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Preface

With this concise volume we hope to satisfy the needs of a large scientific community pre-
viously served mainly by huge encyclopedic references. Rather than aiming at a compre-
hensive coverage of our subject, we have concentrated on the most important topics, but
explained those as deeply as space has allowed. The result is a compact work which we trust
leaves no central topics out.

Entries have a rigid structure to facilitate the finding of information. Each term introduced
here includes a definition, history, mathematical details, limitations in using the terms fol-
lowed by examples, references and relevant literature for further reading. The reference
is arranged alphabetically to provide quick access to the fundamental tools of statistical
methodology and biographies of famous statisticians, including some currents ones who
continue to contribute to the science of statistics, such as Sir David Cox, Bradley Efron and
T.W. Anderson just to mention a few. The critera for selecting these statisticians, whether
living or absent, is of course rather personal and itis very possible that some of those famous
persons deserving of an entry are absent. I apologize sincerely for any such unintentional
omissions.

In addition, an attempt has been made to present the essential information about statistical
tests, concepts, and analytical methods in language that is accessible to practitioners and
students and the vast community using statistics in medicine, engineering, physical science,
life science, social science, and business/economics.

The primary steps of writing this book were taken in 1983. In 1993 the first French language
version was published by Dunod publishing company in Paris. Later, in 2004, the updated
and longer version in French was published by Springer France and in 2007 a student edition
of the French edition was published at Springer.

In this encyclopedia, just as with the Oxford Dictionary of Statistical Terms, published for
the International Statistical Institute in 2003, for each term one or more references are given,
in some cases to an early source, and in others to a more recent publication. While some
care has been taken in the choice of references, the establishment of historical priorities is
notoriously difficult and the historical assignments are not to be regarded as authoritative.
For more information on terms not found in this encyclopedia short articles can be found
in the following encyclopedias and dictionaries:



VI Preface

International Encyclopedia of Statistics, eds. William Kruskal and Judith M. Tanur (The
Free Press, 1978).

Encyclopedia of Statistical Sciences, eds. Samuel Kotz, Norman L. Johnson and Cambell
Reed (John Wiley and Sons, 1982).

The Encyclopedia of Biostatistics, eds. Peter Armitage and Ted Colton (Chichester: John
Wiley and Sons, 1998).

The Encyclopedia of Environmetrics, eds. A.H. El-Sharaawi and W.W. Paregoric (John
Wiley and Sons, 2001).

The Encyclopedia of Statistics in Quality and Reliability, eds. F. Ruggeri, R.S. Kenett and
F.W. Faltin (John Wiley and Sons, 2008).

Dictionnaire- Encylopédique en Statistique, Yadolah Dodge, Springer 2004

In between the publication of the first version of the current book in French in 1993 and
the later edition in 2004 to the current one, the manuscript has undergone many correc-
tions. Special care has been made in choosing suitable translations for terms in order to
achieve sound meaning in both the English and French languages. If in some cases this has
not happen, I apologize. I would be very grateful to readers for any comments regarding
inaccuracies, corrections, and suggestions for the inclusion of new terms, or any matter that
could improve the next edition. Please send your comments to Springer-Verlag.

I wish to thank many people who helped me throughout these many years to bring this
manuscript to its current form. Starting with my former assistants from 1983 to 2004,
Nicole Rebetez, Sylvie Gonano-Weber, Maria Zegami, Jurg Schmid, Severine Pfaff, Jimmy
Brignony Elisabeth Pasteur, Valentine Rousson, Alexandra Fragnieire, and Theiry Murrier.
To my colleagues Joe Whittaker of University of Lancaster, Ludevic Lebart of France Tele-
com, and Bernard Fisher, University of Marseille, forreading parts of the manuscript. Special
thanks go to Gonna Serbinenko and Thanos Kondylis for their remarkable cooperation in
translating some of terms from the French version to English. Working with Thanos, my for-
mer Ph.D. student, was a wonderful experience. To my colleague Shahriar Huda whose help-
ful comments, criticisms, and corrections contributed greatly to this book. Finally, I thank
the Springer-Verlag, especially John Kimmel, Andrew Spencer, and Oona Schmid for their
meticulous care in the production of this encyclopedia.

January 2008 Yadolah Dodge
Honorary Professor

University of Neuchatel

Switzerland
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Acceptance Region

The acceptance region is the interval within
the sampling distribution of the test statis-
tic thatis consistent with the null hypothesis
Hy from hypothesis testing.

It is the complementary region to the rejec-
tion region.

The acceptance region is associated with
a probability 1 — «, where « is the signifi-
cance level of the test.

MATHEMATICAL ASPECTS
See rejection region.

EXAMPLES
See rejection region.

FURTHER READING

» Critical value

» Hypothesis testing
» Rejection region
» Significance level
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Accuracy

The general meaning of accuracy is the prox-
imity of a value or a statistic to a refer-
ence value. More specifically, itmeasures the
proximity of the estimator 7 of the unknown
parameter 6 to the true value of 6.

The accuracy of an estimator can be mea-
sured by the expected value of the squared
deviation between T and 6, in other words:

E [(T - 9)2] .

Accuracy should not be confused with the
term precision, which indicates the degree of
exactness of ameasure andis usually indicat-
ed by the number of decimals after the com-
ma.

FURTHER READING
» Bias

» Estimator

» Parameter

» Statistics
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Algorithm

An algorithm is a process that consists of
a sequence of well-defined steps that lead to
the solution of a particular type of problem.
This process can be iterative, meaning that
it is repeated several times. It is generally
a numerical process.

HISTORY

The term algorithm comes from the Latin
pronunciation of the name of the ninth centu-
ry mathematician al-Khwarizmi, who lived
in Baghdad and was the father of algebra.
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DOMAINS AND LIMITATIONS

The word algorithm has taken on a different
meaning in recent years due to the advent of
computers. In the field of computing, itrefers
toaprocess thatis described in a way that can
be used in a computer program.

The principal goal of statistical software is
to develop a programming language capa-
ble of incorporating statistical algorithms,
so that these algorithms can then be pre-
sented in a form that is comprehensible to
the user. The advantage of this approach is
that the user understands the results pro-
duced by the algorithm and trusts the preci-
sion of the solutions. Among various sta-
tistical reviews that discuss algorithms,
the Journal of Algorithms from the Aca-
demic Press (New York), the part of the
Journal of the Royal Statistical Society
Series C (Applied Statistics) that focuses on
algorithms, Computational Statistics from
Physica-Verlag (Heidelberg) and Random
Structures and Algorithms edited by Wiley
(New York) are all worthy of special men-
tion.

EXAMPLES

We present here an algorithm that calculates
the absolute value of a nonzero number; in
other words |x|.

Process:

Step 1. Identify the algebraic sign of the
given number.

Step 2. If the sign is negative, go to step 3.
If the sign is positive, specify the
absolute value of the number as the

number itself:
x| = x

and stop the process.

Step 3. Specify the absolute value of the
given number as its opposite num-
ber:

x| = —x

and stop the process.

FURTHER READING
» Statistical software
» Yates’ algorithm

REFERENCES

Chambers, J.M.: Computational Methods
for Data Analysis. Wiley, New York
1977)

Khwarizmi, Musa ibn Meusba (9th cent.).
Jabr wa-al-muqgeabalah. The algebra of
Mohammed ben Musa, Rosen, F. (ed. and
transl.). Georg Olms Verlag, Hildesheim
(1986)

Rashed, R.: La naissance de I’algébre. In:
Noél, E. (ed.) Le Matin des Mathémati-
ciens. Belin-Radio France, Paris (1985)
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Alternative Hypothesis

An alternative hypothesis is the hypothesis
which differs from the hypothesis being test-
ed.

The alternative hypothesisisusually denoted
by H;.

HISTORY
See hypothesis and hypothesis testing.

MATHEMATICAL ASPECTS

During the hypothesis testing of a param-
eter of a population, the null hypothesis is
presented in the following way:

Hy: 60 =06,
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where 6 is the parameter of the population
that is to be estimated, and 6 is the pre-
sumed value of this parameter. The alterna-
tive hypothesis can then take three different
forms:

1. Hi: 0 > 6

2.H:0 <6y

3.Hi: 0 #6)

In the first two cases, the hypothesis test
is called the one-sided, whereas in the third
case it is called the two-sided.

The alternative hypothesis canalso take three
different forms during the hypothesis test-
ing of parameters of two populations. If the
null hypothesis treats the two parameters 61
and 6 equally, then:

Hy: 61 =0, or
Hy: 6, —6,=0.

The alternative hypothesis could then be

e Hi:01>6orH :01—6,>0

e Hi:01<brorH :01—6, <0

e Hi: 01 #60rHi: 01 —60#0
During the comparison of more than two
populations, the null hypothesis supposes
that the values of all of the parameters are
identical. If we want to compare k popula-
tions, the null hypothesis is the following:

Hy: 01 =0, =...=0.

The alternative hypothesis will then be for-
mulated as follows:

Hjp: thevaluesoff;(i =1,..., k)arenotall

identical.

This means that only one parameter needs
to have a different value to those of the other
parametersinordertorejectthe null hypoth-
esis and accept the alternative hypothesis.

EXAMPLES

We are going to examine the alternative

hypotheses for three examples of hypothesis

testing:

1. Hypothesis testing on the percentage of
a population
An election candidate wants to know if he
will receive more than 50% of the votes.
The null hypothesis for this problem can
be written as follows:

Hy: 7 =0.5,

where 7 is the percentage of the popu-
lation to be estimated.

We carry out a one-sided teston the right-
hand side that allows us to answer the can-
didate’s question. The alternative hypoth-
esis will therefore be:

Hi:7 >05.

2. Hypothesis testing on the mean of a pop-
ulation
A bolt maker wants to test the precision
of a new machine that should make bolts
8 mm in diameter.
We can use the following null hypothe-
sis:

Hy: n=8,

where w is the mean of the population
that is to be estimated.
We carry out a two-sided test to check
whether the bolt diameter is too small or
too big.
The alternative hypothesis can be formu-
lated in the following way:

Hyi:pn#8.

3. Hypothesis testing on a comparison of
the means of two populations
An insurance company decided to equip
its offices with microcomputers. It wants
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to buy these computers from two differ-
ent companies so long as there is no sig-
nificant difference in durability between
the two brands. It therefore tests the time
that passes before the first breakdown on
a sample of microcomputers from each
brand.

According to the null hypothesis, the
mean of the elapsed time before the first
breakdown is the same for each brand:

Ho:pyr—p2=0.

Here 141 and 7 are the respective means
of the two populations.

Since we do not know which mean will
be the highest, we carry out a two-sided
test. Therefore the alternative hypothesis
will be:

Hy:py —p2 #0.

FURTHER READING

» Analysis of variance
» Hypothesis

» Hypothesis testing

» Null hypothesis

REFERENCE

Lehmann, E.I., Romann, S.P.: Testing Statis-
tical Hypothesis, 3rd edn. Springer, New
York (2005)
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Analysis of Binary Data

The study of how the probability of success
depends on expanatory variables and group-
ing of materials.

The analysis of binary data also involves
goodness-of-fit tests of a sample of binary
variables to a theoretical distribution, as well
as the study of 2 x 2 contingency tables

and their subsequent analysis. In the latter
case we note especially independence tests
between attributes, and homogeneity tests.

HISTORY
See data analysis.

MATHEMATICAL ASPECTS

Let Y be a binary random variable and

X1, X, ..., X besupplementary binary vari-

ables. So the dependence of Y on the vari-

ables X1, X, ..., Xyisrepresented by the fol-

lowing models (the coefficients of which are

estimated via the maximum likelihood):

1. Linear model: P(Y = 1) is expressed as
alinear function (in the parameters) of X;.

2. Log-linear model: logP(Y = 1) is
expressed as a linear function (in the
parameters) of X;.

model: log(P (Y:”) is

P(Y=0)
expressed as a linear function (in the
parameters) of Xj.

Models 1 and 2 are easier to interpret. Yet

the last one has the advantage that the quan-

tity to be explained takes all possible values
of the linear models. It is also important to
pay attention to the extrapolation of the mod-
eloutside of the domainin whichitis applied.
It is possible that among the independent
variables (Xi, X, ..., Xy), there are cate-
gorical variables (eg. binary ones). In this
case, it is necessary to treat the nonbinary
categorical variables in the following way:
let Z be a random variable with m cate-
gories. We enumerate the categories from 1
to m and we define m — 1 random vari-
ables Z1, 2y, ..., Z—1. So Z; takes the val-
ue 1 if Z belongs to the category represent-
ed by this index. The variable Z is there-
fore replaced by these m — 1 variables, the
coefficients of which express the influence of

3. Logistic
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the considered category. The reference (used
in order to avoid the situation of collinear-
ity) will have (for the purposes of compar-
ison with other categories) a parameter of
Zero.

FURTHER READING
» Binary data
» Data analysis

REFERENCES
Cox,D.R., Snell, E.J.: The Analysis of Bina-
ry Data. Chapman & Hall (1989)
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Analysis of Categorical Data

The analysis of categorical data involves
the following methods:

(a) A study of the goodness-of-fit test;

(b) Thestudy of a contingency table and its
subsequent analysis, which consists of
discovering and studying relationships
between the attributes (if they exist);

(c) An homogeneity test of some pop-
ulations, related to the distribution of

abinary qualitative categorical variable;

(d)

An examination of the independence
hypothesis.

HISTORY

The term “contingency”, used in the rela-
tion to cross tables of categorical data was
probably firstused by Pearson, Karl (1904).
The chi-square test, was proposed by Bar-
lett, M.S. in 1937.

MATHEMATICAL ASPECTS
See goodness-of-fit and contingency table.

FURTHER READING

» Data

» Data analysis

» Categorical data

» Chi-square goodness of fit test
» Contingency table

» Correspondence analysis

» Goodness of fit test

» Homogeneity test

» Test of independence

REFERENCES
Agresti, A.: Categorical Data Analysis.
Wiley, New York (1990)

Bartlett, M..S.: Properties of sufficiency and
statistical tests. Proc. Roy. Soc. Lond.
Ser. A 160, 268282 (1937)

Cox, D.R., Snell, E.J.: Analysis of Binary
Data, 2nd edn. Chapman & Hall, London
(1990)

Haberman, S.J.: Analysis of Qualitative
Data. Vol. I: Introductory Topics. Aca-
demic, New York (1978)

Pearson, K.: On the theory of contingency
and its relation to association and normal
correlation. Drapers’ Company Research
Memoirs, Biometric Ser. 1., pp. 1-35
(1904)
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Analysis of Residuals

An analysis of residuals is used to test the
validity of the statistical model and to control
the assumptions made on the error term. It
may be used also for outlier detection.

HISTORY
The analysis of residuals dates back to Euler
(1749) and Mayer (1750) in the middle of
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the eighteenth century, who were confront-
ed with the problem of the estimation of
parameters from observations in the field
of astronomy. Most of the methods used to
analyze residuals are based on the works of
Anscombe (1961) and Anscombe and Tukey
(1963). In 1973, Anscombe also presented
an interesting discussion on the reasons for
using graphical methods of analysis. Cook
and Weisberg (1982) dedicated a complete
book to the analysis of residuals. Draper and
Smith (1981) also addressed this problem in
a chapter of their work Applied Regression
Analysis.

MATHEMATICAL ASPECTS
Consider a general model of multiple linear
regression:

p—1
Yi=Bo+ Y BXj+e, i=1...
j=1

1,

where ¢; is the nonobservable random error

term.

The hypotheses for the errors ¢; are gener-

ally as follows:

e The errors are independent;

e They are normally distributed (they fol-
low a normal distribution);

e Their mean is equal to zero;

e Their variance is constant and equal to
o 2.

Regression analysis gives an estimation for

Y;,denoted I?l-. If the chosen model is ade-

quate, the distribution of the residuals or

“observed errors”’ e; = Y; — I?i should con-

firm these hypotheses.

Methods used to analyze residuals are main-

ly graphical. Such methods include:

1. Representing the residuals by a frequency
chart (for example a scatter plot).

2. Plotting the residuals as a function of time
(if the chronological order is known).

3. Plotting the residuals as a function of the
estimated values f/,-.

4. Plotting the residuals as a function of the
independent variables X;;.

5. Creating a Q—-Q plot of the residuals.

DOMAINS AND LIMITATIONS

To validate the analysis, some of the hypothe-

ses need to hold (like for example the nor-

mality of the residuals in estimations based

on the mean square).

Consider a plot of the residuals as a function

of the estimated values IA/I-. This is one of the

most commonly used graphical approaches

to verifying the validity of a model. It con-

sists of placing:

e Theresidualse; = ¥; — ¥;in increasing
order;

e The estimated values f/i on the abscissa.

If the chosen model is adequate, the residu-

als are uniformly distributed on a horizontal

band of points.

Residual= 7Y, - 7,

S

_

However, if the hypotheses for the residu-

als are not verified, the shape of the plot can

be different to this. The three figures below
show the shapes obtained when:

1. The variance o2 is not constant. In this
case, it is necessary to perform a trans-
formation on the data Y; before tackling
the regression analysis.
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)

7

2. The chosen model is inadequate (for
example, the model is linear but the con-
stant term was omitted when it was nec-
essary).

AY -7Y

|

3. The chosen model is inadequate
(a parabolic tendency is observed).

Y,

W
"

Different statistics have been proposed in
order to permitnumerical measurements that
are complementary to the visual techniques

presented above, which include those giv-
en by Anscombe (1961) and Anscombe and
Tukey (1963).

EXAMPLES

Inthenineteenth century, a Scottish physicist
named Forbe, James D. wanted to estimate
the altitude above sea level by measuring the
boiling point of water. He knew that the alti-
tude could be determined from the atmos-
pheric pressure; he then studied the relation
between pressure and the boiling point of
water. Forbe suggested that for an interval
of observed values, a plot of the logarithm of
the pressure as a function of the boiling point
of water should give a straight line. Since
the logarithm of these pressures is small and
varies little, we have multiplied these values
by 100 below.

Y 100 - log (pressure)

X boiling point

Thesimple linear regression modelforthis
problem is:

Yi=po+pXi+e, i=1...,17.
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Using the least squares method, we can find
the following estimation function:

¥i = —42.131 + 0.895X;

where ¥, 11s the estimated value of variable Y
for a given X.

For each of these 17 values of X;, we have
an estimated value f/,-. ‘We can calculate the
residuals:

eiZYi—?i'

These results are presented in the following
table:

Residual = 7, S

14

0.5 |

Plotting the residuals as a function of the
estimated values gives the previous
graph.

Itis apparent from this graph that, except for
one observation (the 12th), where the value
of the residual seems to indicate an outli-
er, the residuals are distributed in a very thin
horizontal strip. In this case the residuals do
not provide any reason to doubt the validity
of the chosen model. By analyzing the stan-
dardizedresiduals we can determine whether
the 12th observation is an outlier or not.

FURTHER READING

» Anderson-Darling test

» Least squares

» Multiple linear regression
» Outlier

» Regression analysis

» Residual

» Scatterplot

» Simple linear regression

REFERENCES
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Analysis of Variance

The analysis of variance is a technique that
consists of separating the total variation of
data set into logical components associat-
ed with specific sources of variation in order
to compare the mean of several popula-
tions. This analysis also helps us to test
certain hypotheses concerning the param-
eters of the model, or to estimate the compo-
nents of the variance. The sources of vari-
ation are globally summarized in a compo-
nent called error variance, sometime called
within-treatment mean square and another
component that is termed “effect” or treat-
ment, sometime called between-treatment
mean square.

HISTORY

Analysis of variance dates back to Fish-
er, R.A. (1925). He established the first fun-
damental principles in this field. Analysis of
variance was firstapplied in the fields of biol-
ogy and agriculture.

MATHEMATICAL ASPECTS
The analysis of variance compares the
means of three or more random samples
and determines whether there is a signif-
icant difference between the populations
from which the samples are taken. This
technique can only be applied if the random
samples are independent, if the population
distributions are approximately normal and
all have the same variance o2
Having established that the null hypothesis,
assumes that the means are equal, while the
alternative hypothesis affirms that at least
one of them is different, we fix a significant
level. We then make two estimates of the
unknown variance o :
e The first, denoted s%, corresponds to the
mean of the variances of each sample;
e The second, s%r, is based on the variation
between the means of the samples.
Ideally, if the null hypothesis is verified,
these two estimations will be equal, and the F
ratio (F = s%r / sé, as used in the Fisher test
and defined as the quotient of the second esti-
mation of o2 to the first) will be equal to 1.
The value of the F ratio, which is generally
more than 1 because of the variation from the
sampling, must be compared to the value in
the Fisher table corresponding to the fixed
significant level. The decision rule consists
of either rejecting the null hypothesis if the
calculated valueis greater than or equal to the
tabulated value, or else the means are equal,
which shows that the samples come from the
same population.
Consider the following model:

Yij=n+rti+ej,

i=1L2..,t, j=12,...,n.
Here
Y;; represents the observation j receiving

the treatment i,
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1 isthe general mean common to all treat-

ments,

7; 1s the actual effect of treatment i on the
observation,

€j; is the experimental error for observa-
tion Y.

In this case, the null hypothesis is expressed
in the following way:

Hy:tn1=m=...=1,

which means that the ¢ treatments are iden-
tical.

The alternative hypothesis is formulated in
the following way:

Hi:thevaluesof 7;(i =1,2,...,1)

are not all identical .

The following formulae are used:

! SST
SStr = En,-m. - sh= t_l
=
t n;
’ _ SSE
2 2
SSe=2_ ) =T si=g—
i=1 j=1
and
t ni
SSr=)_ Y (Y;—7)
i=1 j=1
or
SS7 = SSte + SSE .
where
i Y::
vi=Y 2 is the mean of
=

the ith set

is the global mean
taken on all the
observations, and

is the total number
of observations.

and finally the value of the F ratio

2
F = STr
=3
E
Itis customary to summarize the information
from the analysis of variance in an analysis

of variance table:

Sum of | Mean F
squares of
squares

Source Degrees

of varia- of
freedom

tion

DOMAINS AND LIMITATIONS
An analysis of variance is always associat-
ed with a model. Therefore, there is a dif-
ferent analysis of variance in each distinct
case. For example, consider the case where
the analysis of variance is applied to factori-
al experiments with one or several factors,
and these factorial experiments are linked to
several designs of experiment.
We can distinguish not only the number of
factors in the experiment but also the type
of hypotheses linked to the effects of the
treatments. We then have amodel with fixed
effects, a model with variable effects and
a model with mixed effects. Each of these
requires a specific analysis, but whichev-
er model is used, the basic assumptions of
additivity, normality, homoscedasticity and
independence mustberespected. This means
that:
1. The experimental errors of the model are
random variables that are independent
of each other;
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2. All of the errors follow a normal distri-
bution with a mean of zero and an
unknown variance o 2.

All designs of experiment can be analyzed

using analysis of variance. The most com-

mon designs are completely randomized
designs, randomized block designs and

Latin square designs.

An analysis of variance can also be per-

formed with simple or multiple linear

regression.

If during an analysis of variance the null

hypothesis (the case for equality of means) is

rejected, a least significant difference test
is used to identify the populations that have
significantly different means, which is some-
thing that an analysis of variance cannot do.

EXAMPLES

See two-way analysis of variance, one-
way analysis of variance, linear multiple
regression and simple linear regression.

FURTHER READING

» Design of experiments

» Factor

» Fisher distribution

» Fisher table

» Fisher test

» Least significant difference test
» Multiple linear regression

» One-way analysis of variance
» Regression analysis

» Simple linear regression

» Two-way analysis of variance

REFERENCES
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Rao, C.R.: Advanced Statistical Methods
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(1952)

Scheffé, H.: The Analysis of Variance.
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Anderson, Oskar

Anderson, Oskar (1887-1960) was an
important member of the Continental School
of Statistics; his contributions touched upon
a wide range of subjects, including corre-
lation, time series analysis, nonparamet-
ric methods and sample survey, as well as
econometrics and statistical applications in
social sciences.

Anderson, Oskar received a bachelor degree
with distinction from the Kazan Gymnasium
and then studied mathematics and physics
for a year at the University of Kazan. He
then entered the Faculty of Economics at
the Polytechnic Institute of St. Petersburg,
where he studied mathematics, statistics and
economics.

The publications of Anderson, Oskar com-
bine the traditions of the Continental School
of Statistics with the concepts of the English
Biometric School, particularly in two of
his works: “Einfiihrung in die mathema-
tische Statistik” and “Probleme der statis-
tischen Methodenlehre in den Sozialwis-
senschaften”.

In 1949, he founded the journal Mitteilungs-
blatt fiir Mathematische Statistik with
Kellerer, Hans and Miinzner, Hans.

Some principal works of Anderson, Oskar:

1935 Einfiihrung in die Mathematische
Statistik. Julius Springer, Wien

1954 Probleme der statistischen Metho-
denlehre in den Sozialwissenschaf-
ten. Physica-Verlag, Wiirzberg
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Anderson, Theodore W.

Anderson, Theodore Wilbur was born on
the 5th of June 1918 in Minneapolis, in the
state of Minnesota in the USA. He became
a Doctor of Mathematics in 1945 at the
University of Princeton, and in 1946 he
became a member of the Department of
Mathematical Statistics at the University of
Columbia, where he was named Professor
in 1956. In 1967, he was named Professor
of Statistics and Economics at Stanford Uni-
versity. He was, successively: Fellow of the
Guggenheim Foundation between 1947 and
1948; Editor of the Annals of Mathematical
Statistics from 1950 to 1952; President of the
Institute of Mathematical Statistics in 1963;
and Vice-President of the American Statis-
tical Association from 1971 to 1973. He is
amember of the American Academy of Arts
and Sciences, of the National Academy of
Sciences, of the Institute of Mathematical
Statistics and of the Royal Statistical Soci-
ety. Anderson’s most important contribution
to statistics is surely in the domain of mul-
tivariate analysis. In 1958, he published the
book entitled An Introduction to Multivari-
ate Statistical Analysis. This book was the
reference work in this domain for over forty
years. It has been even translated into Rus-
sian.

Some of the principal works and articles of
Theodore Wilbur Anderson:

1952 (with Darling, D.A.) Asymptotic the-
ory of certain goodness of fit criteria
based on stochastic processes. Ann.
Math. Stat. 23, 193-212.
An Introduction to Multivariate Sta-
tistical Analysis. Wiley, New York.
1971 The Statistical Analysis of Time
Series. Wiley, New York.

1958

1989 Linear latent variable models and
covariance structures. J. Economet-
rics, 41, 91-119.

(with Kunitoma, N.) Asymptotic
distributions of regression and auto-
regression coefficients with Martin-
gale difference disturbances. J. Mul-
tivariate Anal., 40, 221-243.
Goodness of fit tests for spectral dis-
tributions. Ann. Stat. 21, 830-847.

1992

1993

FURTHER READING
» Anderson-Darling test
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Anderson-Darling Test

The Anderson—Darling testis a goodness-of-
fit test which allows to control the hypothe-
sis that the distribution of a random variable
observed in a sample follows a certain the-
oretical distribution. In particular, it allows
us to test whether the empirical distribution
obtained corresponds to a normal distri-
bution.

HISTORY

Anderson, Theodore W. and Darling D.A.
initially used Anderson—Darling statistics,
denoted A2, to test the conformity of a distri-
bution with perfectly specified parameters
(1952 and 1954). Later on, in the 1960s
and especially the 1970s, some other authors
(mostly Stephens) adapted the test to a wider
range of distributions where some of the
parameters may not be known.

MATHEMATICAL ASPECTS

Let us consider the random variable X,
which follows the normal distribution with
an expectation pu and a variance o2, and
has a distribution function Fx(x; 6), where 6
is a parameter (or a set of parameters) that
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determine, F'y. We furthermore assume 6 to
be known.

An observation of a sample of size n issued
from the variable X gives a distribution func-
tion F,(x). The Anderson—Darling statistic,
denoted by A2, is then given by the weight-
ed sum of the squared deviations Fy (x; 6) —
Fn(x):

n
a2l (Z (Fx (x:0) — Fy (x>)2> :
NS

Starting from the fact that A2 is a random
variable that follows a certain distribution
over the interval [0; +ool, it is possible to
test, for a significance level that is fixed a pri-
ori, whether F,(x) is the realization of the
random variable Fx(X; 6); thatis, whether X
follows the probability distribution with the
distribution function Fx (x; 0).

Computation of A2 Statistic

Arrange the observationsxy, x, . . ., x, inthe
sample issued from X in ascending orderi.e.,
< Xx,. Note that z; =
Fx(x;;0), (i=1,2,...,n). Thencompute,
A? by:

A2 = _%(Z (2i — 1) (In ()

i=1
+In(1 — Zn+1—i))> —n.

X < x < ...

For the situation preferred here (X follows

the normal distribution with expectation p

and variance o 2), we can enumerate four cas-

es, depending on the known parameters p

and o2 (F is the distribution function of the

standard normal distribution):

1. u and o2 are known, so Fx(x; (1, 02))
is perfectly specified. Naturally we then
have z; = F(w;) where w; = =,

2. o2 isknown but 4 is unknown and is esti-
mated using ¥ = % (3°;xi), the mean of

the sample. Then, let z; = F(w;), where
Xi—X
o -
3. puis known but o2 is unknown and is esti-
: 1
mated using s = 1 (3;(xi —w)?). In
this case, let z; = F(w;), where w; =
X@—H
st
4. p and o2 are both unknown and are esti-

mated respectively using X and s> =
—-(3":(xi —%)?). Then, let z; = F(wy),

Xi—X

w; =

where w; =

Asymptotic distributions were found for A
by Anderson and Darling for the first case,
and by Stephens for the next two cases. For
last case, Stephens determined an asymptot-
ic distribution for the transformation: A* =
AY(1L0+ BB 4 23,

Therefore, as shown below, we can construct

atable that gives, depending on the case and
the significance level (10%, 5%, 2.5% or 1%
below), the limiting values of A2 (and A*
for the case 4) beyond which the normality
hypothesis is rejected:

DOMAINS AND LIMITATIONS

Asthe distribution of A% is expressed asymp-
totically, the test needs the sample size n to be
large. If this is not the case then, for the first
two cases, the distribution of A% is notknown
and it is necessary to perform a transforma-
tion of the type A> —> A*, from which A*
can be determined. When n > 20, we can
avoid such a transformation and so the data
in the above table are valid.

The Anderson—Darling test has the advan-
tage that it can be applied to a wide range
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of distributions (not just a normal distri-
bution but also exponential, logistic and
gamma distributions, among others). That
allowsustotry outawiderange of alternative
distributions if the initial test rejects the null
hypothesis for the distribution of a random
variable.

EXAMPLES

The following data illustrate the application
of the Anderson—Darling test for the normal-
ity hypothesis:

Consider a sample of the heights (in cm) of
25 male students. The following table shows
the observations in the sample, and also w;
and z;. We can also calculate X and s from
these data: x = 177.36 and s = 4.98.

Assuming that F is a standard normal distri-
bution function, we have:

We then get A> = 0.436, which gives

ar = (104 224 02
- ’ 25 625

=A% . (1.0336) = 0.451.

Since we have case 4, and a significance lev-
el fixed at 1%, the calculated value of A* is
much less then the value shown in the table
(1.035). Therefore, the normality hypothesis
cannot be rejected at a significance level of
1%.

FURTHER READING

» Goodness of fit test

» Histogram

» Nonparametric statistics
» Normal distribution

» Statistics
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Arithmetic Mean

The arithmetic mean is a measure of cen-
tral tendency. It allows us to characterize
the center of the frequency distribution of
a quantitative variable by considering all
of the observations with the same weight
afforded to each (in contrast to the weighted
arithmetic mean).

Itis calculated by summing the observations
and then dividing by the number of observa-
tions.

HISTORY

The arithmetic mean is one of the oldest
methods used to combine observations in
order to give a unique approximate val-
ue. It appears to have been first used by
Babylonian astronomers in the third centu-
ry BC. The arithmetic mean was used by the
astronomers to determine the positions of the
sun, the moon and the planets. According to
Plackett (1958), the concept of the arithmetic
mean originated from the Greek astronomer
Hipparchus.

In 1755 Thomas Simpson officially pro-
posed the use of the arithmetic mean in a let-
ter to the President of the Royal Society.

MATHEMATICAL ASPECTS

Let x1,x2,...,x, be a set of n quantities
or n observations relating to a quantitative
variable X.

The arithmetic mean x of xi, xp, ..
the sum of these observations divided by the
number n of observations:

., X, 1S

M=

Xi
=1
n

X =

When the observations are ordered in the
form of a frequency distribution, the arith-

metic mean is calculated in the following
way:
k
xi - fi
1

—
;fi

where x; are the different values of the vari-
able, f; are the frequencies associated with
these values, k is the number of different val-
ues, and the sum of the frequencies equals the
number of observations:

k
Zﬁ:n.
i=1

To calculate the mean of a frequency distri-
bution where values of the quantitative vari-
able X are grouped in classes, we consid-
er that all of the observations belonging
to a certain class take the central value of
the class, assuming that the observations
are uniformly distributed inside the classes
(if this hypothesis is not correct, the arith-
metic mean obtained will only be an appro-
ximation.)

Therefore, in this case we have:

X =

>

k
> xi-fi
i=1

xX=—

i

Kk
Z:lfi

where the x; are the class centers, the f; are
the frequencies associated with each class,
and k is the number of classes.

Properties of the Arithmetic Mean

e The algebraic sum of deviations between
every value of the set and the arithmetic
mean of this set equals O:

Xn:(x,‘—)_c)zo.
i=1
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e The sum of square deviations from every

value to a given number “a” is smallest
when “a” is the arithmetic mean:

Y-} =) -1
i=1 i=1

Proof:
We can write:

xi—a=xi—Xx)+x—a).

Finding the squares of both members of
the equality, summarizing them and then
simplifying gives:

Y i—a)
i=1

=Y -0 +n-(F-a).

i=1

Asn - (X — a)? is not negative, we have
proved that:

Ywi—at=) -9,
i=1 i=1

The arithmetic mean x of a sample
(x1,...,x,) is normally considered to
be an estimator of the mean p of the
population from which the sample was
taken.

Assuming that x; are independent ran-
dom variables with the same distribution
function for the mean p and the vari-
ance o2, we can show that

L. E[x] = n,

2. Var(3) = <,

if these moments exist.

Since the mathematical expectation of
X equals p, the arithmetic mean is an esti-
mator without bias of the mean of the pop-
ulation.

o Ifthex;resultfrom the random sampling

withoutreplacement of a finite population
with a mean p, the identity

Elx] = n

is still valid, but the variance of x must be
adjusted by a factor that depends on the
size N of the population and the size n of
the sample:

_ 02 [N—n
Var(x)=7-|: i|

N-—-1

where o2 is the variance of the population.

Relationship Between the Arithmetic Mean
and Other Measures of Central Tendency
e Thearithmetic meanisrelated totwo prin-

cipal measures of central tendency: the
mode M, and the median M.

If the distribution is symmetric and uni-
modal:

x=Mg=M,.

If the distribution is unimodal, it is nor-
mally true that:

X > Mg > M, if the distribution is
stretched to the right,

X < Mg < M, if the distribution is
stretched to the left.

For a unimodal, slightly asymmetric
distribution, these three measures of the
central tendency often approximately
satisfy the following relation:

x—My)=3-(x—My) .
In the same way, for a unimodal distri-

bution, if we consider a set of posi-
tive numbers, the geometric mean G is
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always smaller than or equal to the arith-
metic mean x, and is always greater than
or equal to the harmonic mean H. So we
have:

H<G<x.

These three means are identical only if all
of the numbers are equal.

DOMAINS AND LIMITATIONS

The arithmetic mean is a simple measure
of the central value of a set of quantitative
observations. Finding the mean can some-
times lead to poor data interpretation:

If the monthly salaries (in Euros) of
5 people are 3000, 3200, 2900, 3500
and 6500, the arithmetic mean of the
salary is 12190 — 3820. This mean
gives us some idea of the sizes of the
salaries sampled, since it is situated
between the biggest and the smallest
one. However, 80% of the salaries are
smaller then the mean, so in this case
itis not a particularly good representa-
tion of a typical salary.

This case shows that we need to pay attention
to the form of the distribution and the relia-
bility of the observations before we use the
arithmetic mean as the measure of central
tendency for a particular set of values. If an
absurd observation occursin the distribution,
the arithmetic mean could provide an unrep-
resentative value for the central tendency.
If some observations are considered to be
less reliable then others, it could be useful
to make them less important. This can be
done by calculating a weighted arithmetic
mean, or by using the median, which is not
strongly influenced by any absurd observa-
tions.

EXAMPLES
In company A, nine employees have the fol-
lowing monthly salaries (in Euros):

3000 3200 2900 3440 5050
4150 3150 3300 5200

The arithmetic mean of these monthly
salaries is:

_ (3000 + 3200 + - - - + 3300 + 5200)
X =

9
= %) = 3710 Euros.

We now examine a case where the data are
presented in the form of a frequency distri-
bution.

The following frequency table gives the
number of days that 50 employees were
absent on sick leave during a period of one
year:

x;: Days of illness

f;: Number of
employees

Let us try to calculate the mean number of
days that the employees were absent due to
illness.

The total number of sick days for the
50 employees equals the sum of the product
of each x; by its respective frequency f;:

5
in.ﬁ=0.7+1.12+2.19+3.8
i=1

1 4.4=090.
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The total number of employees equals:

5
D fi=T+12419+48+4=50.
i=1
L The arithmetic mean of the number of sick
days per employee is then:

5
X Ji
g7 /i 90
Eﬁ-
=

which means that, the
50 employees took 1.8 days off for sick-
ness per year.

In the following example, the data are
grouped in classes.

We want to calculate the arithmetic mean of
the daily profits from the sale of 50 types of
grocery. The frequency distribution for the
groceries is given in the following table:

on average,

Mid-
points

Classes
(profits

Frequencies Xx; - f;
f; (number
of groceries)

in Euros)  Xx;

The arithmetic mean of the profits is:

6
X f
__El’f’_31950_639
YT T s U
2
=

which means that, on average, each of
the 50 groceries provide a daily profit of
639 Euros.

FURTHER READING

» Geometric mean

» Harmonic mean

» Mean

» Measure of central tendency
» Weighted arithmetic mean
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Arithmetic Triangle

The arithmetic triangle is used to determine
binomial coefficients (¢ + b)" when cal-
culating the number of possible combina-
tions of k objects out of a total of n objects
(h.

HISTORY

The notion of finding the number of combi-
nations of k objects from n objects in total
has been explored in India since the ninth
century. Indeed, there are traces of it in the



Meru Prastara written by Pingala in around
200 BC.

Between the fourteenth and the fifteenth cen-
turies, al-Kashi, a mathematician from the
Iranian city of Kashan, wrote The Key to
Arithmetic. In this work he calls binomial
coefficients “exponent elements”.

Inhis work Traité du Triangle Arithmétique,
published in 1665, Pascal, Blaise (1654)
defined the numbers in the “arithmetic tri-
angle”, and so this triangle is also known as
Pascal’s triangle.

We should also note that the triangle was
made popular by Tartaglia, Niccolo Fontana
in 1556, and so Italians often refer to it as
Tartaglia’s triangle, even though Tartaglia
did not actually study the arithmetic triangle.

MATHEMATICAL ASPECTS
The arithmetic triangle has the following
form:

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

Each element is a binomial coefficient
C,I; _ n!
k!'(n —k)!
n-m—1)-...-n—k+1)
B 1-2-.. -k '

This coefficient corresponds to the element
kofthelinen+ 1,k=0,...,n.
Any particular number is obtained by adding
together its neighboring numbers in the pre-
vious line.
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1
1 1
\ “"/
1\"“ “"/2&‘ "“/1
1 3 3 1
For example:
Ce=Ci+Ci=10+5=15.
+l+
¥ a
1 1
A A
oot ot
1 3 3 1
PO A S
1 4 6 4 1
AR SN AR A
1 5 10 10, 5+ 1 N
R N S N N A
1 6 15 20 15 6 1

More generally, we have the relation:

k k+1 k+1
Cy+CHh=ct,
because:
|
k4 k= n:
ntCn n—k)!-k!
n n!
m—k—D!(k+ 1!
B n!-[(k+1)+ (n—k]
=k k+ 1!
_ (n+ 1!
(=) (k+ 1)
k+1
= Cnil .
FURTHER READING
» Binomial

» Binomial distribution
» Combination
» Combinatory analysis
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ARMA Models

ARMA models (sometimes called Box-
Jenkins models) are autoregressive moving
average models used in time series analy-
sis. The autoregressive part, denoted AR,
consists of a finite linear combination of
previous observations. The moving aver-
age part, MA, consists of a finite linear
combination in ¢ of the previous values for
a white noise (a sequence of mutually inde-
pendent and identically distributed random
variables).

MATHEMATICAL ASPECTS

1. AR model (autoregressive)
In an autoregressive process of order p,
the present observation y, is generated by
a weighted mean of the past observations
up to the pth period. This takes the follow-
ing form:

AR(1): yr = O1y;—1 + &1,
AR(2): y; = 01y1—1 + 0oyr—2 + &,

ARPp): yr = 01y1—1 + Ooyr—2 + ...
+ Opyt—p + &,
where 01, 6y, ..., 0, are the positive or
negative parameters to be estimated and

&, 1s the error factor, which follows a nor-
mal distribution.

. MA model (moving average)

In a moving average process of order g,
each observation y, is randomly generat-
ed by a weighted arithmetic mean until
the gth period:

MA(I) Ve = & — 01E—1
MAQ2): yr =& — Q161 — a2&1-2

MA®p): yr =& — a18—1 — 02812

—...—aqet,q,

where oy, a2, . . ., ag are positive or nega-
tive parameters and &, is the Gaussian ran-
dom error.

The MA model represents a time series
fluctuating about its mean in a random
manner, which gives rise to the term
“moving average”, because it smoothes
the series, subtracting the white noise gen-

erated by the randomness of the element.

. ARMA model (autoregressive moving

average model)

ARMA models represent processes gen-
erated from a combination of past values
and past errors. They are defined by the
following equation:

ARMA(p, q):
Vi =01y—1 + 6y + ...
+ Opyr—p + & — 0181 — C2E2
— e,

with 6, # 0,a, # 0, and (&, 1 € Z) is
a weak white noise.
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FURTHER READING
» Time series
» Weighted arithmetic mean
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Arrangement

Arrangements are a concept found in com-
binatory analysis.

The number of arrangements is the number
of ways drawing k objects from n objects
where the order in which the objects are
drawn is taken into account (in contrast to
combinations).

HISTORY
See combinatory analysis.

MATHEMATICAL ASPECTS

1. Arrangements without repetitions
An arrangement without repetition refers
to the situation where the objects drawn
are not placed back in for the next draw-
ing. Each object can then only be drawn
once during the k drawings.
The number of arrangements of k objects
amongst n without repetition is equal to:

n!
Y/
"o (n—k)!

2. Arrangements with repetitions
Arrangements with repetition occur when
each object pulled out is placed back in
for the next drawing. Each object can then
be drawn r times from k drawings, r =
0,1,...,k

The number of arrangements of k objects
amongst n with repetitions is equal to n to
the power k:

EXAMPLES

1. Arrangements without repetitions
Consider an urn containing six balls num-
bered from 1 to 6. We pull out four balls
from the urnin succession, and we want to
know how many numbers it is possible to
form from the numbers of the balls drawn.
We are then interested in the number of
arrangements (since we take into account
the order of the balls) without repetition
(since each ball can be pulled out only
once) of four objects amongst six. We
obtain:

x n! 6!

T 6-4)!

Al = = =360
" (m—k)!

possible arrangements. Therefore, it is
possible to form 360 different numbers
by drawing four numbers from the num-
bers 1,2,3,4,5,6 when each number can
appear only once in the four-digit number
formed.

Asasecond example, letusinvestigate the
arrangements without repetitions of two
letters from the letters A, B and C. With
n = 3 and k = 2 we have:

n! 3!

T (-2 =6

k
An = (n—k)!
We then obtain:

AB, AC, BA, BC, CA, CB.

2. Arrangements with repetitions
Consider the same urn as described previ-
ously. We perform four successive draw-
ings, but this time we put each ball drawn
back in the urn.
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We want to know how many four-digit
numbers (or arrangements) are possible if
four numbers are drawn.

Inthis case, we are investigating fthe num-
ber of arrangements with repetition (since
each ball is placed back in the urn before
the next drawing). We obtain

AR =k = 6% = 1296

n =

different arrangements. It is possible to
form 1296 four-digit numbers from the
numbers 1,2,3,4,5,6 if each number can
appear more than once in the four-digit
number.

As a second example we again take the
three letters A, B and C and form an
arrangement of two letters with repeti-
tions. With » = 3 and k = 2, we have:

A =nt=32=09.

n

‘We then obtain:
AA, AB, AC, BA, BB, BC, CA, CB, CC.

FURTHER READING

» Combination

» Combinatory analysis
» Permutation

REFERENCES
See combinatory analysis.
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Attributable Risk

The attributable risk is the difference
between the risk encountered by individ-
uals exposed to a particular factor and the
risk encountered by individuals who are not
exposed to it. This is the opposite to avoid-
able risk. It measures the absolute effect of
a cause (that is, the excess risk or cases of
illness).

HISTORY
See risk.

MATHEMATICAL ASPECTS
By definition we have:

attributable risk = risk for those exposed

— risk for those not exposed .

DOMAINS AND LIMITATIONS

The confidence interval of an attributable
risk is equivalent to the confidence interval
of the difference between the proportions
pE and pNg, where pg and pNg represent
the risks encountered by individuals exposed
and not exposed to the studied factor, respec-
tively. Take ng and nyg to be, respective-
ly, the size of the exposed and nonexposed
populations. Then, for a confidence level of
(1 — @), is given by:

_ pE-(1-pg) | PNE-(1-PNE)
(PE PNE):EZa\/ apE o PNESINED,

where z,, the value obtained from the normal
table (for example, for a confidence interval
0f95%, a = 0.05 and z, = 1.96). The con-
fidence interval for (1 — «) for an avoidable
risk has bounds given by:

NE

— "(1-pE)  PNE-(1-PNE)
(PNE pE)ZtZoz\/pE nEPE PNE-(I1=PNE)

Here, ng and nyg need to be large. If the con-
fidenceinterval includes zero, we cannotrule
out an absence of attributable risk.

EXAMPLES

As an example, we consider a study of the
risk of breast cancer in women due to smok-
ing:
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Incidence Attributable to risk
rate
(/100000
/year)

from smoking
(A) (/100000 /year)

The risks attributable to passive and
active smoking are respectively 69 and 81
(/100000 year). In other words, if the
exposure to tobacco was removed, the
incidence rate for active smokers (138/
100000 per year) could be reduced by
81/100000 per year and that for pas-
sive smokers (126/100000 per year) by
69/100000 per year. The incidence rates in
both categories of smokers would become
equal to the rate for nonexposed women
(57/100000 per year). Note that the inci-
dence rate for nonexposed women is not
zero, due to the influence of other factors
aside from smoking.

No.

indiv.
observed
over two
years

Cases
attrib. to
smoking

(per
year)

Cases
attrib. to
smoking
({{e]3
two-year
period)

We can calculate the number of cases of
breast cancer attributable to tobacco expo-
sure by multiplying the number of individ-
uals observed per year by the attributable
risk. By dividing the number of incidents
attributable to smoking in the two-year peri-
od by two, we obtain the number of cases
attributable to smoking per year, and we can
then determine the risk attributable to smok-
inginthe population, denoted PAR, as shown
in the following example. The previous table
shows the details of the calculus.

We describe the calculus for the pas-
sive smokers here. In the two-year study,
110860 passive smokers were observed.
The risk attributable to the passive smoking
was 69.2/100000 per year. This means that
the number of cases attributable to smok-
ing over the two-year period is (110860 -
69.2) /100000 = 76.7. If we want to calcu-
late the number of cases attributable to pas-
sive smoking per year, we must then divide
the last value by 2, obtaining 38.4. More-
over, we can calculate the risk attributable
to smoking per year simply by dividing the
number of cases attributable to smoking for
the two-year period (172.9) by the number
of individuals studied during these two years
(299656 persons). We then obtain the risk
attributable to smoking as 57.7/100000 per
year. We note that we can get the same result
by taking the difference between the total
incidence rate (114.7/100000 per year, see
the examples under the entries for incidence
rate, prevalence rate) and the incidence
rate of the nonexposed group (57.0/100000
per year).

The risk of breast cancer attributable to
smoking in the population (PAR) is the ratio
of the number of the cases of breast can-
cer attributable to exposure to tobacco and
the number of cases of breast cancer diag-
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nosed in the population (see the above table).
The attributable risk in the population is
22.3% (38.4/172) for passive smoking and
28% (48.1/172) for active smoking. For both
forms of exposure, it is 50.3% (22.3% +
28%). So, half of the cases of breast cancer
diagnosed each year in this population are
attributable to smoking (active or passive).

Case
attrib. to
smoking
(per year)

Case

attrib. to
smoking
(for a two-
year period)
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Autocorrelation

Autocorrelation, denoted py, is a measure of
the correlation of a particular time series
with the same time series delayed by k lags
(the distance between the observations that
are so correlated). It is obtained by dividing
the covariance between two observations,
separated by k lags, of a time series (auto-
covariance) by the standard deviation of y,
and y;_. If the autocorrelation is calculated
for all values of k we obtain the autocorrela-
tion function. For a time series that does not
change over time, the autocorrelation func-
tion decreases exponentially to 0.

HISTORY

The first research into autocorrelation, the
partial autocorrelation and the correlogram
was performed in the 1920s and 1930s by
Yule, George, who developed the theory of
autoregressive processes.

MATHEMATICAL ASPECTS
We define the autocorrelation of time series
Y, t by
cov (¥, Yi—k)
pr=——""—

Oy, Oy,
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T
> 0= G-k =)

t=k+1

T T '
Y =9 Y ek
t=k+1 t=k+1
Here y is the mean of the series calculated on
T — k lags, where T is the number of obser-
vations.

‘We find out that:
po=1 and
Pk = P—k -

It is possible to estimate the autocorrelation
(denoted py) provided the number of obser-
vations is large enough (7" > 30) using the
following formula:

T
> 0= G-k =)

~ 1=kt

The partial autocorrelation function for
a delay of k lags is defined as the auto-
correlation between y; and y;_, the influ-
ence of other variables is moved by k lags

Ot=1 Y1=2s + + s Ykt 1)-

Hypothesis Testing
When analyzing the autocorrelation func-
tion of a time series, it can be useful to know
the terms pi that are significantly different
from 0. Hypothesis testing then proceeds as
follows:

Hy: pp =0

Hi:pr #0.
For alarge sample (T > 30), the coefficient
Pk tends asymptotically to a normal distri-
bution with a mean of 0 and a standard devi-
ation of \/LT The Student testis based on the
comparison of an empirical ¢ and a theoret-
ical z.

The confidence interval for the coefficient pg
is given by:

1

pk=0x1,0—.
af ﬁ

If the calculated coefficient p; does not fall

within this confidence interval, it is signifi-

cantly different from O at the level « (gener-
ally o = 0.05 and 14,/ = 1.96).

DOMAINS AND LIMITATIONS

The partial autocorrelation function is prin-
cipally used in studies of time series and,
more specifically, when we want to adjust an
ARMA model. These functions are alsoused
in spatial statistics, although in the context
of spatial autocorrelation, where we investi-
gate the correlation of a variable with itself
in space. If the presence of a phenomenon in
a particular spatial region affects the proba-
bility of the phenomenon being present in
neighboring regions, the phenomenon dis-
plays spatial autocorrelation. In this case,
positive autocorrelation occurs when the
neighboring regions tend to have identi-
cal properties or similar values (examples
include homogeneous regions and regular
gradients). Negative autocorrelation occurs
when the neighboring regions have differ-
ent qualities, or alternate between strong and
weak values for the phenomenon. Autocor-
relation measures depend on the scaling of
the variables which are used in the analysis
as well as on the grid that registers the obser-
vations.

EXAMPLES

We take as an example the national aver-
age wage in Switzerland from 1950 to 1994,
measured every two years.
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We calculate the autocorrelation function
between the data; we would like to find a pos-
itive autocorrelation. The following figures
show the presence of this autocorrelation.

We note that the correlation significance
peaks between the observation at time ¢ and
theobservationattime r—1,and alsobetween
the observation at time ¢ and the observation
attime # — 2. This data configuration is typi-
cal of an autoregressive process. For two first
values, we can see that this autocorrelation
is significant, because the Student statistic ¢
for the T = 23 observations gives:

1
o =04 1.96——.
V23

National average wage

National average wage

Source: Swiss Federal Office of Statistics
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Avoidable Risk

The avoidable risk (which, of course, is
avoidable if we neutralize the effect of expo-
sure to a particular phenomenon) is the oppo-
site to the attributable risk. In other words,
it is the difference between the risk encoun-
tered by nonexposed individuals and that
encountered by individuals exposed to the
phenomenon.

HISTORY
See risk.
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MATHEMATICAL ASPECTS
By definition we have:

avoidable risk = risk if not exposed

— risk if exposed .

DOMAINS AND LIMITATIONS

The avoidable risk was introduced in order
to avoid the need for defining a negative
attributable risk. It allows us to calculate
the number of patients that will need to be
treated, because:

Number of patients 1
to be treated ~ Avoidable risk

See also attributable risk.

EXAMPLES

As an example, consider a study of the effi-
ciency of a drug used to treat an illness.
The 223 patients included in the study are
all at risk of contracting the illness, but they
have not yet done so. We separate them
into two groups: patients in the first group
(114 patients) received the drug; those in
the second group (109 patients) were given
a placebo. The study period was two years.
Intotal, 11 cases of the illness are diagnosed
in the first group and 27 in the placebo group.

Risk for
the
two-year
period

(A/B in %)

Cases Number of
of patients in
iliness the group

(A)

(B)

So,theavoidablerisk duetothedrugis24.8—
9.6 = 15.2% per two years.
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Bar Chart

Bar chart is a type of quantitative graph. It
consists of a series of vertical or horizontal
bars of identical width but with lengths rel-
ative to the represented quantities.

Bar charts are used to compare the cate-
gories of a categorical qualitative variable
or to compare sets of data from different
years or different places for a particular vari-
able.

HISTORY
See graphic representation.

MATHEMATICAL ASPECTS

A vertical axis and a horizontal axis must be
defined in order to construct a vertical bar
chart.

The horizontal axis is divided up into differ-
ent categories; the vertical axis shows the
value of each category.

To construct a horizontal bar chart, the axes
are simply inverted.

The bars must all be of the same width since
only their lengths are compared.

Shading, hatching or color can be used to
make it easier to understand the the graph-
ic.

DOMAINS AND LIMITATIONS

A bar chart can also be used to represent neg-
ative category values. To be able to do this,
the scale of the axis showing the category
values must extend below zero.

There are several types of bar chart. The one
described above is called a simple bar chart.
A multiple bar chart is used to compare sev-
eral variables.

A composite bar chart is a multiple bar chart
where the different sets of data are stacked
on top of each other. This type of diagram is
used when the different data sets can be com-
bined into a total population, and we would
like to compare the changes in the data sets
and the total population over time.

There is another way of representing the sub-
setsof atotal population. In this case, the total
populationrepresents 100% and value given
for each subset is a percentage of the total
(also see pie chart).

EXAMPLES

Let us construct a bar chart divided into
percentages for the data in the following
frequency table:
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Marital status in a sample of the Australian
female population on the 30th June 1981 (in
thousands)

Percent-
age

Relative
fre-
quency

T ETE]
status

Fre-
quency

Source: ABS (1984) Australian Pocket Year
Book. Australian Bureau of Statistics, Canber-
ra, p. 11

100% -

Mo
[=s

80% A

46.9 "
oWidows

& Divorced
@ Married
m Bachelors

60% A

40% A

452
20% A

0% -
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Barnard, George A.

Barnard, George Alfred was born in 1915,
in Walthamstow, Essex, England. He gained
a degree in mathematics from Cambridge
University in 1936. Between 1942 and 1945
he worked in the Ministry of Supply as a sci-
entific consultant. Barnard joined the Mathe-
matics Department at Imperial College Lon-
don from 1945 to 1966. From 1966 to 1975
he was Professor of Mathematics in the Uni-
versity of Essex, and from 1975 until his
retirementin 1981 he was Professor of Statis-
tics at the University of Waterloo, Canada.

Barnard, George Alfred received numerous
distinctions, including a gold medal from the
Royal Statistical Society and from the Insti-
tute of Mathematics and its Applications. In
1987 he was named an Honorary Member of
the International Statistical Institute. He died
in 2002 in August.

Some articles of Barnard, George Alfred:

1954 Sampling inspection and statistical
decisions. J. Roy. Stat. Soc. Ser. B 16,
151-174.

1958 ThomasBayes— A biographical note.

Biometrika 45, 293-315.

1989 Onalleged gains in power from lower

p-values. Stat. Med., 8, 1469—-1477.

Must clinical trials be large? The
interpretation of p-values and the
combination of test results. Stat.
Med., 9, 601-614.

1990
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Bayes’ Theorem

If we consider the set of the “reasons” that
an event occurs, Bayes’ theorem gives a for-
mula for the probability that the event is the
direct result of a particular reason.
Therefore, Bayes’ theorem can be interpret-
ed as a formula for the conditional proba-
bility of an event.

HISTORY

Bayes’ theorem is named after Bayes,
Thomas, and was developed in the mid-
dle of eighteenth century. However, Bayes
did not publish the theorem during his life-
time; instead, it was presented by Price, R.
on the 23rd December 1763, two years after
his death, to the Royal Society of London,
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which Bayes was a member of during the
last twenty last years of his life.

MATHEMATICAL ASPECTS

Let{A1, Ay, ..., Ax}beapartition of the sam-
ple space Q2. We suppose that each event
Ay, ..., Ar has anonzero probability. Let E
be an event such that P(E) > 0.

So, for every i(1 < i < k), Bayes’ theorem
(for the discrete case) gives:

P(A) - P(E|A)
- .
> _P@A) - PEIA)

j=1

P(AE) =

In the continuous case, where X is a ran-
dom variable with density function f(x),
said also to be an a priori density function,
Bayes’ theorem gives the density a posteriori
according to

Jf() - P(EIX = x)

E = .
Jele) [2 f(0) - P(EIX = 1)d,

DOMAINS AND LIMITATIONS

Bayes’ theorem has been the object of much
controversy, relating to the ability to use it
when the values of the probabilities used to
determine the probability function a poste-
riori are not generally established in a precise
way.

EXAMPLES

Three urns containred, white and black balls:

e Urn A contains 5 red balls, 2 white balls
and 3 black balls;

e Urn B contains 2 red balls, 3 white balls
and 1 black balls;

e Urn C contains 5 red balls, 2 white balls
and 5 black balls.

