Thus we get a bet-
ter estimation of coordinates of P by(

x0 + �̂x, y0 + �̂y
)

.

Using this new point as our point of depar-
ture, we can use the same procedure again.
The remaining coordinates are found in con-
verging way to the desired point, that is, to
the point that approaches the best.
Let us take now a concrete example: P1 =
(0, 5); P2 = (5, 0); P3 = (10, 10); d1 = 6;
d2 = 4; d3 = 6.
If we choose as the initial point of theGauss–
Newton procedure the following point: P =(

0+5+10
3 , 5+0+10

3

)
= (5, 5), we obtain the

set of the following coordinates:

(5, 5)

(6.2536, 4.7537)

(6.1704, 4.7711)

(6.1829, 4.7621)

(6.1806, 4.7639)

that converges to the point (6.1806,4.7639).
The distances between the point found and
P1, P2, and P3 are respectively 6.1856,
4.9078, and 6.4811.

FURTHER READING
� Least squares
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� Model
� Multiple linear regression
� Normal equations
� Regression analysis
� Simple linear regression
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Nonparametric Statistics

Statistical procedures that allow us to pro-
cess data from small samples, on variables
about which nothing is known concerning
their distribution. Specifically, nonparamet-
ric statistical methods were developed to be
used in cases when the researcher knows
nothing about the parameters of the vari-
able of interest in the population (hence
the name nonparametric). Nonparametric
methods do not rely on the estimation of
parameters (such as the mean or the stan-
dard deviation) describing the distribution

of the variable of interest in the population.
Nonparametric models differ from paramet-
ric models in that the model structure is not
specified a priori but is instead determined
from data. Therefore, these methods are also
sometimescalledparameter-freemethodsor
distribution-free methods.

HISTORY
The term nonparametric was first used by
Wolfowitz, 1942.

See also nonparametric test.

DOMAIN AND LIMITATIONS
The nonparametric method varies from the
analysis of a one-way classification model
for comparing treatments to regression and
curve fitting problems.
The most frequently used nonparametric
tests are Anderson-Darling test, Chi-
square test, Kendall’s tau, Kolmogorov-
Smirnov test, Kruskall–Wallis test, Wil-
coxon rank sum test, Spearman’s rank
correlation coefficient, and Wilcoxon sign
rank test.
Nonparametric testshave lesspower than the
appropriate parametric tests, but are more
robust when the assumptions underlying the
parametric test are not satisfied.

EXAMPLES
A histogram is a simple nonparametric esti-
mate of a probability distribution. A gener-
alization of histogram is kernel smoothing
technique by which from a given data set
a very smooth probability density function
can be constructed.

See also Nonparametric tests.
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FURTHER READING
� Nonparametric test
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Nonparametric Test

A nonparametric test is a type of hypoth-
esis testing in which it is not necessary to
specify the form of the distribution of the
population under study. In any event, we
should have independent observations, that
is, that the selection of individuals that forms
the sample included must not influence the
choice of other individuals.

HISTORY
The first nonparametric test appeared in the
works of Arbuthnott, J. (1710), who intro-
duced the sign test. But most nonparamet-
ric tests were developed between 1940 and
1955.
We make special mention of the articles of
Kolmogorov, Andrey Nikolaevich (1933),
Smirnov, Vladimir Ivanovich (1939),
Wilcoxon, F. (1945, 1947), Mann, H.B. and
Whitney, D.R. (1947), Mood, A.M. (1950),
and Kruskal, W.H. and Wallis, W.A. (1952).
Later, many other articles were added to this
list. Savage, I.R. (1962) published a bibliog-

raphy of about 3000 articles, written before
1962, concerning nonparametric tests.

DOMAINS AND LIMITATIONS
The fast development of nonparametric tests
can be explained by the following points:
• Nonparametric methods require few

assumption concerning the population
under study, such as assumption of nor-
mality.

• Nonparametric methods are often easier
to understand and to apply than the equiv-
alent parametric tests.

• Nonparametric methods are applicable in
situations where parametric tests cannot
be used, for example, when the variables
are measured only on ordinal scales.

• Despite the fact that, at first view, non-
parametric methods seem to sacrifice an
essential part of information contained
in the samples, theoretical researches
have shown that nonparametric tests are
only slightly inferior to their paramet-
ric counterparts when the distribution
of the studied population is specified,
for example, the normal distribution.
Nonparametric tests, on the other hand,
are superior to parametric tests when
the distribution of the population is far
away from the specified (normal) distri-
bution.

EXAMPLES
See Kolmogorov–Smirnov test, Kruskal–
Wallis test, Mann–Withney test, Wilcox-
on signed test), sign test.

FURTHER READING
� Goodness of fit test
� Hypothesis testing
� Kolmogorov–Smirnov test
� Kruskal-Wallis test
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� Mann–Whitney test
� Sign test
� Spearman rank correlation coefficient
� Test of independence
� Wilcoxon signed test
� Wilcoxon test
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Norm of a Vector

The norm of a vector indicates the length of
this vector defined from the scalar product
of the vector by itself. The norm of a vector
is obtained by taking the square root of this
scalar product.
A vector of norm 1 is called a unit vector.

MATHEMATICAL ASPECTS
For a given vector x,

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ ,

we define the scalar product of x by itself
by:

x′ · x =
n∑

i=1

x2
i .

The norm of vector x thus equals:

‖ x ‖= √x′ · x =
√√√√

n∑
i=1

x2
i .

DOMAINS AND LIMITATIONS
As the norm of a vector is calculated with
thehelp of the scalar product, theproperties
of the norm come from those of the scalar
product. Thus:
• The norm of a vector x is strictly positive

if the vector is not zero, and zero if it is:

‖ x ‖> 0 if x �= 0 and

‖ x ‖= 0 if and only if x = 0 .
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• The norm of the result of a multiplication
of a vector x by a scalar equals the product
of the norm of x and the absolute value of
the scalar:

‖ k · x ‖= |k| · ‖ x ‖ .

• For two vectors x and y, we have:

‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ ,

that is, the norm of a sum of two vectors
is smaller than or equal to the sum of the
norms of these vectors.

• For two vectors x and y, the absolute value
of the scalar product of x and y is smaller
than or equal to the product of norms:

∣∣x′ · y∣∣ ≤‖ x ‖ · ‖ y ‖ .

This result is called the Cauchy–Schwarz
inequality.

The norm of a vector is also used to obtain
a unit vector having the same direction as the
givenvector. It isenoughin thiscase todivide
the initial vector by its norm:

y = x

‖ x ‖ .

EXAMPLES
Consider the following vector defined in the
Euclidean space of three dimensions:

x =
⎡
⎣

12
15
16

⎤
⎦ .

The scalar product of this vector by itself
equals:

x′ · x = 122 + 152 + 162

= 144+ 225+ 256 = 625

from where we get the norm of x:

‖ x ‖= √x′ · x = √625 = 25 .

The unit vector having the direction of x is
obtained by dividing each component of x by
25:

y =
⎡
⎣

0.48
0.6
0.64

⎤
⎦ ,

and we want to verify that ‖ y ‖= 1. Hence:

‖ y ‖2 = 0.482 + 0.62 + 0.642

= 0.2304+ 0.36+ 0.4096 = 1 .

FURTHER READING
� Least squares
� L1 estimation
� Vector
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Normal Distribution
Random variable X is distributed accord-
ing to a normal distribution if it has a density
function of the form:

f (x) = 1

σ
√

2π
exp

(
− (x− μ)2

2σ 2

)
,

(σ > 0) .

Normal distribution, μ = 0, σ = 1
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We will say that X follows a normal distri-
bution of mean μ and of variance σ 2. The
normal distribution is a continuous proba-
bility distribution.

HISTORY
The normal distribution is often attributed to
Laplace, P.S. and Gauss, C.F., whose name
it bears. However, its origin dates back to the
works of Bernoulli, J. who in his work Ars
Conjectandi (1713) provided the first basic
elements of the law of large numbers.
In 1733, de Moivre, A. was the first to obtain
the normal distribution as an approximation
of thebinomial distribution.Thiswork was
written in Latin and published in an English
version in 1738. De Moivre, A. called what
he found a “curve”; he discovered this curve
while calculating the probabilities of gain
for different games of hazard.
Laplace, P.S., after de Moivre, A., stud-
ied this distribution and obtained a more
formal and general result of the de Moivre
approximation. In 1774 he obtained the nor-
mal distribution as an approximation of the
hypergeometric distribution.
Gauss, C.F. studied thisdistribution through
problems of measurement in astronomy. His
works in 1809 and 1816 established tech-
niques based on the normal distribution that
became standard methods during the 19th
century. Note that even if the first appro-
ximation of this distribution is due to de
Moivre, Galileo had already found that the
errors of observation were distributed in
a symmetric way and tended to regroup
around their true value.
Many denominations of the normal distri-
bution can be found in the literature.
Quetelet, A. (1796–1874) spoke of the
“curve of possibilities” or the “distribution
of possibilities”.

Note also that Galton, F. spoke of the
“frequency of error distribution” or of the
“distribution of deviations from a mean”.
Stigler, S. (1980) presents a more detailed
discussion on the different names of this
curve.

MATHEMATICAL ASPECTS
The expected value of the normal distri-
bution is given by:

E [X] = μ .

The variance is equal to:

Var (X) = σ 2 .

If the mean μ is equal to 0, and the variance
σ 2 is equal to 1, then we obtain a centered
and reduced normal distribution (or standard
normal distribution) whose density func-
tion is given by:

f (x) = 1√
2π

exp

(−x2

2

)
.

If a random variable X follows a normal
distribution of mean μ and variance σ 2, then
the random variable

Z = X − μ

σ

followsacenteredandreducednormaldistri-
bution (of mean 0 and variance 1).

DOMAINS AND LIMITATIONS
The normal distribution is the most famous
continuous probability distribution. It
plays a central role in the theory of proba-
bility and its statistical applications. Many
measurements such as the size or weight
of individuals, the diameter of a piece of
machinery, the results of an IQ test, etc.
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approximately follow a normal distribution.
The normal distribution is frequently used as
an approximation, either when the normality
is attributed to a distribution in the construc-
tion of a model or when a known distribution
is replaced by a normal distribution with
the same expected value or variance. It is
used for theapproximationof thechi-square
distribution, the Student distribution, and
discrete probability distributions such as
the binomial distribution and the Poisson
distribution.
The normal distribution is also a fundamen-
tal element of the theory of sampling, where
its role is important in the study of correla-
tion, regression analysis, variance analy-
sis, and covariance analysis.

FURTHER READING
� Continuous probability distribution
� Lognormal distribution
� Normal table
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Normal Equations
Normal equations are equations obtained by
setting equal to zero the partial derivatives
of the sum of squared errors (least squares);
normal equations allow one to estimate the
parameters of a multiple linear regression.

HISTORY
See analysis of regression.

MATHEMATICAL ASPECTS
Considerageneralmodelof multiple linear
regression:

Yi = β0 +
p−1∑
j=1

βj · Xji + εi , i = 1, . . . , n ,

where Yi is the dependent variable, Xji, j =
1, . . . , p−1, are the independent variables,εi

is the term of random nonobservable error,



N

Normal Equations 381

βj, j = 0, . . . , p− 1, are the parameters to be
estimated, and n is the number of observa-
tions.
To apply the method of least squares, we
should minimize the sum of squared errors:

f
(
β0, β1, . . . , βp−1

) =
n∑

i=1

ε2
i

=
n∑

i=1

⎛
⎝Yi − β0 −

p−1∑
j=1

βj · Xji

⎞
⎠

2

.

Setting the p partial derivatives equal to zero
relative to the parameters to be estimated, we
get the p normal equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂f (β0,β1,...,βp−1)
∂β0

= 0 ,
∂f (β0,β1,...,βp−1)

∂β1
= 0 ,

...
∂f (β0,β1,...,βp−1)

∂βp−1
= 0 .

Wecanalsoexpress thesamemodel inmatrix
form:

Y = Xβ + ε ,

where Y is the vector (n×1) of observations
related to the dependent variable (n observa-
tions), X is the matrix (n × p) of the plan
related to the independent variables, ε is the
(n× 1) vector of errors, and β is the (p× 1)
vector of the parameters to be estimated.
By the least-squares method, we should
minimize:

ε′ε = (Y− Xβ ′)(Y− Xβ)

= Y′Y− β ′X′Y− Y′Xβ

+ β ′X′Xβ

= Y′Y− 2β ′X′Y+ β ′X′Xβ .

Setting to zero the derivatives relative to β

(in matrix form), corresponding to thepartial

derivativesbutwritteninvectorform,wefind
the normal equations:

X′Xβ̂ = X′Y .

DOMAINS AND LIMITATIONS
We can generalize the concept of normal
equations in the case of a nonlinear regres-
sion (with r observations and p+ 1 param-
eters to estimate).
They are expressed by:

r∑
i=1

(
Yi − f

(
X1i, . . . , Xki; β0, . . . , βp

))2

∂βj

=
r∑

i=1

(
Yi − f

(
X1i, . . . , Xki; β0, . . . , βp

))

·
[

∂ f
(
X1i, . . . , Xki; β0, . . . , βp

)

∂βj

]
= 0 ,

where j = 0, . . . , p. Because f is nonlinear
in the parameters to be estimated, the normal
equations are also nonlinear and so can be
very difficult to solve. Moreover, the system
of equations can have more than one solution
that corresponds to the possibility of many
minima of f . Normally, we try to develop an
iterative procedure to solve the equations or
refer to the techniquesexplained innonlinear
regression.

EXAMPLES
If the model contains, for example, 3 param-
etersβ0, β1, and β2, the normal equations are
the following:

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂ f (β0, β1, β2)

∂β0
= 0 ,

∂ f (β0, β1, β2)

∂β1
= 0 ,

∂ f (β0, β1, β2)

∂β1
= 0 .
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That is:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β0 · n+ β1 ·
n∑

i=1
X1i + β2 ·

n∑
i=1

X2i =
n∑

i=1
Yi ,

β0 ·
n∑

i=1
X1i + β1 ·

n∑
i=1

X2
1i + β2 ·

n∑
i=1

X1i · X2i

=
n∑

i=1
X1i · Yi ,

β0 ·
n∑

i=1
X2i + β1 ·

n∑
i=1

X2i · X1i + β2 ·
n∑

i=1
X2

2i

=
n∑

i=1
X2i · Yi .

See simple linear regression.

FURTHER READING
� Error
� Least squares
� Multiple linear regression
� Nonlinear regression
� Parameter
� Simple linear regression
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Normal Probability Plot

A normal probability plot allows one to ver-
ify if a data set is distributed according to
a normal distribution. When this is the
case, it is possible to estimate the mean and
the standard deviation from the plot.
The cumulated frequencies are transcribed
in ordinate on a Gaussian scale, graduat-
ed by putting the value of the distribution
function F(t) of the normal distribution
(centered and reduced) opposite to the point
located at a distance t from the origin. In
abscissa, the observations are represented

on an arithmetic scale. In practice, the nor-
mal probability papers sold on the market are
used.

MATHEMATICAL ASPECTS
Onanaxissystemthechoiceoftheoriginand
size of the unity length is made according to
the observations that are to be represented.
The abscissa is then arithmetically graduat-
ed like millimeter paper.
In ordinate, the values of the distribution
function F(t) of the normal distribution
are transcribed at the height t of a fictive ori-
gin placed atmid-heightof thesheetofpaper.
Therefore:

F (t) t

0.9772 2

0.8412 1

0.5000 0

0.1588 −1

0.0

will be placed, and only the scale on the left,
which will be graduated from 0 to 1 (or from
0 to 100 if written in %), will be kept.
Consider a set of n point data that are sup-
posed to be classified in increasing order. Let
us call this series x1, x2, . . . , xn, and for each
abscissa xi (i = 1, . . . , n), the ordinate is
calculated as

100 · i− 3
8

n+ 1
4

and represented on anormalprobability plot.
It is also possible to transcribe

100 · i− 1
2

n

as a function of xi on the plot. This second
approximation of the cumulated frequency
is explained as follows. If the surface locat-
ed under the normal curve (with area equal to
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Normal probability paper. Vertical scale: 0.01 - 99.99 %
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1) is divided into n equal parts, it can be sup-
posed that each of our n observations can be
found in one of these parts. Therefore the ith
observation xi (in increasing order) is located
in the middle of the ith part, which in terms
of cumulated frequency corresponds to

i− 1
2

n
.

The normality of the observed distribution
can then beobserved by examining thealign-
ment of the points: if the points are aligned,
then the distribution is normal.

DOMAINS AND LIMITATIONS
By representing the cumulated frequencies
as a function of the values of the statistical
variable on a normal probability plot, it is
possible to verify if the observed distribution
follows a normal distribution. Indeed, if
this is the case, the points are approximately
aligned.
Therefore the graphical adjustment of a line
to a set of points allows to:
• Visualize the normal character of the

distribution inabetterwaythanwithahis-
togram.

• Make a graphical estimation of the
mean and the standard deviation of
the observed distribution.

The line of least squares cuts the ordinate
0.50 (or 50%) at the estimation of the mean
(which can be read on the abscissa). The

estimated standard deviation is given by the
inverse of the slope of the line.
It is easy to determine the slope by sim-
ply considering two points. Let us choose
(μ̂,0.5) and the point at the ordinate

0.9772

(
= F (2) = F

[
X0.9772 − μ̂

σ̂

])

whose abscissa X0.9772 is read on the line.
We have:

1

σ̂
= F−1(0.9772)− F−1(0.5)

X − μ

= slope of the line of least squares ,

from which we finally obtain:

σ̂ = X0.9772 − μ̂

2
.

EXAMPLES
Consider ten pieces fabricated by a machine
X taken randomly: They have the following
diameters:

9.36 , 9.69 , 11.10 , 8.72 , 10.13 ,

9.98 , 11.42 , 10.33 , 9.71 , 10.96 .

These pieces, supposedly distributed ac-
cording to a normal distribution, are then
classified in increasing order and, for each
diameter

fi = i− 3
8

10+ 1
4

,

are calculated, i being the order number of
each observation:

xi fi
8.72 5/82

9.36 13/82

9.69 21/82

9.71 29/82

9.98 37/82
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xi fi
10.13 45/82

10.33 53/82

10.96 61/82

11.10 69/82

11.42 77/82

The graphical representation of fi with
respect to xi on a piece of normal probabi-
lity paper provides for our random sample:
estimated mean of diameters: μ̂ = 10.2,
estimated standard deviation: σ̂ = 0.9.

FURTHER READING
� Distribution function
� Frequency
� Frequency distribution
� Normal distribution

Normal Table

The normal table, also called a Gauss table or
a normal distribution table, gives the val-
ues of the distribution function of a ran-
dom variable following a standard normal
distribution, that is, of the mean equalling 0
and of variance equalling 1.

HISTORY
de Laplace, Pierre Simon (1774) obtained
the normal distribution from the hyper-
geometric distribution and in a second
work (dated 1778 but published in 1781) he

gave a normal table. Pearson, Egon Sharpe
and Hartley, H.O. (1948) edited a normal
table based on the values calculated by Shep-
pard, W.F. (1903, 1907). Exhaustive lists of
normal tables on the market was given by the
National Bureau of Standards (until 1952)
and by Greenwood, J.A. and Hartley, H.O.
(until 1958).

DOMAINS AND LIMITATIONS
See central limit theorem.

MATHEMATICAL ASPECTS
Let random variable Z follow a normal
distribution of mean 0 and of variance 1.
The density function f (t) thus equals:

f (t) = 1√
2π
· exp

(
− t2

2

)
.

The distribution function of random vari-
able Z is defined by:

F (z) = P (Z ≤ z) =
∫ z

−∞
f (t) dt .

The normal table represented here gives the
values of F (z) for the different values of z
between 0 and 3.5.
With a normal distribution symmetric rel-
ative to the mean, we have:

F (z) = 1− F (−z) ,

which allows to determine F (z) for a nega-
tive value of z.
Sometimes we must use the normal table, in
inverse direction, to find the value of z cor-
responding to a given probability. We gener-
ally denote by z = zα the value of random
variable Z for which

P (Z ≤ zα) = 1− α .
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EXAMPLES
See Appendix G.
Examples of normal table use:

P (Z ≤ 2.5) = 0.9938 ,

P (1 ≤ Z ≤ 2)

= P (Z ≤ 2)− P (Z ≤ 1)

= 0.9772− 0.8413 = 0.1359 ,

P (Z ≤ −1)

= 1− P (Z ≤ 1)

= 1− 0.8413 = 0.1587 ,

P (−0.5 ≤ Z ≤ 1.5)

= P (Z ≤ 1.5)− P (Z ≤ −0.5)

= P (Z ≤ 1.5)− [1− P (Z ≤ 0.5)]

= 0.9332− [1− 0.6915]

= 0.9332− 0.3085 = 0.6247 .

Conversely, we can use the normal table to
determine the limitzα forwhich theprobabi-
lity that therandom variableZ takesavalue
smaller to that limit (zα), is equal to a fixed
value (1− α), that is:

P (Z ≤ zα) = 0.95 ⇒ zα = 1.645 ,

P (Z ≤ zα) = 0.975 ⇒ zα = 1.960 .

This allows us, in hypothesis testing, to
determine the critical value zα relative to
a given significance level α.

Example of Application
In the case of a one-tailed test, if the signif-
icance level α equals 5%, then we can deter-
mine the critical value z0.05 in the following
manner:

P (Z ≤ z0.05) = 1− α

= 1− 0.05

= 0.95

⇒ z0.05 = 1.645 .

In the case of a two-tail test, we should find
the value zα/2. With a significance level of
5%, the critical value z0.025 is obtained in the
following manner:

P (Z ≤ z0.025)

= 1− α

2
= 1− 0.025 = 0.975

⇒ z0.025 = 1.960 .

FURTHER READING
� Hypothesis testing
� Normal distribution
� One-sided test
� Statistical table
� Two-sided test
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Normalization

Normalization is the transformation from
a normally distributed random variable to
a random variable following a standard nor-
mal distribution. It allows to calculate and
compare the values belonging to the nor-
mal curves of the mean and of different
variances on the basis of a reference nor-
mal distribution, that is, the standard normal
distribution.

MATHEMATICAL ASPECTS
Let the random variable X follow the nor-
mal distribution N

(
μ, σ 2

)
. Its normaliza-

tion gives us a random variable

Z = X − μ

σ

that follows a standard normal distribution
N (0, 1).
Each value of the distribution N

(
μ, σ 2

)
can

be transformed into standard variable Z,
each Z representing a deviation from the
mean expressed in units of standard devi-
ation.

EXAMPLES
The students of a professional school have
had two exams. Each exam was graded on
a scale of 1 to 60, and the grades are consid-
ered the realizations of two random variables
of a normal distribution. Let us compare
the grades received by the students on these
two exams.

Here are the means and the standard devia-
tions of each exam calculated on all the stu-
dents:

Exam 1: μ1 = 35 , σ1 = 4 ,

Exam 2: μ2 = 45 , σ2 = 1.5 ,

A student named Marc got the following
results:

Exam 1: X1 = 41 ,

Exam 2: X2 = 48 .

The question is to know which exam Marc
scored better on relative to the other stu-
dents.Wecannotdirectlycomparetheresults
of two exams because the results belong to
distributions with different means and stan-
dard deviations.
Is we simply examine the difference of each
note and compare that to the mean of its
distribution, we get:

Exam 1: X1 − μ1 = 41− 35 = 6 ,

Exam 2: X2 − μ2 = 48− 45 = 3 .

Note that Marc’s score was 6 points higher
than the mean on exam 1 and only 3 points
higher than themean on exam2.Ahasty con-
clusion would suggest to us that Marc did
better on exam 1 than on exam 2, relative to
the other students.
This conclusion takes into account only the
difference of each result from the mean. It
does not consider the dispersion of student
grades around the mean. We divide the dif-
ference from the mean by the standard devi-
ation to make the results comparable:

Exam 1: Z1 = X1 − μ1

σ1
= 6

4
= 1.5 ,

Exam 1: Z2 = X2 − μ2

σ2
= 3

1.5
= 2 .

By this calculation we have normalized the
scores X1 and X2. We can conclude that the
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normalized value isgreater for exam 2 (Z2 =
2) than for exam 1 (Z1 = 1.5) and that Marc
did better on exam 1, relative to other stu-
dents.

FURTHER READING
� Normal distribution

Null Hypothesis
In the fulfillment of hypothesis testing, the
null hypothesis is the hypothesis that is to be
tested. It is designated by H0. The opposite
hypothesis iscalled thealternative hypoth-
esis. It is the alternative hypothesis that will
be accepted if the test leads to rejecting the
null hypothesis.

HISTORY
See hypothesis and hypothesis testing.

MATHEMATICAL ASPECTS
During the fulfillment of hypothesis testing
on a parameter of a population, the null
hypothesis is usually a supposition on the
presumed value of this parameter. The null
hypothesis will then be presented as:

H0 : θ = θ0 ,

θ being the unknown parameter of the popu-
lation and θ0 the presumed value of this
parameter. This parameter can be, for
example, the mean of the population.
When hypothesis testing aimsatcomparing
two populations, the null hypothesis gener-
ally supposes that the parameters are equal:

H0 : θ1 = θ2 ,

where θ1 is the parameter of the popula-
tion where the first sample came from and θ2

the population that the second sample came
from.

EXAMPLES
We are going to examine the null hypothesis
on three examples of hypothesis testing:
1. Hypothesis testing on the percentage of

a sample
A candidate running for office wants to
know if he will receive more than 50% of
the vote.
The null hypothesis for this problem can
be posed thus:

H0 : π = 0.5 ,

where π is the percentage of the popu-
lation to be estimated.

2. Hypothesis testing on the mean of the
population
A manufacturer wants to test the preci-
sionofanewmachine thatshouldproduce
pieces 8 mm in diameter.
We can pose the following null hypoth-
esis:

H0 : μ = 8 ,

where μ is the mean of the population to
be estimated.

3. Hypothesis testing on the comparison of
means of two populations
An insurance company has decided to
equip its offices with computers. It wants
to buy computers from two different sup-
pliers if there is no significant difference
between the reliability of the two brands.
It draws two samples of PC’s comming
from each brand. Then it records how
much timewasconsumed foreachsample
to have a problem on PC.
According to the null hypothesis, the
mean of the time passed since the first
problem is the same for each brand:

H0 : μ1 − μ2 = 0 ,
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where μ1 and μ2 are the respective means
of two populations.
This hypothesis can also be written as:

H0 : μ1 = μ2 .

FURTHER READING
� Alternative hypothesis
� Analysis of variance
� Hypothesis
� Hypothesis testing
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Observation
An observation is the result of a scientific
study assembling information on a statisti-
cal unit belonging to a given population.

FURTHER READING
� Data
� Outlier
� Population
� Sample

Odds and Odds Ratio
Odds are defined as the ratio of the proba-
bility of an event and the probability of the
complementary event, that is, the ratio of the
probability of an event occurring (in the par-
ticular case of epidemiology, an illness) and
the probability of its not occurring.
The odds ratio is, like relative risk, a mea-
sure of the relative effect of a cause. More
precisely, it is the ratio of the odds calculat-
ed within populations exposed to given risk
factor to varying degrees.

MATHEMATICAL ASPECTS
Odds attached to an event “having an illness”
are, formally, the following ratio, where p
denotes the probability of having the illness:

Odds = p

1− p
.

Let there be a factor of risk to which a group
E is exposed and a group NE is not exposed.
The corresponding odds ratio, OR, is the
ratio of the odds of group E and the odds of
group NE:

OR = odds of group E

odds of group NE
.

DOMAINS AND LIMITATIONS
Let us take as an example the calculation of
the odds ratio from the data in the following
table comparing two groups of individuals
attacked by the same potentially dangerous
illness; one group (“treated” group) receives
medical treatment while the other does not
(“reference” group):

Group Deaths Survivors Odds OR

Treated 5% 95% 0.053 0.47

Reference 10% 90% 0.111 1.0*

*) By definition the OR equals 1 for the group of
reference.

If we call here “risk” the risk attached to the
event “death”, then the OR is a good appro-
ximation of the relative risk, on the condi-
tion that the risks of death are similar or,
if they are strongly different, are small. We
generally consider a risk smaller than 10%,
as in this case, as being small. The odds ratio
does not remain an approximation of relative
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risk because there is a bias of the OR which
appears for small risks. That is:

OR =
risk of treated group

survival rate in treated group
risk in reference group

survival rate in reference group

= risk in treated group

risk in reference group

× survival rate in reference group

survival rate in treated group

= relative risk × bias of odds ratio

with:

bias of OR =
survival rate in reference group

survival rate in treated group
.

The estimations of the relative and odds
ratios are used to measure the force of causal
associations between the exposure to a risk
factor and an illness. The two ratios can take
values between 0 and infinity that are justi-
fied by the same general interpretation. We
can distinguish two clearly different cases:
1. AnORvaluegreater than1indicatesarisk

or an odds of illness much greater when
the studied group is exposed to a specific
risk factor. In such acase there isapositive
association.

2. A smaller value implies a reduced expo-
sure to a risk factor. In this case there is
a negative association.

Confidence Interval at 95% of Odds Ratio
The technique and notation used for a con-
fidence interval of 95% of the odds ratio are
the same as those for relative risk:

exp

{
(ln OR)± 1.96

√
1

a
− 1

n
+ 1

c
− 1

m

}
.

a, b, c, and d must be large. If the confidence
interval includes the value 1.0, then the odds
ratio is not statistically significant.

EXAMPLES
Consider a study of the relation between
the risk factor “smoking” and breast can-
cer. The odds of breast cancer is the ratio of
the probability of developing this cancer and
the probability of not having this illness dur-
ing a given period. The odds of developing
breast cancer for each group are defined by
thegroup’slevelofexposuretosmoking.The
following table illustrates this example:

Group Cancer
(100000/
2 years)

No
cancer
(100000/
2 years)

Odds of
breast
cancer
(/2 years)

OR

Non-
exposed

114 99886 0.00114 1.0

Passive
smokers

252 99748 0.00252 2.2

Active
smokers

276 99724 0.00276 2.4

In this example, the odds of breast can-
cer of the nonexposed group are 0.00114
(114 : 99886), those of the passive smok-
ers 0.00252 (252 : 99748), and those of the
active smokers 0.00276 (276 : 99274). Tak-
ing as the reference group the nonexposed
subjects, the odds ratio of the breast cancer
is, for the active smokers:

276
99724
114

99886

= 2.4 = 276

114
· 99886

99724
.

The risk of breast cancer over 2 years being
very small, the survival of active smokers as
well as that of nonexposed subjects is close
to 100%, and so the survival ratio (the bias
of the odds ratio) is practically equal to 1.0,
which is interpreted as almost the absence of
any OR bias. In this example, the odds ratio
of breast cancer is identical to the relative
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risk of breast cancer in the passive smokers
and theactivesmokers.Sincebreast cancer is
a rare illness, the odds ratio is a good appro-
ximation of the relative risk.

FURTHER READING
� Attributable risk
� Avoidable risk
� Cause and effect in epidemiology
� Incidence
� Incidence rate
� Odds and odds ratio
� Prevalence
� Prevalence rate
� Relative risk
� Risk
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Official Statistics

Theadjectiveofficialmeanscoming from the
government, the administration; authorized
by a proper authority. Thus the word offi-
cial, in conjunction with the word statistics,
indicates a relation with the state. Moreover,
the etymology of the word statistics, from
the Latin status (state), meaning to be gov-

ernmental statistics of data collected by gov-
ernment stablishement or private agencies
working for the goverment. The term official
statistics refers to a very general concept that
can be obtained in different ways.

HISTORY
The census, the most widely known of offi-
cial statistics, is a practice almost as old
as the social organization of people. Since
antiquity, the kings of Babylon and Egypt,
as well as Chinese, Greek, Hebrew, Persian,
and Roman chiefs, tried to determine the
number of soldiers under their command and
the goods they possessed. The first statisti-
cal trials date back more than 6000 years,
but they were only sporadic trials of count-
ing people and goods. Statisticians, in the
modern sense of the term, appear only in
the late 17th century, with the establishment
of the modern state and the needs of colo-
nial administration in France and England.
In the 18th century, in Diderot and Alem-
bert’s encyclopedia, “arithmetical politics”
is defined as “the application of arithmetical
calculations to political subjects and usage”.
The French Revolution, and then the birth of
democracy in the United States, justified the
new developments in official statistics. The
new states, to know the political weight of
their different entities, needed to know about
their populations. That is why the first reg-
ular decennial censuses started in the US in
1790.
Since the Second World War, empires,
colonies, and tribal societies have been grad-
ually replaced by national states.To organize
elections and assemblies and facilitate the
development of modern corporations, these
new states must establish statistical systems
that were essential conditions of their devel-
opment. The United Nations, and in partic-
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ular its Statistical Commission, expended
considerable effort in promoting and devel-
oping official statistics in different states.
Under their auspices, the first world popula-
tion census was organized in 1950. Another
followed in 1960.
Now official statistics are ubiquitous. The
Organization for Economic Cooperation
and Development, OECD, wants to produce
statistics that could help in the formulation
of a precise, comprehensive, and balanced
assessment regarding the state of the prin-
cipal sectors of society. These statistics,
called indicators, have since the 1960s been
the subject of much research in economics,
health, and education. The goal is to cre-
ate, for politicians, a system of informa-
tion allowing them to determine the effects
of their economic, social, and educational
policies.

EXAMPLES
Official statistics treat many domains, of
which the most important are:
• Population (families households, births,

adoptions, recognitions, deaths, mar-
riages, divorces, migrations, etc.)

• Environment (land, climate, water, fauna,
flora, etc.)

• Employment and active life (companies
and organizations, employment, work
conditions, etc.)

• National accounts (national accounting,
balance of payments, etc.)

• Price (prices and price indices)
• Production, commerce, and consump-

tion (performance of companies, produc-
tion, turnover, foreign trade, etc.)

• Agriculture and silviculture (resource
use, labor,machines, forests,fishing, etc.)

• Energy (balance, production, consump-
tion, etc.)

• Construction and housing (building and
housing structures, living conditions,
etc.)

• Tourism (hotels, trips, etc.)
• Transportation and communications

(vehicles, installations, traffic, highway
accidents, etc.)

• Financial markets, and banks (banking
system, financial accounting, etc.)

• Insurance (illness insurance, private
insurance, etc.)

• Health (healthcare system, mortality and
morbidity causes, healthcare workers,
equipment, healthcare costs, etc.)

• Education and science (primary and
secondary education, higher education,
research and development, etc.)

• Sports, culture, and standard of liv-
ing (language, religion, cultural events,
sports, etc.)

• Politics (elections, participation in polit-
ical life, etc.)

• Public finance (federaland localstate rev-
enues and expenditures, taxation, etc.)

• Legal system (penal code, courts, recidi-
vism, etc.)

DOMAINS AND LIMITATIONS
History shows the mutual interdependence
between statistics and the evolution of the
state. This interdependence explains, at least
partly, the difficulty that statisticians have
in defining clear limits in their discipline.
Throughout history and even today, political
power determines the limits of the study of
official statistics, expanding or limiting the
contents depending on its needs.
Political choice comes into play in many
areas of official statistics: in definitions of
such concepts as unemployment, poverty,
wellness, etc.; in the definitions of vari-
ables such as professional categories, level
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of salary, etc. This problem of choice leads
to two other problems:
1. The comparability of statistics

The needs and objectives of the state dic-
tate choice in this domain. Because needs
arenotalwaysthesame,choicewillbedif-
ferent in differentplacesand international
statistics will not always be comparable.
The difference in different states’ means
for data collection and use also explains
the difference in the results among coun-
tries.

2. Objectivity
Official statistics require objectivity.
Evenifpoliticalwillcannotbecompletely
eliminated, theevolutionofstatistical the-
ories and improvements in tools allow for
much more important and more reliable
data collection. The volume of treated
data has increased greatly, and informa-
tion has improved in terms of objectivity.

FURTHER READING
� Census
� Data
� Index number
� Indicator
� Population
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Ogive

An ogive is a graphical representation of
acumulated frequency distribution.This is
a type of frequency graphic and is also called
a cumulated frequency polygon. It serves
to give the number (or proportion) of obser-
vations smaller than or equal to a particular
value.

MATHEMATICAL ASPECTS
An ogive is constructed on a system of per-
pendicular axes. We place on the horizon-
tal axis the limits of the class intervals pre-
viously determined. Based on each of these
limit values, we determine the ordinate of
the height equal to the cumulated frequency
corresponding to this value. Joining by line
segments the successive points thus deter-
mined, we obtain a line called an ogive. We
normally place the cumulated frequency in
the left vertical axis and the percentage of
cumulated frequency on the right vertical
axis.

DOMAINS AND LIMITATIONS
Ogives are especially useful for estimating
centiles in a distribution. For example, we
can know the central point so that 50% of the
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observations would be below this point and
50% above. To do this, we draw a line from
the point of 50% on the axis of percentage
until it intersectswith thecurve.Thenwever-
tically project the intersection onto the hori-
zontal axis. The last intersection gives us the
desired value. The frequency polygon and
ogive are used to compare two statistical sets
whose number could be different.

EXAMPLES
From the table representing the distribution
of the daily turnover of 75 stores we will con-
struct an ogive.

Distribution of daily turnover of 75 stores (in
dollars):

Turnover
(class
intervals)

Fre-
quency

Cumu-
lated
frequen-
cy

Percen-
tage of
cumulated
frequency

215–235 4 4 5.3

235–255 6 10 13.3

255–275 13 23 30.7

275–295 22 45 60.0

295–315 15 60 80.0

315–335 6 66 88.0

335–355 5 71 94.7

355–375 4 75 100.0

Total 75

In this example, we obtain the estimation
that 50% of stores have a turnover smaller
than or equal to about US&289.

FURTHER READING
� Frequency distribution
� Frequency polygon
� Graphical representation

Olkin, Ingram

Olkin, Ingram was born in 1924 in Water-
bury, CT, USA. He received his diploma in
1947 at the City College of New York and
continued his studies at Columbia Univer-
sity, where he received a master’s degree in
statistics (1949). He received his doctorate
in statistical mathematics at the University
of North Carolina in 1951. He then taught
at Michigan State University and at the Uni-
versity of Minnesota before being named
professor of statistics at Stanford University,
a position he currently occupies.
Ingram Olkin has served as editor of the
Annals of Statistics, associate editor of
Psychometrika, Journal of Educational
Statistics, Journal of the American Sta-
tistical Association, and Linear Algebra
and Its Applications, among other mathe-
matical and statistical journals. His research
is focused on multivariate analysis, inequa-
lities, and the theory and application ofmeta-
analysis in the social sciences and biolo-
gy. He is coauthor of many works including
Inequality Theory of Majorization and Its
Applications (1979), Selecting and Order-
ing Populations (1980), Probability Models
and Applications (1980), and, more recent-
ly, Statistical Methods in Meta-Analysis
(1985).
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5, pp. 470–475.



O

One-Sided Test 397
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ods for Meta-Analysis. Academic,
New York.

1994 (with Gleser, L.J. and Derman, C.)
Probability Models and Applica-
tions. Macmillan, New York.

1995 (with Moher, D.) Meta-analysis of
randomised controlled trials. A con-
cern for standards. J. Am. Med.
Assoc. 274, 1962–1963.

1996 (with Begg C., Cho M., Eastwood S.,
Horton R., Moher D., Pitkin R., Ren-
nie D., Schulz KF., Simel D., Stroup
D.F.) Improving the quality of report-
ing of randomized controlled trials.
The CONSORT statement. J. Am.
Med. Assoc. 276(8), 637–639.

One-Sided Test
A one-sided or a one-tailed test on a popu-
lation parameter is a type of hypothesis test
in which the values for which we can reject
the null hypothesis, denoted H0 are located
entirely in one tail of the probability distri-
bution.

MATHEMATICAL ASPECTS
A one-sided test on a sample is a type of
hypothesis test where the hypotheses are of
the form:

(1) H0 : θ ≥ θ0

H1 : θ < θ0

or
(2) H0 : θ ≤ θ0

H1 : θ > θ0 ,

where H0 is the null hypothesis, H1 the
alternative hypothesis, θ an unknown
parameter of the population, and θ0 the
presumed value of this parameter.

In thecaseofaone-sided teston twosamples,
the hypotheses are as follows:

(1) H0 : θ1 ≥ θ2

H1 : θ1 < θ2

or
(2) H0 : θ1 ≤ θ2

H1 : θ1 > θ2 ,

where θ1 and θ2 are the unknown parameters
of two populations being compared.
The critical region which is defined to be the
set of values of the test statistics for which
the null hypothesis, H0 is rejected, for a one-
sided test is the set of values less than the
critical value of the test, or the set of values
greater than critical value of the test.

EXAMPLES
One-sided Test on a Population Mean
A perfume manufacturer wants to make sure
that their bottles really contain a minimum
of 40 ml of perfume. A sample of 50 bottles
givesameanof39 ml,withastandard devi-
ation of 4 ml.
The hypotheses are as follows:

Null hypothesis H0 : μ ≥ 40 ,

Alternative hypothesis H1 : μ < 40 .

If the dimension of the sample is large
enough, the sampling distribution of the
mean can be approximated by a normal
distribution. For a significance level α =
1%, we obtain the value of zα in the normal
table: zα = 2.33. The critical value of the
null hypothesis is calculated by the expres-
sion:

μx̄ − zα · σx̄ ,

where μx̄ is the mean of the sampling distri-
bution of the means

μx̄ = μ
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and σx̄ is the standard deviation of the sam-
pling distribution of the means, or standard
error of the mean

σx̄ = σ√
n

.

We obtain thus the following critical value:

40− 2.33 · 4√
50
= 38.68 .

As the sampling mean x̄ = 39 is greater
than the critical value for the one-tailed left
test, the manufacturer cannot reject the null
hypothesis and so he can consider that his
bottles of perfume do indeed contain at least
40 ml of perfume, the mean of the sample
being randomly distributed.

One-sided Test on Percentage
of Two Populations
The proposer of a bill on road traffic believes
that his bill will be more readily accepted
by urban populations than by rural ones. An
inquirywasmadeontwosamplesof100peo-
plefromurbanandruralenvironments. In the
urban environment (population 1), 82 peo-
ple responded favorably to his bill, while in
theruralenvironment(population2),only69
people responded favorably.
To confirm or to invalidate the proposer’s
suspicion, we formulate a hypothesis test
posing the following hypotheses:

Null hypothesis H0 : π1 ≤ π2

or π1 − π2 ≤ 0

Alt. hypothesis H1 : π1 > π2

or π1 − π2 > 0

where π1 and π2 represent the favorable pro-
portion of the urban and rural populations,
respectively.
Depending on the measured percentage of
the two samples (p1 = 0.82 and p2 = 0.69),

we can estimate the value of the standard
deviation of the sampling distribution of the
percentagedifferenceorstandarderrorof the
percentage difference:

σ̂p1−p2 =
√

p1 · (1− p1)

n1
+ p2 · (1− p2)

n2

=
√√√√ 0.82·(1−0.82)

100

+ 0.69·(1−0.69)
100

= 0.06012 .

If we design a test with a significance level
α of 5%, then the value of zα in the normal
table equals 1.645. The critical value of the
null hypothesis is calculated by:

π1 − π2 + zα · σp1−p2

= 0+ 1.645 · 0.06012 = 0.0989 .

Because thedifferencebetween theobserved
proportions p1 − p2 = 0.82− 0.69 = 0.13
is greater than the critical value, we have to
reject the null hypothesis in favorof the alter-
native hypothesis, thus confirming the sup-
position of the proposer.

FURTHER READING
� Acceptance region
� Alternative hypothesis
� Hypothesis testing
� Null hypothesis
� Rejection region
� Sampling distribution
� Significance level
� Two-sided test

REFERENCES
Miller, R.G., Jr.: Simultaneous Statistical

Inference, 2nd edn. Springer, Berlin Hei-
delberg New York (1981)
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One-Way Analysis of Variance
One-way analysis of variance for a fac-
tor with t levels (or t treatments) is a tech-
nique that helps to determine if there exists
a significant difference between the t treat-
ments (populations). The principle of one-
way analysis of variance is to compare the
variability within samples taken from the
populations with the variability between
these samples. The source of variation called
“error” corresponds to the variability with-
in the samples, and the source of variation
called “effect” corresponds to the variabili-
ty between the samples.

HISTORY
See analysis of variance.

MATHEMATICAL ASPECTS
The linear model for a factor with t levels
(treatments) is as follows:

Yij = μ+ τi + εij ,

i = 1, 2, . . . , t , j = 1, 2, . . . , ni ,

where Yij represents observation j receiving
treatment i, μ is the general mean common
toall treatments,τi is theactualeffectof treat-
ment ion theobservations, andεij is theexpe-
rimental error of observation Yij.
This model is subjected to the basic
hypotheses associated to analysis of vari-
ance if we suppose that the errors εij are
independent random variables following
a normal distribution N(0, σ 2).
To see if there exists a difference between the
t treatments, a test of hypothesis is done.
The following null hypothesis:

H0 : τ1 = τ2 = . . . = τt

means that the t treatments are identical.

The alternative hypothesis is formulated as
follows:

H1 : not all values of τi (i = 1, 2, . . . , t)
are identical.

The principle of analysis of variance is to
compare the variability within each sample
with the variability among the samples. For
this, the Fisher test is used, in which a ratio
is formed whose numerator is an estimation
of the variance among treatments (samples)
and whose denominator is an estimation of
the variance within treatments.
This ratio, denoted F, follows a Fisher
distribution with t−1 and N− t degrees of
freedom (N being the total number of obser-
vations). The null hypothesis H0 will be
rejected at the significance level α if the F
ratio is superior or equal to the value in the
Fisher table, meaning if

F ≥ Ft−1,N−t,α .

If the null hypothesis H0 cannot be rejected,
then we can consider that the t samples come
from the same population.

Calculation of Variance Among Treatments
For the variance among treatments, the sum
of squares among treatments is calculated as
follows:

SSTr =
t∑

i=1

ni(Ȳi. − Ȳ..)
2 ,

where Ȳi. is the mean of the ith treatment.
The number of degrees of freedom associ-
ated to this sum is equal to t− 1, t being the
number of samples (or groups).
Thevarianceamongtreatments is thenequal
to:

s2
Tr =

SSTr

t − 1
.
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Calculation of Variance Within Treatments
For the variance within treatments the sum
of squares within treatments also called
error, must be calculated as follows:

SSE =
t∑

i=1

ni∑
j=1

(Yij − Ȳi.)
2 .

The number of degrees of freedom associ-
ated to this sum is equal to N− t, N being the
total number of observations and t the num-
ber of samples. The variance within treat-
ments is then equal to:

s2
E =

SSE

N − t
.

The total sum of squares (SST) is the sum of
squares of the deviations of each observa-
tion Yij from the general mean Ȳ..:

SST =
t∑

i=1

ni∑
j=1

(Yij − Ȳ..)
2 .

The number of degrees of freedom associ-
ated to this sum is equal to N−1, N being the
total number of observations. We can also
find SST in the following way:

SST = SSTr + SSE .

Fisher Test
We can now calculate the F ratio and deter-
mineif thesamplescanbeconsideredashav-
ing been taken from the same population.
The F ratio is equal to the estimation of the
variance among treatments divided by the
estimation of the variance within treatments,
meaning

F = s2
Tr

s2
E

.

If F is larger than or equal to the value in the
Fisher table for t − 1 and N − t degrees

of freedom, then we can conclude that the
difference between the samples is due to
the experimental treatments and not only to
randomness.

Table of Analysis of Variance
It iscustomary to summarize the information
ofananalysis of variance ina tablecalledan
analysis of variance table, presented as fol-
lows:

Source
of va-
riation

Degrees
of
freedom

Sum of
squares

Mean of
squares

F

Among
treat-
ments

t-1 SSTr s2
Tr

s2
Tr

s2
E

Within
treat-
ments

N-t SSE s2
E

Total N-1 SST

Pairwise Comparison of Means
When the Fisher test rejects the null hypoth-
esis, meaning there is a significant differ-
ence between the means of samples, we
can wonder where this difference is. Sev-
eral tests have been developed to answer
this question. There is the least signifi-
cant difference (LSD) test (in French the
test de la différence minimale) that makes
comparisons of means taken in pairs. For
this test to be used, the F ratio must indi-
cate a significant difference between the
means.

EXAMPLES
During cooking, croissants absorb grease in
variable quantities. We want to see if the
quantity absorbed depends on the type of
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grease.Fourdifferent typesofgreasearepre-
pared, and six croissants are cooked per type
of grease.
The data are in the following table (the num-
bers are quantities of grease absorbed per
croissant):

Grease

1 2 3 4

64 78 75 55

72 91 93 66

68 97 78 49

77 82 71 64

56 85 63 70

95 77 76 68

The null hypothesis is that there is no dif-
ferenceamong treatments,meaning that the
quantity of grease absorbed during cooking
does not depend on the type of grease:

H0 : τ1 = τ2 = τ3 = τ4 .

To test this hypothesis, the Fisher test is
used, for which the F ratio has to be deter-
mined. Therefore the variance among treat-
ments and the variance within treatments
must be calculated.

Variance Among Treatments
The general mean Ȳ.. and the means of the

four sets Ȳi. = 1
ni

ni∑
j=1

Y1i (i = 1, 2, 3, 4) have

to be calculated. Since all ni are equal to 6
and N is equal to 24, we obtain:

Ȳ.. = 64+ 72+ . . .+ 70+ 68

24

= 1770

24
= 73.75 .

We also calculate:

Ȳ1. = 1

6

6∑
j=1

Y1j = 432

6
= 72 ,

Ȳ2. = 1

6

6∑
j=1

Y2j = 510

6
= 85 ,

Ȳ3. = 1

6

6∑
j=1

Y3j = 456

6
= 76 ,

Ȳ4. = 1

6

6∑
j=1

Y4j = 372

6
= 62 .

We can then calculate the sum of squares
among treatments:

SSTr =
4∑

i=1

ni(Ȳi. − Ȳ..)
2

= 6(72− 73.75)2 + 6(85− 73.75)2

+ 6(76− 73.75)2 + 6(62− 73.75)2

= 1636.5 .

The number of degrees of freedom associ-
ated to this sum is equal to 4− 1 = 3.
Thevarianceamongtreatments is thenequal
to:

s2
Tr =

SSTr

t − 1
= 1636.5

3
= 545.5 .

Variance Within Treatments
Thesumofsquareswithin treatmentsorerror
is equal to:

SSE =
4∑

i=1

6∑
j=1

(Yij − Ȳi.)
2

= (64− 72)2 + (72− 72)2 + . . .+
(70− 62)2 + (68− 62)2

= 2018 .

The number of degrees of freedom associ-
ated to this sum is equal to 24− 4 = 20.
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The variance within treatments is then equal
to:

s2
E =

SSE

N − t
= 2018

20
= 100.9 .

Fisher Test
All the elements necessary for the calcula-
tion of F are now known:

F = s2
Tr

s2
E

= 545.5

100.9
= 5.4063 .

We have to find the value of the Fisher table
with 3 and 20 degrees of freedomwith a sig-
nificance level α = 0.05:

F3.20,0.05 = 3.10 .

We notice that

F ≥ F3,20,0.05 ,

5.4063 ≥ 3.10 ,

which means that H0 must be rejected.
This means that there is a significant dif-
ference between the treatments. Therefore
the quantity of grease absorbed depends on
the type of grease used.

Table of Analysis of Variance
This information is summarized in the fol-
lowing table of analysis of variance:

Source
of
varia-
tion

Degrees
of
freedom

Sum of
squares

Mean of
squares

F

Among
treat-
ments

3 1636.5 545.5 5.4063

Within
treat-
ments

20 2018 100.9

Total 23 3654.5

FURTHER READING
� Analysis of variance
� Contrast
� Fisher table
� Fisher test
� Least significant difference test
� Two-way analysis of variance

REFERENCES
Cox, D.R., Reid, N.: Theory of the design

ofexperiments. Chapman & Hall, London
(2000)

Montgomery, D.C.: Design and analysis of
experiments, 4th edn. Wiley, Chichester
(1997)

Sheffé, H.: The analysis of variance. C’n’H
(1959)

Operations Research

Operations research is a domain of applied
mathematics that uses scientific methods to
provide a necessary basis for decision mak-
ing. It is generally applied to the complex
problems of people and equipment organiza-
tion in order to find the best solution to reach
some goal. Included in operations research
methods are simulation, linear program-
ming, mathematical programming (nonlin-
ear), game theory, etc.

HISTORY
The original objective of operations research
was to find military applications in the Unit-
ed Kingdom in the 1930s. These military
applications were then largely extended, and
since the Second World War the use of oper-
ations research has been extended to non-
military public applications and even to the
private sector. The impact on operations
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research of the rapid development of com-
puters was very important.

EXAMPLES
Optimization, linear programming, and
simulation are examples of operations
research.

FURTHER READING
� Linear programming
� Optimization
� Simulation

REFERENCES
Bealle, E.M.L.: Introduction to Optimiza-

tion. Wiley, New York (1988)

Collatz, L., Wetterling, W.: Optimization
problems. Springer, Berlin Heidelberg
New York (1975)

Optimal Design

An optimal design is an experimental
design that satisfies certain criterion of opti-
mality (for example the minimization of
errors associated to the estimations that we
must make). As the treatments applied to
different experimental units are fixed by
the experimenter, we can try to improve the
quality of the results. We can also increase
the precision of the estimators, reduce the
confidence intervals, or increase the power
of the hypothesis testing, choosing the opti-
mal design inside the category to which it
belongs.

HISTORY
The theory of optimal designs was devel-
oped by Kiefer, Jack (1924–1981). One of
the principal points of his work is based on

the statistical efficiency of design. In his arti-
cle of 1959, he presents the principal crite-
ria for obtaining the optimal design. Kiefer’s
collected articles in the area of experiment-
al design was published by Springer with
the collaboration of the Institute of Mathe-
matical Statistics.

DOMAINS AND LIMITATIONS
As we cannot minimize all errors at the
same time, the optimal design will be deter-
mined by the choice of optimality crite-
ria. These different criteria are revealed in
Kiefer’s 1959 article.

FURTHER READING
� Design of experiments

REFERENCES
Brown,L.D.,Olkin, I.,Sacks, J.,Wynn,H.P.:

Jack Carl Kiefer, Collected Papers III:
Design of Experiments. Springer, Berlin
Heidelberg New York (1985)

Fedorov, V.V.: Theory of Optimal Expe-
riments. Academic, New York (1972)

Kiefer, J.: Optimum experimental designs.
J. Roy. Stat. Soc. Ser. B 21, 272–319
(1959)

Optimization

A large number of statistical problems can
be solved using optimization techniques.
We use optimization techniques in statisti-
cal procedures such as least squares, max-
imum likelihood, L1 estimation, etc. In
many other areas of statistics such as regres-
sion analysis, hypothesis testing, experi-
mental design, etc., optimization plays a hid-
den, but important, role.
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Optimization methods can be classed in the
following manner:
1. Classical optimization methods (differ-

ential calculation, Lagrange multipliers)
2. Mathematical programming methods

(linear programming, nonlinear pro-
gramming, dynamic programming)

HISTORY
The problems of optimization were formu-
lated by Euclid, but only with the devel-
opment of the differential calculus and the
calculus of variations in the 17th and 18th
centuries were mathematical tools capable
of resolving such problems available. These
methods were employed for the first time in
the resolution of certain problems of opti-
mization in geometry and physics.
Problems of this type were formulated and
studied by well-known mathematicians such
as Euler, Leonhard Bernoulli, Jakob, Jaco-
bi,CarlGustavJacob,andLagrange,Joseph-
Louis, to whom we owe the Lagrange mul-
tiplier.
The discovery of important applications of
the optimization technique in military prob-
lems during the Second World War and
advances in technology (computer) allowed
for the resolution of increasingly complex
problems of optimization in the most varied
fields.

FURTHER READING
� Lagrange multiplier
� Linear programming
� Operations research

REFERENCES
Arthanari, T.S., Dodge, Y.: Mathematical

Programming in Statistics. Wiley, New
York (1981)

Outlier

Outlier is an observation which is well seper-
ated from the rest of the data.
Outliers are defined with respect to a sup-
posedunderlyingdistributionora theoretical
model. If these change, the observation may
be no more outlying.

HISTORY
The problem of outliers has been addressed
by many scientists since 1750 by Boscovich,
Roger Joseph, de Laplace, Pierre Simon,
and Legendre, Adrien Marie.
According to Stigler, Stephen M. (1973),
Legendre,A.M.proposed, in1805, the rejec-
tion of outliers; and in 1852, Peirce, Ben-
jamin established a first criterion for deter-
mining outliers. Criticisms appeared, espe-
cially from Airy, George Biddell (1856),
against the use of such a criterion.

DOMAINS AND LIMITATIONS
In the framework of statistical study, we can
formulate the question of outliers in two dif-
ferent ways:
• Thefirst consistsof adapting methods that

are resistent to the presence of outliers in
the sample.

• the Second tries to eliminate the outliers.
After identification, delete them from the
sample before making a statistical analy-
sis.

