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Preface

The main changes in the second edition have been driven by the authors’ direct experience of
using the book as a core text for teaching mathematics and statistics to students on a range of
undergraduate science courses.

Major developments include:

• Integration of ‘how to do it’ video clips via the Website to provide students with audio-visual
worked answers to over 200 ‘Q’ questions in the book.

• Improvement in the educational development for certain topics, providing a greater clarity
in the learning process for students, e.g. in the approach to handling equations in Chapter 3
and the development of exponential growth in Chapter 5.

• Reorientation in the approach to hypothesis testing to give priority to an understanding of
the interpretation of p-values , although still retaining the calculation of test statistics. The
statistics content has been substantially reorganized.

• Movement of some content to the Website, e.g. Bayesian statistics and some of the statistical
theory underpinning regression and analysis of variance.

• Revised computing tutorials on the Website to demonstrate the use of Excel and Minitab for
many of the data analysis techniques. These include video demonstrations of the required
keystrokes for important techniques.

The book was designed principally as a study text for students on a range of undergraduate
science programmes: biological, environmental, chemical, forensic and sports sciences. It cov-
ers the majority of mathematical and statistical topics introduced in the first two years of such
programmes, but also provides important aspects of experimental design and data analysis that
students require when carrying out extended project work in the later years of their degree
programmes.

The comprehensive Website actively supports the content of the book, now including exten-
sive video support. The book can be used independently of the Website, but the close integration
between them provides a greater range and depth of study possibilities. The Website can be
accessed at:

www.wiley.com/go/currellmaths2

The introductory level of the book assumes that readers will have studied mathematics with
moderate success to Year 11 of normal schooling. Currently in the UK, this is equivalent to a
Grade C in Mathematics in the General Certificate of Secondary Education (GCSE).

There are Revision Mathematics notes available on the associated Website for those readers
who need to refresh their memories on relevant topics of basic mathematics – BODMAS,
number line, fractions, percentages, areas and volumes, etc. A self-assessment test on these
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‘basic’ topics is also available on the Website to allow readers to assess their need to use this
material.

The first eight chapters in the book introduce the basic mathematics and statistics that are
required for the modelling of many different scientific systems. The remaining chapters are
then primarily related to experimental investigation in science, and introduce the statistical
techniques that underpin data analysis and hypothesis testing.

Over 200 worked Examples in the text are used to develop the various topics. The
calculations for many of these Examples are also performed using Microsoft Excel
(office.microsoft.com) and the statistical analysis program Minitab (www.minitab.com). The
files for these calculations are available via the Website.

Readers can test their understanding as each topic develops by working through over 200
‘Q’ questions in the book. The numeric answers are given at the end of the book, but full
worked answers are also available through the Website in both video and printed (pdf) format.

Throughout the book, readers have the opportunity of learning how to use software to
perform many of the calculations. This strong integration of paper-based and computer-based
calculations both supports an understanding of the mathematics and statistics involved and
develops experience with the use of appropriate software for data handling and analysis.

Scientific context
The diverse uses of mathematics and statistics in the various disciplines of science place dif-
ferent emphases on the various topics. However, there is a core of mathematical and statistical
techniques that is essentially common to all branches of experimental science, and it is this
material that forms the basis of this book. We believe that we have developed a coherent
approach and consistent nomenclature, which will make the material appropriate across the
various disciplines.

When developing questions and examples at an introductory level, it is important to achieve
a balance between treating each topic as pure mathematics or embedding it deeply in a scientific
‘context’. Too little ‘context’ can reduce the scientific interest, but too much can confuse the
understanding of the mathematics. The optimum balance varies with topic and level.

The ‘Q’ questions and Examples in the book concentrate on clarity in developing the topics
step by step through each chapter. Where possible we have included a scientific context that
is understandable to readers from a range of different disciplines.

Experimental design
The process of good experimental planning and design is a topic that is often much neglected
in an undergraduate course. Although the topic pervades all aspects of science, it does not have
a clear focus in any one particular branch of the science, and is rarely treated coherently in its
own right.

Good experimental design is dependent on the availability of suitable mathematical and
statistical techniques to analyse the resulting data. A wide range of such methods are introduced
in this book:

• Regression analysis (Chapters 4 and 13) for relationships that are inherently linear or can
be linearized.
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• Logarithmic and/or exponential functions (Chapter 5) for systems involving natural growth
and decay, or for systems with a logarithmic response.

• Modelling with Excel (Chapter 6) for rates of change.
• Probabilities (Chapter 7), frequency and proportions (Chapter 14) and Bayesian statistics

(Website) to interpret categorical data, ratios and likelihood.
• Statistical distributions (Chapter 8) for modelling random behaviour in complex systems.
• Statistical analysis (Chapters 9 to 14) for hypothesis testing in a variety of systems.
• Analysis of variance (Chapter 11) for hypothesis testing of complex experimental systems.
• Experimental design overview (Chapter 15).

Computing software
There are various software packages available that can help scientists in implementing math-
ematics and statistics. Some university departments have strong preferences for one or the
other.

Microsoft Excel spreadsheets can be used effectively for a variety of purposes:

• basic data handling – sorting and manipulating data;
• data presentation using graphs, charts, tables;
• preparing data and graphs for export to other packages;
• performing a range of mathematical calculations; and
• performing a range of statistical calculations.

Minitab (Minitab Inc.) is designed specifically for statistical data analysis. The data is entered
in columns and a wide range of analyses can be performed using menu-driven instructions
and interactive dialogue boxes. The results are provided as printed text, graphs or new column
data.

Most students find that the statistical functions in Excel are a helpful introduction to using
statistics, but for particular problems it is more useful to turn to the packages designed specif-
ically for statistical analysis. Nevertheless, it is usually convenient to use Excel for organizing
data into an appropriate layout before exporting to the specialized package.

The book has used Excel 2003 and Minitab 15 to provide all of the software calculations
used, and the relevant files are available on the Website. However, there are several other
software packages that can perform similar tasks, and information on some of these is also
given on the Website.

Most of the graphs in the book have been prepared using Excel, except for those identified
as having been produced using Minitab.





On-line Learning Support

The book’s Website (www.wiley.com/go/currellmaths2) provides extensive learning support
integrated closely with the content of the book.

Important learning elements referenced within the book are:

• Examples (e.g. Example 7.12) with worked answers given directly within the text, and with
supporting files available on the Website where appropriate.

• ‘Q’ questions (e.g. Q7.13) with numerical answers at the end of the book, but with full
worked answers on video or pdf files via the Website.

• Equations – referred to using square brackets, e.g. [7.16].

The Website for the second edition provides the following structural support:

• ‘How to do it’ – answers to all ‘Q’ questions. Over 200 flash video clips provide worked
answers to all of the ‘Q’ questions in the book, and can be viewed directly over the Internet.
The worked answers are also presented in pdf files.

• Further practice questions. Additional questions and answers are provided which enable
students to further practise/test their understanding. Many students find these particularly
useful in some skill areas, such as chemical calculations, rearranging equations, logs and
exponentials, etc.

• Excel and Minitab tutorials. Keystroke tutorials provide a guide to using Excel 2007 and
Minitab 15 for some of the important analyses developed in the book.

• Excel and Minitab files. These files provide the software calculations for the examples, ‘Q’
questions, tables and figures presented in the book. In appropriate cases, these are linked
with video explanations.

• Additional materials. Additional learning materials (pdf files), including revision mathe-
matics (basic skills of the number line, BODMAS, fractions, powers, areas and volumes),
Bayesian statistics, transformation of data, weighted and nonlinear regression, data variance.

• Reference materials. Statistical tables, Greek symbols.
• Links. Access to ongoing development of teaching materials associated with the book,

including on-line self-assessment.

Videos
The Website hosts a large number of feedback and instructional videos that have been developed
since the first edition of the book was published. Most of these are very short (a few minutes)
and provide students with the type of feedback they might expect to receive when asking
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a tutor ‘how to do’ a particular question or computer technique. The videos are targeted to
produce support just at the point when the student is really involved with trying to understand
a particular detailed problem, and provide the focused help that is both required and very
welcome.

These videos are used by students of all abilities: advanced students use them just as a quick
check on their own self-study, but weaker students can pause and rerun the videos to provide
a very effective self-managed ‘tutorial’.

The video formats include a ‘hand-written’ format for paper-based answers, and ‘keystroke’
demonstrations for computer-based problems. These match directly the form and content of the
knowledge and skills that the student is trying to acquire. The separate videos can be viewed
directly and quickly over the Internet, using flash technology which is already loaded with
most Internet browsers.



1
Mathematics and Statistics
in Science

Overview
Science students encounter mathematics and statistics in three main areas:

• Understanding and using theory.
• Carrying out experiments and analysing results.
• Presenting data in laboratory reports and essays.

Unfortunately, many students do not fully appreciate the need for understanding mathematics
and/or statistics until it suddenly confronts them in a lecture or in the write-up of an experiment.
There is indeed a ‘chicken and egg’ aspect to the problem:

Some science students have little enthusiasm to study mathematics until it appears in a lecture or
tutorial – by which time it is too late! Without the mathematics, they cannot fully understand the
science that is being presented, and they drift into a habit of accepting a ‘second-best’ science
without mathematics. The end result could easily be a drop of at least one grade in their final
degree qualification.

All science is based on a quantitative understanding of the world around us – an understanding
described ultimately by measurable values. Mathematics and statistics are merely the processes
by which we handle these quantitative values in an effective and logical way.

Mathematics and statistics provide the network of links that tie together the details of our
understanding, and create a sound basis for a fundamental appreciation of science as a whole.
Without these quantifiable links, the ability of science to predict and move forward into new
areas of understanding would be totally undermined.

In recent years, the data handling capability of information technology has made mathe-
matical and statistical calculations far easier to perform, and has transformed the day-to-day
work in many areas of science. In particular, a good spreadsheet program, like Excel, enables
both scientists and students to carry out extensive calculations quickly, and present results and
reports in a clear and accurate manner.

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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1.1 Data and Information
Real-world information is expressed in the mathematical world through data.

In science, some data values are believed to be fixed in nature. We refer to values that are
fixed as constants, e.g. the constant c is often used to represent the speed of light in a vacuum,
c = 3.00 × 108 m s−1.

However, most measured values are subject to change. We refer to these values as variables,
e.g. T for temperature, pH for acidity.

The term parameter refers to a variable that can be used to describe a relevant characteristic
of a scientific system, or a statistical population (see 7.2.2), e.g. the actual pH of a buffer
solution, or the average (mean) age of the whole UK population. The term statistic refers to a
variable that is used to describe a relevant characteristic of a sampled (see 7.2.2) set of data,
e.g. five repeated measurements of the concentration of a solution, or the average (mean) age
of 1000 members of the UK population.