Randomly choosing an urn, we draw a ball
atrandom: it is white. We wish to determine
the probability that it was taken from urn A.
Let A; correspond to the event where we
“choose urn A”, A, be the event where we
“choose urn B,” and A3 be the event where
we “choose urn C.” {A1, A, A3} forms a par-
tition of the sample space.

Let E be the event where “the ball taken is
white,” which has a strictly positive proba-

bility.
We have:
P(A)) = P(Ay) = P(A3) = 3,
P(E|A) = %, P(E|Ay) =2,

and P(E|A3) = 5.

Bayes’ formula allows us to determine the
probability that the drawn white ball comes
from the urn A:

P(Ay) - P(E|A1)

PAIIE) = =
> P(A) - P(E|A)
i=1
1.2
_ 3°10 _ 3
-1 2 1 3 1 2 7 13-
3'0t3 63 12
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Bayes, Thomas

Bayes, Thomas (1702—1761) was the eldest
son of Bayes, Joshua, who was one of the first
six Nonconformist ministers to be ordained
in England, and was a member of the Royal
Society. He was privately schooled by pro-
fessors, as was customary in Nonconformist
families. In 1731 he became reverend of
the Presbyterian chapel in Tunbridge Wells,
a town located about 150 km south-west of
London. Due to some religious publications
he was elected a Fellow of the Royal Society
in 1742.

His interest in mathematics was well-known
to his contemporaries, despite the fact that
he had not written any technical publica-
tions, because he had been tutored by De
Moivre, A., one of the founders of the theo-
ry of probability. In 1763, Price, R. sorted
through the papers left by Bayes and had his
principal work published:

1763 An essay towards solving a prob-
lem in the doctrine of chances.
Philos. Trans. Royal Soc. London,
53, pp. 370-418. Republished with
abiography by Barnard, G.A. (1958).
In: Pearson, E.S. and Kendall, M
(1970). Studies in the History of
Statistics and Probability. Griffin,
London, pp. 131-153.
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Bayesian Statistics

Bayesien statistics is a large domain in the
field of statistics that differs due to an axiom-
atization of the statistics that givesita certain
internal coherence.

The basic idea is to interpret the probability
of an event as it is commonly used; in other
words as the uncertainty that is related to it.
In contrast, the classical approach considers
the probability of an event to be the limit of
the relative frequency (see probability for
a more formal approach).

The most well-known aspect of Bayesian
inference s the probability of calculating the
joint probability distribution (or density
function) f(0,X = xi,...,X = x,) of
one or many parameters @ (one parameter or
a vector of parameters) having observed the
dataxi, ..., x, sampled independently from
arandom variable X on which @ depends. (It
is worth noting that it also allows us to cal-
culate the probability distribution for a new
observation x;+1).

Bayesian statistics treat the unknown param-
eters as random variables not because of
possible variability (in reality, the unknown
parameters are considered to be fixed), but
because of our ignorance or uncertainty
about them.

The posterior distribution f(6|X = x1,...,
X = xp) is direct to compute since it is
the prior (f(6)) times the likelihood f(X =
X1, ..., X = x,|0).

posterior o< prior x likelihood

The second expression does not cause prob-
lems, because it is a function that we often
use in classical statistics, known as the like-
lihood (see maximum likelihood).

In contrast, the first part supposes a prior
distribution for . We often use the initial
distribution of @ to incorporate possible sup-
plementary information about the param-
eters of interest. In the absence of this infor-
mation, weuse areference functionthatmax-
imizes the lack of information (which is then
the most “objective” or “noninformative”
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function, following the common but not pre-
cise usage).

Once the distribution f(@ |xy,...,x,) is
calculated, all of the information on the
parameters of interest is available. There-
fore, we can calculate plausible values for the
unknown parameter (the mean, the median
or some other measure of central ten-
dency), its standard deviation, confidence
intervals, or perform hypothesis testing on
its value.

HISTORY
See Bayes, Thomas and Bayes’ theorem.

MATHEMATICAL ASPECTS

Let D be the set of data X = xq,...,X =

X, independently sampled from a random

variable X of unknown distribution. We will

consider the simple case where there is only
one interesting parameter, 8, which depends

on X.

Then a standard Bayesian procedure can be

expressed by:

1. Identify the known quantities xi, . . ., Xxp.

2. Specify a model for the data; in oth-
er words a parametric family f (x |6 ) of
distributions that describe the generation
of data.

3. Specify the uncertainty concerning 6 by
an initial distribution function f (0).

4. We can then calculate the distribution
f(O1|D) (called the final distribution)
using Bayes’ theorem.

The first two points are common to every sta-

tistical inference.

The third point is more problematic. In the

absence of supplementary information about

0, the idea is to calculate a reference distri-

bution f (f) by maximizing a function that

specifies the missing information on the

parameter 6. Once this problem is resolved,
the fourth pointiseasily tackled with the help
of Bayes’ theorem.

Bayes’ theorem can be expressed, in its con-
tinuous form, by:

fDIO)-f(©O)

f (D)
_ fDI0)-fO)
~[f(DIO)f(©)do

Since the x; are independent, we can write:

f@D) =

f[lf(xl- 9) -1 0)

fOID)=—; :
/ l:[lf(xz' 10)f (6) do

Now we have the means to calculate the den-
sity function of a new (independent) obser-

vation x,,41, given xi, . .., X'
JX =xn411D)
(X =x X =)
C fX=x,...,X=1x)
JfX=x1,...,X =x,1110)
f(0) do

[f(DI6)-f(0)do
n+1
f__l“[lf(X=xi|9)~f(0) do

fﬂf(X=xi 10) - f (0) do

= /f(X=xn+1 1) -f (@ 1D) d6.

We will now briefly explain the methods that

allow us to:

e Find a value for the estimated parameter
that is more probable than the others;

e Find a confidence interval for 0, and;

e Perform hypothesis testing.

These methods are strictly related to deci-

sion theory, which plays a considerable role

in Bayesian statistics.
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Point Estimation of the Parameter

To get a point estimation for the param-
eter 6, we specify a loss function / (6, 6) that
comes from using o (the estimated value)
instead of the true value (the unknown) 6.
Then we minimize this function of . For
example, if 0 is real and “the loss is quadrat-
ic” (thatis, [(, 6) = (6—6)?), then the point
estimation of & will be the mean of the cal-
culated distribution.

Confidence Intervals

The concept of a confidence interval is
replaced in bayesian statistics by the concept
of an a-credible region (where « is the “con-
fidencelevel”), which is simply defined as an
interval / such that:

/f(9|D)d9=a.
1

Often, we also require that the width of the
interval is minimized.

Hypothesis Testing
The general approach to hypothesis testing:

Hy: 6€l versus Hi: 60¢1.

is related to decision theory. Based on this,
we define aloss function /(aq, 0) thataccepts
Ho (where the true value of the parameter is
0)and aloss function /(aj, 0) thatrejects Hy.
If the value for the true value obtained by

accepting Hy, that is,

/ I(ag, 0)d6

is smaller than to the one obtained by reject-
ing Hy, then we can accept Hy.

Using this constraint, we reject the restric-
tions imposed on 6 by the null hypothesis
@ el.

EXAMPLES

The following example involves estimating
the parameter 6 from the Bernoulli distri-
bution X with the help of n independent
observationsxy, .. ., X, taking the value 1 in
the case of success and O in the case of failure.
Let r be the number of successes and n — r
be the number of failures among the obser-
vations.

We have then:

LO) =PX=x1,....,.X =x,10)
=[P =x16)

i=1
=0 (1-6)"".

An estimation of the maximum likelihood
of 0, denoted by émle, maximizes this func-
tion. To do this, we consider the logarithm
of this function, in other words the log-
likelihood:

logL (#) =rlog(@)+ (n—r)log(l —0).

We maximize this by setting its derivative by
0 equal to zero:

d(ogl) r
a0

n—r

= - — =0.
6 1—-6
This is equivalentto 7 (1 —0) = (n —r) 0,
and it simplifies to émle = % The estimator
for the maximum likelihood of 6 is then sim-
ply the proportion of observed successes.
Now we return to the bayesian method.
In this case, the Bernoulli distribution, the
a priori reference distribution of the param-
eter 6, is expressed by:

O =c- (h©®)?,

where c is an appropriate constant (such as
[f(6)d6 = 1) and where h(0) is called the
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Fisher information of X:

32
h®) = —E [392}

X 1-X
=—E|—-=—

[W (1— m}
_ E[X] E[X]
62 (1—9)2
G 1—6
_9_2+(1—9)2
1 1_ 1
=77 -0 (1 —-06)"

The distribution will then be:

fO)=c-671-(1—6)"2 .
The distribution function of 6, given the
observations xi,...,X,, can then be ex-

pressed by:

FOIX=x1,.... X =2xy)

1 n
=~ TIP&=x0) 5®)

i=1

1
= O (=067 (1—6)"2
- 2 0% . (1 — gy'—k=2
=< G IE - 9)(”—’+%)—1 )

d

whichisabeta distribution with parameters

1 1
a:r—i—i and ﬁ:n—r—i—z,
and with a constant of
c I'(x+B)
d" Tl @’
where I" is the gamma function (see gamma
distribution).

We now consider a concrete case, where
we want to estimate the proportion of HIV-
positive students. We test 200 students and

none of themis HIV-positive. The proportion
of HIV-positive students is therefore esti-
mated to be 0 by the maximum likelihood.
Confidence intervals are not very useful in
this case, because (if we follow the usual
approach) they are calculated by:

0£1.96-+/p(—p).

Inthis case, as p is the proportion of observed
successes, the confidence interval reduces
to 0.

Following bayesian methodology, we obtain
the distribution, based only on the data,
that describes the uncertainty about the par-
ameters to be estimated. The larger 7 is, the
more sure we are about 0; the final reference
distribution for 6 is then more concentrated
around the true value of 6.

In this case, we find as a final reference distri-
bution a beta distribution with parameters
o = 0.5 and 8 = 200.5, which summarizes
the information about 6 (the values that cor-
respond to the spikes in the distribution are
the most probable). Itis often useful to graph-
ically represent such results:

800

700
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400F |
300 \
200 \,\

100

L — J
0 0.005 0.01 0.015

We can see from this that:
e The probability that the proportion of
interest is smaller then 0.015 is almost 1;
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e The probability that the proportion of
interest is smaller then 0.005 is approx-
imately 0.84, and;

e The median, which is chosen as the best
measure of the central tendency due to
the strong asymmetry of the distribution,
is 0.011.

We remark that there is a qualitative dif-
ference between the classical result (the
proportion can be estimated as zéro) and
the bayesian solution to the problem, which
allows us to calculate the probability distri-
bution of the parameter, mathematically
translating the uncertainty about it. This
method tell us in particular that, given cer-
tain information, the correct estimation for
the proportion of interest is 0.011. Note that
the bayesian estimation depends on (like the
uncertainty) the number of the observed cas-
es, and it is equivalent to observing O cases
of HIV among 2, 200 or 20.0 students in the
classical case.

FURTHER READING

» Bayes’ theorem

» Bayes, Thomas

» Conditional probability
» Inference

» Joint density function

» Maximum likelihood

» Probability
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Bernoulli Distribution

A random variable X follows a Bernoulli
distribution with parameter p if its proba-
bility function takes the form:

p for x=1
PX=x)= .

g=1—p for x=0
where p and ¢ represent, respectively, the
probabilities of “success” and “failure,”
symbolized by the values 1 and 0.

1 =

035 4

0

0 1
Bernoulli’s law, p = 0.3, ¢ = 0.7

The Bernoulli distribution is a discrete
probability distribution.
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HISTORY
See binomial distribution.

MATHEMATICAL ASPECTS
The expected value of the Bernoulli distri-
bution is by definition:

1
E[X]=) x-P(X =2x)
x=0

=1-p+0-g=p.

The variance of the Bernoulli distribution is
by definition:

Var(X) = E[X?] — (E[X])
= 12p+02q—p2
=p-p*=pq.

DOMAINS AND LIMITATIONS

The Bernoulli distribution is used when
arandom experimenthasonly two possible
results: “success” or “failure.” These results
are usually symbolized by 0 and 1.

FURTHER READING
» Binomial distribution
» Discrete probability distribution

|
Bernoulli Family

Originally from Basel, the Bernoulli fami-
ly contributed several mathematicians to sci-
ence. Bernoulli, Jacques (1654—1705) stud-
ied theology at the University of Basel,
according to the will of his father, and then
traveled for several years, teaching and con-
tinuing his own studies. Having resolute-
ly steered himself towards mathematics, he
became a professor at the University of
Basel in 1687. According to Stigler (1986),

Bernoulli, Jacques (called Bernoulli, James
in most the English works) is the father of the
quantification of uncertainty.

It was only in 1713, seven years after his
death, and on the instigation of his nephew
Nicolas, that his main work Ars Conjectandi
was published. This work is divided into four
parts: in the first the author comments upon
the famous treatise of Huygens; the second is
dedicated to the theory of permutations and
combinations; the third to solving diverse
problems about games of chance; and final-
ly the fourth discusses the application of the
theory of probability to questions of moral
interest and economic science.

A great number of the works of Bernoulli,
Jacques were never published.

Jean Bernoulli (1667-1748), who was more
interested in mathematics than the med-
ical career his father intended for him,
also became a university professor, first
in Groningen in the Netherlands, and then
in Basel, where he took over the chair left
vacant by the death of his brother.

The two brothers had worked on differential
and integral calculus and minimization prob-
lems and had also studied functions.

REFERENCES

Stigler, S.: The History of Statistics, the
Measurement of Uncertainty Before
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|
Bernoulli, Jakob

Bernoulli, Jakob (or Jacques or Jacob or
James) (1655-1705) and his brother Jean
were pioneers of Leibniz calculus. Jakob
reformulated the problem of calculating an
expectation into probability calculus. He
also formulated the weak law of large num-
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bers, upon which modern probability and
statistics are based. Bernoulli, Jakob was
nominated maitre és lettres in 1671. During
his studies in theology, which he terminated
in 1676, he studied mathematics and astron-
omy, contrary to the will of his father (Niko-
laus Bernoulli).

In 1682, Leibniz published (in Acta Eru-
ditorium) a method that could be used to
determine the integrals of algebraic func-
tions, a brief discourse on differential cal-
culus in an algorithmic scheme, and some
remarks on the fundamental idea of integral
calculus. This paper attracted the attention
of Jakob and his brother, and they consider-
ably improved upon the work already done
by Leibniz. Leibniz himself recognized that
infinitesimal calculus was mostly founded
by the Bernoulli brothers rather than himself.
Indeed, in 1690 Jakob introduced the term
“integral.”

In 1687, he was nominated Professor of
Mathematics at the University of Basel,
where he stayed until his death in 1705.
Ars conjectandi is the title of what is gen-
erally accepted as Bernoulli’s most original
work. It consists of four parts: the first con-
tains a reprint of Huygen’s De Ratiociniis
in Ludo Aleae (published in 1657), which
is completed via important modifications.
In the second part of his work, Bernoulli
addresses combinatory theory. The third part
comprises 24 examples that help to illustrate
the modified concept of the expected value.
Finally, the fourth partis the most interesting
and original, even though Bernoulli did not
have the time to finish it. It is in this part that
Bernoulli distinguishes two ways of defin-
ing (exactly or approximately) the classical
measure of probability.

Around 1680, Bernoulli, Jakob also became
interested in stochastics. The evolution of his

ideas can be followed in his scientific journal
Meditations.

Some of the main works and articles of
Bernoulli, Jakob include:

1677 Meditationes, Annotationes, Ani-
madversiones Theologicae & Philo-
sophicae, a me JB. concinnatae &
collectae ab anno 1677. Universitits-
bibliothek, Basel, L I a 3.

1713 Ars Conjectandi, Opus Posthumum.
Accedit Tractatus de Seriebus infini-
tis, et Epistola Gallice scripta de ludo
Pilae recticularis. Impensis Thurni-

siorum, Fratrum, Basel.

|
Bernoulli Trial

The Bernoulli trials are repeated tests of an

experiment that obey the following rules:

1. Each trial results in either success or fail-
ure;

2. The probability of success is the same
for each trial; the probability of success is
denoted by p, and the probability of fail-
ure by g =1 —p;

3. The trials are independent.

HISTORY

The Bernoulli trials take their name from
the Swiss mathematician Bernoulli, Jakob
(1713).

Bernoulli, Jakob (1654—-1705) was the eldest
of four brothers and it was his father’s will
that he should study theology. When he had
finished his studies in theology in Basel in
1676, he briefly left the town only to return
in 1680 in order to devote himself to mathe-
matics. He obtained the Chair of Mathe-
matics at the University of Basel in 1687.
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EXAMPLES

The most simple example of a Bernoulli trial
is the flipping of a coin. If obtaining “heads”
isconsidered tobe asuccess (S) while obtain-
ing “tails” is considered to be a failure (F),
we have:

p=PES) =
and
g=PF)=1-p=1.
FURTHER READING

» Bernoulli distribution
» Binomial distribution
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Bernoulli’s Theorem

Bernoulli’stheoremsays thatthe relative fre-
quency of success in a sequence of Bernoul-
li trials approaches the probability of suc-
cess as the number of trials increases towards
infinity.

It is a simplified form of the law of large
numbers and derives from the Chebyshev
inequality.

HISTORY

Bernoulli’s theorem, sometimes called the
“weak law of large numbers,” was first
described by Bernoulli, Jakob (1713) in his

work Ars Conjectandi, which was published
(with the help of his nephew Nikolaus) seven
years after his death.

MATHEMATICAL ASPECTS

If S represents the number of successes
obtained during n Bernoulli trials, and if p
is the probability of success, then we have:

28>=0,

S
lim P(——p <8)=1,
n—o0 n

where & > 0 and arbitrarily small.
In an equivalent manner, we can write:

) S
lim P(|—-—p
n— 00 n

or

—_— H p ,

n n—>oo
which means that the relative frequency of
success tends to the probability of success
when 7 tends to infinity.

FURTHER READING

» Bernoulli distribution
» Bernoulli trial

» Convergence

» Law of large numbers
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Beta Distribution

A random variable X follows a beta distri-
bution with parameters « and 8 if its den-
sity function is of the form:

_ a—1 B—1
= _ b —
S B ﬁ)(x a)* (b —x)
-(b— a)—(OH-/S—l) ,
a<x<b, a>0and >0,
where:

1
B(a, B) = / AN =P lar
0

F(@)I'(B)
Cla+p)’

I" is the gamma function (see gamma distri-
bution).

054

0.25 A

i}
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Beta distribution o« =2,8=3,a=3,b=7

The beta distribution is a continuous proba-
bility distribution.

MATHEMATICAL ASPECTS
The density function of the standard beta
distribution is obtained by performing the

. X—a.
variable change ¥ = $=":
1 yoz—l
B(a.p) ifo<y<1
Fo) = (1 =y .
0 if not

Consider X, arandom variable that follows
the standard beta distribution. The expected

value and the variance of X are, respectively,
given by:

E[X]—L
T a+ B’

o-f
(@+B2 - (a+p+1)"

DOMAINS AND LIMITATIONS

The beta distribution is one of the most fre-

quently used to adjustempirical distributions

where the range (or variation interval) [a, ]

is known.

Here are some particular cases where the beta

distribution is used, related to other contin-

uous probability distributions:

e IfX;andX; aretwoindependentrandom
variables each distributed according to
a gamma distribution with parameters
(1, 1) and (g, 1), respectively, the ran-
dom variable

X
Xi+X

is distributed according to a beta distri-
bution with parameters (a1, @2).

o The beta distribution becomes a uniform
distribution when

a=p8=1.

e When the parameters « and § tends to-
wards infinity, the beta distribution tends
towards the standard normal distribu-
tion.

FURTHER READING

» Continuous probability distribution
» Gamma distribution

» Normal distribution

» Uniform distribution
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Bias

From a statistical point of view, the bias is
defined as the difference between the expect-
ed value of a statistic and the true value
of the corresponding parameter. Therefore,
the bias is a measure of the systematic error
of an estimator. If we calculate the mean of
a large number of unbiased estimations, we
will find the correct value. The bias indicates
the distance of the estimator from the true
value of the parameter.

HISTORY
The concept of an unbiased estimator
comes from Gauss, C.F. (1821), during the
time when he worked on the least squares
method.

DOMAINS AND LIMITATIONS

‘We should not confuse the bias of an estima-
tor of a parameter with its degree of preci-
sion, whichis ameasurementof the sampling
error.

There are several types of bias, selection bias
(due to systematic differences between the
groups compared), exclusion bias (due to the
systematic exclusion of certain individuals
from the study) or analytical bias (due to the
way that the results are evaluated).

MATHEMATICAL ASPECTS

Consider a statistic 7 used to estimate
a parameter 6. If E[T] = 0 + b(0)
(where E[T] represents the expected value
of T), then the quantity b(0) is called the
bias of the statistic 7.

If b(0) = 0, we have E[T] = 0, and T is an
unbiased estimator of 6.

EXAMPLES

Consider X1, X, . .., X;,, asequence of inde-
pendent random variables distributed
according to the same law of probability
with a mean . and a finite variance o2, We
can calculate the bias of the estimator

1 < )
=3 i,
i=1

used to estimate the variance o2 of the pop-
ulation in the following way:

E[Sz]=E|:% ;(x,‘—)_c)z]
N B T S
—E [n > == G- }

i=1
_ l - L 2 - 2
= nE [;(xz ) ] E(x — )

1 n
== E(i— @ —EG—p)’
i=1

= Var(x;) — Var(x)

The bias of S? is then equal to %‘2

FURTHER READING
» Estimation

» Estimator

» Expected value

REFERENCES
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Gauss, C.F.: Méthode des Moindres Car-
rés. Mémoires sur la Combinaison des
Observations. Traduction Frangaise par J.
Bertrand. Mallet-Bachelier, Paris (1855)
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Bienaymé, Irénée-Jules

Bienaymé, Irenée-Jules (1796-1878)
entered the French Ministry of Finance and
became the Inspector General for Finance
in 1836, although he lost his employment
in 1848 for political reasons. Shortly after
this, he began to give lessons in the Faculty
of Science in Paris.

A follower of Laplace, Pierre Simon
de, Bienaymé proved the Bienaymé—
Chebyshev inequality some years before
Chebyshev, Pafnutii Lvovich. The reedit-
ed version of Bienaymé’s paper from 1867
precedes the French version of Chebychev’s
proof. This inequality was then used in
Chebyshev’s incomplete proof of central
limit theorem, which was later finished by
Markov, Andrei Andreevich.

Moreover, Bienaymé correctly formulated
the theorem for branching processesin 1845.
His most famous public work is probably the
corrections he made to the use of Duvillard’s
mortality table.

Some principal works and articles of Bien-
aymé, Irénée-Jules:

1853 Considérations al’appuide la décou-
verte de Laplace surlaloide probabil-
ité dans la méthode des moindres car-
rés. Comptes Rendus de I’ Académie
des Sciences, Paris 37, 5—13; reedited
in 1867 in the Journal de Liouville
preceding the proof of the Bienaymé—
Chebyshev inequality in J. Math.
Pure. Appl., 12, 158-176.
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Binary Data

Binary data occur when the variable of inter-
est can only take two values. These two val-
ues are generally represented by Oand 1, even
if the variable is not quantitative.

Gender, the presence or absence of a charac-
teristic and the success or failure of an exper-
iment are just a few examples of variables
that resultin binary data. These variables are
called dichotomous variables.

EXAMPLES

A meteorologist wants to know how reliable
his forecasts are. To do this, he studies aran-
dom variable representing the prediction.
This variable can only take two values:

0 if the prediction was incorrect

1 if the prediction was correct

The meteorologist makes predictions for
aperiod of 50 consecutive days. The predic-
tionisfoundtobe correct 32 times, and incor-
rect 18 times.

To find out whether his predictions are better
than the ones that could have been obtained
by flipping a coin and predicting the weather
based on whether heads or tails are obtained,
he decides to test the null hypothesis Hy,
that the proportion p of correct predictions is
equal to 0.5, against the alternative hypoth-
esis H1, thatthis proportionisdifferentto 0.5:

Hy:
Hy:

p=0.5
p#0.5.

Let us calculate the value of

observed frequency ?
—theoretical frequency

2=y

theoretical frequency
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where the observed frequencies are 18
and 32, and the theoretical frequencies are,
respectively, 25 and 25:

, (321252 + (18 —25)°
X =

25
49
_ OO B 1.
25 25

By assuming that the central limit theo-
rem applies, we compare this value with
the value of the chi-square distribution
with one degree of freedom. For a ’signifi-
cance level of 5%, we find in the chi-square
table:

Xioos = 3.84.

Therefore, since 3.92 > 3.84, the null
hypothesis is rejected, which means that
the meteorologist predicts the weather bet-
ter than a coin.

FURTHER READING

» Bernoulli distribution
» Categorical data

» Contingency table

» Data

» Dichotomous variable
» Likelihood ratio test
» Logistic regression

» Variable
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Binomial

Algebraic sums containing variables are
called polynomials (from the Greek “poly,”
meaning “several”). An expression that con-
tains two terms is called a binomial (from the
Latin “bi”, meaning “double”). A monomial
(from the Greek “mono”, meaning “unique”)
is an expression with one term and a trino-
mial (from the Latin “tri”, meaning “triple”)
contains three elements.

HISTORY
See arithmetic triangle.

MATHEMATICAL ASPECTS
The square of a binomial is easily calculated
using

(a+b)> =da>+2ab+b*.

Binomial formulae for exponents higher
than two also exist, such as:

(a+b)® = a® +3a®*b + 3ab* + b°,
(a+ b)* = a* + 4a’°b + 6a°b* + 4ab’
+b*.

We can write a generalized binomial formula
in the following manner:

(a+b)" =d" +nd b
n(n — l)anfzbz

2
—1
ot Mazb"—z
2
+nab" ! + "

=Cla" + Cha™ b+ C2a"2b?
4+ O lap ot

n
= Cha" ",
k=0
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DOMAINS AND LIMITATIONS

The binomial (p + ¢) raised to the power n
lends its name to the binomial distribution
because it corresponds to the total probabi-
lity obtained after n Bernoulli trials.

FURTHER READING

» Arithmetic triangle

» Binomial distribution
» Combination

I
Binomial Distribution

A random variable X follows a binomial
distribution with parameters n and p if its
probability function takes the form:

PX=x)=C,-p*- 4",
x=012...,n.

Therefore if an event comprises x “success-
es” and (n — x) “failures,” where p is the
probability of “success” and g = 1 — p the
probability of “failure,” the binomial distri-
bution allows us to calculate the probability
of obtaining x successes from n independent
trials.

05 4

I
0 1 2 3 4

0

Binomial distribution, p = 0.3, ¢ =0.7,n =3

The binomial distribution with param-
eters n and p, denoted B(n, p), is a discrete
probability distribution.

05 4

o I.
0 1 2 3 4

Binomial distribution, p =0.5,¢=05,n=14

HISTORY

The binomial distribution is one of the old-
est known probability distributions. It was
discovered by Bernoulli, J. in his work enti-
tled Ars Conjectandi (1713). This work is
divided into four parts: in the first, the author
comments on the treatise from Huygens; the
second part is dedicated to the theory of per-
mutations and combinations; the third is
devoted to solving various problems related
to games of chance; finally, in the fourth part,
he proposes applying probability theory to
moral questions and to the science of eco-
nomics.

MATHEMATICAL ASPECTS

If X1, Xp, ..., X, are nindependent random
variables following a Bernoulli distri-
bution with a parameter p, then the random
variable

X=X1+Xo0+...+X,

follows a binomial distribution B(n, p).

To calculate the expected value of X, the fol-
lowing property will be used, where Y and Z
are two random variables:

E[Y +Z] = E[Y]+ E[Z].
We therefore have:
E[X]=E[X1 +Xo +... + Xl
= E[Xi]+ E[X2] + ... + E[X,]
=p+p+...+p=np.
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To calculate the variance of X, the following
property will be used, where Y and Z are two
independent variables:

Var(Y + Z) = Var(Y) + Var(Z) .

We therefore have:

Var(X) = Var(X1 + X2 +... + X))
= Var(Xy) + Var(X») + ...
+ Var(X;,)
=pq+pqg+...+pqg=npq.

Binomial distribution tables (for the proba-
bility distribution and the distribution
function) have been published by Rao
et al. (1985), as well as by the Nation-
al Bureau of Standards (1950). Extended
distribution function tables can be found in
the Annals of the Computation Laboratory
(1955).

EXAMPLES

A coinis flipped ten times. Consider the ran-
dom variable X, which represents the num-
ber of times that the coin lands on “tails.”
We therefore have:

number of trials: n=10
probability of

1
one success: 2

=
Il

(tails obtained)

probability of one

1
failure: 2

(heads obtained)

q

The probability of obtaining tails x times
amongst the ten trials is given by

1\"* 1 10—x
ro=a=ai(3)-(3)

The probability of obtaining tails exactly
eight times is therefore equal to:

PX =8)=C3 - p* g1"®

o 1\ (1\°
T 8110—-8)! \2 2
=0.0439.

The random variable X follows the bino-
mial distribution B(10, }).

FURTHER READING

» Bernoulli distribution

» Binomial table

» Discrete probability distribution
» Negative binomial distribution
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Binomial Table

The binomial table gives the values for
the distribution function of a random
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variable that follows a binomial distri-
bution.

HISTORY
See binomial distribution.

MATHEMATICAL ASPECTS

Let the random variable X follow the bino-
mial distribution with parameters n and p.
Its probability function is given by:

PX=x)=C,-p*- 4",
x=012...,n,

where C;, is the binomial coefficient, equal
n__ parameter p is the probability of

RICEIE
success, and g = 1 —pisthe complementary

to

probability that corresponds to the probabi-
lity of failure (see normal distribution).
The distribution function of the random
variable X is defined by:

X
P(XSX)IZC;‘,'pi'qnfi,
i=0
0<x<n.

The binomial table gives the value of
P(X < x) for various combinations of x,
n and p.

Forlarge n, this calculation becomes tedious.
Thankfully, we can use some very good
approximations instead. If min(np, n(1 —
p)) > 10, we can approximate it with the
normal distribution:

Vv 1Pq

where ¢ is the distribution function for the
standard normal distribution, and the conti-
nuity correction % is included.

1_
P(Xfx):qﬁ(u)

DOMAINS AND LIMITATIONS

The binomial table is used to perform non-
parametric tests on statistics that are dis-
tributed according to binomial distri-
bution, especially the sign test and the
binomial test.

The National Bureau of Standards (1950)
published individual and cumulative bino-
mial distribution probabilities for n < 49,
while cumulative binomial distribution
probabilities for n < 1000 are given in the
Annals of the Computation Laboratory
(1955).

EXAMPLES
See Appendix B.
We can verify that forn = 2 and p = 0.5:

1
P(X <1)=) C5(0.5)(0.5)*"
i=0
=0.75.

or that for n = 5 and p = 0.05:

3
P(X <3) =) Ci(0.05)(0.95)>"
i=0
= 1.0000.

For anexample of the application of the bino-
mial table, see binomial test.

FURTHER READING

» Binomial distribution
» Binomial test

» Sign test

» Statistical table

REFERENCES

National Bureau of Standards.: Tables of
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U.S. Department of Commerce. Applied
Mathematics Series 6 (1950)
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Harvard University: Tables of the Cumu-
lative Binomial Probability Distribution,
vol. 35. Annals of the Computation Lab-
oratory, Harvard University Press, Cam-
bridge, MA (1955)
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Binomial Test

The binomial test is a parametric hypoth-
esis test that applies when the population
can be divided into two classes: each obser-
vation of this population will belong to one
or the other of these two categories.

MATHEMATICAL ASPECTS

We consider a sample of n independent tri-
als. Each trial belongs to either the class C;
or the class C»>. We note the number of obser-
vations n1 that fall into Cy and the number of
observations 7, that fall into C».

Each trial has a probability p of belonging to
class C1, where p is identical for all # trials,
and a probability ¢ = 1 — p of belonging to
class Cs.

Hypotheses

The binomial test can be either a two-sided
test or a one-sided test. If pg is the presumed
value of p, (0 < po < 1), the hypotheses are
expressed as follows:

A: Two-sided case

Ho: p=po,

Hi: p#po.
B: One-sided case

Ho: p<po,

Hi: p>po.
C: One-sided case

Ho: p=po,

Hi: p<po.

Decision Rules
Case A

Forn < 25, we use the binomial table with
n and p, as parameters.
Therefore, we initially look for the closest
valueto % in this table (which we denote «1),
where « is the significance level. We denote
the value corresponding to o1 by #1.
Next we find the value of 1 — a1 = a inthe
table. We denote the value corresponding to
(0% by 1.
We reject Hy at the level « if

ng <ty or ni>t,
where 7 is the number of observations that
fall into the class Cj.
When nisbigger then 25, we can use the nor-
mal distribution as an approximation for
the binomial distribution.
The parameters for the binomial distribution
are:

w=n-po,
o=.n"po qo-

The random variable Z that follows the
standard normal distribution then equals:

_X—u  X—n-po
o \/”‘PO'QO’

where X is a random binomial variable with

z

parameters n and py.
The approximations for the values of #; and
tr are then:

N=n-po+za /1N Po-qo0,
Ip="n:po+2Za, /NP0 40,
where z4, and z4, are the values found in the

normal table corresponding to the levels o
and a>.
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Case B

For n < 25, we take t to be the value in
the binomial table corresponding to 1 — «,
where « is the significance level (or the clos-
est value), and n and pg are the parameters
described previously. We reject Hpat the lev-
el o if

ny >t,

where n; is the number of the observations
that fall into the class Cj.
Forn > 25 we can make the approximation:

t=mn-po-+2Zuy/n-po-qo,

where z, can be found in the normal table for
1—o.

The decision rule in this case is the same as
that for the n < 25.

Case C

Forn < 25, tisthe valueinthe binomial table
corresponding to «, where « is the signifi-
cance level (or the closest value), and with n
and pg the same parameters described previ-
ously.

We reject Hy at the level « if

np=t,

where n7 is the number of observations that
fall into the class Cj.
For n > 25, we make the approximation:

t=mn-po-+2Zu/n-po-qo,

where z,, is found in the normal table for the
significance level . Then, the decision rule
is the same as described previously.

DOMAINS AND LIMITATIONS
Two basic conditions that must be respected
when performing the binomial test are:

1. The n observations must be mutually
independent;

2. Every observation has a probability p of
falling into the first class. This probability
is also the same for all observations.

EXAMPLES

A machine is considered to be operational if
a maximum of 5% of the pieces that it pro-
duces are defective. The null hypothesis,
denoted Hy, expresses this situation, while
the alternative hypothesis, denoted Hy, sig-
nifies that the machine is failing:

Hy:
Hi:

p <0.05
p > 0.05.

Performing the test, we take a sample of
10 pieces and we note that there are three
defective pieces (n] = 3). As the hypotheses
correspond to the one-tailed test (case B),
decision rule B is used. If we choose a sig-
nificance level of « = 0.05, the value of ¢
in the binomial table equals 1 (forn = 10
and pg = 0.05).

We reject Hy because ny =3 >t = 1, and
we conclude that the machine is failing.
Then we perform the test again, but on
100 pieces this time. We notice that there are
12 defective pieces. In this case, the value of ¢
can be approximated by:

t=mn-po-+2Zuy/n-pPo-qo,

where z, can be found from the normal
table for 1 — a = 0.95. We then have:

t =100-0.05 4+ 1.64+100 - 0.05 - 0.95
= 8.57.

We again reject Hyp, becausen; = 12 > ¢ =
8.57.
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FURTHER READING

» Binomial table

» Goodness of fit test
» Hypothesis testing
» One-sided test

» Parametric test

» Two-sided test

REFERENCES

Abdi, H.: Binomial distribution: Binomi-
cal and Sign Tests. In: Salkind, N.J. (ed.)
Encyclopedia of Measurement and Statis-
tics. Sage, Thousand Oaks (2007)
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Biostatistics

Biostatistics is the scientific field where
statistical methods are applied in order to
answer questions related to human biology
and medicine (the prefix “bio” comes from
Greek “bios,” which means “life”).

The domains of biostatistics are mainly
epidemiology, clinical and biological tri-
als, and it is also used when studying the
ethics of these trials.

HISTORY

Biostatistics began in the middle of the sev-
enteenth century, when Petty, Sir William
(1623-1687) and Graunt, John (1620-1674)
created new methods of analyzing the Lon-
don Bills of Mortality. They applied these
new methods of analysis to death rate,
birthrate and census studies, creating the
field of biometrics. Then, in the middle of
the nineteenth century, the works of Mendel,
Gregor studied inheretance in plants. His
observations and results were based on sys-
tematically gathered data, and also on the
application of numerical methods of describ-
ing the regularity of hereditary transmission.

Galton, Francis and Pearson, Karl were
two of the most important individuals asso-
ciated with the development of this science.
They used the new concepts and statistical
methods wheninvestigating theresemblance
in physical, psychological and behavioral
data between parents and their children.
Pearson, Galton and Weldon, Walter Frank
Raphael (1860-1906) cofounded the jour-
nal Biometrika. Fisher, Ronald Aylmer,
during his agricultural studies performed at
Rothamsted Experimental Station, proposed
a method of random sampling where ani-
mals were partitioned into different groups
and allocated different treatments, marking
the first studies into clinical trials.

DOMAINS AND LIMITATIONS

The domains of biostatistics are principally
epidemiology, clinical trials and the ethical
questions related to them, as well as biologi-
cal trials. One of the areas where biostatisti-
cal concepts have been used to analyze a spe-
cific question was in indirect measurements
of the persistence of a substance (for exam-
ple vitamins and hormones) when adminis-
tered to a living creature. Biostatistics there-
fore mainly refer to statistics used to solve
problems that appear in the biomedical sci-
ences.

The statistical methods mostcommonly used
in biostatistics include resampling meth-
ods (bootstrap, jackknife), multivariate
analysis, various regression methods, eval-
uations of uncertainty related to estimation,
and the treatment of missing data.

The most well-known scientific journals
related to biostatistics are: Statistics
Medicine, The Biometrical Journal, Con-
trolled Clinical Trials, The Journal of Bio-
pharmaceutical Statistics, Statistical Meth-

in

ods in Medical Research and Biometrics.
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FURTHER READING
» Demography
» Epidemiology

REFERENCES
Armitage, P., Colton, T.: Encyclopedia of
Biostatistics. Wiley, New York (1998)

Graunt, J.: Natural and political observations
mentioned in a following index, and made
upon the bills of mortality: with reference
to the government, religion, trade, growth,
ayre, diseases, and the several changes of
the said city. Tho. Roycroft, for John Mar-
tin, James Allestry, and Tho. Dicas (1662)

Greenwood, M.: Medical Statistics from
Graunt to Farr. Cambridge University
Press, Cambridge (1948)

Petty, W.: Another essay in political arith-
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of London. Kelley, New York (1682) (2nd
edn. 1963)

Petty, W.: Observations Upon the Dublin-
Bills of Mortality, 1681, and the State of
That City. Kelley, New York (1683) (2nd
edn. 1963)
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Block

Blocks are sets where experimental units
are grouped in such a way that the units are
as similar as possible within each block.
We can expect that the experimental error
associated with a block will be smaller than
that obtained if the same number of units
were randomly located within the whole
experimental space.

The blocks are generally determined by tak-
ing into account both controllable causes
related by the factors studied and causes that

may be difficult or impossible to keep con-
stant over all of the experimental units.
The variations between the blocks are then
eliminated when we compare the effects of
the factors.

Several types of regroupings can be used to
reduce the effects of one or several sources of
error. A randomized block design results
if there is only one source of error.

HISTORY

The block concept used in the field of design
of experiment originated in studies made by
Fisher, R.A. (1925) when he was Head of
the Rothamsted Experimental Station. When
working with agricultural researchers, Fish-
er realized that the ground(field) chosen for
the experiment was manifestly heteroge-
nous in the sense that the fertility varies
in a systematic way from one point on the
ground to another.

FURTHER READING

» Design of experiments

» Experimental Unit

» Factor

» Graeco-Latin square design
» Latin square designs

» Randomized block design

REFERENCES

Fisher, R.A.: Statistical Methods for
Research Workers. Oliver & Boyd, Edin-
burgh (1925)
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Bonferroni, Carlo E.

Bonferroni, Carlo Emilio was born in 1892
in Bergamo, Italy. He obtained a degree in
mathematics in Turin and completed his edu-
cation by spending a year at university in
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Vienna and at the Eidgenossiche Technische
Hochschulein Zurich. He was a Military offi-
cer during the First World War, and after the
war had finished became an assistant profes-
sor at Turin Polytechnic. In 1923, hereceived
the Financial Mathematics Chair at the Eco-
nomics Institute in Bari, where he was the
Rector for seven years. He finally transferred
to Florence in 1933, where he held his chair
until his death.

Bonferroni tackled various subjects, includ-
ing actuarial mathemetics, probability and
statistical mathematics, analysis, geometry
and mechanics. He gave his name to the
two Bonferroni inequalities that facilitate the
treatment of statistical dependences. These
appeared for the first time in 1936, in the arti-
cle Teoria statistica delle classi e calcolo
delle probabilita. The development of these
inequalities prompted a wide range of new
literature in this area.

Bonferroni died in 1960 in Florence, Italy.
Principal article of Carlo Emilio Bonfer-
roni:

1936 Teoria statistica delle classi e calcolo
delle probabilita. Publ. R. Istit. Super.
Sci. Econ. Commerc. Firenze, 8, 1—
62.
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Bootstrap

The term bootstrap describes a family of
techniques that are principally used to esti-
mate the standard error, the bias and the con-
fidence interval of a parameter (or more
than one parameter). It is based on n inde-
pendent observations of a random variable
with an unknown distribution function F,
and is particularly useful when the param-
eters to be estimated relate to a complicated
function of F.

The basic idea of bootstrap (which is some-
what similar to the idea behind the jackknife
method) is to estimate F using a possible
distribution £ and then to resample from F.
Bootstrap procedures usually require the use
of computers, since they can perform a large
number of simulations in a relatively short
time. In bootstrap methods, automatic sim-
ulations take the place of the analytical calcu-
lations used in the “traditional” methods of
estimation, and in certain cases they can pro-
vide more freedom, for example when we do
not want to (or we cannot) accept a hypothe-
sis for the structure of the distribution of the
data. Certain bootstrap methods are included
in statistical software such as S-PLUS, SAS
and MATLAB.

HISTORY

The origin of the use of the word “bootstrap”
in relation to the methods described here
neatly illustrates the reflexive nature of the
secondary samples generated by them (the
ones constructed from F). It originates from
the literary character Baron Munchausen
(from The Surprising Adventures of Baron
Munchausen by Raspe, R.E.), who fell into
alake, but pulled himself outby his own boot-
straps (his laces).

The history of bootstrap, like many self-
statistical techniques, starts in 1979 with
the publication of an article by Efron
(1979), which had a great impact on many
researchers. This article triggered the pub-
lication of a huge number of articles on the
theory and applications of bootstrap.

MATHEMATICAL ASPECTS

Different types of bootstrap have been pro-
posed; the goal here is not to review all of
these exhaustively, butinstead to give anidea
of the types of the methods used.
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Letxy, x2, ..., x, be nindependent observa-
tions of a random variable with an unknown
distribution function F.

We are interested in the estimation of an
unknown parameter é that depends on F and
the reliability (in other words its bias, its
variance and its confidence interval). The
estimation of § is afforded by the statistic
t = t(F), which is dependent on F. Since F'
is unknown, we find an estimation Ffor F
based on the sample xp, xp, ..., x,, and we
estimate § using t(ﬁ ) Classical examples
of t are the mathematical expectation, the
variance and the quantiles of . We denote
the random variable corresponding to the

statistic ¢ (which depends on x1, xp, ..., x)
by T.
We distinguish the following types of boot-
strap:
e Parametric bootstrap. If F = Fy is

a member of the parametric family of
distribution functions, we can estimate
(the vector) 6 using the estimator 6 of the
maximum likelihood. We naturally esti-
mate F by F.

e Nonparametric bootstrap. If F is not
a member of the parametric family, it is
estimated via an empirical distribution
function calculated based on a sample of
size n. The empirical distribution function
in x is defined by:

N number of observations x; < x
Fx) = .
n
The idea of the bootstrap is the following.

1. Consider R independent samples of type
x’l‘, xﬁ, ..., X} of arandom variable of the
distribution F.

2. Calculate the estimated values t’f, t%, e,
1} for the parameter § based on the gen-
erated bootstrap samples. First calculate
the estimation ¥ based on the sample i

(i=1,...,R), and then set:

it =t(ﬁ§") :

Following the bootstrap method, the
bias b and the variance v of ¢ are esti-
mated by:

R
- 1
Dot =1F — 1t = (Ezt;k) -,
i=1

R

1 * —k\2

Vboot = -1 21:([[ ).
=

We should remark that two types of errors

intervene here:

e A statistical error arising from the fact
that we proceed by considering the bias
and variance for F and not the real F s
which is unknown.

e Asimulationerror arising from the fact
that the number of simulations is not
high enough. In reality, it is enough
to resample between R = 50 and
200 times.

There there are many possible methods of

obtaining confidence intervals using boot-

strap, and we present only a few here:

1. Normal intervals. Suppose that T follows
the Gaussian (normal) distribution. Hop-
ing that T* also follows the normal distri-
bution, we then find the following confi-
dence interval for the (bias) corrected val-
uety =t—bofr

[tb — 4/ Vboot * Z1—a/2;
h + /Vboot * Zlfa/2:| ,

where z,, is the y quantile of the Gaus-
sian distribution N (0, 1). For a tolerance
limit of oz, we use the value from the nor-
mal table -, which gives o = 5% :
Zl—% = 1.96.
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2. Bootstrap intervals. Suppose that T — §
does not depend on an unknown variable.
In this case we calculate the «-quantile a,
of T —§. To do this, we arrange the values
tf —1 t§ —1,..., Iy —tinincreasing order:

Hy = bty — bt —1,

and then we read the quantiles of inter-
est ay, = t?(R+1)a) —tand a4 =
*

LR+ (1)) ~ 1
And as far as

1—20=Pr(a, <T—68<aj_q)

<20~ (R4 1)) -

the confidence interval for ¢ at the signif-
icance level « is:

* *
(21 = {1y (1=ay 2 = Hirs D)) -

3. Studentized bootstrap intervals. Itis pos-
sible to improve the previous estimation
by considering

T-$6
NG

where v is the variance of ¢, which must be
estimated (normally using known meth-
ods like Delta methods or the jackknife
method). The confidence interval for ¢
is found in an analogous way to that
described previously:

7 =

[’ =V ZRina-ay

t+ v Z)(k(RJrl)a):I .

where: Z(piny1-a) A4 Z(pine) are
“empirically” the (1 — o and &) quan-

. « -t
tiles of (27 = *5 .
V' Ji=1,..,R

EXAMPLES

We consider a typical example of nonpara-
metric bootstrap (taken from the work of
Davison, A. and Hinkley, D.V. (1997)). The
data concern the populations of ten Ame-
rican cities in 1920 (U) and 1930 (X):

u | 138
143

93 61 179 48
104 69 260 75

w|{37 29 23 30 2
63 50 48 111 50

We are interested in the value § of the statistic
T = £} which will allow us to deduce the
populations in 1930 from those in 1920. We
estimate § using t = % = 1.52, but what is
the uncertainty in this estimation?

The bootstrap allows us to simulate the val-
ues #f (i = 1,...,R) of § sampled from
a bivariate distribution ¥ = (U, X) with an
empirical distribution function F that gives
a weight 1—10 to each observation.
Inpractice, thisis amatter of resampling with
return the ten data values and calculating the

corresponding

10

= Zj=1 xij

RS (e

D=1 ujj

where x; and u}; are the values of the vari-
ables X and U. This allows us to approximate
the bias and the variance of ¢ using the for-

mulae given before.
The following table summarizes the simula-

, i=1..,R,

tions obtained with R = 5:
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So, the £ are:

ff=1.466, 5 =1761, 15 =1951,
f=1542, 15 =1371.

From this, it is easy to calculate the bias and
the variance of ¢ using the formulae given
previously:

b=1.62-152=0.10 and v = 0.0553.

It is possible to use these results to calcu-
late the normal confidence intervals, sup-
posing that 7 — § is normally distributed,
N (0.1, 0.0553). We obtain, forasignificance
level of 5%, the following confidence inter-
val for ¢: [1.16, 2.08].

The small number of cities considered and
simulations mean that we cannot have much
confidence in the values obtained.

FURTHER READING

» Monte Carlo method
» Resampling

» Simulation
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Boscovich, Roger J.

Boscovich, Roger Joseph wasbornatRagusa
(now Dubrovnik, Croatia) in 1711. He
attended the Collegium Ragusinum, then
he went to Rome to study in the Collegio
Romano; both colleges were Jesuitic. He
died in 1787, in Milano.

In 1760, Boscovich developed a geomet-
ric method for finding a simple regression
line L; (in order to correct errors in stel-
lar observations). Laplace, Pierre Simon
de disapproved of the fact that Boscovich
used geometrical terminology and translat-
ed this method into an algebraic version in
1793.
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The principal work of Boscovich, Roger
Joseph:

1757 De Litteraria Expeditione per Pontifi-
ciam ditionem, et Synopsis amplioris
Operis, ac habentur plura eius ex
exemplaria etiam sensorum impres-
sa. Bononiensi Scientiarium et Ar-
tium Instituto Atque Academia Com-
mentarii, Tomus IV, pp. 353-396.

REFERENCES

Whyte, Lancelot Law: Roger Joseph
Boscovich, Studies of His Life and Work
on the 250th Anniversary of his Birth.
Allen and Unwin, London (1961)
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Box, E.P. George

Box, George E.P. was born in 1919 in Eng-
land. He served as a chemist in the British
Army Engineers during World War II. After
the war he received a degree in mathematics
and statistics from University College Lon-
don. Inthe 1950s, he worked as a visiting pro-
fessor in the US at the Institute of Statistics
at the University of North Carolina. In 1960
he moved to Wisconsin, where he served as
the first chairman of the statistics depart-
ment. He received the British Empire Medal
in 1946, and the Shewhart Medal in 1968.
His main interest was in experimental statis-
tics and the design of experiments. His book
Statistics for Experimenters, coauthored
with Hunter, J. Stuart and Hunter, William
G., is one of the most highly recommend-
ed texts in this field. Box also wrote on time
series analysis.

Recommended publication of Box, George:

2005 (with Hunter, William G. and
Hunter, J. Stuart) Statistics for Exper-

imenters: Design, Innovation, and
Discovery, 2nd edn. Wiley, New York

FURTHER READING
» Design of experiments
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Box Plot

The box plot is a way to represent the follow-

ing five quantities for a set of data: the medi-

an; the first quartile and the third quartile;

the maximum and minimum values.

The box plot is a diagram (a box) that illus-

trates:

e The measure of central tendency (in
principal the median);

e The variability, and;

e The symmetry.

It is often used to compare several sets of

observations.

HISTORY

The “box-and-whisker plot,” or box plot, was
introduced by Tukey in 1972, along with oth-
er methods of representing data semigraphi-
cally, one of the most famous of which is the
stem and leaf diagram.

MATHEMATICAL ASPECTS
Several ways of representing abox plot exist.
We will present it in the following way:

The central rectangle represents 50% of the
observations. It is known as the interquar-
tile range. The lower limitof thisrectangleis
fixed at the first quartile, and the upper limit
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atthe third quartile. The position of the medi-
an is indicated by a line through the rectan-
gle.

A line segment (a “whisker””) connects each
quartile to the corresponding extreme (min-
imum or maximum, unless outliers are
present; see below) value on each side of
the rectangle.

In this representation, outliers are treated
in a special way. When the observations are
very spread out we define two values called
the “internal limits” or “whiskers” by:

int.lim.1 = 1st quartile
— (1.5 - interquartile range)
int.lim.2 = 3rd quartile

+ (1.5 - interquartile range)

For each internal limit, we then select the
data value that is closest to the limit but still
inside the interval between the internal lim-
its. These two data values are known as adja-
cent points. Now, when we construct the box
plot, the line segments connect the quartiles
to the adjacent points. Observations outside
of the interval between the internal limits
(outliers) are represented by stars in the plot.

EXAMPLE

The following example presents the revenue
indexes per inhabitant for each Swiss canton
(Swiss revenue = 100) in 1993:

Index Canton

Canton

Index Canton

Canton

Source: Federal Office for Statistics (1993)

We now calculate the different quartiles:
The box plot gives us information on the cen-
tral tendency, on the dispersion of the distri-
bution and the degree of symmetry:
e Central tendency:

The median equals 90.10.
e Dispersion:

The interquartile interval indicates the

interval that contains 50% of the observa-

tions, and these observations are the clos-
est to the center of distribution.

In our example, we have:

— 50% of the cantons of Switzerland
have an index that falls in the interval
[102.33—87.03] (withawidthof 15.3).

The limits of the box plot are the following:

lim.int.1 = 1st quartile
— (1.5 - interquartile interval)
=87.03 —1.5-15.3 = 64.08.
lim.int.2 = 3rd quartile
+ (1.5 - interquartile interval)
=102.33+1.5-15.3 = 125.28.

The values bigger then 125.28 are there-
fore outliers. There are two of them: 125.7
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(Zurich) and 170.2 (Zoug). The box plotis » Measure of location
then as follows: » Measure of central tendency B

] I *  REFERENCES

Tukey, J.W.: Some graphical and semigraph-
ical displays. In: Bancroft, T.A. (ed.) Sta-

FURTHER READING tistical Papers in Honor of George W.

» Graphical representation Snedecor. Towa State University Press,

» Exploratory data analysis Ames, 1A , pp. 293-316 (1972)
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Categorical Data

Categorical data consists of counts of obser-

vations falling into specified classes.

We can distinguish between various types of

categorical data:

e Binary, characterizing the presence or
absence of a property;

e Unordered multicategorical (also called
“nominal”);

e Ordered multicategorical (also called
“ordinal”);

e Whole numbers.

We represent the categorical data in the form

of a contingency table.

DOMAINS AND LIMITATIONS

Variables that are essentially continuous can
also be presented as categorical variables.
One example is “age”, which is a continuous
variable, but ages can still be grouped into
classes so it can still be presented as categor-
ical data.

EXAMPLES

In a public opinion survey for approving or
disapproving a new law, the votes cast can
be either “yes” or “no”. We can represent the
results in the form of a contingency table:

Yes No

If we divide up the employees of a business
into professions (and at least three profes-
sions are presented), the data we obtain is
unordered multicategorical data (there is no
natural ordering of the professions).

In contrast, if we are interested in the number
of people that have achieved various levels
of education, there will probably be a nat-
ural ordering of the categories: “primary,
secondary” and then university. Such data
would therefore be an example of ordered
multicategorical data.

Finally, if we group employees into cate-
gories based on the size of each employee’s
family (that is, the number of family mem-
bers), we obtain categorical data where the
categories are whole numbers.

FURTHER READING
» Analysis of categorical data

» Binary data

» Category

» Data

» Dichotomous variable

» Qualitative categorical variable

» Random variable

REFERENCES
See analysis of categorical data.
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Category

A category represents a set of people or
objects that have a common characteris-
tic.

If we want to study the people in a popu-
lation, we can sort them into “natural” cat-
egories, by gender (men and women) for
example, or into categories defined by other
criteria, such as vocation (managers, secre-
taries, farmers ...).

FURTHER READING

» Binary data

» Categorical data

» Dichotomous variable
» Population

» Random variable

» Variable

|
Cauchy Distribution

A random variable X follows a Cauchy
distribution if its density function is of the
form:

_1 | X—a 27!
f(X)—%~ +( 5 ) ,

6 >0.

The parameters « and 0 are the location and
dispersion parameters, respectively.

The Cauchy distribution is symmetric about
x = «, which represents the median. The
first quartile and the third quartile are given
by o +6.

The Cauchy distribution is a continuous
probability distribution.

05 4

a8

5 5

Cauchy distribution, 9 =1, =0

MATHEMATICAL ASPECTS

The expected value E£[X] and the variance
Var(X) do not exist.

Ifo« = 0and 6 = 1, the Cauchy distribution
is identical to the Student distribution with
one degree of freedom.

DOMAINS AND LIMITATIONS

Its importance in physics is mainly due to the
fact that it is the solution to the differential
equation describing force resonance.

FURTHER READING
» Continuous probability distribution
» Student distribution

REFERENCES

Cauchy, A.L.: Sur les résultats moyens
d’observations de méme nature, et sur les
résultats les plus probables. C.R. Acad.
Sci. 37, 198-206 (1853)
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Causal Epidemiology

The aim of causal epidemiology is to identify
how cause is related to effect with regard to
human health.

In other words, it is the study of causes of ill-
ness, and involves attempting to find statis-
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tical evidence for a causal relationship or an
association between the illness and the factor
proposed to cause the illness.

HISTORY
See epidemiology.

MATHEMATICAL ASPECTS

See cause and effect in epidemiology,
odds and odds ratio, relative risk, attri-
butable risk, avoidable risk, incidence
rate, prevalence rate.

DOMAINS AND LIMITATIONS

Studies of the relationship between tobac-
co smoking and the development of lungial
cancers and the relationship between HIV
and the AIDS are examples of causal epide-
miology. Research into a causal relation is
often very complex, requiring many stud-
ies and the incorporation and combination of
various data sets from biological and animal
experiments, to clinical trials.

While causes cannot always be identified
precisely, a knowledge of the risk factors
associated with an illness and therefore the
groups of people at risk allows us to inter-
vene with preventative measures that could
preserve health.

EXAMPLES

As an example, we can investigate the
relationship between smoking and the
development of lung cancer. Consider
a study of 2000 subjects: 1000 smokers and
1000 nonsmokers. The age distributions
and male/female proportions are identical
in both groups. Let us analyze a summary of
data obtained over many years. The results
are presented in the following table:

Non-
smokers

Smokers

If we compare the proportion of smokers that
contractlung cancer to the proportion of non-
smokers that do, we get 5%/1% = 5, so we
can conclude that the risk of developing lung
cancer is five times higher in smokers than
in nonsmokers. We generally also evaluate
the significance of this result computing p-
value. Suppose that the chi-square test gave
p < 0.001. It normally accepted that if the
p-value is smaller then 0.05, then the results
obtained are statistically significant.
Suppose that we perform the same study, but
the dimension of each group (smokers and
nonsmokers) is 100 instead of 1000, and we
observe the same proportions of people that
contract lung cancer:

Non-
smokers

Smokers

If we perform the same statistical test, the
p-value is found to be 0.212. Since this is
greater than 0.05, we can cannot draw any
solid conclud that there is about the existence
of a significant statistical relation between
smoking and lung cancer. This illustrates
that, in order to have a statistically signifi-
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cant level of difference between the results
for different populations obtained from epi-
demiological studies, it is usually necessary
to study large samples.

FURTHER READING
See epidemiology.