Deletion of outliers from a data set is a con-
troversial issue especially in a small data set.
The problem of outliers led to the research of
new statistical methods called robust meth-
ods. Estimators not sensitive to outliers are
said to be robust.
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FURTHER READING
� Analysis of residuals
� Hat matrix
� L1 estimation
� Leverage point
� Observation
� Robust estimation

REFERENCES
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Paasche Index
The Paasche index is a composite index
number of price arrived at by the weight-
ed sum method. This index number corre-
sponds to the ratio of the sum of the prices
of the actual period n and the sum of prices
of the reference period 0, these sums being
weighted by the respective quantities of the
actual period.
The Paasche index differs from the
Laspeyres index only by the choice of
weights method. Indeed, in the Laspeyres
index, the weights are given using quantities
of the reference period Q0 rather than those
of the current period Qn.

HISTORY
In the mid-19th century German statistician
Paasche, Hermann developed a formula for
the index number that carries his name.
Paasche, H. (1874) worked on prices record-
ed in Hamburg.

MATHEMATICAL ASPECTS
The Paasche index is calculated as follows:

In/0 =
∑

Pn ·Qn∑
P0 ·Qn

,

where Pn and Qn are, respectively, the prices
and sold quantities in the current period and
P0 and Q0 are the prices and sold quantities

in the referenceperiod.Thesumsrelate to the
considered goods and are expressed in base
100.

In/0 =
∑

Pn · Qn∑
P0 · Qn

· 100 .

ThePaaschemodelcanalsobeapplied tocal-
culate a quantity index (also called volume
index). In this case, it is the prices that are
constant and the quantities that are variable:

In/0 =
∑

Qn · Pn∑
Q0 · Pn

· 100 .

EXAMPLES
Consider the following table indicating the
respective prices of three food items in refer-
ence year 0 and in the current year n, as well
as the quantities sold in the current year:

Product Price (euros)

1970 1988

Quantity sold
in 1988 (Qn )

(thousands)
(P0) (Pn )

Milk 85.5 0.20 1.20

Bread 50.5 0.15 1.10

Butter 40.5 0.50 2.00

From the following table we have:

∑
PnQn = 239.15 and

∑
P0Qn = 44.925 .
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Product
∑

Pn Qn
∑

P0Qn

Milk 102.60 17.100

Bread 55.55 7.575

Butter 81.00 20.250

Total 239.15 44.925

We can then find the Paasche index:

In/0 =
∑

Pn · Qn∑
P0 · Qn

· 100

= 239.15

44.925
· 100 = 532.3 .

In other words, according to the Paasche
index, the price index number of these prod-
ucts has risen by 432.3% (532.3−100) dur-
ing the considered period.

FURTHER READING
� Composite index number
� Fisher index
� Index number
� Laspeyres index
� Simple index number

REFERENCES
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Borsen-notirungen. Jahrb. Natl. Stat. 23,
168–178 (1874)

Pair of Random Variables

A pair of variables whose values are deter-
mined by a random experiment is called
a pair of random variables. There are two
types of pairs:
• A pair of random variables is discrete if

the set of values taken by each of the ran-
dom variables is a finite or infinite count-
able set.

• A pair of random variables is continuous
if the setofvalues taken by each of the ran-
dom variables is an infinite noncountable
set.

In the case of a pair of random variables, the
set of all the possible results of the experi-
ment comprises the sample space, which is
located in a two-dimensional space.

MATHEMATICAL ASPECTS
A pair of random variables is generally
denoted by thecapital letters such asX and Y.
It is a two-variable function with true values
in �2.
If A is a subset of the sample space, then:

P(A) = Probability that (X, Y) ∈ A

= P[(X, Y) ∈ A] .

The case of a pair of random variables can
be generalized to the case of n random vari-
ables: If n numbers are necessary to describe
the realization of a random experiment,
such a realization is represented by n random
variables X1, X2, . . . , Xn. The sample space
is then located in an n-dimensional space. If
A is a subset of the sample space, then we can
say that:

P(A) = P[(X1, X2, . . . , Xn) ∈ A] .

DOMAINS AND LIMITATIONS
Certain random situations force one to con-
sider not one but several numerical enti-
ties simultaneously. Consider, for example,
a system of two elements in a series and
of random life spans X and Y; the study of
the life span of the whole set must consid-
er events concerning X and Y at the same
time. Or consider a cylinder, fabricated by
a machine, of diameter X and height Y, with
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these values being random. The imposed tol-
erances usually consider both entities simul-
taneously; the structure of their probabilistic
dependence should be known.

FURTHER READING
� Covariance
� Joint density function
� Marginal density function
� Random variable

REFERENCES
Hogg, R.V., Craig, A.T.: Introduction

to Mathematical Statistics, 2nd edn.
Macmillan, New York (1965)

Paired Student’s T-Test
The paired Student’s test is a hypothesis test
that is used to compare the means of two
populations when each element of a popu-
lation is related to an element from the other
one.

MATHEMATICAL ASPECTS
Let xij be observation j for the pair i (j= 1, 2
and i = 1, 2, . . . , n). For each pair of obser-
vations we calculate the difference

di = xi2 − xi1 .

We are looking for the estimated standard
error of the mean of di, denoted by d:

sd̄ =
1√
n
· Sd ,

where Sd is the standard deviation of di:

Sd =

√√√√√
n∑

i=1

(
di − d̄

)2

n− 1
.

The resulting statistical test is defined by:

T = d̄

sd̄
.

Hypotheses
ThePairedStudent’sTest isa two-sided test.
The hypotheses are:

H0 : δ = 0 (there is no difference
among the treatments)

H1 : δ �= 0 (there is a difference
among the treatments) ,

where δ is the difference between the means
of two populations (δ = μ1 − μ2).

Decision Rules
Wereject thenull hypothesisatsignificance
level α if

|T| > tn−1, α
2

,

where tn−1, α
2

is the value of the Student
table with n− 1 degrees of freedom.

EXAMPLES
Suppose that two treatments are applied to
ten pairs of observations. The obtained data
and the corresponding differences denoted
by di are presented in the following table:

Pair i Treatment di = xi2−xi1

1 2

1 110 118 8

2 99 104 5

3 91 85 −6

4 107 108 1

5 82 81 −1

6 96 93 −3

7 100 102 2

8 87 101 14

9 75 84 9

10 108 111 3
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The mean equals:

d̄ = 1

10

10∑
i=1

di = 32

10
= 3.2 .

The standard deviation is calculated thus:

Sd =

√√√√√√
10∑

i=1

(
di − d̄

)2

10− 1
=

√
323.6

9
= 6.00 ,

and the standard error:

sd̄ =
1√
n
· Sd

= 1√
10
· 6.00 = 1.90 .

The statistical test then equals:

T = d̄

sd̄
= 3.2

1.90
= 1.69 .

If we choose a significance level α = 0.05,
the value of t9,0.025 is 2.26. Thus the null
hypothesis H0 : δ = 0 cannot be rejected
because |T| < t9,0.025.

FURTHER READING
� Hypothesis testing
� Student table
� Student test

Panel

The panel is a type of census that repeats
periodically. It is based on a permanent
(or semipermanent) sample of individuals,
households, etc., who are regularly ques-
tioned about their behavior or opinion. The
panel offers the advantage of following the
individual behavior of questioned people or

units and measuring any changes in their
behavior over time. The information collect-
ed in the panel is often richer than in a sim-
ple census while retaining limited costs. We
adapt the sample renewal rate depending on
the goal of the inquiry. When the objective of
thepanel is to followtheevolutionof individ-
uals over time (e. g., following career paths),
the sample stays the same; we call this a lon-
gitudinal inquiry. When the objective is to
serve as a way of estimating characteristics
of the population in different periods, the
samplewillbepartially renewedfromtimeto
time; we call this a changing panel. Thus the
data of the panel constitute a source of very
important information because they contain
an individual and time dimension simultane-
ously.

HISTORY
The history of panel research dates back to
1759, when the French Count du Montbeil-
lard, Philibert Guéneau began recording his
sons stature at six-month intervals from birth
to age 18. His records have little in com-
mon with contemporary panel studies, aside
from the systematic nature of his repeated
observations. The current concept of panel
research was established in around the 1920s
and 1930s, when several studies of human
growth and development began. Since the
mid-20th century panel studies have prolif-
erated across thesocial sciences.Several fac-
tors have contributed to the growth of panel
research in the social sciences. Much growth
in the 1960s and 1970s came in response
to increased federal funding for panel stud-
ies in the United States. For example, pol-
icy concerns regarding work and econom-
ic behavior led to funding for ongoing stud-
ies like the National Longitudinal Surveys
(NLS) in1966andthePanelStudyof Income
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Dynamics in 1968. The latter, for exam-
ple, began with 4802 families with a list of
variables exceeding 5000; poor households
were oversampled. The NLS survey includ-
ed 5020 elderly men, 5225 young men, 5083
mature women, 5159 young women, and
12686 youth.
Technologicaladvanceshave facilitateddata
collection at a national scale and increased
researchers’ capacity for managing, analyz-
ing, and sharing large, complex data sets. In
addition, advances in statistical methods for
analyzing longitudinaldatahaveencouraged
researchers not only to collect panel data
but also to ask new questions about exist-
ing data sets. The growth of panel studies
is evident in other industrialized countries,
too.

DOMAINS AND LIMITATIONS
Inpractice, it is rare tohavepanels inthestrict
meaningof the term.Weshouldthustake into
account the following problems of the panel:
difficulty of recruiting certain categories of
panelists, fatigueofpanelists,which isoneof
the main reasons of non-responses, and evo-
lution of the population causing the defor-
mation of the sample from the population it
should represent. In practice, we often try to
eliminate thisproblembypreferringachang-
ing panel to a strict one.
There are also specific errors of measure in
panels:
(1) Telescope effect: error of dating, often
made by new panelists when indicating the
date of the event about which they are being
asked.
(2) Panel effect or bias of conditioning:
change in behavior of panelists that can
appear over time as a result of repeated inter-
views. The panelists are asked about their
behavior, and finally they change it.

EXAMPLES
Inquiry about health and medical care:
inquiry conducted by INSEE in about 10000
households. Each household is followed for
3 months during which every 3 weeks mem-
bers of the household are questioned by
a researcher about their medical care.
Panel of Sofres consumers: The Metascope
panel of Sofres is based on a sample of
20000 households. Each month the panelists
receive by mail a self-administered ques-
tionnaire on their different purchases. These
questionnaires are essentially used by com-
panies who want to know what their clients
want.
Panel of audience: The Mediamat panel
is based on a sample of 2300 households
equipped with audimeterswith push buttons.
It allowsresearchers to measure theaudience
of TV stations.

FURTHER READING
� Bias
� Population
� Sample
� Survey
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Parameter

A parameter characterizes a quantitative
aspect of a population.

DOMAINS AND LIMITATIONS
The parameters of a population are often
unknown. However, we can estimate
a parameter by a statistic calculated from
a sample using a method of estimation.

EXAMPLES
A parameter is generally designated by
a Greek letter:

μ: mean of population
σ : standard deviation of population
π: percentage relative to population

FURTHER READING
� Estimation
� Estimator
� Least squares
� Maximum likelihood
� Moment
� Statistics

REFERENCES
Lehmann, E.L.: Theory of Point Estimation,

2nd edn. Wiley, New York (1983)

Parametric Test

A parametric test is a form of hypothesis
testing inwhichassumptionsaremadeabout
the underlying distribution of observed data.

HISTORY
One of the first parametric tests was the chi-
square test, introduced by Pearson, K. in
1900.

EXAMPLES
The Student test is an example of a param-
etric test. It aims to compare themeansof two
normally distributed populations.
Among the best-known parametric tests we
mention the Student t-test and the Fisher
test.

FURTHER READING
� Binomial test
� Fisher test
� Hypothesis testing
� Student test

Partial Autocorrelation

The partial autocorrelation at lag k is the
autocorrelation between Yt and Yt−k that is
not accounted for by lags 1 through k − 1.

See autocorrelation.

Partial Correlation

The partial correlation between two vari-
ables is defined as correlation of two vari-
ables while controlling for a third or more
other variables. A measure of partial corre-
lation between variables X and Y has a third
variable Z as a measure of the direct rela-
tion between X and Y that does not take
into account the consequences of the linear
relations of these two variables with Z. The
calculation of thepartial correlation between
X and Y given Z serves to identify in what
measure the linear relation between X and Y
can be due to the correlation of two variables
with Z.

HISTORY
Interpreting analyses of correlation coef-
ficients between two variables became an
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important question in statistics during the
increasingly widespread use of correlation
methods in the early 1900s. Pearson, Karl
knew that a large correlation between two
variables could be due to their correlation
with a third variable. This phenomenon was
notrecognizeduntil1926whenYule,George
Udny proved it through an example by get-
ting the coefficients of correlation between
time series.

MATHEMATICAL ASPECTS
From a sample of n observations, (x1, y1, z1),
(x2, y2, z2), . . . , (xn, yn, zn) from an unknown
distribution of three random variables X, Y,
and Z, the coefficient of partial correla-
tion, which we denote by rxy.z, is defined
as the coefficient of correlation calculated
between x̂i and ŷi with

x̂i = β̂0x + β̂1xzi ,

ŷi = β̂0y + β̂1yzi ,

where β̂0x and β̂1x are the least-squares esti-
mators obtained by making a regression of xi

on zi, and β̂0y and β̂1y are the least-squares
estimators obtained by making a regression
of yi on zi. Thus by definition we have:

rxy.z =
∑

(̂xi − x) (̂yi − y)√∑
(̂xi − x)2

√∑
(̂yi − y)2

.

We can prove the following result:

rxy.z = rxy − rxz · ryz√
1− r2

xz ·
√

1− r2
yz

,

where rxy, rxz, and ryz are the coefficients of
correlation respectively between xi and yi, xi

and zi, and yi and zi. Note that when xi and yi

are not correlated with zi, that is, when rxz =
ryz = 0, we have:

rxy.z = rxy ,

that is, the coefficient of correlation equals
the coefficient of partial correlation, or, in
other words, the value of the correlation
between xi and yi is not due at all to the pres-
ence of zi. On the other hand, if the corre-
lations with zi are important, then we have
rxy.z ∼= 0, which indicates that the observed
correlation between xi and yi is only due to
the correlation between these variables with
zi. Thus we say that there is no direct rela-
tion between xi and yi (but rather an indirect
relation, through zi).
More generally, we can calculate the partial
correlation between xi and yi with zi1 and zi2

relative to two variables Z1 and Z2 in the fol-
lowing manner:

rxy.z1z2 =
rxy·z1 − rxz2.z1 · ryz2.z1√
1− r2

xz2.z1
·
√

1− r2
yz2.z1

.

DOMAINS AND LIMITATIONS
We must insist on the fact that a correlation
measures only the linear relation between
two variables, without taking into account
functional models or the predictive or fore-
casting capacity of a given model.

EXAMPLES
Wehaveobserved, for example, astrong pos-
itive correlation between the number of reg-
istered infarcts during a certain period and
theamountof icecreamsold in thesameperi-
od. We should not conclude that high con-
sumption of ice cream provokes infarcts or,
conversely, that an infarct provokes a par-
ticular desire for ice cream. In this exam-
ple, the large number of infarcts does not
come from the amount of ice cream sold
but from the heat. Thus we have a strong
correlation between the number of infarcts
and the temperature. The large amount of
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ice cream sold is also explained by the heat,
which implies a strong correlation between
the amount of ice cream sold and the tem-
perature. The strong correlation observed
between the number of infarcts and the
amount of ice cream sold is then the conse-
quence of two strong correlations. A third
variable is hidden behind the apparent rela-
tion of the two previous variables.

FURTHER READING
� Correlation coefficient

REFERENCES
Yule, G.U. (1926) Why do we sometimes

get nonsense-correlations between time-
series? A study in sampling and the nature
of time-series. J. Roy. Stat. Soc. (2) 89, 1–
64

Partial Least Absolute
Deviation Regression

The partial least absolute deviation (partial
LAD) regression is a regression method that
linearly relates a response vector to a set of
predictors using derived components. It is an
L1 regression modeling technique well suit-
ed to situations where the number of param-
eters in a linear regression model exceeds
the number of observations. It is mostly used
for prediction purposes rather than inference
on parameters. The partial LAD regression
method extends the partial least-squares
regression to the L1 norm associated with
LAD regression instead of the L2 norm,
which isassociatedwithpartial leastsquares.
The partial LAD regression follows the
structure of the univariate partial least-
squares regression algorithm and extracts
components (denoted by t) from direc-
tions (denoted by w) that depend upon the

response variable. The directions are deter-
mined by a Gnanadesikan–Ketterning (GK)
covariance estimate that replaces the usual
variance based on the L2 norm with MAD,
the median absolute deviation, based on
L1. Therefore we use the notation wmad

k for
partial LAD directions.

HISTORY
The partial LAD regression method was
introduced in Dodge, Y. et al. (2004). It was
further developed in Dodge, Y. et al. (2004)
andtestedusing thebootstrap inKondylis,A.
and Whittaker, J. (2005).

MATHEMATICAL ASPECTS
For i = 1, . . . , n and j = 1, . . . , p, denoting
observation units and predictors, the partial
LAD regression algorithm is given below:
1. Center or standardize both X and y.
2. For k = 1, . . . , kmax:

Compute wmad
k according to

wmad
j,k =

1

4

(
mad2(xj,k−1 + y)

−mad2(xj,k−1 − y)
)

,

and scale wmad
k to 1.

Extract component

tk =
p∑

j=1

wmad
j,k xj,k−1 ,

where

wmad
k =

(
wmad

1,k , . . . , wmad
j,k

)
.

Orthogonalize each xj,k−1 with respect to
tk: xj,k = xj,k−1 − E(xj,k−1|tk).

3. Give the resulting sequence of the fit-
ted vectors ŷplad

k = Tkq̂k, where Tk =
(t1, . . . , tk) is the score matrix and q̂k =
(̂q1, . . . , q̂k) the LAD regression coeffi-
cient vector.
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4. Recover the implied partial LAD regres-
sion coefficients according to β̂

plad
k =

W̃mad
k q̂k, where the matrix W̃mad

k pools in
its columns the vectors wmad

k expressed in
terms of the original xj.

The univariate partial least-squares regres-
sion and the partial LAD method share the
following properties:
1. y = q1t1 + . . .+ qktk + ε,
2. X = p1t1 + . . .+ pktk + f ,
3. cor(ti, tj) = 0 for i �= j,
where cor(,) denotes the Pearson correlation
coefficient, ε and f correspond to residual
terms, and pk the X-loading.
The partial LAD method builds a regres-
sion model that relates the predictors to the
response according to:

ŷplad
k =

p∑
j=1

β̂
plad
j xj .

EXAMPLE
We give here an example from near infrared
experiments in spectroscopy. We use the
octane data set that consists of 39 gaso-
line samples for which the octanes have
been measured at 225 wavelengths (in
nanometers). The regressors are highly mul-
ticollinear spectra at different numbers of
wavelengths, and their number exceeds the
sample size n.

In the figure, we give the lines for the 39
gasolinesamples throughout their225wave-
lengths.
We use the partial LAD regression method
to build a linear model based on two derived
components. The resulting plot of the
response y vs. the fitted values ŷ is given
in the right panel of the following figure
under the main title PLAD (partial LAD
regression). The right panel of the same fig-
ure is the corresponding plot of the response
y vs. the fitted values ŷ given for a univariate
partial least-squares regression model based
on two components.

The partial least-squares regression model
will require an additional component in the
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final model in order to provide good pre-
dictive results as the partial LAD regression
model. This is due to a group of six outliers
in the octane data set. These are observa-
tions 25, 26, 36, 37, 38, and 39, which con-
tained alcohol. They are visible for wave-
lengths higher than 140nm in the lineplot
above.

FURTHER READING
� Least absolute deviation regression
� Partial least-squares regression
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Progress on PLAD and PQR. In: Pro-
ceedings 55th Session of the ISI 2005,
pp. 495–503 (2005)
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Partial Least-Squares
Regression

The partial least-squares regression (PLSR)
is a statistical method that relates two data
matrices X and Y, usually called blocks, via
a latent linear structure. It is applied either on
a single response vector y (univariate PLSR)
or a response matrix Y (multivariate PLSR).
PLSR is commonly used when the recorded
variables are highly correlated. It is a very

suitablemethodincaseswhere thenumberof
thevariablesexceedsthenumberof theavail-
ableobservations.Thisisduetothefact that it
uses orthogonal derived components instead
of the original variables. The use of a few
orthogonal components instead ofnumerous
correlatedvariablesguarantees thereduction
of the regression problem on a small sub-
space that often stabilizes the variability of
the estimated coefficients and provides bet-
ter predictions.

HISTORY
The PLSR was initially developed within
the NIPALS algorithm, though it has been
implemented in various algorithms includ-
ing theorthogonalscoresandtheorthogonal-
loading PLSR, the SIMPLS algorithm for
PLSR, the Helland PLSR algorithm, and the
Kernel PLSR algorithm.

MATHEMATICAL ASPECTS
PLSR methods solve the following maxi-
mization problem:

max
w,q
{cov(Xk−1wk, Yk−1qk)}

subject to

wT
k wk = 1, qT

k qk = 1

and

tk ⊥ tj, uk ⊥ uj for each k �= j ,

where cov(·, ·) denotes covariance and wk,
qk and tk, uk are loading vectors and compo-
nents (or score vectors) for X and Y, respec-
tively. The use of the subscript k in X and
Y shows that PLSR deflates the data at each
extracted dimension k and uses residuals as
new data for the following dimension.
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Univariate PLSR is much easier to inter-
pret. It is in fact a generalization of multi-
ple linear regression that shrinks regres-
sion coefficients on directions of low covari-
ancebetweenvariablesandresponses.Given
the following relation:

cov(Xw, y) ∝ cor(Xw, y)var(X)1/2 ,

with cor and var denoting correlation and
variance, respectively, it is easy to verify
that the maximization criterion in the PLSR
is a compromise between least-squares
regression and regression on principal
components. The latter methods maximize
cor(Xw, y), and var(X), respectively.
The univariate PLSR involves the following
steps:
1. For (X, y)commonlycentered:
2. For k = 1, . . . , p:

Store the cov(xj,k−1, yk−1) on vector wk.
Pool wk in matrix W(p×k).
Extract component tk as tk = Xj,k−1wk.
Orthogonalize Xk−1 and yk−1 with
respect to tk.

3. Take least-squares residuals as new data
for k← k+ 1.

Once the components are extracted, the
least-squares regression is used to regress
them on response vector y. The number
of components that should be ultimately
retained is defined using bootstrap and
cross-validation methods.

EXAMPLE
ThePLSRmethodisageneralizationofmul-
tiple linear regression. This is justified
using a regression problem where no corre-
lation between the predictors occurs, that is,
an orthogonal design. The table below con-
tains the results of an orthogonal design with
two explanatory variables and one response.

Table: Orthogonal Design

y x1 x2

18 −2 4

12 1 3

10 0 −6

16 −1 −5

11 2 3

9 0 −3

11 −1 6

8 1 −1

7 1 0

12 −1 −1

Multiple linear regression analysis for the
data in Table 1 (y as the response and two
explanatory variables x1 and x2) lead to the
following least-squares estimates:

ŷ = 11.40− 1.8571x1 + 0.1408x2 .

Using the PLSR method (data were initial-
ly centered and scaled) and regressing the
response on the derived components we are
led to exactly the same estimates with only
one component used, that is, by ŷ = t1 · q̂1.
We finally get

ŷ = T1q̂1 = Xw0q̂1 = Xβ̂PLS .

Thus for standardized data the implied
regression coefficients are

qβ̂PLS = (−0.68, 0.164) ,

which, when transformed back into the orig-
inal scale, equals (11, 40,−1.8571, 0.1408).
The latter are the multiple linear regression
estimates.

DOMAINS AND LIMITATIONS
PLSR methods have been extensively used
in near infrared experiments inspectroscopy.
They have long been used by chemome-
tricians to do multivariate calibration and
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to measure chemical concentrations. PLSR
methods have been equally used in many sta-
tistical applications with more variables than
observations, for example inenvironmetrics,
in microarray experiments in biostatistics,
and in functional data analysis.
PLSR methods focus mainly on prediction
accuracy and are mainly used in order to con-
struct good predictive models.

FURTHER READING
� Bootstrap
� Least-squares method
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Pearson, Egon Shape

Pearson, Egon Shape (1895–1980), son of
statistician Pearson, Karl, studied mathe-
matics at Trinity College, Cambridge. In
1921, he entered the Department of Statis-
tics of the University College in London. He
met Neyman, Jerzy, with whom he start-
ed to collaborate during the visit of the lat-
ter to London in 1924–1925, and also collab-
orated with Gosset, William Sealy. When
his father left University College in 1933, he
transferred to the Applied Statistics Depart-
mentand in 1936becamedirectorof the jour-

nal Biometrika following the death of his
father, the journal’s foundor.
Besides the works that he published in col-
laboration with Neyman, J. and that led to
the development of the theory of hypoth-
esis testing, Pearson, E.S. also touched on
problems of quality control and operations
research.

Selected articles of Pearson, E.S.:

1928 (with Neyman, J.) On the use and
interpretation of certain test criteria
for purposes of statistical inference.
Biometrika 20A, 175–240, pp. 263–
295.

1931 The test of significance for the corre-
lation coefficient. J. Am. Stat. Assoc.
26, 128–134.

1932 The percentage limits for the distri-
bution of range in samples from a nor-
mal population (n ≤ 100). Biometri-
ka 24, 404–417.

1933 Neyman, J. and Pearson, E.S. On
the testing of statistical hypotheses in
relation to probability a priori. Proc.
Camb. Philos. Soc. 29, 492–510.

1935 The Application of Statistical Meth-
ods to Industrial Standardization and
Quality Control. Brit. Stant. 600.
British Standards Institution, Lon-
don.

FURTHER READING
� Hypothesis testing

Pearson, Karl

Born in London, Pearson, Karl (1857–1936)
is known for his numerous contributions to
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statistics. After studying at Kings College,
Cambridge, he was named in 1885 chair
of the Applied Mathematics Department of
University College in London. He spent his
entire career at this university, where he was
made chair of the Eugenics Department in
1911. In 1901, with the help of Galton,
Francis, he founded the journal Biometrika
and was its editor in chief until his death in
1936.
In 1906, he welcomed for 1year in his lab-
oratory Gosset, William Sealy, with whom
he resolved problems related to samples of
small dimension. He retired in 1933, and his
department at the university was split into
two: the Eugenics Department was entrusted
to Fisher, Ronald Aylmerand theStatistics
Department to his own son Pearson, Egon
Shape.
Selected articles of Pearson, Karl:

1894 1948. Contributions to the mathe-
matical theory of evolution. I. pp. 1–
40. In: Karl Pearson’s Early Statis-
tical Papers. Cambridge University
Press, Cambridge. First published as:
On the dissection of asymmetrical
frequency curves, Philos. Trans. Roy.
Soc. Lond. Ser. A 185, 71–110.

1895 1948. Contributions to the mathe-
matical theory of evolution. II. Skew
variation in homogeneous material.
In: Karl Pearson’s Early Statistical
Papers. Cambridge University Press,
Cambridge, pp. 41–112. First pub-
lished in Philos. Trans. Roy. Soc.
Lond. Ser. A 186, 343–414.

1896 1948. Mathematical contributions to
the theory of evolution. III. Regres-
sion, heredity and panmixia. In: Karl
Pearson’s Early Statistical Papers.
Cambridge University Press, Cam-

bridge, pp. 113–178. First published
in Philos. Trans. Roy. Soc. Lond. Ser.
A 187, 253–318 in the Philosophical
Magazine, 5th series, 50, pp. 157–
175.

FURTHER READING
� Chi-square distribution
� Correlation coefficient

Percentage
Percentage is the notion of a measure allow-
ing one to describe the proportion of indi-
viduals or statistical units having a certain
characteristic in a collection, evaluated on
the basis of 100.

MATHEMATICAL ASPECTS
Percentage is generally denoted by p when
it is measured on a sample and by π when
it concerns a population.
Let therebeasampleofsizen, ifk individuals
have certain characteristic; the percentage of
individuals is given by the statistic p:

p = k

n
· 100% .

The calculation of the same percentage on
apopulation of sizeN givesusparameterπ :

π = k

N
· 100% .

Percentile
Percentiles are measurements of location
computed in a data set. We call percentiles
the values that divide a distribution into 100
equalparts (eachpartcontains thesamenum-
ber of observations). The xth percentile is
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the value Cx such that x% of the observations
are lower and (100−x)% of the observations
are greater than Cx. For example, 20th per-
centile is the value that separates the 20% of
values that are lower than it from the 80%
that are higher than it. We will then have 99
percentiles for a given distribution:

Note for example:
Percentile 10 = first decile
Percentile 25 = first quartile
Percentile 50 = median
This notion is part of the family of quantiles.

MATHEMATICAL ASPECTS
The process of calculation is similar to that
of the median, quartiles, and deciles. When
all the raw observations are given, the per-
centiles are calculated as follows:
1. Organize the n observations in the form

of a frequency distribution.
2. The percentiles correspond to the obser-

vations for which the relative cumulated
frequency exceeds respectively 1%, 2%,
3%, . . ., 98%, 99%.
Some authors propose the following for-
mula, which permits one to determine
with precision the value of the different
percentiles:
Calculation of the jth percentile:
Consider i the integer part of j·(n+1)

100 and

k the fractional part of j·(n+1)
100 .

Consider xi and xi+1 the data values of
the observations respectively classified
in the ith and (i + 1)th position (when
the n observations are sorted in increas-
ing order).

The jth percentile is equal to:

Cj = xi + k · (xi+1 − xi) .

When we have observations that are
grouped into classes, the percentiles are
determined as follows:
1. Determine the class in which the desired

percentile is:
• 1st percentile: first class for which the

relative cumulated frequency is over
1%.

• 2nd percentile: first class for which the
relative cumulated frequency is over
2%.

• 99thpercentile:firstclassforwhich the
relative cumulated frequency is over
99%.

2. Calculate the value of the percentiles as
a function of the hypothesis according
to which the observations are uniformly
distributed in each class:

percentile = L1+
[
(n · q)−∑

finf

fcentile

]
· c ,

where L1 is the lower limit in the class
of the percentile, n is the total number
of observations, q is 1

100 for the 1st per-
centile, q is 2

100 for the 2nd percentile, . . .,
q is 99

100 for the 99th percentile,
∑

finf is
the sum of the frequencies lower than the
percentile class, fpercentile is the frequency
of the percentile class, and c is the dimen-
sion of the interval of the percentile class.

DOMAINS AND LIMITATIONS
The calculation of the percentiles only has
true meaning for a quantitative variable
that can take its values in a given interval. In
practice, percentiles can be calculated only
whenthere isa largenumberofobservations
since this calculation consists in dividing the
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setofobservationsinto100parts.Thisnotion
is seldom applied because in most descrip-
tive analyses the determination of the deciles
or even the quartiles is sufficient for the
interpretation of the results.

EXAMPLES
Consider an example of the calculation of
percentiles on the frequency distribution
of a continuous variable where the obser-
vations are grouped into classes.
The following frequency table represents
the profits (in thousands of euros) of 2000
bakteries:

Profit
(thousands
of euros)

Fre-
quen-
cies

Cumu-
lated
frequen-
cies

Relative
cumulat-
ed fre-
quency

100–150 160 160 0.08

150–200 200 360 0.18

200–250 240 600 0.30

250–300 280 880 0.44

300–350 400 1280 0.64

350–400 320 1600 0.80

400–450 240 1840 0.92

450–500 160 2000 1.00

Total 2000

The class containing the first percentile is the
class 100–150 [the one for which the rela-
tivecumulated frequency isover0.01(1%)].
Considering that the observations are uni-
formly distributed in each class, we obtain
for the first percentile the following value:

1st percentile

= 100+
⎡
⎣

(
2000 · 1

100

)
− 0

160

⎤
⎦ · 50

= 106.25 .

The class containing the 10th percentile is
the class 150–200. The value of the 10th per-
centile is equal to

10th percentile

= 150+
⎡
⎣

(
2000 · 10

100

)
− 160

200

⎤
⎦ · 50

= 160 .

We can calculate all the percentiles in the
same way. We can then conclude, for exam-
ple, that 1% of the 2000 bakeries have a prof-
it between 100000 and 106250 euros, or
that 10% have a profit between 100000 and
160000 euros, etc.

FURTHER READING
� Decile
� Measure of location
� Median
� Quantile
� Quartile

Permutation

The term permutation is a subject of combi-
natory analysis. It refers to an arrangement
or an ordered of n objects. Theoretically, we
should distinguish between the case where n
objects are fully identified and those where
they are only partially identified.

HISTORY
See combinatory analysis.

MATHEMATICAL ASPECTS
1. Number of permutations of different

objects
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The number of possible permutations of
n objects equals n factorial:

Permutations

= n! = n · (n− 1) · . . . · 3 · 2 · 1 .

2. Number of permutations of partially dis-
tinct objects
The number of possible permutations of
n objects among which n1, n2, . . . , nr are
not distinguished among them equals:

number of
permutations

= n!

n1! · n2! · . . . · nr!
,

where n1 + n2 + . . .+ nr = n.

EXAMPLES
If we have three objects A, B, and C, then the
possible permutations are as follows:

A B C

A C B

B A C

B C A

C A B

C B A

Thus we have six possible permutations.
Without enumerating them, we can find the
number of permutations using the following
formula:

Number of permutations = n! ,

where n is the number of objects. This gives
us in our example:

Number of permutations = 3!

= 3 · 2 · 1 = 6 .

Imagine that we compose the signals align-
ing some flags. If we have five flags of dif-
ferent colors, the number of signals that we
can compose will be:

5! = 5 · 4 · 3 · 2 · 1 = 120 .

On the other hand, if among the flags there
are two red, two white, and one black flag,
we can compose:

5!

2! · 2! · 1!
= 30

different signals.

FURTHER READING
� Arrangement
� Combination
� Combinatory analysis

Pictogram

A pictogram is a symbol representing a con-
cept, object, place or event by illustration.
Like the bar chart, the pictogram is used
either to compare the categories of a quali-
tative variableor to comparedata setscom-
ing from different years or different places.
Pictograms are mostly used in journals as
advertisement graphs for comparisons and
are of little statistical interest because they
only provide rough approximations.

MATHEMATICAL ASPECTS
The figure that is chosen to illustrate the dif-
ferentquantities inapictogramshould ifpos-
sible be divisible into four parts, so that they
can represent halves and quarters. The scale
is chosen as a function of the available space.
Therefore the figure is not necessarily equal
to unity.

EXAMPLES
Consider wheat production in two countries
A and B. The production of country A is
equal to 450.000 quintals and that of coun-
try B is of 200.000 quintals (1 quintal is equal
to 100kg).
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We obtain the following pictogram:

The surface of each figure is proportional to
the represented quantity.

FURTHER READING
� Bar chart
� Graphical representation
� Quantitative graph

Pie Chart

Thepiechart isa typeofquantitativegraph.
It ismadeofacircledivided intosectors,each
sector having an angle that is proportional to
the represented magnitude.

HISTORY
See graphical representation.

MATHEMATICAL ASPECTS
To establish a pie chart, the total of the rep-
resented frequencies is calculated and then
the relative frequencies representing the dif-
ferent sectors are calculated. To draw these
sectors on a circle, the relative frequencies
are converted into degrees by the following
transformation:

α = f · 360◦ ,

whereα represents theangle in thecenterand
f the relative frequency.

DOMAINS AND LIMITATIONS
Piechartsareused togiveavisual representa-
tionof thedata that formthedifferentpartsof
a whole population. They are often found in
the media (television, journals, magazines,
etc.), where they serve to explain in a simple
and synthetic way a concept or situation that
is difficult to understand with just numbers.

EXAMPLES
We will represent the distribution of the mar-
ital status in Australia on 30 June 1981 using
a pie chart. The data are the following:

Marital status in Australia on 30 June 1981 (in
thousands)

Marital status Frequency Relative
frequency

Bachelor 6587.3 0.452

Married 6836.8 0.469

Divorced 403.5 0.028

Widow 748.7 0.051

Total 14576.3 1.000

Source: Australian Bureau of Statistics, Aus-
tralian Pocket Year Book 1984, p. 11

First the relative frequencies are trans-
formed into degrees:

a) α = 0.452 · 360◦ = 162, 72◦

b) α = 0.469 · 360◦ = 168, 84◦

c) α = 0.028 · 360◦ = 10, 08◦

d) α = 0.051 · 360◦ = 18, 36◦

The pie chart is shown on the next page.

FURTHER READING
� Bar chart
� Graphical representation
� Pictogram
� Quantitative graph
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Pitman, Edwin James George

Pitman, Edwin James George was born in
Melbourne (Victoria), Australia in 1897. He
went to school at Kensington State School
and South Melbourne College. During his
last year of study, he was awarded a schol-
arship to study mathematics in Wyselaskie
and in Dixson, as well as at Ormond Col-
lege. He obtained a degree in letters (similar
to a B.A.) (1921), a degree in the sciences
(similar to a B.S.) (1922), and a master’s
degree (1923). He was then named tempo-
rary professor of mathematics at Canterbury
College, University of New Zealand (1922–
1923). He returned to Australia where he
was named assistant professor at Trinity and
Ormond Colleges as well as part-time lectur-
er inphysicsatMelbourneUniversity(1924–
1925). In 1926, Pitman, E.J.G. was named
professor of mathematics at Tasmania Uni-
versity, where he stayed until his retirement
in 1962. He died in 1993, in Kingston (Tas-
mania).
A major contribution of Pitman, E.J.G. to
probability theory concerns the study of
the behavior of a characteristic function in
a neighborhood of zero.

Selected works of Pitman, Edwin James
George:

1937 Significance tests which may be
applied to samples from any pop-
ulations. Supplement, J. Roy. Stat.
Soc. Ser. B 4, 119–130.

1937 Significance tests which may be
applied to samples from any popula-
tions. II. The correlation coefficient
test. Supplement, J. Roy. Stat. Soc.
Ser. B 4, 225–232.

1938 Significance tests which may be
apply to samples from any popu-
lations. III. The analysis of variance
test. Biometrika 29, 322–335.

1939 The estimation of location and scale
parameters. Biometrika 30, 391–
421.

1939 Tests of hypotheses concerning loca-
tion and scale parameters. Biometri-
ka 31, 200–215.

Point Estimation

Pointestimationofapopulation parameter
allows to obtain a unique value calculated
from a sample. This value will be considered
the estimate of the unknown parameter.

MATHEMATICAL ASPECTS
Consider a population in which trait X is
studied; suppose that the shape of the distri-
bution of X is known but that the param-
eter θ on which this distribution depends is
unknown.
To estimate θ , a sample of size n
(X1, X2, . . . , Xn) is taken from the popu-
lation and a function G(X1, X2, . . . , Xn)

is created that, for a particular realization
(x1, x2, . . . , xn), will provide a unique value
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as an estimate of the value of the para-
meter θ .

DOMAINS AND LIMITATIONS
In general, the point estimation of a param-
eter of a population does not exactly corre-
spond to the value of this parameter. There
exists a sampling error that derives from
the fact that part of the population has been
omitted. It ispossible to measure thiserrorby
calculating the variance or standard devi-
ation of the estimator that has been used to
evaluate the parameter of the population.

EXAMPLES
A company that manufactures light bulbs
wants to study the average lifetime of
its bulbs. It takes a sample of size n
(X1, X2, . . . , Xn) from the production of light
bulbs.
The function G(X1, X2, . . . , Xn) that it will
use to estimate the parameter θ correspond-
ing to the mean μ of the population is as
follows:

X̄ =
n∑

i=1

Xi

n
.

This estimator X̄ of μ is a random
variable, and for a particular realization
(x1, x2, . . . , xn) of the sample it takes a pre-
cisevaluedenotedby x̄.Therefore, forexam-
ple, for n = 5, the following sample can be
obtained (in hours):

(812, 1067, 604, 918, 895) .

The estimator x̄ becomes:

x̄ = 812+ 1067+ 604+ 918+ 895

5

= 4296

5
= 859.2 .

The value 859.2 is a point estimation of the
average lifetime of these light bulbs.

FURTHER READING
� Error
� Estimation
� Estimator
� Sample
� Sampling

REFERENCES
Lehmann, Erich L., Casella, G.: Theory of

point estimation. Springer-Verlag, New
York (1998)

Poisson Distribution

ThePoissondistribution isadiscrete proba-
bility distribution. It is particularly useful
for phenomena of counting in unit of time or
space.
The random variable X corresponding to
the number of elements observed per unit of
time or space follows a Poisson distribution
of parameter θ , denoted P(θ), if its proba-
bility function is:

P (X = x) = exp (−θ) · θ x

x!
.

Poisson distribution, θ = 1

HISTORY
In 1837 Poisson, S.D. published the distri-
bution that carries his name. He reached this
distribution by considering the limits of the
binomial distribution.
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MATHEMATICAL ASPECTS
The expected value of the Poisson distri-
bution is by definition:

E[X] =
∞∑

x=0

x · P(X = x)

=
∞∑

x=0

x · e−θ θ x

x!

=
∞∑

x=1

x · e−θ θ x

x!

= θ · e−θ

∞∑
x=1

θ x−1

(x− 1)!

= θ · e−θ · eθ

= θ .

The variance of X is equal to:

Var(X) = E
[
X2]− (E[X])2

= E[X(X − 1)+ X]− (E[X])2

= E[X(X − 1)]+ E[X]− (E[X])2 .

Since

E[X(X − 1)] =
∞∑

x=0

x(x− 1)
e−θ · θ x

x!

=
∞∑

x=2

x(x− 1)
e−θ · θ x

x!

= e−θ · θ2 ·
∞∑

x=2

θ x−2

(x− 2)!

= e−θ · θ2 · eθ

= θ2 ,

we obtain:

Var(X) = θ2 + θ − θ2 = θ .

DOMAINS AND LIMITATIONS
ThePoisson distribution isused to determine
the following events, among others:

• Number of particles emitted by a radioac-
tive substance.

• Number of phone calls recorded by a cen-
ter.

• Number of accidents happening to an
insured person.

• Number of arrivals at a counter.
• Number of bacteria in a microscopic

preparation.
• Number of plants or animals in a surface

in nature determined by an observer.
When θ tends toward infinity, the Poisson
distribution can be approximated by the nor-
mal distribution with mean θ and vari-
ance θ .

EXAMPLES
A secretary makes on average two mistakes
per page. What is the probability of having
three mistakes on one page?
The number of mistakes per page, X, follows
a Poisson distribution of parameter θ = 2,
and its probability function is then:

P (X = x) = exp (−θ) · θ x

x!

= exp (−2) · 2x

x!
.

The probability of having three mistakes on
a page is equal to:

P(X = 3) = e−2 · 23

3!
= 0.1804 .

FURTHER READING
� Binomial distribution
� Discrete probability distribution
� Normal distribution

REFERENCES
Poisson, S.D.: Recherches sur la probabil-

ité des jugements en matière criminelle
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et en matière civile. In: Procédés des
Règles Générales du Calcul des Probabil-
ités. Bachelier, Imprimeur-Libraire pour
les Mathématiques, Paris (1837)

Poisson, Siméon-Denis

Poisson, Siméon-Denis (1781–1840),
despite coming from a modest provincial
family, was able to pursue his studies at the
Ecole Polytechnique in Paris, where he later
became a professor.
From 1815, he also taught at the Sorbonne
and was elected to the Academy of Sciences
that same year.
Poisson was interested in research in differ-
ent fields: mechanics, physics, and probabi-
lity theory. In 1837 he published an arti-
cle called “Recherches sur la probabil-
ité des jugements en matière criminelle
et en matière civile, précédées des règles
générales du calcul des probabilités”. In his
numerous writings he presented the basis of
a statistical method for the social sciences.
Selected works of Siméon-Denis Poisson:

1824 Sur la probabilité des résultats
moyens des observations. Connais-
sance des temps pour l’an 1827,
pp. 273–302.

1829 Suite du mémoire sur la probabil-
ité du résultat moyen des observa-
tions, inséré dans la connaissance
des temps de l’année 1827. Con-
naissance des temps pour l’an 1832,
pp. 3–22.

1836a Note sur la loi des grands nombres.
Comptes rendus hebdomadaires des
séances de l’Académie des sciences
2: pp. 377–382.

1836b Note sur le calcul des probabilités.
Comptes rendus hebdomadaires des

séances de l’Académie des sciences
2: pp. 395–400.

1837 Recherches sur la probabilité des
jugements en matière criminelle
et en matière civile, précédées
des règles générales du calcul des
probabilités. Bachelier, Imprimeur-
Libraire pour les Mathématiques,
Paris.

FURTHER READING
� Poisson distribution

Pooled Variance

The pooled variance is used to estimate the
value of the variance of two or more popula-
tions when the respective variances of each
population are unknown but can be consid-
ered as equal.

MATHEMATICAL ASPECTS
On the basis of k samples of dimensions n1,
n2, . . . , nk, the pooled variance S2

p is estimat-
ed by:

S2
p =

k∑
i=1

ni∑
j=1

(
xij − x̄i.

)2

(
k∑

i=1
ni

)
− k

,

where xij is the jth observation of sample i
and x̄i. is the arithmetic mean of sample i.
Knowing the respective variances of each
sample, the pooled variance can also be
defined by:

S2
p =

k∑
i=1

(ni − 1) · S2
i

(
k∑

i=1
ni

)
− k

,
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where S2
i is the variance of sample i:

S2
i =

ni∑
j=1

(
xij − x̄i.

)2

ni − 1
.

EXAMPLES
Consider two samples of computers of dif-
ferent brands for which we noted the time (in
hours) before the first problem:

Brand 1 Brand 2

2800 2800

2700 2600

2850 2400

2650 2700

2700 2600

2800 2500

2900

3000

The number of samples k equals 2, and
the dimension of the sample brands equals,
respectively:

n1 = 8 ,

n2 = 6 .

The calculation of the variance of the first
sample gives us

S2
1 =

n1∑
j=1

(
x1j − x̄1.

)2

n1 − 1
,

where

x̄1. =

n1∑
j=1

x1j

n1
= 22400

8
= 2800

S2
1 =

95000

8 − 1
= 13571.428 .

For the second sample we get:

S2
2 =

n2∑
j=1

(
x2j − x̄2.

)2

n2 − 1

with

x̄2. =

n2∑
j=1

x2j

n2
= 15600

6
= 2600

S2
2 =

70000

6− 1
= 14000 .

If we assume that the unknown variances of
two populationsσ 2

1 andσ 2
2 are identical, then

we can calculate an estimation of σ 2 =
σ 2

1 = σ 2
2 by the pooled variance:

S2
p =

2∑
i=1

(ni − 1) · S2
i

∑2
i=1 ni − 2

= (8−1)·13571.428+(6−1)·14000

8+6−2

= 13750 .

FURTHER READING
� Variance

Population

A population is defined as a collection of sta-
tistical units of the same nature whose quan-
tifiable information we are interested in. The
populationconstitutes thereferenceuniverse
during the study of a given statistical prob-
lem.

EXAMPLES
Thecitizensofastate,agroupoftreesinafor-
est, workers in a factory, and prices of con-
sumer goods all form discrete populations.
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FURTHER READING
� Sample

Prevalence

See prevalence rate.

Prevalence Rate

The prevalence of a disease is the number
of individuals affected in the statistical pop-
ulation at a given time. This notion is close
to the notion of “stock”.
The prevalence rate of an illness is the pro-
portion of affected individuals in the popu-
lation at a given moment.

HISTORY
Farr, William, pioneer in the use of statistics
in epidemiology and creator of the concepts
of mortality rate and question and answer,
showed that the prevalence of an illness is
equivalent to the product of the incidence
and duration of the illness.
MacMahon, B. and Pugh, T.F. (1970) illus-
trated the relation of the incidence rate
and the prevalence rate using data col-
lected between 1948 and 1952 on acute
leukemia among the white population of
Brooklyn, New York. The incidence rate
was 32.5 cases per million inhabitants per
year, and the prevalence rate was 6.7 cas-
es per million inhabitants. The duration of
acute leukemia thus had to be 0.21 years or
2.5 months:

Duration of
acute leukemia

= prevalence ate

incidence rate

= 6.7

32.5
year = 0.21 year .

MATHEMATICAL ASPECTS
The prevalence rate is defined as follows:

Prevalence rate = number of afflicted

dimension of
population

.

The prevalence rate and the incidence rate
of an illness are approximately associated to
one another by the mean duration of the ill-
ness (that is, the mean duration of survival or
the mean duration of the cure). This relation
is written:

Prevalence rate

� (incidence rate) ·
(mean duration

of illness

)
.

DOMAINS AND LIMITATIONS
Prevalence is different from risk. A risk is
a quantity that has a predictive value, as it
concerns a fixed period of observation and
contains, because of this, information homo-
geneous in time. In contrast, prevalence is
tangential to the history of an illness in a pop-
ulation: it cannot give any indication about
the risk insofar as it aggregates, at a given
moment, recently diagnosed cases and oth-
ers in the distant past. Note that the greater
the mean survival, if the illness is incurable,
or the longer the convalescence, if the illness
is curable, the greater the prevalence of the
illness.
Finally, note that the prevalence rate often
refers not to a well-defined illness, but to an
interval of values of a biological parameter.
For example, the prevalence rate of hyper-
cholesterolemy can be defined as the pro-
portion of individuals having a cholesterole-
my greater than 6.5mmol/l in given a pop-
ulation at a given moment. Thus the per-
centiles of a biological parameter, consid-
ered as measuring the proportion of individ-
uals for which the parameters take a value
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withinacertain interval,canbeinterpretedas
the prevalence rate. For example, the preva-
lence rate relative to values smaller than or
equal to the median (or percentile 50) of
a biological parameter is 50%.

FURTHER READING
� Attributable risk
� Avoidable risk
� Cause and effect in epidemiology
� Incidence rate
� Odds and odds ratio
� Relative risk
� Risk

REFERENCES
Cornfield, J.: A method of estimating com-

parative rates from clinical data. Appli-
cations to cancer of the lung, breast, and
cervix. J. Natl. Cancer Inst. 11, 1269–75
(1951)

Lilienfeld, A.M., Lilienfeld, D.E.: Founda-
tions of Epidemiology, 2nd edn. Claren-
don, Oxford (1980)

MacMahon, B., Pugh, T.F.: Epidemiology:
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Boston, MA (1970)

Morabia, A.: Epidemiologie Causale. Editi-
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Probability

We can define the probability of an event
either by using the relative frequencies or
through an axiomatic approach.
In the first approach, we suppose that a ran-
dom experiment is repeated many times in

thesameconditions.ForeacheventAdefined
in the sample space �, we define nA as the
numberof times thateventAoccurred during
the first n repetitions of the experiment. In
this case, the probability of event A, denoted
by P (A), is defined by:

P (A) = lim
n→∞

nA

n
,

which means that P (A) is defined as the lim-
it relative to the number of times event A
occurred relative to the total number of rep-
etitions.
In the second approach, for each event A,
we accept that there exists a probability
of A, P (A), satisfying the following three
axioms:
1. 0 ≤ P (A) ≤ 1,
2. P (�) = 1,
3. For each sequence of mutually exclusive

events A1, A2, . . . (that is of events Ai ∩
Aj = φ if i �= j):

P

[∞⋃
i=1

Ai

]
=
∞∑

i=1

P(Ai) .

HISTORY
Thefirsthazard gamesmark thebeginningof
the history of probability, and we can affirm
that they dateback to theemergenceofHomo
sapiens.
The origin of the word “hazard” offers less
certitude. According to Kendall, Maurice
George (1956), it was brought to Europe at
the time of the third Crusade and derived
from the Arabic word “al zhar”, meaning
a die.
Benzécri, J.P. (1982) gives a reference for
Franc d’Orient, named Guillaume de Tyr,
according to whom the word hazard was
related to the name of a castle in Syria. This
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castle was an object of a siege during which
the aggressors invented a game of dice, giv-
ing its name to these games.
Traces of hazard games can be found in
ancient civilizations. Drawings and objects
found in Egyptian graves from the First
Dynasty (3500 B.C.) show that these games
were already being played at that time.
According to the Greek historian Herodotus,
hazard games were invented by Palamedes
during the siege of Troy.
The game of astragals for dogs was one of
the first hazard games. The astragal is a small
foot bone symmetric to the vertical axis.
Much appreciated by the Greeks, and lat-
er by the Romans, it is possibly, according
to Kendall, M.G. (1956), the original game
of craps. Very old astragals were found in
Egypt, but more ancient ones, produced in
terra cotta, were discovered in northern Iraq.
They date back to the third millennium B.C.
Another,also in terracotta,datingtothesame
time, was found in India.
There is a wealth of evidence demonstrat-
ing how games involving dicewere played in
ancient times.Butnobodyat the timethought
to establish the equiprobable property to get
any side.
For David, F.N. (1955), two hypotheses
help to explain this gap. According to the
first hypothesis, the dice generally were
deformed. According to the second hypoth-
esis, the rolling of dice was of a religious
nature. Itwasawaytoask thegodsquestions:
the result of a given roll of the dice revealed
the answer to questions that had been posed
to the gods.
Among games of hazard, playing cards are
alsoofveryancientorigin.Weknowthat they
wereused inChina, India,Arabia,andEgypt.
In theWest,wefind thefirst evidenceofcards
in Venice in 1377, in Nuremberg in 1380,

and in Paris in 1397. Tarot cards are the most
ancient playing cards.
Until the 15th century, according to
Kendall, M.G. (1956), the Church and kings
fought against the practice of dice games.
As evidence of this we may mention the
laws of Louis IX, Edward III, and Henry
VIII. Card games were added to the list of
illegal activities, and we find a note on the
prohibition of card games issued in Paris in
1397. Despite the interdictions, games of
hazard were present without interruption,
from the Romans to the Renaissance, in all
social classes.
It is not surprising to learn that they are at
the origin of mathematical works on proba-
bility. In the West, the first writings on this
subject come from Italy. They were written
by Cardano in his treatise Liber de Ludo
Aleae, published posthumously in 1663, and
by Galileo Galilei in his Sopra le Scoperte
dei Dadi. In the works of Galileo we find the
principle of equiprobability of dice games.
In the rest of Europe, these hazard-related
problems also interested mathematicians.
Huygens, fromtheNetherlands,published in
1657 a work entitled De Ratiociniis in Aleae
Ludo that, according to Holgate, P. (1984),
extended the interest in probabilities to oth-
er domains; game theory would be devel-
oped in parallel to this in relation to body
dynamics. The works of Huygens consid-
erably influenced those of two other well-
known mathematicians: Bernoulli, Jakob
and de Moivre, Abraham.
But it was in France, with Pascal, Blaise
(1623–1662) and de Fermat, Pierre (1601–
1665), that probability theory really took
shape. According to Todhunter, I. (1949),
Pascal, B. was asked by a famous gam-
bler, Gombauld, Antoine, Knight of Méré,
to resolve the following problem: In a game
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there are two adverseries The first one wins
n of m plays while the second wins p of m
plays, which are the chances for one of them
to win the game (given that it wins the first
to take m plays).
Pascal,B.contacteddeFermat,P.,whofound
the solution. Pascal himself discovered the
recurrence formula showing the same result.
According to Benzécri, J.P. (1982), at a time
when the West was witnessing the fall of the
Roman Empire and the advent of the Chris-
tian era, the East was engaged in intense
scientific and artistic activity. In these cir-
cumstances, Eastern scholars, such as Omar
Khayam, probably discovered probability
rules.
There isanaspectofprobability that isofpar-
ticular interest to mathematicians: the prob-
lems of combinatory analysis.

MATHEMATICAL ASPECTS
Axiomatic Basis of Probability
We consider a random experiment with the
sample space � containing n elements:

� = {x1, x2, . . . , xn} .

We can associate to each simple event xi

a probability P (xi) having the following
properties:
1. The probabilities P (xi) are nonnegative:

P (xi) ≥ 0 for i = 1, 2, . . . , n .

2. The sum of the probabilities of xi for i
going from 1 to n equals 1:

n∑
i=1

P (xi) = 1 .

3. TheprobabilityP isa function thatassigns
a number between 0 and 1 to each simple
event of a random experiment:

P : �→ [0, 1] .

Properties of Probabilities
1. The probability of a sample space is the

highest probability that can be associated
to an event:

P (�) = 1 .

2. The probability of an impossible event
equals 0:

If A = φ , then P(A) = 0 .

3. Let Ā be the complement of A in �, then
the probability of Ā equals 1 minus the
probability of A:

P
(
Ā
) = 1− P (A) .

4. Let A and B be two incompatible events
(A ∩ B = φ). The probability of A ∪ B
equals the sum of the probabilities of A
and B:

P (A ∪ B) = P (A)+ P (B) .

5. LetAand Bbe two events.Theprobability
of A ∪ B equals:

P (A ∪ B) = P (A)+ P (B)− P (A ∩ B) .