Within this book we use the convention of printing letters and symbols that represent quan-
tities (constants and variables) in italics, e.g. c, T and p.

The letters that represent units are presented in normal form, e.g. m s−1 gives the units of
speed in metres per second.

There is an important relationship between data and information, which appears when
analysing more complex data sets. It is a basic rule that:

It is impossible to get more ‘bits’ of information from a calculation than the number of ‘bits’ of
data that is put into the calculation.

For example, if a chemical mixture contains three separate compounds, then it is necessary to
make at least three separate measurements on that mixture before it is possible to calculate the
concentration of each separate compound.

In mathematics and statistics, the number of bits of information that are available in a data
set is called the degrees of freedom, df , of that data set. This value appears in many statistical
calculations, and it is usually easy to calculate the number of degrees of freedom appropriate
to any given situation.

1.2 Experimental Variation and Uncertainty
The uncertainty inherent in scientific information is an important theme that appears throughout
the book.

The true value of a variable is the value that we would measure if our measurement process
were ‘perfect’. However, because no process is perfect, the ‘true value’ is not normally known.

The observed value is the value that we produce as our best estimate of the true value.
The error in the measurement is the difference between the true value and the observed

value:

Error = Observed value − True value [1.1]

As we do not normally know the ‘true value’, we cannot therefore know the actual error in
any particular measurement. However, it is important that we have some idea of how large the
error might be.
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The uncertainty in the measurement is our best estimate of the magnitude of possible errors.
The magnitude of the uncertainty must be derived on the basis of a proper understanding of the
measurement process involved and the system being measured. The statistical interpretation of
uncertainty is derived in 8.2.

The uncertainty in experimental measurements can be divided into two main categories:

Measurement uncertainty. Variations in the actual process of measurement will give some
differences when the same measurement is repeated under exactly the same conditions. For
example, repeating a measurement of alcohol level in the same blood sample may give
results that differ by a few milligrams in each 100 millilitres of blood.

Subject uncertainty. A subject is a representative example of the system (9.1) being measured,
but many of the systems in the real world have inherent variability in their responses. For
example, in testing the effectiveness of a new drug, every person (subject) will have a
slightly different reaction to that drug, and it would be necessary to carry out the test on a
wide range of people before being confident about the ‘average’ response.

Whatever the source of uncertainty, it is important that any experiment must be designed both
to counteract the effects of uncertainty and to quantify the magnitude of that uncertainty.

Within each of the two types of uncertainty, measurement and subject , it is possible to
identify two further categories:

Random error. Each subsequent measurement has a random error, leading to imprecision in
the result. A measurement with a low random error is said to be a precise measurement.

Systematic error. Each subsequent measurement has the same recurring error. A systematic
error shows that the measurement is biased , e.g. when setting the liquid level in a burette,
a particular student may always set the meniscus of the liquid a little too low.

The precision of a measurement is the best estimate for the purely random error in a
measurement.

The trueness of a measurement is the best estimate for the bias in a measurement.
The accuracy of a measurement is the best estimate for the overall error in the final result,

and includes both the effects of a lack of precision (due to random errors) and bias (due to
systematic errors).

Example 1.1

Four groups of students each measure the pH (acidity) of a sample of soil, with each
group preparing five replicate samples for testing. The results are given in Figure 1.1.

Figure 1.1 Precision and bias in experimental data.
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What can be said about the accuracy of their results?

It is possible to say that the results from groups A and C show greater random uncertainty
(less precision) than groups B and D. This could be due to such factors as a lack of care
in preparing the five samples for testing, or some electronic instability in the pH meter
being used.

Groups B and D show greater precision, but at least one of B or D must have some
bias in their measurements, i.e. poor ‘trueness’. The bias could be due to an error in
setting the pH meter with a buffer solution, which would then make every one of the
five measurements in the set wrong by the same amount.

With the information given, very little can be said about the overall accuracy of the
measurements; the ‘true’ value is not known, and there is no information about possible
bias in any of the results. For example if the true value were pH = 8.40, this would
mean that groups A, B and C were all biased, with the most accurate measurement
being group D.

The effect of random errors can be managed and quantified using suitable statistical methods
(8.2, 8.3 and 15.1.2). The presentation of uncertainty as error bars on graphs is developed in
an Excel tutorial on the Website.

Systematic errors are more difficult to manage in an experiment, but good experiment design
(Chapter 15) aims to counteract their effect as much as possible.

1.3 Mathematical Models in Science
A fundamental building block of both science and mathematics is the equation .

Science uses the equation as a mathematical model to define the relationship between one or
more factors in the real world (3.1.6). It may then be possible to use mathematics to investigate
how that equation may lead to new conclusions about the world.

Perhaps the most famous equation, arising from the general theory of relativity, is:

E = mc2

which relates the amount of energy, E (J), that would be released if a mass, m (kg), of matter
was converted into energy (e.g. in a nuclear reactor). E and m are both variables and the
constant c(= 3.00 × 108 m s−1) is the speed of light.

Example 1.2

Calculate the amount of matter, m, that must be converted completely into energy, if the
amount of energy, E, is equivalent to that produced by a medium-sized power station in
one year: E = 1.8 × 1013 J.
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Rearranging the equation E = mc2 gives:

m = E

c2

Substituting values into the equation:

m = 1.8 × 1013

(3.00 × 108)2
⇒ 0.000 20 kg ⇒ 0.20 g

This equation tells us that if only 0.20 g of matter is converted into energy, it will
produce an energy output equivalent to a power station operating for a year!

This is why the idea of nuclear power continues to be so very attractive.

Example 1.2 indicates some of the common mathematical processes used in handling
equations in science: rearranging the equation, using scientific notation, changing of units,
and ‘solving’ the equation to derive the value of an unknown variable.

Equations are used to represent many different types of scientific processes, and often employ
a variety of mathematical functions to create suitable models.

In particular, many scientific systems behave in a manner that is best described using an
exponential or logarithmic function, e.g. drug elimination in the human body, pH values.
Example 1.3 shows how both the growth and decay of a bacteria population can be described,
in part, by exponential functions.

Example 1.3

Figure 1.2 gives a plot of growth and decay in a bacteria batch colony, by plotting log(N )
against time, t , where N is the number of cells per millilitre.
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Figure 1.2 Lifecycle of a bacterial population.

The ‘straight line’ sections of the graph in the ‘growth’ and ‘death’ phases are two
sections of the lifecycle that can be described by exponential functions (5.2).
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Another aspect of real systems is that they often have significant inherent variability , e.g.
similar members of a plant crop grow at different rates, or repeated measurements of the
refractive index of glass may give different results. In these situations, we need to develop
statistical models that we can use to describe the underlying behaviour of the system as a
whole.

The particular statistical model that best fits the observed data is often a good guide to the
scientific processes that govern the system being measured. Example 1.4 shows the Poisson
distribution that could be expected if plants were distributed randomly with an average of 3.13
plants per unit area.

Example 1.4

Figure 1.3 shows the numbers (frequencies) of specific plants measured in 100 quadrats
of unit area. In sampling the random distribution of plants it was found that 22 quadrats
had 3 plants, 11 quadrats had 5 plants, etc.
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Figure 1.3 Poisson distribution of random plant abundance.

If the distribution of plants were affected by clumping or by competition for survival,
then we would expect the shape of the distribution to be different.

Excel spreadsheets have become particularly useful for implementing mathematical models
of very complex scientific systems. Throughout this book we continue to develop mathematics
and statistics in conjunction with their practical applications through Excel.



2
Scientific Data

Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Revision mathematics notes for basic mathematics:

BODMAS, number line, fractions, powers, areas and volumes.
• Excel tutorials: scientific calculations, use of formulae, functions, formatting

(scientific numbers, decimal places), etc.

Data in science appears in a variety of forms. However, there is a broad classification of data
into two main categories:

• Quantitative data. The numeric value of quantitative data is recorded as a measurable (or
parametric) variable, e.g. time, pH, temperature, etc.

• Qualitative (or categorical) data. Qualitative data is grouped into different classes, and the
names of the classes serve only to distinguish, or rank, the different classes, and have no
other quantitative value, e.g. grouping people according to their nationality, eye colour, etc.

Quantitative data can be further divided into:

Discrete data. Only specific values are used, e.g. counting the number of students in a class
will only give integer values.

Continuous data. Using values specified to any accuracy as required, e.g. defining time, using
seconds, to any number of decimal places as appropriate (e.g. 75.85206 s).

Quantitative data can be further subdivided into:

Ratio data. The ‘zero’ of a ratio scale has a true ‘zero’ value in science, and the ratios of data
values also have scientific meaning. For example, the zero, 0 K, of the absolute temperature
scale in thermodynamics is a true ‘absolute zero’ (there is nothing colder!), and 100 K is
twice the absolute ‘temperature’ of 50 K.

Interval data. The ‘zero’ of an interval scale does not have a true ‘zero’ value in science,
and the ratios of data values do not have scientific meaning. Nevertheless the data intervals

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd



8 SCIENTIFIC DATA

are still significant. For example, the zero, 0 ◦C, of the Celsius temperature scale, is just
the temperature of melting ice and not a true ‘zero’, and 100 ◦C is not ‘twice as hot’ as
50 ◦C. However, the degree intervals are the same in both the absolute and Celsius scales.

Qualitative data can be further divided into:

Ordinal data. The classes have a sense of progression from one class to the next, e.g. degree
classifications (first, upper second, lower second, third), opinion ratings in a questionnaire
(excellent, good, satisfactory, poor, bad).

Nominal (named) data. There is no sense of progression between classes, e.g. animal species,
nationality.

This chapter is concerned mainly with calculations involving continuous quantitative data,
although examples of other types of data appear elsewhere within the book. The topics included
relate to some of the most common calculations that are performed in science:

• Using scientific (or standard) notation.
• Displaying data to an appropriate precision.
• Handling units, and performing the conversions between them.
• Performing routine calculations involving chemical quantities.
• Working with angular measurements in both degrees and radians.

2.1 Scientific Numbers
2.1.1 Introduction
This unit describes some of the very common arithmetical calculations that any scientist needs
to perform when working with numerical data. Students wishing to refresh their memory of
basic mathematics can also refer to the revision resources available on the book’s dedicated
Website.