REFERENCES
See epidemiology.
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Cause and Effect

in Epidemiology

In epidemiology, the “cause” is an agent
(microbial germs, polluted water, smoking,
etc.) that modifies health, and the “effect”
describes the the way that the health is
changed by the agent. The agent is often
potentially pathogenic (in which case it is
known as a “risk factor”).

The effect s therefore effectively arisk com-

parison. We can define two different types of

risk in this context:

e The absolute effect of a cause expresses
the increase in the risk or the additional
number of cases of illness that result or
couldresult from exposure to this cause. It
is measured by the attributable risk and
its derivatives.

e The relative effect of a cause expresses
the strength of the association between the
causal agent and the illness.

A cause that produces an effect by itself is

called sufficient.

HISTORY

The terms “cause” and “effect” were defined
atthe birth of epidemiology, which occurred
in the seventeenth century.

MATHEMATICAL ASPECTS
Formally, we have:
Absolute effect = Risk for exposed

— risk for unexposed.

The absolute effect expresses the excess risk
or cases of illness that result (or could result)
from exposure to the cause.

risk for exposed

Relative effect = .
risk for unexposed

The relative effect expresses the strength of
the association between the illness and the
cause. It is measured using the relative risk
and the odds ratio.

DOMAINS AND LIMITATIONS

Strictly speaking, the strength of an asso-

ciation between a particular factor and an ill-

ness is not enough to establish a causal rela-

tionship between them. We also need to con-
sider:

e The “temporality criterion” (we must be
sure that the supposed cause precedes the
effect), and;

e Fundamental and experimental research
elements that allow us to be sure that
the supposed causal factor is not actual-
ly a “confusion factor” (which is a factor
that is not causal, but is statistically relat-
ed to the unidentified real causal factor).

Two types of causality correspond to these
relative and absolute effects. Relative causal-
ity is independent of the clinical or public
health impact of the effect; it generally does
not allow us to prejudge the clinical or pub-
lic health impact of the associated effect. It
can be strong when the risk of being exposed
is very high or when the risk of being unex-
posed is very low.

Absolute causality expresses the clinical or

public health impact of the associated effect,
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and therefore enables us to answer the ques-
tion: if we had suppressed the cause, what
level of impact on the population (in terms of
cases of illness) would have been avoided? If
the patienthad stopped smoking, what would
the reduction in his risk of developing lung
cancer or having a myocardial infarction be?
A risk factor associated with a high relative
effect, but which concerns only a small num-
ber of individuals, will cause fewer illnesses
and deaths then arisk factor that is associated
with a smaller relative effect but where many
more individuals are exposed. It is there-
fore clear that the importance of a causal
relation varies depending on whether we
are considering relative or absolute causal-
ity.

We should also make an important point here
about causal interactions. There can be many
causes for the same illness. While all of these
causes contribute to the same result, they can
also interact. The main consequence of this
causal interaction is that we cannot prejudge
the effect of simultaneous exposure to caus-
esA and B (denoted A 4+ B) based on what we
know about the effect of exposuretoonly A or
only B. Incontrastto the case forindependent
causes, we must estimate the joint effect, not
restrict ourselves with the isolated analyses
of the interacting causes.

EXAMPLES

Therelative effect and the absolute effect are
subject to differentinterpretations, as the fol-
lowing example shows.

Suppose we have two populations P and P,
each comprising 100000 individuals. In pop-
ulation Py, the risk of contracting a given ill-
ness is 0.2% for the exposed and 0.1% for the
unexposed. In population P, the risk for the
exposed is 20% and that for the unexposed
is 10%, as shown in the following table:

Risk for the
exposed (%)

Risk for the
unexposed (%)

Popu-
lation

A ]

Avoidable
cases

Relative Absolute
effect effect (%)

Popu-
lation

C=A-B (Cx100000

The relative effect is the same for popula-
tions Py and P, (the ratio of the risk for the
exposed to the risk for the unexposed is 2),
but the impact of the same prevention mea-
sures would be very different in the two pop-
ulations, because the absolute effect is ten
times more important in P;: the number of
potentially avoidable cases is therefore 100
in population P1 and 10000 in population P5.
Now consider the incidence rate of lung
cancer in a population of individuals who
smoke 35 or more cigarettes per day:
3.15/1000/year. While this rate may seem
small, it masks the fact that there is a strong
relative effect (the risk is 45 times bigger
for smokers then for nonsmokers) due to
the fact that lung cancer is very rare in non-
smokers (the incidence rate for nonsmokers
is 0.07/1000/year).

FURTHER READING
» Attributable risk

» Avoidable risk

» Incidence rate

» Odds and odds ratio
» Prevalence rate

» Relative risk
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Census

A census is an operation that consists of
observing all of the individuals in a popu-
lation. The word census can refer to a pop-
ulation census, in other words a population
count, but it can also refer to inquiries (called
“exhaustive” inquiries) where we retrieve
information about a population by observ-
ing all of the individuals in the population.
Clearly, such inquiries will be very expen-
sive for very large populations. That is why
exhaustive inquiries are rarely performed;
sampling, which consists of observing of
only a portion of the population (called the
sample), is usually preferred instead.

HISTORY

Censuses originated with the great civi-
lizations of antiquity, when the large areas
of empires and complexity associated with
governing them required knowledge of the
populations involved.

Among the most ancient civilizations, it
is known that censuses were performed
in Sumeria (between 5000 and 2000 BC),
where the people involved reported lists of
men and goods on clay tables in cuneiform
characters.

Censuses were also completed in Meso-
potamia (about 3000 BC), as well as in
ancient Egypt from the first dynasty on-
wards; these censuses were performed due
tomilitary and fiscal objectives. Under Ama-
sis II, everybody had to (at the risk of death)
declare their profession and source(s) of rev-
enue.

The situation in Israel was more complex:

censuses were sometimes compulsary and

sometimes forbidden due to the Old Testa-
ment. This influence on Christian civiliza-
tion lasted quite some time; in the Middle

Ages, St. Augustin and St. Ambroise were

still condemning censuses.

In China, censuses have been performed

since at least 200 BC, in different forms

and for different purposes. Hecht, J. (1987)

reported the main censuses:

1. Han Dynasty (200 years BC to 200 years
AD): population censuses were related to
the system of conscription.

2. Three Kingdoms Period to Five Dynas-
ties (221-959 AD): related to the system
of territorial distribution.

3. Song and Yuan Dynasties (960—1368
AD): censuses were performed for fiscal
purposes.

4. Ming Dynasty (1368—1644 AD): “yellow
registers” were established for ten-year
censuses. They listed the name, profes-
sion, gender and age of every person.

5. Qing Dynasty (since 1644 AD): censuses
were performed in order to survey popu-
lation migration.

In Japan during the Middle Age, different

types of census have been used. The first cen-

sus was probably performed under the rule
of Emperor Sujin (86 BC).

Finally, in India, a political and economic

science treatise entitled “Arthasastra” (profit

treaty) gives some information about the use
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of an extremely detailed record. This treatise
was written by Kautilya, Prime Minister in
thereign of Chandragupta Maurya (313-289
BO).

Another very important civilization, the
Incans, also used censuses. They used
a statistics system called “quipos”. Each
quipo was both an instrument and a reg-
istry of information. Formed from a series of
cords, the colors, combinations and knots on
the cords had precise meanings. The quipos
were passed to specially initiated guards that
gathered together all of these statistics.

In Europe, the ancient Greeks and Romans
also practiced censuses. Aristotle reported
that the Greeks donated a measure of wheat
per birth and a measure of barley per death to
the goddess Athéna. In Rome, the firstcensus
was performed at the behest of King Servius
Tullius (578-534 BC) in order to monitor
revenues, and consequently raise taxes.
Later, depending on the country, census-
es were practiced with different frequencies
and on different scales.

In 786, Charlemagne ordered a count of all
of his subjects over twelve years old; pop-
ulation counts were also initiated in Italy in
the twelfth century; many cities performed
censuses of their inhabitants in the fifteenth
century, including Nuremberg (in 1449) and
Strasbourg (in 1470). In the sixteenth centu-
ry, France initiated marital status registers.
The seventeenth century saw the develop-
ment of three different schools of thought:
a German school associated with descrip-
tive statistics, a French school associated
with census ideology and methodology, and
an English school that led to modern statis-
tics.

In the history of censuses in Europe, there
is a country that occupies a special place. In
1665, Sweden initiated registers of parish-

ioners that were maintained by pastors; in
1668, adecree madeitobligatory to be count-
edintheseregisters, and instead of being reli-
gious, the registers became administrative.
1736 saw the appearance of another decree,
stating that the governor of each province
had to report any changes in the population
of the province to parliament. Swedish pop-
ulation statistics were officially recognized
on the 3rd of February 1748 due to creation
of the “Tabellverket” (administrative tables).
The first summary for all Swedish provinces,
realized in 1749, can be considered to be
the first proper census in Europe, and the
11th of November 1756 marked the creation
of the “Tabellkommissionen,” the first offi-
cial Division of Statistics. Since 1762, these
tables of figures have been maintained by the
Academy of Sciences.

Initially, the Swedish censuses were orga-
nized annually (1749-1751), and then every
three years (1754—1772), butsince 1775 they
have been conducted every five years.

At the end of the eighteenth century an offi-
cial institute for censuses was created in
France (in 1791). In 1787 the principle of
census has been registered in the Constitu-
tional Charter of the USA (C. C. USA).
See also official statistics.

FURTHER READING
» Data collection
» Demography

» Official statistics
» Population

» Sample

» Survey
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Central Limit Theorem

The central limit theorem is a fundamental
theorem of statistics. In its simplest form, it
prescribes that the sum of a sufficiently large
number of independent identically distribut-
ed random variables approximately follows
a normal distribution.

HISTORY

The central limit theorem was first estab-
lished within the framework of binomi-
al distribution by Moivre, Abraham de
(1733). Laplace, Pierre Simon de (1810)
formulated the proof of the theorem.
Poisson, Siméon Denis (1824) also worked
on this theorem, and Chebyshev, Pafnu-
tii Lvovich (1890-1891) gave a rigorous
demonstration of it in the middle of the nine-
teenth century.

At the beginning of the twentieth centu-
ry, the Russian mathematician Liapounov,
Aleksandr Mikhailovich (1901) created the
generally recognized form of the central lim-
it theorem by introducing its characteris-
tic functions. Markov, Andrei Andreevich
(1908) also worked on it and was the first to
generalize the theorem to the case of inde-
pendent variables.

According to Le Cam, L. (1986), the qualifi-
er “central” was given to it by George Polya
(1920) due to the essential role that it plays
in probability theory.

MATHEMATICAL ASPECTS
Let X1, X»,..., X, be n independent ran-
dom variables that are identically distribut-

ed (with any distribution) with amean p and
a finite variance o2
We definethe sum S, = X1 +Xo +...+ X,
and we establish the ratio:

Sp—n-pn

o-Jn '

where n-p and o - /nrepresent the mean and
the standard deviation of S,,, respectively.
The central limit theorem establishes that the
distribution of this ratio tends to the standard
normal distribution when n tends to infinity.
This means that:

Sp—n-u
Pl ——— < 0]

( aﬁ - x) njoo )
where ®(x) is the distribution func-
tion of the standard normal distribution,
expressed by:

X 1 X2
o= gee(-5) e

— <X <.

DOMAINS AND LIMITATIONS

The central limit theorem provides a simple
method of approximately calculating proba-
bilities related to the sums of random vari-
ables.

Besides its interest in relation to the sam-
pling theorem, where the sums and the
means play animportantrole, the central lim-
it theorem is used to approximate normal
distributions derived from summing iden-
tical distributions. We can for example, with
the help of the central limit theorem, use
the normal distribution to approximate the
binomial distribution, the Poisson distri-
bution, the gamma distribution, the chi-
square distribution, the Student distri-
bution, the hypergeometric distribution,
the Fisher distribution and the lognormal
distribution.
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EXAMPLES

Inalargebatch ofelectricalitems, the proba-
bility of choosing a defective item equals
p= %. What is the probability that 4 defec-
tive items are chosen when 25 items are
selected?

Let X the dichotomous variable be the
result of a trial:

1 if the selected item is defective;

0 ifitisnot.

The random variable X follows a Bernoul-
li distribution with parameter p. Conse-
quently, the sum S, = X1 +X2+. .. +X, fol-
lows a binomial distribution with a mean,
np and a variance np(1 — p), which, follow-
ing the central limit theorem, can be approxi-
mated by anormal distribution with amean
p = np and a variance o> = np(1 — p).
We evaluate these values:

p=n-p=25-g=3125
62=n-p(1—p)=25~%-(1—%)
—2.734.

We then calculate P(S,, > 4) intwo different
ways:
1. With the binomial distribution:
From the binomial table, the probability
of P(S,, < 4) = 0.8047. The probability

of P (S, > 4) is then:

P S, >4)=1—-P(S, <4) =0.1953,
2. With the normal approximation (obtained
from the central limit theorem):
In order to account for the discrete char-
acter of the random variable S,,, we must
make a continuity correction; that is, we
calculate the probability that S, is greater
thend + =45

We have:

_ Sp—n-p
vn-p(—p)
_ 45-3.125
T 1.654
=0.832.

From the normal table, we obtain the
probability:

P(Z > z) = P(Z > 0.832)
=1—-P(Z <0.832)
=1-0.7967 = 0.2033.

FURTHER READING

» Binomial distribution

» Chi-square distribution
» Convergence

» Convergence theorem

» Fisher distribution

» Gamma distribution

» Hypergeometric distribution
» Law of large numbers
» Lognormal distribution
» Normal distribution

» Poisson distribution

» Probability

» Probability distribution
» Student distribution
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Chebyshev, Pafnutii Lvovich

Chhebyshev, Pafnutii Lvovich (1821-1894)
began studying at Moscow University in
1837, where he was influenced by Zernov,
Nikolai Efimovich (the first Russian to get
a doctorate in mathematical sciences) and
Brashman, Nikolai Dmitrievich. After gain-
ing his degree he could not find any teaching
work in Moscow, so he went to St. Peters-
bourg where he organized conferences on
algebra and probability theory. In 1859, he
took the probability course given by Buni-

akovsky, Viktor Yakovlevich at St. Peters-
bourg University.

His name lives on through the Chebyshev
inequality (also known as the Bienaymé—
Chebyshev inequality), which he proved.
This was published in French just after Bien-
aymé, Irénée-Jules had an article published
on the same topic in the Journal de Math-
ématiques Pures et Appliquées (also called
the Journal of Liouville).

He initiated rigorous work into establishing
a general version of the central limit theo-
rem and is considered to be the founder of
the mathematical school of St. Petersbourg.

Some principal works and articles of
Chebyshev, Pafnutii Lvovich:

1845 An Essay on Elementary Analysis of
the Theory of Probabilities (thesis)
Crelle’s Journal.

1867 Preuve de I’inégalité de Tchebychev.
J. Math. Pure. Appl., 12, 177-184.

FURTHER READING
» Central limit theorem
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Chebyshev’s Inequality

See law of large numbers.
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Chi-Square Distance

Consider a frequency table with n rows
and p columns, it is possible to calculate row
profiles and column profiles. Let us then plot
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the n or p points from each profile. We can
define the distances between these points.
The Euclidean distance between the compo-
nents of the profiles, on which a weighting
is defined (each term has a weight that is the
inverse of its frequency), is called the chi-
square distance. The name of the distance is
derived from the fact that the mathematical
expression defining the distance is identical
to that encountered in the elaboration of the
chi square goodness of fit test.

MATHEMATICAL ASPECTS

Let (fij), be the frequency of the ith row and
Jjthcolumnin afrequency table withnrowsan
p columns. The chi-square distance between
two rows i and ¢’ is given by the formula:

14 . L\ 2
o= [E(E2) 1
1. 7. J

j=1

where

fi.  isthesum of the components of the ith
row;

fj  isthe sum of the components of the jth
column;

[%] isthe ithrow profileforj= 1, 2,..., p.

Likewise, the distance between two co-
lumns j and j’ is given by:

n - - 29
d,j) = Z(%—%) e

i=1
where [Jffi;] is the jth column profile for j =
1,..., n.

DOMAINS AND LIMITATIONS

The chi-square distance incorporates
a weight that is inversely proportional to
the total of each row (or column), which

increases the importance of small devia-
tions in the rows (or columns) which have
a small sum with respect to those with more
important sum package.

The chi-square distance has the property of
distributional equivalence, meaning that it
ensures that the distances between rows and
columns are invariant when two columns (or
two rows) with identical profiles are aggre-
gated.

EXAMPLES

Consider a contingency table charting how
satisfied employees working for three differ-
entbusinesses are. Letusestablish adistance
table using the chi-square distance.

Values for the studied variable X canfall into
one of three categories:

e Xi: high satisfaction;

e X»>: medium satisfaction;

e Xj: low satisfaction.

The observations collected from samples of
individuals from the three businesses are giv-
en below:

Busi- Total

ness 3

Busi-
ness 2

Busi-
ness 1

The relative frequency table is obtained by
dividing all of the elements of the table by
200, the total number of observations:

Busi- Total

ness 3

Busi-
ness 2

Busi-
ness 1
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We can calculate the difference in employ-
ee satisfaction between the the 3 enterprises.
The column profile matrix is given below:

Busi- Total

ness 3

Busi-
ness 2

Busi-
ness 1

This allows us to calculate the distances
between the different columns:

d*(1,2) = N 0.4 — 0.55)?
0.525
! -(0.36 — 0.4)%
* 0365
1
+517 (0.24 — 0.05)2
= 0.375423
d(1,2) = 0.613

We can calculate d(1, 3) and d(2, 3) in a sim-
ilar way. The distances obtained are summa-
rized in the following distance table:

Busi-
ness 3

Busi-
ness 2

Busi-
ness 1

We can also calculate the distances between
the rows, in other words the difference in
employee satisfaction; to do this we need the
line profile table:

Busi- Total

ness 3

Busi-
ness 2

This allows us to calculate the distances
between the different rows:

1
d*(1,2) = —— - (0.19 — 0.246)>
(1.2) 0.25 ( )
1
— . (0.524 — 0.548)*
+ 53 ( )
1
—— . (0.286 — 0.206)>
+ 035 - ( )
= 0.039296
d(1,2) = 0.198

We cancalculated(1, 3) andd(2, 3) inasimi-
lar way. The differences between the degrees
of employee satisfaction are finally summa-
rized in the following distance table:

FURTHER READING

» Contingency table
» Distance

» Distance table

» Frequency
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Chi-square Distribution

A random variable X follows a chi-square
distribution with n degrees of freedom if its
density function is:

f(x)=ﬂ Y pf
22T (3

where I" is the gamma function (see Gamma
distribution).
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The chi-square distribution is a continuous
probability distribution.

HISTORY

According to Sheynin (1977), the chi-square
distribution was discovered by Ernst Karl
Abbe in 1863. Maxwell obtained it for
three degrees of freedom a few years before
(1860), and Boltzman discovered the general
case in 1881.

However, according to Lancaster (1966),
Bienaymé obtained the chi-square distri-
butionin 1838 asthelimitof the discrete ran-
dom variable

Zk: (ni — npi)*

= i
if (N1, Na, ..., Ny) follow a joint multi-
nomial distribution of parameters n, pi,
D2, -+, Pk-
Ellis demonstrated in 1844 that the sum of
k random variables distributed according
to a chi-square distribution with two degrees
of freedom follows a chi-square distribution
with 2k degrees of freedom. The general
result was demonstrated in 1852 by Bien-
aymé.
The works of Pearson, Karl are very impor-
tant in this field. In 1900 he used the chi-
square distribution to approximate the chi-
square statistic used in different tests based
on contingency tables.

MATHEMATICAL ASPECTS

The chi-square distribution appears in the
theory of random variables distributed
according to a normal distribution. In this,
it is the distribution of the sum of squares of
normal, centered and reduced random vari-
ables (with amean equal to 0 and a variance
equal to 1).

Consider Zj,Z,...,7Z,, n independent,
standard normal random variables. Their
sum of squares:

n
X=L+Z+..+2, =) 7
i=1

is arandom variable distributed according to
a chi-square distribution with n degrees of
freedom.

The expected value of the chi-square distri-
bution is given by:

EX]=n.
The variance is equal to:
Var(X) = 2n.

The chi-square distribution is related to other

continuous probability distributions:

e The chi-square distribution is a particular
case of the gamma distribution.

o If two random variables X and X fol-
low achi-square distribution with, respec-
tively, n| and ny degrees of freedom,
then the random variable

X
y — 1/n
X /na

follows a Fisher distribution with | and
ny degrees of freedom.

e When the number of degrees of free-
dom 7 tends towards infinity, the chi-
square distribution tends (relatively slow-
ly) towards a normal distribution.
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DOMAINS AND LIMITATIONS

The chi-square distribution is used in many
approaches to hypothesis testing, the most
important being the goodness of fit test
which involves comparing the observed fre-
quencies and the hypothetical frequencies of
specific classes.

It is also used for comparisons between the
observed variance and the hypothetical vari-
ance of normally distributed samples, and to
test the independence of two variables.

FURTHER READING
» Chi-square goodness of fit test

» Chi-square table

» Chi-square test

» Continuous probability distribution
» Fisher distribution

» Gamma distribution

» Normal distribution
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Chi-square

Goodness of Fit Test

The chi-square goodness of fit test is, along
with the Kolmogorov—Smirnov test, one
of the most commonly used goodness of fit
tests.

This test aims to determine whether it is
possible to approximate an observed distri-
bution by a particular probability distri-
bution (normal distribution, Poisson
distribution, etc).

HISTORY

The chi-square goodness of fit test is the old-
est and most well-known of the goodness
of fit tests. It was first presented in 1900 by
Pearson, Karl.

MATHEMATICAL ASPECTS

LetXj, ..., X, beasampleofnobservations.

The steps used to perform the chi-square

goodness of fit test are then as follows:

1. State the hypothesis. The null hypothesis
will take the following form:

Hy: F=Fy,

where Fy is the presumed distribution
function of the distribution.

2. Distribute the observations in k disjoint
classes:

[ai—1,ail.

We denote the number of observations
contained in the ith class, i = 1,...,k,
by n;.

3. Calculate the theoretical probabilities for
every class on the base of the presumed
distribution function Fy:

pi = Fola;)) — Folai-1), i=1,...,k.
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4. Obtain the expected frequencies forevery estimated frequencies, e;, are not too small.
class We normally state that the estimated fre-
quencies must be greater then 5, except for
ei=n-pi, i=1..k extreme classes, where they can be smaller
then 5 but greater then 1. If this constraint is n
not satisfied, we must regroup the classes in
order to satisfy this rule.

where n is the size of the sample.
5. Calculate the x2 (chi-square) statistic:

k 2
2 _ (ni — e;)

If Hy is true, the X2 statistic follows a chi-
square distribution with v degrees of
freedom, where:

EXAMPLES

Goodness of Fit to the Binomial
Distribution

We throw a coin four times and count the
number of times that “heads” appears.

_ (x| _ number of estimated This experiment is performed 160 times.
V= parameters The observed frequencies are as follows:

For example, when testing the goodness
of fit to a normal distribution, the num-
ber of degrees of freedom equals:

e k — 1 if the mean u and the stan- [l (ni)
dard deviation o of the population
are known;

e k—2ifoneoutof yoroisunknownand
will be estimated in order to proceed
with the test;

e k — 3 if both parameters i and o are
unknown and both are estimated from
the corresponding values of the sam-
ple.

6. Reject Hy if the deviation between the
observed and estimated frequencies is

Number of “heads” Number of
experiments

1. Ifthe experiment was performed correct-
ly and the coin is not forged, the distri-
bution of the number of “heads” obtained
should follow the binomial distribution.

big; that is:
We then state a null hypothesis that the
if x> > sz,a ) observed distribution can be approximat-
ed by the binomial distribution, and we
where x, is the value given in the chi- will proceed with a goodness of fit test in
square table for a particular significance order to determine whether this hypoth-
level or. esis can be accepted or not.
2. In this example, the different number of
DOMAINS AND LIMITATIONS “heads” that can be obtained per experi-

To apply the chi-square goodness of fit test, it ment (0, 1,2, 3 and 4) are each considered
is important that » is big enough and that the to be a class.
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3. The random variable X (number of 5. The x? (chi-square) statistic is then:
“heads” obtained after four throws of .
a coin) follows a binomial distribution if 2 (ni — e)?
=) =
i=1 !

P(X=x)=CZ‘px‘q"_x,

where k is the number of possible values
where: of X.

n is the number of independent trials =

17 — 10)? 6 — 10)?
+ x2=%+...+—( 10)
p is the probability of a success
(“heads”) = 0.5; =12.725.
¢ s the probability of a failure ("tails™) ¢ Choosing asignificance level o of 5%, we

=0.5;
C) is the number of combinations of
X objects from n.

find that the value of x72, fork — 1 = 4
degrees of freedom is:

2
We then have the following theoretical X4005 = 9-488.

robabilities for four throws: . .
P Since the calculated value of x2is greater

PX =0) = % than the value obtained from the table,
PX =1)= 14_6 we reject the npll h'ypot.hesls a}nd con-

clude that the binomial distribution does
PX=2)=L not give a good approximation to our
P(X =3) = 14_6 observed distribution. We can then con-
P(X =4) = % clude that the coins were probably forged,

or that they were not correctly thrown.
4. After the experiment has been performed
160 times, the expected number of heads Goodness of Fit to the Normal Distribution
for each possible value of X is given by: The diameters of cables produced by a fac-
tory were studied.
A frequency table of the observed distri-
bution of diameters is given below:

e = 160-P(X=x,-).

We obtain the following table:

Cable diameter Observed frequency

Number of Observed Expected
“heads” x; frequency frequency (e;)

(n;)

(in mm) nj
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1. We perform a goodness of fit test for p2=P19.8 <X < 19.9)
anormal distribution. The null hypoth- _p ( 19.8 — -y 19.9 — )'c)
esis is therefore that the observed distri- -~
bution can be approximated by a normal — P(—1.835 < Z < —1.089) n
distribution.
2. The previous table shows the observed = P2 = 1835)—P(Z < 1.089)
diameters divided up into classes. These probabilities can be found by con-
3. If the random variable X (cable diameter) sulting the normal table. We get:
follows the normal distribution, the ran-
dom variable p1 = PX < 19.8) = 0.03325
X—p p2 = P(19.8 <X <19.9) =0.10476
Z= - p3 = P(19.9 < X < 20.0) = 0.22767

ps = P(0.0 < X <20.1) = 0.29083
follows a standard normal distribution.

= P(20.1 <X <20.2) =0.21825
The mean p and the standard devia- ps ( - = )
tion o of the population are unknown and pe = P(20.2 = X < 20.3) = 0.09622
are estimated using the mean x and the p7 = P(X > 20.3) = 0.02902

standard deviation S of the sample:
4. The expected frequencies for the classes

are then given by:

e =n-pi,

which yields the following table:

Cable Observed Expected

—0.134 diameter frequency frequency
(in mm) n; ej

where the §; are the centers of the class-
es (in this example, the mean diameter of
aclass; fori = 1: §; = 19.75)and n is
the total number of observations.

We can then calculate the theoretical
probabilities associated with each class.
The detailed calculations for the first two
classes are:

p1 = P(X < 19.8)

19.8 — )"c) 5. The x2 (chi-square) statistic is then:

— P(Z < —1.835) =3 (ni_ei)z,
=1—P(Z < 1.835) - ¢

=P(Z <
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where k = 7 is the number of classes.

»  (5—4.655)7
T 4.655
(12 — 14.666)2
14.666
(4 — 4.063)2
LTy v

= 1.0927.

6. Choosing a significance level « = 5%,
we find that the value of sz,a withk—3 =
7 — 3 = 4 degrees of freedom in the chi-
square table is:

2
Xio0.05 = 949.

Since the value calculated from x2 is
smaller then the value obtained from the
chi-square table, we do not reject the null
hypothesis and we conclude that the dif-
ference between the observed distribution
and the normal distribution is not signif-
icant at a significance level of 5%.

FURTHER READING

» Chi-square distribution

» Chi-square table

» Goodness of fit test

» Hypothesis testing

» Kolmogorov—Smirnov test
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Chi-Square Table

The chi-square table gives the values
obtained from the distribution function
of a random variable that follows a chi-
square distribution.

HISTORY

One of the first chi-square tables was pub-
lished in 1902, by Elderton. It contains
distribution function values that are given
to six decimal places.

In 1922, Pearson, Karl reported a table of
values for the incomplete gamma function,
down to seven decimals.

MATHEMATICAL ASPECTS
Let X be a random variable that follows
a chi-square distribution with v degrees of
freedom. The density function of the ran-
dom variable X is given by:

3 exp ()

7 >0,
2T (3)

f) = >
where I represents the gamma function (see
gamma distribution).

The distribution function of the random
variable X is defined by:

F() = PX <) = /xf(t) ar.
0

The chi-square table gives the values of the
distribution function F'(x) for different val-
ues of v.

We often use the chi-square table in the oppo-
site way, to find the value of x that corre-
sponds to a given probability.

We generally denote as sz,a the value of the
random variable X for which

PX < )y) =1—a.

Note: the notation y? is read “chi-square”.
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EXAMPLES

See Appendix F.

The chi-square table allows us, for a given

number of degrees of freedom v, to deter-

mine:

1. The value of the distribution function
F(x), given x.

2. The value of X‘fa, given the probability
P(X < Xjo)-

FURTHER READING

» Chi-square distribution

» Chi-square goodness of fit test

» Chi-square test

» Chi-square test of independence
» Statistical table
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Chi-Square Test

There are a number of chi-square tests, all of

which involve comparing the test results to

the values from the chi-square distribution.

The most well-known of these tests are intro-

duced below:

e The chi-square test of independence is
used to determine whether two qualita-
tive categorical variables associated with
a sample are independent.

e The chi-square goodness of fit test is
used todetermine whether the distribution
observed for a sample can be approxi-
mated by a theoretical distribution. We

might want to know, for example, whether
the distribution observed for the sam-
ple corresponds to a particular probabi-
lity distribution (normal distribution,
Poisson distribution, etc).

e The chi-square test for an unknown vari-
ance is used when we want to test whether
this variance takes a particular constant
value.

e The chi-square test is used to test for
homogeneity of the variances calculated
for many samples drawn from a normally
distributed population.

HISTORY

In 1937, Bartlett, M..S. proposed a method of
testing the homogeneity of the variance for
many samples drawn from a normally dis-
tributed population.

See also chi-square test of independence
and chi-square goodness of fit test.

MATHEMATICAL ASPECTS

The mathematical aspects of the chi-square
test of independence and those of the chi-
square goodness of fit test are dealt with in
their corresponding entries.

The chi-square test used to check whether
anunknown variance takes a particular con-
stant value is the following:

Let (x1, ..., x,) be a random sample com-
ing from a normally distributed population
of unknown mean p and of unknown vari-
ance o2,

We have good reason to believe that the vari-
ance of the population equals a presumed
value ag. The hypotheses for each case are
described below.

A: Two-sided case:

Hy: o’ =002
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B: One-sided test:
Hy: o’ < ag
Hi: o’ > o)
C: One-sided test:
Hy: o? > ag
H:

We then determine the statistic of the given
chi-square test using:

Y -9’
i=1

2
99

X =

This statistic is, under Hyp, chi-square dis-
tributed with n — 1 degrees of freedom. In
other words, we look for the value of Xr%—l, o
in the chi-square table, and we then com-
pare that value to the calculated value x2.
The decision rules depend on the case, and
are as follows.

Case A

If 2 > Xr%—l,oq orif x2 < X,%_Ll_az we
reject the null hypothesis H for the alter-
native hypothesis H;, where we have split
the significance level « into oy and oy such
thata1 +an = «. Otherwise we do notreject
the null hypothesis Hy.

Case B

If x> < xp_,, we do not reject the null
hypothesis Hy. If x> > x,f_ Lo Wereject the
nullhypothesis Hy for the alternative hypoth-
esis Hj.

Case C

If 2 > X:%—l,l—a we do not reject the
null hypothesis Hy. If x> < x,%_l,l_a we

reject the null hypothesis Hy for the alterna-
tive hypothesis Hj.

Other chi-square tests are proposed in the
work of Ostle, B. (1963).

DOMAINS AND LIMITATIONS

x2 (chi-square) statistic must be calculated
using absolute frequencies and not relative
ones.

Note thatthe chi-square testcan be unreliable
for small samples, especially when some of
the estimated frequencies are small (< 5).
This issue can often be resolved by group-
ing categories together, if such grouping is
sensible.

EXAMPLES

Consider a batch of items produced by
a machine. They can be divided up into
classes depending on their diameters (in
mm), as in the following table:

Diameter (mm) x;

Number of items n;

We have a random sample drawn from
anormally distributed population where the
mean and variance are not known. The ven-
dor of these items would like the variance o2
to be smaller than or equal to 0.05. We test
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the following hypotheses:

null hypothesis Hy: 0% <0.05

alternative hypothesis H : % > 0.05.

In this case we use the one-tailed hypothesis
test.
We start by calculating the mean for the sam-
ple:

S inioxi 5995
N 100

=59.95.

X =
We can then calculate the x2 statistics:

1 -
s Yl (i —X)?

X =
%
_2-(—0.45%+...+2-(0.55)?
- 0.05
97
=29 394,
0.05

Using a significance level of « = 5%, we
then find the value of X929,0.05 (= 123.2) in
the chi-square table.

As x2 =79.4 < X929,0,05’ we do not reject
the null hypothesis, which means that the
vendor should be happy to sell these items
since they are not significantly different in
diameter.

FURTHER READING

» Chi-square distribution

» Chi-square goodness of fit test

» Chi-square table

» Chi-square test of independence
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Chi-square Test

of Independence

The chi-square test of independence aims to
determine whether two variables associated
with a sample are independent or not. The
variables studied are categorical qualitative
variables.

The chi-square independence test is per-
formed using a contingency table.

HISTORY

The first contingency tables were used only
for enumeration. However, encouraged by
the work of Quetelet, Adolphe (1849),
statisticians began to take an interest in the
associations between the variables used in
the tables. For example, Pearson, Karl
(1900) performed fundamental work on con-
tingency tables.

Yule, George Udny (1900) proposed
asomewhatdifferentapproachtothe study of
contingency tables to Pearson’s, which lead
to a disagreement between them. Pearson
also argued with Fisher, Ronald Aylmer
about the number of degrees of freedom to
use in the chi-square test of independence.
Everyone used different numbers until Fish-
er, R.A. (1922) was eventually proved to be
correct.

MATHEMATICAL ASPECTS

Consider two qualitative categorical vari-
ables X and Y. We have a sample contain-
ing n observations of these variables.
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These observations can be presented in
a contingency table.

We denote the observed frequency of the
category i of the variable X and the category
of the variable Y as n;;.

Categories of variable Y

Y1 ... Y. | Total
Categories Xi nii nic | Ny,
of e
variable X X, nr Nye ny
Total | n ne n.

The hypotheses to be tested are:

the two variables
are independent,

Null hyp. Hy:

Alternative hyp. H; : the two variables
are not independent.

Steps Involved in the Test
1. Compute the expected frequencies,
denoted by e;;, for each case in the con-
tingency table under the independence
hypothesis:
ni - n;j

ejj =
ij n

c r
n;g = Znik and nj= anj,
k=1 k=1

where c represents the number of columns
(or number of categories of variable X in
the contingency table) and » the number of
rows (or the number of categories of vari-
able Y).

2. Calculate the value of the x 2 (chi-square)
statistic, which is really a measure of the
deviation of the observed frequencies n;;
from the expected frequencies e;;:

c r 2
2 (nij - eij)
) B

i=1 j=1

3. Choosethe significance level « to be used
in the test and compare the calculated val-
ue of x2 with the value obtained from
the chi-square table, xfa. The number
of degrees of freedom correspond to the
number of cases in the table that can take
arbitrary values; the values taken by the
other cases are imposed on them by the
row and column totals. So, the number of
degrees of freedom is given by:

v=>r—-—1(c—-1).

4. Ifthe calculated x 2 is smaller then the sz,a

from the table, we do not reject the null
hypothesis. The two variables can be con-
sidered to be independent.
However, if the calculated X2 is greater
then the x‘fa from the table, we reject the
null hypothesis for the alternative hypoth-
esis. We can then conclude that the two
variables are not independent.

DOMAINS AND LIMITATIONS

Certain conditions must be fulfilled in order
to be able to apply the chi-square test of inde-
pendence:

1. The sample, which contains n observa-
tions, must be a random sample;

2. Each individual observation can only
appear in one category for each vari-
able. In other words, each individu-
al observation can only appear in one
line and one column of the contingency
table.

Note that the chi-square test of indepen-
dence is not very reliable for small samples,
especially when the estimated frequencies
are small (< 5). To avoid this issue we can
group categories together, but only when this
groups obtained are sensible.
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EXAMPLES

We want to determine whether the propor-

tion of smokers is independent of gender.

The two variables to be studied are categor-

ical and qualitative and contain two cate-

gories each:

e Variable “gender:” M or F;

e Variable “smoking status:”
“does not smoke.”

The hypotheses are then:

smokes” or

Hp: chance of being a smoker is

independent of gender
Hi: chance of being a smoker is not

independent of gender.

table obtained from
100)

The contingency
a sample of 100 individuals (n =
is shown below:

Smoking status

“does Total
not

smoke”

“smokes”

Gender

We now denote the observed frequencies as
ni(i=12,j=12).

We then estimate all of the frequencies in the
table based on the hypothesis that the two
variables are independent of each other. We
denote these estimated frequencies by e;;:

L Mny
ejj P
‘We therefore obtain:
65-31
e = —— =20.15
100
65-6
e = 0 = 44.85

100

35-31
= — =10.85
“21= 00
35-69
= — =24.15.
‘127 700
The estimated frequency table is given n
below:
Smoking status
“smokes” “does Total
not
smoke”
Gender

If the null hypothesis H is true, the statistic

2 2 2
2 (nij - eij)
Py y

i=1 j=1

is chi-square-distributed with (r — 1)
(c—1) = 2-1)2—-1) = 1 degree
of freedom and

x% = 0.036 + 0.016 + 0.066 + 0.030
=0.148.

If a significance level of 5% is selected, the
value of X12, 0.05 18 3.84, from the chi-square
table.

Since the calculated value of x2 is smaller
then the value found in the chi-square table,
we do not reject the null hypothesis and we
conclude that the two variables studied are
independent.

FURTHER READING

» Chi-square distribution
» Chi-square table

» Contingency table

» Test of independence
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Classification

Classification is the grouping together of
similar objects. If each object is charac-
terized by p variables, classification can
be performed according to rational criteria.
Depending on the criteria used, an object
could potentially belong to several classes.

HISTORY

Classifying the residents of a locality or
a country according to their sex and oth-
er physical characteristics is an activity that
dates back to ancient times. The Hindus, the

ancient Greeks and the Romans all devel-
oped multiple typologies for human beings.
The oldest comes from Galen (129-199
A.D.).

Later on, the concept of classification spread
to the fields of biology and zoology; the
works of Linné (1707-1778) should be men-
tioned in this regard.

The first ideas regarding actual methods of
cluster analysis are attributed to Adanson
(eighteenth century). Zubin (1938), Tryon
(1939) and Thorndike (1953) also attempted
to develop some methods, but the true devel-
opment of classification methods coincides
with the advent of the computer.

MATHEMATICAL ASPECTS

Classification methods can be divided into

two large categories, one based on prob-

abilities and the other not.

The first category contains, for example, dis-

criminating analysis. The second category

can be further subdivided into two groups.

The first group contains what are known as

optimal classification methods. In the second

group, we can distinguish between several
subtypes of classification method:

e Partition methods that consist of distribut-
ing n objects among g groups in such
away thateach objectexclusively belongs
to just one group. The number of groups g
is fixed beforehand, and the partition
applied most closely satisfies the classi-
fication criteria.

e Partition methods incorporating infring-
ing classes, where an object is allowed to
belong to several groups simultaneously.

methods,

where the structure of the data at dif-
ferent levels of classification is taken into

e Hierarchical classification

account. We can then take account for the
relationships that exist between the dif-
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ferent groups created during the partition.
Two different kinds of hierarchical tech-
niques exist: agglomerating techniques
and dividing techniques.

Agglomerating methods start with sepa-
rated objects, meaning that the n objects
areinitially distributed into n groups. Two
groups are agglomerated in each subse-
quent step until there is only one group
left.

In contrast, dividing methods start with all
of the objects grouped together, meaning
that all of the n objects are in one single
group to start with. New groups are creat-
ed at each subsequent step until there are
n groups.

e Geometric classification, in which the
objects are depicted on a scatter plot and
then grouped according to position on the
plot. In a graphical representation, the
proximities of the objects to each other in
the graphic correspond to the similarities
between the objects.

The first three types of classification are gen-
erally grouped together under the term clus-
ter analysis. What they have in common
is the fact that the objects to be classified
must present a certain amount of structure
that allows us to measure the degree of sim-
ilarity between the objects.

Each type of classification contains a multi-

tude of methods thatallow ustocreate classes

of similar objects.

DOMAINS AND LIMITATIONS

Classification can be used in two cases:

e Description cases;

e Prediction cases.

In the first case, the classification is done
on the basis of some generally accepted
standard characteristics. For example, pro-
fessions can be classified into freelance,

managers, workers, and so on, and one can
calculate average salaries, average frequen-
cy of health problems, and so on, for each
class.

In the second case, classification will lead to
a prediction and then to an action. For exam-
ple, if the foxes in a particular region exhibit
apathetic behavior and excessive salivation,
we can conclude that there is a new rabies
epidemic. This should then prompt a vaccine
campaign.

FURTHER READING

» Cluster analysis

» Complete linkage method
» Data analysis
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Cluster Analysis

Clustering is the partitioning of a data set
into subsets or clusters, so that the degree of
associationis strong between members of the
same cluster and weak between members of
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different clusters according to some defined
distance measure.

Several methods of performing cluster
analysis exist:

e Partitional clustering

e Hierarchical clustering.

HISTORY
See classification and data analysis.

MATHEMATICAL ASPECTS

To carry out cluster analysis on a set of

n objects, we need to define a distance

between the objects (or more generally

a measure of the similarity between the

objects) that need to be classified. The exis-

tence of some kind of structure within the
set of objects is assumed.

To carry out a hierarchical classification of

aset E of objects {x1, xp, . .

sary to define a distance associated with E

that can be used to obtain a distance table

between the objects of E. Similarly, a dis-
tance must also be defined for any subsets

of E.

One approach to hierarchical clustering is to

usethe agglomerating method. Itcanbe sum-

marized in the following algorithm:

1. Locate the pair of objects (x;, x;) which
have the smallest distance between each
other.

2. Aggregate the pair of objects (x;, x;) into
a single element o and re-establish a new
distance table. This is achieved by sup-
pressing the lines and columns associat-
ed with x; and % and replacing them with
alineand acolumn associated with . The
new distance table will have a line and
a column less than the previous table.

3. Repeat these two operations until the
desired number of classes are obtained or

., Xp}, it is neces-

until all of the objects are gathered into the

same class.
Note that the distance between the group
formed from aggregated elements and the
other elements can be defined in different
ways, leading to different methods. Exam-
ples include the single link method and the
complete linkage method.
The single link method is a hierarchical
classification method thatuses the Euclidean
distance to establish a distance table, and
the distance between two classes is given by
the Euclidean distance between the two clos-
est elements (the minimum distance).
In the complete linkage method, the dis-
tance between two classes is given by the
Euclidean distance between the two ele-
ments furthest away (the maximum dis-
tance).
Given that the only difference between these
two methods is that the distance between two
classes is either the minimum and the max-
imum distance, only the single link method
will be considered here.
Foraset E = {X1, X, ..., X;}, the distance
table for the elements of E is then estab-
lished.
Since this table is symmetric and null along
its diagonal, only one half of the table is con-
sidered:

d(X1, X2) d(X1,X3) d(Xy, X;)
d(X2, X3) d(Xp, X;,)
d(Xn—l; Xn)

where d(X;, X;) is the Euclidean distance

between X; and X; fori < j, where the values

of i and j are between 1 and n.

The algorithm for the single link method is

as follows:

e Search for the minimum d(X; X;) for
i<j;
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o Theelements X;and X;are aggregatedinto
anew group Cy = X; U Xj;
e The set E is then partitioned into

{Xa}, ..., X1} (X X, (X ), -
{)(j—l}r {)(j-‘rl}’ ey {Xn} ;

e The distance table is then recreated
without the lines and columns associ-
ated with X; and X, and with a line
and a column representing the distances
between X, and Cy,m = 1,2,...,nm #
i and m # j, given by:

d(Cr, Xpp) = min{d(X;, Xpn); d(Xj, Xpn) }.

The algorithm is repeated until the desired
number of groups is attained or until there
is only one group containing all of the ele-
ments.

Inthe general case, the distance between two
groups is given by:

d(Cy, Cp) = min{d(X;, X;) with X;
belonging to Cy and X; to Cy,},

The formula quoted previously applies to the
particular case when the groups are com-
posed, respectively, of two elements and one
single element.

This series of agglomerations can be repre-
sented by a dendrogram, where the abscis-
sa shows the distance separating the objects.
Note that we could find more than one pair
when we search for the pair of closest ele-
ments. In this case, the pair that is select-
ed for aggregation in the first step does not
influence later steps (provided the algorithm
does not finish at this step), because the oth-
er pair of closest elements will be aggre-
gated in the following step. The aggrega-
tion order is not shown on the dendrogram
because it reports the distance that separates
two grouped objects.

DOMAINS AND LIMITATIONS

The choice of the distance between the
group formed of aggregated elements and
the other elements can be operated in several
ways, according to the method that is used,
as for example in the single link method and
in the complete linkage method.

EXAMPLES

Letus illustrate how the single link method
of cluster analysis can be applied to the
examination grades obtained by five students
each studying four courses: English, French,
maths and physics.

We want to divide these five students into two
groups using the single link method.

The grades obtained in the examinations,
which range from 1 to 6, are summarized in
the following table:

English French

Maths Physics

We then work out the Euclidian distances
between the students and use them to create
a distance table:

Alain Jean Marc Paul Pierre

By only considering the upper part of this
symmetric table, we obtain:
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Marc Paul Pierre

Jean

The minimum distance is 1.12, between
Marc and Pierre; we therefore form the first
group from these two students. We then cal-
culate the new distances.
For example, we calculate the new dis-
tance between Marc and Pierre on one side
and Alain on the other by taking the mini-
mum distance between Marc and Alain and
the minimum distance between Pierre and
Alain:

d({Marc,Pierre },Alain)

= min{d(Marc,Alain);d(Pierre,Alain)}

=min{l.5;2} = 1.5,

also

d({Marc,Pierre},Jean)
= min{d(Marc,Jean);d(Pierre,Jean)}
= min{l.8; 2.74} = 1.8,

and

d({Marc,Pierre } ,Paul)
= min{d(Marc,Paul);d(Pierre,Paul)}
= min{l1.32; 1.22} = 1.22.

The new distance table takes the following
form:

Marc and Paul

Jean

Pierre

The minimum distance isnow 1.22, between
Alain and Jean and also between the group

of Marc and Pierre on the one side and Paul
on the other side (in other words, two pairs
exhibit the minimum distance); let us choose
to regroup Alain and Jean first. The other
pair will be aggregated in the next step. We
rebuild the distance table and obtain:

d({Alain,Jean}, {Marc,Pierre})
= min{d(Alain,{Marc,Pierre}),
d(Jean,{Marc,Pierre})}

= min{1.5; 1.8} = 1.5

as well as:

d({Alain,Jean},Paul)
= min{d(Alain,Paul);d(Jean,Paul)}
= min{2.35; 2.65} = 2.35.

This gives the following distance table:

Paul

Marc and Pierre

Notice that Paul must now be integrated in
the group formed from Marc and Pierre, and
the new distance will be:

d({(Marc,Pierre),Paul},{ Alain,Jean})

= min{d({Marc,Pierre},{ Alain,Jean}),
d(Paul,{Alain,Jean})}

= min{1.5; 2.35} = 1.5

which gives the following distance table:

Alain and Jean

We finally obtain two groups:

{Alain and Jean} and {Marc, Pierre and
Paul} which are separated by a distance of
1.5.
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The following dendrogram illustrates the
successive aggregations:

Jean
Paul
Pierre
1 T 1 >
0 1 2 distance

FURTHER READING

» Classification

» Complete linkage method
» Dendrogram

» Distance

» Distance table
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Cluster Sampling

In cluster sampling, the first step is to divide
the population into subsets called clusters.
Each cluster consists of individuals that are
supposed to be representative of the popula-
tion.

Cluster sampling then involves choosing
arandom sample of clusters and then observ-
ing all of the individuals that belong to each
of them.

HISTORY
See sampling.

MATHEMATICAL ASPECTS

Cluster sampling is the process of random-
ly extracting representative sets (known as
clusters) from a larger population of units
and then applying a questionnaire to all of
the units in the clusters. The clusters often
consist of geographical units, like city dis-
tricts. In this case, the method involves divid-
ing acity into districts, and then selecting the
districts to be included in the sample. Finally,
all of the people or households in the chosen
district are questioned.

There are two principal reasons to perform
cluster sampling. In many inquiries, there is
no complete and reliable list of the popu-
lation units on which to base the sampling,
or it may be that it is too expensive to cre-
ate such a list. For example, in many coun-
tries, including industrialized ones, it is rare
to have complete and up-to-date lists of all of
the members of the population, households
or rural estates. In this situation, sampling
can be achieved in a geographical manner:
each urban region is divided up into districts
and each rural region into rural estates. The
districts and the agricultural areas are con-
sidered to be clusters and we use the com-




88 Coefficient of Determination

plete list of clusters because we do not have
a complete and up-to-date list of all popu-
lation units. Therefore, we sample a requi-
site number of clusters from the list and then
question all of the units in the selected clus-
ter.

DOMAINS AND LIMITATIONS

The advantage of cluster sampling is that it

is not necessary to have a complete, up-to-

date list of all of the units of the population
to perform analysis.

For example, in many countries, there are no

updated lists of people or housing. The costs

of creating such lists are often prohibitive.

Itis therefore easier to analyze subsets of the

population (known as clusters).

In general, cluster sampling provides esti-

mations that are not as precise as simple

random sampling, but this drop in accuracy
is easily offset by the far lower cost of cluster
sampling.

In order to perform cluster sampling as effi-

ciently as possible:

e The clusters should not be too big, and
there should be a large enough number of
clusters,

e cluster sizes should be as uniform as pos-
sible;

e The individuals belonging to each clus-
ter must be as heterogenous as possible
with respect to the parameter being ob-
served.

Another reason to use cluster sampling is

cost. Even when a complete and up-to-date

list of all population units exists, it may be
preferable to use cluster sampling from an
economic point of view, since it is complet-
ed faster, involves fewer workers and min-
imizes transport costs. It is therefore more
appropriate to use cluster sampling if the
money saved by doing so is far more signif-

icant than the increase in sampling variance
that will result.

EXAMPLES

Consider N, the size of the population of
town X. We want to study the distribution of
“Age” for town X without performing a cen-
sus. The population is divided into G parts.
Simple random sampling is performed
amongst these G parts and we obtain g parts.
The final sample will be composed of all the
individuals in the g selected parts.

FURTHER READING
» Sampling
» Simple random sampling

REFERENCES
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|
Coefficient
of Determination

The coefficient of determination, denoted
R?, is the quotient of the explained varia-
tion (sum of squares due to regression) to the
total variation (total sum of squares total SS
(TSS)) in amodel of simple or multiple lin-
ear regression:

»  Explained variation

Total variation
Itequals the square of the correlation coeffi-
cient, and it can take values between O and 1.
It is often expressed as a percentage.

HISTORY
See correlation coefficient.
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MATHEMATICAL ASPECTS
Consider the following model for multiple
regression:

Yi=po+ BiXia + -+ BpXip +&i
fori=1,..., n, where

Y; are the dependent variables,

Xj i=1,...,nj=1,...,p)aretheinde-
pendent variables,

&; are the random nonobservable error
terms,

@- (j = 1,..., p) are the parameters to be
estimated.

Estimating the parameters Py, 81, ...
yields the estimation

By

f/i=l§o+l§1Xi1+---+/§pXip-

The coefficient of determination allows us to
measure the quality of fit of the regression
equation to the measured values.

To determine the quality of the fit of the
regression equation, consider the gap
between the observed value and the esti-
mated value for each observation of the
sample. This gap (or residual) can also be
expressed in the following way:

i(m -7’ = i(m -y’
i=1 i=1

n
+ Z(f/z‘ - 1)
i=1

TSS = RSS + REGSS

where
TSS is the total sum of squares,
RSS the residual sum of squares and

REGSS the sum of the squares of the
regression.

These concepts and the relationships
between them are presented in the following
graph:

A

)

X

Using these concepts, we can define R,
which is the determination coefficient. It
measures the proportion of variation in vari-
able Y, which is described by the regression
equation as:
n
Y (-1

i=1

im -7
i=1

If the regression function is to be used to
make predictions about subsequent observa-
tions, it is preferable to have a high value
of R?, because the hi gher the value of R?, the
smaller the unexplained variation.

R REGSS
~TSS

EXAMPLES

The following table gives values for the
Gross National Product (GNP) and the
demand for domestic products covering the
1969-1980 period for a particular country.

GNP Demand for dom-

X estic products Y
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Demand for dom-
estic products Y

We will try to estimate the demand for small
goods as a function of GNP according to the
model

Yi=a+b-Xi+¢e, i=1,...,12.
Estimating the parameters a and b by the
least squares method yields the following
estimators:

12

Y Xi—-X)i-1)
b= =0.226,
> oXi—X)?
i=1

a=Y—b-X=-4.047.
The estimated line is written
Y= —4.0474+0.226-X.

The quality of the fit of the measured points
to the regression line is given by the deter-
mination coefficient:

12
> (Fi—1)?

i=1

z2 _ REGSS _
12 )
> (¥i=1)
i=1

TSS

We can calculate the mean using:

We therefore obtain:

2 30489 0.6396
47.667
or, in percent:
R? = 63.96% .

We can therefore conclude that, according to
the model chosen, 63.96% of the variation in
the demand for small goods is explained by
the variation in the GNP.

Obviously the value of R? cannot exceed
100%. While 63.96% is relatively high, it is
not close enough to 100% to rule out trying
to modify the model further.

This analysis also shows that other variables
apart from the GNP should be taken into
account when determining the function cor-
responding to the demand for small goods,
since the GNP only partially explains the
variation.
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FURTHER READING

» Correlation coefficient

» Multiple linear regression
» Regression analysis

» Simple linear regression

|
Coefficient of Kurtosis

The coefficient of kurtosis is used to mea-
sure the peakness or flatness of a curve. It
is based on the moments of the distribution.
This coefficient is one of the measures of
kurtosis.

HISTORY
See coefficient of skewness.

MATHEMATICAL ASPECTS

The coefficient of kurtosis (f2) is based
on the centered fourth-order moment of
a distribution which is equal to:

4 =E[(X— M)4] .

In order to obtain a coefficient of kurtosis
that is independent of the units of measu-
rement, the fourth-order moment is divided
by the standard deviation of the popula-
tion o raised to the fourth power. The coef-
ficient of kurtosis then becomes equal to:

L4
Bo=—.

o

For a sample (x1, x3, ..., x), the estimator
of this coefficient is denoted by b,. Itis equal

to:
my

F »
where my is the centered fourth-order
moment of the sample, given by:

- i}
m4=;-21:(xi—X)4,
=

by =

where xis the arithmetic mean, 7 is the total
number of observations and $* is the stan-
dard deviation of the sample raised to the
fourth power.

For the case where a random
able X takes values x; with frequencies
fi»i=1,2,..., h, the centered fourth-order
moment of the sample is given by the for-
mula:

vari-

h
1 _
my = E fir (i =t
i=1

DOMAINS AND LIMITATIONS

Foranormal distribution, the coefficient of
kurtosis is equal to 3. Therefore a curve will
be called platikurtic (meaning flatter than the
normal distribution) if it has a kurtosis coef-
ficient smaller than 3. It will be leptokur-
tic (meaning sharper than the normal distri-
bution) if B, is greater than 3.

Letusnow prove that the coefficient of kurto-
sisis equal to 3 for the normal distribution.
We know that 8, = %, meaning that the
centered fourth-order moment is divided by
the standard deviation raised to the fourth
power. It can be proved that the centered sth
order moment, denoted w, satisfies the fol-
lowing relation for a normal distribution:

s = (s — Do? - ps—a.

This formula is a recursive formula which
expresses higher order moments as a func-
tion of lower order moments.

Given that ;g = 1 (the zero-order moment
of any random variableisequalto 1, since it
is the expected value of this variable raised
to the power zero) and that 1 = 0 (the cen-
tered first-order moment is zero for any ran-
dom variable), we have:

H2 =
m3 =0
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pa =30t
etc. .
The coefficient of kurtosis is then equal to:

4
n4 30
o o

EXAMPLES

We wantto calculate the kurtosis of the distri-
bution of daily turnover for 75 bakeries. Let
us calculate the coefficient of kurtosis S
using the following data:

Table categorizing the daily turnovers of 75
bakeries

Turnover

Frequencies

The fourth-order moment of the sample is
given by:

h
1 _
my = E S — 04,
i=1

where n = 75, x = 290.60 and x; is the cen-
ter of class interval i. We can summarize the
calculations in the following table:

Since § = 33.88, the coefficient of kurtosis
is equal to:

1

L (281020067.84

75 ) —2.84.
(33.88)%

D =

Since B, is smaller than 3, we can conclude
that the distribution of the daily turnover in
75 bakeries is platikurtic, meaning that it is
flatter than the normal distribution.

FURTHER READING
» Measure of kurtosis
» Measure of shape

REFERENCES
See coefficient of skewness 3| de Pearson.

|
Coefficient of Skewness

The coefficient of skewness measures the
skewness of a distribution. It is based on the
notion of the moment of the distribution.
This coefficient is one of the measures of
skewness.

HISTORY

Between the end of the nineteenth centu-
ry and the beginning of the twentieth cen-
tury, Pearson, Karl studied large sets of
data which sometimes deviated significant-
ly from normality and exhibited consider-
able skewness.

He first used the following coefficient as
a measure of skewness:

X — mode
skewness = —5

where X represents thearithmetic mean and
S the standard deviation.
This measure is equal to zero if the data are
distributed symmetrically.
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He discovered empirically that for a mod-
erately asymmetric distribution (the gamma
distribution):

Mo —x~3-(Mg—X),

where M, and My denote the mode and
the median of data set. By substituting this
expression into the previous coefficient, the
following alternative formula is obtained:

3-(x—My)
—

Following this, Pearson, K. (1894,1895)
introduced a coefficient of skewness, known
as the B coefficient, based on calculations
of the centered moments. This coefficient
is more difficult to calculate but it is more
descriptive and better adapted to large num-
bers of observations.