FURTHER READING
� Conditional probability
� Continuous probability distribution
� Discrete probability distribution
� Event
� Random experiment
� Sample space
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Probability Distribution

Synonymforprobability function,butused
much more frequently than “probability
function” to describe the distribution giving
the probability occurance of a value of a ran-
dom variable X at the value of x.

HISTORY
It is in the 17th century that the system-
atic study of problems related to random
phenomena began. The eminent physicist
Galileo had already tried to study the errors
ofphysicalmeasurements,consideringthese
as random and estimating their probability.
During this period, the theory of insurances
also appeared and was based on the analy-
sis of the laws that rule random phenomena
such as morbidity, mortality, accidents, etc.
However, it was first necessary to study sim-
pler phenomena such as games of chance.
These provide particularly simple and clear
models of random phenomena, allowing

one to observe and study the specific laws
that rule them; moreover, the possibility of
repeating the same experiment many times
allows for experimental verification of these
laws.

MATHEMATICAL ASPECTS
The function P(b) = P(X = b), where b
varies according to the possible values of the
discrete random variable X, is called the
probability function of X. Since P(X = b) is
always positive or zero, the probability func-
tion is also positive or zero.
The probability function is represented on an
axis system. The different values b of X are
plotted as abscissae, the images P(b) as ordi-
nates. The probability P(b) is represented
by rectangles with a width equal to unity and
a height equal to the probability of b. Since
X must take at least one of the values b, the
sum of the P(b) must be equal to 1, meaning
that the sum of the surfaces of the rectangles
must be equal to 1.

EXAMPLES
Consider a random experiment that con-
sists in rolling a fixed die. Consider the ran-
dom variable X corresponding to the num-
ber of obtained points. The probability func-
tion P(X = b) is given by the probabilities
associated to each value of X:

b 1 2 3 4 5 6

P(b) 1
6

1
4

1
12

1
12

1
4

1
6
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FURTHER READING
� Continuous probability distribution
� Density function
� Discrete distribution function
� Discrete probability distribution
� Distribution function
� Probability
� Probability function
� Random variable
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Probability Function
The probability function of a discrete ran-
dom variable is a function that associates
each value of this random variable to its
probability.

See probability distribution.

HISTORY
See probability, probability distribution.

p-Value
The p-value is defined as the probability,
calculatedunder thenull hypothesis,ofhav-

ing outcome as extreme as the observed val-
ue in the sample or is the probability of
obtaining a result at least as extreme as a giv-
en data point, assuming the data point was
a result of chance alone.

HISTORY
The p-value was introduced by Gibbens and
Pratt in 1975.

MATHEMATICAL ASPECTS
Let us illustrate the case of a hypothesis test
made on the estimator of mean; the same
principle is applied for any other estimator;
only the notations are different.
Suppose that we want to test the following
hypotheses:

H0 : μ = μ0

H1 : μ > μ0 ,

where μ represents the mean of a normally
distributed population with a known stan-
dard deviation σ . A sample of dimension n
gives an observed mean x̄.
Consider the case where x̄ exceeds μ0 and
calculate the probability of obtaining an
estimation μ̂greater than or equal to x̄under
the null hypothesis μ = μ0. The value p
corresponds to this probability. Thus:

p = P(μ̂ ≥ x̄|μ = μ0) .

The standard random value Z given by

Z = μ̂− μ0
σ√

n

follows normal distribution of

mean 0 with standard deviation 1. Intro-
ducing this variable into the expression of
p, we find:

p = P

(
Z ≥ x̄− μ0

σ√
n

)
,
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which in this form can be read in the normal
table.
For a significance level α, the comparison
of p to α allows to make a decision about an
eventual rejection of the null hypothesis. If:
• p ≤ α: we reject the null hypothesis H0 in

favour of the alternative hypothesis H1;
• p > α:wedonotreject thenullhypothesis

H0.
We also can calculate the upper limit of the
acceptance regionofH0,knowingthevalue
Cα such as

P(μ̂ ≥ Cα|μ = μ0) = α .

Depending on the standard normal random
variable, zα , the value Cα is expressed by:

Cα = μ0 + zα · σ√
n

.

DOMAINS AND LIMITATIONS
We frequently use the p value to understand
the result of a hypothesis test.
It is used for a one-tailed test, when the
hypotheses are of the form:

H0 : μ = μ0

H1 : μ > μ0 ,

or

H0 : μ = μ0

H1 : μ < μ0 ,

or

H0 : μ ≤ μ0

H1 : μ > μ0 ,

or

H0 : μ ≥ μ0

H1 : μ < μ0 .

The value p can be interpreted as the small-
est significance level for which the null
hypothesis cannot be rejected.

EXAMPLES
Suppose that we want to conduct a one-tailed
hypothesis test

H0 : μ = 30

against H1 : μ > 30

for a normally distributed population with
a standard deviation σ = 8. A sample of
size n = 25 gives an observed mean of 34.
As x̄ (= 34) clearly exceeds μ = 30, we
should try to accept the alternative hypoth-
esis, which is μ > 30.
Calculate the probability of obtaining an
observed mean of 34 under the null hypoth-
esis μ = 30. This is the p value:

p = P(X̄ ≥ 34|μ = 30)

= P

(
X̄ − 30

8
5

≥ 34− 30
8
5

)

= P(Z ≥ 2.5) ,

where Z = X̄ − μ
σ√

n

is normally distributed

with mean 0 and standard deviation 1;
p = 0.0062 according to the normal table.
For a significance level α = 0.01, we
reject the null hypothesis for the alternative
hypothesis μ > 30. We can calculate the
upper limit of the acceptance region of H0,
Cα such as

P(X̄ ≥ Cα|μ = 30) = 0.01

and find Cα = 30+ 1.64 · 8

5
= 32.624.
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This confirms that we really must reject the
null hypothesis μ = 30 when the observed
mean equals 34.

FURTHER READING
� Acceptance region
� Hypothesis testing

� Normal table
� Significance level

REFERENCES
Gibbens, R.J., Pratt, J.W.: P-values Interpre-

tation and Methodology. Am. Stat. 29(1),
20–25 (1975)
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Q-Q Plot
(Quantile to Quantile Plot)

The Q-Q plot, or quantile to quantile plot, is
a graph that tests the conformity between the
empirical distribution and the given theoret-
ical distribution.
One of the methods used to verify the nor-
mality of errors of a regression model is to
construct a Q-Q plot of the residuals. If the
points are aligned on the line x = y, then the
data are normally distributed.

HISTORY
The method of graphical representation
known as the Q-Q plot appeared in the early
1960s. Since then, it has become a necessary
tool in the analysis of data and/or residuals
because it isavery providesawealth of infor-
mation and is easy to interpret.

MATHEMATICAL ASPECTS
To construct a Q-Qplot we follow two steps.
1. Arrange the data x1, x2, . . . , xn in increas-

ing order:

x[1] ≤ x[2] ≤ . . . ≤ x[n] .

2. Associate to each data point x[i] the i/(n+
1)-quantile qi of the standard normal
distribution. Plot on a graph as ordinates
the ordered data xi and as abscissae the
quantiles qi.

If the variables have the same distribution,
then the graphical representation between
the quantiles of the first variable relative to
the quantiles of the second distribution will
be a line of slope 1. So if the data xi are
normally distributed, the points on the graph
must be almost aligned on the line of equa-
tion xi = qi.

DOMAINS AND LIMITATIONS
The Q-Q plot is used to verify if data fol-
low a particular distribution or if two giv-
en data sets have the same distribution. If
the distributions are the same, the graph is
a line. The further the obtained result is from
the 45◦ diagonal, the further is the empiri-
cal distribution from the theoretical one. The
extremepointshaveagreatervariability than
those in the center of the distribution. Thus
aU-shapedgraphmeansthatonedistribution
is skewed relative to another. An S-shaped
graph indicates that the distributions repre-
sent a greater influence of extreme values on
another distribution (long tail).
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A frequent use of the Q-Q plots is when
one wants to know the behavior of residuals
during a simple or multiple linear regres-
sion,morespecifically, toknowif theirdistri-
bution is normal.

EXAMPLES
Thefollowing tablecontains the residuals (in
increasing order) of a linear regression with
13 observations. We associate them to the
quantilesqi asdescribedabove.Theobtained
Q-Q plot is represented by the following fig-
ure. We see that except for two points that are
probablyoutliers, thepointsarewellaligned.

Table: Residuals and quantiles

i ei qi

1 −1.62 −1.47

2 −0.66 −1.07

3 −0.62 −0.79

4 −0.37 −0.57

i ei qi

5 −0.17 −0.37

6 −0.12 −0.18

7 0.04 0.00

8 0.18 0.18

9 0.34 0.37

10 0.42 0.57

11 0.64 0.79

12 1.33 1.07

13 2.54 1.47

FURTHER READING
� Analysis of residuals
� Data analysis
� Exploratory data analysis
� Multiple linear regression
� Probability distribution
� Quantile
� Residual
� Simple linear regression

REFERENCES
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Qualitative Categorical Variable

A qualitative categorical variable is a vari-
able with modalities in the form of cate-
gories, such as, for example, “man” and
“woman” of the variable “sex”; or the cate-
gories “red”, “orange”, “green”, “blue”, “in-
digo”, and “violet” of the variable “color”.
The modalities of qualitative categorical
variable can be represented on a nominal
scale or on an ordinal scale.
An example of qualitative categorical vari-
able having an ordinal scale is the quali-
ficativeprofessionalvariablewith categories
“qualified”, “semiqualified”, and “nonqual-
ified”.

FURTHER READING
� Category
� Variable

Quantile

Quantiles measure position (or the central
tendency)anddonotnecessarily trytodeter-
mine the center of a distribution of observa-
tions, but to describe a particular position.
This notion is an extension of the concept
of the median (which divides a distribution
of observation into two parts). The most fre-
quently used quantiles are:
• Quartiles, which separate a collection of

observations into four parts,
• Deciles, which separate a collection of

observations into ten parts,
• Centiles, which separate a collection of

observations into a hundred parts.

DOMAINS AND LIMITATIONS
The calculation of quantiles makes sense
only for a quantitative variable that can
take values on a determined interval.
The concept of quantile indicates the sep-
aration of a distribution of observations in
an arbitrary number of parts. Note that the
greater the number of observations, the more
sophisticated the separation of the distri-
bution can be.
Quartilescangenerallybeusedforanydistri-
bution. The calculation of deciles and, a for-
tiori, centiles requires a relatively large num-
ber of observations to obtain a valid interpre-
tation.

FURTHER READING
� Decile
� Measure of location
� Median
� Percentile
� Quartile

Quantitative Graph

Quantitative graphs are used to present and
summarize numerical information coming
from the study of a categorical quantitative
variable.
The most frequently used types of quantita-
tive graphs are:
• Bar chart
• Pictogram
• Pie chart

HISTORY
Beniger, J.R. and Robyn, J.L. (1978) retrace
the historical development of quantitative
charts since the 17th century. Schmid, C.F.
and Schmid, S.E. (1979) discuss the numer-
ous forms of quantitative graphs.
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FURTHER READING
� Bar chart
� Graphical representation
� Pictogram
� Pie chart

REFERENCES
Beniger, J.R., Robyn, D.L.: Quantitative

graphics in statistics: a brief history. Am.
Stat. 32, 1–11 (1978)

Schmid, C.F., Schmid, S.E.: Handbook of
Graphic Presentation, 2nd edn. Wiley,
New York (1979)

Quantitative Variable
A quantitative variable is a variable with
numerical modalities. For example, weight,
dimension, age, speed, and time are quanti-
tativevariables.Wedistinguish discretevari-
ables (e. g., number of children per family)
from continuous variables (e. g., length of
a jump).

FURTHER READING
� Variable

Quartile
Quartiles are location measures of a distri-
bution of observations. Quartiles separate
a distribution into four parts. Thus there
are three quartiles for a given distribution.
Between each quartile we find 25% of the
total observations:

Note that the second quartile equals the
median.

MATHEMATICAL ASPECTS
Calculation of the quartile is similar to that
of the median. When we have all the obser-
vations, quartiles are calculated as follows:
1. The n observations must be arranged in

the form of a frequency distribution.
2. Quartiles correspond to observations for

which the relative cumulated frequen-
cy exceeds 25%, 50%, and 75%. Certain
authors propose the following formula,
which allows to determine with precision
the value of different quartiles:
Computation of jth quartile:
Let i be the integer part of j·(n+1)

4 and k

the fraction part of j·(n+1)
4 .

Let xi and xi+1 be the values of the
observations respectively in the ith and
(i+ 1)th position (when the observations
are arranged in increasing order).
The jth quartile is

Qj = xi + k · (xi+1 − xi) .

When we have observations grouped into
classes, quartiles are determined as follows:
1. Determine the class where the quartile is

found:
• First quartile: class for which the

relative cumulative frequency exceeds
25%.

• Second quartile: class for which the
relative cumulative frequency exceeds
50%.

• Third quartile: class for which the
relative cumulative frequency exceeds
75%.

2. Calculate thevalueof thequartiledepend-
ing on the assumption according to which
the observations are uniformly distribut-
ed in each class; the jth quartile Qj is:

Qj = Lj +
[

n · j
4 −

∑
finf

fj

]
· cj ,
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where Lj is the lower limit of the class of
quartile Qj, n is the total number of obser-
vations,

∑
finf is the sum of frequencies

lower than the class of the quartile, fj is the
frequency of the class of quartile Qj, and
cj is the size of the interval of the class of
quartile Qj.

DOMAINS AND LIMITATIONS
The calculation of quartiles makes sense
only for a quantitative variable that can
take values on a determined interval.
The quartile is similar to the median. It is
also based on observation rank, not values.
An outlier will have only a small influence
on the quartile values.

EXAMPLES
Let us first take an example where we have
ten observations (n = 10):

1 2 4 4 5 5 5 6 7 9

Despite the fact that quartiles cannot be cal-
culated for a small number of observations
(we should be very cautious when interpret-
ing them), we will study this case in order to
understand the principles behind the calcu-
lation.
The first quartile Q1 is found at the position
n+1

4 = 2.75. Q1 is three quarters of the dis-
tance between the second and third observa-
tions (which we will call x2 and x3) . We can
calculate Q1 as follows:

Q1 = x2 + 0.75 · (x3 − x2)

= 2+ 0.75 · (4− 2)

= 3.5 .

The second quartile Q2 (which is median) is
found at the position 2 · n+1

4 (or n+1
2 ), which

equals for our example 5.5.

Q2 = x5 + 0.5 · (x6 − x5)

= 5+ 0.5 · (5− 5)

= 5 .

The third quartile Q3 is found at the position
3 · n+1

4 = 8.25. Q3 equals:

Q3 = x8 + 0.25 · (x9 − x8)

= 6+ 0.25 · (7− 6)

= 6.25 .

The values 3.5, 5, and 6.25 separate the
observations into four equal parts.
For the second example, let us consider the
following frequency table representing the
number of children per family in 200 fami-
lies:

Value
(number
of
children)

Relative
(number
of
families)

Relative
frequen-
cy

Cumulated
frequency

0 6 0.03 0.03

1 38 0.19 0.22

2 50 0.25 0.47

3 54 0.27 0.74

4 42 0.21 0.95

5 8 0.04 0.99

6 2 0.01 1.00

Total 200 1.00

The first quartile equals those observations
that have a relative cumulative frequency
exceeding 25%, which corresponds to two
children (because the relative cumulative
frequency for two children goes from 22
to 47%, which includes 25%). The second
quartile equals three children because the
relative cumulated frequency for three chil-
dren goes from 47 to 74%, which includes
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50%. The third quartile equals four children
because the relativecumulated frequencyfor
four children goes from 74 to 95%, which
includes 75%.
Quartiles 2, 3, and 4 separate the 200 fami-
lies into quarters. We can group 50 of the 200
families into the first quarter with zero, one,
or two children, 50 into the second quarter
with two or three children, 50 into the third
quarter with three or four children, and 50
into the fourth quarter with four, five, or six
children.
Now consider an example involving the cal-
culation of quartiles from the frequency
distribution of a continuous variable where
the observations are grouped into classes.
The following frequency table represents the
profits (in thousands of francs) of 100 stores:

Profit
(thou-
sands of
francs)

Cumu-
lated
fre-
quency

Cumu-
lated
fre-
quency

Relative
frequency

100–200 10 10 0.1

200–300 20 30 0.3

300–400 40 70 0.7

400–500 30 100 1.0

Total 100

The class containing the first quartile is the
class 200–300 (the one with a relative cumu-
lative frequency of 25%).
Considering that the observations are uni-
formly distributed in each class, we obtain
for the first quartile the following values:

1st quartile

= 200+
⎡
⎣

(
100 · 1

4

)
− 10

20

⎤
⎦ · 100

= 275 .

The class containing the second quartile is
the class 300–400. The value of the second
quartile equals:

2nd quartile

= 300+
⎡
⎣

(
100 · 2

4

)
− 30

40

⎤
⎦ · 100

= 350 .

The class containing the third quartile is the
class 400–500. The value of the third quartile
equals:

3rd quartile

= 400+
⎡
⎣

(
100 · 3

4

)
− 70

30

⎤
⎦ · 100

= 416.66 .

We can conclude that 25 of the 100 stores
have profits between 100000 and 275000
francs, 25 have a profits between 275000
and 350000 francs, 25 have profits between
350000 and 416066 francs, and25 haveprof-
its between 416066 and 500000 francs.

FURTHER READING
� Decile
� Measure of location
� Median
� Percentile
� Quantile

Quetelet, Adolphe

Quetelet, Adolphe was born in 1796 in
Ghent, Belgium. In 1823, the minister of
public education asked him to supervise
the construction of an observatory for the
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city of Brussels. To this end, he was sent
to Paris to study astronomy and to prepare
plans for the construction of the observato-
ry. In France, Bouvard, Alexis was charged
with his education. Quetelet, Adolphe met,
among others, Poisson, Siméon-Denis and
de Laplace, Pierre Simon, who convinced
him of the importance of probabilistic cal-
culations. Over the next 4 years, he trav-
eled widely to visit different observatories
and to collect instruments. He wrote popu-
lar works on science: Astronomie élémen-
taire, Astronomie populaire et Positions de
physique, and Instructions populaires sur le
calcul des probabilités in 1828. Moreover,
he founded with Garnier (his thesis advisor)
a journal: Correspondance mathématique et
physique. In 1828,hewasnamedastronomer
of the Brussels observatory and rose quickly
to become director of theobservatory, a posi-
tion he would occupy for the next 25 years.
In 1836, he became the tutor of Princes
Ernest and Albert of Saxe-Cobourg and
Gotha, which allowed him to pursue his
interest in the calculation of probabilities.
His lessons to the boys were published in
1846 under the title Lettres à S.A.R. le
Duc régnant de Saxe-Cobourg et Gotha;
they addressed the theory of probability as
applied to ethical and political sciences.
Quetelet died in 1874.

Principal works of Quetelet, Adolphe:

1826 Astronomie élémentaire. Malther,
Paris.

1828 Positions de physique. Brussels.

1828 Instructions populaires sur le calcul
des probabilités.

1846 Lettres à S.A.R. le Duc régnant de
Saxe-Cobourg et Gotha sur la théorie

des probabilités, appliquée aux sci-
ences morales et politiques, Brus-
sels.

Quota Sampling

Quota sampling is a nonrandom sampling
method. A sample is chosen in such a way
that it reproduces an image that is as close as
possible to the population.
The quota method is based on the known
distribution of a population for certain char-
acteristic (gender, age, socioeconomic class,
etc.).

HISTORY
See sampling.

MATHEMATICAL ASPECTS
Consider a population composed by N
individuals. The distribution of the pop-
ulation is known to have the charac-
teristics A, B, . . . , Z with the respective
modalities A1, A2, . . . , Aa; B1, B2, . . . , Bb;
. . . ; Z1, Z2, . . . , Zz, the desired sample is
obtained by multiplying the number of the
different modalities of all the control traits
by the sounding rate q, meaning the per-
centage of the population that one wants to
sound.
The sample will be of size n= N ·q and will
have the following distribution:

q · XA1 , q · XA2 , . . . , q · XAa,

q · XB1 , q · XB2 , . . . , q · XBb, . . . ,

q · XZ1 , q · XZ2 , . . . , q · XZz ,

where X... represents the number of the dif-
ferent modalities for all the control traits.
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DOMAINS AND LIMITATIONS
A control trait that will be used as a basis for
the distribution of the sample must obey the
following rules: (1) It must be in close cor-
relation with the under study variables. (2) It
must have a known distribution for the whole
population.
Commonly used control traits are gender,
age, socioprofessional class, region, etc.
The advantages of quota sampling are the
following:
• Unlike random sampling, quota sam-

pling does not require the existence of
a sounding basis.

• The cost is much lower than for random
sampling.

The main disadvantages are:
• The quota method does not have a suf-

ficient theoretical foundation. It is based
on the following hypothesis: a correct
distribution of the control traits ensures
the representativity of the distribution of
the observed traits.

• The quota method cannot calculate the
precision of the estimations obtained
from the sample. Because the investiga-
tors choose the people to be surveyed, it
is impossible to know with what proba-
bility any given individual of the popula-
tion may be part of the sample. It is there-
fore impossible to apply thecalculation of
probabilities that, in the case of random
sampling, can associate to each estima-
tion ameasureof theerror that couldhave
been committed.

EXAMPLES
Suppose we want to study the market pos-
sibilities for a consumer product in town X.
Thechosen controlvariablesaregender,age,
and socioprofessionalclass.Thepopulation

distribution (in thousands of persons) is the
following:

Gender Age Socioprofes-
sional class

Male 162 0–20 70 Chief 19.25

Female 188 21–60 192.5 Indepen-
dent Prof.

14.7

≥ 61 87.5 Managers 79.1

Workers 60.9

Unem-
ployed

176.05

Total 350 Total 350 Total 350

We choose a sounding rate equal to 1
300 . The

samplewill thereforehavethefollowingsize
and distribution:

n = N · q = 350000 · 1

300
= 1167 .

Gender Age Socioprofes-
sional class

Male 540 0–20 233 Chief 64

Female 627 21–60 642 Indepen-
dent Prof.

49

≥ 61 292 Managers 264

Workers 203

Unem-
ployed

587

Total 1167 Total 1167 Total 1167

The choice of individuals is then made by
simple random sampling in each category.

FURTHER READING
� Estimation
� Simple random sampling
� Sampling

REFERENCES
Sukhatme, P.V.: Sampling Theory of Sur-

veys with Applications. Iowa State Uni-
versity Press, Ames, IA (1954)
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Random Experiment

An experiment in which the outcome is not
predictable in advance is called a random
experiment.
A random experiment can be characterized
as follows:
1. It is possible to describe the set of all pos-

sible results (called the sample space of
the random experiment).

2. It is not possible to predict the result with
certainty.

3. It is possible to associate each possible
outcome to a probability of appearing.

DOMAINS AND LIMITATIONS
The random phenomena to which proba-
bilities apply can be encountered in many
different fields such as economic sciences,
social sciences, physics, medicine, psychol-
ogy, etc.

EXAMPLES
Here are some examples of random expe-
riments, characterized by their action and by
the set of the possible results (their sample
space).

Action Sample space

Flipping a coin � = {Heads, Tails}
Rolling a die � = {1, 2, 3, 4, 5, 6}
Drawing a ball from
a container with one
green ball, one blue
ball, and one yellow
ball

� =
{Blue, Green, Yellow}

Rainfall in
a determined period

� = set of
nonnegative real
numbers (infinite
noncountable set)

FURTHER READING
� Event
� Probability
� Sample space

Random Number

A random number is called the realization of
a uniformly distributed random variable in
the interval [0, 1].

DOMAINS AND LIMITATIONS
If the conditions imposed above are not rig-
orously verified, that is, if the distribution
from where the sample is taken is not exact-
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ly the uniform distribution and the succes-
sive draws are not necessarily independent,
then we say that the set of randomly obtained
numbers form a series of pseudorandom
numbers.

EXAMPLES
A container holds 10 balls from 0 to 9. If our
goal is to obtain a random number between
0 and 1 to m decimal places, we need to
draw m balls with replacement seeking to
form a number of m digits. Then we consider
thesedrawsas if therewereonly onenumber,
dividing it by 10m.
As an example, we suppose that we draw
successively the following balls: 8, 7, 5, 4,
and 7. The corresponding random number is
0.87547.

FURTHER READING
� Generation of random numbers
� Uniform distribution

Random Number Generation
See generation of random numbers.

Random Variable
A variable whose value is determined by
the result of a random experiment is called
a random variable.

MATHEMATICAL ASPECTS
A random variable is generally denoted
by one of the last letters of the alphabet
(in uppercase). It is a real valued function
defined on the sample space �. In other
words, a real random variable X is a mapping
of � onto �:

X : �→ � .

We refer to:
• Discrete random variables, when the set

of all possible values for the random
variable is either finite or infinite count-
able;

• Continuous random variables, when the
set of all possible values for the random
variable is infinite uncountable.

EXAMPLES
Examples of Discrete Random Variable
If we roll two dice simultaneously, the 36
possible results that comprise � are the fol-
lowing:

� = {(1, 1), (1, 2), . . . , (1, 6),

(2, 1), (2, 2), . . . , (2, 6), . . . ,

(6, 1), (6, 2), . . . , (6, 6)} .
Therandom variableX =“sumof twodice” is
a discrete random variable. It takes its values
in the finite set E = {2, 3, 4, . . . , 11, 12}, that
is, the sum of two dice can be 2, 3, 4, . . . or
12. In this example, X is an entirely positive
random variable and the operation is from �

in E.
It is possible to attribute a probability to the
different values that the random variable X
can take.
The value “sum equal to 2” is then obtained
only by the result (1, 1). On the other hand,
the value “sum equal to 8” is obtained by the
results (2, 6), (3, 5), (4, 4), (5, 3), and (6, 2).
Since�contains36resultswithequalproba-
bility, we can claim that the “chance” or the
“probability” of obtaining a “sum equal to
2” is 1

36 . The probability of obtaining a “sum
equal to 8” is 5

36 , etc.

Example of Continuous Random Variable
Such random variables characterize mea-
sures like, for example, the time period
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of a telephone call defined in the interval
]0,∞[, wind direction defined in the inter-
val [0, 360[, etc.

FURTHER READING
� Density function
� Probability
� Random experiment
� Sample space
� Value

Randomization
Randomization is a procedure by which
treatments are randomly assingned to expe-
rimental units. It is used to avoid subjective
treatment affectations. It allows to eliminate
a systematic error caused by noncontrollable
factors that persist even in repeated expe-
riments. Randomization can be used to avoid
any bias that might corrupt the data. Final-
ly, randomization is necessary if we seek to
estimate the experimental error.

HISTORY
In September 1919, Fisher, Ronald Aylmer
began his career at the Rothamsted Experi-
mental Station, where agricultural research
was taking place. He started with histor-
ical data and then took into account data
from agricultural trials, for which he devel-
oped the analysis of variance. These tri-
als led him to develop experimental designs.
He developed highly efficient experiment-
al designs using the principles of random-
ization, Latin square, randomized block, and
factorial arrangements.
All these methods can be found in his work
Statistical Methods for Research Workers
(1925). His article in 1926 on the arrange-
ment of his agricultural experiments became
the book The Design of Experiments (1935).

FURTHER READING
� Completely randomized design
� Design of experiments
� Experiment
� Experimental unit
� Treatment

REFERENCES
Fisher, R.A.: Statistical Methods for

Research Workers. Oliver & Boyd, Edin-
burgh (1925)

Fisher, R.A.: The arrangement of field expe-
riments. J. Ministry Agric. 33, 503–513
(1926)

Fisher, R.A.: The Design of Experiments.
Oliver & Boyd, Edinburgh (1935)

Fisher, R.A.: Statistical Methods, Expe-
rimental Design and Scientific Infer-
ence. A re-issue of Statistical Methods
for Research Workers, “The Design of
Experiments’, and “Statistical Methods
and Scientific Inference.” Bennett, J.H.,
Yates, F. (eds.) Oxford University Press,
Oxford (1990)

Randomized Block Design

A randomized block design is an experi-
mental design where the experimental units
are in groups called blocks. The treatments
are randomly allocated to the experimental
units inside each block. When all treatments
appear at least once in each block, we have
a completely randomized block design. Oth-
erwise, we have an incomplete randomized
block design.
This kind of design is used to minimize
the effects of systematic error. If the exper-
imenter focuses exclusively on the differ-
ences between treatments, the effects due
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to variations between the different blocks
should be eliminated.

HISTORY
See experimental design.

EXAMPLES
A farmer possesses five plots of land where
he wishes to cultivate corn. He wants to run
an experiment since he has two kinds of
corn and two types of fertilizer. Moreover, he
knows that his plots are quite heterogeneous
regarding sunshine, and therefore a system-
atic error could arise if sunshine does indeed
facilitate corn cultivation.
The farmer divides the land into five blocks
and randomly attributes toeachblock the fol-
lowing four treatments:

A: corn 1 with fertilizer 1
B: corn 1 with fertilizer 2
C: corn 2 with fertilizer 1
D: corn 2 with fertilizer 2

He eliminates therefore the source of the sys-
tematic error due to the factor sun. By fol-
lowing the same procedure randomly inside
each block, he does not favor a special corn
variety with respect to the others, nor a spe-
cial type of fertilizer with respect to the oth-
ers. The following table shows the random
arrangement of the four treatments in the five
blocks:

Block 1 D C A B

Block 2 C B A D

Block 3 A B C D

Block 4 A C B D

Block 5 D C A B

An analysis of variance permitsone to draw
conclusions, after block effects are removed,
as to whether there exists a significative dif-
ference between the treatments.

FURTHER READING
� Analysis of variance
� Design of experiments

Range

The range is the easiest measure of disper-
sion to calculate.
Consider a set of observations relative to
a quantitative variable X. The range is
defined as the difference between the high-
est observed value and the lowest observed
value.

MATHEMATICAL ASPECTS
Consider a set of observations relative to
a quantitative variable X.
If we denote by Xmax the value of the highest
observation in a set of observations and by
Xmin the lowest value, then the range is given
by:

range = Xmax − Xmin .

When observations are grouped into class-
es, the range is equal to the difference
between the center of the two extreme class-
es. Let δ1 be the center of the first class and
δk the center of the last class. The range is
equal to:

range = δk − δ1 .

DOMAINS AND LIMITATIONS
The range is a measure of dispersion that
is not used very often because it only pro-
vides an indication on the span of the values
but does not provide any information on the
distribution within this span.
It nevertheless has the great advantage of
being easy to calculate. However,one should
be very careful with its interpretation.
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The range is a measure of dispersion that
only takes into account the two extreme val-
ues.Thismethod can therefore lead to wrong
interpretations if the number of children in
seven families is 0, 0, 1, 1, 2, 3, and 6, the
range is 6, whereas all but one of the fam-
ilies have between 0 and 3 children. In this
case, the variability is relatively low whereas
the range is high.
Using the range to measure dispersion (or
variability) presents another inconvenience.
It can only increase when the number of
observations increases. This is a disadvan-
tage because ideally a measure of variabil-
ity should be independent of the number of
observations.
One must exercise extreme caution when
interpreting a range because there may be
outliers. These have a direct influence on the
value of the range.

EXAMPLES
Hereare theagesof twogroupsofpeople tak-
ing an evening class:

Group 1:
33 34 34 37 40

40 40 43 44 45

Group 2:
22 25 31 40 40

41 44 45 50 52

The arithmetic mean x̄ of these two sets of
observations is identical:

x̄ = 390

10
= 39 .

Even if the arithmetic mean of the ages of
these two groups is the same, 39 years, the
dispersion around the mean is very different.
The range for the first group is equal to 12
(45− 33), whereas the range for the second
group is equal to 52− 22 = 30 years old.
Notice that the range only gives an indicative
measure on the variability of the values; it

doesnot indicate theshapeof thedistribution
within this span.

FURTHER READING
� Interquartile range
� Measure of dispersion

REFERENCES
Anderson, T.W., Sclove, S.L.: An Intro-

duction to the Statistical Analysis of Data.
Houghton Mifflin, Boston (1978)

Rank of a Matrix
The rank of a matrix is the maximum num-
ber of linearly independent rows or columns.

MATHEMATICAL ASPECTS
Let A be an m × n matrix. We define its
rank, denoted by rA, as the maximum num-
ber of linearly independent rows or columns.
In particular:

rA ≤ min (m, n) .

If rA = min (m, n), then we say that matrix A
is of full rank.
If therankofasquarematrixofordernequals
n, then its determinant is nonzero; in other
words, this matrix is invertible.

EXAMPLES
Let A be a 2× 3 matrix:

A =
[ −7 3 2

1 0 4

]
.

Its rank is less than or equal to min(2, 3).
The number of linearly independent lines or
columns equals 2. Consequently, rA = 2.

FURTHER READING
� Determinant
� Matrix
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Rao, Calyampudi Radhakrishna

Rao, Radhakrishna was born in 1920 at
Hadagali, Karnata, India. He received his
Ph.D. in 1948 at Cambridge University.
Since 1989 he has received honorary doc-
torates from many universities around the
world, notably the University of Neuchâtel,
in Switzerland.
Hiscontribution to thedevelopmentofstatis-
tical theory and its applications is compara-
ble to the works of Fisher, Ronald Aylmer,
Neyman, Jerzy, and other important modern
statisticians. Among his contributions, the
most important are the Fisher–Rao theorem,
the Rao–Blackwell theorem, the Cramer–
Rao inequality, and Rao’s U-test. He is the
coauthor of 12 books and more than 250
scientific articles. His book Statistics and
Truth: Putting Chance to Work deals with
fundamental logic and statistical applica-
tions and has been translated into many lan-
guages.

Selected works and publications of Rao,
Calyampudi Radhakrishna:

1973 Linear Statistical Inference and Its
Applications, 2nd edn. Wiley, New
York.

1989 (with Shanbhag, D.N.) Further exten-
sions of the Choquet–Deny and Deny
theorems with applications in char-
acterization theory. Q. J. Math., 40,
333–350.

1992 (with Zhao, L.C.) Linear representa-
tion of R-estimates in linear models.
Can. J. Stat., 220:359–368.

1997 Statistics and Truth: Putting Chance
to Work, 2nd edn. World Scientific,
Singapore.

1999 (with Toutenburg, H.) Linear Mod-
els. Least Squares and Alternatives,
2nd edn. Springer Series in Statis-
tics.Springer,BerlinHeidelbergNew
York.

FURTHER READING
� Gauss–Markov theorem
� Generalized inverse

Regression Analysis

Regression analysis is a technique that per-
mits one to study and measure the relation
betweentwoormorevariables.Startingfrom
dataregistered inasample, regressionanaly-
sis seeks to determinean estimateofamathe-
matical relation between two or more vari-
ables. The goal is to estimate the value of
one variable as a function of one or more oth-
er variables. The estimated variable is called
the dependent variable and is common-
ly denoted by Y. In contrast, the variables
that explain the variations in Y are called
independent variables, and they are denoted
by X.
When Y dependson only oneX,wehavesim-
ple regression analysis, but when Y depends
on more than one independent variable, we
have multiple regression analysis. If the rela-
tion between the dependent and the inde-
pendent variables is linear, then we have lin-
ear regression analysis.

HISTORY
The pioneer in linear regression analysis,
Boscovich, Roger Joseph, an astronomer
as well as a physician, was one of the first
to find a method for determining the coeffi-
cients of a regression line. To obtain a line
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passing as close as possible to all observa-
tions, two parameters should be determined
in such a way that two Boscovich, R.J. con-
ditions are respected:
1. The sum of the deviations must equal

zero.
2. The sum of the deviations absolute value

must be minimal.
Boscovich, R.J. established these conditions
around 1755–1757. He used a method of
geometrical resolution that he applied when
measuring the length of five of the earth’s
meridians.
In 1789, de Laplace, Pierre Simon, in his
work Sur les degrés mesurés des méridiens,
et sur les longueurs observées sur pend-
ule, adopted the two conditions imposed by
Boscovich, R.J. and established an algebra-
ic method for the resolution of Boscovich’s
algorithm.
Two other mathematicians, Gauss, Carl
Friedrich and Legendre, Adrien Marie,
seem to have discovered, without conferring
with each other, the least-squares method.
It seems that Gauss, C.F. had been using it
since 1795. But it is Legendre, A.M. who
published the least-squares method in 1805
in his work Nouvelles méthodes pour la
détermination des orbites des comètes,
where we find the appendix Sur la méth-
ode des moindres carrés. A controversy
about the true author of the discovery erupt-
ed between the two men in 1809. Gauss, C.F.
published his method citing references to
his previous works. Note that in the same
period, an American named Adrian, Robert,
who had no knowledge of Gauss’ and Leg-
endre’s work, was also working with least
squares.
The 18th century marked the development
of the least-squares method. According
to Stigler, S. (1986), this development is

strongly associated with three problems
from that period. The first concerned the
mathematical representation and determi-
nation of the movements of the moon. The
second was related to explaining the secu-
lar inequality observed in the movement of
Jupiter and Saturn. Finally, the third con-
cerned the determination of the shape of the
earth.
According to thesameauthor,onefindsinthe
works of Galton, Francis the origin of the
term linear regression. His research focused
on heredity: the notion of regression arose
from an analysis of heredity among family
members.
In 1875, Galton, C.F. conducted an exper-
iment with small peas distributed in seven
groups by weight. For each group, he took
ten seeds and asked seven friends to culti-
vate them. He thus cultivated 490 germs.
He discovered that each seed group clas-
sified by weight followed a normal distri-
bution and the curves, centered on differ-
ent weights, were dispersed in an equal-
ly normal distribution; the variability of
the different groups was identical. Gal-
ton, F. talked about “reversion” (in biolo-
gy “reversion” refers to a return to a prim-
itive type). It was a linear reversion that
Galton, F. had witnessed since the sev-
en seed groups were normally distributed,
compared not to their parents’ weight, but
to a value close to the overall population
mean.
Humanhereditywasaresearch topicforGal-
ton, F. as well, who was trying to define the
relation between the length of parent seeds
and that of their offspring. In 1889, he pub-
lished his work under the title Natural Inher-
itance. In this field, from 1885 he used the
term regression, and in his last works he end-
ed up with the concept of correlation.
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MATHEMATICAL ASPECTS
See LAD regression, multiple linear
regression, and simple linear regression.

DOMAINS AND LIMITATIONS
The goal of regression analysis is not only to
determine the relation between the depen-
dent variable and the independent vari-
able(s). Regression analysis seeks as well to
establish the reliability of estimates and con-
sequently the reliability of the obtained pre-
dictions.
Regression analysis allows furthermore to
examine whether the results are statistical-
ly significant and if the relation between the
variables is real or only apparent.
Regression analysis has various applications
in all scientific fields. In fact, from the
momentwedeterminea relation among vari-
ables, we can predict future values, provid-
ed that the conditions remain unchanged and
that there always exists an error. Commonly
we check the validity of a regression anal-
ysis by residual analysis.

EXAMPLES
See linear regression (multiple or simple),
LAD regression, and ridge.

FURTHER READING
� Analysis of residuals
� Analysis of variance
� Coefficient of determination
� Hat matrix
� Least squares
� Leverage point
� Multiple linear regression
� Normal equations
� Residual
� Simple linear regression
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Rejection Region

The rejection region is the interval, mea-
sured in the sampling distribution of the
statistic under study, that leads to rejection
of the null hypothesis H0 in a hypothesis
test.The rejection region iscomplementary
to the acceptance region and is associated
to a probability α, called the significance
level of the test or type I error.
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MATHEMATICAL ASPECTS
Consider a hypothesis test on a parameter
θ . We utilize the statistic T in order to esti-
mate this parameter.

Case 1: One-sided Test (Right Tail)
The hypothesis is the following:

H0 : θ = θ0

H1 : θ > θ0 .

where θ0 is the preassigned value for param-
eter θ .
In a one-sided test (test for the right tail), the
rejection region corresponds to an interval
limited on the right side of the criticalvalue:

Rejection region = [critical value;∞[, and
Acceptance region= ]−∞; critical value[,

given that the critical value equals:

μT + zα · σT ,

where μT is the mean of the sampling
distribution for statistic T, σT is the stan-
dard error for the statistic T, and α is the
significance level of the test.
The value zα is obtained from statistical
tables of distribution T. If the value of T
computed in the sample lies in the rejection
region, that is, if T is greater than or equal
to the critical value, the null hypothesis H0

must be rejected in favor of the alternative
hypothesis H1. Otherwise, the null hypoth-
esis H0 cannot be rejected.

Cas 2: One-sided Test (Left Tail)
The hypothesis is as follows:

H0 : θ = θ0

H1 : θ < θ0 .

In a one-sided test (test for the right tail), the
rejection region is limited on the left side by
the critical value:

rejection region = ]−∞; critical value] ,

and the acceptance region is:

acceptance region = ]critical value;∞[ ,

provided the critical value equals:

μT − zα · σT .

If the value of T computed in the sample lies
in the rejection region, that is, if T is less than
orequaltothecriticalvalue, thenull hypoth-
esis H0 must be rejected in favor of the alter-
native hypothesis H1. Otherwise, the null
hypothesis H0 cannot be rejected.

Case 3: Two-sided Test
The hypothesis is as follows:

H0 : θ = θ0

H1 : θ �= θ0

In a two-sided test the rejection region is
divided into two intervals:

rejection region =�\]lower critical value;
upper critical value

[

and the acceptance region:

acceptance region =]
lower critical value ;

upper critical value
[

,

where the critical values are equal to:

μT − z α
2
· σT and μT + z α

2
· σT .
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If the value of T computed in the sample lies
in the rejection region, that is, if T is greater
than or equal to the uppercritical value or ifT
is less than or equal to the lower critical val-
ue, the null hypothesis H0 must be rejected
in favor of the alternative hypothesis H1.
Otherwise, the null hypothesis H0 cannot be
rejected.
The following figure illustrates the accep-
tanceandrejectionregionsfor thecasesmen-
tioned above.

DOMAINS AND LIMITATIONS
In a one-sided test, the rejection region is
unique and is detected:
• On the right side of the sampling distri-

bution for a one-sided test in the right tail.
• On the left side of the sampling distri-

bution for a one-sided test in the left tail.
In contrast, the rejection region is divided
into two parts in the two-sided test, which
are found on the extreme left and right sides
of the sampling distribution. To each one of
these regions is associated a probability α

2 ,
withαbeingthesignificance levelofthetest.

EXAMPLES
A company produces steel cables. Based on
a sample of n = 100 units, it wants to verify
whether the diameter of the cables is 0.9 cm.
The standard deviation of the population is
known to be equal to 0.05 cm.
The hypothesis test in this case is a two-
sided test. The hypothesis is as follows:

Null hypothesis H0 : μ = 0.9

Alternative hypothesis H1 : μ �= 0.9

For a significance level set to α = 5%, the
value z α

2
of the normal table equals 1.96.

The critical values are then:

μx̄ ± z α
2
· σx̄ ;

whereμx̄ is themeanof thesampling distri-
bution for the means:

μx̄ = μ = 0.9

and σx̄ is the standard error of the mean:

σx̄ = σ√
n
= 0.05√

100
= 0.005

⇒ μx̄ ± z α
2
σx̄ = 0.9± 1.96 · 0.005

= 0.9± 0.0098 .

The interval ]0.8902; 0.9098[ corresponds
to the acceptance region of the null hypoth-
esis.
The rejection region is the complementary
interval and is divided into two parts:

]−∞; 0.8902] and [0.9098;∞[ .

If the obtained sampling mean lies in this
interval, the null hypothesis H0 must be
rejected in favor of the alternative hypoth-
esis H1.

FURTHER READING
� Acceptance region
� Critical value
� Hypothesis testing
� Significance level

REFERENCES
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paper, Office of Biostatistics and Bioin-
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(2002)
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Relation

The notion of relation expresses the rapport
that exists between two random variables.
It is one of the most important notions in
statistics. It appears in concepts like classi-
fication, correlation, dependence, regres-
sion analysis, time series, etc.

FURTHER READING
� Classification
� Correlation coefficient
� Dependence
� Model
� Regression analysis
� Time series

Relative Risk

The relative risk is defined as the ratio
between the risk relative to the individuals
who are exposed to a factor. It measures the
relative effect of a certain cause, that is, the
degree of the association between a disease
and its cause.

HISTORY
See risk.

MATHEMATICAL ASPECTS
The relative risk is a probability ratio that is
estimated by:

relative risk = risk of exposed

risk of nonexposed

= incidence rate for exposed

incidence rate for nonexposed
.

Note that the relative risk is a measure with-
out a unit since it is defined as the ratio of two
quantities measured in the same unit.

DOMAINS AND LIMITATIONS
The relative risk expresses the risk of the
units exposed to a factor as a multiple of the
risk of the units not exposed to this factor:

risk of units exposed

= risk of units nonexposed

· relative risk .

We want to study the relation between a risk
factor and a disease. When there is no asso-
ciation, the relative risk should theoretically
be equal to 1. If exposure to the risk factor
increases the number of cases of the disease,
then the relative risk becomes larger than 1.
If, on the other hand, exposure to the factor
decreases the number of cases of the disease,
then the relative risk lies between 0 and 1.
It is easy to compute a P= (1− α) % confi-
dence interval for the relative risk. We con-
sider here the following general case:
The confidence interval is computed in the
logarithmic scale and then transformed back
into the arithmetic scale. The lowercase let-
ters refer to the following table:

Disease Nondisease Total

Exposed a n− a n

Nonexposed c m− c m

The P = (1− α) % confidence interval for
the relative risk, RR, is then given by:

exp

{
ln (RR)± zα

√
1

a
− 1

n
+ 1

c
− 1

m

}
,

with “exp” the exponent for the expression
in brackets and zα the value in the normal
table. It is assumed that a, n, c, and m are
large enough. If the confidence interval for
the relative risk includes the value 1.0, then
weconclude that theexposurefactordoesnot
play any statistically significant role in the
probability of having the disease.
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EXAMPLES
We use here example 1 from the section on
attributable risk. The relative risk of breast
cancer associated to exposure to smoke cor-
responds to the risk (or incidence rate) for
each exposure level divided by the risk (or
incidence rate) for the nonexposed:

Group Incidence rate
(100000 year)
(A)

Relative
risk
(A/57.0)

Nonexposed 57.0 1.0

Passive smokers 126.2 2.2

Active smokers 138.1 2.4

The relative risk is 2.2 for passive smok-
ers and 2.4 for active smokers. Compared
to the risk of the nonexposed, the risk for
active smokers and passive smokers is now
2.4 and 2.2 times larger. There is a roughly
modest association that underlines the fact
that breast cancer depends also on factors
other than smoking. The relative risk pro-
vides thus a partial description of the relation
between smoking and breast cancer.By itself
it doesnotallowone to drawany firm conclu-
sions and indicates that smoking is probably
responsible for 50% of breast cancer cases
in the population.

FURTHER READING
� Attributable risk
� Avoidable risk
� Cause and effect in epidemiology
� Incidence rate
� Odds and odds ratio
� Prevalence rate
� Risk
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Resampling

While using a sample to estimate a certain
parameter concerning the population from
which the sample is drawn, we can use the
same sample more than once to improve our
statistical analysis and inference. This hap-
pens by sampling inside the initial sample.
This is the idea behind resampling methods.
Using resampling we may compute the bias
or the standard deviation of an estimated
parameter, or we can also draw conclusions
from construction confidence interval and
testing hypotheses for the estimated param-
eter. Among the techniques that use resam-
pling, bootstrap, jackknife, and cross vali-
dation can be mentioned, for example. Their
special interest is in nonparametric tech-
niques because:
• The exact distribution of the data is not

known and
• The data arise from a nonlinear design,

which is very difficult to model.
On the other hand, a problem related to such
procedures arises when the sample does not
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represent the population and we risk making
absolutely false inferences.

HISTORY
The jackknife method was introduced in the
1950s as a way to reduce the bias of an esti-
mate. In the 1960s and 1970s, resampling
waswidelyused insamplingasawayofesti-
mating the variance.
The bootstrap method was invented by
Efron, B. in the late 1970s and has since been
developed by numerous researchers in dif-
ferent fields.

MATHEMATICAL ASPECTS
See bootstrap, jackknife.

FURTHER READING
� Bootstrap
� Jackknife method
� Monte Carlo method
� Randomization

REFERENCES
Edington, E. S.: Randomisation Tests. Mar-

cel Dekker, New York (1980)

Efron, B.: The jackknife, the bootstrap, and
other resampling plans, CBMS Mono-
graph.No.38.SIAM,Philadelphia (1982)

Fisher, R.A.: The Design of Experiments.
Oliver & Boyd, Edinburgh (1935)

Pitman,E.J.G.:Significance testswhichmay
be applied to samples from any popula-
tions. Supplement, J. Roy. Stat. Soc. 4,
119–130 (1937)

Residual

Residuals are defined as the difference
between the observed values and the esti-

mated (fitted) values of a regression model.
They represent what is not explained by the
regression equation.

HISTORY
See error.

MATHEMATICAL ASPECTS
The residuals ei are given by:

ei = Yi − Ŷi , i = 1, . . . , n ,

where Yi denotes an observation and Ŷi its
fitted value, obtained by fitting a regression
model.
The following graph illustrates the residuals
in a simple linear regression:

EXAMPLES
See residual analysis.

FURTHER READING
� Analysis of residuals
� Error
� Hat matrix
� Leverage point
� Multiple linear regression
� Regression analysis
� Simple linear regression
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Rice, Stuart Arthur

Rice, Stuart Arthur (1889–1969) studied at
the University of Washington (obtaining his
bachelor of science degree in 1912 and his
master’sdegree in 1915).Hisacademicwork
wasdevoted to thedevelopmentofamethod-
ology in the social sciences.
In the early 1930s, Rice, S.A. joined the
administration of Franklin D. Roosevelt. He
became the assistant director of the census
office from 1933 until the early 1950s. His
majorcontribution to statisticsconsists in the
modernization of the use of statistics in gov-
ernment. He promoted the development of
COGSIS(CommitteeonGovernmentStatis-
tics and Information Services) and worked
toward adapting modern techniques of sam-
pling as well as mathematical statistics in
federal agencies. In 1955, he created the
Stuart A. Rice Associates (later Surveys &
Research Corporation), a statistical consult-
ing agency for the public and private sectors.
He retired in the 1960s.

FURTHER READING
� Census
� Official statistics

Ridge Regression

The main goal of the ridge method is to mini-
mize themean squared errorof theestimates,
that is, to compromise bias and variance. By
considering collinearity as a problem of qua-
sisingularity of W′W, where W denotes the
matrix of the explanatory variables X suit-
ably transformed (centered and/or scaled),
we use the ridge regression method, which
modifies the matrix W′W in order to remove
singularities.

HISTORY
The ridge regression was introduced in 1962
by Hoerl, A.E., who stated that the existence
ofcorrelation between explanatory variables
can cause errors in estimation while apply-
ing the least-squares method. As an alter-
native, he developed the ridge regression,
which allows to compute estimates that are
biased but of lower variance than in the least-
squares estimates. While the least-squares
method provides nonbiased estimates, the
ridge minimizes the mean squared error of
the estimates.

MATHEMATICAL ASPECTS
Let us consider the multiple linear regres-
sion model:

Y = Xβ + ε ,

where Y = (y1, . . . , yn)
′ is an (n × 1)

vector of the observations related to the
dependent variable (n observations), β =(
β0, . . . , βp−1

)′ is the (p×1) parameter vec-
tor to be estimated, ε = (ε1, . . . , εn)

′ is the
(n× 1) error vector, and

X =
⎛
⎜⎝

1 X11 . . . X1(p−1)

...
...

...
1 Xn1 . . . Xn(p−1)

⎞
⎟⎠

is an (n× p) matrix with independent vari-
ables.
The estimation of β by means of least
squares is given by:

β̂ = (
β̂0, . . . , β̂p−1

)′ = (
X′X

)−1 X′Y .

Consider the standardized data matrix:

W =

⎛
⎜⎜⎜⎜⎝

Xs
11 Xs

12 · · · Xs
1p−1

Xs
21 Xs

22 · · · Xs
2p−1

...
...

. . .
...

s
n1 Xs

n2 · · · Xs
np−1

⎞
⎟⎟⎟⎟⎠

.
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Hence the model becomes:

Y = μ+Wγ + ε ,

where

μ = (γ0, . . . , γ0)
′ = (

βs
0, . . . , βs

0

)′ and

γ = (
γ1, . . . , γp−1

)′ =
(
βs

1, . . . , βs
p−1

)′
.

The least-squares estimates are given by
γ̂0 = β̂s

0 = Y and by:

γ̂ = (
γ̂1, . . . , γ̂p−1

)′

=
(
β̂s

1, . . . , β̂s
p−1

)′

= (W′W)−1W′Y .

These estimates are unbiased, that is:

E
(
β̂j
) = βj , j = 0, . . . , p− 1 ,

E
(
γ̂j
) = γj , j = 0, . . . , p− 1 .

Among all possible linear unbiased esti-
mates, they are the estimates with the mini-
mal variance. We know that

Var
(
β̂
) = σ 2 (

X′X
)−1

,

Var (γ̂ ) = σ 2 (
W′W

)−1
,

where σ 2 is the error variance. Note that
W′W is equal to (n − 1) times the corre-
lation matrix for the independent variables.
Consequently, in the most favorable case no
collinearity arises since W′W is a multiple
of I. In order to have a matrix W′W as close
as possible to the favorable case, we replace
W′W by W′W + kI, where k is a positive
scalar.
Ridge regression replaces the least-squares
estimates

γ̂ = (
W′W

)−1 W′Y

by the ridge estimates

γ̂R =
(
W′W+ kI

)−1 W′Y
= (

γ̂R1 , . . . , γ̂R(p−1)

)
.

There exists always a value for k for which
the total mean squared error of the ridge
estimates is less than the total mean squared
error of the least-squares estimates. In 1975,

Hoerl et al. suggested that k = (p−1)σ 2

γ ′γ
givesa lower totalmean squared error,where
(p− 1) is the number of explanatory vari-
ables. To compute k, we must estimate σ and
γ by s and γ̂ . Then, γ is reestimated by γ̂R

using ridge regression with k = (p−1)σ 2

γ ′γ .
Note, though, that the k that has been used
is a random variable, since it depends on the
data.

DOMAINS AND LIMITATIONS
Properties of Ridge Estimates
Ridge estimates are biased since the expect-
ed values E

(
γ̂Rj

)
of the estimates γ̂Rj are in

the vector:

E
(
γ̂Rj

) = (
W′W+ kI

)−1 W′Wγ �= γ ,

∀k > 0 .

Note that the value k = 0 corresponds to
the least-squares estimates. Ridge estimates
trade some bias in order to reduce the vari-
ance of the estimates. We have:

Var (γ̂R) = σ 2VR ,

with:

VR=
(
W′W+ kI

)−1 W′W
(
W′W+ kI

)−1
.

Note that the diagonal elements of matrix VR

are smaller than the diagonal elements corre-
sponding to

(
W′W

)−1, implying that ridge
estimates have lower variance than least-
squares estimates.
Thus ridge estimates are less variable than
least-squares estimates. Is their bias accept-
able? To measure a compromise between the
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bias and variance of an estimate, we general-
ly compute its mean squared error, denoted
by MSE. For an estimate θ̂ of θ this is defined
as:

MSE
(
θ̂
) = E

((
θ̂ − θ

)2
)

= Var
(
θ̂
)+ (

E
(
θ̂
)− θ

)2
.

Equivalently, we define the total mean
squared error of an estimated vector by
the sum of the mean squared errors of its
components. We have:

TMSE (γ̂R) =
p−1∑
j=1

MSE
(
γ̂Rj

)

=
p−1∑
j=1

(
E

(
γ̂Rj − γj

)2
)

=
p−1∑
j=1

[
Var

(
γ̂Rj

)

+ (
E

(
γ̂Rj

)− γj
)2

]

= (p− 1) σ 2 Trace (VR)

+
p−1∑
j=1

(
E

(
γ̂Rj

)− γj
)2

.

This method is called adaptive ridge regres-
sion. The properties of the ridge estimates
hold only when k is a constant, which is not
the case for adaptive ridge regression. Nev-
ertheless, the properties for the ridge esti-
mates suggest that adaptive ridge estimates
are good estimates. In fact, statistical stud-
ies have revealed that for many data sets an
adaptive ridge estimation is better in terms of
mean squared error than least-squares esti-
mation.

EXAMPLES
In the following example, 13 samples of
cement were set. For each one, the per-

centages of the four chemical ingredients
was measured and are tabulated below. The
amount of heat emitted was also measured.
The goal was to define how the quantities xi1,
xi2, xi3, and xi4 affect yi, the amount of heat
emitted.