2.1.2 Scientific (standard) notation
Scientific notation is also called standard notation or exponential notation .

In scientific notation, the digits of the number are written with the most significant figure
before the decimal point and all other digits after the decimal point. This ‘number’ is then
multiplied by the correct ‘power of 10’ to make it equal to the desired value. For example:

230 = 2.30 × 102

0.00230 = 2.30 × 10−3

2.30 = 2.30 × 100 ⇒ 2.30 × 1 ⇒ 2.30

In Excel, other software and some calculators, the ‘power of 10’ is preceded by the letter ‘E’,
e.g. the number −3.56 × 10−11 would appear as −3.56E-11.
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In a calculator, the ‘power of 10’ is entered by pressing the ‘×10x’ or ‘EXP’ button, e.g.
entering 2.6 × 103 by using the keystrokes [2][.][6][×10x ][3].

Q2.1
Express the following numbers in scientific notation:

(i) 42600 (v) 0.045 × 104

(ii) 0.00362 (vi) 26.6 × 103

(iii) 10000 (vii) 3.2E3

(iv) 0.0001 (viii) 4.5E-6

2.1.3 Multiplying (dividing) in scientific notation
When multiplying (or dividing) in scientific notation, it is possible to multiply (or divide) the
numbers separately and add (or subtract) the ‘powers of 10’, as in the next example.

Example 2.1

Multiplication in scientific notation:

4.2×103×2.0×104 ⇒ (4.2 × 2.0) × (103 × 104)

Separating numbers and powers

⇒ 8.4 × 103+4

Adding powers

⇒ 8.4 × 107

Division in scientific notation:

4.2 × 103

2.0 × 104
⇒ 4.2

2.0
× 103

104

Separating numbers and powers

⇒ 2.1 × 103−4

Subtracting powers

⇒ 2.1 × 10−1∗

∗For simplicity of presentation, 2.1 × 10−1 would normally be written just as 0.21.

It is often necessary to ‘adjust’ the position of the decimal point (and ‘power of 10’) to
return the final number to true scientific notation, as in the final step in Example 2.2.

Example 2.2

A simple multiplication gives:

4.0 × 105 × 3.5 × 10−3 = 4.0 × 3.5 × 105 × 10−3 ⇒ 14 × 105+(−3) ⇒ 14 × 102
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However, the result is not in scientific notation , and should be adjusted to give:

14 × 102 = 1.4 × 103

Q2.2
Evaluate the following, giving the answers in scientific notation (calculate ‘by
hand’ and then check the answers on a calculator):

(i) 120000 × 0.003 (iv) 4500 ÷ 0.09

(ii) 5.0 × 105 × 3.0 × 10−3 (v) 0.0056 × 4.0 × 103

(iii)
1.2 × 105

3.0 × 103
(vi)

1.2 × 105

3.0 × 10−3

2.1.4 Adding (subtracting) in scientific notation
Before adding or subtracting scientific numbers it is important to get both numbers to the same
‘power of 10’.

It is then possible to simply add (or subtract) the numbers.

Example 2.3

To add 3.46 × 103 to 2.120 × 104 we first change 3.46 × 103 to 0.346 × 104 so that both
numbers have the multiplier ‘×104’.

We can then write:

3.46 × 103 + 2.120 × 104 = 0.346 × 104 + 2.120 × 104 ⇒ (0.346 + 2.120) × 104

⇒ 2.466 × 104

Similarly, to subtract 2.67 × 10−2 from 3.0 × 10−3 we first change 2.67 × 10−2 to 26.7 ×
10−3 so that both numbers have the multiplier ‘×10−3’, and we can then write:

3.0 × 10−3 − 2.67 × 10−2 = 3.0 × 10−3 − 26.7 × 10−3 ⇒ (3.0 − 26.7) × 10−3

⇒ −23.7 × 10−3 ⇒ −2.37 × 10−2

Note that the answer should be left in correct scientific notation form.
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Q2.3
Evaluate the following, giving the answers in scientific notation (calculate ‘by
hand’ and then check the answers on a calculator):

(i) 1.2463 × 103 − 42.1 (ii)
7.2463 × 106 − 1.15 × 105

3.0 × 10−3

2.1.5 Significant figures (sf)
The most significant figure (or digit) in a number is the first non-zero number reading from
the left, e.g. ‘4’ in each of the numbers 456 and 0.047.

The least significant figure (or digit) is the last digit to the right whose value is considered
to carry valid information.

Example 2.4

According to the 1951 Census, the population of Greater London was 8346137. If I
state that the population was 8350000, correct to 3 significant figures (sf ), then I am
claiming (correctly) that the population was closer to 8350000 than to either 8340000
or 8360000.

The figure ‘8’ is the most significant figure, and the ‘5’ is the least significant figure.
The zeros are included to indicate the appropriate ‘power of 10’.

After the decimal point, a final zero should only be included if it is significant . For example:

3.800 to 4 sf would be written as 3.800
3.800 to 3 sf would be written as 3.80
3.800 to 2 sf would be written as 3.8

The number of significant figures chosen will depend on the precision or accuracy with which
the value is known.

2.1.6 Decimal places (dp)
The format of numbers can be specified by defining how many decimal places (dp) are
included after the decimal point. For example, 9.81 m s−2 is the acceleration due to gravity
written to 2 decimal places.
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2.1.7 Rounding numbers
It is important, when information is presented in the form of data, that the data is an accurate
representation of the information. There is uncertainty in all scientific ‘information’ (1.2),
and the number of significant figures used in displaying the data should not imply a greater
precision than is actually the case. For example, it would not be correct to quote an answer as
1.145917288 simply because the calculator displayed that many digits – it is exceedingly rare
for any scientific measurement to be that precise (±0.000000001)!

To get the right number of significant figures (sf) or decimal places (dp), it is sometimes
necessary to ‘round off’ the number to the nearest value.

When rounding numbers to specific interval values, any number that is more than halfway
between values will round up to the next value, and any number less than halfway will round
down .

Example 2.5

Rounding:

(i) 70860 to 3 sf gives 70900 (iv) 3.194 to 2 dp gives 3.19

(ii) 70849 to 3 sf gives 70800 (v) 3.196 to 2 dp gives 3.20

(iii) 5.6268 × 10−3 to 4 sf gives 5.627 × 10−3

If the number is exactly halfway between values, it is common practice (including rounding
in Excel) that the halfway value always rounds upwards. However, it is sometimes claimed
that, for the halfway value, the number should round so that the last digit is even .

Example 2.6

(i) Rounding 70550 to 3 sf gives
70600

(iii) Rounding 0.275 to 2 dp gives 0.28

(ii) Rounding 70850 to 3 sf normally
gives 70900

(iv) Rounding 3.185 to 2 dp normally
gives 3.19

Q2.4
Round the following numbers to the required numbers of significant figures (sf) as
stated:

(i) 0.04651 to 2 sf (v) 26962 to 3 sf

(ii) 0.04649 to 2 sf (vi) 11.250 to 3 sf

(iii) 13.97 to 3 sf (vii) 11.150 to 3 sf

(iv) 7.3548 × 103 to 3 sf (viii) 5.6450 × 10−3 to 3 sf
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Q2.5
Round the following numbers to the required numbers of decimal places (dp) as
stated:

(i) 0.04651 to 3 dp (iii) 426.891 to 2 dp

(ii) 7.9999 to 2 dp (iv) 1.3450 to 2 dp

When presenting a final calculated value, the number of significant figures or decimal places
should reflect the accuracy of the result. Simply performing a mathematical calculation cannot
improve the overall accuracy or precision of the original information.

Q2.6
Add the following masses and give the result to an appropriate number of decimal
places (hint: in this case the total value cannot have more decimal places than the
least precise of all the separate masses):

0.643 g, 3.10 g, 0.144 g, 0.0021 g

It is also important that the rounding process should not be applied until the end of the
calculation . If the data is rounded too early, then it is quite possible that the small inaccuracies
created will be magnified by subsequent calculations. This may result in a final error that is
much greater than any uncertainty in the real information.

2.1.8 Order of magnitude
If a value increases by one ‘order of magnitude’, then it increases by (very) approximately 10
times :

• one order of magnitude is an increase of 10 times;
• two orders of magnitude is an increase of 100 times; and
• an increase of 100000 times is five orders of magnitude.

Example 2.7

What are the differences in ‘orders of magnitude’ between the following pairs of
numbers?

(i) 46800 and 45 (ii) 5.6 mm and 3.4 km
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Answers:

(i) 46800 is three orders of magnitude greater than 45

(ii) 5.6 mm is six orders of magnitude less than 3.4 km

2.1.9 Estimations
It is often useful to check complicated calculations by carrying out simple calculations ‘by
hand’ using values approximated to 1 (or 2) significant figures.

Example 2.8

If my calculation suggests that 0.4378 × 256.2 gives the answer 1121.6436, I can check
the result as follows.

Replace the numbers by approximate values 0.4 and 300, and multiply them ‘by hand’
to get 0.4 × 300 = 120.

I then find out that my calculated answer is one order of magnitude out – I have put the
decimal point in the wrong place, and the correct answer should be 112.16436.

Q2.7
Estimate, without using a calculator, the approximate speed (in miles per hour) of
an aeroplane that takes 4 hours and 50 minutes to fly a distance of 2527 miles.

Is the answer likely to be too high or too low?

2.1.10 Using a calculator
The most appropriate hand calculator for the science student should be inexpensive, easy
to use, and have a basic scientific capability. This capability should include logarithms, the
exponential function (e), trigonometric functions, the use of brackets, and basic statistical
calculations (mean, standard deviation, etc). The more expensive and sophisticated calculators
(e.g. with graphics) should be avoided unless the student is confident in how to use them.

Q2.8
Use a calculator to evaluate the following expressions:

(i) 1/(2.5 × 104) Use the reciprocal key, ‘1/x’ or ‘x−1’
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(ii) (−0.0025) ÷ (−1.2 × 10−6) Use the ‘×10x’ or ‘EXP’ key for the
power of 10

(iii) 3.2−1.6 Use the key ‘xy’ or ‘∧’

(iv) 3.4872 Use the key ‘x2’

(v) Square root of 0.067 Use the square root key ‘
√

’

2.2 Scientific Quantities
2.2.1 Introduction
Quantitative measurements are made in relation to agreed ‘units’ of quantity. For example,
the distances for Olympic races are expressed as multiples of an agreed ‘unit’ of distance (the
metre): 100 metres , 400 metres , 1500 metres , etc.

The handling of ‘units’ should be a simple process. However, some students try to work
out the conversion of units ‘in their heads’, and get confused with multiple multiplications and
divisions. The answer is to break up the problem into a number of very simple steps, writing
down each step in turn.