Pearson, K. also created the coefficient of
kurtosis (82), which is used to measure the
oblateness of a curve. This coefficient is also
based on the moments of the distribution
being studied.

Tables giving the limit values of the coeffi-
cients B and B, can be found in the works
of Pearson and Hartley (1966, 1972). If the
sample estimates a fall outside the limit for
B1, B2, we conclude that the population is
significantly curved or skewed.

skewness =

MATHEMATICAL ASPECTS

The skewness coefficient is based on the cen-
tered third-order moment of the distribution
in question, which is equal to:

143 =E[(X—u)3] .

To obtain a coefficient of skewness that is
independent of the measuring unit, the third-
order moment is divided by the standard
deviation of the population o raised to the

third power. The coefficient obtained, desig-
nated by /1, is equal to:

N

The estimator of this coefficient, calculat-
ed for asample (x1, x2, . . . x), is denoted by
/b1. Itis equal to:
—  m3
by = E s
where mj3 is the centered third-order
moment of the sample, given by:

1 & )
m3 = Z-le(x,-—x)3.
=

Here x is the arithmetic mean, 7 is the total
number of observations and S° is the stan-
dard deviation raised to the third power.
For the case where a random variable X
takes values x; with frequencies f;, i =
1,2, ..., h,the centered third-order moment
of the sample is given by the formula:

h
1 _
my = - E fi- (=373,
im1

If the coefficient is positive, the distribution
spreads to the the right. If it is negative, the
distribution expands to the left. Ifitis close to
zero, the distribution is approximately sym-
metric.

If the sample is taken from a normal pop-
ulation, the statistic «/b; roughly follows
anormal distribution with a mean of 0 and
a standard deviation of g. If the size of
the sample 7 is bigger than 150, the nor-
mal table can be used to test the skewness
hypothesis.

DOMAINS AND LIMITATIONS
This coefficient (similar to the other mea-
sures of skewness) is only of interest if it
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can be used to compare the shapes of two or
more distributions.

EXAMPLES

Suppose that we want to compare the shapes
of the daily turnover distributions obtained
for 75 bakeries for two different years. We
then calculate the skewness coefficient in
both cases.

The data are categorized in the table below:

Turnover

Frequencies
for year 1

Frequencies
for year 2

The third-order moment of the sample is
given by:

h
1 _
m3=;‘2fi‘(xi_x)3-
i=1
For year 1,n = 75, x = 290.60 and x; is the

center of each class interval i. The calcula-
tions are summarized in the following table:

Since § = 33.88, the coefficient of skewness
is equal to:

1
—(821222.41)

_ 75
(33.88)3

10949.632
by = =
=0.282.

"~ 38889.307

For year 2, n = 75 and x = 265.27. The
calculations are summarized in the following
table:

Since § = 42.01, the coefficient of skewness
is equal to:

1
75(4750082.83) 63334 438

42.01)3 74140933
—0.854.

b =

The coefficient of skewness for year 1 is
close to zero (v/b; = 0.282), so the daily
turnover distribution for the 75 bakeries for
year 1 is very close to being a symmetrical
distribution. For year 2, the skewness coef-
ficient is higher; this means that the distri-
bution spreads towards the right.

FURTHER READING
» Measure of shape
» Measure of skewness
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Coefficient of Variation

The coefficient of variation is a measure of
relative dispersion. It describes the stan-
dard deviation as a percentage of the arith-
metic mean.

This coefficient can be used to compare the
dispersions of quantitative variables that
arenotexpressed in the same units (for exam-
ple, when comparing the salaries in differ-
ent countries, given in different currencies),
or the dispersions of variables that have very
different means.

MATHEMATICAL ASPECTS

The coefficient of variation CV is defined as
the ratio of the standard deviation to the
arithmetic mean for a set of observations;

in other words:

CV =—--100

=1

for a sample, where:

S is the standard deviation of the sample,
and
x  is the arithmetic mean of the sample,

or:

cv="2 100
nw

for a population, where

o s the standard deviation of the popula-
tion, and
jt  is the mean of the population.

This coefficient is independent of the unit of
measurement used for the variable.

EXAMPLES

Let us study the salary distributions for two
companies from two different countries.
According to a survey, the arithmetic
means and the standard deviations of the
salaries are as follows:

Company A:
x = 2500 CHF,
S = 200 CHF,
CV = &-100=8%.
2500
Company B:
x = 1000 CHF,
S = 50CHF,

50
V=—°+-100= .
C 1000 00=5%

The standard deviation represents 8% of
the arithmetic mean for company A, and
5% for company B. The salary distribution
is a bit more homogeneous for company B
than for company A.
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FURTHER READING
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Collinearity

Variables are known to be mathematically
collinear if one of them is a linear com-
bination of the other variables. They are
known as statistically collinear if one of
them is approximately a linear combination
of other variables. In the case of a regres-
sion model where the explanatory variables
are strongly correlated to each other, we say
that there is collinearity (or multicollineari-
ty) between the explanatory variables. In the
first case, it is simply impossible to define
least squares estimators, and in the second
case, these estimators can exhibit consider-
able variance.

HISTORY

The term “collinearity” was first used in
mathematics at the beginning of the twen-
tieth century, due to the rediscovery of the
theorem of Pappus of Alexandria (a third-
century mathematician). Let A, B, Cbe three
pointson alineand A’, B’, C’ be three points
on a different line. If we relate the pairs
using AB’.A’B,CA’.AC’ and BC’.B’C, their
intersections will occur in a line; in other
words, the three intersection points will be
collinear.

MATHEMATICAL ASPECTS

In the case of a matrix of explanatory vari-
ables X, collinearity means that one of the
columns of X is (approximately) a linear
combination of the other columns. This
implies that X’X is almost singular. Con-
sequently, the estimator obtained by the
least squares method B = (x’ X)_1 X'Y
is obtained by inverting an almost singu-
lar matrix, which causes its components
to become unstable. The ridge regression
technique was created in order to deal with
these collinearity problems.

A collinear relation between more than two
variables will not always be the result of
observing the pairwise correlations between
the variables. A better indication of the pres-
ence of a collinearity problem is provided by
variance inflation factors, VIF. The variance
inflation factor of an explanatory variable X;
is defined by:

1
VIFF = ——
TR
J
where Rj2 is the coefficient of determina-
tion of the model

Xj=ﬁo+Zﬁka+€-
k#j

The coefficient VIF takes valuesofbetween 1
and oo. If the X; are mathematically collinear
with other variables, we get Rj2 = 1 and
VIF; = o00. On the other hand, if the X; are
reciprocally independent, we have Rj2 =
and VIF; = 1. In practice, we consider that
thereisareal problem with collinearity when
VIF; is greater then 100, which corresponds
toa Rj2 that is greater then 0.99.

DOMAINS AND LIMITATIONS
Inverting a singular matrix, similar to invert-
ing 0, is not a valid operation. Using the
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same principle, inverting an almost singu-
lar matrix is similar to inverting a very small
number. Some of the elements of the matrix
must therefore be very big. Consequently,
when the explanatory variables are collinear,
some elements of the matrix (X'X)~! of E
will probably be very large. This is why
collinearity leads to unstable regression esti-
mators. Aside from this problem, collinear-
ity also results in a calculation problem; it is
difficult to precisely calculate the inverse of
an almost singular matrix.

EXAMPLES

Thirteen portions of cement are examined
in the following example. Each portion con-
tains four ingredients, as described in the
table. The goal of the experiment is to deter-
mine how the quantities X1, X», X3 and Xy,
corresponding to the quantities of these four
ingredients, affect the quantity Y of heat giv-
en out as the cement hardens.

Y; quantity of heat given out during the
hardening of the ith portion (in joules);
quantity of ingredient 1 (tricalcium alu-
minate) in the ith portion;

quantity of ingredient 2 (tricalcium sil-
icate) in the ith portion;

quantity of the ingredient 3 (tetracalci-
um aluminoferrite) in the ith portion;

quantity of ingredient 4 (dicalcium sil-
icate) in the ith portion.

Table: Heat given out by the cement portions
during hardening

Por-
tion

] 1Xq

Ingre- Ingre- Ingre- Ingre- Heat
dient dient dient dient

2X, 4X, Y

3 X3

Por- Ingre- Ingre- Ingre- Ingre- Heat
tion dient dient dient dient

i 1X 2X ax, Y

3 X3

Source: Birkes & Dodge (1993)

We start with a simple linear regression.
The model used for the linear regression
is:

Y =5
+ B1X1 + BoXo + B3 X3 + BaXy
+¢.

‘We obtain the following results:

Variable Bi
62.41

S.d. tc

Constant 70.07 0.89

We can see that only coefficient X is signif-
icantly greater then zero; in the other cases
fe < t(a/2,n—2) (value taken from the Student
table) for a significance level of « = 0.1.
Moreover, the standard deviations of the esti-
mated coefficients B}, 33 and E; are greater
then the coefficients themselves. When the
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variables are strongly correlated, it is known
that the effect of one can mask the effect of
another. Because of this, the coefficients can
appear to be insignificantly different from
Zero.

To verify the presence of multicollinearity
foracoupleof variables, we calculate the cor-
relation matrix.

We note that a strong negative correlation
(—0.973) exists between X, and X4. Look-
ing at the data, we can see the reason for
that. Aside from portions 1 to 5, the total
quantity of silicates (X + X4) is almost
constant across the portions, and is approx-
imately 77; therefore, X4 is approximately
77 — X,. this situation does not allow us
to distinguish between the individual effects
of X and those of X4. For example, we see
that the four largest values of X4 (60, 52, 47
and 44) correspond to values of Y smaller
then the mean heat 95.4. Therefore, at first
sight it seems that large quantities of ingre-
dient 4 will lead to small amounts of heat.
However, we also note that the four largest
values of X4 correspond to the four small-
est values of X, giving a negative correla-
tion between X and X4. This suggests that
ingredient 4 taken alone has a small effect
on variable Y, and that the small quanti-
ties of 2 taken alone can explain the small
amount of heat emitted. Hence, the linear
dependence between two explanatory vari-
ables (X and X4) makes it more complicat-
ed to see the effect of each variable alone on
the response variable Y.

FURTHER READING
» Multiple linear regression
» Ridge regression

REFERENCES
Birkes, D., Dodge, Y.: Alternative Methods
of Regression. Wiley, New York (1993)

Bock, R.D.: Multivariate Statistical Meth-
ods in Behavioral Research. McGraw-
Hill, New York (1975)
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Combination

A combination is an un-ordened collection
of unique elements or objects.

A k-combination is a subset with k elements.
The number of k-combinations from a set of
n elements is the number of arrangements.

HISTORY
See combinatory analysis.

MATHEMATICAL ASPECTS

1. Combination without repetition
Combination without repetition describe
the situation where each object drawn is
notplaced back for the nextdrawing. Each
object can therefore only occur once in
each group.
The number of combination without rep-
etition of k objects among 7 is given by:

k_ n o n!
Cn_(k)‘k!.(n—k)!‘

2. Combination with repetitions
Combination with repetitions (or with
remittance) are used when each drawn
object is placed back for the next draw-
ing. Each object can then occur r times in
each group, r =0, 1,..., k.
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The number of combinations with repeti-
tions of k objects among # is given by:

EXAMPLES

1. Combinations without repetition
Consider the situation where we must
choose a committee of three people from

_(ntk—1)!
k(=D

an assembly of eight people. How many
different committees could potentially be
picked from this assembly, if each person
can only be selected once in each group?
Here we need to calculate the number
of possible combinations of three people
from eight:

n! 8!
ck = =
"Tkl-(n—k! 3! (8—23)!
40320
= =56
6-120

Therefore, it is possible to form 56 dif-
ferent committees containing three peo-
ple from an assembly of eight people.

2. Combinations with repetitions Consider
anurn containing six numbered balls. We
carry out four successive drawings, and
place the drawn ball back into the urn after
each drawing. How many different com-
binations could occur from this drawing?
In this case we want to find the number
of combinations with repetition (because
each drawn ball is placed back in the urn
before the next drawing). We obtain

. i+ k=11 9!
Kn: =
K-(n—1)! 46— 1)!
362880
= — 126
24120

different combinations.

FURTHER READING

» Arrangement

» Binomial distribution
» Combinatory analysis
» Permutation

|
Combinatory Analysis

Combinatory analysis refers to a group of
techniques that can be used to determine the
number of elements in a particular set with-
out having to count them one-by-one.

The elements in question could be the results
from a scientific experiment or the different
potential outcomes of a random event.
Three particular concepts are important in
combinatory analysis:

e Permutations;

e Combinations;

e Arrangements.

HISTORY

Combinatory analysis has interested mathe-
maticians for centuries. According to Takacs
(1982), such analysis dates back to ancient
Greece. However, the Hindus, the Per-
sians (including the poet and mathematician
Khayyam, Omar) and (especially) the Chi-
nese also studied such problems. A 3000
year-old Chinese book “I Ching” describes
the possible arrangements of a set of n
elements, where n < 6. In 1303, Chu, Shih-
chieh published a work entitled “Ssu Yuan
Yii Chien” (Precious mirror of the four
elements). The cover of the book depict-
sa triangle that shows the combinations of
k elements taken from a set of size n where
0 < k < n. This arithmetic triangle was also
explored by several European mathemati-
cians such as Stifel, Tartaglia and Hérigone,
and especially Pascal, who wrote the “Trai-
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té du triangle arithmétique” (Treatise of the
arithmetic triangle) in 1654 (although it was
not published until after his death in 1665).
Another document on combinations was
published in 1617 by Puteanus, Erycius
called “Erycii Puteani Pretatis Thaumata
in Bernardi Bauhusii ¢ Societate Jesu Pro-
teum Parthenium”. However, combinatory
analysis only revealed its true power with
the works of Fermat (1601-1665) and Pas-
cal (1623-1662). The term “combinatory
analysis” was introduced by Leibniz (1646—
1716) in 1666. In his work “Dissertatio de
Arte Combinatoria,” he systematically stud-
ied problems related to arrangements, per-
mutations and combinations.

Other works in this field should be mentioned
here, such as those of Wallis, J. (1616-1703),
reported in “The Doctrine of Permutations
and Combinations” (an essential and funda-
mental part of the “Doctrines of Chances”),
orthose of Bernoulli, J., Moivre, A. de, Car-
dano, G. (1501-1576), and Galileo (1564—
1642).

In the second half of the nineteenth centu-
ry, Cayley (1829-1895) solved some prob-
lemsrelated to this type of analysis via graph-
ics that he called “trees”. Finally, we should
also mention the important work of MacMa-
hon (1854-1929), “Combinatory Analysis”
(1915-1916).

EXAMPLES
See arrangement, combination and per-
mutation.

FURTHER READING

» Arithmetic triangle

» Arrangement

» Binomial

» Binomial distribution

» Combination
» Permutation

REFERENCES
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Cambridge (1915-1916)
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Measurement of Uncertainty Before
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Takacs, L.: Combinatorics. In: Kotz, S.,
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Compatibility

Two events are said to be compatible if the
occurrence of the first event does not pre-
vent the occurrence of the second (or in other
words, if the intersection between the two
events is not null):

PANB) #0.

We can represent two compatible events A
and B schematically in the following way:

A

Two events A and B are incompatible (or
mutually exclusive) if the occurrence of A
prevents the occurrence of B, or vice versa.
We can represent this in the following way:

A B
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This means that the probability that these
two events happen at the same time is zero:

ANB=¢ —> P(ANB) =0.

MATHEMATICAL ASPECTS

If two events A and B are compatible, the
probability that at least one of the events
occurs can be obtained using the following
formula:

P(AUB) = P(A) + P(B) — P(AN B) .

On the other hand, if the two events A and B
are incompatible, the probability that the
two events A and B happen at the same time
is zero:

P(ANB)=0.

The probability that atleastone of the events
occurs can be obtained by simply adding the
individual probabilities of A and B:

P(AUB) = P(A) + P(B).

EXAMPLES

Consider a random experiment that
involves drawing a card from a pack of
52 cards. We are interested in the three fol-
lowing events:

A = “draw a heart”
B = “draw a queen”

C = “draw a club”.

The probabilities associated with each of
these events are:

13

P(A) = &
PB) = =
P=5
13

P(O) = =

52°

The events A and B are compatible, because
itis possible to draw both a heart and a queen
atthe same time (the queen of hearts). There-
fore, the intersection between A and B is the
queen of hearts. The probability of this event
is given by:

1
PANB) = <.

The probability of the union of the two
events A and B (drawing either a heart or
a queen) is then equal to:

P(AUB) = P(A) + P(B) — P(AN B)

_Bo4 1
52752 52
4
13

On the other hand, the events A and C
are incompatible, because a card cannot be
both a heart and a club! The intersection
between A and C is an empty set.

ANC=¢.

The probability of the union of the two
events A and C (drawing a heart or a club) is
simply given by the sum of the probabilities
of each event:

P(AUC) = P(A) + P(C)

13 13
“nT®n
1
=5
FURTHER READING
Event
Independence
Probability
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|
Complementary

Consider the sample space 2 for arandom
experiment.

For any event A, an element of €2, we can
determine a new event B that contains all of
the elements of the sample space €2 that are
not included in A.

This event B is called the complement of A
withrespect to 2 and is obtained by the nega-
tion of A.

MATHEMATICAL ASPECTS

Consider an event A, which is an element of
the sample space 2.

The compliment of A with respect to €2 is
denoted A. It is given by the negation of A:

A=Q—A
={weQ;, w¢A}.

EXAMPLES
Consider a random experiment that con-
sists of flipping a coin three times.
The sample space of this experiment is

Q ={TTT, TTH, THT, THH,

HTT, HTH, HHT, HHH} .
Consider the event
A = “Heads (H) occurs twice”
= {THH, HTH, HHT} .

The compliment of A with respect to €2 is
equal to
A = {TTT, TTH, THT, HTT, HHH)

= “Heads (H) does not occur twice” .

FURTHER READING

» Event

» Random experiment
» Sample space

|
Complete Linkage Method

The complete linkage method is a hierarchi-
cal classification method where the distance
between two classes is defined as the greatest
distance that could be obtained if we select
one element from each class and measure
the distance between these elements. In oth-
er words, it is the distance between the most
distant elements from each class.

For example, the distance used to construct
the distance table is the Euclidian distance.
Using the complete linkage method, the dis-
tance between two classes is given by the
Euclidian distance between the most distant
elements (the maximum distance).:

MATHEMATICAL ASPECTS
See cluster analysis.

FURTHER READING
» Classification

» Cluster analysis
» Dendrogram

» Distance

» Distance table

|
Completely

Randomized Design

A completely randomized design is a type of
experimental design where the experimental
units are randomly assigned to the different
treatments.

It is used when the experimental units are
believed to be “uniform;” that is, when there
is no uncontrolled factor in the experiment.

HISTORY
See design of experiments.
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EXAMPLES

We want to test five different drugs based on
aspirin. To do this, we randomly distribute
the five types of drug to 40 patients. Denoting
the five drugs by A, B, C, D and E, we obtain
the following random distribution:

A is attributed to 10 people;
B s attributed to 12 people;
C is attributed to 4 people;

D is attributed to 7 people;

E is attributed to 7 people.

We have then a completely randomized
design where the treatments (drugs) are ran-
domly attributed to the experimental units
(patients), and each patient receives only one
treatment. We also assume that the patients
are “uniform:” that there are no differences
between them. Moreover, we assume that
there is no uncontrolled factor that inter-
venes during the treatment.

In this example, the completely randomized
design is a factorial experiment that uses
only one factor: the aspirin. The five types
of aspirin are different levels of the factor.

FURTHER READING
» Design of experiments
» Experiment

|
Composite

Index Number

Composite index numbers allow us to mea-
sure, with a single number, the relative varia-
tions within a group of variables upon mov-
ing from one situation to another.

The consumer price index, the wholesale
price index, the employment index and the

Dow-Jones index are all examples of com-
posite index numbers.

The aim of using composite index numbers
is to summarize all of the simple index num-
bers contained in a complex number (a value
formed from a set of simple values) in just
one index.

The most commonly used composite index
numbers are:

e The Laspeyres index;

e The Paasche index;

e The Fisher index.

HISTORY
See index number.

MATHEMATICAL ASPECTS

There are several methods of creating com-

posite index numbers.

To illustrate these methods, let us use a sce-

nario where a price index is determined for

the current period n with respect to a refer-

ence period 0.

1. Index number of the arithmetic means
(the sum method):

> Py
> Po

where Y P, is the sum of the prices of the
items at the current period, and )_ Py is
the sum of the prices of the items at the
reference period.

2. Arithmetic mean of simple index num-

In/() = - 100,

bers:

1 P,

— - — ] - 100,

N Z <Po>

where N is the number of goods consid-
ered and % is the simple index number
of each item.

In these two methods, each item has
the same importance. This is a situation

I =
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which often does not correspond to real-
ity.

3. Index number of weighted arithmetic
means (the weighted sum method):
The general formula for an index number
calculated by the weighted sum method is
as follows:

b ZPiC
> Po-0

Choosing the quantity Q for each item
considered could prove problematic here:
Q must be the same for both the numera-
tor and the denominator when calculating
a price index.
In the Laspeyres index, the value of O
corresponding to the reference year is
used. Inthe Paasche index, the value of Q
for the current year is used. Other statisti-
cians have proposed using the value of Q
for a given year.

100.

EXAMPLES

Consider the following table indicating
the(fictitious) prices of three consumer
goods in the reference year (1970) and their
current prices.

Price (francs)
1970 (Pgy)

Goods Now (Pn)

Using these numbers, we now examine the

three main methods of constructing compos-

ite index numbers.

1. Index number of arithmetic means (the
sum method):

2 P
Iy = - 100
n/ ZPO
4.30
= ——-100=505.9.

0.85

According to this method, the price index
has increased by 405.9% (505.9 — 100)
between thereference year and the current
year.

2. Arithmetic mean of simple index num-
bers:

1 P,
Lyo=~->_ (=) 100
TN <Po)

1 (120 N 1.10 N 2.00 100
3 1020  0.15  0.50
=577.8.

This method gives a slightly different
result from the previous one, since we
obtain an increase of 477.8% (577.8 —
100) in the price index between the ref-
erence year and the current year.

3. Index number of weighted arithmetic
means (the weighted sum method):

P, -

M .100.
>.Po-0

This method is used in conjunction with

the Laspeyres index or the Paasche
index.

Injo =

FURTHER READING

» Fisher index

» Index number

» Laspeyres index

» Paasche index

» Simple index number
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Conditional Probability

The probability of an event given thatanother
event is known to have occured.

The conditional probability is denoted
P(A|B), which is read as the “probability
of A conditioned by B.”
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HISTORY

The concept of independence dominated
probability theory until the beginning of
the twentieth century. In 1933, Kolmogorov,
Andrei Nikolaievich introduced the concept
of conditional probability; this concept now
plays an essential role in theoretical and
applied probability and statistics.

MATHEMATICAL ASPECTS

Consider a random experiment for which
we know the sample space 2. Consider two
events A and B from this space. The probabi-
lity of A, P(A) depends on the set of possible
events in the experiment (£2).

ANBEB

Now consider that we have supplementary
information concerning the experiment: that
the event B has occurred. The probability of
the event A occurring will then be a function
of the space Brather than a function of 2. The
probability of A conditioned by B s calculat-
ed as follows:
P(ANB)

P(B)
If A and B are two incompatible events,
the intersection between A and B is an
empty space. We will then have P(A|B) =
P(BIA) = 0.

P(A|B) =

DOMAINS AND LIMITATIONS
The concept of conditional probability is one
of the mostimportant ones in probability the-

ory. This importance is mainly due to the fol-

lowing points:

1. We are often interested in calculating the
probability of an event when some infor-
mation about the result is already known.
In this case, the probability required is
a conditional probability.

2. Even when partial information on the
result is not known, conditional probabi-
lities can be useful when calculating the
probabilities required.

EXAMPLES

Consider a group of 100 cars distributed
according to two criteria, comfort and speed.
We will make the following distinctions:

fast
a car can be R
slow

comfortable
a car can be
uncomfortable

A partition of the 100 cars based on these cri-
teria is provided in the following table:

total

slow

fast

Consider the following events:

A = “afast car is chosen”

and B = ““a comfortable car is chosen.”
The probability of these two events are:

P(A) =0.6,
P(B)=05.
The probability of choosing a fast car is then

of 0.6, and that of choosing acomfortable car
is 0.5.
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Now imagine that we are given supplemen-
tary information: a fast car was chosen.
What, then, is the probability that this car is
also comfortable?

We calculate the probability of B knowing
that A has occurred, or the conditional proba-
bility of B depending on A:

We find in the table that
PANB)=04.
= P(BJA) = PanB _ 04 _ 0.667
- PA) 06

The probability that the car is comfortable,
given that we know that it is fast, is there-
fore %

FURTHER READING

» Event

» Probability

» Random experiment
» Sample space

REFERENCES

Kolmogorov, A.N.: Grundbegriffe der
Wabhrscheinlichkeitsrechnung. Springer,
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Confidence Interval

A confidence interval is any interval con-
structed around an estimator that has a par-
ticular probability of containing the true
value of the corresponding parameter of
a population.

HISTORY
According to Desrosieres, A. (1988), Bow-
ley, A.L. wasone of the firstto be interested in

the concept of the confidence interval. Bow-
ley presented his first confidence interval cal-
culations to the Royal Statistical Society in
1906.

MATHEMATICAL ASPECTS

In order to construct a confidence interval
that contains the true value of the param-
eter 0 with a given probability, an equation
of the following form must be solved:

PLi=sO0<L)=1-qa,

where

0 is the parameter to be estimated,

L; is the lower limit of the interval,
L is the upper limit of the interval and
1 — « is the given probability, called the

confidence level of the interval.

The probability « measures the error risk of
the interval, meaning the probability that the
interval does not contain the true value of the
parameter 6.

In order to solve this equation, a function
f(z, ) must be defined where 7 is an estima-
tor of 6, for which the probability distri-
bution is known.

Defining this interval for f(z, 0) involves
writing the equation:

Pk =f(1,0) <k2) =1 —«,

where the constants k1 and k> are given by
the probability distribution of the function
f(t, 0). Generally, the error risk « is divid-
ed into two equal parts at 5 distributed on
each side of the distribution of (7, 0). If, for
example, the function f(z, 8) follows a cen-
tered and reduced normal distribution, the
constants k1 and kp willbe symmetricand can
be represented by —z2g and +zg, as shown
in the following figure.



Confidence Interval 107

o2 Ki Ko a2

Once the constants k; and k» have been
found, the parameter 6 must be isolated in
the equation given above. The confidence
interval 6 is found in this way for the con-
fidence level 1 — «.

DOMAINS AND LIMITATIONS

One should be very careful when interpret-
ing aconfidence interval. If, for a confidence
level of 95%, we find a confidence interval
for a mean of u where the lower and upper
limits are k1 and kp respectively, we can con-
clude the following (for example):

“On the basis of the studied sample, we can
affirm that it is probable that the mean of
the population can be found in the interval
established.”

It would not be correct to conclude that there
is a 95% chance of finding the mean of the
population in the interval. Indeed, since
and the limits k| and k; of the interval are con-
stants, the interval may or may not contain jt.
However, if the statistician has the ability
to repeat the experiment (which consists of
drawing a sample from the population) sev-
eral times, 95% of the intervals obtained will
contain the true value of L.

EXAMPLES

A business that fabricates lightbulbs wants
to test the average lifespan of its lightbulbs.
The distribution of the random variable X,
which represents the life span in hours, is
a normal distribution with mean x and
standard deviation o = 30.

In order to estimate ., the business burns out
n = 25 lightbulbs.

It obtains an average lifespan of x = 860
hours. It wants to establish a confidence
interval around the estimator x at a confi-
dence level of 0.95. Therefore, the first step
is to obtain a function f(z, 0) = f(x, u) for
the known distribution. Here we use:

X—p

o i

7

which follows a centered and reduced nor-
mal distribution. The equation P(k; <
f(t,0) <ky) =1 — « becomes:

J@0) =f(x p) =

X—p
P (—zo.ozs < —

i

because the error risk o has been divided
into two equal parts at 5 = 0.025.

The table for the centered and reduced nor-
mal distribution, the normal table, gives
20.025 = 1.96. Therefore:

< zo.ozs) =0.95,

X—u
P<—1.96 <=

7n

To obtain the confidence interval for wu at
a confidence level of 0.95, 1 must be iso-
lated in the equation above:

< 1.96) =0.95.

X— [

P(—1.96§ . 51.96):0.95
Wi
P(-1.96-2 <i— <1962
. ﬁ_x =< NG

—0.95

P(x-1.96-" < <341.96-2
x—1 ﬁ_u_x 96
—0.95.
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By replacing x, o and n with their respective
values, we obtain:

30
P<860 —1.96—= < u <860

V25
30

+ 1.96—) =0.95
/25

P(848.24 < 1 < 871.76) = 0.95.

The confidence interval for y at the confi-
dence level 0.95 is therefore:

[848.24,871.76].

This means that we can affirm with a proba-
bility of 95% that this interval contains the
true value of the parameter u that corre-
sponds to the average lifespan of the light-
bulbs.

FURTHER READING
» Confidence level
» Estimation

» Estimator

REFERENCES
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Confidence Level

The confidence level is the probability that
the confidence interval constructed around
an estimator contains the true value of the
corresponding parameter of the popula-
tion.

We designate the confidence level by (1 —
o), where a corresponds to the risk of error;
that is, to the probability that the confidence
interval does not contain the true value of the
parameter.

HISTORY

The first example of a confidence inter-
val appears in the work of Laplace (1812).
According to Desrosieres, A. (1988), Bow-
ley, A.L. was one of the first to become inter-
ested in the concept of the confidence inter-
val.

See hypothesis testing.

MATHEMATICAL ASPECTS

Let 6 be a parameter associated with a pop-
ulation. 6 is to be estimated and 7 is its esti-
mator from a random sample. We evaluate
the precision of 7" as the estimator of 6 by
constructing a confidence interval around
the estimator, which is often interpreted as
an error margin.

In order to construct this confidence interval,
we generally proceed in the following man-
ner. From the distribution of the estimator 7',
we determine an interval that s likely to con-
tain the true value of the parameter. Let us
denote this interval by (T — ¢, T + ¢) and
the probability of true value of the paramter
being in this interval as (1 — «). We can then
say that the error margin ¢ is related to o by
the probability:

PT—e<0<TH+e)=1—«.

The level of probability associated with an
interval of estimationis called the confidence
level or the confidence degree.

The interval T — ¢ < 0 < T + ¢ is called
the confidenceinterval for @ at the confidence
level 1 —w. Letususe, forexample, @ = 5%,
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which will give the confidence interval of the
parameter 6 to a probability level of 95%.
This means that, if we use 7" as an estima-
tor of 6, then the interval indicated will on
average contain the true value of the param-
eter 95 times out of 100 samplings, and it will
not contain it 5 times.

The quantity ¢ of the confidence interval cor-
responds to half od the length of the interval.
This parameter therefore gives us an idea of
the error margin for the estimator. Fora given
confidence level 1 — «, the smaller the confi-
dence interval, more efficient the estimator.

DOMAINS AND LIMITATIONS

The most commonly used confidence levels
are 90%, 95% and 99%. However, if neces-
sary, other levels can be used instead.
Although we would like to use the highest
confidence level in order to maximize the
probability that the confidence interval con-
tains the true value of the parameter, but if
weincrease the confidence level, the interval
increases as well. Therefore, what we gain in
terms of confidence is lost in terms of preci-
sion, so have to find a compromise.

EXAMPLES

A company that produces ligthtbulbs wants
to study the mean lifetime of its bulbs. The
distribution of the random variable X that
represents the lifetime in hours is a normal
distribution of mean ;. and standard devi-
ation o = 30.

Inorderto estimate 1, the company burns out
a random sample of n = 25 bulbs.

The company obtains an average bulb life-
time of x = 860 hours. It then wants to
construct a 95% confidence interval for
around the estimator Xx.

The standard deviation ¢ of the population
is known; the value of ¢ is zy/2 - 0%. The val-
ue of 742 is obtained from the normal table,
and it depends on the probability attributed
to the parameter «. We then deduce the con-
fidence interval of the estimator of . at the
probability level 1 — o

X — 24205 < i < X + 20205 -

From the hypothesis that the bulb lifetime X
follows a normal distribution with mean
and standard deviation o = 30, we deduce
that the expression

follows a standard normal distribution.
From this we obtain:

X—p
P |:—Zo.025 <—

N
where the risk of error « is divided into two
parts that both equal § = 0.025.

The table of the standard normal distribution
(the normal table) gives 70025 = 1.96. We
then have:

< ZOA025:| =0.95,

X—u
o
N

To get the confidence interval for 1, we must

isolate p in the following equation via the

following transformations:

P <—1.96 < < 1.96) =0.95.

o o
P(-196" <3— <1962
( Jn =TS
—0.95,

P(i-196-2 < <i+196-2
X ﬁ_u_x S
—0.95.
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Substituting X, o and n for their respective
values, we evaluate the confidence interval:

860 — 1.96 - S0

V25
30
< <860+1.96- —
V25
848.24 < u < 871.76.

We can affirm with a confidence level 0of 95%
that this interval contains the true value of
the parameter 1, which corresponds to the
mean bulb lifetime.

FURTHER READING

» Confidence interval
» Estimation

» Estimator

» Hypothesis testing
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Contingency Table

A contingency table is a crossed table con-
taining various attributes of a population or
anobserved sample. Contingency table anal-
ysis consists of discovering and studying
the relations (if they exist) between these
attributes.

A contingency table can be a two-dimen-
sional table with r lines and ¢ columns relat-
ing to two qualitative categorical variables
possessing, respectively, r and ¢ categories.
It can also be multidimensional when the
number of qualitative variables is greater
then two: if, for example, the elements of
a population or a sample are characterized
by three attributes, the associated contingen-
cy table has the dimensions / x J x K, where /
represents the number of categories defining
the first attribute, J the number of categories
of the second attribute and K the number of
the categories of the third attribute.

HISTORY

The term “contingency,” used in relation to
a crossed table of categorical data, seems to
have originated with Pearson, Karl (1904),
who used he term “contingency” to mean
a measure of the total deviation relative to
the independence.

See also chi-square test of independence.

MATHEMATICAL ASPECTS

If we consider a two-dimensional table, con-
taining entries for two qualitative categori-
cal variables X and Y that have, respectively,
r and ¢ categories, the contingency table is:

Categories of the variable ¥

Y1 ... Y. | Total
Categories X nii Nic | N,
of the .
variable X X, Nyl Nye n,
Total | n ne n.
where

nj represents the observed frequency for
category i of variable X and category j
of variable Y;

n; represents the sum of the frequencies

observed for category i of variable X,

represents the sum of the observed fre-

quencies for category jof variable Y, and

n_ indicates the total number of observa-
tions.

In the case of a multidimensional table, the
elements of the table are denoted by n;j, rep-
resenting the observed frequency for catego-
ry i of variable X, category j of variable Y and
category k of variable Z.

DOMAINS AND LIMITATIONS
The independence of two categorical quali-
tative variables represented in the contingen-
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cy table can be assessed by performing a chi-
square test of independence.

FURTHER READING
» Chi-square test of independence
» Frequency distribution
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Continuous Distribution

Function

The distribution function of a continuous
random variable is defined to be the proba-
bility that the random variable takes a value
less than or equal to a real number.

HISTORY
See probability.

MATHEMATICAL ASPECTS
The function defined by

b
F(b):P(ng):/ F(x)dx.

is called the distribution function of a con-
tinuous random variable.

In other words, the density function f is
the derivative of the continuous distribution
function.

Properties of the Continuous Distribution
Function
1. F(x) is a continually increasing function
for all x;
. F takes its values in the interval [0, 1];
. lim F(b)=0;
b——00
. lim F(b) =1;
b— 00
. F(x) is a continuous and differentiable
function.
This distribution function can be graphical-
ly represented on a system of axes. The dif-
ferent values of the random variable X are
plotted on the abscissa and the correspond-
ing values of F(x) on the ordinate.

WD AW
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DOMAINS AND LIMITATIONS

The probability that the continuous ran-
dom variable X takes a value in the inter-
val ]a, b] for all @ < b, meaning that P(a <
X < b),is equal to F(b) — F(a), where F is
the distribution function of the random vari-
able X.

Demonstration: The event {X < b} can be
written as the union of two mutually exclu-
sive events: {X < a}and {a < X < b}:

(X<bh={X<a}Ufa<X<b}.

By finding the probability on each side of
the equation, we obtain:
PX<b)=P{X <alU{a<X<b})
=PX<a)+Pla<X<bh).
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The sum of probabilities result from the fact
that the two events are exclusive.

By subtracting P(X < a) on each side, we
have:

Pla<X<b)y=PX<b)—PX<a).

Finally, from the definition of the distri-
bution function, we obtain:

Pla<X<b)=F0b)— F(a).

EXAMPLES
Consider a continuous random variable X
for which the density function is given by:

1 if0<x<1
0 ifnot i

f(X)=:

The probability that X takes a value in the
interval [g, b], withO < aand b < 1,is as
follows:

b
P(anfb)=/ fx)dx

b
- [ 1a
a

b

:xa

=b-—a.

Therefore, for 0 < x < 1 the distribution
function is:

Fx) = P(X < x)

=X.

This function is presented in the following
figure:

15 ,F
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FURTHER READING

» Density function

» Probability

» Random experiment
» Random variable

» Value
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Continuous Probability
Distribution

Every random variable has a correspond-
ing frequency distribution. For a continu-
ous random variable, this distribution is con-
tinuous too.

A continuous probability distribution is
a model that represents the frequency
distribution of a continuous variable in
the best way.

MATHEMATICAL ASPECTS

The probability distribution of a continu-
ous random variable X is given by its den-
sity function f(x) or its distribution func-
tion F'(x).

It can generally be characterized by its
expected value:

EWkié»ﬂnw=u
and its variance:
me=/aﬂﬁfmw
D

=E[X - w?]
= E[X*] - E[X]*,
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where D represents the interval covering the
range of values that X can take.

One essential property of a continuous ran-
dom variable is that the probability that it
will take a specific numerical value is zero,
whereas the probability thatit will take a val-
ue over an interval (finite or infinite) is usu-
ally nonzero.

DOMAINS AND LIMITATIONS

The most famous continuous probability
distribution is the normal distribution.
Continuous probability distributions are
often used to approximate discrete proba-
bility distributions. They are used in model
construction just as much as they are used
when applying statistical techniques.

FURTHER READING

» Beta distribution

» Cauchy distribution

» Chi-square distribution

» Continuous distribution function
» Density function

» Discrete probability distribution
» Expected value

» Exponential distribution

» Fisher distribution

» Gamma distribution

» Laplace distribution

» Lognormal distribution

» Normal distribution

» Probability

» Probability distribution

» Random variable

» Student distribution

» Uniform distribution

» Variance of a random variable
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Contrast

In analysis of variance a contrast is a linear
combination of the observations or factor
levels or treatments in a factorial experi-
ment, where the sum of the coefficients is
zero.

HISTORY

Accordingto Scheffé, H. (1953), Tukey, J. W.
(1949 and 1951) was the first to propose
a method of simultaneously estimating all
of the contrasts.

MATHEMATICAL ASPECTS

Consider T4, T», . .., Ty, which are the sums
of ny, ny, ..., n; observations. The linear
function

g=cij-Ti+cy-To+-+c- Tk

is a contrast if and only if

k
Zni~cij=O.
i=1

Ifeachn; = n, meaning thatif 7;is the sum of
the same number of observations, the con-
dition is reduced to:

k
ZCU:O'
i=1

DOMAINS AND LIMITATIONS

In most experiments involving several
treatments, it is interesting for the exper-
imenter to make comparisons between the
different treatments. The statistician uses
contrasts to carry out this type of compari-
son.
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EXAMPLES
When an analysis of variance is carried out
for a three-level factor, some contrasts of
interest are:

a=T—-T,
=T —-T;3
c3=T,—T;3

ca=T1—-2-THh+T;s.

FURTHER READING

» Analysis of variance
» Experiment

» Factorial experiment
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Convergence

In statistics, the term “convergence”is relat-
ed to probability theory. This statistical con-
vergence is often termed stochastic conver-
gence in order to distinguish it from classical
convergence.

MATHEMATICAL ASPECTS

Different types of stochastic convergence

can be defined. Let {x,},cn be a set of ran-

dom variables. The most important types of

stochastic convergence are:

1. {Xn},en converges in  distribution to
a random variable X if

lim Fx,(z) = Fx(z) Vz,
n— 00

where Fy, and Fx are the distribution
functions of X, and X, respectively.
This convergence is simply the point con-
vergence (well-known in mathematics) of
the set of the distribution functions of
the X,,.

2. {Xn},en converges in probability to aran-
dom variable X if:

lim P(|X, —X|>¢)=0,
n—oo

forevery ¢ > 0.

3. {Xu}en exhibits almost sure conver-
gence to a random variable X if:

P ({w| Tim_ X, (w) = X(w)}) —1.

4. Suppose that all elements of X, have
afinite expectancy. The set {X,,},,c con-
verges in mean square to X if:

Note that:

e Almost sure convergence and mean
square convergence both imply a con-
vergence in probability;

e Convergence in probability (weak con-
vergence) implies convergence in distri-
bution.
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EXAMPLES
Let X; be independent random variables uni-

formly distributed over [0, 1]. We define the
following set of random variables from X;:

Z,=n- min X;.
i=1,...,n

=1,

We can show that the set {Z,},,cn converges
in distribution to an exponential distri-
bution Z with a parameter of 1 as follows:

1—-Fz (t)=PZ, > 1)
t
:P(min Xl->—>
i=1,...,n n
t t
=P<X1>— and X2 > — and
n n

t
Xy > —)

n

n n
il‘d'l_[P<Xi > £) - (1—5) .
i1 n n

. n
Now, for limy 0, (1 — £)
since:

exp (1)

lim Fz, =

lim P(Z, < 1)
n—0o0o n—oo

=1—exp(—t)=Fz.

Finally, let S,, be the number of success-
es obtained during n Bernoulli trials with
a probability of success p. Bernoulli’s theo-
rem tells us that ‘i—” converges in probability
to a “random” variable that takes the value p
with probability 1.

FURTHER READING

» Bernoulli’s theorem

» Central limit theorem

» Convergence theorem

» De Moivre-Laplace Theorem
» Law of large numbers

» Probability

» Random variable

» Stochastic process
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Convergence Theorem

The convergence theorem leads to the most
important theoretical results in probability
theory. Among them, we find the law of
large numbers and the central limit the-
orem.

EXAMPLES

The central limit theorem and the law of
large numbers are both convergence the-
orems.

The law of large numbers states that the
mean of a sum of identically distributed ran-
dom variables converges to their common
mathematical expectation.

On the other hand, the central limit theorem
states that the distribution of the sum of a suf-
ficiently large number of random variables
tends to approximate the normal distri-
bution.

FURTHER READING
» Central limit theorem
» Law of large numbers

|
Correlation Coefficient

The simple correlation coefficient is a mea-
sure of the strength of the linear relation
between two random variables.
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The correlation coefficient can take val-
ues that occur in the interval [—1; 1]. The
two extreme values of this interval represent
a perfectly linear relation between the vari-
ables, “positive” in the first case and “nega-
tive” in the other. The value O (zero) implies
the absence of a linear relation.

The correlation coefficient presented here is
also called the Bravais—Pearson correlation
coefficient.

HISTORY

The concept of correlation originated in the
1880s with the works of Galton, F.. In his
autobiography Memories of My Life (1890),
he writes that he thought of this concept dur-
ing a walk in the grounds of Naworth Castle,
when arain shower forced him to find shelter.
According to Stigler, S.M. (1989), Por-
ter, T.M. (1986) was carrying out historical
research when he found a forgotten article
written by Galtonin 1890 in The North Ame-
rican Review, under the title “Kinship and
correlation”. In this article, which he pub-
lished right after its discovery, Galton (1908)
explained the nature and the importance of
the concept of correlation.

This discovery wasrelated to previous works
of the mathematician, notably those on
heredity and linear regression. Galton had
been interested in this field of study since
1860. He published a work entitled “Natural
inheritance” (1889), which was the starting
point for his thoughts on correlation.

In 1888, in an article sent to the Royal Statis-
tical Society entitled “Co-relations and their
measurement chiefly from anthropometric
data,” Galton used the term “correlation” for
the first time, although he was still alter-
nating between the terms “co-relation” and
“correlation” and he spoke of a “co-relation
index.” On the other hand, he invoke the con-

cept of a negative correlation. According to
Stigler (1989), Galton only appeared to sug-
gest that correlation was a positive relation-
ship.

Pearson, Karl wrote in 1920 that correla-
tion had been discovered by Galton, whose
work “Natural inheritance” (1889) pushed
him to study this concept too, along with two
other researchers, Weldon and Edgeworth.
Pearson and Edgeworth then developed the
theory of correlation.

Weldon thought the correlation coefficient
shouldbe called the “Galton function.” How-
ever, Edgeworth replaced Galton’s term ““co-
relation index” and Weldon’s term “Galton
function” by the term “correlation coeffi-
cient.”

According to Mudholkar (1982), Pear-
son, K. systemized the analysis of correla-
tion and established a theory of correlation
for three variables. Researchers from Uni-
versity College, most notably his assistant
Yule, G.U., were also interested in develop-
ing multiple correlation.

Spearman published the first study on rank
correlation in 1904.

Among the works that were carried out
in this field, it is worth highlighting those
of Yule, who in an article entitled “Why
do we sometimes get non-sense-correlation
between time-series” (1926) discussed the
problem of correlation analysis interpre-
tation. Finally, correlation robustness was
investigated by Mosteller and Tukey (1977).

MATHEMATICAL ASPECTS

Simple Linear Correlation Coefficient
Simple linear correlation is the term used to
describe a linear dependence between two
quantitative variables X and Y (see simple
linear regression).
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If X and Y are random variables that fol-
low an unknown joint distribution, then the
simple linear correlation coefficient is equal
to the covariance between X and Y divid-
ed by the product of their standard devia-
tions:
Cov(X, Y)
p=—":.

oxoy

Here Cov(X, Y) is the measured covariance
between X and Y; oy and oy are the respec-
tive standard deviations of X and Y.
Given a sample of size n, (Xi, Y1),
(X2, Y2), ..., (X, Yy) from the joint distri-
bution, the quantity

Y Xi—X)(Yi—Y)

i=1

i(x,- - %2 f(n — 7y
i=1 i=1

is an estimation of p; it is the sampling cor-
relation.

If we denote (X; — X) by x; and (Y; — Y) by
yi, we can write this equation as:

Test of Hypothesis
To test the null hypothesis

Hy: p=0
against the alternative hypothesis

Hyi:p#0,

we calculate the statistic 7:

t=—,

S,

where S, is the standard deviation of the n

estimator r:

1—12
n—2"

Under Hj, the statistic ¢ follows a Student
distribution with n—2 degrees of freedom.
For a given significance level o, Hy is reject-
ed if |t| > 1% n—2; the value of 19 42 is the
critical value of the test given in the Student
table.

Multiple Correlation Coefficient

Known as the coefficient of determina-
tion denoted by R?, determines whether
the hyperplane estimated from a multiple
linear regression is correctly adjusted to
the data points.

The value of the multiple determination
coefficient R? is equal to:

R Explained variation

Total variation

It corresponds to the square of the multiple
correlation coefficient. Notice that

0<R*<1.

In the case of simple linear regression, the
following relation can be derived:

r= sign(,f;’l)\/ﬁ,
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where B is the estimator of the regression
coefficient 1, and it is given by:

> Xi-X)(Yi-)

pr="
> (X — %)
i=1

DOMAINS AND LIMITATIONS
If there is a linear relation between two vari-
ables, the correlation coefficient is equal to
1or—1.
A positive relation (4) means that the two
variables vary in the same direction. If the
individuals obtain high scores in the first
variable (for example the independent
variable), they will have a tendency to
obtain high scores in the second variable
(the dependant variable). The opposite is
also true.
A negative relation (—) means that the indi-
viduals that obtain high scores in the first
variable will have a tendency to obtain low
scores in the second one, and vice versa.
Notethatifthe variables are independentthe
correlation coefficient is equal to zero. The
reciprocal conclusion is not necessarily true.
The fact that two or more variables are relat-
ed in a statistical way is not sufficient to con-
clude that a cause and effect relation exists.
The existence of a statistical correlation is
not a proof of causality.
Statistics provides numerous correlation
coefficients. The choice of which to use for
a particular set of data depends on different
factors, such as:
e Thetype of scale used to express the vari-
able;
e The nature of the underlying distribution
(continuous or discrete);

e The characteristics of the distribution of
the scores (linear or nonlinear).

EXAMPLES
The data for two variables X and Y are
shown in the table below:

X=1755 and Y =653.

We now perform the necessary calculations
to obtain the correlation coefficient between
the two variables. Applying the formula
gives:

n
> xiyi
i=1

(27) ()

358.5 B
V2845-1034.1

0.66.

Test of Hypothesis
We can calculate the estimated standard
deviation of r:

1 —r2 [0.56
S n—2 10 -2 0.266
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Calculating the statistic 7 gives:
_r—=0 066

S, 0.266

If we choose a significance level o of 5%,

the value from the Student table, 79,025 3, is

equal to 2.306.

Since |f| = 2.485 > tg0258 = 2.306, the

null hypothesis

=2.485.

Hy: p=0

is rejected.

FURTHER READING

» Coefficient of determination

» Covariance

» Dependence

» Kendall rank correlation coefficient

» Multiple linear regression

» Regression analysis

» Simple linear regression

» Spearman rank correlation coefficient
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Correspondence Analysis

Correspondence analysis is a data analysis
technique thatis used to describe contingen-
cy tables (or crossed tables). This analysis
takes the form of a graphical representa-
tion of the associations and the “correspon-
dence” between rows and columns.

HISTORY

The theoretical principles of correspondence
analysis date back to the works of Hart-
ley, H.O. (1935) (published under his orig-
inal name Hirschfeld) and of Fisher, R.A.
(1940) on contingency tables. They were
first presented in the framework of inferen-
tial statistics.

The term ‘“‘correspondence analysis” first
appeared in the autumn of 1962, and the first
presentation of this method that referred to
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this term was given by Benzécri, J.P. in the
winter of 1963. In 1976 the works of Ben-
zécri, J.P., which retraced twelve years of his
laboratory work, were published, and since
then the algebraic and geometrical proper-
ties of this descriptive analytical tool have
become more widely known and used.

MATHEMATICAL ASPECTS

Consider a contingency table relating to two
categorial qualitative variables X and Y
that have, respectively, r and ¢ categories:

where

nj represents the frequency that category i
of variable X and category j of variable
Y is observed,

n; represents the sum of the observed fre-
quencies for category i of variable X,

n; represents the sum of the observed fre-
quencies for category j of variable Y,

n, represents the total number of observa-
tions.

We will assume that r > c; if not we take
the transpose of the initial table and use
this transpose as the new contingency table.
The correspondence analysis of a contingen-
cy table with more lines than columns, is per-
formed as follows:
1. Tables of row profiles X; and column pro-
files X are constructed..
For a fixed line (column), the line (col-
umn) profile is the line (column) obtained

by dividing each element in this row (col-
umn) by the sum of the elements in the line
(column).

The line profile of row i is obtained by
dividing each term of row i by n; , which
is the sum of the observed frequencies in
the row.

The table of row profiles is constructed
by replacing each row of the contingency
table with its profile:

It is also common to multiply each ele-
ment of the table by 100in order to convert
the terms into percentages and to make the
sum of terms in each row 100%.

The column profile matrix is constructed
in a similar way, but this time each col-
umn of the contingency table is replaced
with its profile: the column profile of col-
umn,j is obtained by dividing each term of
column j by n j, which is the sum of fre-
quencies observed for the category cor-
responding to this column.

Yc

The tables of row profiles and column pro-
files correspond to a transformation of the
contingency table that is used to make
the rows and columns comparable.
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2. Determine the inertia matrix V.

This is done in the following way:
e The weighted mean of the r column
coordinates is calculated:
" ng ong o on
g = - n—l'-n—zlzn—‘j,jzl,...,c.
oo .
e The ¢ obtained values g are written
r times in the rows of a matrix G;
e The diagonal matrix Dy is constructed
with diagonal elements of Z—‘,
o Finally, the inertia matrix V is calcu-

lated using the following formula:
=X -G Dr-X;-G).

. Using the matrix M, which consists of 1'1'—
L J

terms on its diagonal and zero terms else-

where, we determine the matrix C:

C=vVM-V-JM.

. Find the eigenvalues (denoted k;) and
the eigenvectors (denoted v;) of this
matrix C.

The c eigenvalues k., k.1, ..., k1 (writ-
ten in decreasing order) are the iner-
tia. The corresponding eigenvectors are
called the factorial axes (or axes of iner-
tia).

For each eigenvalue, we calculate the cor-
responding inertia explained by the facto-
rial axis. For example, the first factorial
axis explains:

100 - ky
—_—

>k
=1

In the same way, the two first factorial
axes explain:

100 - (k1 + ko)

>

(in %) of inertia.

(in %) of inertia.

If we want to know, for example, the num-
ber of eigenvalues and therefore the fac-
torial axes that explain at least 3/4 of the
total inertia, we sum the explained iner-
tia from each of the eigenvalues until we
obtain 75%.

We then calculate the main axes of inertia
from these factorial axes.

. The main axes of inertia, denoted u;, are

then given by:
w=vM-.y,

meaning that its jth component is:

F

[
up = _[— -vj.
fj n

. We then calculate the main components,

denoted by yx, which are the orthogonal
projections of the row coordinates on the
main axes of inertia: the ith coordinate of
the /th main component takes the follow-
ing value:

yii=xi-M-uy,

meaning that

njj
Yil = Z < Vil
n; J

is the coordinate of row i on the /th axis.

. After the main components y; (of the

row coordinates) have been calculated,
we determine the main components of the
column coordinates (denoted by z;) using
the y;, thanks to the transaction formulae:
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7 is the coordinate of the column j on
the /th factorial axis.

8. The simultaneous representation of the
row coordinates and the column coordi-
nates on a scatter plot with two factori-
al axes, gives a signification to the axis
depending on the points it is related to.
The quality of the representation isrelated
to the proportion of the inertia explained
by the two main axes used. The closer the
explained inertia is to 1, the better the
quality.

A
05 Jaxe2

(21,y22)
*

(Y‘i’yu) & 10’“) (121.10223 o1y

axe 1
™

05 . (Yr:.l,YrAlﬂ) 05
@212

-05-

9. It can be useful to insert additional point-
rows or column coordinates (illustrative
variables) along with the active variables
used for the correspondence analysis.
Consider an extra row-coordinate:

(ns1, ng2, N3, . . ., Ngc)

of profile-row
ns1 Ng2 Nsc
ns. ' ns. T ns. '

The /th main component of the extra row-
dot is given by the second formula of
point 7):

1 < nsj

Yil = —= —
' \/I?l;ns
fori=12,...,r.

We proceed the same way for a column
coordinate, but apply the first formula of
point 7 instead.

DOMAINS AND LIMITATIONS

When simultaneously representing the row
coordinate and the column coordinate, it
is not advisable to interpret eventual prox-
imities crossed between lines and columns
because the two points are not in the same
initial space. On the other hand it is interest-
ing to interpret the position of a row coor-
dinate by comparing it to the set of column
coordinate (and vice versa).

EXAMPLES

Consider the example of a company that
wants to find out how healthy its staff. One
of the subjects covered in the question-
naire concerns the number of medical visits
(dentists included) per year. Three possible
answers are proposed:

e Between 0 and 6 visits;

e Between 7 and 12 visits;

e More than 12 visits per year.

The staff questioned are distributed into five
categories:

e Managerial staff members over 40;

e Managerial staff members under 40;

e Employees over 40;

e Employees under 40;

e Office personnel.

Theresults are reported in the following con-
tingency table, to which margins have been
added:

Number of visits
per year

Oto6 7to12 > 12 Total
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Number of visits e We start by calculating the weighted
per year mean of the five line-dots:

Oto6 7to12 > 12 Total

> n, ni n;
A ij J
SR ST | C
i=1
forj=1,2and 3;
o We then write these three values five
times in the matrix G, as shown below:

0.384 0.400 0.216
0.384 0.400 0.216

Using these data we will describe the eight G=| 0384 0.400 0.216
main steps that should be followed to obtain 0.384 0.400 0.216
a graphical representation of employee 0.384 0.400 0.216

health via correspondence analysis.

1. Wefirstdetermine the table of line profiles
matrix X7, by dividing each element by the
sum of the elements of the line in which
it is located:

e We then construct a diagonal matrix
Dj containing the 7t

e Finally, we calculate the matrix of
inertia V, as given by the following
formula:

0.333 0.467 0.2
0.417 0.417 0.167
0.1 0.6 0.3
0.444 0.333 0.222
0.5 0.333 0.167
1.794 2.15 1.056

V=X -G -Di-Xi—G),
which, in this case, gives:

0.0175 —0.0127 —0.0048
V= -0.0127 0.0097 0.0029
—0.0048  0.0029 0.0019

N = = = =

3. We define a third-order square matrix M
that contains 7~ terms on its diagonal and
J
zero terms everywhere else:

and the table of column profiles by divid-
ing each element by the sum of the ele-
ments in the corresponding column:

2604 0 0
M = 0 2.5 0
0 0 4.630

The square root of M, denoted VM, is
obtained by taking the square root of each
diagonal element of M. Using this new
matrix, we determine

S C=vM-V-VM
2. We then calculate the matrix of inertia V
for the frequencies (given by 2 for val- 0.0455 —0.0323 —0.0167
C =1 —0.0323 0.0243 0.0100

ues of i from 1 to 5) by proceeding in the

following way: —0.0167 0.0100 0.0087
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4. The eigenvalues of C are obtained by

diagonalizing the matrix. Arranging
these values in decreasing order gives:

k1 = 0.0746
ky = 0.0039
k3 =0.

The explained inertia is determined for
each of these values. For example:

0.0746

1! —————————— = 95.03%,
0.0746 + 0.0039
0.0039
20 ———————— =4.97%.
0.0746 + 0.0039

For the last one, k3, the explained inertia
is zero.

The first two factorial axes, associated
with the eigenvalues k| and k>, explain all
of the inertia. Since the third eigenvalue
is zero it is not necessary to calculate the
eigenvector that is associated with it. We
focus on calculating the first two normal-
ized eigenvectors then:

0.7807 ]
—0.5576 | and
| —0.2821

0.0807
v=| 05377
| —0.8393 |

V1

. We then calculate the main axes of inertia
by:

up=vVM-1.y;, for i=1and2,

where v/ M~1 is obtained by inverting the
diagonal elements of /M.