Table: Heat emitted

Samples Ingredient Heat

1 2 3 4

i Xi1 Xi2 Xi3 Xi4 Yi

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5

9 2 54 18 22 93.1

10 21 47 4 26 115.9

11 1 40 23 34 83.9

12 11 66 9 12 113.3

13 10 68 8 12 109.4

where Yi is the heat evolved by the sample i,
Xi1 is the quantity of ingredient 1 in sample i,
Xi2 is the quantity of ingredient 2 in sample i,
Xi3 is the quantity of ingredient 3 in sample i,
and Xi4 is the quantity of ingredient 4 in sam-
ple i.
Weinitiallycarryoutamultiplelinearregres-
sion. The linear regression model is:

yi = β0 + β1Xi1 + β2Xi2 + β3Xi3

+ β4Xi4 + εi .

We obtain the following results:
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Variable Coefficient Std. dev. tc
Constant 62.4100 70.0700 0.89

X1 1.5511 0.7448 2.08

X2 0.5102 0.7238 0.70

X3 0.1019 0.7547 0.14

X4 −0.1441 0.7091 −0.20

The estimated vector obtained by standard-
ized data is:

γ̂ = (9.12; 7.94; 0.65;−2.41)′ ,

with a standard deviation of 4.381, 11.26,
4.834, and 11.87, respectively. The estimate
for s of σ is s = 2.446. We follow a ridge
analysis using:

k = (p− 1) σ 2

γ ′γ

= 4 · (2.446)2

(9.12)2+(7.94)2+(0.65)2+(2.41)2

= 0.157 .

This is an adaptive ridge regression since k
dependsonthedata.Weuse, though, the term
ridge regression. We obtain:

ŶR = (7.64; 4.67; −0.91; −5.84)′ ,

with a standard deviation of 1.189, 1.377,
1.169, and 1.391, respectively. We have the
estimated values:

Ŷi = 95.4+ 7.64Xs
i1 + 4.67Xs

i2 − 0.91Xs
i3

− 5.84Xs
i4 .

The estimated value for the constant does not
differ from the least-squares estimate.

FURTHER READING
� Collinearity
� Mean squared error

� Simulation
� Standardized data

REFERENCES
HoerlA.E.:ApplicationofRidgeAnalysis to

Regression Problems. Chem. Eng. Prog.
58(3), 54–59 (1962)

Hoerl A.E., Kennard R.W.: Ridge regres-
sion: biased estimation for nonorthogo-
nal Problems. Technometrics 12, 55–67
(1970)

Hoerl A.E., Kennard R.W., Baldwin K.F.:
Ridge regression: some simulations.
Commun. Stat., vol. 4, pp. 105–123
(1975)

Risk
In epidemiology, risk corresponds to the
probability that a disease appears in a popu-
lation during a given time interval. The risk
is equally defined for either the population
or a homogeneous subgroup of individuals.
The homogeneity is used here in the sense
that individuals are exposed to a certain fac-
tor suspected of causing the disease being
studied. The notion of risk is strongly relat-
ed to that of incidence (the incidence corre-
sponding to the frequency of a disease, the
risk to its probability).

HISTORY
In 1951, Cornfield, Jerome clearly stated
for the first time the notion of risk. This
resulted from a followup study where risk
factors were compared for two groups, one
consisting of sick individuals and the other
of healthy individuals. Since then risk has
been widely used in epidemiologic studiesas
a measure of association between a disease
and the related risk factors.
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MATHEMATICAL ASPECTS
The risk is the probability of the disease
appearing in a fixed time period in a group
of individuals exposed to a risk factor under
study. We estimate the risk by the ratio:

risk =
incident cases

(in the exposed population)

population at risk

during the given time period. The nomina-
tor corresponds to the number of new cases
of the disease during the fixed time period in
the studied population, while the denomina-
tor corresponds to the number of persons at
risk in the same time period.

DOMAINS AND LIMITATIONS
The notion of risk is intuitively a proba-
bility measure, being defined for a given
population and a determined time period.
Insurance companies use it to predict the
frequency of events such as death, disease,
etc. in a defined population and accord-
ing to factors such as sex, age, weight, etc.
Risk can be interpreted as the probability
for an individual to contract a disease, giv-
en that he has been exposed to a certain
risk factor. We attribute to the individual the
mean value of the risk for the individuals
of his group. Insurance companies use risk
for each population to determine the contri-
bution of each insured individual. Doctors
use risk to estimate the probability that one
of their patients develops a certain disease,
has a complication, or recovers from the dis-
ease.
It is important to note that the notion of risk
is always defined for a certain time period:
the risk in 2, 3, or 10 years.
The minimal risk is 0%, the maximal risk
100%.

EXAMPLES
Suppose that on 1 January 1992 a group of
100060-year-oldmenisselected,and10cas-
es of heart attack are observed during the
year. The heart attack risk for this population
of 60-year-old men equals 10/1000 = 1%
in a year.
We consider here a case of breast cancer
over the course of 2 years in a population of
100000 women, distributed in three groups
depending on the level of exposure to the
factor “smoke”. The following contingency
table illustrates this example:

Group Number of
cases
(incidents)

Number of
individuals

Nonexposed 40 35100

Passive smokers 140 55500

Active smokers 164 59400

Total 344 150000

The risk for each group is computed as
the ratio of the number of cases divided
by the total number of individuals in each
group. For example, the risk for the passive
smokers is 140/55500 = 0.002523 =
252.3/100000 in 2 years. We have the fol-
lowing table:

Group Number of
cases
(incidents)

Number
of indi-
viduals

Risk in two
years
(100000)

Nonex-
posed

40 35100 114.0

Passive
smokers

140 55500 252.3

Active
smokers

164 59400 276.1

Total 344 150000 229.3

The notion of risk implies the notion of pre-
diction: among the women of a given popu-



R

Robust Estimation 463

lation, what proportion of them will develop
breast cancer in the next 2 years? From the
table above we note that 229.3/100000 may
develop this disease in the next 2 years.

FURTHER READING
� Attributable risk
� Avoidable risk
� Cause and effect in epidemiology
� Incidence rate
� Odds and odds ratio
� Prevalence rate
� Relative risk
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Robust Estimation

An estimation is called robust if the esti-
mators that are used are not sensitive to
outliers and small departures from ideal-
ized (model) assumptions. These estima-
tion methods include Maximum likelihood

type estimation known as M-Estimates, lin-
ear combination of order statistics, known as
L-Estimates, and methods based on statis-
tical ranks, R-Estimates. Outliers are prob-
ably errors resulting from a bad reading,
a bad recording, or any other cause related
to the experimental environment. The arith-
metic mean and other estimators of the least
squares are very sensitive to such outliers.
That is why it is preferable in these cases to
call upon estimators that are more robust.

HISTORY
The term robust, as well as the field to
which it is related, was introduced in 1953
by Box, G.E.P. The term was recognized as
a field of statistics only in the mid-1960s.
Nevertheless, it is important to note that this
concept is not new; in the late 19th century,
several scientists already had a clear idea of
this concept. In fact, the first mathematical
work on robust estimation apparently dates
back to 1818 with Laplace, P.S. in his work
Le deuxième supplément à la théorie ana-
lytique des probabilités. The distribution of
the median can be found in this work.
It is from 1964, with the article ofHuber,P.J.,
that this field became a separate field of
statistics known as robust statistics.

MATHEMATICAL ASPECTS
Consider the following model:

Y = X · β + ε ,

where Y is the (n × 1) vector of the obser-
vations relative to the dependent variable
(n observations), β is the (p × 1) vector of
the parameters to be estimated, and ε is the
(n× 1) vector of errors.
There exist several methods of robust esti-
mation that allow one to estimate the vector
of parameters β.
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Some of the methods are:
• L1 estimation:

Minimize
n∑

i=1

|εi| .

• In a more general way, the concept of M-
estimators based on the idea of replacing
the square of the errorsε2

i (least-squares
method) is defined by a function δ(εi),
where δ is a symmetric function having
a unique minimum in zero:

Minimize
n∑

i=1

δ (εi) .

In 1964, Huber, P.J. proposed the follow-
ing function:

δ (x) =

⎧
⎪⎪⎨
⎪⎪⎩

x2

2
, if |x| ≤ k

k · |x| − k2

2
, if |x| > k

,

where k is a positive constant.
Notice that for δ(x) = |x|, the L1 estima-
tors are obtained.

FURTHER READING
� Estimation
� Estimator
� L1 estimation
� Maximum likelihood
� Outlier
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Sample

A sample is a subset of a population on
which statistical studies are made in order to
draw conclusions relative to the population.

EXAMPLES
A housewife is preparing a soup. To deter-
mine if the soup has enough salt, she tastes
a spoonful. As a function of what she
observed on the sample represented here
by a spoonful, she can decide if it is neces-
sary to add salt to the soup, symbolizing the
studied population.

FURTHER READING
� Chebyshev’s Inequality
� Estimation
� Population
� Sample size
� Sampling

Sample Size

The sample size is the number of individuals
or elements belonging to a sample.

HISTORY
Nordin, J.A. (1944) treats the problem of
the estimation of the sample size within the
framework of a theory of decisions through

a relative example in the potential sales in
a market where a seller wants to have a pres-
ence. Cornfield, J. (1951) illustrates in a pre-
cise manner the estimation of the sample size
to form classes with known proportions. Sit-
tig, J. (1951) discusses the choice of the sam-
ple size for a typical economic problem, tak-
ing into account the inspection and the cost
incurred for defective pieces in an accepted
lot and for correct pieces in a rejected lot.
Numerous studies were also conducted by
Cox, D.R. (1952), who was inspired by the
works of Stein, C. (1945), to determine sam-
ple size in an ideal way.

MATHEMATICAL ASPECTS
Let X1, . . . , Xn be a random sample taken
without replacement of a population of N
observations having an unknown mean μ.
We suppose that the sample distribution of
the statistic follows a normal distribution.
The Chebyshev inequality, depends on the
number n of observations and it allows to
estimate the mean μ according to the empir-
ical mean of the obtained values Xn.
When N is large enough, the size n of the
sample can be determined using the Tcheby-
chev inequality, so that the probability that
Xn would be included in the interval [μ −
ε, μ+ ε] (ε > 0 fixed at the required preci-
sion) can be as great as we want. If we call
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α the significance level, we get:

P (|x̄− μ| ≥ ε) = α or

P (|x̄− μ| < ε) = 1− α ,

which we can also write as:

P

(
−zα/2 ≤ x̄− μ

σx̄
≤ zα/2

)
= 1− α ,

where σx̄, the standard error of the mean,
is estimated by σ√

n
, where σ is the standard

deviationof thepopulationandzα/2thestan-
dard critical value associated to the confi-
dence level 1− α.
We construct the confidence interval with
the help of the normal table for the confi-
dence level 1− α:

−zα/2 · σ√
n
≤ x̄− μ ≤ zα/2 · σ√

n
.

As the normal distribution is symmetric,
weareonly interested in the inequality on the
right. It indicates that zα/2 · σ√

n
is the greatest

value that x̄− μ can take. This limit is also
given by the desired precision. From where:

ε = zα/2 · σ√
n

,

that is:

n =
(

zα/2 · σ
δ

)2
.

If the desired precision can be expressed in
percentage relative to the meanμ, or k%, we
then have:

δ = k · μ

and n =
(

zα

k
· σ
μ

)2

,

where σ
μ

is called the coefficient of varia-
tion. It measures the relative dispersion of
thestudiedvariable. Incaseswhere thesam-
pling distribution is not normally distribut-
ed, these formulas are approximately valid
when the sample size, n, is much greater than
(n ≥ 30).

DOMAINS AND LIMITATIONS
The determination of the sample size is
an important step for organizing a statis-
tical inquiry. It implies not only the com-
plex calculations but also the taking into
account of the different requirements of the
inquiry itself. Thus the desired precision of
the inquiry results is to be considered. Gen-
erally, the greater the sample size, the greater
the precision. The cost of the inquiry con-
stitutes another important constraint. The
smaller the budget, the more restricted the
sample size. Moreover, the availability of
other resources, such as the existence of data
comming from a census or of a system of
inquirers or the duration of the inquiry, as
well as the territory to be covered, can have
adramatic impacton thestructureof thesam-
ple.
Census theory places great importance on
samples of “optimal” dimension, especially
when optimizing (maximizing or minimiz-
ing) an objective function in which the prin-
ciplesare formulated mathematically.More-
over, it is important to underline that gener-
ally the optimal sample dimension does not
depend (or depends only slightly) on the size
of the original population.
In the area of experimental design, the prob-
lem of optimal sample size is also raised.
In this case one should find the minimal
number of observations to take into account
to detect a significant difference (if there is
one) between the different treatments such
as many drugs or manufacturing processes.

EXAMPLES
A factory employs several thousand work-
ers. Based on a previous experiment, the
researcher knows that weekly salaries are
normally distributed with a standard devia-
tion of 40 CHF. The researcher wants to esti-
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mate themeanweeklysalarywithaprecision
of 10 CHF and a confidence level of 99%.
What should the sample size be?
For a confidence level of 99% (α = 0.01 =
1− 0.99), the z0.01 value that we find in the
normal table equals 2.575.
The direct application of the formula gives
us:

n ≥
[
zα · σ

δ

]2
,

n ≥
[

2.575 · 40

10

]2

,

n ≥ 106.09 .

We will have the desired precision if thesam-
ple size is greater than or equal to 107 work-
ers.

FURTHER READING
� Population
� Sample
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Sample Space
The sample space of a random experiment
is the set of all possible outcomes of the
experiment, usually denoted by �.

HISTORY
See probability.

MATHEMATICAL ASPECTS
A sample space can be:
• Finite (the outcomes are countable);
• Infinite countable (it is possible to asso-

ciate each possible outcome to a positive
integer in such a way that each possible
result has a different number; however,
the number of possible outcomes is infi-
nite);

• Infinite noncountable (it is impossible to
enumerate all the possible outcomes).

The sample space � of a random experi-
ment is also called a sure event. The proba-
bility of the sure event is equal to 1:

P (�) = 1 .

EXAMPLES
Finite sample space:
– Flipping a coin

� = {Heads, Tails}
– Rolling a die

� = {1, 2, 3, 4, 5, 6}
Infinite countable sample space:
– Flipping a coin as many times as neces-

sary to obtain “Heads” (H = heads and T
= tails)

� = {H, TH, TTH, TTTH, TTTTH,

TTTTTH, TTTTTTH, . . .} .
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Infinite noncountable sample space:
– Location of the coordinates of the impact

of a bullet on a panel of 10 × 10 cm. In
this case, the sample space� is composed
of an infinite noncountable set of coor-
dinates because the coordinates are mea-
sured on a scale of real numbers (it is
impossible to give an exhaustive list of the
possible results).

FURTHER READING
� Event
� Probability
� Random experiment

REFERENCES
Bailey, D.E.: Probability and statistics: mod-

els for research. Wiley, New York (1971)

Sampling

From a general point of view, the term sam-
pling means the selection of part of a pop-
ulation, called sample, the study of certain
characteristics x of this sample, and the fact
of making inferences relative to the popula-
tion.Samplingalsorepresents thesetofoper-
ationsrequired toobtainasample fromagiv-
en population.

HISTORY
The concept of representativity of a sample
is a very recent one.
Even though the first trials of extrapola-
tion appeared in the 13th century, notably
in France, where the number of homes was
used to estimate the population, the census
remained more popular than sampling until
the 19th century.
The principle of sampling with or without
replacement appeared for the first time in

the work “De ratiociniis in Aleae Ludo”,
pubished in 1657 by the Dutch scientist Huy-
gens, Christiaan (1629–1695).
It was in 1895, in Bern, during the congress
of the International Institute of Statistics,
that Kiaer, Anders Nicolai presented a mem-
oir called “Observations et expériences con-
cernant des dénombrements représentatifs”,
Kiaer, as director of the Central Bureau of
Statistics of the Kingdom of Norway at the
time, compared in his presentation the struc-
tureofasamplewith thestructureofa popu-
lation obtained by census. He was therefore
defining the term control a posteriori and for
thefirst timeused the term“representative”.
Kiaer, A.N. encountered the opposition of
almost all congress participants, who were
convinced that complete enumeration was
the only way to proceed.
Nevertheless, in 1897, Kiaer, A.N. con-
firmed the notion of representativity and
received the support of the Conference of
Scandinavian Statisticians. He was given
the opportunity to defend his point of view
during several conferences: St.-Petersburg
(1897),Stockholm (1899),Budapest (1901),
and Berlin (1903).
A new step was taken with the works of
March, Lucien on the role of randomness
during sampling; he was the first to develop
the ideaofprobabilisticsampling,alsocalled
random sampling.
Other statisticians got involved with the
problem. Von Bortkiewicz, L., a profes-
sor from Berlin, suggested the calcula-
tion of probabilities to test the deviation
between the distributions of a sample and
the total population on the key variables.
Bowley, A.L. (1906) developed a random
sampling procedure called stratification.
According to Desrosières, A. (1988), he was
also interested in the notion of confidence
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interval, of which he presented the first cal-
culations in 1906 to the Royal Statistical
Society.
The year 1925 marked a new step in the his-
tory of sampling. It is indeed the year of the
congress in Rome of the International Insti-
tute of Statistics during which were present-
edrandomsampling(choicedonebychance)
and purposive sampling (judicious choice).
Henceforth, the problem would never arise
again with respect to the choice between
sampling and complete enumeration, but it
did arise with respect to various sampling
methods.
Of the different uses of sampling, the most
frequently used in the United States was
the one done by the various public opinion
institutes and notably preelectoral inquiries.
The third day of November 1936, the day
the results of the presidential elections were
made public, marks one of the most impor-
tant days in this regard. For this poll, the Rea-
ders Digest predicted the victory of Landon,
whereas,withoutconsultingeachother,poll-
stersCrossley,Roper, and Gallup announced
the victory of his opponent, Roosevelt. Roo-
sevelt got elected. The mistake of the Read-
ers Digest was to base its prediction of the
outcome of the election on a telephone sur-
vey, but at that time, only rich people owned
a telephone, so the sample was biased!
The year 1938 marks in France the birth
of the IFOP (Institut Français d’Opinion
Publique, the French Institute of Public
Opinion) created by Stoetzel, Jean.
It is interesting to go back a little in time
to emphasize the part that Russian statisti-
cians played in the evolution of sampling
techniques. Indeed, as early as the 19th cen-
tury, they were known and used in their
country. According to Tassi, Ph. (1988),
Chuprov, A.I. (1842–1908) was one of the

precursors of modern sampling, and from
1910 his son Chuprov, A.A. used random
sampling, made reference to cluster sam-
pling, stratified sampling with and with-
out replacement, and, under the influence of
Markov, A., encouraged the use of proba-
bilities in statistics. Even if the Russian
school was only known very late for its sam-
pling works, the statisticians of this school
apparently knewabout these techniques long
before those of western Europe.
Note that in 1924, Kovalevsky, A.G. had
already rigorously worked on surveys by
stratification and the optimal allocation by
stratum, while this result was only rediscov-
ered 10 years later by Neyman, J.
Finally, this history would be incomplete
without mentioning the contributions of
Neyman, Jerzy to sampling. Considered
one of the founders of the statistical theo-
ry of surveys, he was in favor of random
sampling on purposeful sampling, and he
worked on sampling with or without remit-
tance, stratified sampling, and cluster
sampling. He was already using estima-
tors by quotient, difference, and regres-
sion, techniques that would be developed
later on by Horvitz, D.G., Cochran, W.G.,
Hansen, M.M., Hurwitz, W.N., and Mad-
ow, W.G.

MATHEMATICAL ASPECTS
There are several sampling methods. They
can be divided into random methods and
nonrandom methods.
The most widely used nonrandom procedure
is quota sampling.
The random methods (or probabilistic sam-
pling, sometimes also called statistical sam-
pling) call upon a probabilistic mechanism
to form a sample taken from a popula-
tion.
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The variables observed on the sample are
random variables. From these variables the
corresponding values of the population and
the error due to sampling can be calculat-
ed.
The main random methods are:
• Simple random sampling
• Stratified sampling
• Systematic sampling
• Cluster sampling

DOMAINS AND LIMITATIONS
The goal of sampling is to provide enough
information to make inferences on the char-
acteristics of a population. It therefore is
necessary to select a sample that reproduces
these characteristics as accurately as possi-
ble.
Attempts are made to reduce the potential
error due to sampling as much as possible.
Buteven if this sampling error is inevitable, it
is tolerated because it is largely compensated
by the advantages of the sampling method.
These are:
• Cost reduction

In view of all the costs that can be incurred
during data collection, they can obvious-
ly be reduced by sampling.

• Time savings
The speed of decision making can only
be ensured if the study is constrained to
a sample.

• Increased possibilities
In certain fields, a complete analysis on
an entire population is impossible; the
choice, then, is between using sampling
or shelving the study.

• Precise results
Since one of the goals of sampling is
to recreate a representative image of
the characteristics of a population, larger

samples would not bring results that are
significantly more precise.

Onlyrandomsamplingmethodscanevaluate
the error due to sampling because it is based
on the calculation of probabilities.

FURTHER READING
� Cluster sampling
� Data collection
� Estimation
� Estimator
� Quota sampling
� Simple random sampling
� Stratified sampling
� Systematic sampling
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Sampling Distribution

A sampling distribution is a distribution
of a statistic T(X1, . . . , Xn), where T(.) is
a function of the observed values of the ran-
dom variables X1, . . . , Xn.

HISTORY
See sampling.

MATHEMATICAL ASPECTS
Consider, a population of size N and of
parameters μ and σ (μ being the unknown
mean of the population and σ its standard
deviation). We take a sample of size n from
this population. The number of possible
samples of size n is given by the number of
combinations of n objects among N:

k = Cn
N =

N!

(N − n)! · n!
.

Each sample can be characterized, for exam-
ple, by its sample mean denoted by:

x̄1, x̄2, . . . , x̄k .

The set of these k means forms the sampling
distribution of the means.
We will adopt the following notations to
characterize the mean and standard devi-
ation of the sampling distribution of the
means:

Mean: μx̄ and standard deviation: σx̄ .

Mean of Sampling Distribution of Means
Consider X1, . . . , Xn independent random
variables distributed according to a distri-
bution with a mean μ and a variance σ 2. By
definition of the arithmetic mean, the mean
of the sampling distribution of the means is

equal to:

μx̄ =

k∑
i=1

x̄i

k
,

where k is the number of samples of size n
that it is possible to form from the popula-
tion.
The expected value of the mean of the sam-
pling distribution of the means is equal to the
mean of the population μ:

E[μx̄] = μ .

Because:

E[μx̄] = E

[∑k
i=1 x̄i

k

]
= 1

k
· E

[
k∑

i=1

x̄i

]

= 1

k
·

k∑
i=1

E[x̄i]

= 1

k
·

k∑
i=1

E

[∑n
j=1 xj

n

]

= 1

k
·

k∑
i=1

⎛
⎝1

n
· E

⎡
⎣

n∑
j=1

xj

⎤
⎦
⎞
⎠

= 1

k
·

k∑
i=1

⎛
⎝1

n
·

n∑
j=1

E[xj]

⎞
⎠

= 1

k
·

k∑
i=1

(
1

n
· n · μ

)

= 1

k
· k · μ = μ .

Standard Deviation of Sampling
Distribution of Means
By definition, the standard deviation of the
sampling distribution of the means, also
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called the standard error, is equal to:

σx̄ =

√√√√√√
k∑

i=1

(x̄i − μx̄)
2

k
.

In the same way that there exists a relation
between the mean of the sampling distri-
bution of the means and the mean of the pop-
ulation, there also exists a relation between
the standard error and the standard devi-
ation of the population:
• In the case of an exhaustive sampling

(without replacement) on a finite popu-
lation, the standard error of the mean
is given by:

σx̄ = σ√
n
·
√

N − n

N − 1
,

where σ is the standard deviation of the
population.

• If the population is infinite, or if the
studied sampling is not exhaustive (with
replacement), the standard error of the
mean is equal to the standard deviation
of the population divided by the square
root of the sample size:

σx̄ = σ√
n

.

Characteristics of Sampling Distribution
of Means
• Ifn is largeenough(n≥ 30), thesampling

distribution of the means approximately
follows a normal distribution, whatever
the population distribution.

• If the population is distributed according
to a normal distribution, then the sam-
pling distribution of the means always
follows a normal distribution, whatever
the size of the sample.

• The sampling distribution of the means is
always symmetric around its mean.

Similar considerations can be made for
statistics other than the arithmetic mean.
Consider the distribution of the variances
obtained from all the possible samples of
size n, taken from a normal population with
a variance σ 2. This distribution is called the
sampling distribution of the variances.
One of the characteristics of this distribution
is that it can only take nonnegative values,
the variance s2 being defined by a sum of
squares. The sampling distribution of the
variances is related to the chi-square distri-
bution by the following relation:

s2 = χ2σ 2

v
= χ2σ 2

n− 1
,

where χ2 is a random variable distributed
according to a chi-square distribution with
v = n− 1 degrees of freedom.
Knowing the expected value and the vari-
ance of a chi-square distribution:

E
[
χ2

]
= v ,

Var
(
χ2

)
= 2v ,

we can determine these same characteristics
for the distribution of s2 in the case where the
samples come from an infinite population.

Mean of Sampling Distribution of
Variances
The mean of the distribution of s2 is equal
to the variance of the population:

μs2 = E
[
s2

]
= E

[
χ2σ 2

v

]

=
(

σ 2

v

)
· E

[
χ2

]

(because σ 2/v is a constant)
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=
(

σ 2

v

)
· v

= σ 2 .

Variance of Sampling Distribution
of Variances
The variance of the distribution of s2

depends not only on the variance of the
population σ 2, but also on the size of the
samples n = v+ 1:

σ 2
s2 = Var

(
s2

)
= Var

[
χ2σ 2

v

]

=
(

σ 4

v2

)
· Var

(
χ2

)

=
(

σ 4

v2

)
· 2v

= 2 · σ
4

v
.

DOMAINS AND LIMITATIONS
The study of the sampling distribution of
a statistic allows one to judge the proximity
of the statistic measured on a single sample
with an unknown parameter of the popu-
lation. It therefore also allows to specify the
error margins of the estimators, calculated
from the sample itself.
The notion of the sampling distribution is
therefore at the base of the construction of
confidence intervals, indicating the degree
of precision of an estimator, as well as
the realization of hypothesis testing on the
unknown parameters of a population.

EXAMPLES
Using an example, we will show the rela-
tionexistingbetween themeanofasampling
distribution and the mean of a population
and the relation between the standard error
and the standard deviation of that popula-
tion.

Consider a population of five stores whose
average price on a certain product we want
to know. The following table gives the price
of the product for each store belonging to the
population:

Store no. Price

1 30.50

2 32.00

3 37.50

4 30.00

5 33.00

The mean of the population is equal to:

μ =

5∑
i=1

xi

5

= 30.50+ 32+ 37.50+ 30+ 33

5
= 32.60 .

By selecting samples of size 3, we can deter-
mine the different sampling means that can
result from a random selection of the sample.
We obtain:

k = C3
5 =

5!

3! · 2!
= 10 possible samples.

The following table represents the differ-
ent samples and their respective sampling
means:

No. of stores in sample Sampling
means x̄i

1. 1, 2, 3 33.333..

2. 1, 2, 4 30.833..

3. 1, 2, 5 31.833..

4. 1, 3, 4 32.666..

5. 1, 3, 5 33.666..

6. 1, 4, 5 31.166..
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No. of stores in sample Sampling
means x̄i

7. 2, 3, 4 33.166..

8. 2, 3, 5 34.166..

9. 2, 4, 5 31.666..

10. 3, 4, 5 33.500

Total 326.000

From the data in this table we can calculate
the mean of the sampling distribution of the
means:

μx̄ =

k∑
i=1

x̄i

k
= 326.00

10
= 32.60 .

In this example, we notice that the mean of
thesampling distribution isequal to themean
of the population:

μx̄ = μ .

We can proceed in the same way to verify the
relation between the standard error and the
standard deviation of the population.
By definition, the standard deviation of the
population is calculated as follows:

σ =

√√√√√√
N∑

i=1

(xi − μ)2

N
.

According to the data of the first table, we
obtain:

σ =
√

35.70

5
= 2.6721 .

By the same definition, we can calculate the
standard deviation of the sampling distri-
bution of the means:

σx̄ =

√√√√√√
k∑

i=1

(x̄i − μx̄)
2

k

=
√

11.899

10
= 1.0908 .

Thefollowing tablepresents thedetailsof the
calculations:

No. of stores
in sample

Sampling
means x̄i

(x̄i − μx̄ )2

1. 1, 2, 3 33.333.. 0.538

2. 1, 2, 4 30.833.. 3.121

3. 1, 2, 5 31.833.. 0.588

4. 1, 3, 4 32.666.. 0.004

5. 1, 3, 5 33.666.. 1.138

6. 1, 4, 5 31.166.. 2.054

7. 2, 3, 4 33.166.. 0.321

8. 2, 3, 5 34.166.. 2.454

9. 2, 4, 5 31.666.. 0.871

10. 3, 4, 5 33.500 0.810

Total 326.000 11.899

According to the obtained results:

σ = 2.6721 and σx̄ = 1.0908 ,

we can verify the following equality:

σx̄ = σ√
n
·
√

N − n

N − 1

because σ√
n
·
√

N−n
N−1 = 2.6721√

3
·
√

5−3
5−1 =

1.0908. These results allow us to conclude
that by knowing the parameters μ and σ

of the population, we can evaluate the cor-
responding characteristics of the sampling
distribution of the means. Conversely, we
canalsodetermine theparametersof thepop-
ulation by knowing the characteristics of the
sampling distribution.

FURTHER READING
� Confidence interval
� Estimation
� Hypothesis testing
� Standard error
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Scatterplot

A scatterplot is obtained by transcribing
the data of a sample onto a graphic. In
two dimensions, a scatterplot can repre-
sent n pairs of observations (xi; yi), i =
1, 2, . . . , n.

MATHEMATICAL ASPECTS
A scatterplot is obtained by placing the pairs
of observed values in an axis system.
For two variables X and Y, the pairs of
corresponding points (x1, y1), (x2, y2), . . . ,
(xn, yn) are placed in a rectangular axis sys-
tem.
Thedependent variable Y isusually plotted
on the vertical axis (ordinate) and the inde-
pendent variable X on the horizontal axis
(abscissa).

DOMAINS AND LIMITATIONS
The scatterplot is a very useful and power-
ful tool often used in regression analysis.
Each point represents a pair of observed val-
ues of the dependent variable and of the
independent variable. It allows to deter-
mine graphically if there exists a relation
between two variables before choosing an
appropriate model. Moreover, these scatter-
plots are very useful in residual analysis
since they allow one to verify if the model
is appropriate or not.

EXAMPLES
Consider thefollowingtwoexamplesofscat-
terplots representing pairs of observations
(xi, yi) relative to two quantitative vari-
ables X and Y:
In this example, the distribution of the obser-
vations seems to indicate a linear relation
between the two variables:

The distribution of the observations in the
following graphic seems to indicate a non-
linear relation between X and Y:

FURTHER READING
� Analysis of residuals
� Regression analysis

Scheffé, Henry

Scheffé, Henry was born in 1907 in New
York. Scheffé, Henry’s doctoral disserta-
tion, “The Asymptotic Solutions of Cer-
tain Linear Differential Equations in Which
the Coefficient of the Parameter May Have
a Zero”, was supervised by Langer, Rudolph
E. Immediately he began his career as a uni-
versity professor of mathematics at the Uni-
versity of Wisconsin, then at Oregon State
University as well as at Reed College outside
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ofPortland. In 1941 he joined PrincetonUni-
versity, where a statistics team had grown up.
A second career started for him as a univer-
sity professor of statistics. He was on the fac-
ulty atSyracuseUniversity in the1944–1945
academic year and at the University of Cali-
fornia at Los Angeles from 1946 until 1948.
He left Los Angeles to go to Columbia Uni-
versity, where he became chair of the Statis-
tics Department. After 5 years at Columbia,
Scheffé, Henry went to Berkeley as profes-
sor of statistics in 1953.
Scheffé, H.’s research was mainly concerned
with theanalysisofvariance.Oneofhismost
important papers appeared in 1953 on the
S-method of simultaneous confidence inter-
vals for estimable functions in a subspace of
the parameter space. He also studied paired
comparisons and mixed models. In 1958 and
again in 1963 he published papers on expe-
riments on mixtures and in 1973 wrote on
calibration methods.
Scheffé, H. became a fellow of the Institute
of Mathematical Statistics in 1944, the Ame-
rican Statistical Association in 1952, and the
International Statistical Institute in 1964. He
was elected president of the International
Statistical Institute and vice president of the
American Statistical Association. He died in
California in 1979.

Selected works of Henry Scheffé:

1959 The analysis of variance. Wiley, New
York.

1952 An analysis of variance for paired
comparisons. J. Am. Stat. Assoc., 47,
381–400.

1953 A method for judging all contrasts in
the analysis of variance. Biometrika,
40, 87–104.

1956 Alternative models for the analysis of
variance. Ann. Math. Stat., 27, 251–
271.

1973 A statistical theory of calibration.
Ann. Stat., 1:1–37.

FURTHER READING
� Analysis of variance
� Least significant difference test

Seasonal Index

Considera time seriesYt whosecomponents
are:
• Secular trend Tt

• Cyclical fluctuations Ct

• Seasonal variations St

• Irregular variations It

The influence of seasonal variations must
be neutral over an entire year, and seasonal
variations St theoretically repeat themselves
in an identical way from period to period
(which is not verified in a real case).
To satisfy the requirements of the theoretical
model and to be able to study the real time
series,periodicalvariations thatare identical
each year (month by month or trimester by
trimester), called seasonal variations, must
be estimated instead of the observed St. They
are denoted by Sj, where j varies as follows:

j = 1 up to 12 for months (over n years) or

j = 1 up to 4 for trimesters (over n years).

Notice that over n years, there only exist
12 seasonal index numbers concerning the
months and 4 concerning the trimesters.

MATHEMATICAL ASPECTS
There are many methods for calculating the
seasonal indices:
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1. Percentage of mean
The data corresponding to each month are
expressed as percentages of the mean.
We calculate it using the mean (without
taking into account extreme values) or the
median of the percentages of each month
for the different years. Taking the mean
for each month, we get 12 percentages for
given indices. If the mean does not equal
100%, we should make an adjustment by
multiplying the indices by a convenient
factor.
Consider a monthly time series over
n years, denoted by Yi,j, where j =
1, 2, . . . , 12 for the different months and
i = 1, . . . , n, indicated by year.
First, we group the data in a table of the
type:

Month

January . . . December

Year 1 . . . 12

1 Y1,1 . . . Y1,12

. . . . . . . . . . . .

n Yn,1 . . . Yn,12

Then we calculate the annual means for
the n years:

Mi = Ȳi,.

12
for i = 1, . . . , n.
Thus we calculate for each datum:

Qi,j = Yi,j

Mi
for i = 1, . . . , n

and j = 1, . . . , 12, which we report in the
following table:

Month

January . . . December

Year 1 . . . 12

1 Q1,1 . . . Q1,12

. . . . . . . . . . . .

n Qn,1 . . . Qn,12

In each column weinclude thearithmetic
mean, denoted by Q̄i,., and we calculate
the sum of these 12 means; if it does not
equal 1200, then we introduce a correc-
tion factor:

k = 1200∑12
i=1 Q̄i,.

.

Finally, the seasonal indices are given for
each month by the mean multiplied by k.

2. Tendency ratio
The data of each month are expressed as
percentages of the monthly value of the
secular tendency. The index is obtained
from an appropriate mean of the percent-
ages of the corresponding months. We
should adjust the results if the mean does
not equal 100% to obtain the desired sea-
sonal indices.

3. Moving average ratio
We calculate a moving average on 12
months. As the corresponding results are
extended over many months, instead of
being in the middle of the month as in
the original data, we calculate the mov-
ing average over 2 months of the mov-
ing average of 12 months. This is what
we call a centered moving average over
12 months.
Then we express the original data of
each month as percentages of the corre-
sponding centered moving average over
12 months. We take the mean of the cor-
responding percentages of each month,
which gives the indices. We should then
adjust at 100% to obtain the desired sea-
sonal indices.

4. Relative chains
The data of each month are expressed
as percentages of the data of the previ-
ous month (whence the expression rela-
tive chain). We calculate an appropriate
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mean of the chains for the corresponding
months. We can obtain the relative per-
centages of each month relative to those
of January (= 100%). We find then
that the following January will ordinari-
ly have a percentage equal to, less than,
or greater than 100%. Thus the tenden-
cy is either increasing or decreasing. The
indices finally obtained, adjusted for their
mean equal to 100%, give the desired sea-
sonal indices.

EXAMPLES
We consider the time series of any phe-
nomenon; we have trimestrial data over
6 years, summarized in the following table:

Year 1st
trim.

2nd
trim.

3rd
trim.

4th
trim.

1 19.65 16.35 21.30 14.90

2 28.15 25.00 29.85 23.40

3 36.75 33.60 38.55 32.10

4 45.30 42.25 47.00 40.65

5 54.15 51.00 55.75 49.50

6 62.80 59.55 64.40 58.05

We determine the seasonal indices using the
percentage of the mean:
First we calculate the arithmetic means for
6 years:

Year Sum Mean

1 72.2 18.05

2 106.4 26.6

3 141.0 35.25

4 175.2 43.8

5 210.4 52.6

6 244.8 61.2

We divide the lines of the initial table by the
trimestrial mean of the corresponding year
and multiply by 100.

Then, if the results show strong enough devi-
ations for the obtained values for the same
trimester, it is better to take the median
instead of the arithmetic mean to obtain the
significative numbers.

Year 1st
trim.

2nd
trim.

3rd
trim.

4th
trim.

1 108.86 90.58 118.01 82.55

2 105.83 93.98 112.22 87.97

3 104.26 95.32 109.36 91.06

4 103.42 96.46 107.31 92.81

5 102.95 96.96 105.99 94.11

6 102.61 97.30 105.23 94.85

Median 103.84 95.89 108.33 91.94

The median percentage for each trimester is
given in the last lineof theprevioustable.The
sum of these percentages is exactly 400%,
an adjustment is not necessary, and the num-
bers that we have in the last line represent the
desired seasonal indices.
We have seen that there are three other meth-
ods to determine the seasonal indices, and
they give the following values for the same
problem:

Trimester

Method 1 2 3 4

Percentage
of mean

103.84 95.89 108.33 91.94

Tendency
ratio

112.62 98.08 104.85 84.45

Ratio of
moving
average

111.56 98.87 106.14 83.44

Chains 112.49 98.24 104.99 84.28

As we see, the results agree one with another,
despite the diversity of the methods used to
determine them.
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FURTHER READING
� Cyclical fluctuation
� Irregular variation
� Seasonal variation
� Secular trend
� Time series

Seasonal Variation

Seasonal variations form one of the basic
components of the time series. They are
variations of a periodic nature that recur reg-
ularly. Inaneconomiccontext,seasonalvari-
ations can be caused by the following events:
• Climatic conditions
• Customs appropriate for a population
• Religious holidays
Theseareperiodicalfluctuationsmoreorless
regular that are superimposed on extrasea-
sonal movement.

HISTORY
See time series.

MATHEMATICAL ASPECTS
Theevaluationofseasonalvariations ismade
by determining an index of seasonal varia-
tion, called the seasonal index.

EXAMPLES
We consider the time series of any phe-
nomenon; we have trimestrial data taken
over a 6 years, summarized in the following
table:

Year 1st
trim.

2nd
trim.

3rd
trim.

4th
trim.

1 19.65 16.35 21.30 14.90

2 28.15 25.00 29.85 23.40

3 36.75 33.60 38.55 32.10

Year 1st
trim.

2nd
trim.

3rd
trim.

4th
trim.

4 45.30 42.25 47.00 40.65

5 54.15 51.00 55.75 49.50

6 62.80 59.55 64.40 58.05

We determine the seasonal indices using the
percentage of the mean:
First, we calculate the trimestrial arithmetic
means for the 6 years:

Year Sum Mean

1 72.2 18.05

2 106.4 26.6

3 141.0 35.25

4 175.2 43.8

5 210.4 52.6

6 244.8 61.2

We divide the lines of the initial table by the
trimestrial mean of the corresponding year
and multiply by 100.
Then, if resultsshowlargeenoughdeviations
for theobtainedvaluesfor thesametrimester,
it is better to take the median instead to
obtain more significative numbers.

Year 1st
trim.

2nd
trim.

3rd
trim.

4th
trim.

1 108.86 90.58 118.01 82.55

2 105.83 93.98 112.22 87.97

3 104.26 95.32 109.36 91.06

4 103.42 96.46 107.31 92.81

5 102.95 96.96 105.99 94.11

6 102.61 97.30 105.23 94.85

Median 103.84 95.89 108.33 91.94

The median percentage for each trimester is
given by the last line of the previous table.
Since these percentages add up to exactly
400%, an adjustment is not necessary, and
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the numbers in the last line represent the
desired seasonal indices.
We have seen that there exist other methods
to determine the seasonal indices; they give
the following values for the same problem:

Trimester

Method 1 2 3 4

Percentage
of mean

103.84 95.89 108.33 91.94

Tendency
ratio

112.62 98.08 104.85 84.45

Ratio of
moving avg.

111.56 98.87 106.14 83.44

Chains 112.49 98.24 104.99 84.28

We see that the results agree with one anoth-
er, despite the diversity of the methods used
to determine them.

FURTHER READING
� Arithmetic mean
� Cyclical fluctuation
� Forecasting
� Index number
� Moving average
� Seasonal index
� Secular trend
� Time series

REFERENCES
Fuller,A.W.: Introduction to StatisticalTime

Series. John Wiley’n’Sas (1976)

Secular Trend

The secular trend forms one of the four
basic components of the time series. It
describes the movement over the long term
of a time series that globally can be increas-
ing, decreasing, or stable.

The secular trend can be linear or not. In the
last case, we should choose the type of func-
tion (exponential, squared, logistic, etc.) that
is best adapted to the observed distribution
on the graphical representation of the time
series before estimating the secular trend.

HISTORY
See time series.

MATHEMATICAL ASPECTS
Let Yt be a time series. It can be decomposed
with the help of four components:
• Secular trend Tt

• Cyclic fluctuation Ct

• Seasonal variations St

• Irregular variations It

During the study of the time series, we start
by analyzing the secular trend, first deciding
if this trend can be supposed linear or not.
Ifwecansuppose it is linear, theevaluationof
the secular trend can be made in many ways:
1. Graphical method or the raised hand

After making a graphical representa-
tionof the timeseries, itconsists inadjust-
ing a line or a curve of trend at raised hand
on the graph. This is the approximation of
the secular trend.

2. Least-squares method
Thisallowstomathematicallyidentifythe
line representing the best data, that is:

Yt = a+ b · t ,

where Yt is the value of the time series at
agiven time,a is thevalueof the linewhen
t is at the origin, b is the slope of the line,
and t corresponds to another value in the
entire chosen period.
The line of the least squares Ŷt corre-
sponds to the estimation of the secular
trend Tt.
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Calculation of secular trend
Supposing that the time of the time series
is the year, we start from the idea of mov-
ing the origin to the corresponding year in
the middle of the years in which the mea-
surements were made.
a. Even number of years n

Let j = n− 1/2, and let us set xi =
ti− tj for i = 1, 2, . . . , n; the middle of
the year tj is the new origin and the unit
of the new variable x is the year.
Thus

â =

n∑
i=1

Yi

n
and b̂ =

n∑
i=1

xiYi

n∑
i=1

x2
i

gives us Ŷt = â+b̂x or Ŷt = (â−b̂tj)+
b̂t, where t is the year without changing
the origin.

b. Odd number of years n
Let j = n/2 + 1, where tj is the new
origin, set xi = 2 · (ti − tj) + 1 for
i = 1, 2, . . . , n.
Thus

â =

n∑
i=1

Yi

n
and b̂ =

n∑
i=1

xiYi

∑
x2

i

give us Ŷt = â + b̂x. The unity x is
the half year counted from 1 January
of year tj.

3. Moving average method
Let Y1, Y2, Y3, . . . be a given time series.
Construct new series:

Y1 + . . .+ Yn

n
; Y2 + . . .+ Yn+1

n
, . . . ;

Yj + . . .+ Yn+j−1

n
, . . .

whose estimation of the secular trend is
made by one of the two previous methods.

4. Semimeans methods
Let Y1, Y2, . . . , Yn be a given time series.
Denote by k the integer part of n

2 .
We calculate:

y1 = Y1 + . . .+ Yk

k
and

y2 = Yk+1 + . . .+ Yn

n− k

x1 = k + 1

2
and

x2 = n+ k+ 1

2

and determine the line of secular trend
passing through two points:

(x1; y1) and (x2; y2).

When the secular trend cannot be supposed
linear, we refine the least-squares method.
We should apply it replacing Yt = a + bt
by another trend curve as, for example:
• An exponential: Yt = a · bt

• A modified exponential: Yt = c+ a · bt

• A logistic curve: Yt = (c+ a · bt)−1

• A Gompertz curve: Yt = c · abx

DOMAINS AND LIMITATIONS
The analysis of secular trend has the follow-
ing goals:
• Create a descriptive model of a past situ-

ation.
• Make projections of constant structure.
• Eliminate secular trends to study other

components of the time series.
The four methods of estimation of the secu-
lar trend have certain disadvantages. Let us
mention the principal ones for each:
1. Graphical method

Too subjective.
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2. Least-squares method
This method can be used only for a peri-
od where the movement is completely in
the same direction. When the first part
corresponds to an ascending movement
and another part to a descending move-
ment, two long lines will have to be cre-
ated to adjust to these data, each referring
to a period with a unique direction.
These lines have some interesting proper-
ties:
• We find on the same graph the set of

valuesYi of the timeseriesand the trend
line. The sum of deviations between
the observed values Yi and the estimate
of thesecular trend Ŷi willalwaysequal
zero:

n∑
i=1

(
Yi − Ŷi

)
= 0 .

• The trend line will minimize the sum
of deviations:

n∑
i=1

(
Yi − Ŷi

)2 = minimal value .

3. Moving average method
The data of the beginning and end of the
initial time series are “lost”. Moving aver-
ages can create cycles and other move-
ments not present in the original data;
moreover, they are strongly affected by
accidental outliers. This method allows to
reveal changes in direction.

4. Semimeans method
Even if this method is simple to apply, it
can give results without value. Thought
valid in the case when data can be classed
into two groups where the tendencies are
linear, themethod isapplicableonly when
the tendency is globally linear or approx-
imately linear. If the procedure is an easy
application, it is not very rigorous.

EXAMPLES
Letusestimate thesecular trendof theannual
sales of the Surfin cookie factory using the
following data:

Annual sales of Surfin cookie factory (in millions
of euros)

Year Sales (mill. $)

1975 7.6

1976 6.8

1977 8.4

1978 9.3

1979 12.1

1980 11.9

1981 12.3

Let us use the least-squares method:
Let us move the origin to the middle of the 7
years, which is 1978. We complete the fol-
lowing table:

Year Sales
(mill. euros)

Code
year

Xt Yt t tYt t2

1975 7.6 −3 −22.2 9

1976 6.8 −2 −13.6 4

1977 8.4 −1 −8.4 1

1978 9.3 0 0.0 0

1979 12.1 1 12.1 1

1980 11.9 2 23.8 4

1981 12.3 3 36.9 9

Total 68.4 0 28.0 28

Set ti = Xi − 1978 for i = 1, 2, . . . , 7. The
middle of 1978 is the new origin, and the unit
of t is the year.
Thus:

â =

3∑
t=−3

Yt

7
= 68.4

7
= 9.7714 (million euros) and
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b̂ =

3∑
t=−3

tYt

3∑
t=−3

t2

= 28

28
= 1.0 (million euros) ,

which gives us Tt = Ŷt = 9.7714+ t for the
equation of the line of secular trend.
This gives graphically:

FURTHER READING
� Cyclical fluctuation
� Graphical representation
� Least squares
� Moving average
� Time series

REFERENCES
Chatfield, C.: The analysis of Time Series.

An introduction. Chapman’n’Hall (2003)

Semilogarithmic
Plot

A semilogarithmic plot is a graphical rep-
resentation of a time series. It is defined by
an arithmetic scale of time t plotted on the
abscissa axis and a logarithmic scale plotted
on the ordinate axis, meaning that the loga-
rithm of the observed value Yt will be tran-
scribed in ordinate on an arithmetic scale.
In general, printed semilogarithmic sheets of
paper are used.

MATHEMATICAL ASPECTS
On an axis system, an origin and a unit
length are arbitrarily chosen; the abscissa
is arithmetically graduated as on millimeter
paper.
On the ordinate axis, the unit length chosen
by the maker of the semilogarithmic paper,
which corresponds to the distance between
two successive powers of 10 on the log-
arithmic scale, can be modified. This dis-
tance, which is the unit length of the corre-
sponding arithmetic scale, is called the mod-
ule.
The values printed in the margin of the log-
arithmic scale can be multiplied by the same
number; this multiplicative constant is cho-
sen to be as simple as possible, in such a way
that theobtained valuesareeasy to use for the
transcription of the points on the plot.
Commercially available semilogarithmic
sheets of paper usually have one, two, three,
or four modules.

DOMAINS AND LIMITATIONS
The semilogarithmic plot has the following
properties.
• The exponential curves Y are represented

by a line. If y(x) is an exponential:

y (x) = c · ax ,

by taking the logarithm:

log y (x) = log c+ x · log a

where log y (x) = m · x+ h

where m = log a and h = log c ,

we find a linear expression in x.
• If a = 1+ i, where i is the annual interest

rate of Y and with an initial sum of money
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of Y0, then:

Y = Y0 · (1+ i)x

gives the sum of money after x years.
It is also possible to work in Napierian
base (e) since ax = ex·ln a and therefore
y(x) = c · ex·ln a or y(x) = c · er·x, where
r = ln a is called the instant growth rate
of y. In thiscase, it is the ratio of the instant
variation dy

dx to the value of y.
The use of the semilogarithmic plot is judi-
cious in the following situations:
• When there exist great differences in val-

ues in the variable to avoid going outside
the plot.

• When one wants to make relative varia-
tions appear.

• When cumulations of growth rates, which
would make exponentials appear, must be
represented in a linear fashion.

FURTHER READING
� Graphical representation
� Time series

Serial Correlation

Wecall serial correlation or autocorrelation
the dependence between the observations of
time series.

HISTORY
See time series.

MATHEMATICAL ASPECTS
Let x1, . . . , xn be n observations of a ran-
dom variable X that depends on time (we are
speaking here of time series). To measure the
dependence between observations and time,

we use the following coefficient:

d =

n∑
t=2

(xt − xt−1)
2

n∑
t=1

x2
t

,

which indicates the relation between the two
consecutive observations. This coefficient
takes values between 0 and 4. If it is close to
0, so that the difference between two succes-
sive observations is minimal, wespeak about
a positive autocorrelation. If it is close to 4,
then we have a negative autocorrelation: an
observation with a large value has a tendency
to be followed by a low value and vice ver-
sa. In the case where observations are inde-
pendent of time, the coefficient d has a value
close to 2.
We can also measure the serial correlation
of the observations x1, . . . , xn calculating
the coefficient of correlation between the
series of xt and those of xt “moved on k”:

rk =

n∑
t=k+1

(xt − x) (xt−k − x)

n∑
t=1

(xt − x)2

and, analyzing in the same way, measure the
serial correlation for the coefficient of corre-
lation of two different series.

DOMAINS AND LIMITATIONS
Autoregressive Models
When a serial correlation is observed
between the residuals of a model of sim-
ple linear regression, convenient models of
the domain of time series can be used with
success, for example, models of the type

Yt = β0 + β1Xt + εt ,
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where the terms of error εt are not inde-
pendent but are described by a relation of the
type

εt = ρsεt−1 + δt ,

where ρs can be estimated by the serial cor-
relation of the εt and where the δt are inde-
pendent errors.

EXAMPLES
Graph of Residuals as Functions of Time
This type of graph is especially used in the
analysis of time series, that is, when time is
an explanatory variable of the model.
Residuals relative to time.

A graphical representation of residuals rel-
ative to time always entails the appearance
of a serial correlation, positive or negative,
as in the case of the figure above. A positive
or negative serial correlation implies that the
errors are not independent.
Residuals representing a serial correlation.

FURTHER READING
� Autocorrelation
� Hypothesis testing
� Time series

REFERENCES
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Sign Test
The sign test is a nonparametric test and
can be used to test the hypothesis that there
is no difference between the distribution of
two random variables. We owe its name to
the fact that it uses “+” and “−” signs instead
of quantitative values. Thus it is applicable
even when a series is of an ordinal measure.

HISTORY
In what surely was the first publication about
nonparametric tests, Arbuthnott, J. (1710)
studied the list of births registered in London
in a period of 82 years. For each year he com-
pared the number of children born of each
sex. He denoted by “+” the event “more boys
than girls are born” and by “−” the opposite
event. (There was no equality).
To his greatest surprise, 82 times he came up
with a “+” sign and never a “−” sign; this
made him reject the null hypothesis of an
equality of births relative to the sex of the
child.

MATHEMATICAL ASPECTS
Consider n pairs of observations (x1, y1),
(x2, y2), . . . , (xn, yn). For each pair (xi, yi),
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we make the following comparison accord-
ing to the dimension of xi relative to yi :

“+′′ if xi < yi

“−′′ if xi > yi

“ =′′ if xi = yi

We subtract from the dimension of the sam-
ple the number of “=” signs that appear, that
is, we take into account only the pairs that
represent a positive or negative difference.
We denote by m this number of pairs.
We count then the number of “+” signs,
which we designate by T.

Hypotheses
According to the test, one-tailed or two-
tailed, the null and alternative hypotheses
corresponding to the test are:
A: Two-sided case:

H0 : P (X < Y) = P (X > Y)

H1 : P (X < Y) �= P (X > Y)

B: One-sided case:

H0 : P (X < Y) ≤ P (X > Y)

H1 : P (X < Y) > P (X > Y)

C: One-sided case:

H0 : P (X < Y) ≥ P (X > Y)

H1 : P (X < Y) < P (X > Y)

In case A, we make the null hypothesis (H0)
that the probability that X is smaller than Y
is the same as the probability that X is greater
than Y.
In case B, we suppose a priori that the proba-
bility that X is smaller than Y is smaller than
or equal to the probability that X is greater
than Y.
Finally, in case C, we suppose a priori that
the probability that X is smaller than Y is

greater than or equal to the probability that
X is greater than Y.
With the two-tail case, the probability that X
is smaller than Y (as that of X > Y) equals 1

2 .
The sign test is a particular case of the bino-
mial test with p = 1

2 , that is, that under the
null hypothesis H0 we want to get as many
“+” as “−”.

Decision Rules
Case A
We use the binomial table and we search for
the number X with corresponding binomial
probability equal to 1

2 .
We should find in the table the value closest
to α

2 , where α is the significance level.
We reject H0 at the level α if:

T ≤ tα/2 or T ≥ m− tα/2 ,

with T = number of “+”.
When m > 20, we can use the normal table
as an approximation of the binomial distri-
bution.
We transform statistic T into a random
variable Z following a standard normal
distribution:

Z = T − μ

σ
,

where

μ = m · p = 1

2
m

and σ = √m · p · q = 1

2

√
m

are the mean and the standard deviation of
the binomial distribution.
Thus we obtain:

Z = T − 1
2 m

1
2

√
m

.
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The approximation of the value of the bino-
mial table is then:

tα/2 = 1

2

(
m+ zα/2

√
m
)

,

where zα/2 is to to be found in the normal
table at the level α

2 . Then, the decision rule
is the same.
Case B
We reject H0 at the level α if:

T ≥ m− tα ,

where tα is the value of the corresponding
binomial table and the significance level α

(or the closest value).
For m > 20, we make the approximation

tα = 1

2

(
m+ zα

√
m
)

,

where zα is to be found in the normal table
at the level α.
Case C
We reject H0 at the level α if:

T ≤ tα ,

where thevalueof tα is the sameas forcaseB.

DOMAINS AND LIMITATIONS
The requirements of the use of the sign test
are the following:
1. Thepairsof random variables (Xi, Yi), i =

1, 2, . . . , n must be mutually independent.
2. The scale of measure must be at least ordi-

nal, that is, a “+”, “−”, or “=” sign can be
associated to each pair.

3. The pairs (Xi, Yi) , i = 1, 2, . . . , n must
represent a logic between them, that is, if
P
(
“+′′) > P

(
“−′′) for one pair (Xi, Yi),

then P
(
“+′′) > P

(
“−′′) for all the other

pairs.
The same principle applies if P

(
“+′′) <

P
(
“−′′) or P

(
“+′′) = P

(
“−′′).

EXAMPLES
A manufacturer of chocolate is studying
a new type of packaging for one of his prod-
ucts. To this end, he proposes to 10 con-
sumers to rate the old and new packaging on
a scale of 1 to 6 (with 1 meaning “strongly
dislike” and 6 meaning “strongly like”).
Weperform aone-sided test (corresponding
to case C) where the null hypothesis that we
want to test is written:

H0 : P
(
“+′′) ≥ P

(
“−′′)

relative to the alternative hypothesis:

H1 : P
(
“+′′) < P

(
“−′′) .