2.2.2 Presenting mixed units
Most people are very familiar with common ‘mixed’ units such as miles per hour for speed
or pounds per month for wages. However, when writing out such units in full, using the word
‘per’ takes up a lot of space, and in science it is more convenient to use abbreviated forms. For
example, speed is calculated by dividing distance by time, and consequently the units become
metres divided by seconds: m/s or m s−1. However, the format using the oblique ‘/’ for ‘per’
(e.g. ‘m/s’) should not be used for units, and should be replaced by formats with negative
powers, e.g. ‘m s−1’.

The units of a mixed variable represent the process used to calculate the value of that
variable. Some examples of equivalent forms are given below:

Variable Units Unit format

Speed metres per second m s−1

Density kilograms per cubic metre kg m−3

Pressure newtons per square metre N m−2

By convention, units are shown in normal (not italic) font with a space between each
subunit. Where a unit is derived from a person’s name, the first letter of the unit’s name
is given in lower case, although the unit is give a capital letter, e.g. 1 newton is written as
1 N.
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2.2.3 SI units
SI (Système International) units derive from an international agreement to use a common
framework of units, which is based on a set of seven fundamental units, as in Table 2.1:

Table 2.1. Fundamental SI units.

SI unit Symbol Measures Defined using:

kilogram kg Mass standard platinum–iridium mass
second s Time oscillations of a caesium-137 atom
metre m Length distance travelled by light in a fixed time
kelvin K Temperature temperature of triple point of water
mole mol Amount comparison with 0.012 kg of carbon-12
ampere A Electric current force generated between currents
candela cd Light output intensity of a light source

Other units are derived as combinations of the fundamental units. Some examples are given
in Table 2.2.

Table 2.2. Derived SI units.

SI unit Symbol Measures Equivalence to fundamental units

newton N Force 1 N = 1 kg m s−2

joule J Energy 1 J = 1 N m
watt W Power 1 W = 1 J s−1

pascal Pa Pressure 1 Pa = 1 N m−2

hertz Hz Frequency 1 Hz = 1 cycle per second = 1 s−1

Various prefixes are used to magnify or reduce the size of a particular unit according to the
‘power of 10’ ratios in Table 2.3.

Table 2.3. Powers of 10 in SI units.

Power of 10 109 106 103 10−3 10−6 10−9 10−12

Name giga- mega- kilo- milli- micro- nano- pico-
Prefix G M k m µ n p

Note that ‘centi-’ is a common prefix for the power 10−2 (i.e. one-hundredth) and ‘deci-’
for the power 10−1 (i.e. one-tenth), but neither are true SI units.

Q2.9
By how many ‘orders of magnitude’ (see 2.1.8) is 4.7 km (kilometres) larger than
6.2 nm (nanometres)?
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2.2.4 Conversion of units
The examples below, Example 2.9 to Example 2.15, show that:

• Conversion should be performed in easy stages, making simple changes at each stage.
• It often helps to write out any complex units as statements in words .

For example: If x units of A are equivalent to y units of B

Dividing both sides by x: 1 unit of A is equivalent to
y
x

units of B

Multiplying both sides by z: z units of A are equivalent to z × y
x

units of B

Example 2.9

If 5.000 miles are equal to 8.045 km, convert 16.3 miles into kilometres.

Starting with: 5.000 miles are equal to 8.045 km

Divide both sides by 5: 1.000 mile is equal to
8.045

5.000
= 1.609 km

Multiply both sides by 16.3: 16.3 miles are equal to 16.3 × 8.045

5.000
= 26.2 km

It is important to be able to calculate reciprocal conversions, as follows.

Example 2.10

Examples of taking the reciprocals of unit conversions:

1.0 m is equivalent to 100 cm = 1.00 × 102 cm

Hence: 1.0 cm is equivalent to
1

100
m = 0.01m ⇒ 1.00 × 10−2 m

1.000 mile is equivalent to 1.609 km

Hence: 1.000 km is equivalent to
1

1.609
miles = 0.622 miles

1.000 L is equivalent to 1000 mL = 1.000 × 103 mL

Hence: 1.0 mL is equivalent to
1

1000
L = 0.001 L ⇒ 1.0 × 10−3 L

and: 10 mL is equivalent to
10

1000
L = 0.01L ⇒ 1.0 × 10−2 L
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Units are often used in a ‘power’ form, e.g. the units of area are m2.
Conversion factors will also be raised to the same power as the unit.

Example 2.11

Examples using powers of units:

Distance: 1.0 m = 100 cm ⇒ 1.0 × 102 cm

Area: 1.0 m2 = 100 × 100 cm2 ⇒ 1.0 × 102 × 1.0 × 102 cm2 ⇒ 1.0 × 104 cm2

Volumes: 1.0 m3 = 100 × 100 × 100 cm3 ⇒ 1.0 × 102 × 1.0 × 102 × 1.0 × 102 cm3

⇒ 1.0 × 106 cm3

1.0 cm3 = 1

1.0 × 106
m3 ⇒ 1.0 × 10−6 m3

Distance: 1.000 mile = 1.609 km

Areas: 1.000 square mile = 1.609 × 1.609 km2 ⇒ 1.6092 km2 ⇒ 2.589 km2

1 km2 = 1

2.589
square miles ⇒ 0.386 square miles

Example 2.12

Express a volume of 30 mm3 in units of m3.

The first step is to start from what is known, i.e. 1.0 m = 1000 mm:

• then a cubic metre is the volume of a cube with each side of length 1000 mm
• hence the volume of a cubic metre, 1 m3 = 1000 × 1000 × 1000 mm3 ⇒ 1.0×

109 mm3

• then 1 mm3 = 1

1.0 × 109
m3 ⇒ 1.0 × 10−9 m3

• and 30 mm3 = 30 × 1.0 × 10−9 m3 ⇒ 30 × 10−9 m3 ⇒ 3.0 × 10−8 m3.

With mixed units, convert each unit separately in a step-by-step conversion.

Example 2.13

Express a speed of 9.2 mph in units of m s−1, given that 1.0 km = 0.6215 miles.

Start from what is known, i.e. 1.0 km is equal to 0.6215 miles:

• The reciprocal conversion: 1.0 mile = 1

0.6215
km ⇒ 1.609 km ⇒ 1609 m.
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• 9.20 miles = 9.20 × 1609 m ⇒ 14802 m.
• 1 hour = 3600 seconds.
• A speed of 9.2 miles per hour means 9.2 miles are travelled in 1 hour .
• This is the same as 14802 m travelled in 3600 seconds.

• Speed = Distance travelled in each second ⇒ 14802

3600
m s−1 ⇒ 4.11 m s−1.

In a complex conversion, it is useful to convert equivalence equations to unit values before
calculating a new value. This is illustrated in Example 2.14.

Example 2.14

A lysozyme solution has 15 enzyme units of activity in 22 mL of solution. Calculate the
number of enzyme units in 100 mL.

Start from what is known:

22 mL of solution contains 15 enzyme units

Convert to unit value of 1 mL:

1 mL of solution contains
15

22
enzyme units

Taking the new value of 100 mL:

100 mL of solution contains 100 × 15

22
= 68.182 enzyme units

Example 2.15

A lysozyme solution has 15 enzyme units of activity in 22 mL of solution. If the concen-
tration of protein in the solution is 0.5 grams per 100 mL, calculate the specific lysozyme
activity of the solution in enzyme units per milligram of protein.

In this case it would be useful to convert to a common volume of 100 mL:

• From Example 2.14 we know that 100 mL of solution contains 68.182 enzyme units.
• We know also that 100 mL of solution contains 0.5 g protein.
• Hence 0.5 g protein is equivalent to an activity of 68.182 units.

• 1.0 g protein will be equivalent to an activity of
68.182

0.5
= 136.4 units.

• Activity (per gram of protein) = 136.4 units per gram.

• Activity (per milligram of protein) = 136.4

1000
⇒ 0.1364 units per milligram.



20 SCIENTIFIC DATA

Q2.10

Convert: Use conversion:

(i) nutrition energy of 750 kcal (Cal) to
kilojoules (kJ),

1 kcal = 4.2 kJ

(ii) nutrition energy of 1200 kilojoules (kJ)
to kcal (Cal),

1 kcal = 4.2 kJ

(iii) a mass of 145 pounds (lb) to kilograms
(kg),

1 kg = 2.20 lb

(iv) cross-section of a plank of wood 6
inches by 1 inch into millimetres
(mm),

1 inch = 25.4 mm

(v) a volume of 5 UK gallons into litres (L), 1 gallon = 8 pints

1 pint = 568 mL

(vi) What weight (mass) of protein has a
nutrition energy value of 46 kcal?

1 g of protein = 4 kcal

Q2.11

(i) How many hectares are there in 1.0 km2? (1 hectare = 1 × 104 m2)

(ii) If the density of iron is 7.9 g cm−3 calculate the density in units of kg m−3.
(iii) A fertilizer is to be spread at the rate of 0.015 g cm−2. What is the spreading

rate in kg m−2?
(iv) What is a petrol consumption of 40 miles per gallon (mpg) in litres per 100

kilometres? (1 mile = 1.61 km and 1 gallon = 4.55 litres)

2.3 Chemical Quantities
2.3.1 Introduction
Calculations involving chemical quantities are needed across a range of different scientific
disciplines.

This unit aims to clarify the basic relationships between the two main ways of measuring
quantity in chemical calculations:

• mass of material; or
• numbers of molecules/atoms.

This then leads to consideration of the concentration of chemical solutions.
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2.3.2 Quantity (grams and moles)
The standard unit of mass is the kilogram (kg), and we also use grams (g), milligrams (mg),
micrograms (µg). For example, we may buy 1 kg of salt from a shop, or weigh out 10 g of
sodium chloride in a laboratory.

However, it is also common to measure quantity by number. We often need a measure of
number to buy integer (whole) numbers of items such as eggs, oranges or buns.

When shopping, a common unit of number is the ‘dozen’, where:

• One dozen of any item = 12 items.

For example, buying half a dozen eggs = 0.5 dozen ⇒ 0.5 × 12 ⇒ 6 eggs
We also need a measure of number in chemistry because when atoms and molecules react,

they do so in simple whole (integer) numbers.
We know that one water molecule, H2O, contains two hydrogen atoms, H, plus one oxygen

atom, O:

H2O ⇔ 2H + O

However, when dealing with atoms and molecules in chemistry, a ‘dozen’ is far too small a
quantity, and instead we count atoms and molecules using the much larger ‘mole’:

• 1 mole of any item ⇒ 6.02 × 1023 items (to 3 significant figures).