We find:

0.4838 ]
uy = | —0.3527 | and
| —0.1311 |

0.0500 T
= 0.3401
| —0.3901

6. We then calculate the main components

by projecting the rows onto the main
axes of inertia. Constructing an auxiliary
matrix U formed from the two vectors u
and uy, we define:

Y=X-M-U
—0.1129  0.0790
0.0564  0.1075
=] —0.5851 0.0186
0.1311  —0.0600
0.2349  0.0475

We can see the coordinates of the five rows
written horizontally in this matrix Y; for
example, the first column indicates the
components related to the first factorial
axis and the second indicates the compo-
nents related to the second axis.

. We then use the coordinates of the rows to

find those of the columns via the following
transition formulae written as matrices:

Z=K-Y - Xy,

where:

K is the second-order diagonal matrix
that has 1/4/k; terms on its diagonal
and zero terms elsewhere;

Y’ is the transpose of the matrix contain-
ing the coordinates of the rows, and;

X is the column profile matrix.
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We obtain the matrix:

|

where each column contains the compo-
nents of one of the three column coor-
dinates; for example, the first line corre-
sponds to each coordinate on the first fac-
torial axis and the second line to each
coordinate on the second axis.

We can verify the transition formula that
gives Y from Z:

0.3442
0.0081

—0.2409

—0.1658
0.0531 '

—0.1128

Y=X/-Z-K

using the same notation as seen previous-
ly.

8. We can now represent the five categories
of people questioned and the three cate-
gories of answers proposed on the same
factorial plot:

A
¥1=managerial 034 axis2
staff members= 40 ans 1,=0.0039
explained inertia:4.97%
¥,=managerial 021
staff members < 40 ans ¥
T opqd ¢ 2 explained inertia: 95.04%
Z2, . Vs 1=00746
be M2t axis |
g . >
T T T & T T g
06 0.4 02 o 02 0.4 0.6
o 014 Ty
23
¥z=employees 024 Z)=0-6 medical visits per year
Yy=employees Za="7-12medical visits per year
Ts=office personnel Zz=>12 medical visits per year

03-

We can study this factorial plot at three dif-

ferent levels of analysis, depending:

e The set of categories for the people ques-
tioned;

o The set of modalities for the medical vis-
its;

e Both at the same time.

In the first case, close proximity between

tworows (between two categories of person-

nel) signifies similar medical visit profiles.

On the factorial plot, this is the case for the

employees under 40 (Y4) and the office per-
sonnel (Ys5). We can verify from the table of
line profiles that the percentages for these
two categories are indeed very similar.
Similarly, the proximity between two
columns (representing two categories relat-
ed to the number of medical visits) indicates
similar distributions of people within the
business for these categories. This can be
seen for the modalities Z; (from 7 to 12
medical visits per year) and Z3 (more than
12 visits per year).

If we consider the rows and the columns
simultaneously (and not separately as we did
previously), it becomes possible to identi-
fy similarities between categories for cer-
tain modalities. For example, the employ-
ees under 40 (Y4) and the office personnel
(Ys5) seem to have the same behavior towards
health: high proportions of them (0.44 and
0.5 respectively) go to the doctor less than
6 times per year (Z1).

In conclusion, axis 1 is confronted on one
side with the categories indicating an aver-
age or high number of visits (Z; and Z3)—the
employees or the managerial staff members
over 40 (Y and Y3)—and on the other side
with the modalities associated with low num-
bersof visits (Z1): Y», Y4 and Ys. The first fac-
tor can then be interpreted as the importance
of medical control according to age.

FURTHER READING

» Contingency table

» Data analysis

» Eigenvalue

» Eigenvector

» Factorial axis

» Graphical representation
» Inertia matrix

» Matrix

» Scatterplot
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Covariance

The covariance between two random vari-
ables X and Y is the measure of how much
two random variables vary together.

If X and Y are independent random vari-
ables, the covariance of X and Y is zero. The
converse, however, is not true.

MATHEMATICAL ASPECTS

Consider X and Y, two random variables
defined in the same sample space 2. The
covarianceof X and Y,denoted by Cov(X, Y),
is defined by

Cov(X, Y) = E[(X — E[XD)(Y — E[Y]D],

where E[.] is the expected value.

Developing the right side of the equation
gives:

Cov(X, Y) = E[XY — E[X]Y — XE[Y]
+ E[X]E[Y]]
= E[XY] — E[X]E[Y]
— E[X]E[Y] + E[X]E[Y]
= E[XY] — E[X]E[Y].

Properties of Covariance
Consider X, Y and Z, which are random
variables defined in the same sample space
Q,and a, b, c and d, which are constants. We
find that:
1. Cov(X, Y) = Cov(¥, X)
2. Cov(X,c) =0
3. Cov(aX + bY, Z) =
aCov(X, Z) + bCov(¥, Z)
4. Cov(X,cY+dzZ) =
cCov(X, Y) +dCov(X, Z)
5. Cov(aX + b, cY +d) = acCov(X, Y).

Consequences of the Definition
1. If X and Y are independent random vari-
ables,
Cov(X,Y) =0.

Infact E[XY] = E[X]E[Y], meaning that:
Cov(X,Y) = E[XY] — E[X]E[Y]=0.

The reverse is not generally true:
Cov(X,Y) = 0 does not necessarily
imply that X and Y are independent.

2. Cov(X, X) = Var(X)
where Var(X) represents the variance
of X.
In fact:

Cov(X, X) = E[XX] — E[X]E[X]
= E[X*] — (E[X])*
= Var(X) .
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DOMAINS AND LIMITATIONS having an expected value equal to E(X;)
Consider two random variables X and Y, and a variance equal to Var(X;). We then
and their sum X + Y. We then have: have:
ElX+Y] = E[X]+E[Y] and EMXi + Xz + - + X,] n
Var(X + Y) = Var(X) + Var(Y) = E[X1]+ E[X2] + - - - + E[X,]
+2Cov(X, Y) .

‘We now show these results for discrete vari-

n
=Y EIX].
i=1
ables. If P;; = P(X = x;, Y = ;) we have: Var(X1 +Xo + - + Xp)

EIX+ V1= i+ y)Pi. = Var(Xy) + Var(X) + - -~ + Var(X)
i + 2[Cov(Xy, X3) + - - - + Cov(Xy, Xy)

=Y D P+ Y)Y P + Cov(Xa, X3) + - - - + Cov(Xa, X))
P i + -+ Cov(Xu—1, Xn)]

n n—1
=> x| Y P = Z Var(X;) + 2 Z Z Cov(X;, X)) .
i j i=1

i=1 j>i
+2»~(Zpﬁ)
J ! EXAMPLES

= inp i + ZyjP/ Consider two psychological tests carried

i J out in succession. Each subject receives

= E[X] + E[Y]. a grade X of between 0 and 3 for the first test

and a grade Y of between 0 and 2 for the sec-

Moreover: ond test. Given that the probabilities of X
being equal to 0, 1, 2 and 3 are respectively
0.16,0.3,0.41 and 0.13, and that the probabi-
lities of Y being equal to 0, 1 and 2 are respec-

Var(X + Y) = E[(X + Y)?] — (E[X + Y])?
= E[X?] + 2E[XY] + E[Y?]

— (E[X + Y))? tively 0.55, 0.32 and 0.13, we have:
= E[X?] + 2E[XY] + E[Y?]
) E[X]=0-0.164+1-0.3+2-0.41
— E[X?] + 2E[XY] + E[Y?] s
2 2 N
— (E[X1)” — 2E[X]IE[Y] — (E[Y]) E[Y]=0-0.55+1-032+2-0.13
= Var(X) 4 Var(Y) + 2(E[XY] —0.58

— E[X]ETY]D
= Var(X) + Var(Y) + 2Cov(X, ¥) .

E[XY]=0-0-0.16-0.55
4+0-1-0.16-0.32+...

These results can be generalized for n +3-2-0.13-0.13
random variables X, X, ..., X, with x; =0.88.
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We can then calculate the covariance of X
and Y:

Cov(X, Y) = E[XY] — E[X]E[Y]
= 0.88 — (1.51-0.58)
= 0.00428.

FURTHER READING

» Correlation coefficient

» Expected value

» Random variable

» Variance of a random variable

|
Covariance Analysis

Covariance analysis is a method used to esti-
mate and test the effects of treatments. It
checks whether there is a significant differ-
ence between the means of several treat-
ments by taking into account the observed
values of the variable before the treatment.
Covariance analysis is a precise way of per-
forming treatment comparisons because it
involves adjusting the response variable Y to
aconcomitant variable X which corresponds
to the values observed before the treatment.

HISTORY

Covariance analysis dates back to 1930. It
was first developed by Fisher, R.A. (1932).
After that, other authors applied covariance
analysis to agricultural and medical prob-
lems. For example, Bartlett, M.S. (1937)
applied covariance analysis to his studies on
cotton cultivationin Egyptand on milk yields
from cows in winter.

Delurry, D.B. (1948) used covariance anal-
ysis to compare the effects of different med-
ications (atropine, quinidine, atrophine) on
rat muscles.

MATHEMATICAL ASPECTS

We consider here a covariance analysis of
acompletely randomized design implying
one factor.

The linear model that we will consider is the
following:

Ylj=H+Ti+ﬂle+5lj)
i=12,...,t, j=12,...,n
where

Y;; represents observation j, receiving
treatment 7,

1 isthe general mean common to all treat-
ments,

7; 1s the actual effect of treatment i on th
observation,

Xj;j isthe value of the concomitant variable,

and

€jj 1is the experimental error in observation
Yij.

Calculations

In order to calculate the F ratio that will help
us to determine whether there is a significant
difference between treatments, we need to
work out sums of squares and sums of prod-
ucts. Therefore, if X; and ¥; are respectively
the means of the X values and the Y values
for treatment i, and if X and Y_are respec-
tively the means of all the values of X and Y,
we obtain the formulae given below.

1. The total sum of squares for X:

ton
Sxx = Z Z(Xij -X)?.

i=1 j=1

2. The total sum of squares for Y (Syy)
iscalculated in the same way as Syy, but X
is replaced by Y.
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3. The total sum of products of X and Y:

t

Sxy= > (Xj—X)(¥y—Y).

i=1 j=1

4. The sum of squares of the treatments for
X:

Txx = ZZ(X —-X)%.

i=1 j=1

5. The sum of squares of the treatments for Y
(Tyy)
iscalculated in the same way as Ty, but X
is replaced by Y.

6. The sum of the products of the treatments
of Xand Y:

t

Txy =) 2(&. —X)(¥; —Y).

i=1 j=1

7. The sum of squares of the errors for X:

t n;
Exx = Z Z(Xij - X)*.

i=1 j=1

8. The sumofthe squares of the errorsfor Y:
iscalculated in the same way as Exx, but X
is replaced by Y.

9. The sum of products oftheerrors X and Y:

t

Exy =) > (Xj—X)(Yy—Y).

i=1 j=1

Substituting in appropriate values and calcu-
lating these formulae corresponds to an anal-
ysis of variance for each of X, Y and XY.
The degrees of freedom associated with
these different formulate are as follows:

1. For the total sum: Zn,- — 1.
i=1
2. For the sum of the treatments: r — 1.
t
3. For the sum of the errors: Z n; —t.

i=1

Adjustment of the variable Y to the con-
comitant variable X yields two new sums of
squares:

1. The adjusted total sum of squares:

s2
= Syy — X

SS
tot = Sex

2. The adjusted sum of the squares of the
eITors:
Exy
SSerr = Eyy EXX
The new degrees of freedom for these two
sums are:
1. Z;=1 ni —2;
2. >t n; —t— 1, where a degree of free-
dom is subtracted due to the adjustment.
The third adjusted sum of squares, the adjust-
ed sum of the squares of the treatments, is
given by:

S8t = SStot — SSerr -

This has the same number of degrees of free-
dom ¢ — 1 as before.

Covariance Analysis Table

We now have all of the elements needed to
establish the covariance analysis table. The
sums of squares divided by the number of
degrees of freedom gives the means of the
squares.

Source Degrees
ofvar- of free-
iation dom

Sum of squares
and of products

t
> XY Z y2

i=1 i=1

t
2
>

i=1



130 Covariance Analysis

Note: the numbers in the Y x? and Y y?
columns cannot be negative; on the other
hand, the numbers in the Y _:_; x;y; column
can be negative.

Adjustment

Mean of
squares

Sum of
squares

Source
of var-
iation

Degrees of
freedom

F Ratio: Testing the Treatments

The F ratio, used to test the null hypothesis
that there is a significant difference between
the means of the treatments once adjusted
to the variable X, is given by:

M Ctr
F= .
M CCIT

The ratio follows a Fisher distribution with
t—1and ) '_, nj—t—1degrees of freedom.
The null hypothesis

Hy:tn1=n=...=1

will be rejected at the significance level « if
the F ratio is superior or equal to the value
of the Fisher table, in other words if:

F=> thl,zle ni—t—l,a *

It is clear that we assume that the 8 coeffi-
cient is different from zero when perform-
ing covariance analysis. If thisisnot the case,
a simple analysis of variance is sufficient.

Test Concerning the g8 Slope
So, we would like to know whether there is
a significant effect of the concomitant vari-

ables before the application of the treatment.
To test this hypothesis, we will assume the
null hypothesis to be

Hy: =0
and the alternative hypothesis to be

Hi:B#0.
The F ratio can be established:

Fe E%y/Exx
M Cerr

It follows a Fisher distribution with 1 and
>, ni —t— 1 degrees of freedom. The
null hypothesis will be rejected at the sig-
nificance level « if the F ratio is superior to
or equal to the value in the Fisher table, in
other words if:
F=> F1,2§=1 ni—t—1,a *

DOMAINS AND LIMITATIONS
The basic hypotheses that need to be con-
structed before initiating a covariance anal-
ysis are the same as those used for an analysis
of variance or a regression analysis. These
are the hypotheses of normality, homogene-
ity (homoscedasticity), variances and inde-
pendence.
In covariance analysis, as in an analysis of
variance, the null hypothesis stipulates that
the independent samples come from differ-
ent populations that have identical means.
Moreover, since there are always conditions
associated with any statistical technique,
those that apply to covariance analysis are as
follows:
1. The population distributions must be

approximately normal, if not completely

normal.
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2. The populations from which the samples
are taken must have the same variance

o2, meaning:

2

_ 2 _ 2

where k is the number of populations to
be compared.

3. The samples must be chosen random-
ly and all of the samples must be inde-
pendent.

We must also add a basic hypothesis specif-

ic to covariance analysis, which is that the

treatments that were carried out must not
influence the values of the concomitant vari-

able X.

EXAMPLES

Consider an experiment consisting of com-
paring the effects of three different diets on
a population of cows.

The data are presented in the form of a table,
which includes the three different diets, each
of which was administered to five porch. The
initial weights are denoted by the concomi-
tantvariable X (inkg), and the gains in weight
(after treatment) are denoted by Y:

Diets

We firstcalculate the various sums of squares
and products:
1. The total sum of squares for X:

3 5
Sxx =Y > (Xj—X)?

i=1 j=1

= (32 —29.8667)> +...
+ (32 — 29.8667)°
=453.73.

2. The total sum of squares for Y:

305
Syy =YY (¥ —Y)?

i=1 j=1

= (167 — 167.4667)> + ...
+ (162 — 167.4667)>

= 3885.73.

3. The total sum of the products of X and Y:

3.5

Sxy =) Xj—X)(Y;—7Y)

i=1 j=1
= (32 — 29.8667)
(167 — 167.4667) + ...
+ (32 — 29.8667)
- (162 — 167.4667)
= 158.93.

4. The sum of the squares of the treatments
for X:

305
Txx = Z ZO_{L — X )?

i=1 j=1
= 5(28.2 — 29.8667)>
+5(26.2 — 29.8667)>
+5(35.2 — 29.8667)°
=223.33.

5. The sum of the squares of the treatments
for Y:

305
Tyy = ZZ(I_G. -1

i=1 j=1
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= 5(159.6 — 167.4667)*
+5(174.2 — 167.4667)>
+5(168.6 — 167.4667)>

= 542.53.

6. The sum of the products of the treatments
of Xand Y:

305
Txy = Z Z(Xi. —-X)(¥, —-Y)

i=1 j=1

— 5(28.2 — 29.8667)
- (159.6 — 167.4667) + ...
+5(35.2 — 29.8667)
- (168.6 — 167.4667)

— 27.67.

7. The sum of the squares of the errors for X:

3

5
Exx =) Y (Xj—X;)’

i=1 j=1
=(32-282)2+...4+ (32 —35.2)°
= 230.40.

8. The sum of the squares of the errors for Y:

305
Eyy = Z Z(Yij - 1)

i=1 j=1

= (167 — 159.6)> + ...
+ (162 — 168.6)*

= 3343.20.

9. The sum of the products of the errors of X
and Y:

305
Exy = Z Z(Xij - X)) (Y —Yi)

i=1 j=1

= (32 —28.2)(167 — 159.6) +...
+ (32 — 35.2)(162 — 168.6)

= 186.60.

The degrees of freedom associated with
these different calculations are as follows:
1. For the total sums:

3
Zni—1=15—1=14.
i=1

2. For the sums of treatments:
t—1=3-1=2.
3. For the sums of errors:
3

doni—t=15-3=12.

i=1
Adjusting the variable Y to the concomitant
variable X yields two new sums of squares:

1. The total adjusted sum of squares:

S2
SSiot = Syy — XX

Sxx
2
= 3885.73 — %
453.73
= 3830.06.

2. The adjusted sum of the squares of the
eITorS:
E2
SSerr = Eyy — 2%
err Yy Exx
186.60°
=3343.20 - ———
230.40
=3192.07.

The new degrees of freedom for these two
sums are:

LY m—2=15-2=13;
2.5 mi—t—1=15-3-1=11.
The adjusted sum of the squares of the treat-
ments is given by:
SStr = SStot — SSerr
= 3830.06 — 3192.07
= 637.99.
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Thishasthe same number of degrees of free-
dom as before:

t—1=3-1=2.

We now have all of the elements required in
orderto establish acovariance analysis table.
The sums of squares divided by the degrees
of freedom gives the means of the squares.

Source Degrees
ofvar- of free-
iation dom

Sum of squares
and of products

3 2 k] 3 5
Z X,. Z XiYi Z yi

i=1 i=1 i=1

Adjustment

Sum of Mean of
squares squares

Source of
variation

Degrees
of free-
dom

The F ratio, which is used to test the null
hypothesis that there is no significant differ-
ence between the means of the treatments
once adjusted to the variable Y, is given by:

MCy;  318.995
MCer ~ 290.188

Ifwechooseasignificancelevel of ¢ = 0.05,
the value of F in the Fisher table is equal to:

F = = 1.099.

F> 11,005 = 3.98.

Since F' < F»11,0.05, We cannot reject the
null hypothesis and so we conclude that
there is no significant difference between the
responses to the three diets once the vari-
able Y is adjusted to the initial weight X.

FURTHER READING

» Analysis of variance

» Design of experiments
» Missing data analysis
» Regression analysis

REFERENCES
Bartlett, M.S.: Some examples of statisti-
cal methods of research in agriculture and

applied biology. J. Roy. Stat. Soc. (Suppl.)
4, 137-183(1937)

DeLury, D.B.: The analysis of covariance.
Biometrics 4, 153-170 (1948)

Fisher, R.A.: Statistical Methods for
Research Workers. Oliver & Boyd, Edin-
burgh (1925)

Huitema, B.E.: The Analysis of Covariance
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Wildt, A.R., Ahtola, O.: Analysis of Covari-
ance (Sage University Papers Series on
Quantitative Applications in the Social
Sciences, Paper 12). Sage, Thousand
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Covariation

It is often interesting, particularly in eco-
nomics, to compare two time series.

Since we wish to measure the level of depen-
dence between two variables, this is some-
what reminiscent of the concept of correla-
tion. However, in this case, since the time
series are bound by a third variable, time,
finding the correlation coefficient would
only lead to an artificial relation.

Indeed, if two time series are considered, x;
and y;, which represent completely inde-
pendent phenomena and are linear functions
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of time:
Xxy=a-t+b,

yv=c-t+d,

where a, b, ¢ and d are constants, it is
always possible to eliminate the time fac-
tor t between the two equations and to obtain
a functional relation of the type y = e -
x + f. This relation states that there is a lin-
ear dependence between the two time series,
which is not the case.

Therefore, measuring the correlation
between the evolutions of two phenome-
na over time does not imply the existence of
alink between them. The term covariation is
therefore used instead of correlation, and this
dependence is measured using a covariation
coefficient. We can distinguish between:

e The linear covariation coefficient;

e The tendency covariation coefficient.

HISTORY
See correlation coefficient and time series.

MATHEMATICAL ASPECTS
In order to compare two time series y; and x;,
the first step is to attempt to represent them
on the same graphic.
However, visual comparison is generally dif-
ficult. The following change of variables is
performed:
Y=y

Yt = and Xt = A
S, S,

>

which are the centered and reduced variables
where Sy and S, are the standard deviations
of the respective time series.
We can distinguish between the following
covariation coefficients:
e The linear covariation coefficient
The form of this expression is identical to
the one for the correlation coefficient r,

but here the calculations do not have the
same grasp because the goal is to detect
the eventual existence of relation between
variations that are themselves related to
time and to measure the order of magni-
tude

D=9 -y

=1
D=2 Y = )2
=1 t=1

This yields values of between —1 and +1.
If it is close to £1, there is a linear rela-
tion between the time evolutions of the
two variables.

Notice that:

C =

n
ZX,-Yt

=1
C= ———.
n

Here n is the number of observations,
while Y; and X, are the centered and
reduced series obtained by a change of
variable, respectively.

The tendency covariation coefficient
The influence exerted by the means is
eliminated by calculating:

n

D = Ty) (i —Ty)

=1

n n '
D a =T Y (i —Ty,)?
=1 t=1

The means x and y have simply been
replaced with the values of the secular
trends T, and Ty, of each time series.
The tendency covariation coefficient K
also takes values between —1 to +1, and
the closer it gets to +1, the stronger the
covariation between the time series.

K =
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DOMAINS AND LIMITATIONS
There are many examples of the need to
compare two time series in economics: for
example, when comparing the evolution of
the price of a product to the evolution of
the quantity of the product on the market,
or the evolution of the national revenue to
the evolution of real estate transactions. It
is important to know whether there is some
kind of dependence between the two phe-
nomena that evolve over time: this is the goal
of measuring the covariation.

Visually comparing two time series is an

important operation, but this is often a dif-

ficult task because:

e The data undergoing comparison may
come from very different domains and
present very different orders of magni-
tude, so it is preferable to study the devi-
ations from the mean.

e The peaks and troughs of two time series
may have very different amplitudes; it is
then preferable to homogenize the dis-
persions by linking the variations back
to the standard deviation of the time
series.

Visual comparison is simplified if we

consider the centered and reduced vari-

ables obtained via the following variable
changes:

Also, in a similar way to the correlation
coefficient, nonlinear relations can exist
between two variables that give a C value
that is close to zero.

Itis therefore important to be cautious during
interpretation.

The tendency covariation coefficient is pref-
erentially used when the relation between the
time series is not linear.

EXAMPLES

Let us study the covariation between two
time series.

The variable x; represents the annual pro-
duction of an agricultural product; the vari-
able y; is its average annual price per unit in
constant euros.

8 8
> x =12560, > yi=2438,
=1 =1

givingx =320 and y = 3.1.

8
> (= ) = 163400,

=1

8
Y i =37 =164,
=1
giving o, = 142.9 and oy, = 0.98.
The centered and reduced values X; and Y;
are then calculated.
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The linear covariation coefficient is then cal-
culated:

8
th Y,
t=1

C=——— =
8
If the observations X; are compared
with Y;_1, meaning the production this year
is compared with that of the previous year,
we obtain:

8
Y XY
—2 171
8 T8
The linear covariation coefficient for a shift
of one year is very strong. There is a strong

(positive) covariation with a shift of one year
between the two variables.

% =0.0225.

C= =0.964.

FURTHER READING

» Correlation coefficient
» Moving average

» Secular trend

» Standard deviation

» Time series

REFERENCES
Kendall, M.G.: Time Series. Griffin, London
(1973)

Py, B.: Statistique Déscriptive. Economica,
Paris (1987)
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Cox, David R.

Cox, David R. was born in 1924 in Bir-
mingham in England. He studied mathe-
matics at the University of Cambridge and
obtained his doctorate in applied mathe-
matics at the University of Leeds in 1949.
From 1966 to 1988, he was a professor of
statistics at Imperial College London, and
then from 1988 to 1994 he taught at Nuffield
College, Oxford.

Cox,Davidis an eminent statistician. He was
knighted by Queen Elizabeth II in 1982 in
gratitude for his contributions to statistical
science, and has been named Doctor Hon-
oris Causa by many universities in England
and elsewhere. From 1981 to 1983 he was
President of the Royal Statistical Society;
he was also President of the Bernoulli Soci-
ety from 1972 to 1983 and President of the
International Statistical Institute from 1995
to 1997.

Dueto the variety of subjects thathe has stud-
ied and developed, Professor Cox has had
aprofound impactin his field. He was named
Doctor Honoris Causa of the University of
Neuchatel in 1992.

Cox, Sir David is the author and the coauthor
of more then 250 articles and 16 books, and
between 1966 and 1991 he was the editor of
Biometrika.

Some principal works and articles of Cox,
Sir David:

1964 (and Box, G.E.P.) An analysis of
transformations (with discussion)
J. Roy. Stat. Soc. Ser. B 26, 211-
243,

1970 The Analysis of Binary Data.
Methuen, London.
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1973 (and Hinkley, D.V.) Theoretical

Statistics. Chapman & Hall, London.

1974 (and Atkinson, A.C.) Planning expe-
riments for discriminating between
models. J. Roy. Stat. Soc. Ser. B 36,

321-348.

(and Hinkley, D.V.) Problems and
Solutions in Theoretical Statistics.
Chapman & Hall, London.

(and Snell, E.J.) Applied Statistics:
Principles and Examples. Chapman
& Hall.

Theory and general principles in
statistics. J. Roy. Stat. Soc. Ser. A
144, 289-297.

(and Reid, N.) Theory of Design
Experiments. Chapman & Hall, Lon-
don.

1978

1981

1981

2000
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Cox, Mary Gertrude

Cox, Gertrude Mary was born in 1900,
near Dayton, Iowa, USA. Her ambition was
to help people, and so she initially stud-
ied a social sciences course for two years.
Then she worked in orphanage for young
boys in Montana for two years. In order
to become a director of the orphanage, she
decided to continue her education at Iowa
State College. She graduated from Iowa
State College in 1929. To pay for her stud-
ies, Cox, Gertrude worked with Snedecor,
George Waddel, her professor, in his sta-
tistical laboratory, which led to her becom-
ing interested in statistics. After graduating,
she started studying for a doctorate in psych-
ology. In 1933, before finishing her doctor-
ate, Snedecor, George, then the director of
the Iowa State Statistical Laboratory, con-
vinced her to become his assistant, which

she agreed to, although she remained in the
field of psychology because she worked on
the evaluation of statistical test in psych-
ology and the analysis of psychological
data.

On 1Ist November 1940, she became the
director of the Department of Experimental
Statistics of the State of North Carolina.

In 1945, the General Education Board gave
her permission to create an institute of statis-
tics at the University of North Carolina, with
a department of mathematical statistics at
Chapel Hill.

She was a founder member of the Journal of
the International Biometric Society in 1947,
and she was a director of it from 1947 to
1955 and president of it from 1968 to 1969.
She was president of the American Statisti-
cal Association (ASA) in 1956. She died in
1978.

Principal work of Cox, M. Gertrude:

1957 (and Cochran, W.) Experimental
Designs, 2nd edn. Wiley, New York
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C, Criterion

The Cyciterion is a model selection citerion
in linear regression. For a linear regression
model with p parameters including any con-
stant term, in the model, a rule of thumb is
to select a model in which the value of C, is
close to the number of terms in the model.

HISTORY

Introduced by Mallows, Colin L. in 1964, the
model selection criterion C, has been used
ever since as a criterion for evaluating the
goodness of fit of a regression model.
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MATHEMATICAL ASPECTS In practice, we estimate I', by
—1 .
LetY; = fo+ X0, Xy + e @ = RSS
1,...,n be a multiple linear regression G = — —n+ 2p,
model. Denote the mean square error as o
MSE()). The criterion introduced in this where 52 is an estimator of o 2. Here we esti-

section can be used to choose the model with
the minimal sum of mean square errors:

S MSEG) =Y (E(Gi—?)
—o?(1-2m) )
=E (Z Oi — yi)z)
—o? ) (1 —2h)

= ERSS) —o%(n—2p),
where

n  is the number of observations,

p  is the number of estimated parameters,

h;; are the diagonal elements of the hat
matrix, and

y; s the estimator of y;.

Recall the following property of the h;;:

Zhii=P-

Define the coefficient

r _ 2 MSE@))
T
E (RSS) — o2 (n—2p)
E (RSS
= (2 )—n+2p.
o

If the model is correct, we must have:
ERSS)=(n—p)o°,

which implies

mate o2 using the s> of the full model. For
this full model, we actually obtain C, = p,
which is not an interesting result. Howev-
er, for all of the other models, where we use
only asubset of the explanatory variables, the
coefficient C, can have values that are differ-
ent from p. From the models that incorporate
only asubsetof the explanatory variables, we
then choose those for which the value of C,
is the closest to p.

If we have k explanatory variables, we can
also define the coefficient C, for amodel that
incorporates asubset Xy, ..., X, 1, p < kof
the k explanatory variables in the following
manner:

_ (n—KkRSS (X1,.... Xp—1)
[ RSS (X1, ..., Xp)
—n+2p,

where RSS (X1, ..., X,—1) is the sum of the
squares of the residuals related to the mod-
el with p — 1 explanatory variables, and
RSS (X1, ..., Xk) is the sum of the squares of
the residuals related to the model with all k
explanatory variables. Out of the two models
that incorporate p — 1 explanatory variables,
we choose, according to the criterion, the one
for which the value of the coefficient G, is the
closest to p.

DOMAINS AND LIMITATIONS

The G, criterion is used when selecting vari-
ables. When used with the R? criterion, this
criterion can tell us about the goodness of
fit of the chosen model. The underlying idea
of such a procedure is the following: instead
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of trying to explain one variable using all
of the available explanatory variables, it is
sometimes possible to determine an under-
lying model with a subset of these variables,
and the explanatory power of this model is
almost the same as that of the model contain-
ing all of the explanatory variables. Anoth-
er reason for this is that the collinearity of
the explanatory variables tends to decrease
estimator precision, and so it can be useful
to delete some superficial variables.

EXAMPLES
Consider some data related to the Chicago
fires of 1975. We denote the variable cor-
responding to the logarithm of the number
of fires per 1000 households per district i of
Chicagoin 1975 by Y, and the variables cor-
responding to the proportion of households
constructed before 1940, to the number of
thefts and to the median revenue per district
i by X1, X»> and X3, respectively.
Sincethis setcontains three explanatory vari-
ables, we have 23 = 8 possible models. We
divide the eight possible equations into four
sets:
1. Set A contains the only equation without
explanatory variables:

Y=p80+¢.

2. Set B contains three equations with one
explanatory variable:

Y =80+ B1X1+¢
Y=80+BX2+¢
Y=p00+B3X3+e.

3. Set C contains three equations with two
explanatory variables:

Y =P80+ B1X1+ BXo+¢
Y =60+ Bi1X1 + B3X3+ ¢
Y=o+ PoXo+ B3X3+ €.

4. Set D contains one equation with three
explanatory variables:

Y = Bo+ B1X1 + B2Xo + B3X3 + €. n

District Xy

] Xjq
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District X

] Xijq

Source: Andrews and Herzberg (1985)

Wedenote theresulting modelsin the follow-
ing way: 1 for Xy, 2 for X3, 3 for X3, 12 for
X and X5, 13 for X; and X3, 23 for X, and
X3, and 123 for the full model. The follow-
ing table represents the results obtained for
the G, criterion for each model:

Model Cp

If we consider a model from group B (con-
taining one explanatory variable), the num-
ber of estimated parameters is p = 2 and
none of the C, values for the three models
approaches 2. If we now consider a model
from group C (with two explanatory vari-
ables), p equals 3 and the C, of model 23
approaches this. Finally, for the complete
model we find that G, = 4, which is

also the number of estimated parameters, but
this is not an interesting result as previous-
ly explained. Therefore, the most reasonable
choice for the model appears to be:

Y= po+ BoXo + B3X3+¢.

FURTHER READING

» Coefficient of determination
» Collinearity

» Hat matrix

» Mean squared error

» Regression analysis

REFERENCES

Andrews D.F., Hertzberg, A.M.: Data:
A Collection of Problems from Many
Fields for Students and Research Workers.
Springer, Berlin Heidelberg New York
(1985)

Mallows, C.L.: Choosing variables in a lin-
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Cramer, Harald

Cramér, Harald (1893-1985) entered the
University of Stockholm in 1912 in order
to study chemistry and mathematics; he
became a student of Leffler, Mittag and
Riesz, Marcel. In 1919, Cramér was named
assistant professor atthe University of Stock-
holm. At the same time, he worked as an
actuary for an insurance company, Svenska
Life Assurance, which allowed him to study
probability and statistics.
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His main work in actuarial mathematics is
Collective Risk Theory. In 1929, he was
asked to create a new department in Stock-
holm, and he became the first Swedish pro-
fessor of actuarial and statistical mathe-
matics. At the end of the Second World War
he wrote his principal work Mathematical
Methods of Statistics, which was published
for the first time in 1945 and was recently (in
1999) republished.

Some principal works and articles of Cramér,
Harald

1946 Mathematical Methods of Statistics.
Princeton University Press, Prince-
ton, NJ.

1946 Collective Risk Theory: A Survey of
the Theory from the Point of View of
the Theory of Stochastic Processes.

Skandia Jubilee Volume, Stockholm.
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Criterion Of Total
Mean Squared Error

The criterion of total mean squared error
is a way of comparing estimations of the
parameters of a biased or unbiased model.

MATHEMATICAL ASPECTS
Let

B=(Br....B-1)

beavector of estimators for the parameters of
aregression model. We define the total mean
square error, TMSE, of the vector E of esti-
mators as being the sum of the mean squared
errors (MSE) of its components.

We recall that

MSE (B) =E(( - £)°)

where E (.) and V (.) are the usual symbols
used for the expected value and the vari-
ance. We define the total mean squared error

as:
p—1
TMSE(f) = ZMSE (B)
j=1

=§E((E~ - 8)°)

= [’Z_: [Var (E)+(E (E) _'BJ')z]

=({p- 1)o? - Trace (V)

where V is the variance-covariance matrix
of B.

DOMAINS AND LIMITATIONS
Unfortunately, when we wantto calculate the
total mean squared error

s B) = (3 - )

of a vector of estimators
=)
for the parameters of the model
Yi=Bo+BiX) +... + Bp—1Xj,_| +ei,

we need to know the values of the model
parameters f;, which are obviously unknown
for all real data. The notation st means that
the data for the jth explanatory variable were
standardized (see standardized data).

Therefore, in order to estimate these TMSE
we generate data from a structural similarly
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model. Using a generator of pseudo-random
numbers, we can simulate all of the data
for the artificial model, analyze it with dif-
ferent models of regression (such as simple
regression or ridge regression), and calcu-
late what we call the toral squared error,
TSE, of the vectors of the estimators Erelat—
ed to each method:

p—1
TSEB) =Y (B — £)*.
j=1

We repeat this operation 100 times, ensur-
ing that the 100 data sets are pseudo-
independent. For each model, the average
of 100 TSE gives a good estimation of the
TMSE. Note that some statisticians prefer
the model obtained by selecting variables
due to its simplicity. On the other hand, other
statisticians prefer the ridge method because
it uses all of the available information.

EXAMPLES

We can generally compare the following
regression methods: linear regression by
mean squares, ridge regression, or the vari-
able selection method.

In the following example, thirteen portions
of cement have been examined. Each portion
is composed of four ingredients, given in the
table. The aim is to determine how the quan-
tities x;1, X2, x;3 and x;4 of these four ingredi-
ents influence the quantity y;, the heat given
out due to the hardening of the cement.
Heat given out by the cement

Portion

Ingredient
2 3

Portion

Ingredient
1 p 3

Xi1

Xj2  Xj3

yi quantity of heat given out due to the
hardening of the ith portion (in joules);
quantity of ingredient 1 (tricalcium alu-
minate) in the ith portion;

quantity of ingredient 2 (tricalcium sil-
icate) in the ith portion;

quantity of ingredient 3 (tetracalcium
alumino-ferrite) in the ith portion;
quantity of ingredient 4 (dicalcium sil-
icate) in the ith portion.

Xil
Xi2
Xi3

Xi4

In this paragraph we will compare the esti-
mators obtained by least squares (LS)
regression with those obtained by ridge
regression (R) and those obtained with the
variable selection method (SV) via the total
mean squared error TMSE. The three esti-
mation vectors obtained from each method
are:

Yis = 95.4 + 9.12X¢° + 7.94X,°
+0.65X3° — 2.41X,°

YR = 95.4 4+ 7.64X1* + 4.67X,°
— 0.91X3° — 5.84X4°

Ysv = 95.4 4+ 8.64X;* + 10.3X,°

We note here that all of the estimations
were obtained from standardized explanato-
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ry variables. We compare these three estima-
tions using the total mean squared errors of
the three vectors:

A ~ ~ ~ ~ /
BLs = (,BLSI, BLs,, BLS ,BLS4)

~ ~ ~ ~ ~ /

Br = (,BRI, BRy» PR ,BR4)

~ ~ ~ ~ ~ /
Bsv = (ﬂsvl, Bsv,, Bsvs, ,35V4) .

Here the subscript LS corresponds to the
method of least squares, R to the ridge
method and SV to the variable selection
method, respectively. For this latter method,
the estimations for the coefficients of the uns-
elected variables in the model are considered
to be zero. In our case we have:

Bis = (9.12,7.94,0.65, —2.41)
Br = (7.64,4.67, —0.91, —5.84)
Bsv = (8.64,10.3,0,0) .

We have chosen to approximate the under-
lying process that results in the cement data
by the following least squares equation:

Yimc = 95.4 + 9.12X}, + 7.94X5
+0.65X% — 241X}, + ;.

The procedure consists of generating
13 random error terms é&p,...,&13 100
times based on a normal distribution with
mean 0 and standard deviation 2.446 (recall
that 2.446 is the least squares estimator
of o for the cement data). We then cal-
culate Yyrgs,..., Y1315 using the Xf/ val-
ues in the data table. In this way, we gen-
erate 100 Yirs, ..., Yi3rs samples from
100 g1, .. ., €13 samples.

The three methods are applied to each of
these 100 Yirs, ..., Yiars samples(always
using the same values for X;}), which yields

100 estimators ﬂALS, /§R and I§sv~ Note that

these three methods are applied to these
100 samples without any influence from the
results from the equations

Vies = 95.4 4 9.12X}, + 7.94X,
+0.65X5 — 2.41X5,,

Vik = 95.4 + 7.64X}, + 4.67X5,

—0.91X7%; — 5.84X3, and

Visv = 95.4 + 8.64X5, + 10.3X3,

obtained for the original sample. Despite the
fact that the variable selection method has
chosen the variables X;; and X;; in /Y\iSV =
95.4 +8.64X7, + 10.3X7,, itis possible that,
for one of these 100 samples, the method has
selected better X;» and X;3 variables, or only
X3, or all of the subset of the four available
variables. In the same way, despite the fact
that the equation Yir = 95.4 + 7.64X7, +
4.67xX3, — 0.91X7; — 5.84X7, was obtained
with k = 0.157, the value of k is recalculat-
ed for each of these 100 samples (for more
detailsrefertotheridgeregressionexample).
From these 100 estimations of /§Ls, ﬁsv and
ﬁR, we can calculate 100 ETCs for each
method, which we label as:

ETCis = (ﬁle - 9.12)2
N 2
+ (ﬁLs2 - 7.94)
+ (Bus, - 0.65)2
+ (Bus, + 2.41)2
N 2
ETCg = (,BRI - 9.12)
N 2
+ (ﬁR2 - 7.94)

+ (ﬁR3 —065)

+ (Bry +2.41)°
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ETCgy = (ﬁsv1 - 9.12)2
N 2
+ (ﬁsv2 - 7.94)
+ (ﬁsw - 0.65)2
+ (st4 + 2.41)2 .

The meansofthe 100 valuesof ETCy s, ETCRr
and ETCsy are the estimations of TMSE s,
TMSEsy and TMSER: the TMSE estimations
for the three considered methods.

After this simulation was performed, the fol-
lowing estimations were obtained:

TMSErs = 270,
TMSER =175.
TMSEsy = 166.

These give the following differences:

TMSEys — TMSEsy = 104,
TMSEy s — TMSER = 195,
TMSEsy — TMSER = 91.

Since the standard deviations of 100 ob-
served differences are respectively 350,
290 and 280, we can calculate the approxi-
mate 95% confidence intervals for the differ-
ences between the TMSEs of two methods

2-350
TMSErs — TMSEsy = 104 + —,

/100

2-290
TMSE1s — TMSER = 195 + —,

/100

2-280
TMSEsy — TMSER =91 + — .

/100
We get
34 < TMSE1 s — TMSEsy < 174,

137 < TMSEy s — TMSER < 253,
35 < TMSEsy — TMSER < 147.

We can therefore conclude (at least for the
particular model used to generate the simu-
lated data, and taking into account our aim—
to getasmall TMSE), thatthe ridge method is
the best of the methods considered, followed
by the varible selection procedure.

FURTHER READING

» Bias

» Expected value

» Hat matrix

» Mean squared error

» Ridge regression

» Standardized data

» Variance

» Variance—covariance matrix

» Weighted least-squares method
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Box, G.E.P, Draper, N.R.: A basis for the
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Critical Value

Inhypothesis testing, the critical valueis the
limit value at which we take the decision to
rejectthe null hypothesis Hy, fora given sig-
nificance level.

HISTORY

The concept of a critical value was intro-
duced by Neyman, Jerzy and Pearson,
Egon Sharpe in 1928.

MATHEMATICAL ASPECTS
The critical value depends on the type of
the test used (two-sided test or one-sided
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test on the right or the left), the probability
distribution and the significance level «.

DOMAINS AND LIMITATIONS

The critical value is determined from the
probability distribution of the statistic
associated with the test. It is determined by
consulting the statistical table correspond-
ing to this probability distribution (normal
table, Student table, Fisher table, chi-
square table, etc).

EXAMPLES

A company produces steel cables. Using
a sample of size n = 100, it wants to ver-
ify whether the diameters of the cables con-
formclosely enough to the required diameter
0.9 cm in general.

The standard deviation o of the popula-
tion is known and equals 0.05 cm.

In this case, hypothesis testing involves
atwo-sided test. The hypotheses are the fol-
lowing:

null hypothesis Hy: n =09

alternative hypothesis H;: © # 0.9.

To a significance level of « = 5%, by look-
ing at the normal table we find that the crit-
ical value 7 equals 1.96.

FURTHER READING

» Confidence interval
» Hypothesis testing
» Significance level

» Statistical table

REFERENCE

Neyman, J., Pearson, E.S.: On the use and
interpretation of certain test criteria for
purposes of statistical inference, Parts I

and II. Biometrika 20A, 175-240, 263—
294 (1928)
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Cyclical Fluctuation

Cyclical fluctuations is a term used to
describe oscillations that occur over long
periods about the secular trend line or curve
of a time series.

HISTORY
See time series.

MATHEMATICAL ASPECTS

Consider Y;, a time series given by its com-

ponents; Y; can be written as:

e Y; =1;-S;-C;-I; (multiplicative model),
or;

o Y, =T,+S;+ C; + I, (additive model).

where

Y;
T;

is the data at time 1,

is the secular trend at time ¢;

S; 1is the seasonal variation at time 7;

C; is the cyclical fluctuation at time ¢, and;
I; is the irregular variation at time 7.

The firststep wheninvestigating atime series
is always to determine the secular trend 77,
and then to determine the seasonal varia-
tion S;. Itis then possible to adjust the initial
data of the time series Y; according to these

two components:
Y;

Sy - Ty
) Y[ — S[ — T[ = C[ + I[ (addlthe model).

To avoid cyclical fluctuations, a weighted
moving average is established over a few
months only. The use of moving averages
allows use to smooth the irregular varia-
tions /; by preserving the cyclical fluctua-
tions Cy.

° = C; - I; (multiplicative model);
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The choice of a weighted moving average
allows us to give more weight to the cen-
tral values compared to the extreme val-
ues, in order to reproduce cyclical fluctua-
tionsinamoreaccurate way. Therefore, large
weights will be given to the central values
and small weights to the extreme values.
For example, for a moving average con-
sidered for an interval of five months, the
weights —0.1, 0.3, 0.6, 0.3 and —0.1 can be
used; since their sum is 1, there will be no
need for normalization.

If the values of C; - I; (resulting from the
adjustments performed with respect to the
secular trend and to the seasonal varia-
tions) are denoted by X;, the value of the
cyclical fluctuation for the month ¢ is deter-
mined by:

Ct == —01 'XI—Z + 03 'Xl—l + 06 N Xt
+ 03 'XH.] - 01 'Xt+2 .

DOMAINS AND LIMITATIONS

Estimating cyclical fluctuations allows us to:

e Determine the maxima or minima that
a time series can attain.

e Perform short- or medium-term forecast-
ing.

e Identify the cyclical components.

The limitations and advantages of the use of

weighted moving averages when evaluating

cyclical fluctuations are the following:

e Weighted moving averages can smooth
a curve with cyclical fluctuations which
still retaining most of the original fluc-
tuation, because they preserve the ampli-
tudes of the cycles in an accurate way.

e The use of an odd number of months to
establish the moving average facilitates
better centering of the values obtained.

e It is difficult to study the cyclical fluctu-
ation of a time series because the cycles

usually vary inlength and amplitude. This
isdue to the presence of amultitude of fac-
tors, where the effects of these factors can
change from one cycle to the other. None
of the models used to explain and predict
such fluctuations have been found to be
completely satisfactory.

EXAMPLES

Let us establish a moving average con-
sidered over five months of data adjusted
according to the secular trend and seasonal
variations.

Letusalsousethe weights —0.1,0.3,0.6,0.3,
—0.1; since their sum is equal to 1, there is
no need for normalization.

Let X; be the adjusted values of C; - [;:

Ci=-01-X;24+03-X;_1+0.6-X;
+0.3-Xi+1 —0.1-X;40.

The table below shows the electrical pow-
er consumed by street lights every month in
millions of kilowatt hours during the years
1952 and 1953. The data have been adjusted
according to the secular trend and seasonal
variations.

Year Month Data Moving average

X; for 5 months C;
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AL CI OB E B BLC T C L cycle is often sought, but this only appears
X for 5 months C;

every 20 years.

FURTHER READING n
» Forecasting

» Irregular variation

» Moving average

» Seasonal variation

» Secular trend
» Time series

REFERENCE

Box, G.E.P, Jenkins, G.M.: Time Series
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Daniels, Henry E.

Daniels, Henry Ellis was born in London in
October 1912. After graduating from Edin-
burgh University in 1933, he continued his
studies at Cambridge University. After gain-
ing his doctorate at Edinburgh University, he
wentback to Cambridge as lecturer in mathe-
matics in 1947. In 1957, Daniels, Henry
became the first professor of mathematics at
Birmingham University, a post he held until
1978, up to his retirement. The research field
that interested Daniels, Henry were infer-
ential statistics, saddlepoint approximations
in statistics, epidemiological modeling and
statistical theory as applied to textile tech-
nology. When he was in Birmingham, he
founded the annual meeting of statisticians
in Gregynog Hall in Powys. These annu-
al meetings gradually became one of the
most well-received among English statisti-
cians.

From 1974 to 1975 he was president of
the Royal Statistical Society, which awarded
him the Guy Medal in silver in 1957 and in
goldin 1984.1In 1980 he was elected a mem-
ber of the Royal Society and in 1985 an hon-
ored member of the International Statistical
Society. He died in 2000.

Some principal works and articles of
Daniels, Henry E.:

1954 Saddlepointapproximationsin statis-

tics. Ann. Math. Stat. 25, 631-650.

1955 Discussion of a paper by Box, G.E.P.
and Anderson, S.L.. J. Roy. Stat. Soc.

Ser. B 17, 27-28.

1958 Discussion of paper by Cox, D.R..

J. Roy. Stat. Soc. Ser. B 20, 236-238.

1987 Tail probability approximations. Int.

Stat. Rev. 55, 137-48.
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Data

A datum (plural data) is the result of an
observation made on a population or on
a sample.

The word “datum” is Latin, and means
“something given;” itis used in mathematics
to denote an item of information (not neces-
sarily numerical) from which a conclusion
can be made.

Note that a number (or any other form of
description) thatdoesnotnecessarily contain
any information should not be confused with
a datum, which does contain information.
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The data obtained from observations are
related to the variable being studied. These
data are quantitative, qualitative, discrete or
continuous if the corresponding variable is
quantitative, qualitative, discrete or contin-
uous, respectively.

FURTHER READING
» Binary data

» Categorical data
» Incomplete data
» Observation

» Population

» Sample

» Spatial data

» Standardized data
» Value

» Variable

REFERENCES

Federer, W.T.: Data collection. In: Kotz, S.,
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tistical Sciences, vol. 2. Wiley, New York
(1982)
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Data Analysis

Often, one of the first steps performed
in scientific research is to collect data.
These data are generally organized into two-
dimensional tables. This organization usu-
ally makes it easier to extract information
about the data—in other words, to analyze
them.

Inits widest sense, data analysis can be con-
sidered to be the essence of statistics to
which all other aspects of the subject are
linked.

HISTORY
Since data analysis encompasses many dif-
ferent methods of statistical analysis, it is

difficult to briefly overview the history of

data analysis. Nevertheless, we can rapid-

ly review the chronology of the most funda-
mental aspects of the subject:

e The first publication on exploratory data
analysis dates back to 1970-1971, and
was written by Tukey, J.W.. This was the
first version of his work Exploratory Data
Analysis, published in 1977.

e The theoretical principles of correspon-
dence analysis are due to Hartley, H.O.
(1935) (published under his original
German name Hirschfeld) and to Fish-
er, R.A. (1940). However, the theory
was largely developed in the 1970s by
Benzécri, J.P.

e The first studies on classification were
carried out in biology and in zoology.
The oldest form of typology was con-
ceived by Galen (129-199 A.D.). Numer-
ical classification methods derive from
the ideas of Adanson (in the eighteenth
century), and were developed, amongst
others, by Zubin (1938) and Thorndike
(1953).

DOMAINS AND LIMITATIONS

The field of data analysis comprises many

different statistical methods.

Types of data analysis can be classified in the

following way:

1. Exploratory  data  analysis, which
involves (as its name implies) exploring
the data, via:

e Representing the data graphically,

e Data transformation (if required),

e Detecting outlier observations,

e Elaborating research hypotheses that
were not envisaged at the start of the
experiment,

e Robust estimation.
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2. Initial data analysis, which involves:

e Choosing the statistical methods to be
applied to the data.

3. Multivariate data analysis, which in-
cludes:

e Diseriminant analysis,

e Data transformation, which reduces
the number of dimensions and facili-
tates interpretation,

e Searching for structure.

4. Specific forms of data analysis that are
suited to different analytical tasks; these
forms include:

e Correspondence analysis,

e Multiple correspondence analysis,

e C(lassification.

5. Confirmatory data analysis, which in-
volves evaluating and testing analytical
results; this includes:

e Parameter estimation,

e Hypotheses tests,

e The generalization and the conclu-
sion.

FURTHER READING

» Classification

» Cluster analysis

» Correspondence analysis
» Data

» Exploratory data analysis
» Hypothesis testing

» Statistics

» Transformation
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Data Collection

When collecting data, we need to consider
several issues. First, it is necessary to define
why we need to collect the data, and what
the data will be used for. Second, we need to
consider the type of data that should be col-
lected: it is essential that the data collected
arerelated tothe goal of the study. Finally, we
must consider how the data are to be collect-
ed. There are three approaches to data col-
lection:
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1. Register
2. Sampling and census
3. Experimental research

1. Register

One form of accessible data is a registered
one. For example, there are registered data
on births, deaths, marriages, daily tempera-
tures, monthly rainfall and car sales.

There are no general statistical methods that
ensure that valuable conclusions are drawn
from these data. Each set of data should be
considered on its own merits, and one should
be careful when making inference on the
population.

2. Sampling and census

Sampling methods can be divided into two
categories: random methods and nonrandom
methods.

Nonrandom methods involve constructing,
by empirical means, a sample that resem-
bles the population from which itis taken as
much as possible. The most commonly used
nonrandom method is quota sampling.
Random methods use a probabilistic proce-
dure to derive asample from the population.
Given the fact that the probability that a giv-
en unitis selected in the sample is known, the
error due to sampling can then be calculated.
The main random methods are simple ran-
dom sampling, stratified sampling, sys-
tematic sampling and batch sampling.

In a census, all of the objects in a popula-
tionare observed, yielding data for the whole
population. Clearly, this type of investigation
is very costly when the population is very
large. Thisis why censuses are not performed
very often.

3. Experimental research
In an experiment, data collection is per-
formed based upon a particular experiment-

al design. These experimental designs are
applied to data collection in all research
fields.

HISTORY

Itislikely that the oldest form of data collec-
tion dates back to population censuses per-
formed in antiquity.

Antille and Ujvari (1991) mention the exis-
tence of a position for an official statistician
in China during the Chow dynasty (111-211
B.C.).

The Roman author Tacitus says that Emper-
or Augustus ordered all of the soldiers, ships
and wealth in the Empire to be counted.
Evidence for censuses can also be found in
the Bible; Saint Luke reports that “Caesar
Augustus ordered adecree prescribing a cen-
sus of the whole world (...) and all went to
be inscribed, each in his own town.”

A form of statistics can also be found during
this time. Its name betrays its administrative
origin, because it comes from the Latin word
“status:” the State.

FURTHER READING

» Census

» Design of experiments
» Sampling

» Survey

REFERENCES

Antille, G., Ujvari, A.: Pratique de la Statis-
tique Inférentielle. PAN, Neuchatel,
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Boursin, J.-L.: Les structures du hasard.
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Decile

Deciles are measures of position calculated
on a set of data.
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The deciles are the values that separate
adistribution into ten equal parts, where each
part contains the same number of observa-
tions). The decile is a member of the wider
family of quantiles.

The xth decile indicates the value where
10x% of the observations occur below this
value and (100 — 10x)% of the observa-
tions occurabovethis value. Forexample, the
eighth decile is the value where 80% of the
observations fall below this and 20% occur
above it.

The fifth decile represents the median.
There will therefore be nine deciles for a giv-
en distribution:

‘ 10% | 40% ‘ 40% | 10% ‘
‘ llst 5"Lh 9l|h ‘
decile decile decile

MATHEMATICAL ASPECTS

The process used to calculate deciles is sim-
ilar to that used to calculate the median or
quartiles.

When all of the raw observations are avail-
able, the process used to calculate deciles is
as follows:

1. Organize the n observations into a fre-
quency distribution

2. The deciles correspond to the observa-
tions for which the cumulative relative
frequencies exceed 10%, 20%, 30%,. . .,
80%, 90%.
Some authors propose using the following
formula to precisely determine the values
of the different deciles:
Calculating the jth decile:
Take i to be the integer part of j - % and
k the fractional part of j - %.
Take x; and x;41 to be the values of the
observations at the ith and (i + 1)th posi-

tions (when the observations are arranged
in increasing order).
The jth decile is then equal to:

Di=xi+k- (xix1—xi) .

When the observations are grouped into

classes, the deciles are determined in the fol-

lowing way:

1. Determine the class containing the
desired decile located:

e First decile: the first class for which
the cumulative relative frequency
exceeds 10%.

e Second decile: the first class for which
the cumulative relative frequency
exceeds 20%.

e Ninth decile: the first class for which
the cumulative relative frequency
exceeds 90%.

2. Calculate the value of the decile based on
the hypothesis that the observations are
uniformly distributed in each class:

decile = L; + [w} e

f decile

where

L= lower limit of the class of the
decile

N = total number of observations

q= 1/10 for the first decile

q= 2/10 for the second decile

q= 9/10 for the ninth decile

> finf = sum of the frequencies lower
than the class of the decile

Jaecile = frequency of the class of the
decile

c= size of the interval of the class

of the decile
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DOMAINS AND LIMITATIONS

The calculation of deciles only has meaning
for aquantitative variable that can take val-
ues over a given interval.

The number of observations needs to be
relatively high, because the calculation of
deciles involves dividing the set of observa-
tions into ten parts.

Deciles are relatively frequently used in
practice; for example, when interpreting
the distribution of revenue in a city or
state.

EXAMPLES

Consider an example where the deciles are
calculated for a frequency distribution of
a continuous variable where the observa-
tions are grouped into classes.

The following frequency table represents
the profits (in thousands of euros) of 500 bak-
eries:

Profit (in
thousands
of euros)

Fre- Cumu- Relative
quen- lated cumulated
cies frequency frequency

The first decile is in the class 150-200 (this
is where the cumulative relative frequency
exceeds 10%).

By assuming that the observations are dis-
tributed uniformly in each class, we obtain

the following value for the first decile:

500 - 1) — 40
Ist decile = 150 + [%] .50

=160.

The second decile falls in the 200-250 class.
The value of the second decile is equal to

, (500 - %) — 90
2nd decile = 200+ 0 | 50

= 208.33.

We can calculate the other decilesin the same
way, which yields:

Class

Decile

We can conclude, for example, that 10% of
the 500 bakeries make a profit of between
100000 and 160000 euros, 50% make a prof-
it that is lower than 315000 euros, and
10% make a profit of between 441670 and
500000 euros.

FURTHER READING

» Measure of location
» Median

» Percentile

» Quantile

» Quartile
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Degree of Freedom

The number of degrees of freedom is
a parameter from the chi-square distri-
bution. It is also a parameter used in other
probability distributions related to the
chi-square distribution, such as the Student
distribution and the Fisher distribution.
In another context, the number of degrees
of freedom refers to the number of linear-
ly independent terms involved when calcu-
lating the sum of squares based on »n inde-
pendent observations.

HISTORY
The term “degree of freedom” was intro-
duced by Fisher, R.A. in 1925.

MATHEMATICAL ASPECTS

Let Y1, Ys,..., Y, be a random sample of
size n taken from a population with an
unknown mean Y. The sum of the deviations
of n observations with respect to their arith-
metic mean is always equal to zero:

zn:(Y,- —-Y)=0.
i=1

Thisrequirementisaconstrainton eachdevi-
ation Y; — Y used when calculating the vari-

ance:
n
Y -1

§? == :

n—1

This constraint implies that n — 1 devia-
tions completely determine the nth devia-
tion. The n deviations (and also the sum of
their squares and the variance in the S of the
sample) therefore have n — 1 degrees of free-
dom.