The “+” sign means that the new packaging
is preferred to the old one.
The results obtained are:

RankCon-
sumer old

packaging
new
packaging

Sign of
differ-
ence

1 4 5 +
2 3 5 +
3 1 1 =
4 5 4 −
5 4 4 =
6 2 6 +
7 4 6 +
8 4 5 +
9 2 3 +

10 1 4 +

The table shows that two consumers said
there was no difference between the new and
old packaging. So there are eight differences
(m = 8) among which the new packaging
was, in seven cases, preferred over the old
one. Thus we have T = 7 (number of “+”).
So we reject H0 at the level α if

T ≤ tα ,
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where tα is the value of the binomial table.
We choose α = 0.05; the value of tα is 1
(for m = 8 and α = 0.0352). Thus
we have T > tα because T = 7 and
tα = 1. We do not reject the H0hypothesis:
P
(
“+′′) ≥ P

(
“−′′), and the chocolate man-

ufacturer may conclude that consumers gen-
erally prefer the new packaging.
We take once more the same example, but
this time the study is conducted on 100 con-
sumers. The assumed results are the follow-
ing:

83 people prefer the new packaging.

7 people prefer the old packaging.

10 people are indifferent.

Thus we have:

m = 100− 10 = 90 ,

T = 83 .

The value of tα can be approximated by the
normal distribution:

tα = 1

2

(
m+ zα

√
m
)

,

where zα is the value of the normal table for
α = 0.05. This gives:

tα = 1

2

(
90− 1.64

√
90

)

= 37.22 .

If T is greater than tα (83 > 37.22), then the
null hypothesis H0: P

(
“+′′) ≥ P

(
“−′′) is

not rejected and the chocolate manufacturer
draws the same conclusion as before.

FURTHER READING
� Binomial table
� Binomial test
� Hypothesis testing
� Nonparametric test
� Normal distribution

REFERENCES
Arbuthnott, J.:An argumentforDivineProv-

idence, taken from the constant regularity
observed in the births of both sexes. Phi-
los. Trans. 27, 186–190 (1710)(3.4).

Significance Level

The significance level is a parameter of
a hypothesis test, and its value is fixed by
the user in advance.
The significance level of a hypothesis test,
denoted by α, is the probability of rejecting
the null hypothesis H0 when it is true:

α = P{reject H0|H0 true} .

The significance level is also called the
probability of Type I error.

HISTORY
In 1928, Jerzy Neyman and Egon Pearson
discussed the problems related to whether
or not a sample may be judged as likely
to have been drawn from a certain popula-
tion. They identified two types of error asso-
ciated with possible decisions. The prob-
ability of the type-I error (rejecting the
hypothesisgiven it is true) corresponds to the
significance level of the test.
See hypothesis testing.

DOMAINS AND LIMITATIONS
Concerned with the possibility of error by
rejecting the null hypothesis when it is true,
statisticians construct a hypothesis test such
that the probability of error of this type does
not exceed a fixed value, given in advance.
This value corresponds to the significance
level of the test.
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Note that statisticians conducting a hypoth-
esis test must confront the second type of
error, called theType II error. It takesplace
whenthenullhypothesis isnot rejectedwhen
in reality it is false.
To decrease the global risk of error in deci-
sion making, it is not enough to decrease the
significance level, but a compromise should
be found between the significance level and
the probability of error of the second type.
One method is based on the study of the pow-
er of the test.

EXAMPLES
In the following example, we illustrate the
influence of the choice of the significance
level when carrying out a hypothesis test.
Consider a right one-sided test on the
mean μ of a population whose variance σ 2

equals 36.
Let us state the following hypothesis:

Null hypothesis H0 : μ = 30

Alternative hypothesis H1 : μ > 30 .

Let us suppose that the mean x̄ of a sample
of dimension n = 100 taken from this pop-
ulation equals 31.

Case 1
Choose a significance levelα = 5%. We find
the critical value of zα = 1.65 in the nor-
mal table. The upper limit of the acceptance
region is determined by:

μx̄ + zα · σx̄ ,

whereμx̄ is the mean of the sampling distri-
bution of the means and σx̄ is the standard
error (or thestandard deviationof thesam-
pling distribution of the means):

σx̄ = σ√
n

.

This upper limit equals:

30+ 1.65 · 6√
100
= 30.99 .

The rejection region of the null hypothe-
sis corresponds to the interval [30.99;∞[
and the acceptance region to the interval
]− ∞; 30.99[.

Case 2
If we fix a smaller significance level, for
example α = 1%, the value of zα in the nor-
mal table equals 2.33 and the upper limit of
the acceptance region now equals:

μx̄ + zα · σx̄ = 30+ 2.33 · 6√
100

= 31.4 .

The rejection region of the null hypothesis
corresponds to the interval [31.4;∞[ and
the acceptance region to the interval ] −
∞; 31.4[.
From the observed means x̄ = 31 we can
see that in the first case (α = 5%) we must
reject the null hypothesis because the sam-
pling mean (31) is in the rejection region. In
the second case (α = 1%) we must make the
converse decision: the null hypothesis can-
not be rejected because the sampling mean
is in the acceptance region.
Wesee that thechoiceof thesignificance lev-
el has a direct influence on the decision about
the null hypothesis and, in consequence, on
the decision-making process. A smaller sig-
nificance level (and thus a smaller probabi-
lity of error of the first type) restricts the
rejectionregionandincreases theacceptance
region of the null hypothesis.
A smaller risk of error is associated to
a smaller precision.



490 Simple Index Number

FURTHER READING
� Hypothesis testing
� Type I error

REFERENCES
Neyman, J., Pearson, E.S.: On the use and

interpretation of certain Test Criteria for
purposes of Statistical Inference Part I
(1928). Reprinted by Cambridge Univer-
sity Press in 1967

Simple Index Number
A simple index number is the ratio of two
values representing the same variable, mea-
sured in two different situations or in two dif-
ferent periods. For example, a simple index
number of price will give the relative varia-
tion of the price between the current period
and a reference period. The most common-
ly used simple index numbers are those of
price, quantity, and value.

HISTORY
See index.

MATHEMATICAL ASPECTS
The index numberIn/0,whichisrepresenta-
tiveofavariableG insituationnwithrespect
to the same variable in situation 0 (reference
situation), is defined by:

In/0 = Gn

G0
,

where Gn is the value of variable G in situ-
ation n and G0 is the value of variable G in
situation 0.
Generally, a simple index number is
expressed in base 100 in reference situa-
tion 0:

In/0 = Gn

G0
· 100 .

Properties of Simple Index Numbers
• Identity: If two compared situations (or

two periods) are identical, the value of the
index number is equal to 1 (or 100):

In/n = I0/0 = 1 .

• A simple index number is reversible:

In/0 = 1

I0/n
.

• A simple index number is transferable.
Consider two index numbers I1/0 and I2/0

representing two situations, 1 and 2, with
respect to the same base situation 0. If we
consider the index number I2/1, we can
say that:

I2/0 = I2/1 · I1/0 .

Notice that the transferability (also called
circularity) implies reversibility:

If I0/1 · I1/0 = I0/0 = 1, then I0/1 = 1

I1/0
.

DOMAINS AND LIMITATIONS
In economics it is very rare that simple index
numbers are exploitable in themselves; the
information they contain is relatively limit-
ed. Nevertheless, they have a fundamental
importance in the construction of compos-
ite index numbers.

EXAMPLES
Consider the following table representing
the prices of a certain item and the quanti-
ties sold at different periods:

Price Quantity

Period 1 Period 2 Period 1 Period 2

P0 = 50 Pn = 70 Q0 = 25 Qn = 20
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If Pn is the price of the period of interest and
P0 is thepriceof the referenceperiod,wewill
have:

In/0 = Pn

P0
· 100 = 70

50
· 100 = 140 ,

which means that in base 100 in period 1,
the price index of the item is 140 in peri-
od 2. The price of the item increased by 40%
(140−100)betweenthereferenceperiodand
the actual period.
We can also calculate a simple index number
of quantity:

In/0 = Qn

Q0
· 100 = 20

25
· 100 = 80 .

The sold quantity therefore has decreased by
20%(100−80)between the referenceperiod
and the actual period.
Using these numbers, we can also calculate
a value index number, value being defined as
price multiplied by quantity:

In/0 = Pn · Qn

P0 · Q0
= 70 · 20

50 · 25
· 100 = 112 .

The value of the considered item has there-
fore increased by 12% (112−100) between
the two considered periods.

FURTHER READING
� Composite index number
� Fisher index
� Index number
� Laspeyres index
� Paasche index

Simple Linear
Regression

Thesimple linear regression isananalysis of
regression where the dependent variable

Y linearly depends on a single independent
variable X.
The simple linear regression aims to not only
estimate the regression function relative to
the chosen model but also test the reliability
of the obtained estimations.

HISTORY
See analysis of regression.

MATHEMATICAL ASPECTS
The model of simple linear regression is of
the form:

Y = β0 + β1X + ε ,

whereY is thedependent variable (or expli-
cated variable), X is the independent vari-
able (or explanatory variable), ε is the term
of random non-observable error, andβ0 and
β1 are the parameters to estimate.
If we have an set of n observations (X1, Y1),
. . . , (Xn, Yn), where Yi is linearly dependent
on the corresponding Xi, we can write

Yi = β0 + β1Xi + εi , i = 1, . . . , n .

The problem with regression analysis
consists in estimating parameters β0 and
β1, choosing the values β̂0 and β̂1 such
that the distance between Yi and (β0+
β1 · Xi) is minimal. We should have:

εi = Yi − β0 − β1 · Xi

small for all i = 1, . . . , n. To achieve this, we
can choose among many criteria:
1. min

β0,β1
max

i
|εi|

2. min
β0,β1

n∑
i=1

|εi|

3. min
β0,β1

n∑
i=1

ε2
i



492 Simple Linear Regression

The most used method of estimation of
parameters β0 and β1 is the third, called the
least squares. It aims to minimize the sum
of squared errors.
Theestimationof theparametersby the least-
squares method gives the following estima-
tors β̂0 and β̂1:

β̂1 =

n∑
i=1

(
Xi − X̄

) (
Ŷi − Ȳ

)

n∑
i=1

(
Xi − X̄

)2

β̂0 = Ȳ − β̂1X̄ .

We can then write:

Ŷi = β̂0 + β̂1Xi ,

where Ŷi is the estimated value of Yi for a giv-
en Xi when β̂0 and β̂1 are known.

Measure of Reliability of Estimation of Y
Wehavecalculatedanestimationof thevalue
of Y, or Ŷ , with the help of the least-squares
method, basing our calculation on a linear
model to translate the relation that relates Y
to X. But how far can we trust this model?
To answer this question, it is useful to per-
form an analysis of variance and to test the
hypothesis on parameters β0 and β1 of the
regression line. To carry out these tests, we
must make the following suppositions:
• For each value of X, Y is a random vari-

able distributed according to the normal
distribution.

• The variance of Y is the same for all X;
it equals σ 2 (unknown).

• The different observations on Y are inde-
pendent of each other but conditioned by
the values of X.

Analysis of Variance
The table of the analysis of variance that we
must construct is the following:

Analysis of variance

Source
of var-
iation

Degree
of free-
dom

Sum of
squares

Mean of
squares

Regres-
sion

1
n∑

i=1

(
Ŷi − Ȳ

)2 n∑
i=1

(
Ŷi − Ȳ

)2

Resi-
dual

n− 2
n∑

i=1

(
Ŷi − Ȳ

)2

n∑
i=1

(
Ŷi−Ȳ

)2

n−2

Total n− 1
n∑

i=1

(
Yi − Ȳ

)2

If the model is correct, then

S2 =

n∑
i=1

(
Ŷi − Ȳ

)2

n− 2

is an unbiased estimator of σ 2.
The analysis of variance allows us to test the
null hypothesis:

H0 : β1 = 0

against the alternative hypothesis:

H1 : β1 �= 0

calculating the statistic:

F = EMSE

RMSE
= EMSE

S2 .

This statistic F must be compared with the
value Fα,1,n−2 of the Fisher table, where α

is the significance of the test.

⇒
If F ≤ Fα,1,n−2 , then we accept H0.

If F > Fα,1,n−2 , then we reject H0 for H1.

The coefficient of determination R2 is cal-
culated in the following manner:

R2 = ESS

TSS
= β̂ ′X′Y− nŶ2

Y′Y− nŶ2
,

whereESS is thesumofsquaresof theregres-
sion and TSS is the total sum of squares.
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Hypothesis on the Slope β1

In the case of a simple linear regression, the
statistic F allows to test a hypothesis using
the parameters of the regression equation or
β1, the slopeof the line. Anotherway to carry
out the same test is as follows:
If H0 is true (β1 = 0), then statistic t:

t = β̂1

S
β̂1

follows a Student distribution with (n−2)
degrees of freedom.
S

β̂1
is the standard deviation of β̂1, estimat-

ed from the sample:

S
β̂1
=

√√√√√
S2

n∑
i=1

(
Xi − X̄

)2
.

Statistic t must be compared with the value
t α

2 ,n−2 of the Student table, where α is the
significance level and n − 2 the number of
degrees of freedom. The decision rule is the
following:

|t| ≤ t α
2 ,n−2

⇒ we accept H0 (β1 = 0).

|t| > t α
2 ,n−2

⇒ we reject H0 for H1 (β1 �= 0).

It is possible to show that in the case of a sim-
ple linear regression, t2 equals F.
Statistic t allows to calculate a confidence
interval for β1.

Hypothesis on Ordinate in Origin β0

In a similar way, we can construct a confi-
dence interval for β0 and test the hypothesis:

H0 : β0 = 0

H1 : β0 �= 0

Statistic t:

t = β̂0

S
β̂0

also follows a Student distribution with (n−
2) degrees of freedom.
The estimated standard deviation of β̂0,
denoted by S

β̂0
, is defined by:

S
β̂0
=

√√√√√√√√

S2
n∑

i=1
X2

i

n
n∑

i=1

(
Xi − X̄

)2
.

The decision rule is the following:

|t| ≤ t α
2 ,n−2

⇒ we accept H0 (β0 = 0).

|t| > t α
2 ,n−2

⇒ we reject H0 for H1 (β0 �= 0).

t α
2 ,n−2 is obtained from the Student table for

(n−2) degrees of freedom and a significance
level α.
The coefficient of determination R2 is cal-
culated in the following manner:

R2 = ESS

TSS
= β̂ ′X′Y − nȲ2

Y ′Y − nȲ2
,

whereESS is thesumofsquaresof theregres-
sion and TSS is the total sum of squares.

DOMAINS AND LIMITATIONS
Simple linear regression is a particular case
of multiple linear regression. The matrix
approach revealed in the multiple linear
regression (model containing many inde-
pendent variables) is also valid for the par-
ticular case where we have only one inde-
pendent variable.
See analysis of regression.

EXAMPLES
The following table represents the gross
national product (GNP) and the demand for
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staples for the period 1969 to 1980 in certain
countries.

Year GNP Demand for staple

X Y

1969 50 6

1970 52 8

1971 55 9

1972 59 10

1973 57 8

1974 58 10

1975 62 12

1976 65 9

1977 68 11

1978 69 10

1979 70 11

1980 72 14

We want to estimate the demand for staples
dependingontheGNPaccordingtothemod-
el:

Yi = β0 + β1Xi + εi, i = 1, . . . , n .

The estimation of parameters β0 and β1 by
the least-squares method gives us the fol-
lowing estimators:

β̂1 =

12∑
i=1

(
Xi − X̄

) (
Yi − Ȳ

)

12∑
i=1

(
Xi − X̄

)2
= 0.226

β̂0 = Ȳ − β̂1X̄ = −4.04 .

The estimated line can be written as:

Ŷ = −4.04+ 0.226X .

Analysis of Variance
We will calculate the degrees of freedom as
well as the sum of squares and the mean of
squares in order to establish the table of the

analysis of variance:

dlreg = 1 ,

dlres = n− 2 = 10 ,

dltot = n− 1 = 11 ;

ESS =
12∑

i=1

(
Ŷi − Ȳ

)2

= (7.20− 9.833)2 + · · ·
+ (12.23− 9.833)2

= 30.457 ;

RSS =
12∑

i=1

(
Yi − Ŷi

)2

= (6− 7.20)2 + · · ·
+ (14− 12.23)2

= 17.21 ;

TSS =
12∑

i=1

(
Yi − Ȳ

)2

= (6− 9.833)2 + · · ·
+ (14− 9.833)2

= 47.667 ;
EMSE = ESS

dlreg
= 30.457

S2 = RMSE = RSS

dlres
= 1.721 .

Thus we have the following table:

Analysis of variance

Source
of var-
iation

Degrees
of free-
dom

Sum of
squares

Mean of
squares

F

Re-
gres-
sion

1 30.457 30.457 17.687

Resi-
dual

10 17.211 1.721

Total 11 47.667
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With a significance levelofα = 5%,wefind
in the Fisher table the value

Fα,1,n−2 = F0.05,1,10 = 4.96 .

As a result of F > F0,05,1,10, we reject the
null hypothesis H0: β1 = 0, which means
that β1 is significatively different from zero.
To calculate the coefficient of determina-
tion of this example, it is enough to look at
the table of analysis of variance because it
contains all the required elements:

R2 = ESS

TSS
= 30.457

47.667
= 0.6390 = 63.90 .%

We can conclude that, according to the cho-
sen model, 63.90% of the variation of the
demand for staples is explained by the vari-
ation in GNP.
It isevident that theR2valueofcannotexceed
100; the value 63.90 is large enough, but it
is not close enough to 100 to discourage one
from trying to improve the model.
This can mean:
• That except for the GNP, other variables

should be taken into account for a fin-
er determination of the function of the
demand of staples, so the GNP explains
only part of the variation.

• We should test another model (one with-
out constant term, nonlinear model, etc).

Hypothesis testing on the parameters will
allow us to determine if they are significa-
tively different from zero.

Hypothesis on Slope β1

In the table of analysis of variance, we have:

S2 = RMSE = 1.721 ,

which allows to calculate the standard devi-
ation S

β̂1
of β̂1:

S
β̂1
=

√√√√√√
S2

12∑
i=1

(
Xi − X̄

)2

=
√√√√√√

1.721

(50− 61.416)2 + · · ·
+ (72− 61.416)2

=
√

1.721

596.92
= 0.054 .

We can calculate the statistic:

t = β̂1

S
β̂1

= 0.226

0.054
= 4.19 .

Choosing a significance level ofα = 5%, we
get:

t α
2 ,n−2 = t0.025,10 = 2.228 .

Comparing this value of t with the value in
the table, we get:

|t| > t α
2 ,n−2 ,

which indicates that the null hypothesis:

H0 : β1 = 0

must be rejected for the alternative hypoth-
esis:

H1 : β1 �= 0 .

Weconclude that thereexistsa linear relation
betweentheGNPandthedemandforstaples.
If H0 were accepted, that would mean that
there was no linear relation between these
two variables.
Remark: We can see that

F = t2,

17.696 = 4.192

(without taking into account errors of round-
ness). In consequence, we can use indiffer-
ently test t or test F to test the hypothesis H0:
β1 = 0.
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Hypothesis on Ordinate in Origin β0

The standard deviation S
β̂0

of β̂0 is:

S
β̂0
=

√√√√√√√√

S2
12∑

i=1
X̄2

i

n
12∑

i=1

(
Xi − X̄

)2
.

=
√

1.721
(
502 + · · · + 722

)

(12 · 596.92)

=
√

1.721 · 45861

7163.04
= 3.31 .

We can calculate the statistic:

t = β̂0

S
β̂0

= −4.04

3.31
= −1.22 .

Comparing this value of t with the value of
the Student table t0.025,10 = 2.228, we get:

|t| < t α
2 ,n−2 ,

which indicates the null hypothesis:

H0 : β0 = 0

must be accepted at the significance level
α = 5%. We conclude that the value of β0

is not significatively different from zero, and
the line passes through the origin.

New Model: Regression Passing Through
Origin
The new model is the following:

Yi = β1Xi + εi , i = 1, . . . , 12 .

Making the estimation of the parameter β1

according to the least-squares method, we
have:

12∑
i=1

ε2
i =

12∑
i=1

(Yi − β1Xi)
2 .

Setting to zero the derivative by β1, we get:

∂
12∑

i=1
ε2

i

∂β1
= −2

12∑
i=1

Xi (Yi − β1Xi) = 0

or
12∑

i=1

(XiYi)− β1

12∑
i=1

X2
i = 0 .

The value of β1 that satisfies the equation of
the estimator β̂1 of β1 is:

β̂1 =

12∑
i=1

(XiYi)

12∑
i=1

X2
i

= 7382

45861
= 0.161 .

In consequence, the new regression line is
described by:

Ŷi = β̂1Xi

Ŷi = 0.161Xi .

The table of analysis of variance relative to
this new model is the following:

Analysis of variance

Source
of var-
iation

Degrees
of
freedom

Sum of
squares

Mean of
squares

F

Re-
gres-
sion

1 1188.2 1188.2 660.11

Resi-
dual

11 19.8 1.8

Total 12 1208.0

Note that in a model without a constant, the
number of degrees of freedom for the total
variation equals the number of observations
n. The number of degrees of freedom for the
residual variation equals n− 1.
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Thus we can determine R2:

R2 = ESS

TSS
= 1188.2

1208.0
= 0.9836

= 98.36% .

We have found with the first model the val-
ue R2 = 63.90%. We can say that this new
model without a constant term is much better
than the previous one.

FURTHER READING
� Analysis of residuals
� Coefficient of determination
� Correlation coefficient
� Least squares
� Multiple linear regression
� Normal equations
� Regression analysis
� Residual

REFERENCES
Seber, G.A.F. (1977) Linear Regression

Analysis. Wiley, New York

Simple Random Sampling
Simple random sampling is a sampling
method whereby one chooses n units
amongst the N units of a population in such
a way that each of the Cn

N possible samples
has the same probability of being selected.

HISTORY
See sampling.

MATHEMATICAL ASPECTS
To obtain a simple random sample of size
n, the individuals of a population are first
numbered from 1 to N; then n numbers are
drawn between 1 and N. The drawings are
done in principle without replacement.

Tablesof random numberscan also beused
to obtain a simple random sample. The goal
of a simple random sample is to provide an
estimation without a bias of the mean and
of the variance of the population. Indeed,
if we denote by y1, y2, . . . , yN the character-
istics of a population and by y1, . . . , yn the
corresponding values in the simple random
sample, we obtain the following results:

Population: Sample:

Total T =
N∑

i=1

yi t =
n∑

i=1

yi

Mean Ȳ = T
N

ȳ = t
n

Vari-
ance

σ2 =

N∑

i=1

(yi − Ȳ)2

N − 1
s2 =

n∑

i=1

(yi − ȳ)2

n− 1

DOMAINS AND LIMITATIONS
Simple random sampling can be done with
or without replacement. If a drawing is per-
formed with replacement, then the popula-
tion always remains the same. The sample
is therefore characterized by a series of inde-
pendent random variables that are identi-
cally distributed. If the population is suffi-
ciently large, and if the size of the sample
is relatively small with respect to the popu-
lation, it can be considered that the random
variables are independent even if the draw-
ings are done without replacement. It is then
possible to estimatecertain characteristicsof
the population by determining them from
this sample. Simple random sampling is the
basis of the theory of sampling.

EXAMPLES
Consider a population of 658 individu-
als. To form a simple random sample, we
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attribute a three-digit number to every indi-
vidual: 001, 002, . . . , 658. Then with a ran-
dom number table, we obtain a sample of
ten individuals. We randomly choose a first
digit and a reading direction. We then read
the first three digits until we obtain ten dis-
tinct numbers between 001 and 658 to define
our sample.

FURTHER READING
� Cluster sampling
� Estimation
� Estimator
� Sampling
� Sampling distribution
� Stratified sampling
� Systematic sampling

REFERENCES
Cochran, W.G.: Sampling Techniques, 2nd

edn. Wiley, New York (1963)

Simulation

Simulation is a method for analyzing,
designing and operating complex systems.
Simulation involve designing a model of
a system and carrying out experiments on it
as it progresses.
The fundamental problem of simulation is
in the construction of the artificial sam-
ples relative to a statistically known distri-
bution. These distributions are generally
known empirically: they result in a statisti-
cal study from which we can determine the
probability distributions of the random vari-
ables characterizing the phenomenon.
Once thedistributionsareknown, thesample
is constructed by generating random num-
bers.

HISTORY
The method of simulation has a long histo-
ry. It was first introduced by Student (1908),
whodiscovered thesamplingdistributionsof
the t statistic and the coefficient of corre-
lation.
More recently, thanks to computers, simula-
tion methods and the Monte Carlo methods
have progressed rapidly.

EXAMPLES
Consider the phenomenon of waiting in
the checkout line of a large store. Suppose
that we want to know the best “system of
cashiers”, which is that where the sum of the
costs of inactivity of cashiers and the costs
of waiting customers are the smallest.
The evolution of the phenomenon essential-
ly depends on the distribution of the arrival
of customers at the cashiers and the distri-
bution of the time of service. The simulation
consists in constructing a sampling of cus-
tomer arrivals and a sample of time of ser-
vice. Thus we can calculate the cost of a sys-
tem.Theexperiment can be repeatedfordif-
ferent systems and the best system chosen.

FURTHER READING
� Bootstrap
� Generation of random numbers
� Jackknife method
� Monte Carlo method
� Random number

REFERENCES
Gosset, S.W. “Student”: The Probable

Error of a Mean. Biometrika 6, 1–25
(1908)pp. 302–310.

Kleijnen, J.P.C.: Statistical Techniques in
Simulation (in two parts). Vol. 9 of Statis-
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tics: Textbooks and Monographs. Marcel
Dekker, New York (1974)

Kleijnen, J.P.C.: Statistical Tools for Sim-
ulation Practitioners. Vol. 76 of Statis-
tics: Textbooks and Monographs. Marcel
Dekker, New York (1987)

Naylor, T.H., Balintfy, J.L., Burdick, D.S.,
Chu, K.: Computer Simulation Tech-
niques. Wiley, New York (1967)

Snedecor, George Waddel

Snedecor, George Waddel was born in 1881
in Memphis and died in 1974 in Amherst.
In 1899, he entered the Alabama Polytech-
nic Institute in Auburn and stayed there for
2years.Hethenspent2yearsearningateach-
er’s certificate. When his family moved to
Tuscaloosa in 1903, Snedecor, George Wad-
del was transferred to Alabama University,
wherehereceived, in1905,hisB.S. inmathe-
matics and physics. He accepted his first aca-
demic position at the Selma Military Acade-
my, where he taught from 1905 to 1907.
From 1907 and to 1910 he taught mathe-
matics and Greek at Austin College in Sher-
man.
In 1910, Snedecor, George Waddel moved to
Ann Arbor, MI, where he completed his edu-
cation at Michigan State University in 1913,
having earned a master’s degree. In the same
year, he was hired at the University of Iowa
in Ames, where he stayed until 1958.
In 1927, the Mathematics Statistical
Service was inaugurated in Ames with
Snedecor,G.W.and Brandt,A.E. at thehelm.
This Service was the precursor of the Statis-
tical Laboratory inaugurated in 1933, where
Snedecor, G.W. was director and whereCox,
Gertrude worked.

In 1931, Snedecor, G.W. was named pro-
fessor in the Mathematics Department at
Iowa State College. During this period,
Snedecor, G.W. developed a friendship
with Fisher, Ronald Aylmer. In 1947,
Snedecor, G.W. left the Statistical Labo-
ratory. He became professor of statistics
at Iowa State College and remained at this
position until his retirement in 1958. He died
in February 1974.

Principal work of Snedecor, George Wad-
del:

1937 Statistical Methods Applied to Expe-
riments in Agriculture and Biology.
Collegiate, Ames, USA.

Spatial Data
Spatial data are special kind of data (often
called map data, geographic data) that refer
to a spatial localization, such as, for exam-
ple, the concentration of pollutants in a giv-
en area, clouds, etc., and all the information
that can be represented in the form of a map.
Included under spatial data are data with
a denumerable collection of spatial sites, for
example, the distribution of child mortality
in different cities and countries.
We can also consider that spatial data are the
realization of a regional variable. The theo-
ry of the regional variable presupposes that
any measure can be modeled (visualized) as
being therealizationofarandomfunction(or
random process). For example, samples tak-
en on the ground can be seen as realizations
of a regional variable (see geostatistics).

HISTORY
With the development of territory informa-
tion systems (TIS) or geographic informa-
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tion systems (GIS), the notion of spatial data
became widely used in statistics.

DOMAINS AND LIMITATIONS
A GIS is a collection of information pro-
gramsthat facilitate,basedongeoreferences,
the integration of spatial, nonspatial, qualita-
tive, and quantitative data in data bases that
can be organized as a unique system. Spa-
tial data come from widely differing fields
and often demand a selection and an analysis
according to specific criteria for each type of
research. Satellites collect enormous quanti-
ties of data, and only a tiny fraction is ana-
lyzed. This wealth of data must be verified
by the selection process. Data selection can
be done according to the type of problems
to resolve and the models used to make the
analysis.

EXAMPLES
Generally, spatial data can be treated as
realizations of random variables such as in
an ordinary statistical analysis. Below we
present, as an example of spatial data, data
collected in Swiss Jura. It is a set of 259
data on heavy-metal pollution in a region of
14.5 km2, 10 of which are represented here:

X Y Ground Rock Cd Co

2.386 3.077 3 3 1.740 9.32

2.544 1.972 2 2 1.335 10.00

2.807 3.347 2 3 1.610 10.60

4.308 1.933 3 2 2.150 11.92

4.383 1.081 3 5 1.565 16.32

3.244 4.519 3 5 1.145 3.50

3.925 3.785 3 5 0.894 15.08

2.116 3.498 3 1 0.525 4.20

1.842 0.989 3 1 0.240 4.52

Cr Cu Ni Pb Zn

38.32 25.72 21.32 77.36 92.56

40.20 24.76 29.72 77.88 73.56

Cr Cu Ni Pb Zn

47.00 8.88 21.40 30.80 64.80

43.52 22.70 29.72 56.40 90.00

38.52 34.32 26.20 66.40 88.40

40.40 31.28 22.04 72.40 75.20

30.52 27.44 21.76 60.00 72.40

25.40 66.12 9.72 141.00 72.08

27.96 22.32 11.32 52.40 56.40

“Ground”, which refers to the use of the
ground, and “rock”,which describes the type
of underlying rock in the sampled location,
are the categorical data (qualitative cate-
gorical variables). The different types of
rock are:
1. Argovian,
2. Kimmeridgian,
3. Sequanian,
4. Portlandian,
5. Quaternary.
The use of the ground corresponds to:
1. forest,
2. pasturage,
3. prairie,
4. plowed.

FURTHER READING
� Classification
� Geostatistics
� Histogram
� Sampling
� Spatial statistics
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S

Spatial Statistics 501

Matheron, G.: La théorie des variables
regionalisées et ses applications. Mas-
son, Paris (1965)

Spatial Statistics
Spatial statistics concern the statistical anal-
ysis of spatial data. Spatial statistics cov-
er all the techniques used to explore and
prove the presence of a spatial dependence
between observations distributed in space.
Spatial data can come from geology, earth
sciences, image treatment, epidemiology,
agriculture, ecology, astronomy, or forest
sciences. Data are assumed to be random,
and sometimes their place is also assumed
to be random.

HISTORY
The statistical treatment of spatial data date
back to Halley, Edmond (1686). Halley, E.
superposed on one map the relief of wind
directions and monsoon between and around
the tropics and tried to explain the causes.
The spatial statistics model appeared much
later. Fisher, Ronald Aylmer (1920–1930),
during his researches on the experimental
station of Rothamsted in England, formu-
lated the basis of the principles of random
choice, of analysis by blocks, and of repli-
cation.

MATHEMATICAL ASPECTS
The statistical analysis of spatial data forms
the principal subject of spatial statistics. The
principal tools of the statistical analysis are
the histogram, the curve of frequency cumu-
lation, the Q-Q plot, the median, the mean
of the distribution, the coefficients of varia-
tion, and the measure of skewness. In the
case of many variables, the most used statis-
tical approaches are to represent them in the

form of a scatterplot and to study their corre-
lation.Spatialanalysishas thedistinguishing
feature that it takes into account spatial infor-
mation and the relation that exists between
two spatial data. Two data close to one anoth-
erwillmore likely resembleoneanother than
if they were farther apart. Thus when we ana-
lyze a map showing concentrations of pollu-
tants on the ground, we would see not ran-
dom values but, on the contrary, small values
of pollutants grouped as well as large values,
and the transition between the classes would
be continuous.

DOMAINS AND LIMITATIONS
Spatial representation in the form of maps
and drawings and spatial statistics can be
united to give a better visual understanding
of the influence that the neighboring values
have on one another. Superposing statistical
informationonamapallowstobetteranalyze
the information and to draw the appropriate
conclusions.

EXAMPLES
See spatial data.

FURTHER READING
� Autocorrelation
� Geostatistics
� Spatial data

REFERENCES
Cressie, N.A.C.: Statistics for Spatial Data.

Wiley, New York (1991)

Goovaerts, P.: Geostatistics for Natural
Resources Evaluation. Oxford Univer-
sity Press, Oxford (1997)

Isaaks, E.H., Srivastava, R.M.: An Intro-
duction to Applied Geostatistics. Oxford
University Press, Oxford (1989)



502 Spearman Rank Correlation Coefficient

Journel, A., Huijbregts, C.J.: Mining Geo-
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Spearman Rank
Correlation Coefficient

The Spearman rank correlation coefficient
(Spearman ρ) is a nonparametric measu-
rementcorrelation. It isused todetermine the
relation existing between two sets of data.

HISTORY
Spearman, Charles was a psychologist. In
1904 he introduced for the first time the rank
correlation coefficient. Often called the ρ of
Spearman, it is one of the oldest rank statis-
tic.

MATHEMATICAL ASPECTS
Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be
two samples of size n. RXi denotes the rank
of Xi compare to the other values of the X
sample, for i = 1, 2, . . . , n. RXi = 1 if Xi is
the smallest value of X, RXi = 2 if Xi is the
second smallest value, etc., until RXi = n if
Xi is the largest value of X. In the same way,
RYi denotes the rank of Yi, for i = 1, 2, . . . , n.
The Spearman rank correlation coefficient,
generally denoted by ρ, is defined by:

ρ = 1−
6

n∑
i=1

d2
i

n(n2 − 1)
,

where di = RXi − RYi .

If several observations have exactly the
same value, an average rank will be given to
these observations. If there aremany average
ranks, it is best to make a correction and to
calculate:

ρ =
Sx + Sy −

n∑
i=1

d2
i

2
√

Sx · Sy
,

where

Sx =
n
(

n2 − 1
)
−

g∑
i=1

(
t3i − ti

)

12
,

with g the number of groups with aver-
age ranks and ti the size of group i for the
Xsample, and

Sy =
n
(

n2 − 1
)
−

h∑
j=1

(
t3j − tj

)

12
,

with h the number of groups with average
ranks and tj the size of group j for the Y sam-
ple.
(If there are no average ranks, the observa-
tions are seen as groups of size 1, meaning
that g = h = n and ti = tj = 1 for i, j =
1, 2, . . . , n and Sx = Sy = n(n2 − 1)/12.)

Hypothesis Testing
The Spearman rank correlation coefficient is
often used as a statistical test to determine if
there exists a relation between two random
variables. The test can be a bilateral test or
a unilateral test. The hypotheses are:

A: Bilateral case

H0: X and Y are mutually independent.

H1: There is either a positive or a negative
correlation between X and Y.
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There is a positive correlation when the large
values of X have a tendency to be associat-
ed with large values of Y and small values of
X with small values of Y. There is a negative
correlation when largevaluesof X havea ten-
dency to be associated with small values of
Y and vice versa.

B: Unilateral case

H0: X and Y are mutually independent.

H1: There is a positive correlation between
X and Y.

C: Unilateral case

H0: X and Y are mutually independent.

H1: There is a negative correlation between
X and Y.

Decision Rules
Thedecisionrulesaredifferentdependingon
the hypotheses. That is why there are deci-
sion rules A, B, and C relative to the previous
cases.

Decision rule A
Reject H0 at the significance level α if

ρ > tn,1− α
2

or ρ < tn, α
2

,

where t is the critical value of the test given
by the Spearman table.
Decision rule B
Reject H0 at the significance level α if

ρ > tn,1−α .

Decision rule C
Reject H0 at the significance level α if

ρ < tn,α .

Remark: The notation t does not mean that
theSpearmancoefficientsarerelated to those
of Student.

DOMAINS AND LIMITATIONS
The Spearman rank correlation coefficient is
used as a hypothesis test to study the depen-
dence between two random variables. It
can be considered as a test of indepen-
dence.
As a nonparametric correlation measu-
rement, it can also be used with nominal
or ordinal data.
A correlation measurement between two
variables must satisfy the following points:

1. It takes values between −1 and +1.
2. There is a positive correlation between X

and Y if the value of the correlation coef-
ficient is positive; a perfect positive cor-
relation corresponds to a value of +1.

3. There is a negative correlation between X
and Y if the value of the correlation coef-
ficient is negative; a perfect negative cor-
relation corresponds to a value of −1.

4. There is null correlation between X and Y
when thecorrelation coefficient isclose to
zero; one can also say that X and Y are not
correlated.

The Spearman rank correlation coefficient
presents the following advantages:

• The data can be nonnumerical observa-
tions as long as they can be classified
according to certain criteria.

• It is easy to calculate.
• Theassociated statistical testdoesnot for-

mulate a basic hypothesis based on the
shape of the distribution of the popu-
lation from which the samples are tak-
en.

TheSpearmantablegives the theoreticalval-
ues of the Spearman rank correlation coeffi-
cient under the hypothesis of the indepen-
dence of two random variables.
Here is a sample of the Spearman table for
n = 6, 7, and 8 and α = 0.05 and 0.025:
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n α = 0.05 α = 0.025

6 0.7714 0.8286

7 0.6786 0.7450

8 0.6190 0.7143

A complete Spearman table can be found in
Glasser, G.J. and Winter, R.F. (1961).

EXAMPLES
In this example eight pairs of real twins take
intelligence tests. The goal is to see if there is
independence between the test of the first-
born twin and that of the one born second.
The data are given in the table below, the
highest scores corresponding to the best
results.

Pair of twins Born 1st Xi Born 2nd Yi

1 90 88

2 75 79

3 99 98

4 60 66

5 72 64

6 83 83

7 86 86

8 92 95

The X are classified amongst themselves and
the Y amongst themselves, and di is calculat-
ed. This gives:

Pair of
twins

Born
1st Xi

RXi
Born
2nd Yi

RYi
di

1 90 6 88 6 0

2 75 3 79 3 0

3 99 8 98 8 0

4 60 1 66 2 −1

5 72 2 64 1 1

6 83 4 83 4 0

7 86 5 86 5 0

8 92 7 95 7 0

The Spearman rank correlation coefficient is
then calculated:

ρ = 1−
6 ·

8∑
i=1

d2
i

n(n2 − 1)
= 1− 6 · 2

8(82 − 1)

= 0.9762 .

This shows that there is an (almost perfect)
positive correlation between the intelligence
tests.
Suppose that the results for 7 and 8 are
changed. We then obtain the following table:

Pair of
twins

Born
1st Xi

RXi
Born
2nd Yi

RYi
di

1 90 6.5 88 5.5 1

2 75 3 79 3 0

3 99 8 98 7.5 −0.5

4 60 1 66 2 −1

5 72 2 64 1 1

6 83 4.5 83 4 0.5

7 83 4.5 88 5.5 −1

8 90 6.5 98 7.5 −1

Since there are average ranks, we use the for-
mula

ρ =
Sx + Sy −

8∑
i=1

d2
i

2
√

Sx · Sy

to calculate the Spearman rank correlation
coefficient. We first calculate Sx:

Sx =
n
(

n2 − 1
)
−

g∑
i=1

(
t3i − ti

)

12

= 8
(
82 − 1

)− [
23 − 2+ 23 − 2

]

12
= 41 .
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Then Sy:

Sy =
n
(

n2 − 1
)
−

h∑
j=1

(
t3j − tj

)

12

= 8
(
82 − 1

)− [
23 − 2+ 23 − 2

]

12
= 41 .

The value of ρ becomes the following:

ρ = 41+ 41− (1+ 0+ . . .+ 1)

2
√

41 · 41
= 76.5

82

= 0.9329 .

We see that in this case there is also an almost
perfect positive correlation.
We now carry out the hypothesis test:

H0: There is independence between the
intelligence tests of a pair of twins.

H1: There is a positive correlation between
the intelligence tests.

We choose a significant level of α = 0.05.
Since we are in case B, H0 is rejected if

ρ > t8,0.95 ,

where t8,0.95 is the value of the Spearman
table, meaning if

ρ > 0.6190 .

In both cases (ρ = 0.9762 and ρ = 0.9329),
H0 is rejected. We can conclude that there is
a positive correlation between the results of
the intelligence tests of a pair of twins.

FURTHER READING
� Hypothesis testing
� Nonparametric test
� Test of independence

REFERENCES
Glasser, G.J., Winter, R.F.: Critical values

of the coefficient of rank correlation for
testing the hypothesis of independance.
Biometrika 48, 444–448 (1961)

Spearman, C.: The Proof and Measurement
of Association between Two Things. Am.
J. Psychol. 15, 72–101 (1904)

Spearman Table

TheSpearman tablegives the theoreticalval-
ues of the Spearman rank correlation coeffi-
cient under the hypothesis of independence
of two random variables.

HISTORY
See Spearman rank correlation coeffi-
cient.

FURTHER READING
� Spearman rank correlation coefficient

Standard Deviation

The standard deviation is a measure of dis-
persion. Itcorrespondsto thepositivesquare
root of the variance, where the variance is
the mean of the squared deviations of each
observation with respect to the mean of the
set of observations.
It is usually denoted by σ when it is relative
to a population and by S when it is relative
to a sample.
Inpractice, thestandarddeviationσ ofapop-
ulation will be estimated by the standard
deviation S of a sample of this population.
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HISTORY
The term standard deviation is closely relat-
ed to the works of two English mathemati-
cians, Pearson, Karl and Gosset, W.S. It
was indeed during a conference that he gave
before theLondonRoyalSocietyin1893that
Pearson, K. used the term for the first time.
He used it again in his article entitled “On
the Dissection of Asymmetrical Frequency
Curves” in 1894, and it was also Pearson, K.
who introduced the symbol σ to denote the
standard deviation. Gosset, W.S., (Student),
alsoworkedontheseproblems.Heexplained
why it is important to distinguish S (stan-
dard deviation relative to a sample) from
σ (standard deviation relative to a popula-
tion).
In his article of March 1908, Gosset, W.S.
defined the standard deviation of a sample
by:

S =

√√√√√
n∑

i=1
(xi − x̄)2

n
.

A question that came up was to know if
this expression should be divided by n or
by n − 1. Pearson, K. asked the opinion of
Gosset, W.S., who answered in a letter on
13 March 1927 that both formulas could be
found in the literature. The one with an n−1
denominator gives a mean value that is inde-
pendent of the size of the sample and there-
fore of the population. On the other hand,
with large samples, the difference between
both formulas is negligible and the calcula-
tions are simpler if the formula with an n
denominator is used.
Onthewhole,Gosset, W.S. indicates that the
use of n − 1 is probably more appropriate

for small samples, whereas the use of n is
preferable for large samples.
Note that thediscovery of thestandarddevia-
tion is to beplaced in thecontextof the theory
of the estimation and of hypothesis testing.
Also, at first the study of variability attract-
ed the attention of astronomers because they
were interested in discoveries related to the
distribution of errors.

MATHEMATICAL ASPECTS
Consider a random variable X with an
expected value E[X]. The variance σ 2 of
the population is defined by:

σ 2 = E
[
(X − E [X])2

]

or

σ 2 = E
[
X2

]
− E [X]2 .

The standard deviation σ is the positive
square root of σ 2:

σ =
√

E
[
(X − E [X])2] .

To estimate the standard deviation σ of
a population, the distribution of the popu-
lation should be known, but in practice, it
is convenient to estimate σ from a random
sample x1, . . . , xn with the formula:

S =

√√√√√√
n∑

i=1

(xi − x̄)2

n− 1

where S is the estimator of σ and x̄ is the
arithmetic mean of the sample:

x̄ =

n∑
i=1

xi

n
.
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Thestandarddeviationcanalsobecalculated
using the following alternative formula:

S =

√√√√√
n∑

i=1
x2

i − nx̄2

n− 1

=

√√√√√√n
n∑

i=1
x2

i −
(

n∑
i=1

xi

)2

n (n− 1)
.

DOMAINS AND LIMITATIONS
The standard deviation is used as a scale of
measurement in tests of hypotheses and
confidence intervals. Other measures of
dispersion such as the range or the mean
deviationarealsoused indescriptivestatis-
tics,but theyplaya less important role intests
of hypotheses. It can be verified that:

mean deviation ≤ S ≤ range

2
·
√

n

n− 1
.

If we consider a random variable that fol-
lows a normal distribution of mean μ

and standard deviation σ , we can verify that
68.26% of the observations are located in
the interval μ ± σ . Also, 95.44% of the
observations are located in the interval μ±
2σ , and99.74%of theobservationsare locat-
ed in the interval μ± 3σ .

EXAMPLES
Five students have successively passed two
exams on which they obtained the following
grades:
Exam 1:

3.5 4 4.5 3.5 4.5 x̄ = 20

5
= 4

Exam 2:

2.5 5.5 3.5 4.5 4 x̄ = 20

5
= 4

The arithmetic mean x̄ of these two sets
of observations is identical. Nevertheless,
the dispersion of the observations around the
mean is not the same.
To calculate the standard deviation, we first
have to calculate the deviations of each
observation with respect to the arithmetic
mean and then square these deviations:

Exam 1:

Grade (xi − x̄) (xi − x̄)2

3.5 −0.5 0.25

4 0.0 0.00

4.5 0.5 0.25

3.5 −0.5 0.25

4.5 0.5 0.25
∑5

i=1(xi − x̄)2 1.00

Exam 2:

Grade (xi − x̄) (xi − x̄)2

2.5 −1.5 2.25

5.5 1.5 2.25

3.5 −0.5 0.25

4.5 0.5 0.25

4 0.0 0.00∑5
i=1(xi − x̄)2 5.00

The standard deviation for each exam is
equal to:
Exam 1:

S =

√√√√√
5∑

i=1
(xi − x̄)2

n− 1
=

√
1

4
= 0.5

Exam 2:

S =

√√√√√
5∑

i=1
(xi − x̄)2

n− 1
=

√
5

4
= 1.118

Since the standard deviation of the grades in
thesecondexamis larger, thegradesaremore
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dispersed around the arithmetic mean than
for the first exam. The variability of the sec-
ond exam is therefore larger than that of the
first.

FURTHER READING
� Coefficient of variation
� Mean absolute deviation
� Measure of dispersion
� Variance
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Standard Error
The standard error is the square root of the
estimated variance of a statistic, meaning
the standard deviation of the sampling
distribution of this statistic.

HISTORY
The standard error notion is attributed to
Gauss, C.F. (1816), who apparently did not
know the concept of sampling distribution
of a statistic used to estimate the value of
a parameter of a population.

MATHEMATICAL ASPECTS
Thestandarderrorof themean,orstandard
deviation of the sampling distribution of
the means, denoted by σx̄, is calculated as
a function of the standard deviation of the
population and of the respective size of the
finite population of the sample:

σx̄ = σ√
n
·
√

N − n

N
,

where σ is the standard deviation of the pop-
ulation, N is the size of the population, and
n is the sample size.
If the size N of the population is infinite, the
correction factor:

√
N − n

N

can be omitted because it tends toward 1
when N tends toward infinity.
If the population is infinite, or if the sam-
pling is nonexhaustive (with replacement),
then the standard error of the mean is equal
to the standard deviation of the population
divided by the square root of the size of the
sample:

σx̄ = σ√
n

.

If the standard deviation σ of the popula-
tion is unknown, it can be estimated by the
standard deviation S of the sample given by
the square root of the variance S2:

S2 =

n∑
j=1

(
xj − x̄

)2

n− 1
.

The same formulas are valid for the standard
error of a proportion, or standard devia-
tionof the sampling distributionof thepro-
portions, denoted by σp:

σp = σ√
n
·
√

N − n

N
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in the case of a finite population and

σp = σ√
n

in the case of an infinite population, where σ

is the standard deviation of the population:

σ = √
p · (1− p) = √p · q ,

where p is the probability that an element
possesses the studied trait and q = 1− p is
the probability that it does not.
Thestandarderrorof thedifferencebetween
two independent quantities is the square root
of the sum of the squared standard errors of
both quantities. For example, the standard
error of the difference between two means
is equal to:

σx̄1−x̄2 =
√

σ 2
x̄1
+ σ 2

x̄2
=

√
σ 2

1

n1
+ σ 2

2

n2
,

whereσ 2
1 andσ 2

2 aretherespectivevariances
of the two infinite populations to be com-
pared and n1 and n2 the respective sizes of
the two samples.
If the variances of the two populations are
unknown, we can estimate them with the
variances calculated on the two samples,
which gives:

σx̄1−x̄2 =
√

S2
1

n1
+ S2

2

n2
,

where S2
1 and S2

2 are the respective variances
of the two samples.
If we consider that the variances of the two
populations are equal, we can estimate the
value of these variances with a pooled vari-
ance S2

p calculated as a function of S2
1 and S2

2:

S2
p =

(n1 − 1) · S2
1 + (n2 − 1) · S2

2

n1 + n2 − 2
,

which gives:

σx̄1−x̄2 = Sp ·
√

1

n1
+ 1

n2
.

Thestandarderrorof thedifferencebetween
two proportions is calculated in the same
way as the standard error of the difference
between two means. Therefore:

σp1−p2 =
√

σ 2
p1
+ σ 2

p2

=
√

p1 · (1− p1)

n1
+ p2 · (1− p2)

n2
,

where p1 and p2 are the proportions for infi-
nite populations calculated on the two sam-
ples of size n1 and n2.

EXAMPLES
(1) Mean standard error
A manufacturer wants to test the precision of
a new machine to make bolts 8 mm in diam-
eter. On a lot of N = 10000 pieces, a sample
of n = 100 pieces isexamined; the standard
deviation S is 1.2 mm.
The standard error of the mean is equal to:

σx̄ = σ√
n
·
√

N − n

N
.

Since the standard deviation σ of the pop-
ulation is unknown, we can estimate it using
thestandarddeviationofthesampleS,which
gives:

σx̄ = S√
n
·
√

N − n

N

= 1.2

10
·
√

10000− 100

10000
= 0.12 · 0.995 = 0.119 .

Note that the factor
√

N − n

N
= 0.995
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has little influence on the result as the size
of the population is large enough.

(2) Standard error of a proportion
Acandidateconductsasurveyonasampleof
200 people to know if he will have more than
50% (= π0) of the vote, π0 being the pre-
sumed value of parameter π (proportion
of the population).
The standard error of the proportion σp is
equal to:

σp =
√

π0 · (1− π0)

n
,

where n is the sample size (200 in our exam-
ple). We can consider that the population is
infinite, which is why we do not take into
account the corrective factor:

σp =
√

0.5 · (1− 0.5)

200
= 0.0354 .

(3) Standard error of difference between
two quantities
An insurance company decides to equip its
offices with microcomputers. It wants to buy
these microcomputers from two different
suppliersas long as there isno significantdif-
ference in durability between the twobrands.
It tests a sample of 35 microcomputers of
brand 1 and 32 of brand 2, noting the time
that passed before the first breakdown. The
observed data are the following:

Brand 1: Standard deviation S1 = 57.916

Brand 2: Standard deviation S2 = 57.247

Case 1:
We suppose that the variances of the two
populations are equal. The pooled standard

deviation is equal to:

Sp =
√

(n1 − 1) · S2
1 + (n2 − 1) · S2

2

n1 + n2 − 2

=
√

34 · 57.9162 + 31 · 57.2472

35+ 32− 2

= 57.5979 .

Knowing the weighted standard devia-
tion, we can calculate the value of the stan-
dard deviation of the sampling distribution
using the following formula:

σx̄1−x̄2 = Sp ·
√

1

n1
+ 1

n2

= 57.5979 ·
√

1

35
+ 1

32
= 14.0875 .

Case 2:
If we suppose the variances of the two pop-
ulations to be unequal, we must start by cal-
culating the standard error of the mean for
each sample:

σx̄1 =
S1√
n1
= 57.916√

35
= 9.79 ,

σx̄2 =
S2√
n2
= 57.247√

32
= 10.12 ,

σx̄1−x̄2 =
√

σ 2
x̄1
+ σ 2

x̄2

=
√

9.792 + 10.122

= 14.08 .

We notice in this example that the two cas-
es give values of the standard error that are
almost identical. This is explained by the
very slight difference between the standard
deviations of the two samples S1 and S2.

FURTHER READING
� Hypothesis testing
� Sampling distribution
� Standard deviation
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Standardized Data

Standardized data are data from which we
subtract the mean of the observations relat-
ed to the random variable (associated to the
data) and then divide by the standard devia-
tion of the observations. Thus standardized
data have a mean of 0 and a variance of 1.

MATHEMATICAL ASPECTS
The standardization of a data series X with
the termsxi, i = 1, . . . n is thesameas replac-
ing the term xi of the series by xs

i :

xs
i =

xi − xi

s
,

where xi and s are, respectively, the mean and
the standard deviation of xi.

DOMAINS AND LIMITATIONS
Certain statisticians have a habit of stan-
dardizing explanatory variables in a linear

regression model to simplify the numeri-
cal difficulties arising from matrix calcula-
tions and to facilitate the interpretation and
comparison of the regression coefficients.
The application of the least-squares method
using standardized data gives results equiva-
lent to those obtained using the original data.
A regression is generally modeled by

Yi =
p∑

j=1

βjXij , i = 1, . . . , n ,

where Xj is the nonstandardized data. If Xij

is standardized (mean 0 and variance 1), βj

is called the standardized regression coeffi-
cient and is equivalent to the correlation if Y
is also standardized. The same terminology
can be used if Xj is reduced to having a vari-
ance of 1, but not necessarily a zero mean.
The coefficient β0 absorbs the difference.

EXAMPLES
In the following example, the observations
relateto13mixturesofcement.Eachmixture
is composed of four ingredients given in the
table. The goal of the experiment is to deter-
mine how the quantities X1, X2, X3, and X4

of these four ingredients influence the quan-
tity of heat Y emitted by the hardening of the
cement.

Table: Heat emitted by cement

IngredientMix-
ture i X1 X2 X3 X4

Heat
Y

1 7 26 6 60 78.5

2 1 29 15 52 74.3

3 11 56 8 20 104.3

4 11 31 8 47 87.6

5 7 52 6 33 95.9

6 11 55 9 22 109.2

7 3 71 17 6 102.7

8 1 31 22 44 72.5
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IngredientMix-
ture i X1 X2 X3 X4

Heat
Y

9 2 54 18 22 93.1

10 21 47 4 26 115.9

11 1 40 23 34 83.9

12 11 66 9 12 113.3

13 10 68 8 12 109.4

Source: Birkes and Dodge (1993)

yi quantities of heat given by hardening of
ith mixture (in joules);

xi1 quantity of ingredient 1 (aluminate of
tricalcium) in ith mixture;

xi2 quantity of ingredient 2 (silicate of tri-
calcium) in ith mixture;

xi3 quantity of ingredient 3 (aluminoferrite
of tetracalcium) in ith mixture;

xi4 quantity of ingredient 4 (silicate of
dicalcium) in ith mixture.

Theobtained modelofa simple linear regres-
sion is:

Ŷ = 62.4+ 1.55X1 + 0.51X2

+ 0.102X3 − 0.144X4 + ε .

The following table presents data on the
cement with data relative to the standardized
explanatory variables, which we denote by
Xs

1, Xs
2, Xs

3, and Xs
4.

Data on cement with standardized explana-
tory variables

Standardized ingredientMix-
ture i Xs

1 Xs
2 Xs

3 Xs
4

Heat
Y

1 −0.079 −1.424 −0.901 1.792 78.5

2 −1.099 −1.231 0.504 1.314 74.3

3 0.602 0.504 −0.589 −0.597 104.3

4 0.602 −1.102 −0.589 1.016 87.6

5 −0.079 0.247 −0.901 0.179 95.9

6 0.602 0.440 −0.432 −0.478 109.2

7 −0.759 1.468 0.817 −1.434 102.7

8 −1.099 −1.102 1.597 0.836 72.5

Standardized ingredientMix-
ture i Xs

1 Xs
2 Xs

3 Xs
4

Heat
Y

9 −0.929 0.376 0.973 −0.478 93.1

10 2.302 −0.074 −1.213 −0.239 115.9

11 −1.099 −0.524 1.753 0.239 83.9

12 0.602 1.147 −0.432 −1.075 113.3

13 0.432 1.275 −0.589 −1.075 109.4

The estimation by the least-squares method
of thecompletemodelusingthestandardized
explanatory variables gives:

Ŷ = 95.4+ 9.12Xs
1 + 7.94Xs

2

+ 0.65Xs
3 − 2.41Xs

4 .