For example, weighing out 0.5 moles of sodium chloride (NaCl) gives 0.5 × 6.02 × 1023 ⇒
3.01 × 1023 molecules of sodium chloride:

1 mole of any substance will contain the same number(= 6.02 × 1023) of items
[2.1]

The Avogadro constant is the number of items in 1 mole of any substance:

NA = 6.02 × 1023 mol−1 (to 3 sf)

Counting molecules and atoms, we can describe the formation of water:

1 mole of H2O molecules ⇔ 2 moles of H atoms + 1 mole of O atoms
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The above statement using ‘moles’ gives a clearer understanding of the chemical formation,
H2O, of water than the equivalent statement using ‘mass’:

18 g of water ⇔ 2 g of hydrogen + 16 g of oxygen

Example 2.16

Calculate the mass of 1 mole of hydrogen molecules, H2, given that the mass of 1 mole
of hydrogen atoms, H, is 1.0 g (to 2 sf).

1 mole of H2 molecules consists of 2 moles of H atoms .

Hence, the mass of 1 mole of hydrogen molecules, H2, is 2 × 1.0 g = 2.0 g.

2.3.3 Relative atomic and molecular masses, Ar and Mr
A key calculation in chemistry involves working out the mass required of a substance to
obtain a given number of moles of that substance. As illustrated in Example 2.16, this con-
version depends on the ratio of the mass of a single molecule of the compound to a mass
(approximately) equal to that of a single hydrogen atom:

• Relative atomic mass, Ar (also written RAM ), is used for the relative mass of an element,
and is equal to the ratio of the average mass of 1 atom of that element to a mass equal
(almost) to 1 hydrogen atom. On this basis:

Ar for hydrogen, H = 1.0 (to 1dp)

Ar for oxygen, O = 16.0 (to 1 dp)

Ar for carbon, C = 12.0 (to 1 dp)

• Relative molecular mass, Mr (also called molecular weight or written RMM ), of a sub-
stance is equal to the ratio of the average mass of 1 molecule of that substance to a mass
equal (almost) to 1 hydrogen atom. On this basis:

Mr for hydrogen, H2 = 2 × 1.0 = 2.0 (to 1 dp)

Mr for water, H2O = 2 × 1.0 + 16.0 = 18.0 (to 1 dp)

Mr for methane, CH4 = 12.0 + 4 × 1.0 = 16.0 (to 1 dp)
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The exact values for Ar and Mr are actually based on the ratio of the atomic and molecular
masses to one-twelfth of the mass of the carbon-12 isotope (written 12C). Using this scale the
mass of 1 mole of H atoms equals 1.01 g (and not 1.00 g). However, in all but the most exact
calculations, it is still useful to think of the scale of masses starting with H = 1.0, at least to
1 decimal place.

The term average mass is used to allow for the mixture of isotopes of different masses that
occurs for all elements, as given in Example 2.17.

Example 2.17

In a naturally occurring sample of chlorine atoms, 76 % of them will be the 35Cl isotope
(with Ar = 35.0) and approximately 24 % will be the 37Cl isotope (with Ar = 37.0).

Calculate the average Ar for the mixture.

Taking 100 atoms of naturally occurring chlorine, 76 will have a ‘mass’ = 35.0 and the
remainder a ‘mass’ = 37.0.

Total ‘mass’ for 100 atoms = 76 × 35.0 + 24 × 37.0 ⇒ 3548.

Average ‘mass’ in a natural sample of chlorine, Ar = 3548/100 ⇒ 35.5 (to 1 dp)

Q2.12

In a naturally occurring sample of boron atoms about 80 % will be the 11B iso-
tope (with Ar = 11.0) and approximately 20 % the 10B isotope (with Ar = 10.0).
Estimate the average Ar for the mixture.

It is also useful to define the mass (in grams) of 1 mole of the substance:

• Molar mass, Mm, of a substance is the mass, in grams , of 1 mole of that substance. Units
are g mol−1.

This now gives us the key statement that links the measurement by mass (in grams) with the
number of moles of any substance:

1 mole of a substance has a mass in grams (molar mass) numerically

equal to the value of its relative molecular mass, Mr [2.2]

In practice, the relative molecular mass, Mr, for a molecule is calculated by adding the relative
atomic masses, Ar, of its various atoms.
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Example 2.18

Calculate the relative molecular mass, molar mass and mass of 1 mole of calcium car-
bonate, CaCO3, given relative atomic masses Ca = 40.1, C = 12.0, O = 16.0 (all values
to 1 dp).

Mr = 40.1 + 12.0 + 3 × 16.0 ⇒ 100.1(a pure number)

Molar mass = 100.1 g mol−1 (equals the relative molecular mass, Mr, in grams per
mole).

Mass of 1 mole = 100.1 g (numerically equals the molar mass in grams).

Q2.13
Using relative atomic masses C = 12.0, H = 1.0, O = 16.0, calculate the following
values for aspirin, C9H8O4, giving the relevant units:

(i) relative molecular mass, Mr

(ii) molar mass, Mm

(iii) mass of 1 mole

2.3.4 Conversion between moles and grams
Consider a substance, X, with a relative molecular mass, Mr (for an element, we use relative
atomic mass, Ar, instead of Mr).

From equation [2.2]:

• 1 mole of X has a mass of Mr g.

Hence, for n moles of the substance:

• n moles of X has a mass of n × Mr g.

If n moles of the substance has a mass m g, we can write:

m = n × Mr (m in grams) [2.3]

We can rearrange the equation by dividing m by Mr on the left-hand side (LHS), leaving n on
the right-hand side (RHS), and then swapping sides to give:
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n = m

Mr
(m in grams) [2.4]

These two equations allow us to perform simple conversions between the quantity of a substance
measured in grams, m, and the same quantity measured in numbers of moles, n.

Example 2.19

Calculate the following for sodium hydroxide, NaOH (Mr = 40):

(i) mass (in g) of 1 mol of NaOH
(ii) mass (in g) of 0.4 mol of NaOH

(iii) number of moles of NaOH that has a mass of 1.0 g
(iv) number of moles of NaOH that has a mass of 8.0 g

Answers:

(i) 1 mol of NaOH has a mass of 40 g (from the definition of a ‘mole’)
(ii) 0.4 mol of NaOH has a mass m = n × Mr ⇒ 0.4 × 40 ⇒ 16 g

(iii) no. of moles n = m

Mr
⇒ 1

40
⇒ 0.025 mol

(iv) no. of moles n = m

Mr
⇒ 8

40
⇒ 0.20 mol

Q2.14
Calculate the following for sodium carbonate, Na2CO3 (Mr = 106):

(i) mass (in g) of 1 mol of Na2CO3

(ii) mass (in g) of 0.15 mol of Na2CO3

(iii) number of moles of Na2CO3 that has a mass of 3.5 g

Q2.15
A sample of benzoic acid with a mass of 2.2 g was found, by titration, to be an
amount equal to 0.018 moles. Calculate:

(i) molar mass
(ii) relative molecular mass
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2.3.5 Concentration
The concentration of a solution is the amount of solute per unit volume of solution.

The basic unit of volume, m3, is a large unit, and it is common to use the smaller:

• litre, L (which equals a cubic decimetre, dm3); or
• cm3 (sometimes written as cubic centimetres, cc).

The symbol for the litre should normally be written as lower case l. However, in print, this
can be easily confused with the number 1, or with the upper case I, and we have opted to use
upper case L to avoid such confusion:

1 L = 1 dm3 ⇒ 1000 cm3 ⇒ 1 × 10−3 m3 [2.5]

We now consider that n moles of solute X has a mass, m g, and is dissolved in a solution that
occupies a volume, V litres. The concentration of the solution is defined as:

Concentration = Quantity of solute

Volume of solution

There are two primary ways of recording the concentration, C, of a solution, and the form of
the equation depends on the units used to express the concentration:

• Concentration in grams per litre (g L−1)

C(in g L−1) = m

V
[2.6]

• Molar concentration (mol L−1) (also called molarity, M) is the number of moles per litre

C(in mol L−1) = n

V
[2.7]

Note that 1.0 mol L−1 can also be written as 1.0 mol dm−3 or 1.0 M.
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Example 2.20

It is often necessary to change the units in a volume calculation, e.g.

(i) 1.0 mL ⇒ 1.0/1000 L ⇒ 0.001 L ⇒ 1.0 × 10−3 L

(ii) 250 mL ⇒ 250/1000 L ⇒ 0.25 L

(iii) 0.75 mL ⇒ 0.75/1000 L ⇒ 7.5 × 10−4 L

(iv) 20 µL ⇒ 20 × 10−6 L ⇒ 2.0 × 10−5 L

(v) 0.37 µL ⇒ 0.37 × 10−6 L ⇒ 3.7 × 10−7 L

(vi) 0.034 L ⇒ 0.034 × 1000 mL ⇒ 34 mL

(vii) 8.4 × 10−4 L ⇒ 0.84 mL ⇒ 840 µL

Q2.16
Perform the following conversions:

(i) 10 mL into L (iii) 0.067 L into mL

(ii) 11.6 µL into L (iv) 2.6 × 10−7 L into µL

Q2.17
A solution has been prepared such that 100 mL of the solution contains 0.02 mol
of sodium hydroxide (NaOH).

Calculate the concentration in moles per litre

Example 2.21

0.500 L of solution contains 4.00 g of sodium chloride, NaCl (Mr = 58.4).

Calculate:

(i) concentration of the solution in g L−1

(ii) molar concentration in mol L−1

Answers:

(i) Using [2.6], concentration = 4.00/0.500 ⇒ 8.00 g L−1
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(ii) Using [2.4], number of moles n = m

Mr
⇒ 4.0

58.4
⇒ 0.0685 mol

(iii) Using [2.7], molar concentration of 0.5 L of solution = 0.0685

0.500
mol L−1

(iv) ⇒ 0.137 mol L−1 ⇒ 0.137 M ⇒ 137 mM

Q2.18

Calculate the concentration (in mol L−1) of a solution that contains 5.6 g of sodium
hydroxide, NaOH (Mr = 40.0), in 75 mL of solution.

Example 2.22

Calculate the mass of sodium hydroxide, NaOH (Mr = 40), that must be dissolved in
100 mL of solution to obtain a molar concentration of 0.50 mol L−1.

Convert the volume, 100 mL, to litres: 100 mL = 0.10 L

Substitute in [2.7], and let n be the number of moles:

0.50 = n

0.10

Rearranging the equation gives: n = 0.50 × 0.10 ⇒ 0.05 mol

Using [2.3], the required mass of 0.05 mol is equivalent to:

m = n × Mr ⇒ 0.05 × 40 ⇒ 2.0 g

Q2.19
What mass of sodium chloride, NaCl (Mr = 58.4), when dissolved in water to give
50 mL of solution, will give a concentration of 0.10 mol L−1?