FURTHER READING

» Chi-square distribution
» Fisher distribution

» Parameter

» Student distribution

» Variance

REFERENCES
Fisher, R.A.: Applications of “Student’s”
distribution. Metron 5, 90-104 (1925)

|
Deming, W. Edwards

Deming, W. Edwards was born in 1900, in
Sioux City, in Iowa. He studied science at
Wyoming University, graduating in 1921,
and at Colorado University, where he com-
pleted his Master degree in mathematics
and physics in 1924. Then he went to Yale
University, where he received his doctorate
in physics in 1928. After his doctorate, he
worked for ten years in the Laboratory of
the Ministry for Agriculture. In 1939, Dem-
ing moved to the Census Bureau in Wash-
ington. There he used his theoretical knowl-
edge to initiate the first censuses to be per-
formed by sampling. These censuses used
techniques that later provided an example for
similar censuses performed around the rest
of the world. He left the Census Bureau in
1946 to become consultantin statistical stud-
ies and a professor of statistics at New York
University. He died in Washington D.C. in
1993.

For a long time (up to 1980), the theories
of Deming, W.E. were ignored by Ame-
rican companies. In 1947, Deming went to
Tokyo as a consultant to apply his techniques
of sampling. From 1950 onwards, Japanese
industry adopted the management theories
of Deming. Within ten years many Japanese
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products were being exported to America
because they were better and less expensive
than equivalent products manufacturedinthe
United States.

Some principal works and articles of Dem-
ing, W. Edwards:

1938 Statistical Adjustment of Data.

Wiley, New York.

1950 Some Theory of Sampling. Wiley,
New York.

1960 Sample DesigninBusiness Research.
Wiley, New York.
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Demography

Demography is the study of human pop-
ulations. It involves analyzing phenomena
such as births, deaths, migration, marriages,
divorces, fertility rate, mortality rate and age
pyramids.

These phenomena are treated from both bio-
logical and socio-economic points of view.
The methods used in demography are
advanced mathematics and statistics as well
as many fields of social science.

HISTORY

The first demographic studies date back to
the middle of the seventeenth century. In this
period, Graunt, John, an English scientist,
analyzed the only population data available:
a list of deaths in the London area, classi-
fied according to their cause. In 1662 he pub-
lished astudy in which he tried to evaluate the
average size of a family, the importance of
migrational movement, and other elements
related to the structure of the population.
In collaboration with Petty, Sir William,
Graunt proposed that more serious studies of

the population should be made and thatacen-
ter where statistical data would be gathered
should be created.

During the eighteenth century the same types
of analyses were performed and progressive-
lyimproved, butit wasn’tuntil the nineteenth
century that several European countries as
well as the United States undertook national
censuses and established the regular records
of births, marriages and deaths.

These reports shows that different regions
offered different chances of survival for their
inhabitants. These conclusions ultimately
resulted in improved working and hygiene
conditions.

Using the demographic data gathered, pre-
dictions became possible, and the first
demographic journals and reviews appeared
around the end of the century. These included
“Demography” in the United States, “Popu-
lation” in France and “Population Studies”
in Great Britain.

In the middle of the twentieth century demo-
graphic studies began to focus on the glob-
al population, as the demographic problems
of the Third World became an important
issue.

FURTHER READING
» Census
» Population

REFERENCES

Cox, PR.: Demography, Sthedn. Cambridge
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University of Chicago Press, Chicago, IL
(1959)
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Dendrogram

A dendrogram is a graphical representation
of different aggregations made during a clus-
ter analysis. It consists of knots that corre-
spond to groups and branches that represent
the associations made ateach step. The struc-
ture of the dendrogram is determined by the
order in which the aggregations are made.
Ifascaleisadded to the dendrogramitis pos-
sible to represent the distances over which
the aggregations took place.

HISTORY

In amore general sense, a dendrogram (from
the Greek “dendron”, meaning tree) is a tree
diagram that illustrates the relations that
exist between the members of a set.

The first examples of dendrograms were the
phylogenetic trees used by systematic spe-
cialists. The term “dendrogram” seems to
have been used for the first time in the work
of Mayr et al. (1953).

MATHEMATICAL ASPECTS

During cluster analysis on a set of objects,
aggregations are achieved with the help of
a distance table and the chosen linkage
method (single linkage method, complete
linkage method, etc.).

Each extreme point of the dendrogram repre-
sents adifferent class produced by automatic
classification.

The dendrogram is then constructed by rep-
resenting each group by a knot placed at
a particular position with respect to the hor-
izontal scale, where the position depends
upon the distance over which the aggregate
is formed.

The objects are placed at the zero level of the
scale. To stop the branches connecting the

knots from becoming entangled, the proce-

dure of drawing a dendrogram is performed

in a systematic way.

e Thefirsttwo grouped elements are placed,
one on top of the other, at the zero lev-
el of the scale. A horizontal line is then
drawn next to each element, from the zero
level to the aggregation distance for each
element. The resulting class is then repre-
sented by a vertical line that connects the
ends of the lines for the elements (forming
a “knot”). The middle of this vertical line
provides the starting point for a new hori-
zontal line for this class when it is aggre-
gated with another class. The dendrogram
therefore consists of branches construct-
ed from horizontal and vertical lines.

e Two special cases can occur during the
next step:

1. Two classes that each consist of one
element are aggregated; these class-
es are placed at the zero level and the
resulting knot is located at the aggre-
gation distance, as described previous-
ly;

2. An element is aggregated to a class
formed previously. The element is
aggregated from the zero level, and
is inserted between existing classes
if necessary). The knot representing
this aggregation is placed at the (hori-
zontal) distance corresponding to the
aggregation distance between the class
and the element.

This procedure continues until the desired
configuration is obtained. If there are still
classes consisting of a single element at the
end of the aggregation process, they are sim-
ply added from the zero level of the dendro-
gram. When the classificationhas been com-
pleted, each class will corresponds to a par-
ticular part of the dendrogram.
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DOMAINS AND LIMITATIONS

The dendrogram describes the ordered path
of the set of operations performed during
cluster analysis. It illustrates this type of
classification in a very precise manner.
This strictly defined approach to construct-
ing adendrogram is sometimes modified due
to circumstances. For example, as we will
see in one of the examples below, the aggre-
gation distances of two or more successive
steps may be the same, and so the procedure
must then be changed to make sure that the
branches of the dendrogram do not get entan-
gled.

In the case that we have described above, the
dendrogram is drawn horizontally. Obvious-
ly, it is also possible to plot a dendrogram
from top to bottom, or from bottom to top.
The branches can even consist of diagonal
lines.

EXAMPLES

We will perform a cluster analysis using the
single link method and establish the corre-
sponding dendrogram, illustrating the differ-
ent aggregations that may occur.

Consider the grades obtained by five students
during examinations for four different cours-
es: English, French, maths and physics.
We would like to separate these five stu-
dents into two groups using the single link
method, in order to test a new teaching
method.

These grades, which can take values from 1
to 6, are summarized in the following table:

English French

Maths Physics
Alain

Jean

Marc

Paul

Pierre

The distance table is obtained by calculat-
ing the Euclidean distances between the stu-
dents and adding them to the following table:

Alain Jean Marc Paul Pierre

Alain

Jean

Marc
Paul
Pierre

Using the single link method, based on
the minimum distance between the objects
in two classes, the following partitions are
obtained at each step:

First step: Marc and Pierre are grouped at
an aggregation distance of 1.12: {Alain},
{Jean}, {Marc,Pierre}, {Paul} Second step:
We revise the distance table. The new dis-
tance table is given below:

Jean Marc and Pierre Paul

Alain
Jean

Marc and
Pierre

Alain and Jean are then grouped at a distance
of 1.22, and we obtain the following parti-
tion: {Alain, Jean}, {Marc, Pierre}, {Paul}
Third step: The new distance table is given
below:

Marc and Pierre | Paul

Alain and Jean

Marc and Pierre

Paul is then grouped with Marc and Pierre at
adistance of 1.22, yielding the following par-
tition: {Alain, Jean}, {Marc, Pierre, Paul}
Fourth step: The two groups are aggregated
at a distance of 1.5.

This gives the following dendrogram:
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Alain
Paul
Marc

Cl) lI 2I d?stance

Notice that Paul must be positioned before
the group of Marc and Pierre in order to avoid
entangling the branches of the diagram.

FURTHER READING

» Classification

» Cluster analysis

» Complete linkage method
» Distance

» Distance table

REFERENCES
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|
Density Function

The density function of a continuous ran-
dom variable allows us to determine the
probability that a random variable X takes
values in a given interval.

HISTORY
See probability.

MATHEMATICAL ASPECTS

Consider P(a < X < b), the probability
that a continuous random variable X takes
avalueintheinterval [a, b]. This probability
is defined by:

b
Pla<X<b =/ fx)dx.

where f(x) is the density function of the ran-
dom variable X.

The density function is graphically repre-
sented on an axis system. The different val-
ues of the random variable X are placed on
the abscissa, and those taken by the functionf
are placed on the ordinate.

The graph of the function f does not allow us
to determine the probability for one partic-
ular point, but instead to visualize the proba-
bility for an interval on a surface.

The total surface under the curve corre-
sponds to a value of 1:

/f(x)dx:l.

The variable X is a continuous random vari-
able if there is a non-negative function f that
is defined for real numbers and for which the
following property holds for every interval
[a, b]:

b
P(a SXEb)=/f(x) dx,

Here P (a < X < b)isthe probability func-
tion. Therefore, the probability that the con-
tinuous random variable X takes a value in
the interval [a, b] can be obtained by inte-
grating the probability function over [a, b].
There is also the following condition on f:

/Oof(x) dx=P(o<X<o00)=1.

We can represent the density function graph-
ically on the system of axes. The different
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values of the random variable X are placed
on the abscissa, and those of the function f
on the ordinate.

DOMAINS AND LIMITATIONS
Ifa = binP(a < X < b) = [ f(x)dx, then

P@:@:/?mmzu

This means that the probability that a con-
tinuous random variable takes an isolated
fixed value is always zero.

It therefore does not matter whether we
include or exclude the boundaries of the
interval when calculating the probability
associated with an interval.

EXAMPLES
Consider X, a continuous random variable,
for which the density function is

%(—x2+2x), if0<x<2
0, if not '

f(X)=!

We can calculate the probability of X being
higher than 1. We obtain:

o0
PX > 1) =/ f(x)dx,
1
which can be divided into:

2
Pa>n=/§ef+mw
1

o0
—i—/ 0dx
2
2)
1

3
( - % +x*
The density function and the region where
P(X > 1) can be represented graphically:

N = W

6| =
i
e

The shaded surface represents the region
where P(X > 1).

FURTHER READING

» Continuous distribution function

» Continuous probability distribution
» Joint density function

» Probability

|
Dependence

The concept of dependence can have two
meanings. The first concerns the events of
a random experiment. It is said that two
events are dependentif the occurrence of one
depends on the occurrence of the other.
The second meaning of the word concerns
the relation, generally a functional relation,
that can exist between random variables.
This dependence can be measured, and in
most cases these measurements require ran-
dom varible covariance.

The most commonly used measure of depen-
dence is the correlation coefficient. The
null hypothesis, which states that the
two random variables X and Y are inde-
pendent, can be tested against the alterna-
tive hypothesis of dependence. Tests that
are used for this purpose include the chi-
square test of independence, as well as
tests based on the Spearman rank corre-
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lation coefficient and the Kendall rank
correlation coefficient.

FURTHER READING

» Chi-square test of independence

» Correlation coefficient

» Covariance

» Kendall rank correlation coefficient

» Spearman rank correlation coefficient
» Test of independence

|
Dependent Variable

The dependent variable (or response vari-
able) in a regression model is the variable
that is considered to vary depending on the
other variables called independent variables
incorporated into the analysis.

FURTHER READING

» Independent variable

» Multiple linear regression
» Regression analysis

» Simple linear regression

|
Descriptive
Epidemiology

Descriptive epidemiology involves descri-
bing the frequencies and patterns of illnesses
among the population.

Itis based on the collection of health-related
information (in mortality tables, morbidity
registers, illnesses that must be declared.. . .)
and on information that may have an impact
on the health of the population (data on atmo-
spheric pollution, risk behavior ... ), which
are used to obtain a statistical picture of the
general health of the population.

HISTORY
See epidemiology.

MATHEMATICAL ASPECTS

See cause and effect in epidemiology,
odds and odds ratio, relative risk, at-
tributable risk, avoidable risk, incidence
rate, prevalence rate.

DOMAINS AND LIMITATIONS

Despite the fact that descriptive epide-

miology only yields “elementary” infor-

mation, it is still vitally important:

e Itallowsusto study the scales and the pat-
terns of health phenomenona (by study-
ing their prevalence and their incidence),
and it facilitates epidemiological surveil-
lance,

e It aids decision-making related to the
planning and administration of health
establishments and programs,

e Itcanleadtohypothesesontheriskfactors
of an illness (example: the increased rate
of incidence of skin cancers in the south
of France, believed to be related to the
increased intensity of the sun’s rays in the
south of France compared to the north.).

Descriptive epidemiology cannot be used to

relate acause to an effect; itisnotapredictive

tool.

FURTHER READING
See epidemiology.

REFERENCES
See epidemiology.

|
Descriptive Statistics

Theinformation gathered inastudy can often
take different forms, such as frequency data
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(for example, the number of votes cast for
a candidate in elections) and scale data.
These data are often initially arranged or
organized in such a way that they are difficult
to read and interpret.

Descriptive statistics offers us some proce-
dures thatallow us torepresent datain aread-
able and worthwhile form.

Some of these procedures allow us to obtain
a graphical representation of the data, for
example in the following forms:

e Histogram,

e Bar chart,

e Pie chart,

e Stem and leaf,

e Box plot, etc.

while others allow us to obtain a set of param-
eters that summarize important properties of
the basic data:

e Mean,

o Standard deviation,

o Correlation coefficient,

e Index number, etc.

The descriptive statistics also encompasses
methods of data analysis, such as the corre-
spondence analysis, that consist of graphi-
cally representing the associations between
the rows and the columns of a contingency
table.

HISTORY

The firstknown form of descriptive statistics
was the census. Censuses were ordered by
the rulers of ancient civilizations, who want-
ed to count their subjects and to monitor their
professions and goods.

See statistics and graphical representa-
tion.

FURTHER READING
» Box plot

» Census

» Correspondence analysis
» Data analysis

» Dendrogram

» Graphical representation
» Histogram

» Index number

» Line chart

» Pie chart

» Stem-and-leaf diagram

|
Design of Experiments

Designing an experiment is like program-
ming the experiment in some ways. Each
factor involved in the experiment can
take a certain number of different values
(called levels), and the experimental design
employed specifies the levels of the one or
many factors (or combinations of factors)
used in the experiment.

HISTORY

Experimental designs were first used in the
1920s, mostly in the agricultural domain.
Sir Fisher, Ronald Aylmer was the first to
use mathematical statistics when designing
experiments. In 1926 he wrote a paper out-
lining the principles of experimental design
in non-mathematical terms.

Federer, W.T. and Balaam, L.N. (1973) pro-
vided a very detailed bibliography of liter-
ature related to experimental design before
1969, incorporating 8000 references.

DOMAINS AND LIMITATIONS

The goal of the experimental design is to find
with the most efficient and economic meth-
ods that allow us to reach solid and adequate
conclusions on the results from the experi-
ment.
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The most frequently applied experimental
designs are the completely randomized
design, the randomized block design and
the Latin square design.

Each design implies a different mathe-
matical analysis to those used for the other
designs, since the designs really correspond
to different mathematical models. Examples
of these types of analysis include variance
analysis, covariance analysis and regres-
sion analysis.

FURTHER READING

» Analysis of variance
» Experiment

» Model

» Optimal design

» Regression analysis

REFERENCES

Federer, W.T., Balaam, L.N.: Bibliography
on Experiment and Treatment Design Pre-
1968. Hafner, New York (1973)

Fisher, R.A.: The arrangement of field expe-
riments. J. Ministry Agric. 33, 503-513
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|
Determinant

Any square matrix A of order n has a spe-
cial number associated with it, known as the
determinant of matrix A.

MATHEMATICAL ASPECTS

Consider A = (a;), a square matrix
of order n. The determinant of A, denot-
ed det(A) or |A|, is given by the following
sum:

det(A) = Y (H)ar; - ay- ... dnr,

where the sum is made over all of the permu-
tations of the second index . The sign is posi-
tiveif the number of inversionsin (i, j, . . ., r)
is even (an even permutation) and it is neg-
ative if the number is odd (an odd permuta-
tion).

The determinant can also be defined by
“developing” along a line or a column. For
example, we candevelop the matrix along the
first line:

n
det(d) = ) (=D ay;- Ay,
j=1

where Ay; is the determinant of the square
“submatrix” of order n — 1 obtained from A
by erasing the first line and the jth column.
Ay is called the cofactor of element ay;.
Since we can arbitrarily choose the line or
column, we can write:

n
det(A) =) (=) - a; - Ay
j=1

for a fixed i (developing along the ith line),
or

n
det(4) =Y (=)™ - ay - Ay
i=1

for a fixed j (developing along the jth col-
umn).

This second way of defining the determi-
nantis recursive, because the determinant of
a square matrix of order n is calculated using
the determinants of the matrices of order
n—1.

Properties of the Determinant

e The determinant of a square matrix A is
equal to the determinant of its transposed
matrix A’:

det(A) = det(A") .
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e If two lines (or two columns) are
exchanged in matrix A, the sign of the
determinant changes.

e Ifall ofthe elements of aline (oracolumn)
are zero, the determinant is also zero.

e If a multiple of a line from matrix A is
added to another line from A, the determi-
nant remains the same. This means that if
two lines from A are identical, it is easy to
obtain a line where all of the elements are
zero simply by subtracting one line from
the other; because of the previous proper-
ty, the determinant of A is zero. The same
situation occurs when one line is a multi-
ple of another.

e The determinant of a matrix that only has
zeros under (or over) the diagonal is equal
to the product of the elements on the diag-
onal (such a matrix is denoted “triangu-
lar”).

e Consider A and B, two square matrices of
order n. The determinant of the product of
the two matrices is equal to the product of
the determinants of the two matrices:

det(A - B) = det(A) - det(B) .

EXAMPLES
1) Consider A, a square matrix of order 2:

a b
=[]
det(A) =a-d—b-c.

2) Consider B, a square matrix of order 3:

By developing along the last column:

4 -1 3
det(B)=1~‘ b o '+0~' — ‘
3 2

+o-‘ > ’
=14 (=2 = (D2
=-8+2
=—-6.
FURTHER READING
» Inversion
» Matrix

» Permutation

T
Deviation

The conceptof deviation describes the differ-
ence between an observed value and a fixed
value from the set of possible values of
a quantitative variable.

This fixed value is often the arithmetic
mean of the set of values or the median.

MATHEMATICAL ASPECTS

Consider the set of values x1, xo, . . ., x,. The
arithmetic mean of these values is denoted
by x. The deviation of a given value x; with
respect to the arithmetic mean is equal to:

deviation = (x; — X) .

In a similar way, if the median of these same
valuesisdenoted by m, the deviation of a val-
ue x; with respect to the median is equal to:

deviation = (x; — m) .

FURTHER READING

» Mean absolute deviation
» Standard deviation

» Variance
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|
Dichotomous Variable

A variable is called dichotomous if it can
take only tow values.

The simplest example is that of the qualita-
tive categorical variable “gender,” which
can take two values, “male” and “female”.
Note that quantitative variables can always
be reduced and dichotomized. The variable
“revenue” can, for example, be reduced to
two categories: “low revenue” and “highrev-
enue”.

FURTHER READING

» Binary data

» Category

» Qualitative categorical variable
» Variable

|
Dichotomy

Dichotomy is the division of the individuals
of apopulation or asample into two groups,
as a function of predetermined criteria.

A variable is called dichotomous when it
can only take two values. Such data are
called binary data.

FURTHER READING
» Binary data
» Dichotomous variable

|
Discrete Distribution Function

The distribution function of a discrete ran-
dom variable is defined for all real numbers
as the probability that the random variable
takes a value less than or equal to this real
number.

HISTORY
See probability.

MATHEMATICAL ASPECTS
The function F, defined by

Fb)=PX<b).

is called the distribution function of the dis-
crete random variable X.

Given areal number b, the distribution func-
tion therefore corresponds to the probability
that X is less than or equal to b.

The distribution function can be graphical-
ly represented on a system of axes. The dif-
ferent values of the discrete random vari-
able X are displayed on the abscissa and the
cumulative probabilities corresponding to
the different values of X, F'(x), are shown on
the ordinate.

0§

In the case where the possible values of the
discrete random variableare by, b»,. . . with
b1 < by < ..., the discrete distribution
function is a step function. F(b;) is constant
over the interval [b;, b;11[.

Properties of the Discrete

Distribution Function

1. F is a nondecreasing function; in other
words, if a < b, then F(a) < F(b)

2. F takes values from the interval [0, 1].
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3. lim F(b)=0.
b——00

4. lim F(b) = 1.
b—o00

EXAMPLES

Consider a random experiment that con-
sists of simultaneously throwing two dice.
Consider the discrete random variable X,
corresponding to the total score from the two
dice.

Letus search for the probability of the event
{X < 7}, which is by definition the value of
the distribution function for x = 7.

The discrete random variable X takes its
values from the set E = {2,3,...,12}.
The probabilities associated with each val-
ue of X are given by the following table:

P(X)

P(X)

II

To establish the distribution function, we
have to calculate, for each value b of X,
the sum of the probabilities for all values
less than or equal to b. We therefore create
anew table containing the cumulative proba-
bilities:

P(X < b)

c I

P(X < b)

The probability of the event {X < 7} is
therefore equal to %.

We can represent the distribution function
of the discrete random variable X as fol-
lows:

Pix<b)
1 —
—
-
2
26
—
—
—

0 °—._ —— X
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
FURTHER READING
» Probability

» Probability function
» Random experiment
» Value

|
Discrete Probability Distribution

If each possible value of a discrete random
variable is associated with a certain proba-
bility, we can obtain the discrete probability
distribution of this random variable.

MATHEMATICAL ASPECTS

The probability distribution of a discrete
random variable X is given by its probabi-
lity function P(x) or its distribution func-
tion F(x).

It can generally be characterized by its
expected value:

E[X] = Zx-P(X=X),
D

and its variance:

Var(X) = Y (x— E[X])* - P(X =x),
D

where D represents the set from which X can
take its values.



Discrete Uniform Distribution 167

EXAMPLES

The discrete probability distributions that
are most commonly used are the Bernoul-
li distribution, the binomial distribution,
the negative binomial distribution, the
geometric distribution, the multinomial
distribution, the hypergeometric distri-
bution and the Poisson distribution.

FURTHER READING

» Bernoulli distribution

» Binomial distribution

» Continuous probability distribution
» Discrete distribution function

» Expected value

» Geometric distribution

» Hypergeometric distribution

» Joint probability distribution function
» Multinomial distribution

» Negative binomial distribution

» Poisson distribution

» Probability

» Probability distribution

» Probability function

» Random variable

» Variance of a random variable

REFERENCES

Johnson, N.L., Kotz, S.: Distributions in
Statistics: Discrete Distributions. Wiley,
New York (1969)

|
Discrete Uniform
Distribution

The discrete uniform distribution is a dis-
crete probability distribution. The corre-
sponding continuous probability distri-
bution is the (continuous) uniform distri-
bution.

Consider n events, each of which have the
same probability P(X = x) = %; the ran-

dom variable X follows a discrete uniform
distribution and its probability function is:

1 : _
o ifx=xy,xp,...
0, ifnot

» Xn

P(X:x):{

05 4

0,25 4

o4
a 1 2 3 4 g

Discrete uniform distribution, n = 4

MATHEMATICAL ASPECTS

The expected value of the discrete uniform
distribution over the set of firstn natural num-
bers is, by definition, given by:

n
E[X]:Zx-P(X:x)
x=1

n

'Z’“
x=1

(I+2+---+n)
n2+n

2
+1
5

The variance of this discrete uniform distri-
bution is equal to:

S S|=S|l= S|=

Var(X) = E[X?] — (E[X])?.

Since

E[X*] = Zﬁ P(X =)
x=1

1 n
Ly
n
x=1
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zl.(12+22+...+n2) r . .
n Dispersion
1 n(n+1DHQ2n+1)
=, T & See measure of dispersion.
2n? +3n+ 1
= [
and 6 Distance
2 (4 1) Di i ical description of th
(E[X]? = — istance is a numerical description of the
2 spacing between two objects. A distance
we have: therefore corresponds to a real number:
Var(X) = 2n% +3n+ 1 _(n+ 1)? e Zero, if both objects are the same;
6 22 e Strictly positive, if not.

n?—1
12

DOMAINS AND LIMITATIONS

The discrete uniform distribution is often
used to generate random numbers from any
discrete or continuous probability distri-
bution.

EXAMPLES

Consider the random variable X, the score
obtained by throwing a die. If the die is
not loaded, the probability of obtaining any
particular score is equal to %.Therefore, we
have:

PX=1=¢
PX=2) =t
PX=6)=¢.

The number of possible events is n = 6. We
therefore have:

&, forx=12...,6
PX =x) = . .
0, ifnot

In other words, the random variable X fol-
lows the discrete uniform distribution.

FURTHER READING
» Discrete probability distribution
» Uniform distribution

MATHEMATICAL ASPECTS

Consider three objects X, Y and Z, and the
distance between X and Y, d(X, Y).

A distance has following properties:

e It is positive,

dX,Y) >0,

or zero if and only if the objects are the
same

dX,Y)=0 & X=Y.
e [tis symmetric, meaning that
dX, Y)=dY,X).

e It verifies the following inequality, called
the triangular inequality:

dX,Z2) <dX Y)+d(Y Z2).

This says that the distance from one object
to another is smaller or equal to the dis-
tance obtained by passing through a third
object.
Consider X and Y, which are two vectors
with n components,

X=() and Y= (),

fori=1,2,...,n.



Distance 169

A family of distances that is often used in
such a case is given below:

n
lei—yill’ with p > 1.

i=1

These distances are called Minkowski dis-
tances.

The distance for p = 1 is called the absolute
distance or the L; norm.

The distance for p = 2 is called the
Euclidean distance, and it is defined by:

dX Y) =

The Euclidean distance is the most frequent-
ly used distance.

When the type of distance being used is not
specified, it is generally the Euclidean dis-
tance that is being referred to.

There are also the weighted Minkowski dis-
tances, defined by:

n
d(X,Y)=" Y wi-|xi—yilP withp > 1,

i=1

wherew;,i = 1, ..., nrepresent the different
weights, which sum to 1.

When p = 1 or 2, we obtain the weighted
absolute and Euclidean distances respective-

ly.

DOMAINS AND LIMITATIONS

For a set of r distinct objects X1, X», ..., X,
the distance between object i and object j for
each pair (X;, X;) can be calculated. These
distances are used to create a distance table
or more generally a dissimilarity table con-
taining terms that can be generalized to

dij =d(X;, X;), forij=12..,r,

as used in methods of cluster analysis.
Note that the term measure of dissimilari-
ty is used if the triangular inequality is not
satisfied.

EXAMPLES

Consider the example based on the grades
obtained by five students in their

English, French, maths and physics exami-
nations.

These grades, which can take any value from
1to 6, are summarized in the following table:

English French

Maths Physics
Alain

Jean

Marc

Paul

Pierre

The Euclidean distance between Alain and
Jean, denoted by d», is given by:
d>(Alain, Jean)
=v(5.0-352 4+ (45—55)2
=+225+025+1+1
=Va5=212.

The absolute distance between Alain and
Jean, denoted by dj, is given by:

di(Alain, Jean) = |5.0 — 3.5| + - --

+14.5—5.5]
—154+05+1+1
—4.0.

Continuing the calculations, we obtain:

dy(Alain, Marc) = v/2.25 = 1.5
dy(Alain, Paul) = V7.5 = 2.74
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d>(Alain, Pierre) = +/5.25 = 2.29
dy(Jean, Marc) = V6.25=25
d>(Jean, Paul) = /9 =3
d>(Jean, Pierre) = V10.75 = 3.28
d>(Marc, Paul) = v/7.75 = 2.78
d>(Marc, Pierre) = +/2.5 = 1.58
d»(Paul, Pierre) = +/16.25 = 4.03
di(Alain, Marc) = 2.5

di (Alain, Paul) = 5.0

di (Alain, Pierre) = 4.5

di(Jean, Marc) = 4.5

di(Jean, Paul) = 5.0

di(Jean, Pierre) = 5.5

di(Marc, Paul) = 6.5

di (Marc, Pierre) = 2.0

dy(Paul, Pierre) = 7.5.

The Euclidean distance table is obtained by
placing these results in the following table:

Alain Jean Marc Paul Pierre

Alain

Jean

Marc
Paul
Pierre

Similarly, we can obtain the following abso-
lute distance table:

Alain Jean | Marc Paul Pierre
Alain
Jean

Marc

Paul

Pierre

Note that the order of proximity of the indi-
viduals can vary depending on the chosen

distance. For example, if the Euclidean dis-
tance is used, it is Alain who is closest to
Marc (d>(Alain, Marc) = 1.5), whereas
Alain comes in second place if the absolute
distance is used, (d;(Alain, Marc) = 2.5),
and it is Pierre who is closest to Marc, with
a distance of 2 (dy (Pierre.Marc) = 2).

FURTHER READING

» Chi-square distance

» Cluster analysis

» Distance table

» Mahalanobis distance

» Measure of dissimilarity

REFERENCES

Abdi, H.: Distance. In: Salkind, N.J. (ed.)
Encyclopedia of Measurement and Statis-
tics. Sage, Thousand Oaks (2007)

T
Distance Table

For a set of r individuals, the distance table
is a square matrix of order r, and the gen-
eral term (i, j) equals the distance between
the ith and the jth individual. Thanks to the
properties of distance, the distance table is
symmetrical and its diagonal is zero.

MATHEMATICAL ASPECTS

Suppose we have r individuals, denoted
X1, Xo, ..., X;; the distance table construct-
ed from these r individuals is a square
matrix D of order r and the general term is

dy=d (%)

where d (X;, X;) is the distance between the
ith and the jth individual.

The properties of distance allow us to state
that:
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e The diagonal elements d;; of D are zero
because d (X;, X;) = 0 (fori = 1,2,
L),
o Dissymmetrical; thatis, d;j = dj; foreach
i and for values of j from 1 to r.

DOMAINS AND LIMITATIONS
Usingadistancetable providesatype of clus-
ter analysis, where the aim is to identify
the closest or the most similar individuals in
order to be able to group them.

The distances entered into distance table
are generally assumed to be Euclidian dis-
tances, unless adifferent type of distance has
been specified.

EXAMPLES

Let us take the example of the grades
obtained by five students in four exami-
nations: English, French, mathematics and
physics.

These grades, which can take any multiple of
0.5 from 1 to 6, are summarized in the fol-
lowing table:

English French Maths Physics

Alain
Jean
Marc
Paul

Pierre

We attempt to measure the distances that
separate pairs of students. To do this, we
compare two lines of the table (correspond-
ing to two students) at a time: to be pre-
cise, each gradein the second line is subtract-
ed from the corresponding grade in the first
line.

For example, if we calculate the distance
from Alain to Jean using the Euclidian dis-

tance, we get:
d(Alain.Jean) = ((5.0 — 3.5)?
+(3.5—4.0)2 + (4.0
—5.0)2 + (45— 5.5)2)2
=2254+025+1+1
=V45=212.

In the same way, the distance between Alain
and Marc equals:

d(Alain, Marc) = ((5.0 — 4.5)°

+ (3.5 —4.5)

+ (4.0 — 4.0)°

1 (45-35%2
=025+ 1+0+1
=V225=15.

And so on,

d(Alain, Paul) = /7.5 = 2.74
d(Alain, Pierre) = +/5.25 = 2.29
d(Jean, Marc) = V6.25 =25
d(Jean, Paul) = /9 = 3

d(Jean, Pierre) = V10.75 = 3.28
d(Marc, Paul) = +/7.75 = 2.78
d(Marc, Pierre) = +/2.5 = 1.58
d(Paul, Pierre) = v/16.25 = 4.03..

By organizing these results into a table, we
obtain the following distance table:

Alain Jean Marc Paul Pierre
Alain
Jean

Marc

Paul

Pierre
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We can see that the values along the diago-
nal equal zero and that the matrix is sym-
metrical. This means that the distance from
each student to the same student is zero, and
the distance that separates the first student
from the second is identical to the distance
that separates the second from the first. So,
d(X;, X)) =0andd (X; Xj) = d (X;. Xi).

FURTHER READING
» Cluster analysis
» Dendrogram

» Distance

» Matrix
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Distribution Function

The distribution function of a random vari-
able is defined for each real number as the
probability that the random variable takes
a value less than or equal to this real num-
ber.

Depending on whether the random vari-
able is discrete or continuous, we obtain
a discrete distribution function or a con-
tinuous distribution function.

HISTORY
See probability.

MATHEMATICAL ASPECTS

We define the distribution function of a ran-
dom variable X at value b (with0 < b <
00) by:

F(b) = P(X < b).

FURTHER READING

» Continuous distribution function
» Discrete distribution function

» Probability

» Random variable
» Value
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Dot Plot

The dot plot is a type of frequency graph.
When the data set is relatively small (up to
about 25 data points), the data and their fre-
quencies can be represented in a dot plot.
This type of graphical representation is
particularly useful for identifying outliers.

MATHEMATICAL ASPECTS

The dot plot is constructed in the following
way. A scaleisestablished that contains all of
the valuesin the data set. Each datum is then
individually marked on the graph as a dot
above the corresponding value; if there are
several data with the same value, the dots are
aligned one on top of each other.

EXAMPLES
Consider the following data:

5,245, 3,2 43,523, 43, 17.

To construct the dot plot, we establish a scale
from O to 20.

We then represent the data with dots above
each value. We obtain:

15
10
5
[ 4

e o 00

R R .
0 : : ; .

0 5 10 15 20

Note that this series includes an outlier, at
17.



Durbin—Watson Test 173

FURTHER READING

» Line chart

» Frequency distribution

» Histogram

» Graphical representation
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Durbin-Watson Test

The Durbin—Watson test introduces a statis-
tic d thatis used to test the autocorrelation of
the residuals obtained from a linear regres-
sion model. This is a problem that often
appears during the application of a linear
model to a time series, when we want to test
the independence of the residuals obtained in
this way.

HISTORY
Durbin, J. and Watson, G.S. invented this test
in 1950.

MATHEMATICAL ASPECTS

Consider the case of a multiple linear
regression model containing p — 1 inde-
pendent variables. The model is written:

p—1
Yo=Po+ Y BXute, t=1,..
j=1

LT,

where

Y; is the dependent variable,

Xj, withj = 1,...,p — 1 are the inde-
pendent variables
B, withj=1,..., p— larethe parameters

to be estimated,

e witht = 1,...,T is an unobservable
random error term.

In the matrix form, the model is written as:

Y=XB+e,

where

Y s the vector (n x 1) of the observa-
tions related to the dependent variable
(n observations),

B isavector (p x 1) of the parameters to
be estimated,

e isavector (n x 1) of the errors,

I Xy Xip-1

andX = isthe

I X Xnp—1)
matrix (n x p) of the design associated with
the independent variables.
The residuals, obtained by the method of the
least squares, are given by:

e=Y-V=[1-X(x%)"'X]Y.
The statistic d is defined as follows:
_ Z;rzz (er — et—1)2
ZtT:1 etz

The statistic d tests the hypothesis that the
errors are independent against the alternative
that they follow a first-order autoregressive
process:

d

& = p&—1+us,

where |p| < 1andtheu,areindependentand
are normally distributed with a mean of zero
and a variance of 2. We call the term p the
autocorrelation. In terms of p, the hypoth-
esis testing is written as follows:

Hy:
H:

p=0
p#0.

DOMAINS AND LIMITATIONS
The construction of this statistic means that
it can take values between 0 and 4. We have
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d = 2 when p = 0. We denote the sam-
ple estimate of the observation of p by . In
order to test the hypothesis Hy, Durbin and
Watson tabulated the critical values of d at
a significance level of 5%; these critical val-
ues depend on the number of observations
T and the number of explanatory variables
(p — 1). The table to test the positive auto-
correlation at the «-level, the statistic testd is
compared to lower and upper critical values
(dL,dU), and
e rejectHy: p=0ifd <dp
e donotreject Hy if d > dy
e ford; < d < dy the test is inconclusive.
Similarily to test negative autocorrelation at
the a-level the statistic 4-d is compared to
lower and upper critical values (d, dy), and
e reject Hy: p=0if Hy —d < df,
e donotreject Hyif4 —d > dy
e fordr < 4 —d < dy the test is noncon-
clusive.
Note that the model must contain a constant
term, because established Durbin—Watson
tables generally apply to models with a con-
stant term. The variable to be explained
should not be among the explanatory vari-
ables.

EXAMPLES

We consider an example of the number of
highway accidents in the United States per
million miles traveled by car between 1970
and 1984. The data for these years are given
below:

49, 47, 45, 43, 3.6, 34
33, 3.4, 34, 35 35 33
29, 27, 27

The following figure illustrates how the data
are distributed with time. On the horizontal
axis, zero corresponds to the year 1970, and
the 15 to the year 1984.

Number of accidents =a+b - t,

withr=0,1,..., 14
The equation for the simple linear regression
line obtained for these data is given below:

Number of accidents = 4.59 — 0.141 - ¢.
We then obtain the following residuals:

0.31, 0.25, 0.19,0.13, —0.43, —0.49,
—0.45, -0.21, —-0.07,0.17, 0.32, 0.26,
0.00, —0.06, 0.08.

The value of the statistic d is 0.53. In the
Durbin—Watson table for a one-variable
regression, we find the values:

dr,0.05 = 1.08
dyo.05 = 1.36.

Therefore, we have the case where 0 < d <
dr, so we reject the Hy hypothesis in the
favor of positive autocorrelation between the
residuals of the model. The following figure
illustrates the positive correlation between
the residuals with time:

B = T N T e S« -]
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FURTHER READING Durbin, J.: Alternative method to d-test.
» Autocorrelation Biometrika 56, 1-15 (1969)
> Mul.tlple linear regression Durbin, J., Watson, G.S.: Testing for serial
» Residual . .
Simple li . correlation in least squares regression, I.
> lml.) e. inear regression Biometrika 37, 409-428 (1950)
» Statistics n
» Time series Durbin, J., Watson, G.S.: Testing for serial
correlation in least squares regression, II.
REFERENCES Biometrika 38, 159-177 (1951)

Bourbonnais, R.: Econométrie, manuel et Harvey, A.C.: The Econometric Analysis of
exercices corrigés, 2nd edn. Dunod, Paris Time Series. Philip Allan, Oxford (Wiley,
(1998) New York ) (1981)
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Econometrics

Econometrics concerns the application
of statistical methods to economic data.
Economists use statistics to test their theo-
ries or to make forecasts.

Since economic data are not experimental in
nature, and often contain some randomness,
econometrics uses stochastic models rather
than deterministic models.

HISTORY

The advantages of applying mathematics
and statistics to the field of economics
were quickly realized. In the second part of
the seventeenth century, Petty, Sir William
(1676) published an important article intro-
ducing the methodological foundations of
econometrics.

According toJaffé, W. (1968), Walras, Léon,
professor at the University of Lausanne,
is recognized as having originated gener-
al equilibrium economic theory, which pro-
vides the theoretical basis for modern econo-
metrics.

On the 29th December 1930, in Cleveland,
Ohio, a group of economists, statisticians
and mathematicians founded an Economet-
rics Society to promote research into mathe-
matical and statistical theories associated
with the fields of economics. They creat-
ed the bimonthly review ‘“Econometrica,”

which appeared for the first time in January
1933.

The development of simultaneous equation
models that could be used in time series
for economic forecasts was the moment at
which econometrics emerged as a distinct
field, and it remains an important part of
econometrics today.

FURTHER READING

» Multiple linear regression
» Simple linear regression
» Time series

REFERENCES

Jafté, W.: Walras, Léon. In: Sills, D.L. (ed.)
International Encyclopedia of the Social
Sciences, vol. 16. Macmillan and Free
Press, New York, pp. 447-453 (1968)

Petty, W.: Political arithmetic. In: William
Petty, The Economic Writings ..., vol 1.
Kelley, New York, pp. 233-313 (1676)

‘Wonnacott, R.J., Wonnacott, T.H.: Econo-
metrics. Wiley, New York (1970)
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Edgeworth, Francis Y.

Edgeworth, Francis Ysidro was bornin 1845
at Edgeworthstown (Ireland) and died in
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1926. He contributed to various subjects,
such as morality, economic sciences, proba-
bility and statistics. His early and important
work on indices and the theory of utility were
later followed by a statistical work thatis now
sometimes called “Bayesian”.

The terms “module” and “fluctuation” orig-
inated with him.

He became the first editor of the Economic
Journal in 1881.

Principal work of Edgeworth, Francis
Ysidro:

1881 Mathematical Physics: An Essay on
the Application of Mathematics to
the Moral Sciences. Kegan Paul, Lon-
don.

|
Efron, Bradley

Efron, Bradley was born in St. Paul, Min-
nesota in May 1938, to Efron, Esther and
Efron, Miles, Jewish—Russian immigrants.
He graduated in mathematics in 1960. Dur-
ing that year he arrived at Stanford, where
he obtained his Ph.D. under the direction
of Miller, Rupert and Solomon, Herb in the
statistics department. He has taken up several
positions at the University: Chair of Statis-
tics, Associate Dean of Science, Chairman
of the University Advisory Board, and Chair
of the Faculty Senate. He is currently Profes-
sor of Statistics and Biostatistics at Stanford
University.

He has been awarded many prizes, includ-
ing the Ford Prize, the MacArthur Prize and
the Wilks Medal for his research work into
the use of computer applications in statis-
tics, particularly regarding bootstrap and the
jackknife techniques. He is a Member of the

National Academy of Sciences and the Ame-
rican Academy of Artsand Science. He holds
afellowship in the IMS and the ASA. He also
became President of the American Statistical
Association in 2004.

The term ‘“‘computer intensive statistical
methods” originated with him and Diaco-
nis, P. His research interests cover a wide
range of statistical topics.

Some principal works and articles of Efron,
Bradley:

1993 (with Tibshirani, R.J.) An Intro-
duction to the Bootstrap. Chapman
& Hall.

Estimating the error rate of a pre-
diction rule: Improvement on cross-
validation. J. Am. Stat. Assoc. 78,
316-331.

Jackknife, the Bootstrap and Other
Resampling Plans. SIAM, Philadel-
phia, PA.

1983

1982

FURTHER READING
» Bootstrap
» Resampling
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Eigenvalue

Let A be asquare matrix of order n. If there is
avector x # 0 that gives amultiple (k - x) of
itself when multiplied by A, then this vec-
tor is called an eigenvector and the multi-
plicative factor k is called an eigenvalue of
the matrix A.

MATHEMATICAL ASPECTS
Let A be a square matrix of order n and x be
anonzero eigenvector. k is an eigenvalue of
Aif

A-x=k-x.



Eigenvector 179

thatis, (A — k- 1I,) - x = 0, where I, is the
identity matrix of order n.

As x is nonzero, we can determine the pos-
sible values of k by finding the solutions of
the equation [A — k- I,,| = 0.

DOMAINS AND LIMITATIONS

For a square matrix A of order n, the
determinant [A — k - I,,| is a polynomial of
degree n in k that has at the most n not neces-
sarily unique solutions. There will therefore
be n eigenvalues at the most; some of these
may be zeros.

EXAMPLES
Consider the following square matrix of
order 3:

4 3 2
A=| 01 0
L -2 2 0 |
[ 4 3 27
A—k-Iz3=| 01 0
-2 2 0 |
1 00
—k- |0 10
00 1
4—k 32
Ak Tz= 0 1-k O
-2 2 —k

The determinant of A — k - I3 is given by:

A —k-T3] =1 —k)-[(4—k

“(—k) —2-(=2)]
=(1—k (K —4-k+4)
=1 -k Kk-2)>%

The eigenvalues are obtained by finding the
solutions of the equations (1 —k) - (k— 2)2 =

0. We find

ki =1 and

kpy =ks =2.

Therefore, two of the three eigenvalues are
confounded.

FURTHER READING
» Determinant

» Eigenvector

» Matrix

» Vector
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Eigenvector

Let A be a square matrix of order n. An
“eigenvector” of A is a vector X containing n
components (not all zeros) where the matrix
productof A by xis amultiple of x, for exam-
ple k - x.

We say that the eigenvector x is associated
with an eigenvalue k.

DOMAINS AND LIMITATIONS
Let A be a square matrix of order n; then the
vector x (not zero) is an eigenvector of A if
there is a number k such that

A-x=k-x.

As x is nonzero, we determine the possible
values of k by finding solutions to the equa-
tion|A — k - I,| = 0, wherel,, istheidentity
matrix of order n.

We find the corresponding eigenvectors by
resolving the system of equations defined by:

A—k-In)-x=0.

Every nonzero multiple of an eigenvector
can be considered to be an eigenvector. If ¢



180 Eigenvector

is a nonzero constant, then

A-x=k-x
c-(A-x)=c-(k-x)
A-(c-x)=k-(c-Xx).

Therefore, ¢ - X is also an eigenvector if c is
not zero.

Itis possible to call an eigenvector, the vector
ofthenorm 1 orunit vector onthe axis of c-x,
and the eigenvector will be on the factorial
axis. This vector is unique (up to a sign).

EXAMPLES
We consider the following square matrix of
order 3:

4
0

3
A= 1
2

[\
S O N

Theeigenvalues of this matrix A are obtained
by making the determinant of (A — & - I3)
equal to zero

4 3 2
A—k-Iz=| 0 1 0
220
1 00
k-l 010
00 1
4—k 302
A—k-I3= 0 1—-k 0
) 2 —k

The determinant of A — k - I3 is given by:
A —k-T3] = (1 —k)-[(4—k)
(=k) —2-(=2)]
—(—k- (k2—4-k+4)
=(1—k- (k-2)>%.

Hence, the eigenvalues are equal to :

ki =1 and

ko =ky=2.

We now compute the eigenvectors associated
with the eigenvalue k;:

k=1,
M 4-—1 3 2
A—k-Is= 0 1-1 0
L 2 2 -1
r 3 3 2
= 0 0 0
L 2 2 -1

Denoting the components of the eigenvec-

tor x as
X1

X=| x
X3
we then need to resolve the following system
of equations:

A=k -I3)-x=0

33 2 X1 0

0 0 O[] x» [=]0

-2 2 -1 X3 0
that is

3x1 4+ 3x+2x3 =0
—2x1+2xp —x3=0.

where the second equation has been elimi-
nated because it is trivial.

The solution to this system of equations
depending on x7 is given by:

7-x
X = X2
—12-xp

The vectorxis an eigenvector of the matrix A
forevery nonzero value of x». To find the unit
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eigenvector, we let:

L=l x[P= (7 0)" + ) + (=12 x)
=49+ 1+ 144) - x3 = 194 -3

2 _ L

21 194°

and so xp = —— = 0.0718.
/194

from where x

The unit eigenvector of the matrix A associ-
ated with the eigenvalue k1 = 1 then equals:

0.50
X = 0.07
—0.86
FURTHER READING

» Determinant
» Eigenvalue

» Eigenvector
» Factorial axis
» Matrix
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Epidemiology

Epidemiology (the word derives from the
Greek words “epidemos” and “logos,” mean-
ing “study of epidemics”) is the study of the
frequency and distribution of illness, and the
parameters and the risk factors that define the
state of health of a population, in relation to
time, space and groups of individuals.

HISTORY

Epidemiology originated in the seventeenth
century, when Petty, William (1623-1687),
an English doctor, economist and scien-
tist, collected information on the popula-
tion, which he described in the work Polit-
ical Arithmetic. Graunt, John (1620-1694)
proposed the first rigorous analysis of caus-
es of death in 1662. Quetelet, Adolphe
(1796-1874), Belgian astronomer and math-
ematician, is considered to be the foundor
of modern population statistics, the mother
discipline of epidemiology, statistics, econo-
metrics and other quantitative disciplines
describing social and biological character-
istics of human life. With the work of Farr,
William (1807-1883), epidemiology was
recognized as a separate field from statis-
tics, since he studied the causes of death and
the way it varied with age, gender, season,
place of residence and profession. The Scot-
tish doctor Lind, James (1716—1794) proved
that eating citrus fruit stopped scurvy, which
marked an important step in the history of
the epidemiology. Snow, John (1813-1858),
adoctor in London, showed theat epidemics
propagated by contagions, which was under-
lined by an in situ study that proved that
drinking Thames water polluted by refuse
from sewers contributes to the dissemination
of cholera.

MATHEMATICAL ASPECTS

See cause and effect in epidemiology,
odds and odds ratio, relative risk, att-
ributable risk, avoidable risk, incidence
rate, prevalence rate.

EXAMPLES
Let us take an example involving the mor-
tality rates in two fictitious regions. Suppose
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that we want to analyze the annual mortali-
ty in two regions A and B, each populated
with 10000 inhabitants. The mortality data
are indicated in the following table:

Region A Region B

From these data, can we state that the inhab-
itants of region B encounter an increased
chance of mortality than the inhabitants of
region A? In other words, would we recom-
mend that people leave region A to live in B?
If we divide both populations by age, we
note that, in spite, the different total mortal-
ity rates of regions A and B do not seem to
be explained by the different age structures
of A and B.

The previous example highlights the multi-
tude of factors that should be considered dur-
ing data analysis. The principal factors that
we should consider during an epidemiologi-
cal study include: age (as an absolute age and
as the generation that the individual belongs
to), gender and ethnicity, among others.

FURTHER READING

» Attributable risk

» Avoidable risk

» Biostatistics

» Cause and effect in epidemiology
» Incidence rate

» Odds and odds ratio
» Prevalence rate
» Relative risk
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Error

The error is the difference between the esti-
mated value and the true value (or reference
value) of the concerned quantity.

HISTORY

The error distributions are the probabi-
lity distributions which describe the error
that appears during repeated measures of
a same quantity under the same conditions.
They were introduced in the second half
of the eighteenth century to illustrate how
the arithmetic mean can be used to obtain
a good approximation of the reference value
of the studied quantity.

In a letter to the President of the Royal Soci-
ety, Simpson, T. (1756) suggested that the
probability of obtaining a certain error dur-
ing an observation can be described by adis-
crete probability distribution. He pro-
posed the first two error distributions. Oth-
er discrete distributions were proposed and
studied by Lagrange, J.L. (1776).
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Simpson,T. (1757) also proposed continu-
ous error distributions, as did Laplace, P.S.
(1774 and 1781). However, the most impor-
tant error distribution, the normal distri-
bution was proposed by Gauss, C.F. (1809).

MATHEMATICAL ASPECTS

In the field of metrology, the following types

of errors can be distinguished:

e The absolute error, which is the abso-
lute value of the difference between the
observed value and the reference value of
a certain quantity;

e The relative error, which is the ratio
between the absolute error and the value
of the quantity itself. It characterizes the
accuracy of a physical measure;

e The accidental error, which is not relat-
ed to the measuring tool but to the exper-
imenter himself;

e The experimental error, which is the error
due to uncontrolled variables;

e The random error, which is the chance
error resulting from a combination of
errors due to the instrument and/or the
user. The statistical properties of random
errors and their estimation are studied
using probabilities;

e The residual error, which corresponds
to the difference between the estimated
value and the observed value. The term
residual is sometimes used for this error;

e The systematic error, the error that comes
from consistent causes (for example
the improper calibration of a measuring
instrument), and which always happens
in the same direction. The bias used in
statistics is a particular example of this;

e The rounded error, which is the error
that is created when a numerical value
is replaced by a truncated value close
to it. When performing calculations with

numbers that have n decimal places, the
value of the rounded error is located
between

$-10™ and 1.107".
During long calculation procedures,
rounded errors can accumulate and pro-
duce very imprecise results. This type
of error is often encountered when using
a computer.

Every error that occurs in a statistical prob-

lem is a combination of the different types of

errors listed above.

In statistics, and more specifically during

hypothesis testing, there is also:

e Type I error, corresponding to the error
committed when the null hypothesis is
rejected when it is true;

e Type II error, the error committed when
the null hypothesis is not rejected when it
is false.

FURTHER READING

» Analysis of residuals
» Bias

» Estimation

» Hypothesis testing

» Residual

» Type I error

» Type II error
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ifs a cette matiére. Misc. Taurinensia 5,
167-232 (1776)
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ing the mean of a number of observations
inpractical astronomy. Philos. Trans. Roy.
Soc. Lond. 49, 82-93 (1755)

Simpson, T.: Miscellaneous Tracts on Some
Curious and Very Interesting Subjects
in Mechanics, Physical-Astronomy and
Speculative Mathematics. Nourse, Lon-
don (1757)

|
Estimation

Estimation is the procedure that is used to
determine the value of a particular param-
eter associated with a population. To esti-
mate the parameter, a sample is drawn from
the population and the value of the estimator
for the unknown parameter is calculated.
Estimation is divided into two large cate-
gories: point estimation and interval esti-
mation.

HISTORY
The concept of estimation dates back to
the first works on mathematical statistics,

notably by Bernoulli, Jacques (1713),
Laplace, P.S. (1774) and Bernoulli, Daniel
(1778).

The greatest advance in the theory of esti-
mation, after the introduction of the least
squares method, was probably the formula-
tion of the moments method by Pearson, K.
(1894, 1898). However, the foundations of
the theory of estimation is due to Fish-
er, R.A.. In his first work of 1912, he intro-
duced the maximum likelihood method.
In 1922 he wrote a fundamental paper that
clearly described what estimation really is
for the first time.

Fisher, R.A. (1925) also introduced a set
of definitions that were adopted to describe
estimators. Terms such as “biased,” “effi-
cient” and “sufficient” estimators were intro-
duced by him in his estimation theory.

DOMAINS AND LIMITATIONS

The following graph shows the relationship
between sampling and estimation. “Sam-
pling” is the process of obtaining a sample
from a population, while “estimation” is the
reverse process: from the sample to the pop-
ulation.

Sampling
Population Sample
T Estimation —
FURTHER READING

» Confidence interval
» Estimator

» L1 estimation

» Point estimation

» Robust estimation
» Sample

» Sampling
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Estimator

Any statistical function of a sample used to
estimate an unknown parameter of the pop-
ulation is called an estimator.

Any value obtained from this estimator is an
estimate of the parameter of the popula-
tion.

HISTORY
See estimation.

MATHEMATICAL ASPECTS

Consider 6, an unknown parameter defined
for a population, and (X1, X>,...,X,),
a sample taken from this population. A sta-
tistical function (or simply a statistic) of this
sample g(X1, ..., X,) is used to estimate 6.

To distinguish the statistic g(Xi, ..., X,),
which is arandom variable, from the value
that it takes in a particular case, itis common
to call the statistic g(X1, .. ., X;) the estima-
tor, and the value that is taken by it in a par-
ticular case is called an estimate.
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An estimator should not be confused with
a method of estimation.

A parameter of a population is usually
denoted by a Greek letter, and its estima-
tor by this same letter but with a circumflex
accent (") or a hat, to distinguish it from the
parameter of the population. Sometimes the
corresponding Roman letter is used instead.

DOMAINS AND LIMITATIONS
When calculating an estimator, such as the
arithmetic mean, it is expected that the val-
ue of this estimator will approach the value of
the true parameter (the mean of the popula-
tion in this case) as the sample size increas-
es.
Itistherefore clearthata good estimator must
be close to the true parameter. The closer
the estimators cluster around the true param-
eters, the better the estimators.
In this sense, good estimators are strongly
related to statistical measures of dispersion
such as the variance.
In general estimators, should possess certain
qualities, such as those described below.
1. Estimator without bias:
An estimator 6 of an unknown param-
eter 0 is said to be without bias if its
expected value is equal to 6,

E[f]1=6.

The mean X and the variance S2 of asam-
ple are estimators without bias, respec-
tively, of the mean p and of the variance
o2 of the population, with

1 n
5;:—~E x; and
n -
i=1

1 n
§* = Y =97
ol

2. Efficient estimator:
Anestimatorf of a parameter 6 is said to
be efficient if the variance of § is smaller
than the variance of any other estimator
of 6.
Therefore, for two estimators withoutbias
of 6, one will be more efficient than the
other if its variance is smaller.

3. Consistent estimator:
Anestimatord of a parameter 0 is said to
be consistent if the probability that it dif-
fers from 0 decreases as the sample size
increases.
Therefore, an estimator is consistent if

lim P10 —0] < &) =1,
n—0oo

however small the number & > 0 is.

EXAMPLES

Consider (x1, x2,...,x,), a sample drawn
from a population with a mean of p and
a variance of 2.

The estimator X, calculated from the sam-
ple and used to estimate the parameter p of
the population, is an estimator without bias.
Then:

I I
S| = =['|le
]

& I
2 E

1
== "
n
i=1
1
n
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To estimate the variance o> of the popula-
tion, it is tempting to use the estimator S>

L xn)’

calculated from the sample (x1, x2, ..
which is defined here by:

1 & _
S2=;§:m—wﬁ.
=1

This estimator is a biased estimator o 2 since:

Z(x, -’ = Z(x —w)? = n(x—p)?
in the following way:
Y -7
i=1
=Y [i—w— G-

i=1
=Y [ —w? =20 — wWE— )

i=1

+ G- w?]

W =20 =) - Y (i )

i=1

= Z(xi —
i=1

+nx—p)?
=Y i—w? 2@ (Y xi—n- 1)
i=1 i=1

+n(x — )

= Zn:(xi_l/«)z —2(— W) (n-X—n-p)
-f ;(x— )

= i(xi —w? = 2nE — WE— p
i=1

+n@Ex—p)?

= (i =) = 2@~ w)? +nG—p)?
i=1

n
= =@’ —nGE—w.
i=1
Hence:

E[$*] = [ }:m—w)]

=E [% g(x,- —w? - (i—u)z} n

1 : L 2 _ - N2
ZE[;“ u)] E[G—w)?]

1 <& . 5
- ;E[(xz -

Var(x;) — Var(x)

—E[G - w’]

2
o
:0‘2——
n
n—1
= 027502.
n

Therefore, to get an estimator of the vari-
ance o thatis not biased, we avoid using S°
and use the same value divided by Z— 1
instead:

2 n

S/ — S2
n—1

n l &
=— > -9’
n—1 ni=

=)

FURTHER READING
» Bias

» Estimation

» Sample

» Sampling
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Event

In a random experiment, an event is a sub-
set of the set the sample space. In other
words, an event is a set of possible outcome
in a random experiment.

MATHEMATICAL ASPECTS

Consider €2, the sample space of a random
experiment. Any subset of Q2 is called an
event.