Note that the coefficient β̂s
1 = 9.12 of Xs

1 can
be calculated by multiplying the coefficient
β̂1 = 1.55 of X1 in the initial model by the
standard deviation s1 = 5.882 of X1. Also
note that the mean X1 = 7.46 of X1 is con-
sidered not in the relation between β̂s

1 and β̂1

but in the relation between β̂s
0 and β̂0. Taking

only the first two standardized explanatory
variables, we obtain the solution

Ŷ = 95.4+ 8.64Xs
1 + 10.3Xs

2 .

FURTHER READING
� Data
� Ridge regression

REFERENCES
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Statistical Software

Statistical software is a set of computer pro-
grams and procedures for the treatment of
statistical data.
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Libraries
A library is a series of programs or sub-
routines that are installed under the same
operating system (DOS, Windows, or Unix)
and can be used by entering individual com-
mands.

IMSL (International Mathematics and
Statistics Library): a collection of about
540 subroutines written in FORTRAN
specifically concerning mathematics
and statistics.

NAG (Numerical Algorithms Group):
a library of algorithms written with the
help of three languages (ALGOL 60,
ALGOL 68, and FORTRAN ANSI).
We find here more than 600 advanced
subroutines concerning simulation,
regression analysis, techniques of opti-
mization, GLIMs (general linear mod-
els), GenStat, time series, and graphical
representations. Moreover, we can treat
in a simple manner answers obtained
by census.

Software
A software is a set of complex algorithms
representing a common structure of data and
requiring a minimum of previous program-
ming on the part of the user.

BMDP: asetofsubroutineswritten inFOR-
TRAN that allow one to treat enquiries
made by survey, to generate graphi-
cal representations, toapplymultivari-
ate techniques or nonparametric tests,
or to carry out a linear or nonlinear
regression analysis without forgetting
the study of time series.

IMSL (International Mathematics and
Statistics Library): set of subroutines

written in FORTRAN specifically con-
cerning the fields of mathematics and
statistics.

MINITAB: by far the easiest system to use.
Since it can be used in an interactive
mode, it allows to carry out analyses
of various types: descriptive statistics,
analysis of variance, regression anal-
ysis, nonparametric tests, random-
number generation, or the study of
time series, among other things.

NAG: a library of algorithms written with
the help of three languages (ALGOL 60,
ALGOL 68, FORTRAN ANSI).
Advanced subroutines can be found
concerning simulation, regression
analysis, optimization techniques,
time series, and graphical representa-
tions. Moreover, the answers obtained
by survey can be easily treated, and
multivariate analysis as well as non-
parametric tests can be applied to
them.

P-STAT: an interactive system that treats
designs of experiment,graphical rep-
resentations, nonparametric tests,
and data analysis.

SAS (Statistical Analysis System): a set of
software including a basic SAS lan-
guage as well as specific programs.
Surely the most complete package, it
allowstoanalyzedata fromverydiverse
fields.

SPSS (Statistical Package for the Social
Sciences): one of the most commonly
used systems. It offers interactive ways
of treating large data bases. Also, some
algorithms of graphical representa-
tions are included in the program.
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BMDP: basically for biomedical applica-
tions, BMDP is a complete software
kit composed of subroutines written in
FORTRAN that allows to treat inquiries
made by census, to generate graphical
representations, to apply multivariate
techniques and nonparametric tests, or
to perform a linear or nonlinear regres-
sion analysis, without neglecting stud-
ies of time series. Each subprogram is
based on highly competitive numerical
algorithms.

DataDesk: an interactive software for ana-
lyzing statistical treatments of data. It
depicts tools graphically, allowing one
to see relations among data, tendencies,
subgroups, and outliers.

EViews: software essentially for econo-
mists, EViews is the tool of choice
for analysis, forecasting, and econo-
metric modeling. EViews can be used
for general statistical analysis, esti-
mating time series, large-scale simu-
lations, graphics, or simple data man-
agement.

Excel: allows the user to represent and ana-
lyzedatawith thehelp ofbasic statistical
methods: descriptive statistics, analysis
of variance, regression and correlation,
and hypothesis testing.

Gauss: a statistical program with oriented
matrices,Gauss isapowerfuleconomet-
ric and graphic tool.

JMP: statistical software made for experi-
mental designs in particular, JMP also
contains an exhaustive suite of statisti-
cal tools.

Lisrel: used in thesocial sciencesand,more
specifically, for factorial analysis and
modeling, Lisrel is particularly useful

for modeling the representation of latent
variables.

Maple: a complete mathematical environ-
ment designed for the manipulation of
algebraical expressions and the resolu-
tion of equations and integrals; it also
has very powerful graphic tools in two
and three dimensions. The user can also
program in Maple.

Mathematica: statistical suite that allows
to perform descriptive univariate and
multivariate statistical analysis, data
smoothing, classical hypothesis test-
ing, confidence interval estimation, and
linear and nonlinear regression.

Matlab: an interactive environment that
can be used to analyze scientific and
statistical data. The basic objects of
Matlab are matrices. The user can per-
form numerical analyses, treatment of
signs and image treatment. The user
can program the functions using C and
FORTRAN.

MIM: a program for graphic modeling of
discrete and continuous data. Among
the families of available graphics pro-
grams in this software suite, we men-
tion log-linear models, Gaussian graph-
ic models, Manova standard models,
and many other models useful for mul-
tivariate analysis.

P-STAT: created in 1960 for the treatment
ofpharmacologicaldata,P-STATisnow
used by researchers in the social sci-
ences. It allows to carry out an analy-
sis of censuses. The power of P-STAT
lies in its macros, and it is very use-
ful for the statistical applications related
to business. It allows to treat large data
sets and treats experimental designs,
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graphical representations, nonparamet-
ric tests, and data analysis.

R programming language similar to S, R is
also freeware widely used in academia.
It represents an implementation differ-
ent from S, but many S commands work
in R. R contains a wide variety of sta-
tistical commands (linear and nonlinear
modeling, execution of classical tests,
analysis of time series, classification,
segmentation, . . . ) as well as graphical
techniques.

SAS (Statistical Analysis System): a suite
of software programs including a basic
SAS language as well as specific pro-
grams. No doubt the most complete
package, it allows to analyze data of
various origins: research, engineering,
medicine, and business applications. It
includes a significant number of statis-
tical tools: analysis of variance, regres-
sion analysis, categorical data analysis,
multivariate analysis, survival analysis,
decision trees, nonparametric analysis,
and “data mining”.

S-plus: software written in a powerful
and flexible object-oriented program-
ming language called S, it allows for
matrix, mathematical, and statisti-
cal calculations. It includes a tool for
exploratory visual analysis that also
allows for advanced data analysis as
well as their modeling. S-plus allows
geostatisticians to put together a block
“S+SpatialStats” containing different
tools of spatial statistics.

Spad-T: based purely on statistical tech-
niques of multivariate analysis. Con-
tingency tables of treated variables are
created with the help of multifactorial

methods giving way to graphical repre-
sentations.

SPSS (Statistical Package for the Social
Sciences): first released in 1968, SPSS
is actually one of the most widely used
programs by statisticians in various
domains. It offers interactive means
for the treatment of large data bases. It
contains algorithms for graphical rep-
resentations.

Stata: a statistical software allowing one to
carry out statistical analysis from linear
modeling on a generalized linear mod-
el, treat binary data, use nonparametric
methods, conduct multivariate analysis
and analysis of time series, and utilize
methods of graphical data exploration.
Moreover, the software allows to pro-
gram the user-specific commands. Stata
contains, among other things, statistical
tools for epidemiologists.

Statistica: first released in 1993, Statisti-
ca is an extremely complex software
suite that contains powerful exploration
tools for large data bases. The basic
software includes basic statistics, anal-
ysis of variance, nonparametric statis-
tics, linear and nonlinear models, tech-
niques of exploratory multivariate anal-
ysis, neural nets, calculation of sample
dimensions, experimental design analy-
sis tools, quality control tools, etc.

StatView: statistical software for medi-
cal scientists and researchers. StatView
allows to produce descriptive statistics,
perform parametric and nonparametric
hypothesis testing, calculate correla-
tions and covariances, carry out linear,
nonlinear, and logistic regression, com-
pile contingency tables, and perform
factorial analysis, survival analysis,
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quality control, and Pareto analysis.
A good graphical interface is available.

Systat: powerfulgraphicssoftware.Allows
for thevisualization ofdataaswellas the
use of basic statistics to find an adequate
model.

Solas: software treating missing data. Solas
integrates algorithms of multiple impu-
tation.

Vista: designed for those starting out in
statistics as well as for professors. Vista
can be used as a tutorial software in
the domain of univariate, multivariate,
graphic, and calculatory statistics.

WinBugs: a program of Bayesian data
modeling based on Monte Carlo sim-
ulation techniques. It includes the rep-
resentation of Bayesian models with
commands that allow to carry out simu-
lations. Moreover, an interface is avail-
able allowing one to control the analysis
at any moment. The graphic tools allow
one to control the convergence of the
simulation.

XploRe: awide-rangingstatisticalenviron-
ment made for exploratory data anal-
ysis. It is programmed in the matrix-
oriented language, and as such it con-
tains a large group of statistical oper-
ations and has a powerful interactive
interface. The program supports user-
defined macros.

HISTORY
The first effort made by statisticians to
simplify their statistical calculations was
the construction of statistical tables. With
the arrival of computers in the mid-1940s,
the encoding of statistical subroutines took
place. The programming languages at this

time were not widely known to researchers,
and they had to wait till the beginning of
1960, when the programming language
FORTRAN was released, for the devel-
opment of statistical software programs.
Among the first routines introduced by IBM,
the best known is the pseudorandom number
generator RANDU. The systematic devel-
opment of statistical software began in 1960
with the creation of the programs BDM and
SPSS, followed by SAS.

REFERENCES
Asimov, D.: The grand tour: a tool for view-

ing multidimensional data. SIAM J. Sci.
Stat. Comput. 6(1), 128–143 (1985)

Becker, R.A., Chambers, J.M., Wilks, A.R.:
The new S Language. Waldsworth and
Brooks/Cole, Pacific Grove, CA (1988)

Dixon, W.J. chief ed.: BMDP Statistical
Software Communications. The Univer-
sity of California Press. Berkeley, CA
(1981)

Chambers, J.M and Hastie, T.K (eds.): Sta-
tistical models in S. Waldsworth and
Brooks/Cole, Pacific Grove, CA (1992)

Dodge, Y., Hand, D.: What Should Future
Statistical Software Look like? Comput.
Stat. Data Anal. (1991)

Dodge, Y., Whittaker, J. (eds.): Computa-
tional statistics, vols. 1 and 2. COMP-
STAT, Neuchâtel, Switzerland, 24–28
August 1992 (English). Physica-Verlag,
Heidelberg (1992)

Edwards, D.: Introduction to Graphical
Modelling. Springer, Berlin Heidelberg
New York (1995)

Francis, I.: Statistical software: a compar-
ative rewiew. North Holland, New York
(1981)



S

Statistic 517

Hayes, A.R.: Statistical Software: A sur-
vey and Critique of its Development.
Office of Naval Research, Arlington, VA
(1982)

International Mathematical and Statistical
Libraries.: IMSL Library Information.
IMSLK, Houston (1981)

Ripley, B.D., Venables, W.N. (2000) S pro-
gramming. Springer, Berlin Heidelberg
New York

Statistical Sciences: Statistical Analysis
in S-Plus, Version 3.1. Seattle: StatSci,
a division of MathSoft (1993)

Venables, W.N., Ripley, B.D.: Modern
AppliedStatisticswithS-PLUS.Springer,
Berlin Heidelberg New York (1994)

Wegman, E.J., Hayes, A.R.: Statistical Soft-
ware. Encycl. Stat. Sci. 8, 667–674 (1988)

Statistical Table

A statistical table gives values of the distri-
bution function or of the individual proba-
bility ofarandom variable following aspe-
cific probability distribution.

DOMAINS AND LIMITATIONS
The necessity of a statistical table comes
from the fact that certain distribution func-
tions cannot be expressed in an easy-to-
use mathematical form. In other cases, it is
impossible (or too difficult) to find a prim-
itive of the density function for the direct
calculation of the corresponding distribution
function.
The values of the distribution function are
calculated in advance and represented in
a statistical table to simplify use.

EXAMPLES
The normal table, the Student table, Fish-
er’s tables, and the chi-square are examples
of statistical tables.

FURTHER READING
� Binomial table
� Chi-square table
� Distribution function
� Fisher table
� Kruskal-Wallis table
� Normal table
� Student table
� Wilcoxon signed table
� Wilcoxon table
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Statistic

Statistic is the result of applying a function
to a sample of data where the function itself
is independent of the sampling distribution.

MATHEMATICAL ASPECTS
A statistic is an observable random vari-
able, this differentiates it from a parameter.
Completeness, sufficiency and unbiasedness
are important desirable properties of statis-
tics.

EXAMPLES
arithmetic mean, variance, standard de-
viation.

FURTHER READING
� Chi-square test of independence
� Percentile
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� p-value
� Quantile
� Student test

Statistics

The word statistics, derived from Latin,
refers to the notion of state (status): “What
is relative to the state”. Governments have
a great need to count and measure numer-
ous events and activities, such as changing
demographics,births, immigration and emi-
gration trends, changes in employment rates,
businesses, etc.
In this perspective, the term “statistics” is
used to indicate a set of available data about
a given phenomenon (e. g., unemployment
statistics).
In the more modern and more accurate sense
of the word, “statistics” is considered a disci-
pline that concerns itself with numeric data.
It is made up of a set of techniques for
obtaining knowledge from incomplete data,
from a rigorous scientific system for manag-
ing data collection, their organization, anal-
ysis, and interpretation, when it is possible
to present them in numeric form.
In a population of individuals, we would like
to know, in termsof statistical theory, if agiv-
en individual has a car or if he smokes. On
the other hand, we would like to know how
many individuals have acarand are smokers,
and if there is a relation between possessing
a car and smoking habits in the studied pop-
ulation.
We would like to know the traits of the pop-
ulation globally, without concerning our-
selves with each person or each object in the
population.
We distinguish two subsets of techniques:
(1) those involving descriptive statistics

and (2) those involving inferential statis-
tics. The essential goal of descriptive statis-
tics is to represent information in a com-
prehensible and usable format. Inferential
statistics, on the other hand, aims to facili-
tate the generalization of this information or,
more specifically, to make inferences (con-
cerning populations) based on samples of
these populations.

HISTORY
The term “statistics”, derived from the Latin
“status” (state), was used for the first time,
according to Kendall, M.G. (1960), by a his-
torian named Ghilini, Girolamo in 1589.
According to Kendall, M.G. (1960) the true
origin of modern statistics dates back to
1660.
Statistical methods and statistical distri-
butions developed principally in the 19th
century thanks to the important role of
statistics in experimental and human sci-
ences.
In the 20th century, statistics became a sep-
arate discipline because of the wealth and
diversity of methods that it uses. This also
explains the birth of specialized statisti-
cal encyclopedias such as the International
Encyclopedia of Statistics (1978) published
in two volumes and the Encyclopedia of Sta-
tistical Sciences (1982–1988) in nine vol-
umes.

DOMAINS AND LIMITATIONS
Statistics is used in many domains, all of
them very different from one another. Thus
we find it being used in industrial production
in theenvironmental and medicalScience, as
well as in official agencies.
Let us look at some of the areas that might
interest a statistician:
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• Fundamental research in statistics:
research in probabilities, statistical meth-
ods, and theory.

• Biology: fundamental research and expe-
riments related to the principal phenom-
ena of living organisms and biometry.

• Commerce: data management, sales vol-
ume, management, inventory methods,
industrial planning, communication and
theoreticalcontrol,andaccountingproce-
dures.

• Demography: study of the increase in
human population (birth and death rate,
migratory movement), study of the struc-
ture of populations (personal, social, and
economic characteristics).

• Economy: measure of the volume of pro-
duction, commerce, resources, employ-
ment, and standard of living; analysis of
the consumer and manufacturer behavior,
responses of the market to price changes,
impact of advertising, and government
policies.

• Education: measures and tests related to
the process of studying.

• Engineering: research and experiments
including design and efficiency testing,
improvements in test methods, questions
related to inference and precision tests,
improvements inqualitycontrolmethods.

• Health: cost of accidents, medical care,
hospitalization.

• Insurance: determining mortality and
accident rates of insured people and of
the general population; determining the
prime rate for each category of risk;
application of statistical techniques to
insurance policy management.

• Marketing and research on consump-
tion: problems related to markets, the

distribution system, detection of trends;
studyofconsumerpreferencesandbehav-
ior.

• Medicine: epidemiology, fundamental
research and experiments on the causes,
diagnosis, treatment, and prevention of
illnesses.

• Management and administration: prob-
lems related to personnel management,
equipment, methods of production, and
work conditions.

• Psychology and psychometry: problems
related to the evaluation of the study
capacity, intelligence,personalcharacter-
istics, and normal and abnormal behavior
of an individual as well as the establish-
mentof scalesofmeasurementand instru-
ments of measure.

• Social sciences: establishment of tech-
niques of sampling and theoretical tests
concerning social systems and societal
well-being. Analysis of the cost of the
social sciences; analysis of cultural dif-
ferences on the level of values and social
behavior.

• Space research: interpretation of expe-
rimentsand analysisof datacollected dur-
ing space missions.

• Sciences (in general): fundamental
research in the natural and social sci-
ences.

FURTHER READING
� Bayesian statistics
� Descriptive statistics
� Genetic statistics
� Inferential statistics
� Official statistics
� Spatial statistics
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Stem and Leaf
See stem-and-leaf diagram.

Stem-And-Leaf Diagram
The stem-and-leaf diagram is a graphical
representation of frequencies. The basic
idea is to provide information on the fre-
quency distribution and retain the values
of the data at the same time. Indeed, the stem
corresponds to the class intervals and the
leaf to the number of observations in the
class represented by the different data. It is
then possible to directly read the values of
the data.

HISTORY
The origin of the stem-and-leaf diagram is
often associated with Tukey, J.W. (1977). Its
concept is based on the histogram, which
dates back to the 18th century.

MATHEMATICAL ASPECTS
To construct a stem-and-leaf diagram, each
number must be cut into a main part (stem)

and asecondary part (leaf).Forexample,4.2,
42,or420 can beseparated into 4 for thestem
and 2 for the leaf. The stems are then list-
ed vertically (one line per stem) in order of
magnitude and the leaves are written next to
them, also in order of magnitude. If a set of
data includes the values 4.2, 4.4, 4.8, 4.4,
and 4.1, then the stem and leaf are as fol-
lows:

4|12448 .

DOMAINS AND LIMITATIONS
The stem-and-leaf diagram provides infor-
mation about distribution, symmetry, con-
centration, empty sets, and outliers.
Sometimes there are too many numbers with
the same stem. In this case it is not possible
to put them all on the same line. The most
common solution consists in separating the
ten leaves into two groupsoffive leaves, e.g.,
4|0122444 and 4|567889.
It is possible to compare two series of data
by putting the two leaves to the left and right
of the same stem:

012244|4|567889 .

EXAMPLES

Per-capita GNP – 1970 (in dollars)

AFRICA

Algeria 324 Mauritius 233

Angola 294 Morocco 224

Benin 81 Mozambique 228

Botswana 143 Niger 90

Burundi 67 Nigeria 145

Central
African Rep.

127 Reunion 769

Chad 74 Rwanda 60

Comores 102 Senegal 236



S

Stochastic Process 521

AFRICA

Congo 238 Sierra
Leone

167

Egypt 217 Somalia 89

Equat. Guinea 267 South Africa 758

Ethiopia 72 Rhodesia
(South)

283

Gabon 670 Sudan 117

Gambia 101 Swaziland 270

Ghana 257 Togo 135

Guinea 82 Tunisia 281

Guinea-
Bissau

259 Uganda 135

Ivory Coast 347 United Rep.

Kenya 143 of Cameroon 185

Lesotho 74 United Rep.

Liberia 268 of Tanzania 100

Madagascar 133 High-Volta 59

Malawi 74 Zaire 88

Mali 54 Zambia 421

Mauritania 165

Source: Annual Statistics of the UN, 1976

The above table gives the per-capita GNP, in
dollars, for most African countries in 1970.
To establish a stem-and-leaf diagram from
these data, they are first classified in order
of magnitude. The stem is then chosen: in
this example we will use hundreds. The tens
number is then placed to the right of the
corresponding hundred, which gives the leaf
part of the diagram. The units are not taken
into account.
The stem and leaf are as follows:

Unit: 1 1 = 110

0 5566777788889

1 00012333444668

2 12233355667889

Unit: 1 1 = 110

3 24

4 2

5

6 7

7 56

FURTHER READING
� Frequency distribution
� Graphical representation
� Histogram

REFERENCES
Tukey, J.W.: Explanatory Data Analysis,

limited preliminary edition. Addison-
Wesley, Reading, MA (1970–1971)

Stochastic Process

A stochastic process is a family of ran-
dom variables. In practice, it serves to mod-
el a large number of temporal phenomena
where chance comes into play.
We distinguish many types of stochastic pro-
cesses using certain mathematical proper-
ties. The best known are:
• Markov process (or Markov chain)
• Martingale
• Stationary process
• Process of independent increments

HISTORY
Stochastic processes originally resulted
from advances in the early 20th century in
certain applied branches of statistics such as
statistical mechanics (by Gibbs, J.W., Boltz-
mann, L., Poincaré, H., Smoluchowski, M.,
and Langevin, P.). The theoretical founda-
tions were formulated later by Doob, J.L.,
Kolmogorov, A.N., and others (1930–1940).
During this period the word “stochastic”,
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from the Greek word for “guess, believe,
imagine”, started to be used. Other advances
were made starting from a Brownian move-
ment in physics (by Einstein, A., Levy, P.,
and Wiener, N.).
The Markov process was invented by
Markov, Andrei Andreevich (1856–
1922), who laid the foundation for the theory
of Markov processes in finite time, gener-
alized by the Russian mathematician Kol-
mogorov, A. (1936).

MATHEMATICAL ASPECTS
A stochastic process is a family (Xt)t∈I

(where I is a discrete or continuous set) of
random variables defined on the same proba-
bility space. The processes in discrete time
are represented by the following families
(Xt)t∈� (that iswith I = �)and theprocesses
in continuous time by the families (Xt)t∈�+
(that is, with I = �+ = [0,∞)).
The term “stochastic process” is used if set I
is infinite. In physics, the elements of I rep-
resent time.
For an event w belonging to the fundamen-
tal set�,wedefine the trajectoryof thestud-
ied process as being the following family:

(Xt (w))t∈I ,

so that the “series” (for a process in discrete
time) of the values of the random variables
is taken for a chosen and fixed element.
The principal objects of the study of random
process are the properties of random vari-
ables and trajectories.
We characterize the different types of pro-
cesses relative to the probabilistic conditions
to which they are related.
1. Markov process

A Markov process is a random process
(Xt)t∈� in discrete time for which the

probability of an event (in time t +
1) depends only on the immediate past
(time t).
This is mathematically expressed by the
following condition:
For each t ∈ � and for each i0, i1, . . . ,
it+1 ∈ �+ we have:

P(Xt+1 = it+1|Xt = it,

Xt−1 = it−1, . . . , X0 = i0)

= P(Xt+1 = it+1|Xt = it) .

2. Martingale
A martingale is a random process (Xt)t∈�

in discrete time that verifies the following
condition:
For each t ∈ �:

E(Xt+1 |Xt, Xt−1, . . . , X0 ) = Xt .

3. Stationary process
A stationary process (in the strict sense of
the term) is a random process (Xt)t∈� for
which the joint distributions of the pro-
cess depend only on the time difference
(between the considered variables in the
joint distribution) and not on the “abso-
lute” time. Mathematically:
For each t1, t2, . . . , tk ∈ I(k ≥ 2)

and for each a ∈ I, Xt1 , Xt2 , . . . , Xtk
have the same joint distribution as
Xt1+a, Xt2+a, . . . , Xtk+a.

4. Process with independent increments
A process with independent increments is
a random process (Xt)t∈I for which:
For each t1 < t2 < . . . < tk ∈ I: Xt2 −
Xt1 , Xt3−Xt2 , . . . , Xtk −Xtk−1 the random
variables are reciprocally independent.

DOMAINS AND LIMITATIONS
Theoretically, there is no difference between
the study of stochastic processes and statis-
tics itself. In practice, the study of stochas-
tic processes focuses more on the structure
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and properties of models than on inferences
from real data, which is properly the domain
of statistics.

EXAMPLES
1. Here we give an example that shows

the close mathematical relations between
statistics and stochastic processes. We
consider the random variable Xi = age
of individual i of a population (potential-
ly infinite). A typical problem is to esti-
mate the mean E (X) with the following
hypothesis:
• Random variable Xi is independent.
• All Xi are identically distributed.

2. Random walk. Let Zn, n ≥ 2, be inde-
pendent and identically distributed ran-
dom variables taking the value +1 with
probabilitypandthevalue−1withproba-
bility q = 1− p.
We define the stochastic process of the
random walk as follows:

X0 = 0, Xt =
t∑

n=1

Zn if t > 1 .

A sample of a random walk is typically
represented as follows:

(0, 1, 2, 1, 0,−1, 0,−1,−2,−3,−2, . . .) .

It is easy to see that the defined stochastic
process is a Markov process (this fact is
a direct consequence of the independence
of Xt) with the following probabilities:

P (Xt+1 = i+ 1 |Xt = i ) = p ,

P (Xt+1 = i− 1 |Xt = i ) = q .

We have that:

E(Xt+1 |Xt ) = Xt + (+1) · p+ (−1) · q
= Xt + (p− q).

The random walk is a martingale if and
only if p = q = 0.5.

FURTHER READING
� Convergence
� Random variable
� Statistics
� Time series

REFERENCES
Barlett, M.S.: An Introduction to Stochastic

Processes. Cambridge University Press,
Cambridge (1960)

Billingsley, P.: Statistical Inference for
Markov Processes. University of Chicago
Press, Chicago (1961)

Cox, D.R., Miller, H.D.: Theory of Stochas-
tic Processes. Wiley, New York; Methuen,
London (1965)

Doob, J.L.: What is a stochastic process?
Am. Math. Monthly 49, 648–653 (1942)

Doob, J.L.: Stochastic Processes. Wiley,
New York (1953)

Kolmogorov, A.N.: Math. Sbornik. N.S. 1,
607–610 (1936)

Stratified Sampling

In stratified sampling, the population is
first divided into subpopulations called stra-
ta. These must not interpenetrate each other,
and the set of these strata must constitute the
whole population.
Once the strata have been determined, a ran-
dom sample is taken (not necessarily of the
same size) from each stratum, this sampling
being done independently in the different
strata.

HISTORY
See sampling.
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MATHEMATICAL ASPECTS
With respect to determining thenumber indi-
viduals to be taken from each stratum, there
are mainly two approaches: the representa-
tive stratified sample and the optimal strat-
ified sample.

Representative Stratified Sample
In each stratum, a number of individuals pro-
portional to the magnitude of the stratum is
taken.
Let Ni be the magnitude of stratum i, N the
numberofindividualsof thepopulation,and
n the size of the global sample. The size of
a subsample ni is defined by:

ni = Ni

N
· n , i = 1, 2, . . . , k ,

where k is the number of strata in the popu-
lation.

Optimal Stratified Sample
The goal is to determine the sizes of the sub-
samples to be taken to obtain the best possi-
ble estimation. This is done by minimizing
the variance of the estimator m under the
constraint

k∑
i=1

ni = n ,

where m is the mean of the sample defined
by:

m = 1

N

k∑
i=1

Nix̄i ,

where x̄i is the mean of subsample i. This is
a classical optimization problem and gives
the following result:

ni = n
k∑

i=1
Ni · σi

Ni · σi ,

where σi is the standard deviation of stra-
tum i.

Given a constant factor n/

k∑
i=1

Ni · σi, the

size of the subset is proportional to the mag-
nitude of the stratum and to the standard
deviation.
The larger the dispersion of the studied vari-
able in the stratum and the larger the size of
Ni, the larger the size of subsample ni.

DOMAINS AND LIMITATIONS
Stratified sampling is based on the idea of
obtaining, as a result of controlling certain
variables, a sample that recreates an image
that is as close as possible to the population.
The dispersion in the population may be
strong; in this case, to maintain the sampling
error at an acceptable level, a very large
sample must be created, which can increase
the cost considerably. To avoid this problem,
stratified sampling can be a good alternative.
The population can be subdivided into stra-
ta in such a way that the variation within the
strata is relatively low,which will reduce the
required sample size for a given sampling
error.
Stratified sampling may be justified for the
following reasons:
1. If the population is too heterogeneous, it

is preferable to have more homogeneous
groupstoobtainasample that ismorerep-
resentative of the population.

2. If one wants to obtain information on par-
ticular aspects of a population (e.g., with
respect to different states), stratified sam-
pling is better suited for this.

A control character used to define the strata
must obey the following rules:
• It must be in close correlation with the

studied variables.



S

Student 525

• It must have a known value for every unit
of the population.

Some of the most commonly used control
variables are gender, age, region, sociopro-
fessional class, etc.

EXAMPLES
Considerapopulationof600studentsdivid-
ed into 4 strata. We are interested in the
results of a test with scores ranging from 0
to 100.
Suppose we have the following information:

Size Ni Standard deviation σi

Stratum 1 285 8.6

Stratum 2 150 5.2

Stratum 3 90 2.2

Stratum 4 75 1.4

If we want to take a stratified sample of 30
individuals,weobtain thefollowingsubsam-
ples:
1. Representative stratified sample

ni = Ni

N
· n

We then obtain the following values,
rounded to the nearest integer:

n1 = N1

N
· n

= 285

600
· 30

= 14.25

≈ 14

n2 = 7.5 ≈ 7

n3 = 4.5 ≈ 5

n4 = 3.75 ≈ 4

2. Optimal stratified sample

ni = n
k∑

i=1
Ni · σi

· Ni · σi

We have:

N1 · σ1 = 2451

N2 · σ2 = 780

N3 · σ3 = 198

N4 · σ4 = 105

The constant factor n/

4∑
i=1

Ni · σi is equal

to:

n
k∑

i=1
Ni · σi

= 30

3534
= 0.0085 .

We obtain the following values, rounded
to the nearest integer:

n1 = 0.0085 · 2451 = 20.81 ≈ 21

n2 = 0.0085 · 780 = 6.62 ≈ 6

n3 = 0.0085 · 198 = 1.68 ≈ 2

n4 = 0.0085 · 105 = 0.89 ≈ 1 .

If wecompareboth methods,wecan see that,
given a more homogeneous stratum, the sec-
ond method takes a larger numberof individ-
uals in the first stratum (the most dispersed)
and a smaller number of individuals in the
second stratum.

FURTHER READING
� Estimation
� Estimator
� Sampling
� Simple random sampling

REFERENCES
Yates, F.: Sampling Methods for Censuses

and Surveys. Griffin, London (1949)

Student
See Sealy, Gosset William.
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Student Distribution
Random variable T follows a Student
distribution if its density function is of the
form:

f (t) =



(
v+1

2

)
√

vπ · 
 ( v
2

)
(

1+ t2

v

)− v+1
2

,

where 
 is the gamma function (see gamma
distribution)andv thenumberofdegrees of
freedom.

Student distribution, ν = 7

The Student distribution is a continuous
probability distribution.

HISTORY
TheStudentdistributionwascreatedbyGos-
set, W.S., known as “Student”, who in 1908
publishedanarticle inwhichhedescribedthe
density function of the difference between
the mean of a sample and the mean of the
population from which the sample was tak-
en, divided by the standard deviation of the
sample. He also provided in the same arti-
cle the first table of the corresponding distri-
bution function.
Student continued his research and in 1925
published an article in which he proposed
new tables that were more extensive and
more precise.
Fisher, R.A. was interested in Gosset’s
works. He wrote him in 1912 to propose

a geometric demonstration of the Student
distribution and to introduce the notion of
degrees of freedom. In 1925 he published
an article in which he defines the ratio t:

t = Z√
X
v

,

where X and Z are two independent random
variables,X isdistributedaccording toachi-
square distribution with v degrees of free-
dom, and Z is distributed according to the
centered and reduced normal distribution.
This ratio is called the t of Student.

MATHEMATICAL ASPECTS
If X is a random variable that follows
a chi-square distribution with v degrees
of freedom, and Z is a random variable dis-
tributed according to the standard normal
distribution, then the random variable

T = Z√
X
v

follows a Student distribution with v degrees
of freedom if X and Z are independent.
Consider random variable T:

T =
√

n (x̄− μ)

S
,

where x̄ is the mean of a sample, μ is the
mean of the population fromwhich thesam-
ple was taken, and S is the standard devia-
tion of the sample given by:

S =
√√√√ 1

n− 1
·

n∑
i=1

(xi − x̄)2 .

Then T follows a Student distribution with
n− 1 degrees of freedom.
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The expected value of random variable T
following a Student distribution is given by:

E [T] = 0 , v > 1 ,

and the variance is equal to:

Var (T) = v

v− 2
, v > 2 ,

where v is the number of degrees of free-
dom.
The Student distribution is related to other
continuous probability distributions:
• When the number of degrees of free-

dom is sufficiently large, the Student
distribution approaches a normal distri-
bution.

• When the number of degrees of freedom
v is equal to 1, the Student distribution is
identical to a Cauchy distribution with
α = 0 and θ = 1.

• If random variable X follows a Student
distribution with v degrees of freedom,
then random variable X2 follows a Fish-
er distribution with 1 and v degrees of
freedom.

DOMAINS AND LIMITATIONS
The Student distribution is a symmetric
distribution with a mean equal to 0.The larg-
er its number of degrees of freedom, the
smaller its standard deviation becomes.
The Student distribution is used in inferen-
tial statistics in relation to the t ratio of Stu-
dent in hypothesis testing and in the con-
struction of confidence intervals for the
mean of a population.
In tests of analysis of variance, the Stu-
dent distribution can be used when the sum
of squares between the groups (or the sum of
squares of the factors) to be compared only
has one degree of freedom.

The normal distribution can be used as
an approximation of the Student distribution
when the number of observations n is large
(n > 30 according to most authors).

FURTHER READING
� Cauchy distribution
� Continuous probability distribution
� Fisher distribution
� Normal distribution
� Student table
� Student test

REFERENCES
Fisher, R.A.: Applications of “Student’s”

distribution. Metron 5, 90–104 (1925)

Gosset, S.W. “Student”: The Probable Error
of a Mean. Biometrika 6, 1–25 (1908)

Gosset, S.W. “Student”: New tables for
testing the significance of observations.
Metron 5, 105–120 (1925)

Student Table
The Student table gives the values of the
distribution function of a random vari-
able following a Student distribution.

HISTORY
Gosset, William Sealy, known as “Stu-
dent”, developed in 1908 the Student test
and the table bearing his name.

MATHEMATICAL ASPECTS
Let random variable T follow a Student
distribution with v degrees of freedom. The
density function of random variable T is
given by:

f (s) =



(
v+1

2

)
√

vπ · 
 ( v
2

)
(

1+ s2

v

)−(v+1)/2

,
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where 
 represents the gamma function (see
gamma distribution).
The distribution function of random vari-
able T is defined by:

F (t) = P (T ≤ t) =
∫ t

−∞
f (s) ds .

For each value of v, the Student table gives
the value of the distribution function F (t).
Since the Student distribution is symmetric
relative to the origin, we have:

F (t) = 1− F (−t) ,

which allows to determine F (t) for each neg-
ative value of t.
TheStudent table isused in the inverse sense:
to find the values of t corresponding to a giv-
en probability. In thiscase, theStudent table
gives the critical value for the number of
degrees of freedom v and the significance
levelα. We generally denote by tv,α the value
of random variable T for which:

P
(
T ≤ tv,α

) = 1− α .

DOMAINS AND LIMITATIONS
See Student test.

EXAMPLES
See Appendix E.
We consider a one-tailed Student test on
a sample of dimension n. For v = n − 1
degrees of freedom, the Student table allows
to determine the critical value tv,α of the test
for the given significance level α.
For an example using the Student table, see
Student test.

FURTHER READING
� Statistical table
� Student distribution
� Student test

REFERENCES
Fisher, R.A.: Applications of “Student’s”

distribution. Metron 5, 90–104 (1925)

Gosset, S.W. “Student”: The Probable Error
of a Mean. Biometrika 6, 1–25 (1908)

Gosset, S.W. “Student”: New tables for
testing the significance of observations.
Metron 5, 105–120 (1925)

Student Test

The Student test is a parametric hypothesis
test on the sample mean or on the compar-
ison of the means of two samples.

HISTORY
See under history of Student table.

MATHEMATICAL ASPECTS
Let X be a random variable distributed
according to a normal distribution. Ran-
dom variable T defined above follows a Stu-
dent distribution with n−1 degrees of free-
dom:

T = X̄ − μ

S√
n

,

where X̄ is the arithmetic mean of the sam-
ple, μ is the mean of the population, S is the
standard deviation of the sample, and n is
the sample size.
The Student test consists in calculating this
ratio for the sample data and comparing it
with the theoretical value of the Student
table.
A. Student test for one or single sample
1. The hypotheses we want to test is:

– Null hypothesis:

H0 : μ = μ0 .
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We should test if the sample comes
from a population with a specified
mean, μ0, or if there is a statistical-
ly significant difference between the
observed mean in the sample and the
hypothetical mean on the population
(μ0) under H0.

– Alternative hypothesis:
The alternative hypothesis can take
three forms:

H1 : μ > μ0 (one-sided test
on the right)

H1 : μ < μ0 (one-sided test
on the left)

H1 : μ �= μ0 (two-sided test) .

2. Calculation of the t-statistic as:

t = x̄− μ0
S√
n

,

where μ0 is the mean of the population
specified by H0, x̄ is the sample mean, S
is the sample standard deviation, and n is
the sample size.

3. Choose of significance level α of test
4. Compare of the calculated value t with the

appropriate critical value tn−1 (the value
from the Student table with n−1 degrees
of freedom). Reject H0 if the absolute val-
ue of t is greater than the critical value
tn−1.
The critical values for different degrees of
freedom and different significance levels
are given by the Student table.
For a one-sided test we take the value
tn−1,1−α in the table, and for a two-sided
test we take the value tn−1,1− α

2
.

B. Student test for two samples
1. The hypotheses we want to test are:

– Null hypothesis:

H0 : μ1 = μ2 .

In a test that designed to compare
two samples, we want to know if
there exists a significative difference
between the mean of two populations
from which the samples were drawn.

– Alternative hypothesis:
It can take the following three forms:

H1 : μ1 > μ2 (one-sided test
on the right)

H1 : μ1 < μ2 (one-sided test
on the left)

H1 : μ1 �= μ2 (two-sided test) .

2. Compute the t-statistic by:

t = x̄1 − x̄2

Sp ·
√

1
n1
+ 1

n2

,

wheren1 andn2 are therespectivesamples
sizes and Sp is the pooled standard devi-
ation:

Sp =
√

(n1 − 1) S2
1 + (n2 − 1) S2

2

n1 + n2 − 2

=

√√√√√√√

2∑
i=1

ni∑
j=1

(
xij − x̄i

)
2

n1 + n2 − 2
,

where S2
1 represents the sample standard

deviation 1, S2 that of sample 2, and xij

observation j of sample i.
3. Choose the significance level α of test
4. Compare of the calculated value of t with

the critical value tn1+n2−2,1− α
2

(the value
of the Student table with (n1 + n2 − 2)

degrees of freedom). Reject H0 if the
absolute value of t is greater than that of
the critical value.
If the test is one-sided, then take the val-
ue tn1+n2−2,1−α from the Student table,
and if it is two-sided, take the value
tn1+n2−2,1− α

2
.
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Test of Signification of Coefficient
of Regression
The Student test can also be applied to
regression problems. Consider a simple lin-
ear regression model for which the data con-
sist of n pairs of observations (xi, yi), i =
1, . . . , n, modeled by

yi = β0 + β1 · xi + εi ,

where the εi are the random independent and
normally distributed errors with mean 0 and
variance σ 2.
The estimators of β0 and β1 are given by:

β̂0 = ȳ− β̂1 · x̄ ,

β̂1 =

n∑
i=1

(xi − x̄) (yi − ȳ)

n∑
i=1

(xi − x̄) 2

.

Theestimator β̂1 isnormally distributed with
mean β1 and variance

Var(β̂1) = σ 2

n∑
i=1

(xi − x̄) 2

.

If σ 2 is estimated by the mean of squares of
residuals S2 and replaced in the expression
by the variance of β̂1, then the ratio

T = β̂1 − β1√
V̂ar

(
β̂1

)

is distributed according to the Student distri-
bution with n− 2 degrees of freedom.
At a certain significance level α we can
make a Student test of the coefficientβ1. The
hypotheses are the following:

Null hypothesis H0 : β1 = 0

Alternative hypothesis H1 : β1 �= 0 .

If the absolute value of the calculated ratio
T is greater than the value of t in the Stu-
dent table tn−2,1− α

2
, then we can conclude

that the coefficient β1 is significatively dif-
ferent from zero. In the contrary case, we
cannot reject the null hypothesis (β1 = 0).
We conclude in this case that the slope of the
regression line is not significatively different
from zero.
A similar test can be made for the constant
β0:
Theestimator β̂0 isnormally distributed with
mean β0 and variance

Var(β̂0) = σ 2 ·

⎡
⎢⎢⎢⎢⎣

n∑
i=1

x2
i

n∑
i=1

(xi − x̄)2

⎤
⎥⎥⎥⎥⎦

.

If σ 2 is estimated by the mean of squares of
residualsS2 and is replaced by theexpression

Var
(
β̂0

)
, then the ratio

T = β̂0 − β0√
V̂ar

(
β̂0

)

is distributed according to the Student distri-
bution with n− 2 degrees of freedom.
The Student test concerns the following
hypotheses:

Null hypothesis H0 : β0 = 0

Alternative hypothesis H1 : β0 �= 0 .

If the absolute value of the calculated ratio
T is greater than the value of t in the Stu-
dent table tn−2,1− α

2
, then we can conclude

that the coefficient β0 is significatively dif-
ferent from zero. In the contrary case, we
cannot reject the null hypothesis (β0 = 0).
We conclude that the regression is not signi-
ficatively different from zero.
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DOMAINS AND LIMITATIONS
Generally, we should be very attentive to
the choice of the test to perform. The Stu-
dent test is often falsely applied. In fact, it
means something only if the observations
come from a normally distributed popula-
tion or are close to a normally distributed
one. If this requirement is not satisfied, the
critical value of the Student test does not
provide an absolute guarantee.
If the normal distribution is applicable, the
Student test on a sample is used when the
standard deviation of the population is
unknown and when the dimension of the
sample is not large (n < 30).
Likewise, when there are two samples, the
Student test is used when the standard devi-
ations of two populations are unknown and
supposed equal and when the sum of dimen-
sions of samples is relatively small (n1 +
n2 < 30).

EXAMPLES
Student Test on a Sample
Consider a sample of dimension n = 10
where the observations are normally dis-
tributed and are the following:

47 51 48 49 48 52 47 49 46 47 .

We want to test the following hypotheses:

Null hypothesis H0 : μ = 50

Alternative hypothesis H1 : μ �= 50 .

The arithmetic mean of the observations
equals:

x̄ =

10∑
i=1

xi

n
= 484

10
= 48.4 .

We summarize the calculation in the follow-
ing table:

xi
(
xi − x̄

)2

47 1.96

51 6.76

48 0.16

49 0.36

48 0.16

52 12.96

47 1.96

49 0.36

46 5.76

47 1.96

Total 32.4

The standard deviation equals:

S =

√√√√√
10∑

i=1
(xi − x̄)2

n− 1
=

√
32.4

9
= 1.90 .

We calculate the ratio:

t = x̄− μ

S√
n

= 48.4− 50
1.90√

10

= −2.67 .

The number of degrees of freedom associat-
ed to the test equals n− 1 = 9.
If we choose a significance level α of 5%,
then the value tn−1,1− α

2
of the Student table

equals:
t9,0.975 = 2.26 .

As |t| = 2.67 > 2.26, we reject the null
hypothesis and conclude that at a signifi-
cance level of 5%, the sample does not come
from a population with a mean μ = 50.

Student Test on Two Samples
A study is conducted to compare the mean
lifetime of two brands of tires. A sample was
taken for each brand. The results are:
• For brand 1:

Mean lifetime: x̄1 = 72000 km
Standard deviation: S1 = 3200 km
Sample dimension: n1 = 50
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• For brand 2:
Mean lifetime: x̄2 = 74400 km
Standard deviation: S2 = 2400 km
Sample size: n2 = 40

Wewant toknowif thereexistsasignificative
difference in the lifetime of the two brands
of tires, at a significance level α of 1%.
This implies the following hypotheses:

Null hypothesis H0 :

μ1 = μ2 or μ1 − μ2 = 0

Alternative hypothesisH1 :

μ1 �= μ2 or μ1 − μ1 �= 0 .

The weighted standard deviation Sp equals:

Sp =
√

(n1 − 1) · S2
1 + (n2 − 1) · S2

2

n1 + n2 − 2

=
√

49 · 32002 + 39 · 24002

50+ 40− 2

= 2873.07 .

We can calculate the ratio t:

t = x̄1 − x̄2

Sp ·
√

1
n1
+ 1

n2

= 72000− 74400

2873.07 ·
√

1
50 + 1

40

= −3.938 .

The number of degrees of freedom associat-
ed to the test equals:

v = n1 + n2 − 2 = 88 .

The value of tv,1− α
2

found in the Student
table, for α = 1%, is:

t88,0.995 = 2.634 .

As the absolute value of the calculated ratio
is greater than this value, |t| = |−3.938| >

2.634, we reject the null hypothesis for the
alternative hypothesis and conclude that at
the significance level 1%, the two brands of
tires do not have the same mean lifetime.

FURTHER READING
� Hypothesis testing
� Parametric test
� Student distribution
� Student table

REFERENCES
Fisher, R.A.: Applications of “Student’s”

distribution. Metron 5, 90–104 (1925)

Gosset, S.W. “Student”: The Probable Error
of a Mean. Biometrika 6, 1–25 (1908)

Gosset, S.W. “Student”: New tables for
testing the significance of observations.
Metron 5, 105–120 (1925)

Sure Event

See sample space.

Survey

An inquiry by survey, or simply survey, is an
inquiry madeon a restrictedpartofapopula-
tion. This fraction of the population consti-
tutes the sample, and the methods that allow
one to construct this sample are called sam-
pling methods.
Proceeding with the survey, we obtain
information on the sampled units. Then,
with the help of inferential statistics, we
generalize this information to the entire
population. This generalization intro-
duces a certain error. The importance of this
error will depend on the sample size, how
they were chosen on the sampling scheme
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used to draw the sample, and the estima-
tor that was used. The more representative
the sample, the smaller the error. Sampling
methods are very useful in order to draw
samples which result in a minimal error.
Another technique consists in observing all
individuals of a population. We refer here
to a census. Surveys have cost and speed
advantages over censuses that largely com-
pensate for sampling error. Moreover, it is
sometimes impossible to carry out a census,
forexample,whenthefactofobservingaunit
ofapopulationmeansitsdestructionorwhen
the population is infinite.

FURTHER READING
� Census
� Data collection
� Inferential statistics
� Panel
� Population
� Sample
� Sampling

REFERENCES
Gourieroux, C.: Théorie des sondages. Eco-

nomica, Paris (1981)

Grosbras, J.M.: Méthodes statistiques des
sondages. Economica, Paris (1987)

Systematic Sampling

Systematic sampling is a random type of
sampling. Individuals are taken from a pop-
ulation at fixed intervals according to time,
space, or order of occurrence, the first indi-
vidual being drawn randomly.

HISTORY
See sampling.

MATHEMATICAL ASPECTS
Consider a population composed of N indi-
viduals. A systematic sample is made up
of individuals whose numbers consitute an
arithmetic progression.
Afirstnumberb is chosen randomlybetween
1 and r,where r = N

n , n is the sizeof the sam-
ple,andr iscommondifferencebetweensuc-
cessive form of the arithmetic progression.
Individuals sampled in this way will have the
following numbers:

b, b+ r, b+ 2r, . . . , b+ (n− 1) r .

DOMAINS AND LIMITATIONS
Systematic sampling is possible only if the
individuals are classified in a certain order.
The main advantage of this method lies in its
simplicity and, therefore, its low cost.
On the other hand, it has the disadvantage of
not taking into account an eventual periodic-
ity of the studied trait. Serious errors could
occur from this, especially if the period is
a submultiple of the ratio of the arithmetic
progression.

EXAMPLES
Consider a population of 600 students
grouped in alphabetical order from which
we want to take a sample of 30 individuals
according to systematic sampling.
The ratio of the arithmetic progression is
equal to:

r = N

n
= 600

30
= 20 .

A first number is chosen randomly between
1 and 20, for example b = 17.
The samplewillbecomposed of thestudents
with the numbers:

17, 37, 57, . . . , 597 .
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FURTHER READING
� Cluster sampling
� Sampling

REFERENCES
Deming, W.E.: Sample Design in Business

Research. Wiley, New York (1960)
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Target Population

The concept of the target population is
defined as a population to which we would
like to apply the results of an inquiry.

EXAMPLES
We want to conduct an inquiry on foreigners
living in city X. The population is represent-
ed by the list of foreigners registered in the
city.
The target population is defined by the col-
lection of foreigners living in city X, includ-
ing those not on the list (unannounced, clan-
destine, etc.).

FURTHER READING
� Population

Test of Independence

A test of independence is a hypothesis test
where theobjective is todetermineif tworan-
dom variables are independent or not.

HISTORY
See Kendall rank correlation coefficient,
Spearman rank correlation coefficient,
and chi-square test of independence.

MATHEMATICAL ASPECTS
Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be
two samples of dimension n. The objective
is to test the following two hypotheses:

Null hypothesis H0: The two variables X
and Y are independent.

Alternative hypothesis H1: The two vari-
ables X and Y are not independent.

The testof independenceconsists in compar-
ing the empirical distribution with the theo-
retical distribution by calculating an indica-
tor.
The test of independence applied to two con-
tinuous variables is based on the ranks of the
observations. Such is the case if the tests are
based on the Spearman rank correlation
coefficient or on the Kendall rank corre-
lation coefficient.
In the case of two categorical variables, the
most widely used test is the chi-square test
of independence.

DOMAINS AND LIMITATIONS
To make a test of independence each couple
(Xi, Yi), i = 1, 2, . . . , n must come from the
same bivariate population.

EXAMPLES
See chi-square test of independence.
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FURTHER READING
� Chi-square test of independence
� Hypothesis testing
� Kendall rank correlation coefficient
� Nonparametric test
� Spearman rank correlation coefficient

Time Series

A time series is a sequence of observations
measured at succesive times. Time series are
monthly, trimestrial, or annual, sometimes
weekly,daily,or hourly (studyof road traffic,
telephone traffic), or biennial or decennial.
Time series analysis consists of methods that
attempt to understand such time series to
make predictions.
Time series can be decomposed into four
components, each expressing a particular
aspect of the movement of the values of the
time series.
These four components are:
• Secular trend, which describe the move-

ment along the term;
• Seasonal variations, which represent

seasonal changes;
• Cyclical fluctuations, which correspond

to periodical but not seasonal variations;
• Irregular variations, which are oth-

er nonrandom sources of variations of
series.

The analysis of time series consists in mak-
ing mathematical descriptions of these ele-
ments, that is, estimating separately the four
components.

HISTORY
In an article in 1936 Funkhauser, H.G. repro-
duced a diagram of the 10th century that
shows the inclination of the orbit of sev-
en planets in function of time. Accord-

ing to Kendall this is the oldest time dia-
gram known in the western world.
It is adequate to look to astronomy for the
origins of the time series. The observation
of the stars was popular in antiquity.
In the 16th century, astronomy was again
a source of important discoveries. The works
of Brahe, Tycho (1546–1601), whose collec-
tion of data on the movement of the plan-
ets allowed Kepler, Johannes (1571–1630)
to formulate his laws on planetary motion.
A statistical analysis of data, as empirical as
it could be at that time, was at the base of this
great scientist’s work.
The development of mathematics in the 18th
and 19th centuries made it possible to bypass
graphical visualization to arrive at the first
techniques of time series analysis. Using the
frequencyapproach,scientistsdevelopedthe
first works in this domain.
Frequency analysis (also called harmonic
analysis) was originally designed to high-
light one or more cyclical “components” of
a time series.
In 1919, Persons, W.M. proposed a decom-
position of time series in terms of tenden-
cy (secular trends), cyclical cyclical fluc-
tuations), seasonal (seasonal variation),
and accidental (irregular variation) com-
ponents. Many works have been devoted to
the determination and elimination of one or
another of these components.
The determination of tendencies has often
been related to problems of regression anal-
ysis, also developed researchers relative to
nonlinear tendencies, as for example the
Gompertz curve (established in 1825 by
Gompertz, Benjamin) or the logistic curve
(introduced in 1844 by Verhulst, Pierre
François). Another approach to determin-
ing tendencies concerns the use of moving
averages because they allow one to treat the
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problem of tendencies when they serve to
eliminate irregular or periodic variations.
The use of moving averages was devel-
oped in two directions: for actuarial
problems and for the study of the time
series in economy. The use of mov-
ing averages is particularly developed in
frame of the methods of Seasonal Adjust-
ment Methods. More precisely, the sepa-
ration of seasonal variables from the other
components of the time series was studied
originally by Copeland, M.T. in 1915 and
Persons, W.M. in 1919 and continued by
Macauley, F.R. in 1930.
Macauley, F.R. used the method of ratios
to the moving average that is still widely
used today (see seasonal variation) see also
Dufour (2006).

MATHEMATICAL ASPECTS
Let Yt be a time series that can be decom-
posed with the help of these four compo-
nents:
• Secular trend Tt

• Seasonal variations St

• Cyclical fluctuations Ct

• Irregular variations It

We suppose that the values taken by the ran-
dom variable Yt are determined by a rela-
tion between the four previous components.
We distinguish three models of composition:
1. Additive model:

Yt = Tt + Ct + St + It .

The four components are assumed to be
independent of one another.

2. Multiplicative model:

Yt = Tt · Ct · St · It .

With the help of logarithms we pass from
the multiplicative model to the additive
model.

3. Mixed model:

Yt = St + (Tt · Ct · It)

or

Yt = Ct + (Tt · St · It) .

This type of model is very little used.
Wechoose theadditivemodelwhen seasonal
variationsarealmostconstantand their influ-
ence on the tendency does not depend on its
level.
Whentheseasonalvariationsareofanampli-
tudealmostproportional to thatof thesecular
trends, we introduce the multiplicative mod-
el; this is generally the case.
The analysis of time series consists in deter-
mining the values taken by each component.
We always start with the seasonal variations
and end on the cyclical fluctuations. All fluc-
tuations thatcannotbeattributed tooneof the
three components will be grouped with the
irregular variations.
Based on the used model the analysis can,
after the components are determined, adjust
subsequent data by substraction or division.
Thus when we have estimated the secular
trend Tt, at each time t, the time series is
adjusted in the following manner:
– If we use the additive model Yt = Tt +

Ct + St + It:

Yt − Tt = Ct + St + It .

– For the multiplicative model Yt = Tt ·Ct ·
St · It:

Yt

Tt
= Ct · St · It .

Successively evaluating each of the three
components and adjusting the time series
among them, we obtain the values attributed
to the irregular variations.
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DOMAINS AND LIMITATIONS
When the time series are not in a long enough
period, we group the secular trend and
the cyclical fluctuations in one component
called extraseasonal movement.

Graphical Representation
Thegraphical representationoftimeseries
helps to analyze observed values depending
on time.
To analyze these values, a certain number of
precautions must be taken:

1. Each point must be representative to
an observation. If the value represents
a stock, on a fix date, then the point is
found on the reference date. If there is
a flow, for example, monthly, then the
point is fixed in the middle of the month.

2. Sometimes one has to report, on the same
graph, annual data and monthly data. The
representative points of the results should
be 12 times more frequent than those rela-
tive to the annual results. Thus we have to
pay attention to the representative points
in the right place.

3. If many series are represented on thesame
graph, they must be identical in nature.
Otherwise, we should use different scales
or place graphs below one another.

The principal objectives of the study of the
time series are:

• Description: determination or elimina-
tion of different components

• Stochastic modeling
• Forecasting
• Filtering: elimination or conversion of

certain characteristics
• Control: observation of the past of a pro-

cess to react to future evolution

For forecasting, the analysis of time series is
based on the following hypotheses:

• The great historically observed tenden-
ciesaremaintainedinthemoreorlessnear
future.

• Themeasurablefluctuationsofavariable
are reproduced in regular intervals.

The analysis of time series will be justified
as long as it allows one to reduce the level of
uncertainty in the elaboration of forecasts.
We distinguish:
1. Long-term forecast:

Based on the secular trend; generally does
not take intoaccountcyclicalfluctuations.