Q2.20
Calculate the mass of hydrated copper sulphate, CuSO4.5H2O (Mr = 249.7), that
must be dissolved into a final volume of 50 mL of solution to obtain a concentration
of 0.50 M.
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Other common terminologies relating to concentration include:

• millimoles, mmol: 1 mmol is equivalent to 1.0 × 10−3 mol

• millimolar, mM: 1 mM is equivalent to 1.0 × 10−3 M

= 1.0 × 10−3 mol L−1

• parts per million, ppm: 1 ppm is equivalent to 1 mg L−1

• parts per billion, ppb: 1 ppb is equivalent to 1 µg L−1.

Percentage concentrations are often expressed as ratios (multiplied by 100) between the
masses or volumes of the solute and solvent, giving the options:

Weight of solute per volume of solution: %w/v

Volume of solute per volume of solution: %v/v

Weight of solute per weight of solution: %w/w

where the ‘weights’ are usually given in grams and ‘volumes’ in millilitres.
Note that 1.0 mL of water has a mass (‘weight’) of 1.0 g.

Example 2.23

Examples of typical calculations of equivalence:

• 10 mL = 0.01 L, 2 mL = 0.002 L, etc.

• 0.025 mmol in 10 mL is equivalent to
0.025

0.01
mmol L−1 = 2.5 mM

• 0.023 mg in 10 mL is equivalent to
0.023

0.01
= 2.3 mg L−1 ⇒ 2.3 ppm

• 6.70 × 10−7 g in 2 mL is equivalent to
6.70 × 10−7

0.002
= 0.000335 g L−1 ⇒

335 µg L−1

• 335 µg L−1 is equivalent to 335 ppb

• 1.2 g of solute in 50 mL of solution has a concentration of
1.2

50
× 100 = 2.4 %w/v

• 10 mL of solute diluted to 200 mL has a concentration of
10

200
× 100 = 5 %v/v

• 0.88 g of solute in a total of 40 g has a concentration of
0.88

40
× 100 = 2.2 %w/w.

2.3.6 Dilutions
In most dilutions, the amount of the solute stays the same. In this case it is useful to use the
dilution equation:
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Vi × Ci = Vf × Cf [2.8]

where Vi and Ci are the initial volumes and concentrations and Vf and Cf are the final values.
The concentrations can be measured as molarities or mass/volume, but the same units must

be used on each side of the equation:

Dilution factor or ratio ⇒ Vf

Vi

= Ci

Cf

[2.9]

Example 2.24

20 mL of a solution of concentration 0.3 M is transferred to a 100 mL graduated flask,
and solvent is added up to the 100 mL mark. Calculate the concentration, Cf, of the final
solution.

The amount of the solute is the same in the initial 20 mL as in the final 100 mL, so we
can use the dilution equation [2.8]:

20 × 0.3 = 100 × Cf

Cf = 20 × 0.3

100
⇒ 0.06 M

Example 2.25

It is necessary to produce 200 mL of 30 mM saline solution (sodium chloride, NaCl,
in solution). Calculate the volume of a 35 g L−1 stock solution of saline that would be
required to be made up to a final volume of 200 mL (Mr of NaCl is 58.4).

In this question, the concentrations of the two solutions are initially in different
forms – moles and grams. We choose to convert 35 g L−1 to a molar concentration.

We know that 58.4 g (= 1 mol) of NaCl in 1.00 L gives a concentration of 1.00 M:

• 1.00 g of NaCl in 1.00 L gives a concentration of
1.00

58.4
M

• 35.0 g of NaCl in 1.00 L gives a concentration of 35.0 × 1.00

58.4
⇒ 0.599 M ⇒

599 mM.
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We can now use [2.8] to find the initial volume, Vi, of 0.599 M (= 599 mM) saline that
must be diluted to give 200 mL of 30 mM saline:

Vi × 599 = 200 × 30

Vi = 200 × 30

599
⇒ 10.02 mL

Q2.21

5.0 mL of a solution of concentration 2.0 mol L−1 is put into a 100 mL graduated
flask and pure water is added, bringing the total volume in the flask to exactly
100 mL.

Calculate the concentration of the new solution.

Q2.22

A volume, V , of a solution of concentration 0.8 mol L−1 is put into a 100 mL
graduated flask, and pure solvent is added to bring the volume up to 100 mL.
If the concentration of the final solution is 40 mM, what was the initial volume,
V ?

Q2.23
Calculate the volume of a 0.15 M solution of the amino acid alanine that would
be needed to make up to a final volume of 100 mL in order to produce 100 mL
of 30 mM alanine?

2.4 Angular Measurements
2.4.1 Introduction
In many aspects of undergraduate science, students rarely encounter the need to measure angles
or solve problems involving rotations. However, angular measurements do occur routinely in
a variety of practical situations. The mathematics is not difficult, and, in most cases, it is only
necessary to refresh the ideas of simple trigonometry or to revisit Pythagoras!
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2.4.2 Degrees and radians
There are 360◦ (degrees) in a full circle.

Example 2.26

Why are there ‘360’ degrees in a circle?

The choice of ‘360’ was made when ‘fractions’ were used in calculations far more
frequently than they are now. The number ‘360’ was particularly good because it can be
divided by many different factors: 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40,
45, 60, 72, 90, 120, 180!

The radian is an alternative measure that is often used in calculations involving rotations
(Figure 2.1).

circle radius, r

r s
q

Figure 2.1 Angle in radians.

The angle, θ , in radians is defined as the arc length, s, divided by the radius, r , of the arc.
The angle in radians is given by the simple ratio:

θ = s

r
[2.10]

s = r × θ [2.11]

In a complete circle, the arc length , s, will equal the circumference of the circle = 2πr .

Hence, the angle (360◦) of a complete circle = 2πr

r
radians = 2π radians

360◦ = 2π radians
180◦ = π radians
90◦ = π /2 radians
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1 radian = 180

π
degrees = 57.3 . . . degrees [2.12]

2.4.3 Conversion between degrees and radians

x in radians becomes x × 180/π in degrees [2.13]

θ in degrees becomes θ × π/180 in radians [2.14]

In Excel, to convert an angle:

• from radians to degrees, use the function DEGREES; and
• from degrees to radians, use the function RADIANS.

Q2.24
Convert the following angles from degrees to radians or vice versa:

(i) 360◦ into radians (iv) 1.0 radian into degrees

(ii) 90◦ into radians (v) 2.1 radians into degrees

(iii) 170◦ into radians (vi) 3.5π radians into degrees

Example 2.27

The towns of Nairobi and Singapore both lie approximately on the equator of the Earth
at longitudes 36.9 ◦E and 103.8 ◦E respectively. The radius of the Earth at the equator is
6.40 × 103 km.

Calculate the distance between Nairobi and Singapore along the surface of the Earth.

The equator of the Earth is the circumference of a circle with radius r = 6.40 × 103 km.
Nairobi and Singapore are points on the circumference of this circle separated by an
angle:

θ = 103.8◦ − 36.9◦ = 66.9◦.
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Converting this angle to radians:

θ = 66.9 × π/180 radians = 1.168 radians

The distance on the ground between Nairobi and Singapore will be given by the arc
length, s, between them. Using [2.11]:

s = r × θ = 6.40 × 103 × 1.168 km = 7.47 × 103 km

Q2.25
In Figure 2.2, calculate the distance that the mass rises when the drum rotates by
40◦. The radius of the drum is 10 cm.

Figure 2.2

2.4.4 Trigonometric functions
In a right-angled triangle, the longest side is the hypotenuse, H .

In the triangle shown in Figure 2.3, the angle, θ , is on the left side as shown.
The side opposite the angle is called the opposite side, O .
The side next to the angle (but not the hypotenuse) is called the adjacent side, A.
The three main trigonometric functions, sine, cosine and tangent, can be calculated by taking

the ratios of sides as in equation [2.15]. Many students use a simple mnemonic to remember
the correct ratios: SOHCAHTOA!

Figure 2.3 Sides of a right-angled triangle.



2.4 ANGULAR MEASUREMENTS 35

sin θ = O

H
[2.15]

cos θ = A

H

tan θ = O

A

Example 2.28

A car travels 100 m downhill along a road that is inclined at 15◦ to the horizontal.

Calculate the vertical distance through which the car travels.

The 100 m travelled by the car is the hypotenuse, H , of a right-angled triangle. The
vertical distance to be calculated is the opposite side, O , using the angle of θ = 15◦:

sin(15◦) = O

H
= O

100

giving:

O = 100 × sin(15◦) = 100 × 0.259 = 25.9 m

Q2.26
A tree casts a shadow that is 15 m long when the Sun is at an angle of 30◦ above
the horizon.

Calculate the height of the tree.

2.4.5 Pythagoras’s equation

H 2 = O2 + A2 [2.16]

(The square on the hypotenuse of a right-angled triangle is equal to the sum of the squares on
the other two sides.)
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Q2.27
One side of a rectangular field is 100 m long, and the diagonal distance from one
corner to the opposite corner is 180 m. Calculate the length of the other side of
the field.

2.4.6 Small angles
When the angle θ is small (i.e. less than about 10◦ or less than about 0.2 radians) it is possible
to make some approximations.

In Figure 2.4:

(a)

r A

H
O

r
sθ θ

(b)

Figure 2.4 Small angles.

• The length of the arc, s, in (a) will be approximately equal to the length of the opposite
side, O , in the right-angled triangle in (b): O ≈ s.

• The lengths of the adjacent side, A, and the hypotenuse, H , in (b) will be approximately
equal to the radius, r , in (a): H ≈ r and A ≈ r .

If the angle θ is measured in radians and the angle is small , then:

sin(θ) = O/H ≈ s/r = θ hence sin(θ) ≈ θ

tan(θ) = O/A ≈ s/r = θ hence tan(θ) ≈ θ [2.17]

cos(θ) = A/H ≈ r/r = 1 hence cos(θ) ≈ 1.0

Q2.28
In the following table, use a calculator to calculate values for sin(θ ), cos(θ ) and
tan(θ ) for each of the angles listed.

Use [2.14] to calculate the angle θ in radians.

Check whether the values of sin(θ ), cos(θ ) and tan(θ ) and θ in radians agree with
[2.17].
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The calculations for θ = 20◦ have already been performed:

θ (degrees) sin(θ ) cos(θ ) tan(θ ) θ (radians)

20 0.3420 0.9397 0.3640 0.3491

10

5

1

0

Example 2.29

A right-angled triangle has an angle θ = 5◦ and an hypotenuse of length 2.0.