Different Types of Events

e Impossible events
An impossible event corresponds to an
empty set. The probability of an impos-
sible event is equal to O:

if B=¢, P®B) =0.

e Sure event
A sure event is an event that corresponds
to the sample space. The probability of
a sure event is equal to 1:

P(Q) =1.

e Simple event
A simple event is an event that only con-
tains one outcome.

Operations on Events

e Negation of an event
Consider the event E. The negation of this
event is another event, called the opposite
event of E, which is realized when E is
not realized and vice versa. The opposite
eventof E'isdenoted by the set E, the com-
plement of E:

E=Q\E={wecQw¢E}.

e Intersection of events
Consider the two events E and F. The
intersection between these two events is
another event that is realized when both
events are realized simultaneously. It is
called the “E and F” event, and it is denot-
edby ENF.

ENF={weQ wekFE and w € F} .
., E,

In a more general way, if Eq, E», ..
are r events, then

,
(E=loeowekE,Vi=1,...n
i=1

is defined as the intersection of the
r events, which is realized when all of
the r events are realized simultaneously.
e Union of events

Consider the two same events E and F.
The union of these two events is anoth-
er event, which is realized when at least
one of the two events E or F is realized.
It is sometimes called the “E or F”’ event,
and it is denoted by E U F:

EUF={weQ,weE or weF}.

Properties of Operations on the Events
Consider the three events E, F' and G. The
intersection and the union of these events sat-
isfy the following properties:

o Commutativity:

ENF=FNE,
EUF=FUE.

e Associativity:

EN(FNG)=(ENF)NG,
EU(FUG) =(EUF)UG.
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e Idempotence: 2. The sum of points is even:
ENE=E, B={(1,1),(1,3),(1,5),
EUE=E. (2,2), (2,4),...,(6,4), (6,6))}.

The distributivity of the intersection with 3 The sum of points is less than 5:
respect to the union is:

C={11,(12),(,3),
(2, 1),(2,2), @3 D}.

EN(FUG) = (ENF)U(ENG).

The distributivity of the union with respect

. L 4. The sum of points is odd:
to the intersection is:

D ={(1,2), (1,4, (,6),

EUFNG) =(EUF)NEUG). )
2,1),2,3),...,(6,5}=8B.

The main negation relations are: o
5. The sum of points is even and less than 5:

ENF=EUF,
EOF<ENF. E={(1,1),(1,3),(22),3 D}
=BNC.
EXAMPLES 6. The blue die lands on “2”:
Consider a random experiment which
involves simultaneously throwing a yellow F=1{(12),22),32),
die and a blue die. 4,2), (5,2),(6,2)}.

The sample space of this experiment is
formed from the set of pairs of possible /- Thebluedielandson“2” orthetotal score

scores from the two dice: is less than 5:
Q={(11),(,2),(,3),...,2 1, G=1{(1,2),(22),32),42),572),
2,2),...,(6,5), (6,6)}. (6,2), (1, 1),(1,3), (2, 1), 3, 1)}
=FUC.
where, for example: (1, 2) = “1” on the yel-

low die and “2” on the blue die. The num- 8- A and D are incompatible.
ber of pairs (or simple events) that can be 9. A implies B.
formed is given by the number of arrange-
ments with repetition of two objects among FURTHER READING
six which is 36. For this sample space, itis » Compatibility
possible to describe the following events, for » Conditional probability
example: » Independence
1. The sum of points is equal to six: » Probability
» Random experiment

A= {(L 5)» (20 4)) (3, 3)» (4, 2)’ (5, 1)} . > Sample Space
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Expected Value

The expected value of a random variable
is the weighted mean of the values that the
random variable can take, where the weight
is the probability that a particular value is
taken by the random variable.

HISTORY

The mathematical principle of the expect-
ed value first appeared in the work entitled
De Ratiociniis in Aleae Ludo, published in
1657 by the Dutch scientist Huygens, Chris-
tiaan (1629-1695). His thoughts on the sub-
jectappear to have heavily influenced the lat-
er works of Pascal and Fermat on probabi-
lity.

MATHEMATICAL ASPECTS

Depending on whether the random vari-
able is discrete or continuous, we refer to
either the expected value of a discrete ran-
dom variable or the expected value of a con-
tinuous random variable.

Consider a discrete random variable X
that has a probability function p(X). The
expected value of X, denoted by E[X] or u,
is defined by

p=EX1=Y xip(x)
i=1

if X can take n values.
If the random variable X is continuous, the
expected value becomes

M=HM=A#®M,

if X takes values over the interval D, where
f(x) is the density function of X.

Properties of the Expected Value

Consider the two constants a and b, and the
random variable X. We then have:

1. E[aX + b] = aE[X] + b;

2. E[X + Y] = E[X] + E[Y];

3. E[X—Y]|=E[X]—E[Y];

4. If X and Y are independent, then:

E[X-Y] = E[X]- E[Y].

EXAMPLES

We will consider two examples, one con-
cerning adiscrete random variable, the oth-
er concerning a continuous random variable.
Consider a game of chance where a die is
thrown and the score noted. Suppose that you
win a euro if it lands on an even number, two
euros if it lands on a “1” or a “3,” and lose
three euros if it lands on a 5.

The random variable X considered here is
the number of euros that are won or lost. The
following table represents the different val-
ues of X and their respective probabilities:

X
P(X)

The expected value is therefore equal to:

3
EIX]=) xip(x;)
i=1

= -3.

Wl

In other words, the player wins, on average,
% of a euro per throw.

Consider a continuous random variable X
with the following density function:

1 forO<x<1
fl) =

0 elsewhere.
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The expected value of this random vari-
able X is equal to:

1
E[X]:/ x - 1dx
0

FURTHER READING

» Density function

» Probability function

» Weighted arithmetic mean
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Experiment

An experiment is an operation conducted
under controlled conditions in order to dis-
cover a previously unknown effect, to test
or establish a hypothesis, or to demonstrate
a known law.

The goal of experimenting is to clarify the
relation between the controllable conditions
and the result of the experiment.
Experimental analysis is performed on ob-
servations which are affected not only by the
controllable conditions, but also by uncon-
trolled conditions and measurement errors.

DOMAINS AND LIMITATIONS

When the possible results of the experiment
canbedescribed, anditis possible to attribute
a probability of realization to each possible
outcome, the experiment is called arandom
experiment. The set of all possible outcome
of an experiment is called the sample space.
A factorial experiment is when the exper-
imenter organizes an experiment with two
or more factors. The factors are the control-
lable conditions of the experiment. Experi-

mental errors come fromuncontrolled condi-
tions and from measurement errors that are
present in any type of experiment.

An experimental design is established,
depending on the aim of the experimentor
or the possible resources that are available.

EXAMPLES
See random experiment and factorial ex-
periment.

FURTHER READING

» Design of experiments
» Factorial experiment
» Hypothesis testing

» Random experiment
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Experimental Unit

An experimental unit is the smallest part of
the experimental material to which we apply
treatment.

The experimental design specifies the num-
ber of experimental units submitted to the
different treatments.

FURTHER READING

» Design of experiments
» Experiment

» Factor

» Treatment
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Exploratory
Data Analysis

Exploratory data analysis is an approach to
data analysis where the features and char-
acteristics of the data are reviewed with
an “open mind”; in other words, without
attempting to apply any particular model to
the data. It is often used upon first contact
with the data, before any models have been
chosen for the structural or stochastic com-
ponents, and it is also used to look for devi-
ations from common models.

HISTORY

Exploratory data analysis is a set of tech-
niques that have been principally developed
by Tukey, John Wilder since 1970. The phi-
losophy behind this approach is to examine
the data before applying a specific proba-
bility model. According to Tukey, J.W.,
exploratory data analysis is similar to detec-
tive work. In exploratory data analysis, these
clues can be numerical and (very often)
graphical. Indeed, Tukey introduced sev-
eral new semigraphical data representation
tools to help with exploratory data analysis,
including the “box and whisker plot” (also
known as the box plot) in 1972, and the stem
and leaf diagram in 1977. This diagram is
similar to the histogram, which dates from
the eighteenth century.

MATHEMATICAL ASPECTS

A good way to summarize the essential infor-
mation in a data with exploratory data analy-
sis is provided by the five-number summary,
which is presented in the form of a table as
follows:

Let n be the number of observations; we
arrange the data in ascending order. We
define:

1
median rank = i

|median rank| + 1
> ,

quartile rank =

where |x] is the value of x truncated down
to the next smallest whole number.

In his book, Tukey, J.W. calls the first and
the fourth quartiles “hinges”.

DOMAINS AND LIMITATIONS

In the exploratory data analysis defined by
Tukey, J.W., there are four principal top-
ics. These are graphical representation,
re-expression (which is simply the trans-
formation of variables), residuals and resis-
tance (which is synonymous to the concept
of robustness). The resistance is a measure
of sensitivity of the analysis or summary to
“bad data”. The need to study the resistance
reflects the fact that even “good data rarely
contains less then 5% error and so itis impor-
tant to be able to protect the analysis against
the adverse effects of error”. Tukey’s resis-
tant line gives a robust fit to a set of points,
which means that this line is not overly sensi-
tive to any particular observation. The medi-
an is highly resistant, but the mean is not.
Graphical representations are used to ana-
lyze the behavior of the data, data fits, diag-
nostic measures and residuals. In this way we
can spot any unexpected characteristics and
recognizableir regularity in the data.

The development of the exploratory data
analysisisclosely associated with an empha-
sis on visual representation and the use of
a variety of relatively new graphical tech-
niques, such as the stem and leaf diagram
and the box plot.
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EXAMPLES

Income indices for Swiss cantons in 1993

Index Canton Index

Canton

The table provides the income indices of
Swiss cantons per inhabitant (Switzerland
= 100) in 1993. We can calculate the five-
number summary statistics:

ntl 2641 o
2 2

Therefore, the median My is the mean of the
thirteenth and the fourteenth observations:

8934909

median rank =

=90.1.
d 2
Then we calculate:
13+1
quartile rank = bl =17.

The first quartile will be the seventh observa-
tion from the start of the data (when arranged
in ascending order) and the third quartile will
be the seventh observation from the end of
the data:

first quartile = 87.3
third quartile = 101.4.

The minimum and maximum are, respective-
ly: 72.6 and 170.2.

This givesus the following five-number sum-
mary:

Resistance (or Robustness) of the Median
with Respect to the Mean

We consider the following numbers: 3, 3, 7,
7,11, 11.

‘We first calculate the mean of these numbers:

)_C:ZLIX,‘
n
_ 3347474
= g =17.
Then we calculate the median Mg:

1 6+1
medianrank=i=%=3.5
T4+7
My=—=7.
1=

‘We note that, in this case, the mean and the
median both equal 7.

Now suppose that we add another number:
—1000. We therefore recalculate the mean
and the median of the following numbers:
—1000, 3, 3, 3,7, 11, 11. The mean is:

Z?:l Xi

n
—1000+3+3+7+7+11+11
7

=l

= —136.86.

Itis clear that the presence of even one “bad
datum” can affect the mean to a large degree.
The median is:

n+1_7+1_
==

median rank = 4

Mg =17.
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Unlike the mean, the median does not
change, which tells us that the median is
more resistant to extreme values (“bad data™)
than the mean.

FURTHER READING

» Box plot

» Graphical representation
» Residual

» Stem-and-leaf diagram

» Transformation
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Exponential

Distribution

A random variable X follows an exponen-
tial distribution with parameter 6 if its den-
sity function is given by:

6-e ifx>0:0>0

F@ =1, if not

086 4
05 4
04 4
03 4
0.2 4

0.1 4

0

0 1 2 3 4 5 6 7 8 9 10

Exponential distribution, 6 = 1,0 =2

The exponential distribution is also called
the negative exponential.

The exponential distribution is a continuous
probability distribution.

MATHEMATICAL ASPECTS

The distribution function of a random
variable X that follows an exponential distri-
bution with parameter 6 is as follows:

X

F(x) = / 6. e dr
0

=1—e 0%,

The expected value is given by:

1
EX]=-.
[(X] 7
Since we have
2
E[X]:O—z.

the variance is equal to:

Var(X) = E[X?] — (E[X])?
2 1 1
02 92 92
The exponential distribution is the continu-
ous probability distribution analog to the
geometric distribution.
Itis actually a particular case of the gamma
distribution, where the parameter « of the
gamma distribution is equal to 1.
It becomes a chi-square distribution with
two degrees of freedom when the param-
eter 6 of the exponential distribution is equal
to 3.

DOMAINS AND LIMITATIONS

The exponential distribution is used to
describe random events in time. For exam-
ple, lifespan is a characteristic that is fre-
quently represented by an exponential ran-
dom variable.
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FURTHER READING

» Chi-square distribution

» Continuous probability distribution
» Gamma distribution

» Geometric distribution
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Extrapolation

Statistically speaking, an extrapolation is an
estimation of the dependent variable for
values of independent variable that are locat-
ed outside of the set of observations.
Extrapolation is often used in time series
when a model that is determined from the
values wuj, up,...,u, observed at times
t,t,....t, (Witht; < h < ... < t)18
used to predict the value of the variable at
time #,41.

Generally, a simple linear regression func-
tion based on the observations (X;, Y;), i =
1,2,..., ncanbe used to estimate values of
Y for values of X that are located outside of
the set X1, X», ..., X,,. It is also possible to
obtain extrapolations from amultiple linear
regression model.

DOMAINS AND LIMITATIONS

Caution is required when using extrapola-
tions because they are obtained based on the
hypothesis that the model does not change
for the values of the independent variable
used for the extrapolation.

FURTHER READING

» Forecasting

» Multiple linear regression
» Simple linear regression
» Time series
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Factor

A factor is the term used to describe any con-
trollable condition in an experiment. Each
factor can take a predetermined number of
values, called the levels of the factor.
Experiments that use factors are called fac-
torial experiments.

EXAMPLES

A sociologist wants to find out the opinions
of the inhabitants of a city about the drug
problem. He is interested in the influence
of gender and income on the attitude to this
issue.

The levels of the factor “gender” are:
male (M) and female (F); the levels of the
factor “income” correspond to low (L), aver-
age (A) and high (H), where the divisions
between these levels are set by the experi-
menter.

The factorial space G of this experiment
is composed of the following six combina-
tions of the levels of the two factors:

G ={(M,L); (M,A); (M,H); (EL);
(FA); (EH)}.

In this example, the factor “gender” is qual-
itative and takes nominal values; whereas
the factor “income” is quantitative, and takes
ordinal values.

FURTHER READING

» Analysis of variance

» Design of experiments
» Experiment

» Factorial experiment
» Treatment
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Factor Level

The levels of a factor are the different values
that it can take. The experimental design
determines which levels, out of all of the pos-
sible combinations of such levels, are used in
the experiment.

FURTHER READING

» Design of experiments
» Experiment

» Factor

» Treatment
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Factorial Axis

Consider S, a square matrix of order n. If X;
is the eigenvector of S, associated with the
eigenvalue k;, we say that X; is the ith fac-
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torial axis; more precisely it is the axis that
carries the vector X;.

We generally arrange eigenvalues in
decreasing order, which explains the need
to number the factorial axes.

HISTORY
See correspondence analysis.

DOMAINS AND LIMITATIONS
The concept of a factorial axis is used in cor-
respondence analysis.

FURTHER READING

» Correspondence analysis
» Eigenvalue

» Eigenvector

» Inertia

REFERENCES
See correspondence analysis.
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Factorial Experiment

A factorial experiment is an experiment in
which all of the possible treatments that can
be derived from two or more factors, where
each factor has two or more levels, are stud-
ied, in a way such that the main effects and
the interactions can be investigated.

The term “factorial experiment” describes an
experiment where all of the different factors
are combined in all possible ways, butitdoes
not specify the experiment design used to
perform such an experiment.

MATHEMATICAL ASPECTS

In a factorial experiment, a model equation
canbe used to relate the dependent variable
to the independent variable.

Therefore, if the factorial experiment impli-
cates two factors, the associated model is as
follows:

Yijk = n+ ai + B + (@B)ij + €ijk.,

i=12,...,a (levels of factor A),

j=1,2,...,b (levels of factor B),
number of ex-
k=12 . perimental units
»7 T receiving the ’
treatment jj
where:
n is the general mean common to all
of the treatments,
o is the effect of the ith level of fac-
tor A,

B istheeffectofthejthlevel of factor B,

(B);; is the effect of the interaction be-
tween ith level of A jth level of B,
and

Eijk is the experimental error in the

observation Yjj.

In general, 1 is a constant and € is a ran-
dom variable distributed according to the
normal distribution with a mean of zero
and a variance of o2

If the interaction term (af8);; is suppressed,
an additive model is obtained, meaning that
the effect of each factor is a constant that
adds up to the general mean p, and this does
not depend on the level of the other factor.
This is known as a model without interac-
tions.

DOMAINS AND LIMITATIONS

In a factorial experiment where all of the
factors have the same number of levels, the
number of treatments employed in the exper-
iment is usually given by the number of lev-
els raised to a power equal to the number
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of factors. For example, for an experiment
thatemploys three factors, each withtwo lev-
els, the experiment is known as a 23 facto-
rial experiment, which employs eight treat-
ments.

The most commonly used notation for the
combinations of treatments used in a facto-
rial experiment can be described as follows.
Use a capital letter to designate the factor
and a numerical index to designate its level.
Consider for example a factorial experiment
with three factors: a factor A with two levels,
afactor B with two levels, and a factor C with
three levels. The 12 combinations will be:

A1BC1, A1B1Cy, A1B1GCs,
A1B>C1, A1B:Cy, A1ByCs,
AB1C1, AxB1Cy, A2B1Cs,
ArByCy1, AxByCp, ABCs.

Sometimes only the indices (written in the
same order as the factors) are stated:

111, 112, 113,
121, 122, 123,
211, 212, 213,
221, 222, 223.

Double-factorial experiments, or more gen-
erally multiple-factorial experiments, are
important for the following reasons:

e A double-factorial experiment uses
resources more efficiently than two expe-
riments that each employ a single factor.
The first one takes less time and requires
fewer experimental units to achieve
a given level of precision.

e A double-factorial experiment allows the
influence of one factor to be studied at
each level of the other factor because the
levels of both factors are varied. Thisleads
to conclusions that are valid over a larger
range of experimental conditions than if
a series of one-factor designs is used.

e Finally, simultaneous research on two
factors is necessary when interactions
between the factors are present, meaning
that the effect of a factor depends on the
level of the other factor.

FURTHER READING
» Design of experiments
» Experiment

REFERENCES

Dodge, Y.: Principaux plans d’expériences.
In: Aeschlimann, J., Bonjour, C., Stock-
er, E. (eds.) Méthodologies et techniques
de plans d’expériences: 28¢me cours de
perfectionnement de 1’ Association vau-
doise des chercheurs en physique, Saas-
Fee, 2—8 March 1986 (1986)

I
Fisher Distribution

The random variable X follows a Fisher
distribution if its density function takes the
form:

[N

m—

m+n

(122"
where I is the gamma function (see gam-

ma distribution) and m, n are the degrees
of freedom (m,n=1,2,...).

1A

l

o &

Fisher distribution, m =12, n =18
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The Fisher distribution is a continuous
probability distribution.

HISTORY
The Fisher distribution was discovered by
Fisher, R.A. in 1925. The symbol F, used
to denote the Fisher distribution, was intro-
duced by Snedecor in 1934, in honor of Fish-
er, R.A..

MATHEMATICAL ASPECTS

If U and V are two independent random
variables each following a chi-square
distribution, with respectively m and n
degrees of freedom, then the random vari-

able:
_U/m

- V/n
follows a Fisher distribution with m and n
degrees of freedom.
The expected value of arandom variable F
that follows a Fisher distribution is given by:

E[F]:L2 for n> 2,

and the variance is equal to:

202 (m+n—2)

Var (F) =
ar (F) mmn—2)%(n—4)

The Fisher distribution with 1 and v degrees
of freedom is identical to the square of the
Student distribution with v degrees of free-
dom.

DOMAINS AND LIMITATIONS

The importance of the Fisher distribution in
statistical theory is related to its application
to the distribution of the ratio of independent
estimators of the variance. Currently, this
distribution is most commonly used in the
standard tests associated with analysis of
variance and regression analysis.

FURTHER READING

» Analysis of variance

» Chi-square distribution

» Continuous probability distribution
» Fisher table

» Fisher test

» Student distribution

REFERENCES

Fisher, R.A.: Statistical Methods for
Research Workers. Oliver & Boyd, Edin-
burgh (1925)

Snedecor, G.W.: Calculation and Interpre-
tation of Analysis of Variance and Covari-
ance. Collegiate, Ames, IA (1934)
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Fisher Index

TheFisherindexis acomposite index num-
ber which allows us to study the increase in
the cost of living (inflation). Itis the geomet-
ric mean of two index numbers:

e The Laspeyres index, and

e The Paasche index.

(Laspeyres index)

Fisher i = .
isher index \/ x (Paasche index)

HISTORY

In 1922, the economist and mathematician
Fisher, Irving established a model based on
the Fisher index in order to circumvent some
issues related to the use of the index num-
bers of Laspeyres and Paasche:

Since the Laspeyres index always uses the
quantity of goods soldinitially as areference,
it can overestimate any increase in the cost
of living (because the consumption of more
expensive goods may drop over time).
Conversely, since the Paasche index always
uses the quantity of goods sold in the current
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period asareference, itcan underestimate the
increase in the cost of living.

Because the Fisher index is the geometric
mean of these two indices, it can be con-
sidered to be an ideal compromise between
them.

MATHEMATICAL ASPECTS

Using the definitions of the Laspeyres index
and the Paasche index, the Fisherindex F, o
is calculated in the following way:

> PoQo- > PoOn’
where P, and Q,, represent the price of goods
and the quantity of them sold in the current
period n, while Po and Q are the price and
quantity sold of the same goods during refer-
ence period 0. Different values are obtained
for different goods.

Notice that the Fisher index is reversible,
meaning that:

Fpjo =100 -

1
FO/n.

Fnpo =

DOMAINS AND LIMITATIONS

Even though the Fisher index is a kind
of “ideal compromise index number,” it is
rarely used in practice.

EXAMPLES

Consider the following fictitious table indi-
cating the prices and the respective quantities
sold of three consumer goods at the reference
year 0 and at the current year n.

Price
(euros)

1970

Quantities
(thousands)

Goods 1970 1988 1988

From the following table, we have:
> Py0,=239.15,
> " PoQ, = 44.925,
ZP,,QO = 138.68 and
ZPOQO =24.27.

Goods Y PnQn Y PoQn X PnQp Y PoQp

We can then find the Paasche index:
D Pu-0On
> Po-On
= 42:‘99; - 100 = 532.3,
and the Laspeyres index:

Z P n"’ QO .

> Po-Qo

138.68
=i 100 =571.4.

The Fisher index is the square root of the

product of the index numbers of Paasche and

of Laspeyres (or the geometric mean of the

two index numbers):

Fisher index = +/532.3 x 571.4 = 551.5.

According to the Fisher index, the price of
the goods considered has risen by 451.5%
(551.5—100) between the reference year and
the current year.

Lo = - 100

Ly = 100

FURTHER READING

» Composite index number
» Index number

» Laspeyres index

» Paasche index

» Simple index number



202 Fisher, Irving

REFERENCES
Fisher, 1.: The Making of Index Numbers.
Houghton Mifflin, Boston (1922)

|
Fisher, Irving

Fisher, Irving was born in New York on the
27th February 1867.He obtained his doctor-
ate at Yale University in 1892. His mathe-
matical approach to the theory of values and
prices, firstdescribed in his thesis, resulted in
him becoming known as one of the first Ame-
rican mathematical economists. He founded
the Econometric Society in 1930 with Frisch,
Ragnar and Roos, Charles F., and became
its first president. Fisher, I. stayed at Yale
University throughout his career. He began
by teaching mathematics, then economics.
After a stay in Europe, he was named Pro-
fessor of Social Sciences in 1898, and died
in New York in 1947.

Fisher was a prolific author: his list of pub-
lications contains more then 2000 titles. He
was interested in both economic theory and
scientific research. In 1920, he proposed
econometrical and statistical methods for
calculating indices. His “ideal index”, which
we now call the Fisher index, is the geo-
metric mean of the Laspeyres index and the
Paasche index.

Some principal works and articles of Fish-
er, Irving:

1892 Mathematical Investigations in the
Theory of Value and Prices. Con-
necticut Academy of Arts and Sci-
ence, New Haven, CT.

1906 The Nature of Capital and Income.

Macmillan, New York.

1907

1910

1911

1912

1921

1922

1926

1927

1930

1932

1933

1935

The Rate of Interest: Its Nature,
Determination and Relation to Eco-
nomic Phenomena. Macmillan, New
York.

Introduction to Economic Science.
Macmillan, New York.

The Purchasing Power of Money.
Macmillan, New York.

Elementary Principles of Economics.
Macmillan, New York.

The best form of index number. Am.
Stat. Assoc. Quart., 17, 533-537.

The Making of Index Numbers.
Houghton Mifflin, Boston, MA.

A statistical relation between unem-
ployment and price changes. Int.
Labour Rev., 13, 785-792.

A statistical method for measuring
“marginal utility” and testing the
justice of a progressive income tax.
In: Hollander, J.H. (ed) Economic
Essays Contributed in Honor of John
Bates Clark. Macmillan, New York.

The Theory of Interest as Determined
by Impatience to Spend Income and
Opportunity to Invest It Macmillan,
New York.

Booms and Depressions. Adelphi,
New York.

The debt-deflation theory of great
depressions. Econometrica, 1, 337-
357.

100% Money. Adelphi, New York.

FURTHER READING
» Fisher index
» Index number
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Fisher, Ronald Aylmer

Born in 1890 in East Finchley, near London,
Fisher, Ronald Aylmer studied mathematics
at Harrow and at Gonville and Caius College,
Cambridge. He began his statistical career
in 1919 when he started work at the Insti-
tute of Agricultural Research at Rothamsted
(“Rothamsted Experimental Station”). The
time he spent there, which lasted until 1933,
was very productive. In 1933, he moved to
become Professor of Eugenics at University
College London, and then from 1943 to 1957
he took over the Balfour Chair of Genetics at
Cambridge. Even after he had retired, Fish-
er performed some research for the Mathe-
matical Statistics Division of the Common-
wealth Scientific and Industrial Research
Organisation in Adelaide, Australia, where
he died in 1962.

Fisher is recognized as being one of the
founders of modern statistics. Well known
in the field of genetics, he also contributed
important work to the general theory of max-
imum likelihood estimation. His work on
experimental design, required for the study
of agricultural experimental data, is also
worthy of mention, as is his development of
the technique used for the analysis of vari-
ance.

Fisher originated the principles of random-
ization, randomized blocks, Latin square
designs and factorial arrangements.

Some of the main works and articles of Fi-
sher, RA.:

1912 Onanabsolute criterion for fitting fre-
quency curves. Mess. Math., 41, 155—
160.

1918 The correlation between relatives on
the supposition of Mendelian inher-

1920

1921

1922

1925

1925

1934

1935

1971~

itance. Trans. Roy. Soc. Edinburgh,
52,399-433.

A mathematical examination of
methods of determining the accu-
racy of an observation by the mean
error and by the mean square error.
Mon. Not. R. Astron. Soc., 80, 758—
770.

On the “probable error” of a coef-
ficient of correlation deduced from
a small sample. Metron, 1(4), 1-32.

On the mathematical foundation of
theoretical statistics. Phil. Trans. A,
222,309-368.

Theory of statistical estimation. Proc.
Camb. Philos. Soc., 22, 700-725.

Statistical Methods for Research
Workers. Oliver & Boyd, London.

Probability, likelihood and quantity
of information in the logic of uncer-
taininference. Proc.Roy. Soc. A, 146,
1-8.

The Design of Experiments. Oliver &
Boyd, Edinburgh.

1974 Bennett, J.H. (ed) Collected
Papers of R.A. Fisher. Univ. Ade-
laide, Adelaide, Australia

FURTHER READING

» Fisher distribution
» Fisher table

» Fisher test

REFERENCES
Fisher-Box, J.: R.A. Fisher, the Life of a Sci-
entist. Wiley, New York (1978)
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|
Fisher Table

The Fisher table gives the values of the
distribution function of a random vari-
able that follows a Fisher distribution.

HISTORY
See Fisher distribution.

MATHEMATICAL ASPECTS

Let the random variable X follow a Fisher
distribution with m and n degrees of free-
dom. The density function of the random
variable X is given by:

r("3") (m\%
f® == ~ | =
F(i)r(i)(”)
m=2
- m+n [20,
(14272

where I represents the gamma function (see
gamma distribution).

Given the degrees of freedom m and n, the
Fisher table allows us to determine the val-
ue x for which the probability P(X < x)
equals a particular value.

The most commonly used Fisher tables give
the values of x for

P(X < x) = 95%
(X <x) =97.5%.

and

We generally use (x =) Fy o to Symbolize
the value of the random variable X for which

P(X<Funo)=1—-a.
DOMAINS AND LIMITATIONS

The Fisher table is used in hypothesis test-
ing when it involves statistics distributed

according to a Fisher distribution, and
especially during analysis of variance and
in simple and multiple linear regression
analysis.

Merrington and Thompson (1943) provided
Fisher tables for values up to five decimal
placeslong, and Fisher and Yates (1938) pro-
duced tables up to two decimal places long.

EXAMPLES

If X follows a Fisher distribution with m =
10and n = 15 degrees of freedom, the value
of x that corresponds to a probability of 0.95
is 2.54:

P(X < 2.54) = 0.95.

In the same way, the value of x that corre-
sponds to a probability of 0.975 is 3.06:

P(X <3.06) =0.975.

For an example of the use of the Fisher table,
see Fisher test.

FURTHER READING

» Analysis of variance

» Fisher distribution

» Multiple linear regression
» Simple linear regression
» Statistical table

REFERENCES

Fisher, R.A., Yates, F.: Statistical Tables
for Biological, Agricultural and Medical
Research. Oliver and Boyd, Edinburgh
and London (1963)

Merrington, M., Thompson, C.M.: Tables of
percentage points of the inverted beta (F)
distribution. Biometrika 33, 73—-88 (1943)
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Fisher Test

A Fisher test is a hypothesis test on the
observed value of a statistic of the form:

U n

F=—.—,

m V
where U and V are independent random vari-
ables that each follow a chi-square distri-
bution with, respectively, m and n degrees
of freedom.

HISTORY
See Fisher distribution.

MATHEMATICAL ASPECTS
‘We consider a linear model with one factor
applied at ¢ levels:

Yij=n+rti+ej,

i=1,2...,t; j=12,...,n,

where

Y;; representsthe jth observationreceiving

the treatment i,

jt  isthe general mean common to all treat-
ments,

1; isthereal effect of the treatment i on the
observation, and

&j; is the experimental error in the obser-

vation Yj;.

Therandom variables ;;areindependentand
distributed normally with mean O and vari-
ance 02: N(0, o2).

In this case, the null hypothesis that affirms
that there is a significant difference between
the ¢ treatments, is as follows:

Hy: i=n=...=1.

The alternative hypothesis is as follows:

Hi: the valuesof 7;(i = 1,2,...,1)

are not all identical.

To compare the variability of within treat-
ment also called error or residuals with the
variability between the treatments, we con-
struct a ratio where the numerator is an esti-
mation of the variance between treatment
and the denominator an estimation of the
variance within treatment or error. The Fish-
erteststatistic, also called the F-ratio, isthen
given by:

in,‘-(l?i.—i)z
t—1

i=1

F =

2

S on (Y5 - 1)
2.2 N

i=1 j=1
where

n; isthenumberofobservationsinithtreat-
ment(i=1,...,1)
t
N = )" n; is the total number of observa-
i=1
tions,
- nj Y:
Yi=> n—” is the mean of the ith treatment,
j=1
fori=1,...,¢ and

nj
Y = I%ié:ljg Y;; is the global mean.
After choosing a significance level o
for the test, we compare the calculat-
ed value F with the appropriate criti-
cal value in the Fisher table for + — 1
and N — ¢ degrees of freedom, denoted
FiiN-ta-
IfF > F;_1 N—1a, Werejectthe null hypothe-
sis, which means that at least one of the treat-
ments differs from the others.
If F < Fi—1,N—1a, Wwe do not reject the null
hypothesis; in other words, the treatments
present no significant difference, which also
meansthatthessamplesderive fromthe same
population.
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DOMAINS AND LIMITATIONS

The Fisher test is most commonly used dur-
ing the analysis of variance, in covariance
analysis, and in regression analysis.

EXAMPLES
See one-way analysis of variance and two-
way analysis of variance.

FURTHER READING

» Analysis of variance
» Fisher distribution
» Fisher table

» Hypothesis testing

» Regression analysis

|
Forecasting

Forecasting is the utilization of statistical
data, economic theory and noneconomic
conditions in order to form a reasonable
opinion about future events.
Numerous methods are used to forecast the
future. They are all based onarestricted num-
ber of basic hypotheses.
One such hypothesis affirms that the signifi-
cant tendencies that have been observed his-
torically will continue to hold in the future.
Another one states that measurable fluctu-
ations in a variable will be reproduced at
regular intervals, so that these variations will
become predictable.
The time series analysis performed in a fore-
cast process is based on two hypotheses:
1. Long-term forecast:
When we make long-term forecasts (more
than five years into the future), analysis
and extrapolation of the secular tenden-
¢y become important.
Long-term forecasts based on the secular
tendency normally do not take cyclic fluc-

tuations into account. Moreover, season-
al variations do not influence annual data
and arenotconsideredinalong-termfore-
cast.

2. Mean-term forecast:
In order to take the probable effect of
cyclic fluctuations into account in the
mechanism used to derive a mean-term
forecast (oneto five years ahead), we mul-
tiply the value of the projection of the sec-
ular tendency by the cyclic fluctuation,
which gives the forecasted value. This, of
course, assumes that the same data struc-
tures that produce the cyclic variations
will hold in the future, and so the observed
variations will continue to recur regularly.
In reality, subsequent cycles have the ten-
dency to vary enormously in terms of their
periodicity, their amplitude and the mod-
els that they follow.

3. Short-term forecast:
The seasonal index must be taken into
account in a short-term forecast (a few
months ahead), along with the projected
values for the secular tendency and cyclic
fluctuations.
Generally, we do not try to forecast irreg-
ular variations.

MATHEMATICAL ASPECTS

Let Y be a time series. We can describe it
using the following components:

e The secular tendency T’

The seasonal variations S;

The cyclic fluctuations C;

The irregular variations /.

We distinguish between:

e The multiplicativemodel Y =T7-S-C-I;
e The additive model Y =T + S+ C + 1.
For a value of 7 that is greater than the time
taken to perform an observation, we specify
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that:

Y; isaforecast of the value Y at time 7;

T; isaprojection of the secular tendency at
time f;

C; is the cyclic fluctuation at time f;

S; is the forecast for the seasonal variation
at time ¢.

In this case:
1. For a long-term forecast, the value of the
time series can be estimated using:

Y[:T[.

2. For a mid-term forecast, the value of the
time series can be estimated using:

Y, = T; - C; (multiplicative model)
or Y, = T; + C; (additive model) .

3. For a short-term forecast, the value of the
time series can be estimated using:

Y, =T,-C/- S
(for the multiplicative model)
or Y, =T +C+ S
(for the additive model).

DOMAINS AND LIMITATIONS

Planning and making decisions are two
activities that involve predicting the future,
to some degree. In other words, the adminis-
trators that perform these tasks have to make
forecasts.

It is worth noting that obtaining forecasts
via time series analysis is worthwhile, even
though the forecast usually turns out to be
inaccurate. In reality, even when it is inac-
curate, the forecast obtained in this way
will probably be more accurate than anoth-
er forecast based only on intuition. There-
fore, despite its limitations and problems,
time series analysis is auseful tool in the pro-
cess of forecasting.

EXAMPLES
The concept of a “forecast” depends on the
subject being investigated. For example:
e In meteorology:
— A short-term forecast looks hours
ahead,
— Along-term forecastlooks days ahead.
e In economics:
— A short-term forecast looks months
ahead;
— A mid-term forecast looks one to five
years ahead;
— A long-term forecast looks more then
five years ahead.

FURTHER READING

» Cyclical fluctuation
» Irregular variation
» Seasonal index

» Seasonal variation
» Secular trend

» Time series

|
Fractional Factorial Design

A fractional factorial experimental design is
afactorial experiment in which only a frac-
tion of the combinations of the factor levels
possible is realized.

This type of design is used when an experi-
ment contains a number of factors that are
believed to be more important than the oth-
ers, and/or there are a large number of factor
levels. The design allows use to reduce the
number of experimental units needed.

EXAMPLES

For a factorial experiment containing two
factors, each with three levels, there are
nine possible combinations. If four of these
observations are suppressed, a fraction of
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the observations are left that can be schema-
tized in the following way:

Factor B

Factor A

where Y;; represents the observation taken
for the ith level of factor A and the jth level
of factor B.

FURTHER READING
» Design of experiments
» Experiment

REFERENCES

Yates, F.: The design and analysis of factorial
experiments, Techn. comm. 35, Imperial
Bureau of Soil Science, Harpenden (1937)
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Frequency

The frequency or absolute frequency corre-
sponds to the number of appearances of a par-
ticular observation or result in an experi-
ment.

The absolute frequency can be distinguished
from the relative frequency. The relative fre-
quency of an observation is defined as the
ratio of the number of appearances to the total
number of observations.

For certain analyses, it is desirable to know
the number of observations for which the
value is, say, “less than or equal to” or “high-
er than” a given value. The number of values
less than or equal to this given value is called
the cumulative frequency.

The percentage of observations in which
the value is “less than or equal to” or “more
than” a given value may also be desired. The
proportion of values less than or equal to this

given value is called the cumulative relative
frequency.

EXAMPLES

Consider, for example, the following
16 observations, which represent the
heights (in cm) of a group of individuals:

174 169 172 174
171 179 174 176
177 161 174 172
177 168 171 172

Here, the frequency of observing 171 cmis 2;
whereas the frequency of observing 174 cm
is 4.

Inthisexample, the relative frequency of 174
is 14_6 = 0.25 (or 25% of all of the observa-
tions). The absolute frequency is 4 and the
total number of observations is 16.

FURTHER READING

» Frequency curve

» Frequency distribution
» Frequency table

|
Frequency Curve

If afrequency polygonis smoothed, acurve
is obtained, called the frequency curve.
This smoothing can be performed if the
number of observations in the frequency
distribution becomes infinitely large and
the widths of the classes become infinitely
small.

The frequency curve corresponds to the limit
shape of a frequency polygon.

HISTORY
Towards the end of the nineteenth centu-
ry, the general tendency was to consider all
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distributions to be normal distributions.
Histograms that presented several modes
were adjusted to form a set of normal fre-
quency curves, and those that presented
asymmetry were analyzed by transforming
the data in such a way that the histogram
resulting from this transformation could be
compared to a normal curve.

In 1895 Pearson, K. proposed creating a set
of various theoretical frequency curves in
order to be able to obtain better approxima-
tions to the histograms.

FURTHER READING

» Continuous probability distribution
» Frequency distribution

» Frequency polygon

» Normal distribution

REFERENCES

Pearson, K.: Contributions to the mathe-
matical theory of evolution. II: Skew
variation in homogeneous material. In:
Karl Pearson’s Early Statistical Papers.
Cambridge University Press, Cambridge,
pp. 41-112 (1948). First published in
1895 in Philos. Trans. Roy. Soc. Lond.
Ser. A 186, 343414
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Frequency Distribution

The distribution of a population can be
expressed in relative terms (for example as
a percentage), in fractions or in absolute
terms. In all of these cases, the resultis called
the frequency distribution.

We also obtain either a discrete frequency
distribution or a continuous frequency distri-
bution, depending on whetherthe variable
being studied is discrete or continuous.
The number of appearances of a specific val-
ue, or the number of observations for a spe-

cificclass, is called the frequency of that val-
ue or class.

The frequency distribution that is obtained
in this manner can be represented either as
a frequency table or in a graphical way, for
example as a histogram, a frequency poly-
gon or a line chart.

Any frequency distribution has a corre-
sponding relative frequency distribution,
which is the distribution of each value or
each class with respect to the total number
of observations.

HISTORY
See graphical representation.

DOMAINS AND LIMITATIONS

In practice, frequency distributions can vary

considerably. For example:

e Someare symmetric; others are asymmet-
ric:
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Asymmetric distribution

e Some only have one mode (unimodal
distributions); others have several (pluri-
modal distributions):
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Bimodal distribution

This means that frequency distributions can
be classified into four main types:

1. Unimodal symmetric distributions;

2. Unimodal asymmetric distributions;

3. J-shaped distributions;

4. U-shaped distributions.

During statistical studies, it is often neces-
sary to compare two distributions. If both
distributions are of the same type, it is possi-
ble to compare them by examining their main
characteristics, such as the measure of cen-
tral tendency, the measure of dispersion
or the measure of form.

EXAMPLES

The following data represent the heights,
measured in centimeters, observed for a pop-
ulation of 27 students from a junior high-
school class:

169 177 178 181 173
172 175 171 175 172
173 174 176 170 172
173 172 171 176 176
175 168 167 166 170
173 169

By ordering and regrouping these observa-
tions by value, we obtain the following fre-
quency distribution:

Height

Frequency Height Frequency

166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

Here is another example, which concerns
the frequency distribution of a continuous
variable. After retrieving and classifying the
personal incomes among the population of
Neuchatel (a state in Switzerland), for the
period 1975-1976, we obtain the following
frequency table:

Fre- Relative
quencies frequency

Net revenue
(in thousands of
Swiss Francs)
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FURTHER READING

» Frequency

» Frequency curve

» Frequency polygon
» Frequency table

» Histogram

» Interval

» Line chart
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Frequency Polygon

A frequency polygon is a graphical rep-
resentation of a frequency distribution,
which fits to the histogram of the frequency
distribution. It is a type of frequency plot.
Ittakes the form of asegmented line thatjoins
the midpoint of the top of each rectangle in
a histogram.

MATHEMATICAL ASPECTS

We construct a frequency polygon by plot-
ting a point for each class of the frequency
distribution. Each point corresponds to the
midpoint of the class along the abscisse and
the frequency of the class along the ordinate.
Then we connect each point to its neighbor-
ing points by lines. The lines therefore effec-
tively link the midpoint of the top of each
rectangle in the histogram of the frequency
distribution.

Normally we close the frequency polygon at
the two ends of the distribution by choosing
appropriate points on the horizontal axis and
connecting them to the points for the first and
last classes.

DOMAINS AND LIMITATIONS

A frequency polygon is usually construct-
ed from data that has been grouped into
intervals. In this case, it is preferable to
employ intervals of the same width. If we fit
a smooth curve to a frequency polygon, we
getafrequency curve. This smoothing pro-
cess involves regrouping the data such that
the class width is as small as possible, and
then replotting the distribution.

Clearly, we can only perform this type of
smoothing if the number of units in the pop-
ulation is large enough to give a significant
number of observations in each class after
regrouping.

EXAMPLES
The frequency table below gives the annual
mean precipitations for 69 cities in the USA:

Annual mean precipitation
(in inches)

Frequency

The frequency polygonis constructed viathe
histogram of the frequency distribution:
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To construct the frequency polygon, we plot
a point for each class. The position of this
point along the abscisse is given by the mid-
point of the class, and its position along the
ordinate is given by the frequency of the
class. In other words, each point occurs at
the midpoint of the top of the rectangle for
the class in the histogram. Each pointis then
joined to its nearest neighbors by lines. In
order to close the polygon, a point is placed
on the abscisse one class-width before the
midpoint of the first class, and another point
is placed on the abscisse one class-width
after the midpoint of the last class. These
points are then joined by lines to the points
for the firstand last classes, respectively. The
frequency polygon we obtain from this pro-
cedure is as follows:

25 4

5 15 25 35 45 55 B5

FURTHER READING

» Frequency distribution

» Frequency table

» Graphical representation
» Histogram

» Ogive
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Frequency Table

The frequency table is a tool used to repre-
sent a frequency distribution. It provides
the ability to represent statistical observa-
tions.

The frequency of a value of a variable is
the number of times that this value appears in
apopulation. A frequency distribution can
then be defined as the list of the frequencies
obtained for the different values taken by the
variable.

MATHEMATICAL ASPECTS

Consider a set of n units described by a vari-
able X that can take k values xi, xo, ..., Xk.
Letn; bethe number of units having the value
xi; n; is then the frequency of value x;.
The relative frequency of x; is f; = %-.
Since the values are different and exhaustive,
the sum of all of the frequencies n; equals the
total number 7 of units in the set, or the sum
of the relative frequencies f; equals unity; in
other words:

k k
Zﬂi=ﬂ and Zﬁ:l.
i=1 i=1

The corresponding frequency table for this
scenario is as follows:

Values of the
variable X

Frequencies Relative
frequencies

Sometimes the concept of cumulative fre-
quency is important (see the second example
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for instance). This is the sum of all frequen-

1
cies up to and including frequency f;: > f.
=

J

DOMAINS AND LIMITATIONS

Constructing a frequency table is the sim-

plest and the most commonly used approach

to representing data. However, there are
some rules that should be respected when
creating such a table:

e The table must have a comprehensive and
concise title, which mentions the units
employed;

e The names of the lines and columns must
be precise and short;

e The column totals should be provided;

e The source of the data given in the table
must be indicated.

In general, the table must be comprehensi-

ble enough to understand without needing to

read the accompanying text.

The number of classes chosen to represent

the data depends on the size of the set studied.

Using a large number of classes for a small

set will result in irregular frequencies due to

the small number of units per class. On the
otherhand, using small number of classes for

a large set results in the loss of information

about the structure of the data.

However, there is no general rule for deter-

mining the number of classes that should be

used to construct a frequency table. For rel-
atively small sets (n < 200), between 7 and

15 classes are recommended, although this

rule is not absolute.

To simplify, it is frequent to use classes of

the same width, and the classintervals should

not overlap. In certain cases, for example if
we have a variable that can take a large range
of values, but a certain interval of values is
expected to be far more frequent than the rest,

it can be useful to use an open class, such as
“1000 or more.”

EXAMPLES

Frequency distribution of Australian resi-
dents (in thousands) according to their mat-
rimonial statuses, on the 3074 June 1981 is
given in the following table.

Relative
frequency

Matrimonial
status

Frequency
(in thousands)

Source: ABS (1984) Pocket Year Book Aus-
tralia. Australian Bureau of Statistics, Canberra,
p.11.

Thedatais presented in the form of a frequen-
cy table. The variable “Matrimonial status”
can take four different values: single, mar-
ried, divorced or widowed. The frequency,
expressed in thousands, and the relative fre-
quency are given for each value.

In the following example, we consider the
case where observations are grouped into
classes. This table represents the classifi-
cation of 3014 people based on theirincomes
in 1955.

Income Frequency

n; Relative Relative
Cumulative
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Income

n;j

Frequency

Relative Relative
Cumulative

From this table, we can see that 57.8% of
these 3014 people have incomes that are
smaller then 5000 dollars.

FURTHER READING
» Frequency
» Frequency distribution
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Galton, Francis

Galton, Francis was born in 1822 near Birm-
ingham, England, to a family of intellectu-
als: Darwin, Charles was his cousin, and his
grandfather was amember of the Royal Soci-
ety.

His interest in science first manifested itself
in the fields of geography and meteorology.
Elected as a member of the Royal Society
in 1860, he began to become interested in
genetics and statistical methods in 1864.
Galton was close friends with Pearson, K..
Indeed, Pearson came to his financial aid
when Galton founded the journal “Biometri-
ka.” Galton’s “Eugenics Record Office”
merged with Pearson’s biometry laborato-
ry at University College London and became
known as the “Galton Laboratory.”

Hedied in 1911, leaving more than 300 pub-
lications including 17 books, most notably
on statistical methods related to regression
analysis and the concept of correlation,
both of which are attributed to him.

Some of the main works and articles of Gal-
ton, F.:

1869 Hereditary Genius: An Inquiry into
its Laws and Consequences. Macmil-
lan, London.

1877 Typical laws in heredity. Nature, 15,
492-495, 512-514, 532-533.

1889 Natural
London.

Inheritance. Macmillan,

1907 Probability, the Foundation of Eugen-
ics. Henry Froude, London.

1908 Memories of my Life. Methuen, Lon-
don.

1914-1930 Pearson, K. (ed) The Life, Let-
ters and Labours of Francis Galton.
Cambridge University Press, Cam-
bridge

FURTHER READING
» Correlation coefficient
» Regression analysis
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Gamma Distribution

A random variable X follows a gamma
distribution with parameter « if its density
function is given by

ﬁ()l

xafl X efﬂx

i

fx) =
if x>0, >0, >0,

where I'(«) is the gamma function.
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o + o(a +
03 1 E [Xz] =2 = 2 ’
B () B
] the variance is equal to:
0.1
. , | . . | Var(X) = E[X*] — (E[X])?
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Gamma distribution, « =2, 8 =1 = T
o
The standard form of the gamma distribution = E )

is obtained by putting 8 = 1, which gives

1 a—1 —Xx
f) = —x"" e,

')

if x>0, a>0.

The gamma function (I') appears frequently
in statistical theory. It is defined by:

o0
(o) = / P le dr.
0

In statistics, we are only interested in values
of @ > 0.
Integrating by parts, we obtain:

Na+1)=al(x).
Since
ra=t,

we have

I'(¢+1) = «! for every positive integer o.

HISTORY

According to Lancaster (1966), this contin-
uous probability distribution was origi-
nated by Laplace, P.S. (1836).

MATHEMATICAL ASPECTS
The expected value of the gamma distri-
bution is given by:

1 TNae+1) o«

EX]=— ——— =—.
B T'a) B

The chi-square distribution is a particular
case of the gamma distribution where o = 5
and 8 = %, and n is the number of degrees
of freedom of the chi-square distribution.
The gamma distribution with parameter
a = 1 gives the exponential distribution:

fx)=p-e .

FURTHER READING

» Chi-square distribution

» Continuous probability distribution
» Exponential distribution

REFERENCES

Lancaster, H.O.: Forerunners of the Pear-
son chi-square. Aust. J. Stat. 8, 117-126
(1966)

Laplace, P.S. de: Théorie analytique des
probabilités, suppl. to 3rd edn. Courcier,
Paris (1836)
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Gauss, Carl Friedrich

Gauss, Carl Friedrich was born in 1777 in
Brunswick in Germany. He quickly became
a renowned astronomer and mathematician
and is still considered to be on a par with
Archimedes and Newton as one of the great-
est mathematicians of all time.



Gauss—Markov Theorem 217

He obtained his doctorate in 1799, and then
worked at the University of Helmsted. In
1807, he moved to Gottingen, where he
became Laboratory Director. He spent the
rest of his life in Gottingen, where he died
in 1855.

His contributions to science, particularly
physics, are of great importance. In statis-
tics, his works concerned the theory of esti-
mation, and the least squares method and
the application of the normal distribution
to problems related to measurement errors
both originated with him.

Some of the main works and articles of
Gauss, C.F.:

1803-1809 Disquisitiones de elementis
ellipticis pallidis. Werke, 6, 1-24.
Theoria motus corporum coelestium.
Werke, 7. (1963 English translation
by Davis, C.H., published by Dover,
New York).

Bestimmung der Genauigkeit der
Beobachtungen. Werke, 4, 109-117.
1821, 1823 and 1826 Theoria combinatio-
nis observationum erroribus minimis
obnoxiae, parts 1, 2 and suppl. Werke,
4, 1-108.

Anwendungen der Wahrschein-
lichkeitsrechnung auf eine Aufgabe
der praktischen Geometrie. Werke,
9,231-237.

Méthode des Moindres Carrés:
Mémoires sur la Combinaison des
Observations. French translation of
the work of Gauss, C.F. by Bertrand, J.
(authorized by Gauss, C.F. himself).
Mallet-Bachelier, Paris.

Gauss’ Work (1803-1826). On The
Theory of Least Squares. English
translation by Trotter, H.F. Technical

1809

1816

1823

1855

1957

Report No. 5, Statistical Techniques
Research Group, Princeton, NJ.

FURTHER READING

» De Moivre, Abraham

» Gauss—-Markov theorem
» Normal distribution
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Gauss—-Markov Theorem

The Gauss—Markov theorem postulates that n

when the error probability distribution is
unknown in a linear model, then, amongst
all of the linear unbiased estimators for the
parameters of the linear model, the esti-
mator obtained using the method of least
squares is the one that minimizes the vari-
ance. The mathematical expectation of
each error is assumed to be zero, and all of
them have the same (unknown) variance.

HISTORY

Gauss, Carl Friedrich provided a proof
of this theorem in the first part of his
work “Theoria combinationis observation-
um erroribus minimis obnoxiae” (1821).
Markov, Andrei Andreyevich rediscovered
this theorem in 1900.

A version of the Gauss—Markov theorem
written in modern notation, was provided by
Graybill in 1976.

MATHEMATICAL ASPECTS
Consider the linear model

Y=X-B+¢,
where

Y isthen x 1 vector of the observations,
X is the n x p matrix of the independent
variables that are considered fixed,
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B isthep x 1 vector of the unknown param-
eters, and
e isthen x 1 vector of the random errors.

If the error probability distribution is

unknown but the following conditions are

fulfilled:

1. The mathematic expectation E[e] = 0,

2. The variance Var(g) = 2.1, where I,
is the identity matrix,

3. The matrix X has a full rank,

then the estimator of 3,

f=xx)"XY,
derived via the least squares method is the

linear estimator without bias of 8 that has
least variance.

FURTHER READING
» Estimator
» Least squares

REFERENCES
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Generalized Inverse

The generalized inverse is analogous to the
inverse of anonsingular square matrix, butis
used for a matrix of any dimension and rank.
The generalized inverse is used in the reso-
lution of systems of linear equations.

HISTORY

It appears that Fredholm (1903) was the
first to consider the concept of a generalized
inverse. Moore defined a single generalized
inverse in his book General Analysis (1935),
published after his death. However, his work
was not used until the 1950s, when it experi-
enced a surge in interest due to the applica-
tion of the generalized inverse to problems
related to least squares.

In 1955 Penrose, reusing and enlarging upon
work published in 1951 by Bjerhammar,
showed that the Moore’s generalized inverse
isaunique matrix G that satisfies the follow-
ing four equations:

I.LA=A -G -A;

2.6=G-A-G;

3.A-G) =A-G;

4. (G-A) =G-A.

This unique generalized inverse is known as

the Moore—Penrose inverse, and is denoted
by AT,

MATHEMATICAL ASPECTS
Then xmmatrix Gisthe generalized inverse
of the m x n matrix A if

A=A -G-A.

The matrix G is unique if and only if m = n
and A is not singular.

The most common notation used for the gen-
eralized inverse of a matrix A is A™.

FURTHER READING
» Inverse matrix
» Least squares

REFERENCES
Bjerhammar, A.: Rectangular reciprocal
matrices with special reference to geode-
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tic calculations. Bull. Geod. 20, 188—220
(1951)

Dodge, Y., Majumdar, D.: An algorithm for
finding least square generalized invers-
es for classification models with arbitrary
patterns. J. Stat. Comput. Simul. 9, 1-17
(1979)

Fredholm, J.: Sur une classe d’équations
fonctionnelles. Acta Math. 27, 365-390
(1903)

Moore, E.H.: General Analysis, Part I.
Mem. Am. Philos. Soc., Philadelphia,
PA, pp. 147-209 (1935)

Penrose, R.: A generalized inverse for matri-
ces. Proc. Camb. Philos. Soc. 51,406-413
(1955)

Rao, C.R.: A note on generalized inverse of
a matrix with applications to problems in
mathematical statistics. J. Roy. Stat. Soc.
Ser. B 24, 152-158 (1962)

Rao, C.R.: Calculus of generalized inverse of
matrices. I. General theory. Sankhya A29,
317-342 (1967)

Rao, C.R., Mitra, S.K.: Generalized Invers-

es of Matrices and its Applications. Wiley,
New York (1971)
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Generalized Linear Regression

An extension of the linear regression mod-
el to settings more flexible in underly-
ing assumptions that the linear regression
requires. For example, instead of assuming
that the errors should have equal variances,
we could have the following forms:
e Heteroscedasticity: the errors observedin
the model (also called residuals) can have
different variances among the observa-

tions (or among the different groups of
observations);

e Autocorrelation: there can be some cor-
relation between the errors in the differ-
ent observations.

MATHEMATICAL ASPECTS
We considera general model of multiple lin-
ear regression:

p—1
Yi=,30+Z,Binj+€i, i=1,..
=1

n,

where

Y; is the dependent variable,

Xji, j = 1,...,p — 1 are the independent
variables,
B, j=0,...,p — 1 are the parameters to

be estimated, and
&; 1is the random nonobservable error
term.

In matrix form, we write:
Y=XB+e¢,
where:

Y s the vector (n x 1) of the observations
related to the dependent variable (n
observations),

B isthe vector (p x 1) of the parameters to
be estimated

e 1is the vector (n x 1) of the errors,

I Xy Xip-1

X =

I X Xnp—1)
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is the matrix (n x p) related to the inde-

pendent variables.

In an ordinary regression model, the

hypotheses used for the errors &; are gen-

erally as follows:

e Each expectation equals zero (in other
words, the observations are not biased),

e They are independent and are not corre-
lated,

e their variance V(g;) is constant and
equals o2 (we suppose that the errors
are of the same size).

If the chosen model is appropriate, the

distribution of residuals must confirm these

hypotheses (see analysis of variance).

If we find that this is not the case, or if

we obtain supplementary information that

indicates that the errors are correlated, then
we can use generalized linear regression to
obtain a more precise estimation for the

parameters By, . .

the variance—covariance matrix V(e) of (of

dimension n x n) of the errors, which is

defined by the following equation for row i

and column j:

e V(e ifi =j (variance in ¢&;),

e Cov (&;, &) (covariance between ¢; and
g)ifi #j.

Often this matrix needs to be estimated, but

we first consider the simplest case, where

V (&) is known. We use the usual term for

variance, 02: V(e) = o2V.

., Bp—1. We then introduce

Estimation of the Vector

when V Is Known

By transforming our general model into an
ordinary regression model, it is possible to
estimate the parameters of the generalized
model using:

= (X’V—lx)_lx’v—lY.

We can prove that:
1. The estimation is not biased; that is:

EB) =8.
2. The following equality is verified:

v (/3) = 52 (X/V*IX)_1 ,

with 62 = e'Vie.

n—p
3. /§ isthe best (meaning thatithas the small-
est variance) unbiased estimator of 8; this
resultis known as the generalized Gauss—
Markov theorem.

Estimation of the Vector 3

when V Is Unknown

When the variance—covariance matrix is not
known, the model used is called generalized
regression. The first step consists of express-
ing V as a function of a parameter 6, which
allows us to estimate V using vV = V(é).
The estimations for the parameters are then
obtained by substituting V with V in the for-
mula given above:

g =XVIX)IxVly.