2. Middle-term forecast:
To take into account the probable effect of
the cyclical component, we should mul-
tiply the forecasted value of the secular
trend by an estimation of the relative dis-
counted variation attributable to the cycli-
cal fluctuations.

3. Short-term forecast:
Generally we do not try to forecast irreg-
ular variations or make short-term fore-
casts or forecasts concerning the longer
periods. Thus we multiply the forecasted
values of the secular trend by estimating
the cyclical fluctuations and by the sea-
sonal variation of the corresponding date.

During an analysis of time series, we face the
following problems:
1. Is the classical model appropriate?

We expect the quality of the results of
analysis to be proportional to the preci-
sion and the accuracy of the model itself.
ThemultiplicativemodelYt = Tt·St·Ct ·It

presupposes that the four components are
independent, which is rarely true in real-
ity.

2. Are our hypotheses of the constancy and
regularity valid?
The analysis must be adjusted for subjec-
tive and qualitative factors that exist in
almost any situation.
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3. Can we trust the available data?
The problem may arise of breaks of series
resulting from insufficiency of data or
a change in the quality of variables.

EXAMPLES
A time series is generally represented as fol-
lows:

We distinguish four components:
• Secular trend, slightly increasing in the

present case
• Seasonal variations, readily apparent
• Cyclicalfluctuations, in theformofcycles

of an approximate amplitude of 27 units
of time

• Irregular variations, generally weak
enough, except t = 38, which repre-
sents a very abrupt fall that would not be
rational

FURTHER READING
� Cyclical fluctuation
� Forecasting
� Graphical representation
� Irregular variation
� Seasonal variation
� Secular trend

REFERENCES
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Trace
For a square matrix A of order n, we define
the trace of A as the sum of the terms situated
on the diagonal. Thus the trace of a matrix is
a scalar quantity.

MATHEMATICAL ASPECTS
Let A be a square matrix of order n, A =(
aij

)
, where i, j = 1, 2, . . . , n. We define

trace A by:

tr (A) =
n∑

i=1

aii .

DOMAINS AND LIMITATIONS
As we are interested only in diagonal ele-
ments, the trace is defined only for square
matrices.
1. The trace of the sum of two matrices

equals the sum of the traces of the matri-
ces:

tr (A+ B) = tr (A)+ tr (B) .

2. The trace of the product of two matrices
does not change with the commutations
of the matrices. Mathematically:

tr (A · B) = tr (B · A) .
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EXAMPLES
LetAandBbetwosquarematricesoforder2:

A =
[

1 2
1 3

]
and B =

[
5 2
−2 3

]
.

The calculation of traces gives:

tr (A) = tr

[
1 2
1 3

]
= 1+ 3 = 4 ,

tr (B) = tr

[
5 2
−2 3

]
= 5+ 3 = 8 ,

and

tr (A+ B) = tr

[
6 4
−1 6

]

= 6+ 6 = 12 .

We verify that tr (A) + tr (B) = 12. On the
other hand:

A · B =
[

1 8
−1 11

]
and

B · A =
[

7 16
1 5

]
,

tr (A · B) = tr

[
1 8
−1 11

]

= 1+ 11 = 12 ,

tr (B · A) = tr

[
7 16
1 5

]

= 7+ 5 = 12 .

Thus tr (A · B) = tr (B · A) = 12.

FURTHER READING
� Matrix

Transformation
A transformation is a change in one or many
variables in a statistical study.
We transform variables, for example,
by replacing them with their logarithms
(logarithmic transformation).

DOMAINS AND LIMITATIONS
We transform variables for many reasons:

1. When we are in the presence of a data set
relative to many variables and we want to
express one of them, Y (dependent vari-
able), with the help of others (called inde-
pendent variables) and we want to lin-
earize the relation between the variables.
For example, when the relation between
independent variables is multiplicative,
a logarithmic transformation of the
data makes it additive and allows the use
of linear regression to estimate theparam-
eters of the model.

2. When we are in the presence of a data
set relative to a variable and its variance
is not constant, it is generally possible to
make it almost constant by transforming
this variable.

3. When a random variable follows any
distribution, an adequate transformation
of it allows to obtain a new random vari-
able that approximately follows a normal
distribution.

The advantages of transforming data set rel-
ative to a variable are largely summarized as
follows:

• It simplifies existing relations with other
variables.

• A remedy for outliers, linearity and
homoscedasticity.

• It produces a variable that is approximate-
ly normally distributed.

FURTHER READING
� Dependent variable
� Independent variable
� Logarithmic transformation
� Normal distribution
� Regression analysis
� Variance
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REFERENCES
Cox, D.R., Box, G.E.P.: An analysis of trans-

formations (with discussion). J. Roy. Stat.
Soc. Ser. B 26, 211–243 (1964)

Transpose

The(matrix) transposeofamatrix Aoforder
(m× n) is a matrix (n×m), denoted by A′,
obtained by writing the lines of A in columns
of A′ and vice versa.
Thus we effect simple “inversion” of the
table.

MATHEMATICAL ASPECTS
If A = (

aij
)
, i = 1, 2, . . . , m and j =

1, 2, . . . , n is a matrix of order (m× n), then
the transpose of A is the matrix A′ of order
(n×m) given by:

A′ = (
aji

)
with j = 1, 2, . . . , n

and i = 1, 2, . . . , m .

Transposition is a reversible and recipro-
cal operation; thus taking the transpose of
the transpose of a matrix, we find the initial
matrix.

DOMAINS AND LIMITATIONS
We use the transpose of a matrix, or more
precisely the transposeofavector,whilecal-
culating the scalar product.

EXAMPLES
Let A be the following matrix of order
(3× 2):

A =
⎡
⎣

1 2
0 3
2 5

⎤
⎦ .

The transpose of A is the matrix (2× 3):

A′ =
[

1 0 2
2 3 5

]
.

We can also verify that the transpose of A′
equals the initial matrix A:

(
A′

)′ = A .

FURTHER READING
� Matrix
� Vector

Treatment

In an experimental design, a treatment is
a particular combination of levels of various
factors.

EXAMPLES
Experimentsareoftencarriedout tocompare
two or more treatments, for example two dif-
ferent fertilizers on a particular type of plant
or many types of drugs to treat a certain ill-
ness. Another example consists in measur-
ing the time of coagulation of blood sam-
plesof16animalshavingsupporteddifferent
regimes A, B, C, and D.
In this case, different examples of treat-
ments are, respectively, fertilizers, drugs,
and regimes.
On the other hand, in experiments that test
a particular fertilizer, for example azote, on
a harvest of wheat, we can consider differ-
ent quantities of the same fertilizer as dif-
ferent treatments. Here, we have one factor
(azote) on different levels (quantities), for
example 30 kg, 50 kg, 100 kg, and 200 kg.
Each of these levels corresponds to a treat-
ment.
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The goal of an experiment is to determine
if there is a real (significative) difference
between these treatments.

FURTHER READING
� Design of experiments
� Experiment
� Experimental unit
� Factor

REFERENCES
Senn, St.: Cross-over Trials in Clinical

Research. Wiley (1993)

Tukey, John Wilder

Tukey, John Wilder was born in Bedford,
MA in 1915. He studied chemistry at Brown
University and received his doctorate in
mathematics at Princeton University in
1939. At the age of 35, he became pro-
fessor of mathematics at Princeton. He was
a key player in the formation in the Dept of
Statistics in Princeton University in 1966.
He served as its chairman during 1966–
1969. He is the author of Exploratory Data
Analysis (1977) (translated into Russian)
and eight volumes of articles. He is coau-
thor of Statistical Problems of the Kinsey
Report on Sexual Behavior in the Human
Male; Data Analysis and Regression (also
translated into Russian), Index to Statistics
and Probability. He is coeditor of the fol-
lowing books: Understanding Robust and
Exploratory Data Analysis, Exploring Data
Tables, Trends Shapes, Configural Polysam-
pling, and Fundamentals of Exploratory
Analysis of Variance. He died in New Jer-
sey in July 2000.

Selected principal works and articles of
Tukey, John Wilder:

1977 Exploratory Data Analysis. 1st edn.
Addison-Wesley, Reading, MA.

1980 We need both exploratory and confir-
matory. Am. Stat. 34, 23–25.

1986 Data analysis and behavioral science
or learning to bear the quantitative
man’s burden by shunning badmand-
ments. In: Collected Works of John W.
Tukey, Vol III: Philosophy and Prin-
ciples of Data Analysis, 1949–1964.
(Jones, L.V., ed.) Wadsworth Advanced
Books & Software, Monterey, CA.

1986 Collected Works of John W. Tukey,
Vol III: Philosophy and Principles of
Data Analysis, 1949–1964. (Jones,
L.V., ed.) Wadsworth Advanced Books
& Software, Monterey, CA.

1986 Collected Works of John W. Tukey,
Vol IV: Philosophy and Princi-
ples of Data Analysis, 1965–1986.
(Jones, L.V., ed.) Wadsworth Advanced
Books & Software, Monterey, CA.

1988 Collected Works of John W. Tukey,
Vol V: Graphics, 1965–1985. (Cleve-
land, W.S., ed.) Waldsworth and
Brooks/Cole, Pacific Grove, CA.

FURTHER READING
� Box plot
� Exploratory data analysis

Two-Sided Test
A two-sided test concerning a population is
a hypothesis test that is applied when we
want to compare an estimate of a param-
eter to a given value against the alternative
hypothesis not equal to the statet value.
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MATHEMATICAL ASPECTS
A two-tail test is a hypothesis test on a pop-
ulation of the type:

Null hypothesis H0 : θ = θ0

Alternative hypothesis H1 : θ �= θ0 ,

where θ is a parameter of the population
whose value is unknown and θ0 is the pre-
sumed value of this parameter.
For a test concerning the comparison of two
populations, the hypotheses are:

Null hypothesis H0 : θ1 = θ2

Alternative hypothesis H1 : θ1 �= θ2 ,

where θ1 and θ2 are the unknown parameters
of two underlying populations.

DOMAINS AND LIMITATIONS
In a two-sided test, the rejection region is
divided into two parts, the left and the right
sides of the considered parameter.

EXAMPLES
A company produces steel cables. It wants to
verify if the diameter μ of much of the pro-
duced cable conforms tothe standard diam-
eter of 0.9 cm.
It takes a sample of 100 cables whose mean
diameter is 0.93 cm with a standard devia-
tion of S = 0.12.
The hypotheses are the following:

Null hypothesis H0 : μ = 0.9

Alternative hypothesis H1 : μ �= 0.9 ,

As the sample size is large enough, the
sampling distribution of the mean can be
approximated by a normal distribution.
For a significance level α = 5%, we obtain
a critical value zα/2 in the normal table of
zα/2 = 1.96.

We find the acceptance region of the null
hypotheses (see rejection region):

μ± zα/2 · σ√
n

,

where σ is the standard deviation of the
population. Since the standard deviationσ is
unknown, we estimate it using the standard
deviation S of the sample (S = 0.12), which
gives:

0.9± 1.96 · 0.12√
100
=

{
0.8765
0.9235 .

The acceptance region of the null hypoth-
esis equals the interval [0.8765, 0.9235].
Because the mean of the sample (0.93 cm)
is outside this interval, we must reject the
null hypothesis for the alternative hypoth-
esis. We conclude that at a significance level
of 5% and depending on the studied sample,
the diameter of the cables does not conform
to the norm.
A study is carried out to compare the mean
lifetime of two types of tires. A sample of
50 tires of brand 1 gives a mean lifetime of
72000 km, and a sample of 40 tires of brand 2
has a mean lifetime of 74400 km. Suppos-
ing that the standard deviation for brand 1 is
σ1 = 3200 km and that of brand 2 is σ2 =
2400 km, we want to know if there is a sig-
nificative difference in lifetimes between the
two brands, at a significance level α =
1%.
The hypotheses are the following:

Null hypothesis H0 : μ1 = μ2

Alternative hypothesis H1 : μ1 �= μ2 .

Thedimension of thesample is largeenough,
and the standard deviations of the popula-
tions are known, so that we can approach the
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sampling distribution using a normal distri-
bution.
The acceptance region of the null hypothesis
is given by (see rejection region):

μ1 − μ2 ± zα/2 · σx̄1−x̄2 ,

where σx̄1−x̄2 is the standard deviation of the
samplingdistributionof thedifferenceoftwo
means, or the standard error of two means.
The value zα/2 is found in the normal table.
For a two-tail test with α = 1%, we get
zα/2 = 2.575, which gives:

0± 2.575 ·
√

σ 2
1

n1
+ σ 2

2

n2

= 0± 2.575 ·
√

32002

50
+ 24002

40

= 0± 2.575 · 590.59

= ±1520.77 .

The acceptance region of the null
hypothesis is given by the interval
[−1520.77, 1520.77]. Because the differ-
ence in means of the samples (72000 −
74400 = −2400) is outside the acceptance
region, we must reject the null hypothesis
for the alternative hypothesis. Thus we can
conclude that there is a significative differ-
ence between the lifetimes of the tires of the
tested brands.

FURTHER READING
� Acceptance region
� Alternative hypothesis
� Hypothesis testing
� Null hypothesis
� One-sided test
� Rejection region
� Sampling distribution
� Significance level

Two-Way Analysis
of Variance

The two-way analysis of variance is an
expansion of one-way analysis of variance
in which there are two independent factors
(variables). Each factor has two or more
levels and treatments are formed by making
all possible combinations of levels of two
factors.

HISTORY
It is Fisher, R.A. (1925) who gave the name
“factorial experiments” to complex expe-
riments.
Yates, F. (1935, 1937) developed the concept
and analysis of these factorial experiments.
See analysis of variance.

MATHEMATICAL ASPECTS
Given an experiment with two factors, fac-
tor A having a levels and factor B having b
levels.
If the design associated with this factorial
experiment is a completely randomized
design, the model is the following:

Yijk = μ+ αi + βj + (αβ)ij + εijk ,

i = 1, 2, . . . , a (levels of factor A)

j = 1, 2, . . . , b (levels of factor B)

k = 1, 2, . . . , c (number of observations
receiving the treatment ij)

where μ is the general mean common to all
treatments, αi is the effect of level i of fac-
tor A, βj is the effect of level j of factor B,
(αβ)ij is the effect of the interaction between



T

Two-way Analysis of Variance 545

αi and βj, and εijk is the experimental error
of observation Yijk.
Thismodel is subjected to thebasicassump-
tions associated to analysis of variance if
one supposes that the errors εijk are inde-
pendent random variables following a nor-
mal distribution N(0, σ 2).
Three hypotheses can then be tested:
1.

H0 : α1 = α2 = . . . = αa

H1 : At least one αi is different
from αj, i �= j.

2.

H0 : β1 = β2 = . . . = βb

H1 : At least one βi is different
from βj, i �= j.

3.

H0 : (αβ)11 = (αβ)12 = . . . = (αβ)1b

= (αβ)21 = . . . = (αβ)ab

H1 : At least one of the
interactions is different
from the others.

The Fisher distribution is used to test the
first hypothesis. This distribution requires
the creation of a ratio whose numerator is
an estimate of the variance of factor A and
whosedenominator isan estimateof thevari-
ance within treatments known also as error
or residual.
This ratio, denoted by F, follows a Fisher
distributionwitha−1andab(c−1)degrees
of freedom.

Null hypothesis H0 : α1 = α2 = . . . = αa

will be rejected at the significant level α if
the ratio F isgreater than orequal to thevalue
in the Fisher table, meaning if

F ≥ Fa−1,ab(c−1),α .

To test the second hypothesis, we create
a ratio whose numerator is an estimate of the
variance of factor B and whose denomina-
tor isan estimateof thevariation within treat-
ments.
This ratio, denoted by F, follows a Fisher
distributionwithb−1andab(c−1)degrees
of freedom.

Null hypothesis H0 : β1 = β2 = . . . = βb

will be rejected if the F ratio is greater than or
equal to the value of the Fisher table, mean-
ing if

F ≥ Fb−1,ab(c−1),α .

To test the third hypothesis, we create a ratio
whose numerator is an estimate of the
variance of the interaction between fac-
tors A and B and whose denominator is an
estimate of the variance within treatments.
This ratio, denoted by F, follows a Fisher
distributionwith (a−1)(b−1)andab(c−1)

degrees of freedom.

Null hypothesis H0 :

(αβ)11 = (αβ)12 = . . . = (αβ)1b

= (αβ)21 = . . . = (αβ)ab

will be rejected if the F ratio is greater than or
equal to the value in the Fisher table, mean-
ing if

F ≥ F(a−1)(b−1),ab(c−1),α .

Variance of Factor A
For the variance of factor A, the sum of
squaresmustbecalculatedforfactorA(SSA),
which is obtained as follows:

SSA = b · c
a∑

i=1

(Ȳi.. − Ȳ...)
2 ,

where Ȳi.. is themeanofall theobservations
of level i of factor A and Ȳ... is the general
mean of all the observations.
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The number of degrees of freedom associ-
ated to this sum is equal to a− 1.
The variance of factor A is then equal to:

s2
A =

SSA

a− 1
.

Variance of Factor B
For the variance of factor B, the sum of
squaresmustbecalculatedfor factorB(SSB),
which is obtained as follows:

SSB = a · c
b∑

j=1

(Ȳ.j. − Ȳ...)
2 ,

where Ȳi.. is themeanofall theobservations
of level i of factor B and Ȳ... is the general
mean of all the observations.
The number of degrees of freedom associ-
ated to this sum is equal to b− 1.
The variance of factor B is then equal to:

s2
B =

SSB

b− 1
.

Variance of Interaction AB
For the variance of interaction AB, the sum
of squares must be calculated for interac-
tion AB(SSAB),which isobtained as follows:

SSAB = c
a∑

i=1

b∑
j=1

(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)
2 ,

where Ȳij. is themeanofall theobservations
of level ijof interactionAB, Ȳi.. is themeanof
all the observations of level i of factor A, Ȳ.j.

is the mean of all the observations of level j
of factor B, and Ȳ... is the general mean of all
the observations.
The number of degrees of freedom associ-
ated to this sum is equal to (a− 1)(b− 1).
The variance of interaction AB is then
equal to:

s2
AB =

SSAB

(a− 1)(b− 1)
.

Variance Within Treatments or Error
For the variance within treatments, the sum
of squares within treatments is obtained as
follows:

SSE =
a∑

i=1

b∑
j=1

c∑
k=1

(Yijk − Ȳij.)
2 ,

where a and b are, respectively, the number
of levels of factors A and B, c is the number
of observations receiving treatment ij (con-
stant forany iand j),Yijk isobservationk from
level i of factor A and from level j of factor B,
and Ȳij. is the mean of all the observations of
level ij of interaction AB.
The number of degrees of freedom associ-
ated to this sum is equal to ab(c− 1).
The variance within treatments is thus equal
to:

s2
E =

SSE

ab(c− 1)
.

The total sum of squares (SST) is equal to:

SST =
a∑

i=1

b∑
j=1

c∑
k=1

Y2
ijk .

The number of degrees of freedom associ-
ated to this sum is equal to N, meaning the
total number of observations.
The sum of squares for the mean is equal to:

SSM = NȲ2
... .

The number of degrees of freedom associ-
ated to this sum is equal to 1.
The total sum of squares (SST) can be
expressed with all the other sums of squares
in the following way:

SST = SSM + SSA + SSB + SSAB + SSE .

Fisher Tests
We can now calculate the different F ratios.
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To test the null hypothesis

H0 : α1 = α2 = . . . = αa ,

the first F ratio is made whose numerator
is the estimation of the variance of fac-
tor A and denominator is the estimation of
the variance within treatments:

F = s2
A

s2
E

.

If F is greater than or equal to the value in the
Fisher table for a−1 and ab(c−1)degrees
of freedom, the null hypothesis is rejected
and it is concluded that at least one αi is dif-
ferent from αj, i �= j.
To test the null hypothesis

H0 : β1 = β2 = . . . = βb ,

the second F ratio is made whose numerator
is the estimation of the variance of factor B
and denominator is theestimationof thevari-
ance within treatments:

F = s2
B

s2
E

.

If F is greater than or equal to the value in the
Fisher table for b−1 and ab(c−1)degrees
of freedom, the null hypothesis is rejected
and it is concluded that H, is true.
To test the null hypothesis

H0 : (αβ)11 = (αβ)12 = . . . = (αβ)1b

= (αβ)21 = . . . = (αβ)ab

the third F ratio is made whose numerator is
the estimation of the variance of interac-
tion AB and whose denominator is the esti-
mation of the variance within treatments:

F = s2
AB

s2
E

.

If F is greater than or equal to the value in the
Fisher table for (a−1)(b−1) and ab(c−1)

degrees of freedom, the null hypothesis is
rejected and it is concluded that H, is true.

Table of Analysis of Variance
All the information required to calculate the
two F ratios can be summarized in a table of
analysis of variance:

Source
of varia-
tion

Degrees
of free-
dom

Sum of
squares

Mean of
squares

F

Mean 1 SSM

Factor A a− 1 SSA s2
A

s2
A

s2
E

Factor B b− 1 SSB s2
B

s2
B

s2
E

Inter-
action
AB

(a− 1)

· (b− 1)
SSAB s2

AB

s2
AB

s2
E

Within
treat-
ments

ab(c−1) SSI s2
E

Total abc SST

If c = 1, meaning that there is only one
observation per treatment ij (or per cell ij),
it is not possible to attribute part of the error
“inside the groups” to the interaction.

EXAMPLES
The director of a school wants to test four
brands of typewriters. He asks five profes-
sionalsecretaries to tryeachbrandandrepeat
the exercise the next day. They must all type
the same text, and after 15 min the average
number of words typed in 1 min is recorded.
Here are the results:
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Typewriter Secretary

1 2 3 4 5

1 33 31 34 34 31

36 31 36 33 31

2 32 37 40 33 35

35 35 36 36 36

3 37 35 34 31 37

39 35 37 35 40

4 29 31 33 31 33

31 33 34 27 33

Let us do a two-way analysis of variance,
the first factor being the brands of the type-
writers and the second the secretaries.
The null hypotheses are the following:
1.

H0 : α1 = α2 = α3 = α4

H1 : At least one αi is different
from αj, i �= j.

2.

H0 : β1 = β2 = β3 = β4 = β5

H1 : At least one βi is different
from βj, i �= j.

3.

H0 : (αβ)11 = (αβ)12 = . . . = (αβ)15

= (αβ)21 = . . . = (αβ)45

H1 : At least one of the interactions
is different from the others.

Variance of Factor A
“Brands of Typewriters”
Variance of factor A

The sum of squares of factor A is equal to:

SSA = 5 · 2
4∑

i=1

(Ȳi.. − Ȳ...)
2

= 5 · 2
[
(33− 34)2 + (35.5− 34)2

+(36− 34)2 + (31.5− 34)2
]

= 135 .

The number of degrees of freedom associ-
ated to this sum is equal to 4− 1 = 3.
The variance of factor A (mean of squares)
is then equal to:

s2
A =

SSA

a− 1

= 135

3
= 45 .

Variance of Factor B “Secretaries”
The sum of squares of factor B is equal to:

SSB = 4 · 2
5∑

j=1

(Ȳ.j. − Ȳ...)
2

= 4 · 2
[
(34− 34)2 + (33.5− 34)2

+ . . .+ (35.5− 34)2

+(34.5− 34)2
]
= 40 .

The number of degrees of freedom associ-
ated to this sum is equal to 5− 1 = 4.
The variance of factor B (mean of squares)
is then equal to:

s2
B =

SSB

b− 1

= 40

4
= 10 .

Variance of Interaction AB
“Brands of Typewriters – Secretaries”
The sum of squares of interaction AB is
equal to:

SSAB = 2
4∑

i=1

5∑
j=1

(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)
2

= 2
[
(34.5− 33− 34+ 34)2+

(31− 31.5− 34.5+ 34)2 + . . .

+(33− 31.5− 34.5+ 34)2
]
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= 2
[
1.52 + (−1.5)2 + . . .+ 12

]

= 83 .

The number of degrees of freedom associ-
ated to this sum is equal to (4−1)(5−1) =
12.
The variance of interaction AB is then
equal to:

s2
AB =

SSAB

(a− 1)(b− 1)

= 83

12
= 6.92 .

Variance Within Treatments (Error)
The sum of squares within treatments is
equal to:

SSE =
4∑

i=1

5∑
j=1

2∑
k=1

(Yijk − Ȳij.)
2

= (33− 34.5)2 + (36− 34.5)2

+ (31− 31)2 + . . .+ (33− 33)2

= 58 .

The number of degrees of freedom associ-
ated to this sum is equal to 4 ·5(2−1)= 20:

s2
E =

SSI

ab(c− 1)

= 58

20
= 2.9 .

The total sum of squares is equal to:

SST =
4∑

i=1

5∑
j=1

2∑
k=1

(Yijk)
2

= 332 + 362 + 312 + . . .

+ 272 + 332 + 332

= 46556 .

The number of degrees of freedom associ-
ated to this sum is equal to the number N of
observations, meaning 40.
The sum of squares for the mean is equal to:

SSM = NȲ2
...

= 40 · 342

= 46240 .

The number of degrees of freedom associ-
ated to this sum is equal to 1.

Fisher Tests
To test the null hypothesis

H0 : α1 = α2 = α3 = α4 ,

we form the first F ratio whose numerator
is the estimation of the variance of fac-
tor A and denominator is the estimation of
the variance within treatments:

F = s2
A

s2
E

= 45

2.9
= 15.5172 .

The value of the Fisher table with 3 and 20
degrees of freedom for a significant level
α = 0.05 is equal to 3.10.
Since F ≥ F3,20,0.05, we reject the H0

hypotheses and conclude that the brands of
typewriters have a significant effect on the
number of words typed in 1 min.
To test the null hypothesis

H0 : β1 = β2 = β3 = β4 = β5 ,

we form the second F ratio whose numerator
is the estimation of the variance of factor B
and whose denominator is the estimation of
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the variance within treatments:

F = s2
B

s2
E

= 10

2.9
= 3.4483 .

The value of the Fisher table with 4 and 20
degrees of freedom for α = 0.05 is equal
to 2.87.
Since F ≥ F4,20,0.05, we reject the H0

hypotheses and conclude that thesecretaries
have a significant effect on the number of
words typed in 1 min.
To test the null hypothesis

H0 : (αβ)11 = (αβ)12 = . . . = (αβ)15

= (αβ)21 = . . . = (αβ)45 ,

we form the third F ratio whose numerator
is the estimation of the variance of interac-
tion AB and whose denominator is the esti-
mation of the variance within treatments:

F = s2
AB

s2
E

= 6.92

2.9
= 2.385 .

The value of the Fisher table with 12 and 20
degrees of freedom for α = 0.05 is equal
to 2.28.
Since F ≥ F4,20,0.05, we reject the H0

hypotheses and conclude that the effect of
the interaction between the secretary and the
type of typewriter is significant on the num-
ber of words typed in 1 min.

Table of Analysis of Variance
All this information is summarized in the
table of analysis of variance:

Source
of varia-
tion

Degrees
of free-
dom

Sum of
squares

Mean of
squares

F

Mean 1 46240

Factor A 3 135 45 15.5172

Factor B 4 40 10 3.4483

Inter-
action
AB

12 83 6.92 2.385

Within
treat-
ments

20 58 2.9

Total 40 46556

FURTHER READING
� Analysis of variance
� Contrast
� Fisher table
� Fisher test
� Interaction
� Least significant difference test
� One-way analysis of variance
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Type I Error
When hypothesis testing is carried out,
a type I error occurs when one rejects the
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null hypothesis when it is true, and α is the
probability of rejecting the null hypothesis
H0 when it is true:

α = P(reject H0 | H0 is true) .

The probability of type I error α is equal to
the significance level of the hypothesis test.

HISTORY
In1928,Neyman, J.andPearson, E.S.were
the first authors to recognize that a ratio-
nal choice of hypothesis testing must take
into account not only the hypothesis that
one wants to verify but also the alternative
hypothesis.They introduced the typeIerror
and the type II error.

DOMAINS AND LIMITATIONS
The type I error is one of the two errors the
statistician is confronted with in hypothesis
testing: it is the type of error that can occur
in decision making if the null hypothesis is
true.
If the null hypothesis is wrong, another type
oferrorarisescalled the typeII error,mean-
ing accepting the null hypothesis H0 when it
is false.
Thedifferenttypesoferrorscanberepresent-
ed by the following table:

Situation Decision

Accept H0 Reject H0

H0 true 1− α α

H0 false β 1− β

with α is the probability of the type I error
and β is the probability of the type II error.

EXAMPLES
We will illustrate, using an example from
everyday life, thedifferenterrors thatonecan
commit in making a decision.

When we leave home in the morning, we
wonder what the weather will be like. If we
think it is going to rain, we take an umbrella.
If we think it is going to be sunny, we do not
take anything for bad weather.
Thereforeweareconfrontedwith thefollow-
ing hypotheses:

Null hypothesis H0: It is going to rain.

Alternative hypothesis H1: It is going to
be sunny.

Suppose we accept the rain hypothesis and
take an umbrella.
If it really does rain, we have made the right
decision, but if it is sunny, we made an error:
the error of accepting a false hypothesis.
In the opposite case, if we reject the rain
hypothesis, we have made a good decision
if it is sunny, but we will have made an error
if it rains: the error of rejecting a true hypoth-
esis.
We can represent these different types of
errors in the following table:

Situation Decision

Accept H0
(I take an
umbrella)

Reject H0
(I do not take
an umbrella)

H0 true
(it rains)

Good
decision

Type I error

H0 false
(it is sunny)

Type II error β Good
decision

Theprobabilityαofrejectingatruehypoth-
esis is called level of significance.
The probability β of accepting a false
hypothesis is the probability of type II
error.

FURTHER READING
� Hypothesis testing
� Significance level
� Type II error
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REFERENCES
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Type II Error

When carrying out a hypothesis test,
a type II error occurs when accepting the
null hypothesis given it is false and β is the
probability of accepting the null hypothe-
sis H0 when it is false:

β = P(accept H0 | H0 is false) .

HISTORY
See type I error.

DOMAINS AND LIMITATIONS
The probability of type II error is denoted
by β, the probability of rejecting the null
hypothesis when it is false is given by 1−β:

β = P(reject H0 | H0 is false) .

The probability 1−β is called the power of
the test.
Therefore it is always necessary to try and
minimize the risk of having a type II error,
which means increasing the power of the
hypothesis test.

EXAMPLES
See type I error.

FURTHER READING
� Hypothesis testing
� Type I error
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Uniform Distribution
A uniform distribution is used to describe
a population that is uniformly distributed in
an interval.
Arandom variableX is said to beuniformly
distributed in the interval [a, b] if its density
function is given by:

f (x) =
⎧⎨
⎩

1

b− a
if a ≤ x ≤ b

0 otherwise .

Because of the rectangular shape of its den-
sity function, the uniform distribution is
also sometimes called the rectangular distri-
bution.

Uniform distribution, a = 1, b = 3

The uniform distribution is a continuous
probability distribution.

MATHEMATICAL ASPECTS
The distribution function of a uniform
distribution is the following:

F (x) =

⎧
⎪⎪⎨
⎪⎪⎩

0 if x ≤ a
x− a

b− a
if a < x < b

1 otherwise .

The expected value of a random variable
that is uniformly distributed in an interval
[a, b] is equal to:

E [X] =
∫ b

a

x

b− a
dx = b2 − a2

2 (b− a)
= a+ b

2
.

This result is intuitively very easy to under-
stand because the density function is sym-
metric around the middle point of the inter-
val [a, b].
We can calculate

E
[
X2

]
=

∫ b

a
x2f (x) dx = b2 + ab+ a2

3
.

The variance is therefore equal to:

Var (X) = E
[
X2

]
− (E [X])2 = (b− a)2

12
.

The uniform distribution is a particular case
of the beta distribution when α = β = 1.

DOMAINS AND LIMITATIONS
Applications of the uniform distribution are
numerous in the construction of models for
physical, biological, and social phenomena.
The uniform distribution is often used as
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a model for errors of approximation dur-
ing measurements.For example, if the length
of some objects is measured with a 1-cm
precision, a length of 35 cm can represent
all the objects with a length between 34.5
and 35.5 cm. The approximation errors fol-
low a uniform distribution in the interval
[−0.5, 0.5].
Theuniform distribution isoftenused togen-
erate random numbers of any discrete or
continuous probability distribution. The
method used to generate a continuous distri-
bution is the following.
Consider X a continuous random variable
and F(x) its distribution function. Suppose
that F is continuous and strictly increasing.
Then U = F(X) is a uniform and con-
tinuous random variable. U takes its values
in the interval [0,1]. We then have X =
F−1(U), where F−1 is the inverse function
of the distribution function.
Therefore, if u1, u2, . . . , un is a series of ran-
dom numbers, then:

x1 = F−1(u1) ,

x2 = F−1(u2) ,

. . . ,

xn = F−1(un)

isaseriesof randomnumbersgeneratedfrom
the distribution of the random variable X.

EXAMPLES
If random variable X follows a negative
exponential distribution of mean equal

to 1, then its distribution function is

F (x) = 1− exp (−x) .

Since F(x) = u, we have u = 1− e−x.
To find x, we search for F−1:

u = 1− e−x ,

u− 1 = −e−x ,

1− u = e−x ,

ln(1− u) = −x ,

− ln(1− u) = x .

Notice that if u is a random variable that is
uniform in [0,1], then (1− u) is also a ran-
dom variable that is uniform in [0,1].
Byapplying theaforementioned toaseriesof
random numbers, we find a sample taken
from X:

U X

0.14 1.97

0.97 0.03

0.53 0.63

0.73 0.31

...
...

FURTHER READING
� Beta distribution
� Continuous probability distribution
� Discrete uniform distribution

Unimodal Distribution

See frequency distribution.
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Value

A value is a quantitative or qualitative mea-
sure associated to a variable.
Wespeakaboutasetofvalues takenbyavari-
able. The values can be cardinal numbers if
they are associated to a quantitative vari-
able or ordinal numbers if they are associat-
ed to a qualitative categorical variable.

EXAMPLES
The values taken by a certain variable can
be of the following type:
• Consider the quantitative variable

“number of children”. The values associ-
ated to this variable are the natural num-
bers 0, 1, 2, 3, 4, etc.

• Consider the qualitative categorical
variable “sex.” The associated values
are the categories “masculine” and “fem-
inine”.

FURTHER READING
� Qualitative categorical variable
� Quantitative variable
� Variable

Variable

A variable is a measurable characteristic to
which are attributable many different vari-
ables.

We distinguish many types of variables:
• Quantitative variable, of which we dis-

tinguish:
– Discrete variable, e.g., the result of

a test
– Continuous variable, e.g., a weight or

revenue
• Qualitative categorical variable, e.g.,

marital status

FURTHER READING
� Data
� Dichotomous variable
� Qualitative categorical variable
� Quantitative variable
� Random variable
� Value

Variance

Variance is a measure of dispersion of
a distribution of a random variable.
Empirically, the variance of a quantitative
variable X is defined as the sum of squared
deviations of each observation relative to
the arithmetic mean divided by the number
of observations.

HISTORY
The analysis of variance such as we under-
stand and practice it today was principal-
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ly developed by Fisher, Ronald Aylmer
(1918, 1925, 1935). He also introduced the
terms variance and analysis of variance.

MATHEMATICAL ASPECTS
Variance is generally denoted by S2 when it
is relative to a sample and by σ 2 when it is
relative to a population.
We also denote the variance by Var(X)when
we speak about the variance of a random
variable.
LetapopulationofN observationsberelative
to a quantitative variable X. By definition,
the variance of a population is calculated as
follows:

σ 2 =

N∑
i=1

(xi − μ)2

N
,

where N is the dimension of the population
and μ the mean of the observation:

μ =

N∑
i=1

xi

N
.

When the observations are ordered in the
form of a frequency distribution, the cal-
culation of the variance is made in the fol-
lowing manner:

σ 2 =

k∑
i=1

fi · (xi − μ)2

k∑
i=1

fi

,

where xi are the different values of the vari-
able, fi are thefrequenciesassociated tothese
values, and k is the number of different val-
ues.
To calculate the variance of the frequency
distribution of aquantitativeXwhere theval-
ues are grouped in classes, we consider that

all the observations belonging to a certain
class take the values of the center of theclass.
It is correct only if the hypothesis specify-
ing that the observations are uniformly dis-
tributed inside each class is verified. If this
hypothesis is not verified, the obtained val-
ue of the variance will be only approxima-
tive.
For the values grouped in classes, we have:

σ 2 =

k∑
i=1

fi · (δi − μ)2

k∑
i=1

fi

,

where δi are the centers of the classes, fi are
the frequencies associated to each class, and
k is the number of classes.
The formula for calculating the variance can
be modified to decrease the time of calcula-
tion and to increase the precision. Thus it is
better to calculate the variance with the fol-
lowing formula:

σ 2 =
N ·

N∑
i=1

x2
i −

(
N∑

i=1
xi

)2

N2 .

The variance corresponds to the centered
moment of order two.
Thevariancemeasuredonasample isanesti-
mator of the variance of the population.
Consider a sample of n observations relative
to a quantitative variable X and denote by x̄
the arithmetic mean of this sample:

x̄ =

n∑
i=1

xi

n
.

To let the variance of the sample be an esti-
matorwithoutbiasof thevarianceof thepop-
ulation, it must be calculated by dividing by
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(n− 1) and not by n:

S2 =

n∑
i=1

(xi − x̄)2

n− 1
.

EXAMPLES
Five students passed two exams, earning the
following grades:

Exam 1:

3.5 4 4.5 3.5 4.5

Exam 2:

2.5 5.5 3.5 4.5 4

Note that thearithmetic mean x̄of these two
sets of observations is identical:

x̄1 = x̄2 = 4 .

The dispersion of the observations around
the mean is not the same.
To determine the variance, first we calculate
the deviations of each observation from the
arithmetic mean and then square the devia-
tions:

Exam 1:

Grade (xi − x̄1) (xi − x̄1)2

3.5 −0.5 0.25

4 0.0 0.00

4.5 0.5 0.25

3.5 −0.5 0.25

4.5 0.5 0.25
5∑

i=1

(
xi − x̄1

)2 1.00

Exam 2:

Grade
(
xi − x̄2

) (
xi − x̄2

)2

2.5 −1.5 2.25

5.5 1.5 2.25

3.5 −0.5 0.25

Grade
(
xi − x̄2

) (
xi − x̄2

)2

4.5 0.5 0.25

4 0.0 0.00
5∑

i=1

(
xi − x̄2

)2 5.00

The variance of the grades of each exam
equals:

Exam 1:

S2
1 =

5∑
i=1

(xi − x̄1)
2

n− 1
= 1

4
= 0.25

Exam 2:

S2
2 =

5∑
i=1

(xi − x̄2)
2

n− 1
= 5

4
= 1.25

Since the variance of the grades of the sec-
ond exam is greater, on the second exam the
grades are more dispersed around the arith-
metic mean than on the first exam.

FURTHER READING
� Analysis of variance
� Measure of dispersion
� Standard deviation
� Variance of a random variable

REFERENCES
Fisher, R.A.: The correlation between rel-

atives on the supposition of Mendelian
inheritance. Trans. Roy. Soc. Edinb. 52,
399–433 (1918)

Fisher, R.A.: Statistical Methods for
Research Workers. Oliver & Boyd, Edin-
burgh (1925)

Fisher, R.A.: The Design of Experiments.
Oliver & Boyd, Edinburgh (1935)
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Variance Analyses

See analysis of variance.

Variance of a Random Variable

The variance of a quantitative random
variable measures the value of the mean
deviations of the values of this random vari-
able from the mathematical expectancy
(that is, from its mean).

MATHEMATICAL ASPECTS
Depending on whether the random vari-
able is discrete or continuous, we speak
about thevarianceofadiscreteorcontinuous
random variable.
In the case where the random variable is dis-
creteX taking n valuesx1, x2, . . . , xn with rel-
ative frequencies f1, f2, . . . , fn, the variance
is defined by:

σ 2 = Var (X) = E
[
(X − μ)2

]

=
n∑

i=1

fi (xi − μ)2 ,

where μ represents the mathematical
expectancy of X.
We can establish another formula for which
the calculation of the variance is made thus:

Var (X) = E
[
(X − μ)2

]

= E
[
X2 − 2μX + μ2

]

= E
[
X2

]
− E [2μX]+ E

[
μ2

]

= E
[
X2

]
− 2μE [X]+ μ2

= E
[
X2

]
− 2μ2 + μ2

= E
[
X2

]
− μ2

= E
[
X2

]
− (E [X])2

=
n∑

i=1

fix
2
i −

(
n∑

i=1

fixi

)2

.

In practice, this formula is generally better
suited for making the calculations.
If random variable X is continuous in
interval D, the expression of the variance
becomes:

σ 2 = Var (X) = E
[
(X − μ)2

]

=
∫

D
(x− μ)2 f (x) dx .

We can also transform this formula by the
same operations as in the discrete case, and
so the variance equals:

Var(X) =
∫

D
x2f (x)dx−

(∫

D
xf (x)dx

)2

.

Properties of the Variance
1. Let a and b be two constants and X a ran-

dom variable:

Var (aX + b) = a2 ·Var (X) .

2. Let X and Y be two random variables:

Var (X + Y) = Var (X)+ Var (Y)

+ 2Cov (X, Y) ,

Var (X − Y) = Var (X)+ Var (Y)

− 2Cov (X, Y) ,

where Cov (X, Y) is the covariance
between X and Y. In particular, if X and
Y are independent:

Var (X + Y) = Var (X)+ Var (Y)

Var (X − Y) = Var (X)+ Var (Y) .
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EXAMPLES
We consider two examples, one concerning
a discrete random variable, another a con-
tinuous random variable.
We throw a die several times in a row. Sup-
pose we win 1 euro if the result is even and
2 euros if the result is 1 or 3, and that we lose
3 euros if the result is 5.
Random variable X describes the number of
euros won or lost. The following table repre-
sents different values of X and their respec-
tive probabilities:

X −3 1 2

P (X ) 1
6

3
6

2
6

The variance of discrete random variable X
equals:

Var (X) =
3∑

i=1

fix
2
i −

[
3∑

i=1

fixi

]2

= (−3)2 1

6
+ (1)2 3

6
+ (2)2 2

6

−
(
−3

1

6
+ 1

3

6
+ 2

2

6

)2

= 26

9
.

Consider a continuous random variable X
whose density function is uniform on (0, 1):

f (x) =
{

1 for 0 < x < 1
0 otherwise .

The mathematical expectancy of this ran-
dom variable equals 1

2 .
We can calculate the variance of random
variable X:

Var (X) =
∫ 1

0
x2f (x) dx−

(∫ 1

0
xf (x) dx

)2

=
∫ 1

0
x2 · 1dx−

(∫ 1

0
x · 1dx

)2

= x3

3

∣∣∣∣
1

0
−

(
x2

2

∣∣∣∣
1

0

)2

= 1

3
−

(
1

2

)2

= 1

12
.

FURTHER READING
� Expected value
� Random variable

Variance–Covariance Matrix
The variance–covariance matrix V between
n variables X1, . . . , Xn is a matrix of order
(n× n), where the diagonal contains the
variances of each variable Xi and outside the
diagonals are the covariances between the
pairs of variables (Xi, Xj) for each i �= j. For n
variables, we calculate n variances and n(n−
1) covariances. The result is that matrix V
is a matrix of dimension n× n. In the liter-
ature, we often encounter this matrix under
another name: dispersion matrix or covari-
ance matrix.
If the variables are standardized (see stan-
dardized data), the variances of the vari-
ables equal 1 and the covariances become
correlations, and so the matrix becomes
a correlation matrix.

HISTORY
See variance and covariance.

MATHEMATICAL ASPECTS
Let X1, . . . , Xn be n random variables.
The variance–covariance matrix is a matrix
oforder (n× n); it is symmetricand contains
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on the diagonal the variances of each vari-
able and as the other terms the covariances
between the variables. Matrix V is the fol-
lowing matrix:
⎡
⎢⎢⎣

Var (X1) Cov (X1, X2) · · · Cov (X1, Xn)

Cov (X2, X1) Var (X2) · · · Cov (X2, Xn)

...
...

. . .
...

Cov (Xn, X1) Cov (Xn, X2) · · · Var (Xn)

⎤
⎥⎥⎦ ,

with

Var (Xi) = E
[
X2

i

]
− (E [Xi])

2 and

Cov
(
Xi, Xj

)

= E
[
(Xi − E[Xi])

(
Xj − E[Xj]

)]
.

EXAMPLES
Consider the following three variables
X1, X2, and X3 summarized in the following
table:

X1 X2 X3

1 2 3

2 3 4

1 2 3

5 4 3

4 4 4

In the case n = 3, each random variable con-
sists of five terms, which we denote N = 5.
We want to calculate the variance–
covariance matrix V of these variables. We
complete the following steps.
We estimate the expectancy of each variable
by itsempiricalmean xi and get the following
results:

X1 = 2.6

X2 = 3

X3 = 3.4 .

The variance for a variable Xj is given by:

N∑
i=1

(
xij − xj

)2

4
.

ThecovariancebetweentwovariablesXr and
Xs is calculated as follows:

N∑
i=1

(xir − xr) (xis − xs)

4
.

Then we should subtract the mean Xi of each
variable Xi. We get a new variable Yi = Xi−
Xi.

Y1 Y2 Y3

−1.6 −1 −0.4

−0.6 0 0.6

−1.6 −1 −0.4

2.4 1 −0.4

1.4 1 0.6

Note that the mean of each new variable Yi

equals0.Wefindtheseresults inmatrixform:

Y =

⎡
⎢⎢⎢⎢⎢⎣

−1.6 −1 −0.4
−0.6 0 0.6
−1.6 −1 −0.4

2.4 1 −0.4
1.4 1 0.6

⎤
⎥⎥⎥⎥⎥⎦

.

From this matrix we calculate matrix Y′ ·Y,
a symmetric matrix, in the following form:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

y2
i1

N∑
i=1

yi2 · yi1

N∑
i=1

yi3 · yi1

N∑
i=1

yi2 · yi1

N∑
i=1

y2
i2

N∑
i=1

yi3 · yi2

N∑
i=1

yi3 · yi1

N∑
i=1

yi3 · yi2

N∑
i=1

y2
i3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

This matrix contains the values of the sum
of products of squares of each variable Yi

(on the diagonal) and the cross product of
each pairofvariables (Yi, Yj)on the restof the
matrix. For the original variables Xi, the fol-
lowing matrix contains on the diagonal the
sum of squared deviations from the mean for
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each variable and on the external terms the
cross products of these deviations.
Numerically we get:

⎡
⎣

13.2 7 0.8
7 4 1

0.8 1 1.2

⎤
⎦ .

The mean of the sum of squared deviations
from the mean of a random variable Xi of N
terms is known as the variance. The mean
of the crossed products of these deviations
is called the covariance. Thus to get the
variance–covariance matrix V of the vari-
ables X1, . . . , Xn, we should divide the ele-
ments of matrix Y′ · Y by N − 1, which is
mathematically the same as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

N∑
i=1

y2
i1

N−1

N∑
i=1

yi2·yi1

N−1

N∑
i=1

yi3·yi1

N−1
N∑

i=1
yi2·yi1

N−1

N∑
i=1

y2
i2

N−1

N∑
i=1

yi3·yi2

N−1
N∑

i=1
yi3·yi1

N−1

N∑
i=1

yi3·yi2

N−1

N∑
i=1

y2
i3

N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The fact of dividing by N−1 and not by N for
obtaining the means is related to the fact that
we generally work with a sample of random
variables without knowing the real popula-
tion and for which we make a nonbiased esti-
mation of the variance and of the covariance.
Numerically we get:

V =
⎡
⎣

3.3 1.75 1.75
1.75 1 0.2
0.2 0.25 0.3

⎤
⎦ .

FURTHER READING
� Correlation coefficient
� Covariance
� Standardized data
� Variance

Vector

We call a vector of dimension n an (n ×
1) matrix , that is, a table having only one
column and n rows. The elements in this
table are called coefficients or vector com-
ponents.

MATHEMATICAL ASPECTS
Let x = (xi) and y = (yi) for i = 1, 2, . . . , n
be two vectors of dimension n.
We define:
• The sum of two vectors made component

by component:

x+ y = (xi)+ (yi) = (xi + yi) .

• The product of vector x by the scalar k:

k · x = (k · xi) ,

where each component is multiplied by k.
• The scalar product of x and y:

x′ · y = (xi)
′ · (yi) =

n∑
i=1

xi · yi .

• The norm of x:

‖ x ‖ = √x′ · x

‖ x ‖ =
√√√√

n∑
i=1

x2
i .

We call a unit vector a vector of norm (or
length)1.Weobtainaunitvectorbydivid-
ing a vector by its norm. Thus for exam-
ple

1

‖ x ‖ (xi)

is a unit vector having the same direction
as x.
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• The ith vector of the canonic bases in
the space of n dimensions is defined
by the vector of dimension n having
a “1” on line i and “0” for other compo-
nents.

• A vector is a matrix of a certain dimen-
sion (n × 1). It is possible to multiply
a vector by an (m×n)matrix according to
the multiplication rules defined for matri-
ces.

DOMAINS AND LIMITATIONS
A vector can be considered a column ofnum-
bers, whence the term vector-column, just as
we use the term vector-line to designate the
transpose of a vector.
Thus the inner product of two vectors
corresponds to a vector-row multiplied by
a vector-column.

EXAMPLES
In a space of three dimensions, we consider
the vectors:

x =
⎡
⎣

1
2
3

⎤
⎦ and y =

⎡
⎣

0
1
0

⎤
⎦ ,

where y is the second vector of the canonic
basis.
– The norm of x is given by:

‖ x ‖2 =
⎡
⎣

1
2
3

⎤
⎦
′

·
⎡
⎣

1
2
3

⎤
⎦

= [1 2 3] ·
⎡
⎣

1
2
3

⎤
⎦

= 12 + 22 + 32 = 1+ 4+ 9

= 14 ,

from where ‖ x ‖= √14 ≈ 3.74.

– In the same way, we get ‖ y ‖= 1.
– The sum of two vectors x and y equals:

x+ y =
⎡
⎣

1
2
3

⎤
⎦+

⎡
⎣

0
1
0

⎤
⎦

=
⎡
⎣

1+ 0
2+ 1
3+ 0

⎤
⎦ =

⎡
⎣

1
3
3

⎤
⎦ .

– The multiplication of vector x by the
scalar product 3 gives:

3 · x = 3 ·
⎡
⎣

1
2
3

⎤
⎦

=
⎡
⎣

3 · 1
3 · 2
3 · 3

⎤
⎦ =

⎡
⎣

3
6
9

⎤
⎦ .

– The scalar product of x and y equals:

x′ · y =
⎡
⎣

1
2
3

⎤
⎦
′

·
⎡
⎣

0
1
0

⎤
⎦

= [1 2 3] ·
⎡
⎣

0
1
0

⎤
⎦

= 1 · 0+ 2 · 1+ 3 · 0 = 2 .

FURTHER READING
� Matrix
� Transpose

Von Mises, Richard

Von Mises, Richard was born in 1883 in
Lemberg in the Austro–Hungarian Empire
(now L’viv, Ukraine) and died in 1953. Von
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Mises studied mechanical engineering at the
Technical University in Vienna until 1906.
He became assistant to Georg Hamel, pro-
fessor of mechanics, in Bruenn (now Brno,
Czech Republic), where he received the
Venia Legendi in 1908. He then worked
as associate professor of applied mathe-
matics. After the First World War, in 1920,
hebecamedirectorof theInstituteofApplied
Mathematics in Berlin.
Von Mises, Richard is principally known for
his work on the foundations of probability
and statistics, which were rehabilitated in

the 1960s. He founded the applied school
of mathematics and wrote his first work on
philosophical positivism in 1939.

Selected principal works and articles of von
Mises, Richard:

1928 Wahrscheinlichkeit, Statistik und
Wahrheit. Springer, Berlin Heidel-
berg New York.

1939 Probability, Statistics and Truth,
trans. Neyman, J., Scholl, D., and
Rabinowitsch, E. Hodge, Glasgow.
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Weighted Arithmetic Mean

The weighted arithmetic mean is a mea-
sure of central tendency of a set of quan-
titative observations when not all the obser-
vations have the same importance.
We must assign a weight to each observation
depending on its importance relative to other
observations.
The weighted arithmetic mean equals
the sum of observations multiplied by
their weights divided by the sum of their
weights.

HISTORY
The weighted arithmetic mean was intro-
duced by Cotes, Roger in 1712. His work
was published in 1722, six years after his
death.

MATHEMATICAL ASPECTS
Let x1, x2, . . . , xn be a set of n quantities
or n observations relative to a quantitative
variable X to which we assign the weights
w1, w2, . . . , wn.
The weighted arithmetic mean equals:

x̄ =

n∑
i=1

xi · wi

n∑
i=1

wi

.

DOMAINS AND LIMITATIONS
Theweighted arithmeticmean isnowused in
economics, especially in consumer and pro-
ducer price indices, etc.

EXAMPLES
Suppose that during a course on the com-
pany, management was composed of three
relatively different requirements of different
importance:

Individual project 30%

Mid-term exam 20%

Final exam 50%

Each student receives a grade on a scale of 1
to 10. One student receives an 8 for his indi-
vidual project, a 9 on themid-term exam, and
a 4 on the final exam.
His final grade is calculated by the weighted
arithmetic mean:

x̄ = (8 · 30)+ (9 · 20)+ (4 · 50)

30+ 20+ 50
= 6.2 .

In this example, the weights correspond
to the relative importance of the different
requirements of the course.

FURTHER READING
� Arithmetic mean
� Mean
� Measure of central tendency
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REFERENCES
Cotes, R.: Aestimatio Errorum in Mixta

Mathesi, per variationes partium Trian-
guli plani et sphaerici. In: Smith, R. (ed.)
Opera Miscellania, Cambridge (1722)

Weighted Least-Squares
Method

The weighted least-squares method is used
when the variance of errors is not constant,
that is, when the following hypothesis of
the least-squares method is violated: the
variance of errors is constant (equal to the
unknown value σ 2) for any observation i
(that is, whatever the value of the concerned
xij). Thus, instead of having, for each i =
1, . . . , n, Var(εi) = σ 2, we have:

Var (εi) = σ 2wi ,

where the weights wi > 0 can be different
for each i = 1, . . . , n.

MATHEMATICAL ASPECTS
In the matrix form, we have the model

Y = Xβ + ε ,

where Y is the vector (n × 1) of the obser-
vations relative to the dependent variable
(n observations), β is the vector (p × 1) of
parameters to be estimated, ε is the vector
(n× 1) of errors, and

X =
⎛
⎜⎝

1 X11 . . . X1(p−1)

...
...

...
1 Xn1 . . . Xn(p−1)

⎞
⎟⎠

is the matrix (n × p) of the plan concern-
ing the independent variables. Moreover, we
have:

Var (ε) = σ 2V ,

where

V =

⎛
⎜⎜⎜⎝

1/w1 0 · · · 0
0 1/w2 · · · 0
...

...
. . .

...
0 0 · · · 1/wn

⎞
⎟⎟⎟⎠ .

Stating
Yw =WY ,

Xw =WX ,

εw =Wε ,

with

W =

⎛
⎜⎜⎜⎝

√
w1 0 · · · 0
0

√
w2 · · · 0

...
...

. . .
...

0 0 · · · √wn

⎞
⎟⎟⎟⎠ ,

such as W′W = V−1, we obtain the equiv-
alent model:

Yw= Xwβ + εw ,

where

Var (εw) = Var (Wε) =WVar (ε) W′

= σ 2 ·WVW = σ 2In ,

where In is the identity matrix of dimen-
sion n. Since, for this new model, the vari-
ance of errors is constant, the least-squares
method is used. The vector of estimators is:

β̂w =
(
X′wXw

)−1 X′wYw

= (
X′W′WX

)−1 X′W′WY

=
(

X′V−1X
)−1

X′V−1Y .

The vectors of estimated values for Yw =
WY become:

Ŷw = Xwβ̂w

=WX
(

X′V−1X
)−1

X′V−1Y .
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We can obtain a vector of estimated values
for Y =W−1Yw setting:

Ŷ =W−1Ŷw

=W−1WX
(

X′V−1X
)−1

X′V−1Y

= Xβ̂w .

The variance σ 2 is estimated by:

s2
w =

(
Yw − Ŷw

)′ (
Yw − Ŷw

)

n− p

=
(
Y− Ŷ

)′
W′W

(
Y− Ŷ

)

n− p

=

n∑
i=1

wi (yi − ŷi)
2

n− p
.