(i) Calculate the length of the opposite side using a trigonometric function.
We know that θ = 5◦ and H = 2.0. Using O = H × sin(θ):

O = 2.0 × sin(θ) = 2.0 × sin(5◦) = 2.0 × 0.08716 = 0.174

(ii) Assume that the triangle is approximately the same as a thin segment of a circle with
a radius equal to the hypotenuse, and estimate the length of the arc using a ‘radian’
calculation.
Converting θ = 5◦ into radians: 5◦ = 5 × π /180 radians = 0.08727 radians
The arc length of a circle segment with radius r = 2.0 is given by s = r × θ :

s = 2.0 × 0.08727 = 0.175

The calculations for a triangle with a very small angle can often be made more easily
using radians than using a trigonometric function.

Q2.29
Estimate the diameter of the Moon using the following information:

The Moon is known to be 384000 km away from the Earth, and the apparent disc
of the Moon subtends an angle of about 0.57◦ for an observer on the Earth – as
illustrated in Figure 2.5.
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Figure 2.5

Do not use a calculator, but assume that 1 radian is about 57◦ (hint: 0.57◦ is a
small angle).

2.4.7 Inverse trigonometric functions
The angle can be calculated from the ratios of sides by using the ‘inverse’ functions:

θ = sin−1(O/H)

θ = cos−1(A/H) [2.18]

θ = tan−1(O/A)

Note that the above are not the reciprocals of the various functions, e.g. sin−1(O/H) does not
equal 1/[sin(O/H)].

The ‘inverse’ function can also be written with the ‘arc’ prefix:

θ = arcsin(O/H)

θ = arccos(A/H)

θ = arctan(O/A)

Q2.30
The three sides of a right-angle triangle have lengths, 3, 4 and 5, respectively.

Calculate the value of the smallest angle in the triangle using:

(i) the sine function
(ii) the cosine function

(iii) the tangent function



2.4 ANGULAR MEASUREMENTS 39

2.4.8 Calculating angular measurements
The calculation of basic angular measurements can be carried out on a calculator. Note that it
is necessary to set up the ‘mode’ of the calculator to define whether it is using degrees (DEG)
or radians (RAD).

Example 2.30 gives some examples of angle calculations on a calculator.

Example 2.30

Converting 36
◦

to radians using 36 × π /180:

36
◦ = 0.6283 . . . radians

Converting 1.3 radians to degrees using 1.3 × 180/π :

1.3 radians = 74.48 . . .
◦

Setting the calculator to DEG mode:

sin(1.4) = 0.024 . . . cos−1(0.21) = 77.88 . . .
◦

Setting the calculator to RAD mode:

sin(1.4) = 0.986 . . . cos−1(0.21) = 1.359 . . . radians

2.4.9 Using Excel for angular measurements
When using Excel for angle calculations (see Appendix I), it is important to note that Excel
uses radians as its unit of angle, not degrees . To convert an angle, θ , in radians to degrees, use
the function DEGREES, and to convert from degrees to radians, use the function RADIANS.
Alternatively it is possible to use formulae derived from [2.13] and [2.14].

Excel uses the functions SIN, COS and TAN to calculate the basic trigonometric ratios. The
inverse trigonometric functions are ASIN, ACOS and ATAN.

The value of π in Excel is obtained by entering the expression ‘= PI()’.

Example 2.31

For the following functions and formulae in Excel:

‘= DEGREES(B4)’ converts the angle held in cell B4 from a value given in radians to
a value given in degrees.

‘= B4*180/PI()’ also converts the angle held in cell B4 from a value given in radians
to a value given in degrees.

‘= SIN(RADIANS(B4))’ gives the sine of the angle (in degrees) held in cell B4.
‘= DEGREES(ACOS(C3/D3))’ gives the angle (in degrees) for a triangle where the

length of the adjacent side is held in C3 and the length of the hypotenuse is held in
D3.
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Q2.31
Refer to Q2.26, where a tree casts a shadow that is 15 m long when the Sun is at
an angle of 30

◦
above the horizon.

Write out the formula that would be used in Excel to calculate the height of the
tree, assuming that the length of the shadow was entered into cell D1 and the angle
of the Sun in degrees was entered into cell D3.



3
Equations in Science

Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Revision mathematics notes for basic mathematics:

BODMAS, number line, fractions, powers, areas and volumes.
• Greek symbols.
• Excel tutorial: use of ‘Solver’.

An equation in mathematics is a model for a relationship in science, and within the model
it may be necessary to use letters, or other symbols, to represent the different variables of a
scientific system. If we then manipulate the equation using the rules of algebra, we can generate
new equations and relationships that might tell us something new about the science itself!

We start (3.1) by reviewing the basic rules and techniques of algebra, and then apply them
specifically to the task of rearranging simple equations (3.2).

We then introduce (3.3) some of the more common symbols, subscripts, superscripts and
other annotations that mathematics and science use to convey additional detail in equations.
This then leads to further techniques (3.4) in rearranging and solving equations.

We complete the chapter by developing simple procedures for the solution of both quadratic
and simultaneous equations (3.5).

3.1 Basic Techniques
3.1.1 Introduction
Equations in science frequently use letters to show how factors combine to produce a specific
outcome.

As a simple example, we know that the area of a right-angled triangle is equal to half the
base times the height. The formula giving the area can be written as an equation:

Area = 1/2 × Base × Height

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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In algebra we often use single letters or abbreviations to ‘stand for’ the various factors in an
equation, and hence we could write:

A = 0.5 × b × h

where A = area, b = length of the base and h = height of the triangle.
In this section we introduce some basic algebraic techniques in the context of their use in

handling simple equations.
Some students may find it useful to refresh their understanding of the basic mathematics

associated with handling numbers, powers, fractions, etc., by visiting the Revision Mathematics
section of the Website.

3.1.2 BODMAS (or BIDMAS)
The order for working out an algebraic expression follows the acronym BODMAS (or BID-
MAS): Brackets first, then power Of (or Indices), followed by Divide or Multiply, and finally
Add or Subtract.

Q3.1
Check that you understand the BODMAS rules, by replacing x with the num-
ber 2 and y with the number 3 in the following expressions, and calculate the
values:

(i) 3x2 (v) 4(y − x2)

(ii) (3x)2 (vi) 2xy2

(iii) 4(y − x) (vii) xy − yx

(iv)
x

y2
(viii)

x + y

x

3.1.3 Algebraic equations
We can illustrate the versatility of equations by considering the changing speed of a car
travelling along a road. We can use just the one equation for several situations:

v = u + at [3.1]

where v = final velocity, u = initial velocity, a = acceleration and t = time passed. (Equation
[3.1] assumes that the acceleration involved is constant.)
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Example 3.1

In the first situation, the car is initially travelling at u = 10 m s−1 (approx. 20 mph),
and then the driver accelerates at a rate of a = 2 m s−2 (increasing by 2 m s−1 for each
second) for a period of t = 10 seconds. The final velocity is given by:

Final velocity, v = 10 + 2 × 10 = 10 + 20 = 30 m s−1 (approx. 67 mph)

Example 3.2

In another situation, a high-performance car starts from rest (with an initial velocity
u = 0 m s−1) and then accelerates at a = 6 m s−2 for t = 4.5 seconds, giving

Final velocity = 0 + 6 × 4.5 = 27 m s−1 (0 to 60 mph in 4.5 seconds!)

We have used different values of v, u, a and t to describe the different situations.
In this context, v, u, a and t are called the variables in the equation.

Q3.2
Use equation 3.1 to calculate the final velocity of a car which is initially going at
5 m s−1 and then accelerates at a rate of a = 3 m s−2 for a period of 4 seconds.

Q3.3
Use equation [3.1] to calculate the final velocity of a car which is initially going at
30 m s−1 and then accelerates at a rate of a = −5 m s−2 (the negative sign shows
that this is actually a deceleration) for a period of 6 seconds.

In some types of problems, one of the factors may have the same constant value for a range
of different situations. For example, in Einstein’s well-known equation:

E = mc2 [3.2]

E is the amount of energy (in joules) released when a mass, m (in kg), of matter is completely
annihilated. E and m are both variables related by the constant c, which has a value of
3.0 × 108 m s−1.
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Example 3.3

Use equation [3.2] to calculate the total energy produced when 1.0 mg (1 milligram =
one-thousandth of a gram) is totally annihilated in a nuclear reactor.

Now 1.0 mg = 1.0 × 10−3 g = 1.0 × 10−6 kg, so

E = 1.0 × 10−6 × (3.0 × 108)2 = 9.0 × 1010 = 90 000 MJ

(enough energy to power a 1 kW heater continuously for almost 3 years).

The separate parts of an algebraic expression are often called ‘terms’.
There are certain conventions which define how ‘terms’ in algebra should be written:

• A term with a number times a letter, e.g. 5 × a, would usually be written just as 5a (the
number in a product goes before the letter, and it must not be written after the letter as a5).

• A term with ‘1×’ such as 1 × t would just be written as t without the ‘1’.
• A product of letters, e.g. k × a, could be written as ka or ak .
• Sometimes a raised full stop is used to represent the multiplication sign between letters:

k × a (= ka) could also be written as k · a (but 3a would not be written as 3 · a).

Q3.4
Given that v = u + at , decide whether each of the following statements is either
true, T, or false, F:

If t = 5, the equation could be written as v = u + a5 T/F

If t = 5, the equation could be written as v = u + a × 5 T/F

If t = 5, the equation could be written as v = u + 5a T/F

If a = 1, the equation could be written as v = u + t T/F

Very often in science, we use letters from the Greek alphabet (see Website) in addition to
those from the English alphabet. For example:

v = f × λ

where v is the velocity of a wave with a frequency, f , and a wavelength, λ (lambda), and:

ω = θ/t
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where ω (omega) is the angular velocity of a wheel when it rotates through an angle, θ (theta),
in a time, t .

3.1.4 Negative values
The ‘sign’ of a term adds a ‘sense of direction’ to the value that follows it.

If, in a particular problem, we consider upwards to be the positive direction, then an object
going upwards with a speed of 5 m s−1 would have a velocity of +5 m s−1, whereas an object
falling downwards with the same speed would have a velocity of −5 m s−1.

For a stone thrown vertically into the air, we can still use equation [3.1] with u = initial
upward velocity and v = final upward velocity. In this case, the acceleration will be a = −9.8
m s−2, which is the constant acceleration due to gravity. It is written as negative here because
we have chosen upwards as being the positive direction in this problem, but gravity acts
downwards .

The equation describing the upward velocities becomes:

v = u − 9.8t [3.3]

Example 3.4

If a stone is thrown upwards at 10 m s−1, how fast will it be travelling upwards after

(i) t = 0.5 seconds?