Transformation of V in Three Typical Cases
a) Heteroscedasticity

We assume that the observations have vari-
ance "7?, where w; is the weight, which can

be different foreachi =1, ..., n. So:
1
W 0o ... 0
o L ...0
V =o? _2
0 0 =
By making
Y, = WY
X,, = WX
e, = We,
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where W is the following square matrix of
order n:

Jwi 0 ... 0

0 Jwy ... 0
w=|._ 7 ,

0 0 < Wn

such that WW = V~!, we obtain the equiv-
alent model:
V(ey) = V(We) = WV(e)W'
= ’WVW = 21,
where I, is the identity matrix of dimen-
sion 7. Since the variances of all of the errors
are the same in this new model, we can apply
the least squares method and we obtain the
vector of the estimators:
B = (X, X,) " 'X,Y,
= X'WWX)"'X'WWY
=XV IxX)“IxX'vly,
so the vector of the estimated values for Y =
w-ly,, is:

A

Y=w7y,
=WIwWXXv'x)"'x'v'ly
= XﬁAw .
b) Heteroscedasticity by groups
We suppose that the observations fall into

three groups (of size ny, ny, n3) with respec-
tive variances 012, 022 and 032. So:

2
Ullnl On2><n1 On3><n1
_ 2
V=| Ouun, 02, Onpn, |-
2
On1><n3 On2><n3 U3In3

where I, is the identity matrix of order n;
and Oy, xnj is the null matrix of order n; X n;.

The variances 0'12, 022, 632 can be estimat-
ed by performing ordinary regressions on
the different groups of observations and by
estimating o2 using S? (see multiple linear
regression).

c¢) First-order autocorrelation

We assume that there is correlation between
the errors in different observations. In partic-
ular, we assume first-order autocorrelation;
that is the error ¢; for observation i depends
ontheerror g;_1 forthe previous observation.
We then have:

g =p&i_1+u, i=2...,n,

where the usual hypotheses used for the
errors of a regression model are applied to
the u;.

In this case, the variance—covariance matrix
of errors can be expressed by:

V(e) = o2V
1
= 0‘2 2

I—p

1 0 p2 ,On71

p 1 p p" 2
ol
: p

pn—l pn—2 o 1

We canestimate V by replacing the following
estimation of p in the matrix V:

D i €i€il

> i 91'2—1

where the ¢; are the estimated error (residu-
als), with an ordinary regression.

We can test the first-order autocorrelation
by performing a Durbin—Watson test on the
residuals (as described under the entry for
serial correlation).

0= (empirical correlation),
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EXAMPLES are:

Correction for heteroscedasticity when the Bo=—1.23
data represent means Bi = 0.502.

In order to test the efficiency of a new sup-
plement on the growth of chickens, 40 chick-
ens were divided into five groups (of size
ni, ny, ..., ns) and given the different doses
of the supplement. The growth data obtained
are summarized in the following table:

Mean
dose X;

Mean
weight Y;

Group Number of
i chickens n;

Since the variables represent means, the vari-
ance of the error &; is (;T,z

The variance—covariance matrix of errors is
then:

V(e) = o>

(=i el o] 5',_.
S O D xw— O
S Sao— O O
S vo— O O O

=l el el el

=

=o?V.

The inverse matrix V! is then:

SO O o O
S O N O O
S O O OO
hn O O O O

and the estimations for the parameters Spand
B1 in the model

Yi=Bo+ Bi1Xi+¢i

This result is the same as that obtained using
the weighted least squares method.

FURTHER READING

» Analysis of variance

» Gauss-Markov theorem
» Model

» Multiple linear regression
» Nonlinear regression

» Regression analysis
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Generation

of Random Numbers

Random numbers generation involves pro-
ducing a series of numbers with no recogniz-
able patterns or regularities, that is, appear
random. These random numbers are often
then used to perform simulations and to
solve problems that are difficult or impossi-
ble to resolve analytically, using the Monte
Carlo method.
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HISTORY

The first works concerning random num-
ber generation were those of von Neumann,
John (1951), who introduced the “middle
four square” method. Lehmer (1951) intro-
duced the simple congruence method, which
is still used today.

Sowey published three articles giving a clas-
sified bibliography on random number gen-
eration and testing (Sowey, E.R. 1972, 1978
and 1986).

In 1996, Dodge, Yadolah proposed a natu-
ral method of generating random numbers
from the digits after the decimal point in 7.
Some decimals of mw presented in Appen-
dix A.

MATHEMATICAL ASPECTS

There are several ways of generating ran-
dom numbers. The first consists of pulling
out notes that are numbered from 0 to 9 from
anurnoneby one, and then putting them back
in the urn.

Certain physical systems can be used to gen-
erate random numbers: for example the
roulette wheel. The numbers obtained can
be listed in a random number table. These
tables are useful if several simulations need
to be performed for different models in order
to test which one is the best. In this case,
the same series of random numbers can be
reused.

Some computers use electronic circuits or
electromechanical means to provide the
series of random numbers. Since these
lists are not reproducible, von Neumann,
John and Lehmer, D.H. proposed methods
that are fully deterministic but give a series
of numbers thathave the appearance of being
random. Such numbers are known as pseu-
dorandom numbers.

These pseudorandom numbers are calcu-
lated from a predetermined algebraic for-
mula. For example, the Lehmer method
allows a series of pseudorandom numbers

X0, X1, -+ ., Xn, . .. to be calculated from

xi=a-xj—1 (modulom), i=12,...,

where xo = b and a, b, m are given.

The choice of a, b, m influences the quality
of the sample of pseudorandom numbers.
Independence between the pseudorandom
numbers dictates that the length of the cycle,
meaning the quantity of numbers generated
before the same sequence is restarted, must
be long enough. To obtain the longest possi-
ble cycle, the following criteria must be sat-
isfied:

- a must not divide m,

- xp must not divide m,

- m must be large.

DOMAINS AND LIMITATIONS

If the simulation requires observations
derived from nonuniform distributions, there
are several techniques that can generate any
law from a uniform distribution. Some of
these methods are applicable to many distri-
butions; others are more specific and are
used for a particular distribution.

EXAMPLES

Let us use the Lehmer method to calculate
the first pseudorandom numbers of the series
created with a = 33, b = 7, and m = 1000:

xo =7

x1 =7 -33 (mod1000) = 231
xp = 231 - 33 (mod1000) = 623
x3 = 623 - 33 (mod1000) = 559

etc.
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A series of numbers r; for which the distri-
bution does not significantly differ from
a uniform distribution is obtained by divid-
ing x; by m:

ri=—, i=12
m

Therefore: rg = 0.007
rp = 0.231
ry = 0.623
r3 = 0.559

etc.
FURTHER READING

» Kendall, Maurice George
» Monte Carlo method

» Random number

» Simulation

» Uniform distribution
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Genetic Statistics

In genetic statistics, genetic data analysis is
performed using methods and concepts of
classical statistics as well as those derived
from the theory of stochastic processes.
Genetics is the study of hereditary charac-
ter and accidental variations; it is used to
help explain transformism, in the practical
domain, to the improvement of the units.

HISTORY
Genetics and statistics have been related for
over 100 years. Sir Galton, Francis was

very interested in studies of the human genet-
ics, and particularly in eugenics, the study
of methods that could be used improve the
genetic quality of ahuman population, which
obviously requires knowledge of heredity.
Galton also invented regression and corre-
lation coefficients in order to use them as
statistical tools when investigating genet-
ics. These methods were later developed fur-
ther by Pearson, Karl. In 1900, the work
of Mendel was rediscovered and classical
mathematical and statistical tools for inves-
tigating Mendel genetics were put forward
by Sir Fisher, Ronald Aylmer, Wright,
Sewall and Haldane, J.B.S. in the period
1920-1950.

DOMAINS AND LIMITATIONS

Genetic statistics is used in domains such
as biomathematics, bioinformatics, biology,
epidemiology and genetics. Standard meth-
ods of estimation and hypothesis testing are
used in order to estimate and test genetic
parameters. The theory of stochastic pro-
cesses is used to study the units of the evo-
lution of a subject of a population, taking in
account the random changes in the frequen-
cies of genes.

EXAMPLES

The Hardy—Weinberg law is the central the-
oretical model used in population genetics.
Formulated independently by the English
mathematician Hardy, Godfrey H. and the
German doctor Weinberg, W. (1908), the
equations of this law show that when genet-
ic variations first appear in some individu-
als in a population, they do not disappear
upon hereditary transmission, butare instead
maintained in future generations in the same
proportions, conforming to Mendel laws.
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The Hardy—Weinberg law allows us, under
certain conditions, to calculate genotyp-
ic frequencies from allelic frequencies.
By genotype, we mean the genetic prop-
erties of an individual that are received
during hereditary transmission from the
individual’s parents. For example, iden-
tical twins have the same genotype. An
allele is a possible version of a gene, con-
structed from a nucleotide chain. There-
fore, a particular gene can occur in many
different allelic forms in a given popu-
lation. In an individual, if each gene is
represented by two alleles that are com-
posed of identical nucleotides, the individ-
ual is then homozygous for this gene, and
if the alleles have different compositions,
the individual is then heterozygous for this
gene.

In the original version, the law tells that if
a gene is controlled by two alleles A and B,
that occur with frequenciespandg =1 —p
respectively in the population at generation,
then the frequencies of the genotypes at gen-
eration 7+ 1 are given by the following equa-
tion:

p?AA + 2pgAB + ¢°BB.

The basic hypothesis is that the size of the
population Nis big enough to minimize sam-
pling variations; there also must be no selec-
tion, no mutation, no migration (no acquisi-
tion/loss of an allele), and successive gener-
ations must be discrete (no generation cross-
ing).

To get an AA genotype, the individual must
receive one allele of type A fromboth parents.
Ifthis processisrandom (so the hypothesis of
independence holds), this event will occur
with a probability of:

P(AA) =pp =p*.

The same logic applies to the probability of
obtaining the genotype BB:

PBB) =qq=q".

Finally, for the genotype AB, two cases are
possible: theindividual received A from their
father and B from their mother or vice versa,
so:

P (AB) = pq+qp = 2pq.
Therefore, in an ideal population, the
pHardy—Weinberg proportions are given
by:

AA AB BB

P’ 2pq ¢*.

This situation can be generalized to a gene
with many alleles Ay, Ap, ..., Ax. The
frequency that homozygotes (AiAi) occur
equals:

FAA) =p?, i=1,..

and the frequency that heterozygotes (A;A;)
occur equals:

Lk,

f(Ai4) = 2pip;
17&]’ l:L;k’ ]:1,,k

The frequency p’ of allele A in generation
t+1 may alsobe of interest. By simple count-
ing we have:

2p*N + 2pgN
/o — 2
p = N P~ +rq

=p-p+9=p-0-g+q=p.
The frequency of the allele A in generation
t+1isidentical to the frequency of this allele

inthe previous generation and the initial gen-
eration.

FURTHER READING
» Data

» Epidemiology

» Estimation
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» Hypothesis testing
» Independence

» Parameter

» Population

» Statistics

» Stochastic process
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Geometric Distribution

Consider a process involving k+ 1 Bernoul-
li trials with a probability of success p and
a probability of failure g.

The random variable X, corresponding to
the number of failures k that occur when the
processisrepeated until the first success, fol-
lows a geometric distribution with param-
eter p, and so we have:

PX=k=p-q.

The geometric distribution is a discrete
probability distribution.

05
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Geometric distribution, p=0.3, ¢ = 0.7
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Geometric distribution, p = 0.5, ¢ = 0.5

This distribution is called “geometric”
because the successive terms of the proba-
bility function described above form a geo-
metric progression with a ratio of q.

The geometric distribution is a particular
case of the negative binomial distribution
where r = 1, meaning that the process con-
tinues until the first success.

MATHEMATICAL ASPECTS
The expected value of the geometric distri-
bution is by definition equal to:

EX]=) x P(X =2x)
x=0

:Zx.p.qx

=0

=
|

T IR

Indeed:

EX]=Y) x-¢'p
x=0
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=0+p(1+2.q+3-q2+...).

Hencewehave: 14+2-g+3-¢>+... = (1_1q)2

since:

2 3 9

9t+q¢ +qg+...=——

l—gq
(q+q2+q3+...) =(L)
l—gq

1+2-g+3-¢*+...= :
(1-¢9)°

The variance of the geometric distribution
is by definition equal to:

Var(X) = E[X*] — (E[X])?

2
2 P(X =x) — (ﬂ)
P

2
q
fri-()
p

=p-q1+2%.g+3% +..)

M

=
Il
=}

M

=
Il
=}

a
>

Indeed, the sum 1+22-q+32q2+. L= I—JZ‘I,
p
since:

(q(1+2-q+3-q2+...))/

’

-(%72)
(1—¢g)?

1422.g+3%. 4 +...
_14+q  1+g¢
(1-q*> P

DOMAINS AND LIMITATIONS
The geometric distribution is used relative-
ly frequently in meteorological models. It is

also used in stochastic processes and the the-
ory of waiting lines.

The geometric distribution can also be
expressed in the following form:

PX=k=p-q",

where the random variable X represents the
number of tasks required to attain the first
success (including the success itself).

EXAMPLES

A fair die is thrown and we want to know the
probability thata “six” will be thrown for the
first time on the fourth throw.

We therefore have:

p = £ (probability that a six is thrown)

q =

k = 3 (since the fourth throw is a success,
we have three failures)

Al =

(probability that a six is not thrown)

Therefore, the probability is as follows:
1 /5Y
PX=3)=--. <—> = 0.0965.
6 \6

FURTHER READING

» Bernoulli distribution

» Discrete probability distribution
» Negative binomial distribution
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Geometric Mean

The geometric meanis defined as the nthroot
of the product of n non-negative numbers.

HISTORY

According to Droesbeke, J.-J. and Tassi, Ph.
(1990), the geometric mean and the har-
monic mean were introduced by Jevons,
William Stanley in 1874.
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MATHEMATICAL ASPECTS

., X, be a set of n non-negative
quantities, or of n observations related to
a quantitative variable X. The geometric
mean G of this set is:

G=Ux1-X2... Xp.

The geometric mean is sometimes expressed
in a logarithmic form:

Let x1, x2, ..

> In ()
nG =51
n

or
l n
G= - In(x;) | .
exp|:n Zl:n(x):|

We note that the logarithm of the geometric
mean of asetof positive numbers s the arith-
metic mean of the logarithms of these num-
bers (or the weighted arithmetic mean in
the case of grouped observations).

DOMAINS AND LIMITATIONS

In practice, the geometric mean is mainly
used to calculate the mean of a group of
ratios, or particularly the mean of a group of
indices.

Justlike the arithmetic mean, the geometric
mean takes every observation into account
individually. However, it decreases the influ-
ence of outliers on the mean, which is why
it is sometimes preferred to the arithmetic
mean.

One important aspect of the geometric mean
is that it only applies to positive numbers.

EXAMPLES
Here we have an example of how the geo-
metric mean is used: in 1987, 1988 and

1989, a businessman achieves profits of
10.000, 20.000 and 160.000 euros, respec-
tively. Based on this information, we want to
determine the mean rate at which these prof-
its are increasing.

From 1987 to 1988, the profit doubled, and
from 1988 to 1989 it increased eight-fold. If
we simply calculate the arithmetic mean of
these two numbers, we get

2+38
x=218_5
2

and we conclude that, on average, the prof-
it increased five-fold annually. However, if
we take the profitin 1987 (10000 euros) and
multiply it by five annually, we obtain profits
of 50000 in 1988 and 250000 euros in 1989.
These two profits are much too large com-
pared to the real profits.

On the other hand, if we calculate the mean
using the geometric mean of these two
increases instead of the arithmetic mean,
we get:

G=+v2-8=+16=4,

and we can correctly say that, on average, the
profits quadrupled annually. Applying this
mean rate of increase to the initial profit of
10000 euros in 1987, we obtain 40000 euros
in 1988 and 160000 euros in 1989. Even if
the profitin 1988 is too high, it is less so than
the previous result, and the profit for 1989 is
now correct.

To illustrate the use of the formula for the
geometric mean in the logarithmic form, we
will now find the mean of the following
indices:

112, 99, 105, 96, 85, 100.
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We calculate (using a table of logarithms):

log (112) = 2.0492

log (99) = 1.9956

log (105) =12.0212

log (96) = 1.9823

log (85) = 1.9294

log (100) = 2.0000

11.9777

We get then:
11.9777
log (G) = = 1.9963.

Therefore G = 99.15.

FURTHER READING

» Arithmetic mean

» Harmonic mean

» Mean

» Measure of central tendency
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Geometric
Standard Deviation

The geometric standard deviation of a set
of quantitative observations is a measure
of dispersion. It corresponds to the devia-
tion of observations around the geometric
mean.

HISTORY
See L estimation.

MATHEMATICAL ASPECTS

Let x1, xo, ..., x, be a set of n observations
related to a quantitative variable X. The
geometric standard deviation, denoted by oy,
is calculated as follows:

1

1 o :
logog = |:— Z (logx; — log G){| .
n

i=1

where G = /x1 - X2 - ... - X, is the geomet-

ric mean of the observations.

FURTHER READING

» L estimation

» Measure of dispersion
» Standard deviation
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Geostatistics

Geostatistics is the application of statis-
tics to problems in geology and hydrolo-
gy. Geostatistics naturally treat spatial data
withknown coordinates. Spatial hierarchical
models follow the principle: model locally,
analyze globally. Simple conditional models
are constructed on all levels of the hierarchy
(local modeling). The result is a joint mod-
el that can be very complex, but analysis is
still possible (global analysis). Geostatistics
encompasses the set used in the theory, as
well as the techniques and statistical applica-
tions used to analyze and forecast the distri-
bution of the values of the variable in space
and (eventually) time.

HISTORY
The term geostatistics was first used by Hart
(1954) in a geographical context, in order
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to highlight the application of particular sta-
tistical techniques to observations covering
a regional distribution. The first geostatisti-
cal concepts were formulated by Matheron
(1963) at the Ecole des Mines de Paris in
order to estimate the reserves of a miner-
al from spatially distributed data (observa-
tions).

DOMAINS AND LIMITATIONS

Geostatistics is used in a wide variety of
domains, including forecasting (of precip-
itation, ground porosity, concentrations of
heavy metals) and when treating images
from satellites.

FURTHER READING
» Spatial data
» Spatial statistics
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Gini, Corrado

Gini, Corrado (1884—1965) was born in Mat-
tadiLivenza, Italy. Although he graduated in
law in 1905, he took courses in mathematics
and biology during his studies. His subse-
quent inclinations towards both science and
statistics led him to become a temporary pro-
fessor of statistics at Cagliari University in
1909 and, in 1920 he acceded to the Chair
of Statistics at the same university. In 1913,
he began teaching at Padua University, and
acceded to the Chair of Statistics at the Uni-
versity of Rome in 1927.

Between 1926 and 1932, he was also the
President of the Central Institute of Statistics
(ISTAT).

He founded two journals. The first one,
Metron (founded in 1920), is an internation-
al journal of statistics, and the second one,
Genus (founded in 1934), is the Journal of
the Italian Committee for the Study of Pop-
ulation Problems.

The contributions of Gini to the field of
statistics principally concern mean values
and the variability, as well as associations
between the random variables. He also con-
tributed original works to economics, soci-
ology, demography and biology.

Some principal works and articles of Gini,
Corrado:

1910 Indici di concentrazione e di depen-
denza. Atti della III Riunione della
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Societa Italiana per il Progresso delle
Scienze, R12, 3-210.

1912 Variabilita e Studi
economico-giuridici, Universita di
Cagliari, IIT 2a, R12, 211-382.

mutabilita.

|
Gini Index

The Gini index is the most commonly used
inequality index; it allows us to measure
the degree of inequality in the distribution
of incomes for a given population. Graph-
ically, the Gini index is represented by the
surface area between a line at 45° and the
Lorenz curve (a graphical representation
of the cumulative percentage of the total
income versus the cumulative percentage
of the population that receives that income,
where income increases left to right). Divid-
ing the surface area between the line at 45°
and the Lorenz curve (area A in the follow-
ing diagram) by the total surface area under
the line (A + B) gives the Gini coefficient:

A

A+B’

The Gini coefficient is zero if there is no
inequality in income distribution and a value
of 1 if the income distribution is complete-
ly unequal, so 0 < I < 1. The Gini index
is simply the Gini coefficient multiplied by
100, in order to convert it into a percentage.
Therefore, the closertheindexisto 100%,the
more unequal the income distribution is. In
developed countries, values of the Gini index
are around 40% (see the example).

I =

HISTORY

The Gini coefficient was invented in 1912
by the Italian statistician and demographer
Gini, Corrado.

MATHEMATICAL ASPECTS

The total surface area under the line at 45°

(A + B) equals
A

I = — =
“TATB

%, and so we can write:

SIS

| (D
=2<§—B>:>Ic;=1—23

To calculate the value of the Gini coefficient,
we therefore need to work out B (total surface
under the Lorenz curve).

a) Gini index: discrete case
For a discrete Lorenz curve where
the income distribution is arranged in
increasing order (x; < ... < Xy), the
Lorenz curve has the following profile:

Y

//
/A/
e /B

/// /

To calculate B, we need to divide the sur-
face under the Lorenz curve into a series
of polygons (where the first polygon is
a triangle and others is are trapezia).
The surface of the triangle is:

1 x1
2n X'
The surface of the jth trapezium is:
1 Z X; + J Xi
2n P X X

1 =
:ﬁ 2. Xl:x—l—xj s

i=
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Gini Index

with j = 2,..., n. We then have

1 x
B=_— .-
2n X
n 1 j—1
+Zﬁ Z'in+)9' )
Jj=2 i=1
where:

X1,...,X, are the incomes;

X is the total revenue;
xX1+... +x,

X .
revenue, in %.

is the total cumulated

After developing this equation, we get:

1
T 2nX

~|:—X-|—2~Z(n—i~|—1)xi:|.

i=1
2
Using Eq. (1), we can then get the Gini
index:

I =1—-2B
=1
2 n
~ 5 [—X+2~2;(n—i+1)xi]
1=
n
1 Yn—i+ D
14l =l
+n nX
1 2 <

T 25 () len—iﬂ ,

i=1

n
where A (x) = % > x; = mean income
i=1

=
of the distribution.
The Gini coefficientcan bereformulated
in many ways. We could use, for exam-
ple:

Gini index: continuous case

In this case, B corresponds to the inte-
gral from 0 to 1 of the Lorenz function.
Therefore, we only need to insert this
integral into Eq. (1):

b)

1
Igzl—Zle—Z/L(P)dP,
0

)7
where P = F (y) = [ f (x) dxistheper-
0

centage of the population with incomes
smaller then y. For example,

1
1G=/(1—(1—P)"a;l)dp
0_ o

1

20— 1
o
=1-2(1- .
20— 1

DOMAINS AND LIMITATIONS

The Gini index (or coefficient) is the param-
eter most commonly used to measure the
extent of inequality in an income distri-
bution. It can also be used to measure the dif-
ferences in unemploymentbetween regions.

EXAMPLES

As an example of how to calculate the Gini
coefficient (or index), let us take the discrete
case.

We have: I =1 — 2B

Recall that, in this case, we find surface B by
calculating the sum of a series of polygons
under the Lorenz curve.

The income data for a particular popula-
tion in 1993-1994 are given in the follow-
ing table, along with the areas associated the
income intervals:
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Population  Income Surface Area We then have:

Ic=1-2B=1-2-0.31524689%4
= 0.369506212.

FURTHER READING

» Gini, Corrado

» Simple index number
» Uniform distribution
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Goodness of Fit Test

Performing a goodness of fit test on a sam-
ple allows us to determine whether the
observed distribution corresponds to a par-
ticular probability distribution (such as the

200000000 - . . . . . 0
0000000 normal distribution or the Poisson distri-

160000000 bution). This allows us to find out whether
140000000 1 the observed sample was drawn from a pop-

120000000 ulation that follows this distribution.

100000000 o
80000000 o
60000000

40000000 4 HISTORY

20000000 See chi-square goodness of fit test and
0 Kolmogorov—Smirnov test.

0 500000 1000000 1500000 2000000 2500000 3000000 3500000

SO, the surface B equals: MATHEMATICAL ASPECTS

The goal of the goodness of fit test is to
j| determine whether an observed sample was

drawn from a population that follows a par-
— 0.315246894 . ticular probability distribution.

1 - .

i=1
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The process used usually involves some
hypothesis testing:

Null hypothesis Hj:
Alternative hypothesis H :

F=F)
F #Fy

where F' is an unknown distribution func-
tion of the underlying population and Fj is
the presumed distribution function.

The goodness of fit test involves comparing
the empirical distribution with the presumed
distribution. We reject the null hypothesis if
the empirical distributionis not close enough
to the presumed distribution. The precise
rules that govern whether the null hypothesis
is rejected or accepted depend on the type of
the test used.

EXAMPLES

There are many goodness of fit tests, includ-
ing the chi-square goodness of fit test and
the Kolmogorov—Smirnov test.

FURTHER READING

» Chi-square goodness of fit test
» Hypothesis testing

» Kolmogorov—Smirnov test
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Gosset, William Sealy

Gosset, William Sealy, better known by his
pen name, “Student”, was born in Can-
terbury, England in 1876. After studying
mathematics and chemistry at New College,
Oxford, he started working as a brewer for
Guinness Breweriesin Dublinin 1899. Guin-
ness was a business that favored research,
and made its laboratories available to its
brewers and its chemists. Indeed, in 1900 it
opened the “Guinness Research Laborato-
ry,” which had one of the greatest chemists

around at that time, Horace Brown, as direc-
tor. Work that was carried out in this labora-
tory was related to the quality and costs of
the many varieties of barley and hop.

It was in this environment that Gosset devel-
oped his interest in statistics.

At Oxford, Gosset had studied mathematics,
and so he was often called upon by his col-
leagues at Guinness when certain mathe-
matical problemsrose. Thatled to him study-
ing the theory of errors, and he consulted
Pearson, K., whom he met in July 1905, on
this topic.

The main difficulty encountered by Gosset
during his work was small sample sizes. He
therefore decided to attempt to find an appro-
priate method for handling the data from
these small samples.

In 1906-1907, Gosset spent a year collabo-
rating with Pearson, K., in Pearson’s lab-
oratory in the University College London,
attempting to develop methods related to the
probable error of the mean.

In 1907, Gosset was made responsible for
Guinness’ Experimental Brewery, and he
used the Student table that he had pre-
viously derived experimentally in order to
determine the best variety of barley to use
for brewing. Guinness, wary of publishing
trade secrets, only allowed Gosset to pub-
lish his work under the pseudonym of either
“Pupil” or “Student”, and so he chose the lat-
ter.

He died in 1937, leaving important works,
which were all published under the pen name
of “Student”.

Gosset’s work remained largely ignored for
many years, with few scientists using his
table aside from the researchers at Guinness’
breweries and those at Rothamsted Experi-
mental Station (where Fisher, R.A. worked
as a statistician).
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Some of the main works and articles of
Gosset, W.S.:

1907 On the error of counting with
a haemacytometer. Biometrika 3,
351-360.

1908 The probable error of a mean.

Biometrika 6, 1-25

1925 Newtablesfortesting thesignificance

of observations. Metron 5, 105-120.

1942 Pearson, E.S. and Wishart, J. (eds)
Student’s collected papers (foreword
by McMullen, L.). Cambridge Uni-
versity Press, Cambridge (Issued by
the Biometrika Office, University

College London).

FURTHER READING

» Student distribution
» Student table

» Student test
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Graeco-Latin Squares

See Graeco-Latin square design.

|
Graeco-Latin Square Design

A Graeco-Latin square design is a design
of experiment in which the experimental
units are grouped in three different ways. Itis
obtained by superposing two Latin squares
of the same size.

If every Latin letter coincides exactly once
with a Greek letter, the two Latin square
designs are orthogonal. Together they form
a Graeco-Latin square design.

In this design, each treatment (Latin letter)
appears just once in each line, once in each
column and once with each Greek letter.

HISTORY

The construction of a Graeco-Latin square,
was originated by Euler, Leonhard (1782).
A book by Fisher, Ronald Aylmer and
Yates, Frank (1963) gives Graeco-Latin
tables of order 3 up to order 12 (not includ-
ing the order of six). The book by Denes and
Keedwell (1974) also contained compre-
hensive information on Graeco-Latin square
designs. Dodge and Shah (1977) treat the
case of the estimation when data is missing.

DOMAINS AND LIMITATIONS

Graeco-Latin square designs are used to
reduce the effects of three sources of system-
atic error.

There are Graeco-Latin square designs for
any size n except forn = 1,2 and 6.

EXAMPLES

We want to test three different types of
gasoline. To do this, we have three drivers
and three vehicles. However, the test is too
involved to perform in one day: we have
to perform the experiment over three days.
In this case, using drivers and vehicles over
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three separate days could resultin systematic
errors. Therefore, in order to eliminate these
errors we construct a Graeco-Latin square
experimental design. In this case, each type
of gasoline (treatment) will be tested just
once with each driver, once with each vehicle
and once each day.

In this Graeco-Latin square design, we rep-
resent the different types of gasoline by the
Latinletters A, Band C and the different days
by «, 8 and y.

Drivers

Vehicles

An analysis of variance will then tell us
whether, after eliminating the effects of the
lines (vehicles), the columns (drivers) and
the greek letters (days), there is a significant
difference between the types of gasoline.

FURTHER READING

» Analysis of variance

» Design of experiments
» Latin square designs
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Graphical Representation

Graphical representations encompass a wide
variety of techniques that are used to clarify,
interpret and analyze data by plotting points
and drawing line segments, surfaces and oth-
er geometric forms or symbols.

The purpose of a graph is a rapid visual-
ization of a data set. For instance, it should
clearly illustrate the general behavior of the
phenomenon investigated and highlight any
important factors. It can be used, for exam-
ple, as a means to translate or to complete
a frequency table.

Therefore, graphical representation is a form
of data representation.

HISTORY

The concept of plotting a point in coordi-
nate space dates back to at least the ancient
Greeks, but we had to wait until the work
of Descartes, René for mathematicians to
investigate this concept.

According to Royston, E. (1970), a Ger-
man mathematician named Crome, A.W.
was among the first to use graphical repre-
sentation in statistics. He initially used it as
a teaching tool.

In his works Geographisch-statistische
Darstellung der Staatskrdfte (1820) and
Ueber die Grosse und Bevilkerung der
sdmtlichen Europdischen Staaten (1785),
Crome employed different types of graph-
ical representation, among them the pie
chart.

Royston, E. (1970) also cites Playfair, W.,
whose work The Commercial and Polit-
ical Atlas (1786) also referred to various
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graphical representations, especially the line
chart. Playfair was very interested in the
international trade balance, and illustrated
his studies using different graphics such as
the histogram and the pie chart.

The term histogram was used for the first
time by Pearson, Karl, and Guerry (1833)
appears to have been among the first to use
the the line chart; in his Essai sur la Statis-
tique Morale de la France, published in
Paris in 1833, he described the frequencies
of crimes by their characteristics; this study
constituted one of the first uses of a frequen-
cy distribution.

Schmid, Calvin F. (1954) illustrates and
describes the different types of graphical rep-
resentations in his Handbook of Graphic
Presentation.

MATHEMATICAL ASPECTS

The type of graphic employed depends upon

the kind of data to be presented, the nature

of the variable studied, and the goal of the
study:

e A quantitative graphic is particularly
useful for representing qualitative cate-
gorical variables. Such graphics include
the pie chart, the line chart and the pic-
togram.

e A frequency graphic allows us to rep-
resent the (discrete or continuous) fre-
quency distribution of a quantitative
variable. Such graphics include the his-

togram and the stem and leaf diagram.

e A cartesian graphic, employs a system of
axes that are perpendicular to each other
and intersect at a point known as the “ori-
gin.” Such a coordinate system is termed
“cartesian”.

FURTHER READING
» Frequency table
» Quantitative graph
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Hajek, Jaroslav

Hajek, Jaroslav was born in 1926 in Pode-
brady, Bohemia. A statistical engineer by
profession, he obtained his doctorate in
1954. From 1954 to 1964, he worked as
a researcher at the Institute of Mathematics
of the Czechoslovakian Academy of Sci-
ences. He then joined Charles University in
Prague, where he was a professor from 1966
until his premature death in 1974. The prin-
cipal works of Héjek, J. concern sampling
probability theory and the rank test theory. In
particular, he developed an asymptotic the-
ory of the statistics of linear ranks. He was
the first to apply the concept of invariance
to the theory of rank testing.

Some principal works and articles of Hdjek,
Jaroslav:

1955 Some rank distributions and their
applications. Cas. Pest. Mat. 80, 17—
31 (in Czech); translation in (1960)
Select. Transl. Math. Stat. Probab.,
2,41-61.

Some contributions to the theory of
probability sampling. Bull. Inst. Int.
Stat., 36, 127-134.

Some extensions of the Wald-

Wolfowitz—Noether theorem. Ann.
Math. Stat. 32, 506-523.

1958

1961

1964 Asymptotic theory of rejective sam-
pling with varying probabilities from
a finite population. Ann. Math. Stat.

35, 1419-1523.
1965 Extension of the Kolmogorov—
Smirnov test to regression alterna-
tives. In: Neyman, J. and LeCam, L.
(eds) Bernoulli-Bayes—Laplace:
Proceedings of an International Sem-
inar, 1963. Springer, Berlin Heidel-
berg New York, pp. 45-60.
Dupac, V. (ed) Sampling from a Finite
Population. Marcel Dekker, New
York.

1981

|
Harmonic Mean

The harmonic mean of n observations is
defined as n divided by the sum of the invers-
es of all of the observations.

HISTORY

See geometric mean.

The relationship between the harmonic
mean, the geometric mean and the arith-
metic mean is described by Mitrinovic, D.S.
(1970).

MATHEMATICAL ASPECTS
Let x1,x2,...,x, be n nonzero quantities,
or n observations related to a quantitative
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variable X. The harmonic mean H of these
n quantities is calculated as follows:

n
H =

M=

1
X

1

If {x;},—,,.._, represents a finite series of pos-
itive numbers, we state that:

minx; < H < G <Xx < maxx;.
1 1

DOMAINS AND LIMITATIONS

The harmonic mean is rarely used in statis-

tics. However, it can sometimes be useful,

such as in the following cases:

e If a set of investments are invested at dif-
ferent interest rates, and they all give the
same income, the unique rate at which all
of the capital tied up in those investments
must be invested to produce the same rev-
enue as given by the set of investments is
equal to the harmonic mean of the indi-
vidual rates.

e Say we have a group of different materi-
als, and each material can be purchased
at a given price per amount of material
(where the price per amount can be differ-
ent for each material). We then buy a cer-
tainamount of each material, spending the
same amount of money on each. In this
case, the mean price per amount across all
materials is given by the harmonic mean
of the prices per amount for all of the mate-
rials.

e One property of the harmonic mean is that
itislargely insensitive to outliers thathave
much larger values than the other data.
For example, consider the following val-
ues: 1, 2, 3, 4, 5 and 100. Here the har-
monic mean equals 2.62 and the arith-
metic mean equals 19.17. However, the
harmonic mean is much more sensitive

to outliers when they have much small-
er values than the rest of the data. So, for
the observations 1, 6, 6, 6, 6, 6, we get
H = 3.27 whereas the arithmetic mean
equals 5.17.

EXAMPLES

Three investments that each yield the same
income have the following interestrates: 5%,
10% and 15%.

The harmonic mean gives the interest rate
at which all of the capital would need to be
invested in order to produce the same total
income as the three separate investments:

3 3
beh+i] L
[5 107115 30

We note that this result is different from the
arithmetic mean of 10% (5 + 10 + 15)/3.
A representative buys three lots of coffee,
each of a different grade (quality), at 3,2 and
1.5 euros per kg respectively. He buys 200
euros of each grade.
The mean price per kg of coffee is then
obtained by dividing the total cost by the total
quantity bought:

. total cost
mean price = ————
total quantity
_ 3-200 _
~66.66+ 100+ 133.33

This corresponds to the harmonic mean of
the prices of the three different grades of cof-
fee:

. 3 6
mean price = ——————= = 3 =2.
[3 Tat ﬁ]
FURTHER READING

» Arithmetic mean
» Geometric mean
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» Mean
» Measure of central tendency
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Hat Matrix

The hat matrix is a matrix used in regres-
sion analysis and analysis of variance. It
is defined as the matrix that converts values
from the observed variable into estimations
obtained with the least squares method.
Therefore, when performing linear regres-
sion in the matrix form, if Y is the vector
formed from estimations calculated from the
least squares parameters, and Y is a vector of
observations related to the dependent vari-
able, then Y is given by vector Y multiplied
by H, that is, Y = HY converts to Y’s into
Y’s.

HISTORY

The hat matrix H was introduced by
Tukey, John Wilder in 1972. An article
by Hoaglin, D.C. and Welsch, R.E. (1978)
gives the properties of the matrix H and also
many examples of its application.

MATHEMATICAL ASPECTS
Consider the following linear regression
model:
Y=X -B+e.
where

Y isan (n x 1) vector of observations on
the dependent variable;

X isthe (n x p) matrix of independent vari-
ables (there are p independent variables);

e isthe (n x 1) vector of errors, and;

B isthe (p x 1) vector of parameters to be
estimated.

The estimation /§ of the vector B is given by

f=X-X)"-XY.
and we can calculate the estimated values Y
of Y if we know B:

1

Y=X-$=X-(X-X)'-XY.

The matrix H is then defined by:

H=X.(X-X)"'.X.
In particular, the diagonal element /;; will be
defined by:

h,‘,‘ = X; - (X/-X)il -x/-.

l

where x; is the ith line of X.

DOMAINS AND LIMITATIONS

The matrix H, which allows us to obtain n
estimations of the dependent variable from
n observations, is an idempotent symmetric
square matrix of order n. The element (7, ;)
of this matrix measures the influence of the
Jjth observation on the ith predicted value.
In particular, the diagonal elements evaluate
the effects of the observations on the corre-
sponding estimations of the dependent vari-
ables. The value of each diagonal element of
the matrix H ranges between 0 and 1.
WritingH = (k) fori,j=1,...,n,wehave
the relation:

,,—h2+ZZh

lljl
i#]

which is obtained based on the idempotent
nature of H; in other words H = H?.
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n
Therefore tr(H) = Y hj; = p = number of
i=1

parameters to estimate.
The matrix H is used to determine leverage
points in regression analysis.

EXAMPLES

Consider the following table where Y is
a dependent variable related to the inde-
pendent variable X:

X Y

The model of simple linear regression is
written in the following manner in the matrix
form:

Y=X-B+e¢.

where

50
52
55
75
57
10 58

[e <IN BENoRNe clNeN
b
I

—_ = = = =

e isthe (6 x 1) vector of errors, and  is the
(2 x 1) vector of parameters.
We find the matrix H using the result:

H=X.(X X)X,

By stepwise matrix calculations, we obtain:

1

/ -1 _ _ -
XX = 7303 [

|

20467 —347
—347 6

8.5528 —0.1450 i|

—0.1450  0.0025

and finally:

H=X X -X)!.X

0.32  0.28 0.22 —0.17 0.18 0.16
0.28 0.25 0.21 —0.08 0.18 0.16
022 0.21 0.19 0.04 0.17 0.17
—-0.17 —0.08 0.04 0.90 0.13 0.17
0.18 0.18 0.17 0.13 0.17 0.17
0.16 0.16 0.17 0.17 0.17 0.17

We remark, for example, that the weight of
y1 used during the estimation of y; is 0.32.
We then verify that the trace of Hequals 2; in
other words, it equals the number of param-
eters of the model.

tr(H) = 0.32 + 0.25 + 0.19 + 0.90
+0.17+0.17
—2.

FURTHER READING

» Leverage point

» Matrix

» Multiple linear regression
» Regression analysis

» Simple linear regression
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Histogram

The histogram is a graphical representa-
tion of the distribution of data that has been
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grouped into classes. It consists of a series of
rectangles, and is a type of frequency chart.
Each data value is sorted and placed in an
appropriate class interval. The number of
datavalues within each classinterval dictates
the frequency (or relative frequency) of that
class interval.

Each rectangle in the histogram represents
a class of data. The width of the rectangle
corresponds to the width of the class interval,
and the surface of the rectangle represents the
weight of the class.

HISTORY

The term histogram was used for the first
time by Pearson, Karl in 1895.

Also see graphical representation.

MATHEMATICAL ASPECTS

The first step in the construction of a his-
togram consists of presenting the data in the
form of a frequency table.

This requires that the class intervals are
established and the data values are sorted and
placedinthe classes, which makes it possible
to calculate the frequencies of the classes.
The class intervals and frequencies are then
added to the frequency table.

We then make use of the frequency table in
order to construct the histogram. We divide
the horizontal axis of the histogram into
intervals, where the widths of these intervals
correspond to those of the class intervals. We
then draw the rectangles on the histogram.
The width of each rectangle is the same as the
width of the class that it corresponds to. The
height of the rectangle is such that the sur-
face area of the rectangle is equal to the rel-
ative frequency of the corresponding class.
The sum of the surface areas of the rectan-
gles must be equal to 1.

DOMAINS AND LIMITATIONS

Histograms are used to present a data set in
avisual form thatis easy to understand. They
allow certain general characteristics (such as
typical values, the range or the shape of the
data) to be visualized and extracted.
Reviewing the shape of a histogram can
allow us to detect the probability model
followed by the data (normal distribution,
log-normal distribution, ... ).
Itisalsopossibleto detectunexpected behav-
ior or abnormal values with a histogram.
This type of graphical representation is
most frequently used in economics, but since
it is an extremely simple way of visualizing
adata set, it is used in many other fields too.
We can also illustrate relative frequency in
a histogram. In this case, the height of each
rectangle equals the relative frequency of the
corresponding class divided by the length of
the class interval. In this case, if we sum the
surface areas of all of the rectangles in the
histogram, we obtain unity.

EXAMPLES
The following table gives raw data on the
average annual precipitation in 69 cities of
the USA. We will use these data to establish
afrequency table and then a corresponding
histogram.

Annual average precipitations in 69 cities of the
USA (in inches)
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Source: U.S. Census Bureau (1975) Statisti-
cal Abstract of the United States. U.S. Census
Bureau, Washington, DC.

These data can be represented by the follow-
ing frequency table:

Class Frequency Relative Frequency

We can now construct the histogram:

Histogram of C1

Density
°
5
S

0.01

The horizontal axisis divided upintoclasses,
and in this case the relative frequencies are
givenby theheights of therectangles because
the classes all have the same width.

FURTHER READING

» Frequency distribution

» Frequency polygon

» Frequency table

» Graphical representation
» Ogive

» Stem-and-leaf diagram
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Homogeneity Test

One issue that often needs to be considered
when analyzing categorical data obtained
for many groups is that of the homogene-
ity of the groups. In other words, we need
to find out whether there are significant
differences between these groups in rela-
tion to one or many qualitative categori-
cal variables. A homogeneity test can show
whether the differences are significant or
not.
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MATHEMATICAL ASPECTS

‘We consider the chi-square homogeneity test
here, which is a specific type of chi-square
test.

Letbe the number of groups considered and
J the number of categories considered.

Let:

J
n, =)y n;j correspond to the size of group
j=1
i
I
n; = Z] njj;
=

XI: i"ij be the total number of

i=1j=1
observations

i be the empirical frequency (that is, the
number of occurrences observed) corre-
sponding to group i and category j;

;i 18 the theoretical frequency correspond-
ing to group i and category j, which,
assuming homogeneity among the
groups, equals:

n =

nj -n;j

mij = —
If we represent the data in the form of a con-
tingency table with 7 lines and J columns,
we can calculate the n; that contribute to the
sum of the elements of line 7 and the 7 j that
contribute to the sum of all of the elements
of column j.

We calculate

J

2
SR

i=1 j=1

and the chi-square homogeneity test is
expressed in the following way: we reject the
homogeneity hypothesis (at a significance
level of 5%) if the value xf is greater then
the value of the x2 (chi-square) distribution
with (J — 1) - (I — 1) degrees of freedom.

Note: We have assumed here that the same
number of units are tested for each combina-
tion of group and category. However, we may
wantto test different numbers of units for dif-
ferent combinations. In this case, if we have
a proportion p;; of units for group i and cat-
egory j, itis enough to replace m;; by n; - pj;.

EXAMPLES

We consider a study performed in the phar-
maceutical domain that concerns 100 peo-
ple suffering from a particular illness. In
order to examine the effect of a medical
treatment, 100 people were chosen at ran-
dom. Half of them were placed in a con-
trol group and received a placebo. The oth-
er patients received the medical treatment.
Then the number of healthy people in each
group was monitored for 24 hours following
administration the treatment. The results are
provided in the following table.

Observed
frequency

Not
healthy

Healthy Total

for 24
hours

The theoretical frequencies are obtained by
assuming that the general state of health
would have been the same for both groups if
no treatment had been applied. In this case
we obtain my; = mp; = 5?03)1 = 5.5 and
miy =my = 258 =445,

We calculate the value of x? by comparing
the theoretical frequencies with the observed

frequencies:

,  (2-55)% (48 —44.5)?
Xe =755 44.5
(9—5.5)2 (41 —44.5)?
5.5 44.5
=5.005.
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If we thenrefertothe x 2 distribution table for
one degree of freedom, we obtain the value
X(%.OS = 3.84 for a significance level of 5%,
which is smaller then the value we calculat-
ed, xf = 5.005. We conclude that the groups
were not homogeneous and the treatment is
efficient.

FURTHER READING

» Analysis of categorical data
» Analysis of variance

» Categorical data

» Chi-square distribution

» Chi-square test

» Frequency

REFERENCE
See analysis of categorical data.
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Hotelling, Harold

Hotelling, Harold (1895-1973) is consid-
ered to be one of the pioneers in the field
of economical mathematics over the period
1920-1930. He introduced the 72 multivari-
ate test, principal components analysis and
canonical correlation analysis.

He studied at University of Washington,
where he obtained a B.A. in journalism in
1919. He then moved to Princeton Univer-
sity, obtaining a doctorate in mathematics
from there in 1924. The began teaching
at Stanford University that same year. His
applications of mathematics to the social
sciences initially concerned journalism and
political science, and then he moved his
focus to population and predictian.

In 1931, he moved to Colombia University,
where he actively participated in the cre-
ation of its statistical department. During the

Second World War, he performed statistical
research for the military.

In 1946, he was hired by North Carolina Uni-
versity at Chapel Hill to create a statistics
department there.

Some principal works and articles of Hotel-
ling, Harold:

1933 Analysis of a complex of statistical
variables with principal components.
J. Educ. Psychol., 24, 417-441 and
498-520.

1936 Relation between two sets of variates.
Biometrika 28, 321-377.

|
Huber, Peter J.

Huber, Peter J. was born at Wohlen (Switzer-
land) in 1934. He performed brilliantly dur-
ing his studies and his doctorate in mathe-
matics at the Federal Polytechnic School of
Zurich, where he received the Silver Medal
for the scientific quality of his thesis. He
worked as Professor of Mathematical Statis-
tics at the Federal Polytechnic School of
Zurich. He then moved to the USA and
worked at the most prestigious universities
(Princeton, Yale, Berkeley) as aninvited pro-
fessor. In 1977 he was named Professor of
Applied Mathematics at the Massachusetts
Institute of Technology. He is member of
the prestigious American Academy of Arts
and Sciences, the Bernoulli Society and the
National Science Foundation in the USA, in
which foreign members are extremely rare.
Since the publication of his article “Robust
estimation of a location parameter” in 1964,
he has been considered to be the founder of
robust statistics.
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Huber, Peter J. received the title of Docteur
Honoris Causa from Neuchatel University in
1994.

Some principal works and publications of
Huber, Peter J.:

1964 Robust estimation of a location
parameter. Ann. Math. Stat. 35, 73—
101.

1968 Robust  statistical ~ procedures.
SIAMCBMS-NSF Reg. Conf. Ser.
Appl. Math.,

1981 Robust Statistics. Wiley, New York.

1995 Robustness: Where are we now? Stu-
dent, Vol.1, 75-86.

|
Hypergeometric Distribution

The hypergeometric distribution describes
the probability of success if a series of
objects are drawn from a population (which
contains some objects that represent failure
while the others represent success), without
replacement.
It is therefore used to describe a random
experiment where there are only two pos-
sible results: “success” and “failure.”
Consider a set of N events in which there are
M “successes” and N — M “failures.” The
random variable X, corresponding to the
number of successes obtained if we draw n
events without replacement follows a hyper-
geometric distribution with parameters N,
M and n, denoted by H(N, M, n).
The hypergeometric distribution is a dis-
crete probability distribution.
The number of ways that n events can be
drawn from N events is equal to:

o = ( N ) _ n! '

n N!-(n—N)!

The number of elementary events depends
on X and is:

Cy-Cv_u-
which gives the following probability func-
tion:

cy, - Oy

PX=x)= w
Cy

forx=0,1,...,n

’

(where C}, = 0 if u < vby convention) .
05
04
03
02

o1

0 -
i} 1 2 3 4
Hypergeometric distribution, N = 12, W/

n=>5

]
=17,

MATHEMATICAL ASPECTS
Consider the random variable X = X;| +
X> +...+ X, where:

1
Xi =
s

Inthis case, the probability distribution for
X; is:

if the ith drawing is a success

if the ith drawing is a failure

X;
140.0)

The expected value of X; is therefore given
by:

2
E[Xi] =) %5P(xi =x)
j=1
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Utilizing the factthat X = X1 +X>+...4+X;,
we have:

E[X] = Z;E[X,-] = ;N =ny -

The variance of X; is, by definition:

Var(X;) = E[X?] — (E[X:])>

-5 (5)

_ MNN —-M)

= T .
Since the X;, i = 1,2,..., n are dependent
random variables, the covariance should
be taken into account when calculating the
variance of X.
The probability that X; and X; (i # j) are
both successes is equal to:
MM —1)
NN -1) "
If we put V = X; - X;, the values of V and the
associated probabilities are:

"4
P(V)

The expected value of V is therefore:

PX;=1%=1)=

MM — 1)
=0 (1- )
| M- 1)
R 7 T

The covariance of X; and X; is, by definition,
equal to:

Cov(X;, X)) = E[X; - Xi] — E[X;] - E[X]]
MM -1 (MY
_N(N—l)_<ﬁ>
MW - M)
~ N2N-=1

1
= N 1Var(Xl-).

We can now calculate the variance of X:

Var(X) = ) Var(X;)
i=1

+2 Xn: > Cov(X;, X))

Jj=1 i<j
n
= ZVar(Xi)
i=1
+ n(n — 1)Cov(X;, X;)
n—1
=n| Var(X;) — N 1Var(X,‘)
Var(xy) Y=
= nvar(X;
“N—-1
M(N—-M)N—n
=-n-———-—
N2 N-—-1

N—-n M M
= n—(1——]).
N—1N< N)

DOMAINS AND LIMITATIONS

The hypergeometric distribution is often
used in quality control.

Suppose that a production line produces N
products, which are then submitted to verifi-
cation. A sample of size n is taken from this
batch of products, and the number of defec-
tive productsin this sample is noted. Itis pos-
sible to to use this to obtain (by inference)
information on the probable total number of
defective products in the whole batch.

EXAMPLES

A box contains 30 fuses, and 12 of these are
defective. If we take five fuses at random, the
probability that none of them is defective is
equal to:

—. 5
ChChiy _ ChCly
cy, C3o

= 0.0601 .

P(X =0) =
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FURTHER READING

» Bernoulli distribution

» Binomial distribution

» Discrete probability distribution

|
Hypothesis

A statistical hypothesis is an assertion
regarding the distribution(s) of one or sev-
eral random variables. It may concern the
parameters of a given distribution or the
probability distribution of a population
under study.

The validity of the hypothesisis examined by
performing hypothesis testing on observa-
tions collected for a sample of the studied
population.

When performing hypothesis testing on the
probability distribution of the population
being studied, the hypothesis that the studied
population follows a given probability distri-
bution is called the null hypothesis. The
hypothesis that affirms that the population
does not follow a given probability distri-
bution is called the alternative hypothesis
(or opposite hypothesis).

If we perform hypothesis testing on the
parameters of a distribution, the hypothe-
sisthatthe studied parameterisequaltoagiv-
en value is called the null hypothesis. The
hypothesis that states that the value of the
parameter is different to this given value is
called the alternative hypothesis.

The null hypothesis is usually denoted by
Hj and the alternative hypothesis by H;.

HISTORY

In hypothesis testing, the hypothesis that
is to be tested is called the null hypothe-
sis. We owe the term “null” to Fisher, R.A.

(1935). Introducing this concept, he men-
tioned the well-known tea tasting problem,
where a lady claimed to be able to recog-
nize by taste whether the milk or the tea was
poured into her cup first. The hypothesis to
be tested was that the taste was absolutely not
influenced by the order in which the tea was
made.

Originally, the null hypothesis was usually
taken to mean that a particular treatment
has no effect, or that there was no differ-
ence between the effects of different treat-
ments.

Nowadays the null hypothesis is mostly used
to indicate the hypothesis has that to be test-
ed, in contrast to the alternative hypothesis.
Also see hypothesis testing.

EXAMPLES

Many problems involve repeating an exper-
iment that has two possible results.

One example of this is the gender of a new-
born child. In this case we are interested in
the proportion of boys and girls in a given
population. Consider p, the proportion of
girls, which we would like to estimate from
an observed sample. To determine whether
the proportions of newborn boys and girls are
the same, we make the statistical hypothesis
that p = 3.

FURTHER READING

» Alternative hypothesis
» Analysis of variance

» Hypothesis testing

» Null hypothesis

REFERENCES
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Hypothesis Testing

Hypothesis testing is a procedure that allow,
us to (depending on certain decision rules)
confirmastarting hypothesis, called the null
hypothesis, or to reject this null hypothesis
in favor of the alternative hypothesis.

HISTORY

The theory behind hypothesis testing devel-
oped under study. The first steps were tak-
en when works began to appear that dis-
cussed the significance (or insignificance)
of a group of observations. Some exam-
ples of such works date from the eigh-
teenth century, including those by Arbuth-
nott, J. (1710), Bernoulli, Daniel (1734) and
Laplace, Pierre Simon de (1773). These
works were seen more frequently in the nine-
teenth century, such as those by Gavarett
(1840) and Edgeworth, Francis Y. (1885).
The development of hypothesis testing
occurred in parallel with the theory of
estimation. Hypothesis testing seems to
have been first elaborated by workers in the
experimental sciences and the management
domain. For example, the Student test was
developed by Gosset, William Sealy during
his time working for Guinness.

Neyman, Jerzy and Pearson, Egon Sharpe
developed the mathematical theory of
hypothesis testing, which they presented
in an article published in 1928 in the review
Biometrika. They were the first to recognize
that the rational choice to be made during
hypothesis testing had to be between the null
hypothesis that we want to test and an alter-
native hypothesis. A second fundamental
article on the theory of hypothesis testing
was published in 1933 by the same math-
ematicians, where they also distinguished
between a type I error and a type II error.

The works resulting from the collaboration
between Neyman, J. and Pearson, E.S. are
described in Pearson (1966) and in the biog-
raphy of Neyman, published by Reid (1982).

MATHEMATICAL ASPECTS

Hypothesis testing of a sample generally

involves the following steps:

1. Formulate the hypotheses:

e The null hypothesis Hy,
e The alternative hypothesis H.

2. Determine the significance level « of the
test.

3. Determine the probability distribution
that corresponds to the sampling distri-
bution.

4. Calculate the critical value of the null
hypothesis and deduce the rejection
region or the acceptance region.

5. Establish the decision rules:

e Ifthe statistics observed in the sample
are located in the acceptance region,
we donotreject the null hypothesis H;

o If the statistics observed on the sam-
ple are located in the rejection region,
we reject the null hypothesis Hy for the
alternative hypothesis Hj.

6. Take the decision to accept or to reject
the null hypothesis on the basis of the
observed sample.

DOMAINS AND LIMITATIONS

The most frequent types of hypothesis test-

ing are described below.

1. Hypothesis testing of a sample: We want
to test whether the value of a parameter
6 of the population is identical to a pre-
sumed value. The hypotheses will be as
follows:

Hy:
Hi:

0 =00,
0 # 6.
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where 6 is the presumed value of the
unknown parameter 6.

2. Hypothesis testing on two samples: The
goal in this case is to find out whether
two populations thatare both described by
aparticular parameter are different. Let 0;
and 6, be parameters that describe popu-
lations 1 and 2 respectively. We can then
formulate the following hypotheses:

Hy: 61 =06,,
Hi: 01 #6>.

Hy: 61 —6,=0,
Hi: 61—60,#0.

3. Hypothesis testing of more than two
samples: As for a test performed on two
samples, hypothesis testing is performed
on more than two samples to determine
whether these populations are different,
based on comparing the same parameter
from all of the populations being tested.
Inthiscase, wetestthe following hypothe-
ses:

or

Hy: 6i=60L,=...=06,
Hi: Thevaluesof6;(i=1,2,...,k)
are not all identical.
Here 6y, ..., 6 are the unknown param-

eters of the populations and k is the num-
ber of populations to be compared.
In hypothesis testing theory, and in prac-
tice, we can distinguish between two types
of tests: a parametric test and a nonparamet-
ric test.

Parametric Tests

A parametric testis a hypothesis test that pre-
supposes a particular form for each of the
distributions related to the underlying popu-
lations. This case applies, for example, when
these populations follow a normal distri-
bution.

The Student testis an example of a paramet-
ric test. This test compares the means of two
normally distributed populations.

Nonparametric Test

A nonparametric test is a hypothesis test
where it is not necessary to specify the
parametric form of the distribution of the
underlying population.

There are many examples of this type of
test, including the sign test, the Wilcoxon
test, the signed Wilcoxon test, the Mann—
Whitney test, the Kruskal-Wallis test, and
the Kolmogorov—Smirnov test.

EXAMPLES

For examples of parametric hypothesis test-
ing, see binomial test, Fisher test or Stu-
dent test. For examples of nonparamet-
ric hypothesis testing, see Kolmogorov-
Smirnov test, Kruskal-Wallis test,
Mann-Whitney test, Wilcoxon test,
signed Wilcoxon test and sign test.

FURTHER READING

» Acceptance region

» Alternative hypothesis
» Nonparametric test

» Null hypothesis

» One-sided test

» Parametric test

» Rejection region

» Sampling distribution
» Significance level

» Two-sided test
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Idempotent Matrix

See matrix.

T
Identity Matrix

See matrix.

|
Incidence

See incidence rate.

T
Incidence Rate

The incidence of an illness is defined as
being the number of new cases of illness
appearing during adetermined period among
the individuals of a population. This notion
is similar to that of “stream.”

The incidence rate is defined as being rela-
tive to the dimension of the population and
the time; this value is expressed by relation
to a number of individuals and to a duration.
The incidence rate is the incidence / divided
by the number of people atrisk for the illness.