In the case of a simple regression, from
a sample of n observations (xi, yi) and
weights wi we have:

X′V−1X =

⎛
⎜⎜⎝

n∑
i=1

wi

n∑
i=1

wixi

n∑
i=1

wixi

n∑
i=1

wix2
i

⎞
⎟⎟⎠ ,

XV−1Y =

⎛
⎜⎜⎝

n∑
i=1

wiyi

n∑
i=1

wixiyi

⎞
⎟⎟⎠ ,

and thus if we set β̂w =
(

β̂0w

β̂1w

)
, we find:

β̂0w =

n∑
i=1

wiyi

n∑
i=1

wix2
i −

n∑
i=1

wixi

n∑
i=1

wixiyi

n∑
i=1

wi

n∑
i=1

wix2
i −

(
n∑

i=1
wixi

)2
,

β̂1w =

n∑
i=1

wi

n∑
i=1

wixiyi −
n∑

i=1
wixi

n∑
i=1

wiyi

n∑
i=1

wi

n∑
i=1

wix2
i −

(
n∑

i=1
wixi

)2 .

Considering the ponderated weighted
means:

xw =

n∑
i=1

wixi

n∑
i=1

wi

, yw =

n∑
i=1

wiyi

n∑
i=1

wi

,

we have the estimators:

β̂1w =

n∑
i=1

wixiyi −
n∑

i=1
wixwyw

n∑
i=1

wix2
i −

n∑
i=1

wix2
w

=

n∑
i=1

wi (xi − xw)
(
yi − yw

)

n∑
i=1

wi (xi − xw)2

β̂0w = yw − β̂1wxw

that strongly resemble the least-squares esti-
mators, except that we give more weight
to the observations with a large wi (that
is, observation for which the errors have
a smaller variance in the initial model). The
estimated values are given by:

ŷi = β̂0w + β̂1wxi = yw + β̂1w (xi − xw)

and the variance σ 2 is estimated by:

s2
w =

n∑
i=1

wi (yi − ŷi)
2

n− 2

=

n∑
i=1

wi
(
yi−yw

)2−β̂2
1w

n∑
i=1

wi(xi−xw)2

n− 2
.

Examples of weights wi chosen in simple
regression are given by wi = 1/xi in cases
where the variance of εi is proportional to xi,
or where wi = 1/x2

i when the variance of εi

is proportional to x2
i .
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DOMAINS AND LIMITATIONS
The greatest disadvantage of the weighted
least-squares method, which many people
prefer not to know about, is probably the
fact that it is based on the assumption that
the weight is known exactly. This is almost
never the case in practice, and the estimat-
ed weights are used instead. Generally, it is
difficult to evaluate the effect of the use of
estimated weights, but experience indicates
that the results of most regression analyses
arenotverysensitivetotheweightsused.The
advantages of a weighted analysis are often
obtained on a large scale, though not always
entirely, with the approximate weights. It is
important to be aware of and avoid this prob-
lem and to use only weights that can be esti-
mated with precision relative to one anoth-
er. The weighted least-squares regression, as
other least-squares methods, is also sensitive
to outliers.

EXAMPLES
Consider a data set containing 10 observa-
tions with explanatory variable X taking val-
ues Xi = i with i = 1, 2, . . . , 10. Variable Y
is generated using the model:

yi = 3+ 2xi + εi ,

where the εi are normally distributed with
E (εi) = 0 and Var (εi) = (0.2xi)

2. Thus
the variance of error of the first observation
corresponds to [(1) (0.2)]2 = 0.04, just as
those of the tenth observation correspond to
[(10) (0.2)]2 = 4. The data thus generated
are presented in the following table:

Values xi and yi generated by model yi = 3 +
2xi + εi

i xi yi

1 1 4.90

2 2 6.55

i xi yi

3 3 8.67

4 4 12.59

5 5 17.38

6 6 13.81

7 7 14.60

8 8 32.46

9 9 18.73

10 10 20.27

First we perform a nonweighted regression.
We obtain the equation of regression:

ŷi = 3.49+ 2.09xi ,

β̂0 = 3.49 with tc = 0.99 ,

β̂1 = 2.09 with tc = 3.69 .

Analysis of variance

Source
of var-
iation

Degrees
of free-
dom

Sum of
squares

Mean of
squares

F

Regres-
sion

1 360.68 360.68 13.59

Resi-
dual

8 212.39 26.55

Total 9 573.07

The R2 of this regression is 62.94%. At first
glance, the results seem to be good. The esti-
mated coefficient associated to the explana-
tory variable is clearly significative. This
result is not at all surprising because the
fact that the variance of errors is not con-
stant rarely influences the estimated coeffi-
cients. The mean square of residuals is diffi-
cult toexplain,considering there isnounique
variance to estimate. Moreover, the standard
errorsand the lengthsof theconfidence inter-
vals at 95% for the estimated conditional
means are relatively constant for all obser-
vations. The nonweighted analysis does not
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take into account the observed inequalities
between the variances of the errors.
We now make a weighted regression using
as weights the values 1/x2. The weights
are known because they are proportional to
the real variances, which equal (0.2x)2. The
results are the following:

ŷi = 2.53+ 2.28xi ,

β̂0 = 2.53 with tc = 3.07 ,

β̂1 = 2.28 with tc = 7.04 .

Analysis of variance

Source
of
variation

Degrees
of free-
dom

Sum of
squares

Mean of
squares

F

Regres-
sion

1 23.29 23.29 49.6

Residual 8 3.75 0.47

Total 9 27.05

The R2 of this regression is 86.11%. On this
basis, we can make the following comments:
• All numbers related to the sum of squares

of the dependent variable are affected by
the weights and are not comparable to
those obtained by nonweighted regres-
sion.

• The Fisher test and the R2 can be com-
pared between two models. In our exam-
ple, two values are greater than the non-
weighted regression,but this isnotalways
the case.

• The summarized coefficients are rela-
tively close to those of the nonweighted
regression. This is often the case but not
a generality.

• The standard errors and confidence inter-
vals for the conditional means reflect the
fact that the precision of the estimations

decreases with increasing values of x.
This result is the first reason to use the
weighted regression.

FURTHER READING
� Generalized linear regression
� Least squares
� Regression analysis

REFERENCES
Seber, G.A.F. (1977) Linear Regression

Analysis. Wiley, New York

Wilcoxon, Frank

Wilcoxon, Frank (1892–1965) received his
master’s degree in chemistry at Rutgers Uni-
versity in 1921 and his doctorate in physics
in 1924 at Cornell University, where he also
did postdoctoral work from 1924 to 1925.
From 1928 to 1929 he was employed by
Nichols Copper Company in Maspeth in
Queens, New York and was then hired by
the Boyce Thompson Institute for Plant
Research as chief of a group studying the
effects of insecticides and fungicides. He
remain at the institute until the start of the
Second World War; at this time and for the
next 2 years, he moved to the Atlas Powder
Company in Ohio wherehedirected theCon-
trol Laboratory.
In 1943, Wilcoxon, Frank was appointed
head of the group at the American Cyanamid
Company laboratory (in Stamford, CT) that
studied insecticides and fungicides. He then
developed an interest in statistics: in 1950,he
was transferred to Lederle Laboratories divi-
sion of Cyanamid in Pearl River, NY, where
hedeveloped astatistical consultationgroup.
From 1960 until his death in 1965 he taught
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applied statistics in the Department of Statis-
tics to natural science majors at Florida State
University.

Selected principal works and articles of
Frank Wilcoxon:

1945 Individual comparisons by ranking
methods. Biometrics 1, 80–83.

1957 Some rapid approximate statisti-
cal procedures. American Cyanamid,
Stamford Research Laboratories, Stam-
ford, CT.

Wilcoxon Signed Table

The Wilcoxon signed table gives theoretical
values of statistic T of the Wilcoxon signed
test applied to two paired samples, on the
hypothesis that two populations follow the
same distribution.

HISTORY
Owen, D.B. (1962) published a Wilcoxon
signed table for n ≤ 20 (where n is the num-
ber of paired observations) for the Wilcox-
on signed test developed by Wilcoxon, F.
(1945).
The generally used table is that of Harter,
H.L. and Owen, D.B. (1970) established for
n ≤ 50.

MATHEMATICAL ASPECTS
Consider a set of n pairs of observations
((X1, Y1) , . . . , (Xn, Yn)). We calculate the
absolute differences |Xi − Yi| to which we
assign a rank (that is, we associate rank 1 to
the smallest value, rank 2 to the next highest
value, and so on, up to rank n for the great-

est value). Then we give to this rank the sign
corresponding to the difference Xi−Yi. Thus
we calculate the sum of positive ranks:

T =
k∑

i=1

Ri ,

where k is the number of pairs representing
a positive difference (Xi − Yi > 0).
For different values of m and α (the sig-
nificance level), the Wilcoxon signed table
gives the theoretical values of statistic T of
the Wilcoxon signed test, on the hypothe-
sis that the two underlying populations are
identically distributed.

DOMAINS AND LIMITATIONS
The Wilcoxon signed table is used in non-
parametric tests that use rank and especially
in the Wilcoxon signed test.

EXAMPLES
Below is an extract of a Wilcoxon signed
table m going from 10 to 15 and α = 0.05 to
α = 0.975:

m α = 0.05 α = 0.975

10 11 46

11 14 55

12 18 64

3 22 73

14 26 83

15 31 94

For an example of how the Wilcoxon signed
table is used, see Wilcoxon signed table.

FURTHER READING
� Statistical table
� Wilcoxon signed test
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Wilcoxon Signed Test

The Wilcoxon signed test is a nonparam-
etric test. As a signed test, it serves to check
for any difference between two populations.
It tellsone if thedifferencebetweentwopairs
of observations is positive or negative, tak-
ing into account the amplitude of this differ-
ence.

HISTORY
The Wilcoxon signed was created by
Wilcoxon, F. in 1945. In 1949, he proposed
another method to treat the zero differences
that can appear between two observations
of considered samples.

MATHEMATICAL ASPECTS
Let (X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) be
two samples of size n. We consider n pairs of
observations (x1, y1) , (x2, y2) , . . . , (xn, yn).
We denote by |di| the difference in absolute
value between xi and yi:

|di| = |yi − xi| , for i = 1, 2, . . . , n .

We subtract from the dimension all the pairs
of observations that do not represent the dif-
ference (di = 0). We denote by m the num-
ber of pairs remaining. We assign then to

the pairs of observations a rank from 1 to
m depending on the size of |di|, that is, we
give rank 1 to the smallest value of |di| and
rank m to the largest value of |di|. We name
Ri, i = 1, . . . , m the rank thus defined.
If many pairs of variables represent the same
absolute difference |di|, we assign to them
the mean rank. If there are mean ranks, the
statistic of the test is calculated by the fol-
lowing expression:

T1 =

m∑
i=1

Ri

√√√√
m∑

i=1

R2
i

,

whereRi is the rank of thepair (xi, yi)without
the sign of the difference di.
If there are no mean ranks, it is more correct
to use the sum of ranks associated to the pos-
itive difference:

T =
∑

(for i such
as di > 0)

Ri .

Hypotheses
The underlying hypotheses in the Wilcoxon
signed test are based on dk, the median of
di. According to whether it is a two-tail test
or a one-tailed test, we have the following
cases:

A: Two-sided test:

H0 : dk = 0

H1 : dk �= 0

B: One-sided test:

H0 : dk ≤ 0

H1 : dk > 0

C: One-sided test:

H0 : dk ≥ 0

H1 : dk < 0
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In case A, the hypothesis represents the situ-
ation where there are no differences between
the two populations.
In case B, we make the hypothesis that the
values of the population of Xhave a tendency
tobegreater thanthoseofthepopulationofY.
In case C, we make the contrary hypothesis,
i.e., that the values of the population of X
have a tendency to be smaller than those of
the population of Y.

Decision Rules
If T is used and if m < 50, then the Wilcox-
on signed table will be used to test the null
hypothesis H0.
The random variable T is a linear combi-
nation of m independent Bernoulli random
variables (but not identically distributed). It
has as mean and standard deviation:

μ = m (m+ 1)

4
and

σ =
√

m (m+ 1) (2m+ 1)

24
.

We deduce the random variable Z:

Z = T − μ

σ
.

We denote by wα the value of the Wilcoxon
signed table with parameters m and α (where
α is the significance level).
Ifm > 20, thenwα canbeapproximatedwith
the help of the corresponding values of the
normal distribution:

wα = m (m+ 1)

4

+ zα

√
m (m+ 1) (2m+ 1)

24
,

where zα is the values in the normal table
at level α.
If T1 is used, we will base our calculation
directly on the normal table to test the null

hypothesis H0. The decision rules are differ-
ent depending on the hypotheses. We have
the decision rules A, B, and C relative to the
previous cases A, B, and C. If T1 is used, we
should replace T by T1 and wα by zα in the
rules that follow.

Case A
We reject H0 at the significance level α if T
is greater than w1−α/2 or smaller than wα/2,
that is, if

T < wα/2 ou T > w1−α/2 .

Case B
We reject H0 at the significance level α if T
is greater than w1−α , that is, if

T > w1−α .

Case C
We reject H0 at the significance level α if T
is smaller than wα , that is, if

T < wα .

DOMAINS AND LIMITATIONS
To use the Wilcoxon signed test, the follow-
ing criteria must be met:
1. The distribution of di must be symmetric.
2. di must be independent.
3. di must be measured in true values.
The Wilcoxon signed test is also used as the
test of the median. The data X1, X2, . . . , Xn

consist of a single sample of dimension n.
The hypotheses corresponding to the previ-
ous cases A, B, and C are the following:

A: Two-tail cases:

H0: The median of X equals a presumed
value Md

H1: The median of X does not equal Md
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B: One-tail case:

H0: The median of X is ≥ Md

H1: The median of X is < Md

C: One-tail case:

H0: The median of X is ≤ Md

H1: The median of X is > Md

Note that “median” could be replaced by
“mean” because we accepted the hypothe-
sis of the symmetry of the distribution of X.
In what concerns the calculations, we form n
pairs (X1, Md) , (X2, Md) , . . . , (Xn, Md) and
treat them in the same way as before.The rest
of the test is identical.

EXAMPLES
We conduct tests on eight pairs of twins. The
goal is to see if the first born is more intelli-
gent than the second born.
The data are presented in the following table,
the higher scores corresponding to better test
results.

Rank ofPair of
twins

First
born Xi

Second
born Yi di

∣
∣di

∣
∣ Ri

1 90 88 −2 2 −2

2 75 79 4 4 4

3 99 98 −1 1 −1

4 60 66 6 5 5

5 72 64 −8 6 −6

6 83 83 0 – –

7 86 86 0 – –

8 92 95 3 3 3

As pairs 6 and 7 represent no difference
(d6 = d7 = 0), the number of remaining
pairs equals m = 6. As the di are all differ-
ent, the mean ranks must not be calculated,
and we use the sum of positive ranks:

T =
∑

(for i such
as di > 0)

Ri ,

where Ri is the rank of the pair (xi, yi) repre-
senting a positive di. Thus we have:

T = 4+ 5+ 3 = 12 .

The hypotheses are the following:

H0: There is no difference in the level of
intelligencebetweenthefirstandsecond
twin (dm = 0)

H1: There is a difference (dm �= 0)

These hypotheses corresponding to case A
and the decision rule are the following:
Reject H0 at level α if T < wα/2 or T >

w1−α/2.
If we choose the significance level α =
0.05, we obtain from the Wilcoxon signed
table for m = 6:

w1−α/2 = 20 and wα/2 = 1 ,

whereT isneithergreater than 20 nor smaller
than 1, and we cannot reject the null hypoth-
esis H0.
Now we suppose that the results for pairs 7
and 8 have changed with the new hypothesis
in the following table:

Rank ofPair of
twins

First
born Xi

Second
born Yi di

∣
∣di

∣
∣ Ri

1 90 88 −2 4 −4

2 75 79 4 5 5

3 99 98 −1 2 −2

4 60 66 6 6 6

5 72 64 −8 7 −7

6 83 83 0 – –

7 86 87 1 2 2

8 92 91 −1 2 −2

Now, pair 6 does not represent a difference
(d6 = 0); thus m equals 7.
Pairs 3, 7, and 8 represent the same absolute
difference: |d3| = |d7| = |d8| = 1. We



574 Wilcoxon Table

assign a mean rank to the pairs that equal the
rank of the ex aequo to which we add half the
number of ex aequo minus one. Thus:

mean rank = rank of |d3| + 1
2 (3− 1)

= 2 .

In this case, we use the statistical test T1 cal-
culated by:

T1 =

m∑
i=1

Ri

√√√√
m∑

i=1

R2
i

= −2

11.75
= −0.17 .

The decision rule is the following:
Reject H0 at level α if T1 < zα/2 or T1 >

z1−α/2.
If we choose the level α = 0.05, then the
values of the normal table are:

z1−α/2 = −1.96 and zα/2 = 1.96 .

In consequence, T1 is neither greater than
1.96 nor smaller than −1.96.
We obtain the same result as in the previous
case and do not reject the null hypothesis H0.

FURTHER READING
� Hypothesis testing
� Nonparametric test
� Wilcoxon signed table

REFERENCES
Wilcoxon, F.: Individual comparisons by

ranking methods. Biometrics 1, 80–83
(1945)(5.1, 5.7).

Wilcoxon, F.: Some rapid approximate sta-
tistical procedures. American Cyanamid,
Stamford Research Laboratories, Stam-
ford, CT (1957)

Wilcoxon Table

The Wilcoxon table gives the theoretical val-
ues of statistic T of the Wilcoxon test under
the hypothesis that there is no difference
between the distribution of two compared
populations.

HISTORY
The critical values for N ≤ 20 (where N is
the total number of observations) were cal-
culated by Wilcoxon, F. (1947).

MATHEMATICAL ASPECTS
Let (X1, X2, . . . , Xn) be a sample of dimen-
sion n coming from population 1 and
(Y1, Y2, . . . , Ym) a sample of dimension m
coming from population 2.
Thus we obtain N = n+m observations that
we want to class in increasing order with-
out taking into account their belonging to
the samples. We assign a rank to each value:
rank 1 to the smallest value, rank 2 to the next
value, and so on up to rank N to the largest
value.
We define the statistical test T in the follow-
ing manner:

T =
n∑

i=1

R (Xi) ,

where R(Xi) is the rank assigned to the obser-
vation Xi, i = 1, 2, . . . , n relative to the set of
two samples (X1, . . . , Xn) and (Y1, . . . , Ym).
For different values of n, m, and α (the sig-
nificance level), the Wilcoxon table gives
the theoretical values of statistic T of the
Wilcoxon test, under thehypothesis that the
two underlying populations are identically
distributed.
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DOMAINS AND LIMITATIONS
The Wilcoxon table is used in nonparam-
etric tests that use rank, and especially in the
Wilcoxon test.

EXAMPLES
Here is an extract of a Wilcoxon table for n=
14, m = 11, and α = 0.05 equalling 0.95:

n m α critical

14 11 0.05 152

14 11 0.95 212

For an example of the use of the Wilcoxon
table, see Wilcoxon test.

FURTHER READING
� Statistical table
� Wilcoxon test

REFERENCES
Wilcoxon,F.:Probability tablesfor individu-

al comparisons by ranking methods. Bio-
metrics 3, 119–122 (1947)

Wilcoxon Test
The Wilcoxon test is a nonparametric test.
It is used when we have two samples coming
from two populations. The goal is to verify
if there is a difference between the popula-
tions on the basis of the random samples tak-
en from these populations.

HISTORY
TheWilcoxon test isnamed for itsauthorand
was introduced in 1945.
See also Mann–Whitney test.

MATHEMATICAL ASPECTS
Let (X1, X2, . . . , Xn) be a sample of dimen-
sion n coming from a population 1, and let

(Y1, Y2, . . . , Ym) be a sample of dimension m
coming from a population 2.
Thus we obtain N = n+m observations that
we will class in increasing order without tak-
ing into account their belonging to the sam-
ples. Then we assign a rank of 1 to the small-
estvalue, a rankof2 to thenexthighestvalue,
and so on up to rank N, which is assigned to
the highest value. If many observations have
exactly the same value, then we will assign
a mean rank. We denote by R(Xi) the rank
assigned to Xi, i = 1, . . . , n.
Statistic W of the test is defined by:

W =
n∑

i=1

R (Xi) .

If the dimension of the sample is large (N ≥
12), then we use, according to Gibbons, J.D.
(1971), an approximation using the statis-
tic W1, which is supposed to follow a stan-
dard normal distribution N (0, 1):

W1 = W − μ

σ
,

where μ and σ are, respectively, the mean
and the standard deviation of random
variable W:

μ = n (N + 1)

2

and

σ =
√

mn (N + 1)

12
.

If we use the approximation for the large
samples W1, and if we use the fact that there
are ranks ex aequo among the N observa-
tions, we replace the standard deviation by:

σ =

√√√√√√√√√√
mn

12

⎛
⎜⎜⎜⎜⎜⎝

N + 1−

g∑
j=1

tj
(

t2j − 1
)

N (N − 1)

⎞
⎟⎟⎟⎟⎟⎠

,
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where g is the number of groups of equal (tie)
ranksand tj thedimension ofgroup j. (If there
are no equal (tie) ranks, the observations are
seen as many groups of dimension 1. In con-
sequence, g = N and tj = 1 for j = 1, . . . , N,

and σ reduces to

√
mn (N + 1)

12
.)

Hypotheses
The Wilcoxon test can be made on the basis
of a two-tail test or one-tailed test, accord-
ing to the type of hypothesis:
A: Two-tail test:

H0 : P (X < Y) = 1
2

H1 : P (X < Y) �= 1
2

B: One-tail test:

H0 : P (X < Y) ≤ 1
2

H1 : P (X < Y) > 1
2

C: One-tail test:

H0 : P (X < Y) ≥ 1
2

H1 : P (X < Y) < 1
2

Case A expresses the hypothesis that there is
no difference between two populations.
Case B represents the hypothesis that popu-
lation 1 (from where we took the sample of
X) generally takes greater values than does
population2(fromwherewetookthesample
of Y).
Case C expresses the contrary hypothesis,
i.e., that thevaluesofpopulation 1havea ten-
dency to be smaller than those of popula-
tion 2.

Decision Rules
Case A
We reject the null hypothesis H0 at the sig-
nificance levelα if W is smaller than the val-
ue of the Wilcoxon table with parameters n,

m, and α
2 denoted by tn,m,α/2 or if W is greater

than the value in the table for n, m, and 1−α
2 ,

by tn,m,1−α/2, that is, if

W < tn,m,α/2 or W > tn,m,1−α/2 .

If the test uses statistic W1, a comparison is
made with the normal table:

W1 < zα/2 or W1 > z1−α/2 ,

with zα/2 and z1−α/2 the values of the nor-
mal table with, respectively, the parameters
α
2 and 1− α

2 .

Case B
Wereject thenullhypothesisH0 at the signif-
icance level α if W is smaller than the value
of the Wilcoxon table with parameters n, m,
and α, denoted by tn,m,α, that is, if

W < tn,m,α ,

and in the case where statistic W1 is used:

W1 < zα ,

with zα being the value of the normal table
with parameter α.

Case C
Wereject thenullhypothesisH0 at the signif-
icance level α if W is greater than the value
in the Wilcoxon table with parameters n, m,
and 1− α, denoted by tn,m,1−α, that is, if

W > tn,m,1−α ,

and with statistic W1:

W1 > z1−α ,

with z1−α being the value of the normal table
with parameter α.
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DOMAINS AND LIMITATIONS
To use the Wilcoxon test, the following cri-
teria must be met:
1. The two samples must be from random

samples taken from their respective pop-
ulations.

2. In addition to the independence inside
each sample, there must be mutual inde-
pendence between the two samples.

3. The scale of measure must be at least ordi-
nal.

EXAMPLES
In a class, we count 25 students: 14 boys and
11 girls. We test them on mental calculation
to see if the boys in this class have a tendency
to be better than the girls.
The data are in the following table, the high-
est scores corresponding to the best test
results.

Boys (Xi ) Girls (Yi )

19.8 17.5 17.7 23.6

12.3 17.9 7.1 11.1

10.6 21.1 21.0 20.3

11.3 16.4 10.6 15.6

14.0 7.7 13.3

9.2 15.2 8.6

15.6 16.0 14.1

We class the scores in increasing order and
assign a rank:

Scores Sample Rank R (Xi )

7.1 Y 1 –

7.7 X 2 2

8.6 Y 3 –

9.2 X 4 4

10.6 Y 5.5 –

10.6 X 5.5 5.5

11.1 Y 7 –

11.3 X 8 8

12.3 X 9 9

Scores Sample Rank R (Xi )

13.3 Y 10 –

14.0 X 11 11

14.1 Y 12 –

15.2 X 13 13

15.6 X 14.5 14.5

15.6 Y 14.5 –

16.0 X 16 16

16.4 X 17 17

17.5 X 18 18

17.7 Y 19 –

17.9 X 20 20

19.8 X 21 21

20.3 Y 22 –

21.0 Y 23 –

21.1 X 24 24

23.6 Y 25 –

We calculate statistic W:

W =
14∑

i=1

R (Xi)

= 2+ 4+ 5.5+ 8+ 9+ 11+ 13

+ 14.5+ 16+ 17+ 18+ 20

+ 21+ 24 = 183 .

If we choose the approximation for the large
samples, taking into account the mean ranks,
we make the adjustment:

W1 =
W − n (N + 1)

2√√√√√√√√√√
mn

12

⎛
⎜⎜⎜⎜⎜⎝

m+ n+ 1−

g∑

j=1

tj
(

t2j − 1
)

(m+ n)(m+ n− 1)

⎞
⎟⎟⎟⎟⎟⎠

.

Here g = 2 and tj = 2 for j = 1, 2. Thus we
have:

W1 =
183− 14 (25+ 1)

2√
11·14

12

(
11+ 14 + 1− 2(22−1+2

(
22−1

)
(11+14)(11+14−1)

)

= 0.0548 .
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The hypotheses that we want to test are:

H0: The boys in this class do not have a ten-
dency to be better than the girls in this
class in mental calculation.

H1: The boys in this class have a tendency
to be better than the girls in this class in
mental calculation.

This is expressed by H0: P (X < Y) ≥ 1
2 and

corresponds to case C. The decision rule is
the following:
Reject H0 at significance level α if

W > tn,m,1−α or W1 > z1−α .

If we choose α = 0.05, the theoretical value
in the Wilcoxon table is tn,m,1−α = 212.
The calculated value of W (W = 183) is not
greater than tn,m,1−α = 212, and we cannot
reject the null hypothesis H0.
The value in the normal table z1−α equals
1.6449. In consequence, W1 is not greater
than z1−α (0.0548 < 1.6449), and we draw
the same conclusion on the basis of statis-
tic W: the boys in this class do not have a ten-
dency to be better than the girls in this class
in mental calculation.

FURTHER READING
� Hypothesis testing
� Mann–Whitney test
� Nonparametric test
� Wilcoxon signed test
� Wilcoxon table

REFERENCES
Gibbons, J.D.: Nonparametric Statistical

Inference. McGraw-Hill, New York
(1971)

Wilcoxon, F.: Individual comparisons by
ranking methods. Biometrics 1, 80–83
(1945)

Willcox, Walter Francis

Willcox,Walter Francis (1861–1964)gradu-
ated from AmherstCollege inMassachusetts
(receiving his bachelor’s degree in 1884 and
his master’s degree in 1888). He continued
his studies at Columbia University in New
York in the late 1880s. He received his doc-
torate from Columbia University in 1891.
His Ph.D. thesis was called The Divorce
Problem: A Study in Statistics. From
1891, Willcox became professor of eco-
nomics and of statistics at Cornell Univer-
sity, where he stayed until his retirement in
1931.
His principal contributions in statistics were
in thedomain ofdemography aswell as in the
development of the system of federal statis-
tics.
From 1899 to 1902 he managed the 12th
census of the United Nations and presided
over the American Statistical Association in
1912, the American Economic Association
in 1915, and the International Statistical
Institute in 1947.

Selected principal works and articles of
Willcox, Walther Francis:

1897 The Divorce Problem: A Study in
Statistics. Studies in History, Eco-
nomics and Public Law. Columbia Uni-
versity Press, New York.

1940 Studies in American Demography,
Cornell University Press, Ithaca, NY.
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Yates’ Algorithm

Yates’ algorithm is a process used to com-
pute the estimates of main effects and of the
interactions in a factorial experiment.

HISTORY
Yates’ algorithm was created by Yates,
Franck in 1937.

MATHEMATICAL ASPECTS
Consider a factorial experiment with n fac-
tors, each having two levels. We denote this
experiment by 2n.
The factorsaredenoted byuppercase letters.
We use a lowercase letter for the heigh level
of the factor and omit the letter for the lower
level. When all the factors are at the lower
level, we use the symbol (1).
The algorithm presented in a table. In the
first column we find all the combinations of
the levels of different factors in a standard
order (the introduction of a letter is followed
by combinations with all previous combi-
nations). The second column contains the
observations of all the combinations.
For the subsequent n columns, the procedure
is the same: the first half of the column is
obtained by summing the pairs of successive
values of the previous column; the second
half of the column is obtained by subtract-

ing the first value from the second value of
each pair.
Column n contains the contrasts of the main
effectsand interactionsgiven in thefirstcol-
umn. To find the estimators of these effects,
we divide the nth column by m ·2n−1, where
m is the number of repetitions of the experi-
ment and n the number of factors. Concern-
ing the first line, we find in column n the sum
of all the observations.

DOMAINS AND LIMITATIONS
Yates’ algorithm can be applied to expe-
riments with factors that have more than
two levels.
One can also use this algorithm to find the
sum of squares corresponding to the main
effects and interactions of the 2n factorial
experiment. They are obtained by squaring
the nth column and dividing the result by m ·
2n (wherem is thenumber of replicationsand
n the number of factors).

EXAMPLES
To compute the estimates of the main
effects and those of the three interactions,
let us consider a factorial experiment 23

(meaning three factors with two levels) rela-
tive to the production of the sugar beet. The
first factor, denoted A, concerns the type
of fertilizer (manure or nonmanure); the
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second, denoted B, concerns the depth of
plowing (20 or 30 cm); and the last factor is
C, the variety of sugar beet (variety 1 or 2).
Since each factor has two levels, one can
speak of a 2× 2× 2 experiment.
For example, the interaction between fac-
tor A and factor B is denoted by A×B, and
the interaction between all three factors is
written A× B× C.
The eight observations indicate the weight
of the harvesting in kilograms for half
a hectare, giving the following table:

A Manure Nonmanure

B 20 cm 30 cm 20 cm 30 cm

Var. 1 80 96 84 88

C

Var. 2 86 96 89 93

In doing this experiment, we want to quan-
tify not only the effect of fertilizer, plowing,
and the variety of beet (simple effects), but
also the impact of combined effects (effects
of interaction) on harvesting.
To establish the table of Yates’ algorithm,
the eight observations must be classified in
Yates’ order. The classification table is prac-
tical in this case; the symbols “−” and “+”
represent, respectively, the lower and upper
levelof the factors.Forexample, thefirst line
indicates the observation “80” correspond-
ing to the lower levels for all three factors
(A: manure, B: 20 cm, C: variety 1).

Observation classification table in Yates’ order

Obs. Factor

A B C

Corresponding
observation

1 − − − 80

2 + − − 84

3 − + − 96

Obs. Factor

A B C

Corresponding
observation

4 + + − 88

5 − − + 86

6 + − + 89

7 − + + 96

8 + + + 93

Wecannowestablish the tableofYates’algo-
rithm:

Table corresponding to Yates’ algorithm

ColumnsCombi-
nation Obs.

1 2 3

Esti-
mation

Average
effect

(1) 80 164 348 712 89 —

a 84 184 364 −4 −1 A

b 96 175 −4 34 8.5 B

ab 88 189 0 −18 −4.5 A× B

c 86 4 20 16 4 C

ac 89 −8 14 4 1 A×C

bc 96 3 −12 −6 −1.5 B× C

abc 93 −3 −6 6 1.5 A× B× C

The terms in column 2, for example, are cal-
culated in the following way:
• First half of column (sum of elements of

each pair of previous column, in this case
column 1):

348 = 164+ 184

364 = 175+ 189

−4 = 4+ (−8)

0 = 3+ (−3)

• Second halfof column (subtractionofele-
ments of each pair, in opposite order):

20 = 184− 164

14 = 189− 175

−12 = −8− 4

−6 = −3− 3
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The estimation for the main effect of fac-
tor A is equal to −1. As one can see, the
value −4 (column 3) has been divided by
m · 2n−1 = 1 · 23−1 = 4, where m is equal
to 1 because the experiment was done only
once (without repetition) and n corresponds
to thenumberof factors,which is three in this
case.

FURTHER READING
� Analysis of variance
� Contrast
� Design of experiments
� Factorial experiment
� Interaction
� Main effect

REFERENCES
Yates, F.: The design and analysis of fac-

torial experiments. Technical Commu-
nication of the Commonwealth Bureau
of Soils 35, Commonwealth Agricultural
Bureaux, Farnham Royal (1937)

Youden, William John
Youden, William John (1900–1971) earned
his master’s degree in chemistry from
Columbia University in 1924. From 1924
to 1948 he worked in the Boyce Thomp-
son Institute FOR PLANT RESEARCH in
Yonkers, NY. From 1948 until his retire-
ment in 1965, Youden, W.J. was a member
of the Applied Mathematics Division in the
National Bureau of Standards in Washing-
ton, D.C. During this period Youden devel-
oped a test and wrote Statistical Methods
for Chemists.
Principal work of Youden, William John:

1951 Statistical Methods for Chemists.
Wiley, New York.

Yule and Kendall Coefficient

The Yule coefficient is used to measure the
skewness of a frequency distribution. It
takes into account the relative positions of
thequartileswith respect to the median, and
compares the spreading of the curve to the
right and left of the median.

MATHEMATICAL ASPECTS
In a symmetrical distribution, the quartiles
are at an equal distance on each side of the
median. This means that

(Q3 −M)− (M − Q1) = 0 ,

where M is the median, Q1 the first quartile,
and Q3 the third quartile.
If the distribution is asymmetric, then the
previous equality is not true.
The left part of the equation can be rear-
ranged in the following way:

Q3 + Q1 − 2M .

To obtain a coefficient of skewness that is
independent of the measure unit, the equa-
tion should be divided by the value (Q3 −
Q1).
The Yule coefficient is then:

CY = Q3 + Q1 − 2M

Q3 − Q1
.

IfCY ispositive, then thedistribution spreads
toward the right; if CY is negative, the distri-
bution spreads toward the left.

DOMAINS AND LIMITATIONS
If the coefficient is positive, then it repre-
sents a curve that spreads toward the right. If
it is positive, then it represents a curve that
spreads toward the left. A coefficient that is
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close to zero means that the curve is approx-
imately symmetric.
The Yule and Kendall coefficient can vary
between−1 and+1. In fact, since the medi-
an M is always located between the first and
third quartile, the following two extreme
possibilities occur:
1. M = Q1

2. M = Q3

In the first case the coefficient becomes:

CY = Q3 + Q1 − 2Q1

Q3 − Q1
= 1 ,

and in the second case it becomes:

CY = Q3 + Q1 − 2Q3

Q3 − Q1
= −1 .

In these conditions, the coefficient should be
close to zero for the distribution to be con-
sidered symmetric.
This coefficient as well as the other mea-
sures of skewness are of interest only if they
can compare the shapes of two or several
distributions. The results vary considerably
fromoneformula toanother. It isobviousthat
comparisons must be made using the same
formula.

EXAMPLES
Suppose that we want to compare the shape
of the distribution of the daily turnover in 75
bakeries over 2 years. We then calculate in
both cases the Yule and Kendall coefficients.
The data are the following:

Turnover Frequency
year 1

Frequency
year 2

215–235 4 25

235–255 6 15

255–275 13 9

275–295 22 8

Turnover Frequency
year 1

Frequency
year 2

295–315 15 6

315–335 6 5

335–355 5 4

355–375 4 3

Foryear1, thefirstquartile, themedian, and
the third quartile are respectively:

Q1 = 268.46 ,

M = 288.18 ,

Q3 = 310 .

The coefficient is then the following:

CY = Q3 + Q1 − 2M

Q3 − Q1

= 310+ 268.46− 2(288.18)

310− 268.46
= 0.05 .

For year 2, these values are respectively:

Q1 = 230 ,

M = 251.67 ,

Q3 = 293.12 .

The Yule and Kendall coefficient is then
equal to:

CY = Q3 + Q1 − 2M

Q3 − Q1

= 293.12+ 230− 2(251.67)

293.12− 230

= 0.31 .

For year 1, since the coefficient gives a result
that is close to zero, we can admit that the
distribution of the daily turnover in the 75
bakeries is very close to a symmetric distri-
bution. For year 2, the coefficient is high-
er; this means that the distribution spreads
toward the right.
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FURTHER READING
� Measure of shape
� Measure of skewness

REFERENCES
Yule, G.V., Kendall, M.G.: An Introduction

to the Theory of Statistics, 14th edn. Grif-
fin, London (1968)

Yule, George Udny

Yule, George Udny was born in 1871 in
Beech Hill near Haddington (Ecosse) and
died in 1951 in Cambridge.
The Yule coefficient of association, the
Yule paradox (also called later the Simp-
son paradox), and the Yule procedure bear
his name in statistics who also contribut-
ed to the Mendel theory and the time
series.

Selected principal works of Yule, George
Udny:

1897 On the Theory of Correlation. J. Roy.
Stat. Soc. 60, 812–854.

1900 On the association of attributes in
statistics: with illustration from the
materialof thechildhoodsociety.Phi-
los. Trans. Roy. Soc. Lond. Ser. A
194, 257–319.

1926 Why do we sometimes get nonsense-
correlations between time-series?
A study in sampling and the nature
of time-series. J. Roy. Stat. Soc. (2)
89, 1–64.

1968 (withKendall,M.G.)AnIntroduction
to the Theory of Statistics. 14th edn.
Griffin, London.

FURTHER READING
� Measure of skewness
� Yule and Kendall coefficient
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Appendix A: Table of Random Numbers, Decimals of π

1415926535 3305727036 5024459455 8583616035 8164706001 9465764078

8979323846 5759591953 3469083026 6370766010 6145249192 9512694683

2643383279 9218611739 4252230825 4710181942 1732172147 9835259570

5028841971 8193261179 3344685035 9555961989 7235014144 9825822620

6939937510 3105118548 2619311881 4676783744 1973568548 5224894077

5820974944 7446237999 7101000313 9448255379 1613611573 2671947826

5923078164 6274956735 7838752886 7747268471 5255213347 8482601476

6286208995 1885752724 5875332083 4047534640 5741849468 9909026401

8628034825 8912279381 8142061717 6208046684 4385233239 3639443745

3421170679 8301194912 7669147303 2590694912 7394143337 5305068203

8214808651 9833673362 5982534904 3313677028 4547762416 4962524517

3282306647 4406566430 2875546873 8989152104 8625189835 4939965143

9384460952 8602139494 1159562863 7521620569 6948556209 1429809190

5058223172 6395224737 8823537875 6602405803 9219222184 6592509372

5359408128 1907021798 9375195778 8150193511 2725502542 2169646151

4811174502 6094370277 1857780532 2533824300 5688767179 5709858387

8410270193 5392171760 1712268066 3558764024 4946016530 4105978859

8521105559 2931767523 1300192787 7496473263 4668049886 5977297549

6446229489 8467481846 6611195909 9141992726 2723279178 8930161753

5493038196 7669405132 2164201989 4269922792 6085784383 9284681382

4428810975 5681271702 3809525720 6782354781 8279679766 6868386894

6659334461 4526356082 1065485863 6360093417 8145410095 2774155991

2847564823 7785771342 2788659361 2164121992 3883786360 8559252459

3786783165 7517896091 5338182796 4586315030 9506800642 5395943104

2712019091 7363717872 8230301952 2861829745 2512520511 9972524680

4564856692 1468440901 3530185292 5570674983 7392984896 8459872736

3460348610 2249534301 6899577362 8505494588 8412848862 4469584865

4543266482 4654958537 2599413891 5869269956 2694560424 3836736222

1339360726 1050792279 2497217752 9092721079 1965285022 6260991246

2491412733 6892589235 8347913151 7509302955 2106611863 8051243888

7245870066 4201995611 5574857242 3211653449 6744278629 4390451244

6315588170 2129021960 4541500959 8720275596 2039194945 1365497627

4881520920 8640344181 5082953311 2364806657 4712371373 8079771569

9628292540 5981362977 6861727855 4991198818 8696095636 1435997700

9171536436 4771309960 8890750983 3479775356 4371917287 1296160894

7892590360 5187072113 8175463746 6369807426 4677646575 4169486855

1133053052 4999999837 4939319255 5425278625 7396241389 5848406353

4882046652 2978049951 6040092774 5181841757 8658326451 4220722258

1384146951 5973173280 1671139001 4672890977 9958133904 2848864815

9415116094 1609631859 9848824012 7727938000 7802759009 8456028506
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Appendix B: Binomial Table

Number Probability of success
of trials 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.5

0 0.9510 0.9039 0.8587 0.8154 0.7738 0.5905 0.3277 0.1681 0.0313

1 0.9990 0.9962 0.9915 0.9852 0.9774 0.9185 0.7373 0.5282 0.1875

2 1.0000 0.9999 0.9997 0.9994 0.9988 0.9914 0.9421 0.8369 0.5000

5 3 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9933 0.9692 0.8125

4 1 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9976 0.9688

5 1 1 1 1 1 1 1 1 1

0 0.9044 0.8171 0.7374 0.6648 0.5987 0.3487 0.1074 0.0282 0.0010

1 0.9957 0.9838 0.9655 0.9418 0.9139 0.7361 0.3758 0.1493 0.0107

2 0.9999 0.9991 0.9972 0;9938 0.9885 0.9298 0.6778 0.3828 0.0547

3 1.0000 1.0000 0.9999 0.9996 0.9990 0.9872 0.8791 0.6496 0.1719

4 1.0000 1.0000 1.0000 1.0000 0.9999 0.9984 0.0672 0.8497 0.3770

5 1 1.0000 1.0000 1.0000 1.0000 0.9999 0.9936 0.9527 0.6230

10 6 1 1 1.0000 1.0000 1.0000 1.0000 0.9991 0.9894 0.8281

7 1 1 1 1 1.0000 1.0000 0.9999 0.9984 0.9453

8 1 1 1 1 1 1.0000 1.0000 0.9999 0.9893

9 1 1 1 1 1 1 1.0000 1.0000 0.9990

10 1 1 1 1 1 1 1 1 1

0 0.8601 0.7386 0.6333 0.5421 0.4633 0.2059 0.0352 0.0047 0.0000

1 0.9904 0.9647 0.9270 0.8809 0.8290 0.5490 0.1671 0.0353 0.0005

2 0.9996 0.9970 0.9906 0.9797 0.9638 0.8159 0.3980 0.1268 0.0037

3 1.0000 0.9998 0.9992 0.9976 0.9945 0.9444 0.6482 0.2969 0.0176

4 1.0000 1.0000 0.9999 0.9998 0.9994 0.9873 0.8358 0.5155 0.0592

5 1.0000 1.0000 1.0000 1.0000 0.9999 0.9978 0.9389 0.7216 0.1509

6 1 1.0000 1.0000 1.0000 1.0000 0.9997 0.9819 0.8689 0.3036

15 7 1 1 1.0000 1.0000 1.0000 1.0000 0.9958 0.9500 0.5000

8 1 1 1 1.0000 1.0000 1.0000 0.9992 0.9848 0.6964

9 1 1 1 1 1 1.0000 0.9999 0.9963 0.8491

10 1 1 1 1 1 1.0000 1.0000 0.9993 0.9408

11 1 1 1 1 1 1 1.0000 0.9999 0.9824

12 1 1 1 1 1 1 1.0000 1.0000 0.9963

13 1 1 1 1 1 1 1.0000 1.0000 0.9995

14 1 1 1 1 1 1 1 1.0000 1.0000

15 1 1 1 1 1 1 1 1 1
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Number Probability of success
of trials 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.5

0 0.8179 0.6676 0.5438 0.4420 0.1585 0.1216 0.0115 0.0008 0.0000

1 0.9831 0.9401 0.8802 0.8103 0.7358 0.3917 0.0692 0.0076 0.0000

2 0.9990 0.9929 0.9790 0.9561 0.9245 0.6769 0.2061 0.0355 0.0002

3 1.0000 0.9994 0.9973 0.9926 0.9841 0.8670 0.4114 0.1071 0.0013

4 1.0000 1.0000 0.9997 0.9990 0;9974 0.9568 0.6296 0.2375 0.0059

5 1.0000 1.0000 1.0000 0.9999 0.9001 0.9887 0.8042 0.4164 0.0207

6 1.0000 1.0000 1.0000 1.0000 1.0000 0.9976 0.9133 0.6080 0.0577

7 1 1.0000 1.0000 1.0000 1.0000 0.9996 0.9679 0.7723 0.1316

8 1 1 1.0000 1.0000 1.0000 0.9999 0.9900 0.8867 0.2517

9 1 1 1 1.0000 1.0000 1.0000 0.9974 0.9520 0.4119

20 10 1 1 1 1 1.0000 1.0000 0.9994 0.9829 0.5881

11 1 1 1 1 1 1.0000 0.9999 0.9949 0.7483

12 1 1 1 1 1 1.0000 1.0000 0.9987 0.8684

13 1 1 1 1 1 1 1.0000 0.9997 0.9423

14 1 1 1 1 1 1 1.0000 1.0000 0.9793

15 1 1 1 1 1 1 1.0000 1.0000 0.9941

16 1 1 1 1 1 1 1.0000 1.0000 0.9987

17 1 1 1 1 1 1 1 1.0000 0.9998

18 1 1 1 1 1 1 1 1.0000 1.0000

19 1 1 1 1 1 1 1 1 1.0000

20 1 1 1 1 1 1 1 1 1
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Number Probability of success
of trials 0.01 0.02 0.03 0.04 0.05 0.1 0.2 0.3 0.5

0 0.7397 0.5455 0.4010 0.2939 0.2146 0.0424 0.0012 0.0000 0.0000

1 0.9639 0.8795 0.7731 0.6612 0.5535 0.1837 0.0105 0.0003 0.0000

2 0.9967 0.9783 0.9399 0.8831 0.8122 0.4114 0.0442 0.0021 0.0000

3 0.9998 0.9971 0.9881 0.9694 0.9392 0.6474 0.1227 0.0093 0.0000

4 1.0000 0.9997 0.9982 0.9937 0.9844 0.8245 0.2552 0.0302 0.0000

5 1.0000 1.0000 0.9998 0.9989 0.9967 0.9268 0.4275 0.0766 0.0002

6 1.0000 1.0000 1.0000 0.9999 0.9994 0.9742 0.6070 0.1595 0.0007

7 1 1.0000 1.0000 1.0000 0.9999 0.9922 0.7608 0.2814 0.0026

8 1 1.0000 1.0000 1.0000 1.0000 0.9980 0.8713 0.4315 0.0081

9 1 1 1.0000 1.0000 1.0000 0.9995 0.9389 0.5888 0.0214

10 1 1 1.0000 1.0000 1.0000 0.9999 0.9744 0.7304 0.0494

11 1 1 1 1.0000 1.0000 1.0000 0.9905 0.8407 0.1002

12 1 1 1 1 1.0000 1.0000 0.9969 0.9155 0.1808

13 1 1 1 1 1 1.0000 0.9991 0.9599 0.2923

14 1 1 1 1 1 1.0000 0.9998 0.9831 0.4278

30 15 1 1 1 1 1 1.0000 0.9999 0.9936 0.5722

16 1 1 1 1 1 1 1.0000 0.9979 0.7077

17 1 1 1 1 1 1 1.0000 0.9994 0.8192

18 1 1 1 1 1 1 1.0000 0.9998 0.8998

19 1 1 1 1 1 1 1.0000 1.0000 0.9506

20 1 1 1 1 1 1 1.0000 1.0000 0.9786

21 1 1 1 1 1 1 1 1.0000 0.9919

22 1 1 1 1 1 1 1 1.0000 0.9974

23 1 1 1 1 1 1 1 1.0000 0.9993

24 1 1 1 1 1 1 1 1.0000 0.9998

25 1 1 1 1 1 1 1 1 1.0000

26 1 1 1 1 1 1 1 1 1.0000

27 1 1 1 1 1 1 1 1 1.0000

28 1 1 1 1 1 1 1 1 1.0000

29 1 1 1 1 1 1 1 1 1.0000

30 1 1 1 1 1 1 1 1 1
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Appendix C: Fisher Table for α = 0.05

ν1

ν2 1 2 3 4 5 6 7 8 9 10

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19

29 4.18 3.33 2.93 2.70 2.55 2.43 2;35 2.28 2.22 2.18

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83
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ν1

ν2 12 15 20 24 30 40 60 120 ∞
1 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3

2 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 2.25 2.18 2.10 2.05 2.01 1;96 1.92 1.87 1.81

22 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

∞ 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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n1 n2 n3 Critical value α

2 1 1 2.7000 0.500

2 2 1 3.6000 0.267

2 2 2 4.5711 0.067

3.7143 0.200

3 1 1 3.2000 0.300

3 2 1 4.2857 0.100

3.8571 0.133

3 2 2 5.3572 0.029

4.7143 0.048

4.5000 0.067

4.4643 0.105

3 3 1 5.1429 0.043

4.5714 0.100

4.0000 0.129

3 3 2 6.2500 0.011

5.3611 0.032

5.1389 0.061

4.5556 0.100

4.2500 0.121

3 3 3 7.2000 0.004

6.4889 0.011

5.6889 0.029

5.0667 0.086

4.6222 0.100

4 1 1 3.5714 0.200

4 2 1 4.8214 0.057

4.5000 0.076

4.0179 0.114

4 2 2 6.0000 0.014

5.3333 0.033

5.1250 0.052

4.3750 0.100

4.1667 0.105

4 3 1 5.8333 0.021

5.2083 0.050

5.0000 0.057

4.0556 0.093

3.8889 0.129

n1 n2 n3 Critical value α

4 3 2 6.4444 0.009

6.4222 0.010

5.4444 0.047

5.4000 0.052

4.5111 0.098

4.4666 0.101

4 3 3 6.7455 0.010

6.7091 0.013

5.7909 0.046

5.7273 0.050

4.7091 0.094

4.7000 0.101

4 4 1 6.6667 0.010

6.1667 0.013

4.9667 0.046

4.8667 0.054

4.1667 0.082

4.0667 0.102

4 4 2 7.0364 0.006

6.8727 0.011

5.4545 0.046

5.2364 0.052

4.5545 0.098

4.4455 0.103

4 4 3 7.1739 0.010

7.1364 0.011

5.5985 0.049

5.5758 0.051

4.5455 0.099

4.4773 0.102

4 4 4 7.6538 0.008

7.5385 0.011

5.6923 0.049

5.6538 0.054

4.6539 0.097

4.5001 0.104
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n1 n2 n3 Critical value α

5 1 1 3.8571 0.143

5 2 1 5.2500 0.036

5.0000 0.048

4.4500 0.071

4.2000 0.095

4.0500 0.119

5 2 2 6.5333 0.008

6.1333 0.013

5.1600 0.034

5.0400 0.056

4.3733 0.090

4.2933 0.122

5 3 1 6.4000 0.012

4.9600 0.048

4.8711 0.052

4.0178 0.095

3.8400 0.123

5 3 2 6.9091 0.009

6.8606 0.011

5.4424 0.048

5.3455 0.050

4.5333 0.097

4.4121 0.109

5 3 3 6.9818 0.010

6.8608 0.011

5.4424 0.048

5.3455 0.050

4.5333 0.097

4.4121 0.109

5 4 1 6.9545 0.008

6.8400 0.011

4.9855 0.044

4.8600 0.056

3.9873 0.098

3.9600 0.102

5 4 2 7.2045 0.009

7.1182 0.010

5.2727 0.049

5.2682 0.050

4.5409 0.098

4.5182 0.101

n1 n2 n3 Critical value α

5 4 3 7.4449 0.010

7.3949 0.011

5.6564 0.049

5.6308 0.051

4.5487 0.099

4.5231 0.103

5 4 4 7.7604 0.009

7.7440 0.011

5.6571 0.049

5;6116 0.050

4.6187 0.100

4.5527 0.102

5 5 1 7.3091 0.009

6.8364 0.011

5.1273 0.049

4.9091 0.053

4.1091 0.086

4.0364 0.105

5 5 2 7.3385 0.010

7.5429 0.010

5.7055 0.046

5.6264 0.051

4.5451 0.100

4.5363 0.102

5 5 4 7.8229 0.010

7.1914 0.010

5.6657 0.049

5.6429 0.050

4.5229 0.099

4.6200 0.101

5 5 5 8.0000 0.09

7.9800 0.010

5.7800 0.049

5.6600 0.051

4.5600 0.100

4.5000 0.102
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α

ν 0.100 0.050 0.025 0.010 0.005 0.001

1 3.078 6.314 12.706 31.821 63.656 318.289

2 1.886 2.920 4.303 6.965 9.925 22.328

3 1.638 2.353 3.182 4.541 5.841 10.214

4 1.533 2.132 2.776 3.747 4.604 7.173

5 1.476 2.015 2.571 3.365 4.032 5.894

6 1.440 1.943 2.447 3.143 3.707 5.208

7 1.415 1.895 2.315 2.998 3.499 4.785

8 1.397 1.860 2.306 2.896 3.355 4.501

9 1.383 1.833 2.212 2.821 3.250 4.297

10 1.312 1.812 2.228 2.764 3.169 4.144

11 1.363 1.796 2.201 2.718 3.106 4.025

12 1.356 1.182 2.179 2.681 3.055 3.930

13 1.350 1.771 2.160 2.650 3.012 3.852

14 1.345 1.761 2.145 2.624 2.977 3.787

15 1.341 1.753 2.131 2.602 2.947 3.733

16 1.337 1.746 2.120 2.583 2.921 3.686

17 1.133 1.740 2.110 2.567 2.898 3.646

18 1.330 1.734 2.101 2.552 2.878 3.610

19 1.328 1.729 2.093 2.539 2.861 3.579

20 1.325 1.725 2.086 2.528 2.845 3.552

21 1.323 1.721 2.080 2.518 2.831 3.527

22 1.321 1.717 2.074 2.508 2.519 3.505

23 1.319 1.714 2.069 2.500 2.807 3.485

24 1.318 1.711 2.064 2.492 2.797 3.467

25 1.316 1.708 2.060 2.485 2.787 3.450

26 1.315 1.706 2.056 2.479 2.779 3.435

27 1.314 1.103 2.052 2.473 2.771 3.421

28 1.313 1.701 2.048 2.467 2.763 3.408

29 1.311 1.699 2.046 2.462 2.756 3.396

30 1.310 1.697 2.042 2.457 2.750 3.385

40 1.303 1.684 2.021 2.123 2.704 3.301

50 1.299 1.676 2.009 2.403 2.678 3.261

60 1.296 1.571 2.000 2.300 2.660 3.232

70 1.294 1.667 1.994 2.381 2.648 3.211

80 1.292 1.664 1.990 2.374 2.639 3.195

90 1.291 1.662 1.987 2.368 2.632 3.183

100 1.290 1.660 1.984 2.364 2.626 3.174

∞ 1.282 1.645 1.960 2.326 2.576 3.090



Appendix F: Chi-Square Table 595

Appendix F: Chi-Square Table

Degree of freedeom

ν 0.990 0.950 0.10 0.05 0.025 0.01

1 0.000 0.004 2.71 3.84 5.020 6.63

2 0.020 0.103 4.61 5.99 7.380 9.21

3 0.115 0.352 6.25 7.81 9.350 11.34

4 0.297 0.711 7.78 9.49 11.140 13.23

5 0.554 1.145 9.24 11.07 12.830 ]5.09

6 0.872 1.635 10.64 12.53 14.450 16.81

7 1.239 2.107 12.02 14.07 16.010 18.48

8 1.646 2.733 13.36 15.51 17.530 20.09

9 2.088 3.325 14.68 16.92 19.020 21.67

10 2.558 3.940 15.99 18.31 20.480 23.21

11 3.050 4.580 17.29 19.68 21.920 21.72

12 3.570 5.230 18.55 21.03 23.340 26.22

13 4.110 5.890 19.81 21.36 24.740 27.69

14 4.660 6.570 21.06 23.68 26.120 29.14

15 5.230 7.260 22.31 25.00 27.100 30.58

16 5.810 7.960 23.54 26.30 28.850 32.00

17 6.410 8.670 24.77 27.59 30.190 33.41

18 7.020 9.390 25.99 28.87 31.530 34.81

19 7.630 10.120 27.20 30.14 32.850 36.19

20 8.260 10.850 28.41 31.41 34.170 37.57

21 8.900 11.590 29.62 39.67 35.480 38.93

22 9.540 12.340 30.81 33.92 36.780 40.29

23 10.200 13.090 32.01 35.17 38.080 41.64

24 10.860 13.850 33.20 36.42 39.360 42.98

25 11.520 14.610 34.38 37.65 40.650 44.31

26 12.200 15.380 35.56 38.89 41.920 45.64

27 12.880 16.150 36.74 40.11 43.190 46.96

28 13.570 16.930 37.92 41.34 44.160 48.28

29 14.260 17.710 39.09 42.56 45.720 49.59

30 14.950 18.490 40.26 43.77 46.980 50.89
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Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0 5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6501 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8119 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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