(ii) t = 1 second?

(iii) t = 2 seconds?

Using equation [3.3]:

(i) v = 10 − 9.8 × 0.5 = 5.1 m s−1 the stone is slowing down

(ii) v = 10 − 9.8 × 1 = 0.2 m s−1 it has almost stopped

(iii) v = 10 − 9.8 × 2 = −9.6 m s−1 it is now falling downwards with

increasing speed

There are three main rules when using signs with algebraic terms:

• The sign ‘goes with’ the term that follows it.
• If there is no sign, then it is assumed that the sign is positive.
• The order of the terms is not important as long as the ‘sign’ stays with its associated

term.

Hence the equation v = u − 9.8t can be rearranged to give v = −9.8t + u.
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Multiplying with negative terms follows the familiar rules:

• a minus times a minus gives a plus;
• a plus times a minus gives a minus.

For example, in calculating the terms a × t and −a × t :

If a = −3 and t = −2 then a × t = (−3) × (−2) = +6

If a = −3 and t = −2 then −a × t = −(−3) × (−2) = −6

If a = 3 and t = −2 then a × t = 3 × (−2) = −6

If a = −3 and t = 2 then −a × t = −(−3) × 2 = +6

3.1.5 Brackets
Brackets (also called parentheses) are used to group together the terms that are multiplied by
the same factor (in the example below the factor is a). For example:

2a + 3a ⇒ (2 + 3)a ⇒ 5a

Similarly, counting ‘a’s in the expression xa + ya gives us the equation:

xa + ya ⇒ (x + y)a

i.e. x lots of ‘a’ plus y lots of ‘a’ give a total of (x + y) lots of ‘a’.
We can also change the order of multiplication:

(x + y)a ⇒ a(x + y)

When multiplying out brackets the factor outside the bracket multiplies every term inside the
bracket:

a(x + y) ⇒ ax + ay ⇒ xa + ya

(which equals the original expression above).
If the multiplying factor is a minus sign, then every term inside the bracket is multiplied by

‘−1’, and changes sign:

−(3a − 2b) ⇒ −3a − (−2b) ⇒ −3a + 2b
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Example 3.5

Multiply out the brackets in the following expressions:

3(2x + 3) ⇒ 6x + 9

v(v + w) ⇒ v2 + vw

v(2x + 3) ⇒ 2vx + 3v

−3(a − b) ⇒ −3a + (−3) × (−b) ⇒ −3a + 3b = 3b − 3a

−(4p − 3q) ⇒ (−1) × (4p − 3q) ⇒ −4p − (−1) × 3q ⇒ −4p + 3q ⇒ 3q − 4p

−(x − 2b) ⇒ −x + (−1) × (−2b) ⇒ −x + 2b ⇒ 2b − x

Q3.5
Multiply out the following brackets:

(i) 3(2 + x) (iv) p(x + 2)

(ii) 3(2 + 4x) (v) −3p(2 − x)

(iii) −2(4x − 3) (vi) p(x + p)

When multiplying out the product of two brackets, first multiply the second bracket sepa-
rately by every term in the first bracket, and then multiply out all the different terms as in
Example 3.6.

Example 3.6

To multiply out (v − t + d)(p − t), multiply the second bracket by every term in the
first bracket:

(v − t + d)(p − t) = v(p − t) − t (p − t) + d(p − t)

and then separately multiply out each of the three new terms in brackets:

= vp − vt − tp + t2 + dp − dt

Q3.6
Multiply out the following brackets:

(i) (v − 2)(v − 2) [same as (v − 2)2] (iv) (v + t)(3x + y)
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(ii) (v − t)(v + t) (v) (x − 2y)(p − q)

(iii) (v + 4)(3 − vt) (vi) (v − t + 2)(3 + v + t)

Brackets are sometimes used in other ways. For example, the expression log(1 + x) is not
a multiplication of ‘log’ with (1 + x), but it is an instruction (3.3.5) to take the logarithm of
(1 + x).

3.1.6 Reading equations
When ‘reading’ a scientific equation, it is important to remember that it is a mathematical
representation of relationships that may exist in a real-world system.

Example 3.7 shows how an equation can represent a general series of relationships, and
how it is then possible to calculate a specific outcome, given a particular condition (i.e . the
value of n in this example).

Example 3.7

The statement ‘I think of a number, n, double it, add 6, and divide by 2 to obtain a final
number, N ’ can be represented by the equation:

N = 2n + 6

2

If the original number, n, were 4, the answer, N , would be 7, and if the original number,
n, were 6, the answer, N , would be 9.

Q3.7
Write equations for N which represent the following processes, and then use them
to calculate a result for the data supplied:

(i) I think of a number, n, and add 3, giving a value, N .
Use the equation to calculate N for n = 6.

(ii) I think of a number, n, double it, and then add 3, giving a value, N .
What is N if n = 2?

(iii) I think of a number, n, add 3, and then double the result to give a final value,
N . What is N if n = 2?

(iv) I think of a number, n, add 3, double the result, take away 6, and then divide
by 2, to give a final value, N .
What are the values of N if n = 2, 6, 11?
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Example 3.8

The statement ‘For a given amount of an ideal gas, the pressure, p, is proportional to
the product of the absolute temperature, T , and the reciprocal of the volume, V ’ can be
represented by the equation:

p ∝ T × 1

V

‘Product’ implies multiplication in maths.

The ‘reciprocal’ of a value is ‘one over’ that value.

A ‘proportional’ relationship can be converted into an ‘equality’ equation by including
a ‘constant of proportionality’; in this case we include k:

p = k × T × 1

V
⇒ k × T

V

Note that for n moles of an ideal gas, k = n × R, where R is the gas constant.

Q3.8
Write equations to represent the following relationships.

For example, the statement ‘The area, A, of a circle can be calculated by multi-
plying the constant, π (Greek letter, pi), with the square of the radius, r’ can be
represented by the equation: A = πr2.

(i) The area, A, of a triangle is half the base, b, times the height, h.
(ii) The distance, d, covered by a runner is equal to the product of the average

speed, v, and the time, t .
(iii) The body mass index, BMI, of a person is equal to their weight (mass), m,

divided by the square of their height, h.
(iv) The volume, V , of a spherical cell is four-thirds the constant, π , multiplied by

the cube of the radius, r .
(v) The velocity, v, of an object that has fallen through a distance, h, is given by

the square root of twice the product of h and g, where g is the acceleration
due to gravity.

3.1.7 Factors
A factor of an expression is a term that divides exactly into the expression.
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Example 3.9

Check your understanding of each of the following:

‘3’ and ‘10’ are both factors of ‘30’: 30 = 3 × 10

‘2’, ‘5’, ‘6’ and ‘15’ are other factors of ‘30’: 30 = 2 × 15 and 30 = 5 × 6

‘2’ and ‘y’ are both factors of ‘2y’: 2y = 2 × y

‘2’, ‘5’ and ‘y’ are factors of ‘3y + 7y’: 3y + 7y = 10y = 2 × 5 × y

(2 + p) is a factor of ‘(2 + p)y’ (2 + p)y = (2 + p) × y

‘y’ is a factor of ‘(2 + p)y’ (2 + p)y = (2 + p) × y

‘p’ is not a factor of ‘(2 + p)y’ The expression cannot be rearranged
to give p × (other factors)

Factorization is the process of splitting up an expression into its various factors.

Example 3.10

What are the factors of: 15xy + 12yz?

‘3’ is a factor : 15xy + 12yz = 3(5xy + 4yz)

‘y’ is also a factor : 3(5xy + 4yz) = 3y(5x + 4z)

We can now also see that ‘(5x + 4z)’ is another factor.

We check that the expressions are equivalent by multiplying out the brackets again, i.e.
3y(5x + 4z) = 15xy + 12yz.

Example 3.11

What are the factors of: 2p2 + 8p?

‘2’ is a factor : 2p2 + 8p = 2(p2 + 4p)

‘p’ is also a factor : 2(p2 + 4p) = 2p(p + 4)

We can now also see that ‘(p + 4)’ is another factor.

We check that the expressions are equivalent by multiplying out the brackets again, i.e.
2p(p + 4) = 2p2 + 8p.
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Q3.9
What are the factors in each of the following?

(i) 4x + 4y

(ii) 4x + 6y

(iii) 4x + 6x2

(iv) pqx + pbx

3.1.8 Cancelling (simplifying)
It is possible to cancel a term from both the numerator (top) and the denominator (bottom) of
a fraction – as long as that term is a factor of both the numerator and the denominator .

Example 3.12

Check your understanding of each of the following:

(i)
30

25
= 30 6

25 5
= 6

5
‘5’ is a factor of both ‘30’ and

‘25’ and can be cancelled from
top and bottom.

(ii)
8

4
= 
 82


 41
= 2

1
= 2 ‘4’ is a factor of both ‘8’ and ‘4’.

‘2’ divided by ‘1’ is just written
as ‘2’.

(iii)
6x

2y
= 
 63x


 21y
= 3x

y
‘2’ is a factor of both ‘6x’ and

‘2y’ and can be cancelled from
top and bottom.

(iv)
3x

2x
= 3x

2x
= 3

2
‘x’ is a factor of both ‘3x’ and

‘2x’ and can be cancelled from
top and bottom.

(v)
x(4 + p)

2x
= x (4 + p)

2x
= (4 + p)

2
Note that ‘4’ is not a factor of the

top and cannot be cancelled
with the ‘2’ below.

(vi)
(4x + p)

2x
cannot be simplified The ‘x’ cannot be cancelled

because it is not a factor of the
numerator (top).

(vii)
3(x + p)

x(x + p)
= 3(x + p)

x(x + p)
= 3

x
The bracket (x + p) can be

cancelled top and bottom – it is
a factor of both.
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Q3.10
Simplify the following equations by cancelling where possible:

(i) x = 4a

2b
(iii) x = y(4a + 1)

2by

(ii) x = 4ap

2pb
(iv) x = 2y(2a + 3)

4by

3.1.9 Dividing and multiplying fractions
In the same way that numbers or variables can be multiplied in any order, e.g.

a × b × c = b × c × a = c × a × b etc.,

the division of numbers or variables can also be performed in any order. In the following
example a fraction is divided by a further variable:

a
b

c
=

a
c

b
= a

b × c
etc.

For example, if a = 12, b = 3 and c = 4:

a
b

c
=

12
3

4
= 4

4
= 1 and

a
c

b
=

12
4

3
= 3

3
= 1 and

a

b × c
= 12

3 × 4
= 12

12
= 1

However, it is also useful to remember that dividing by a fraction is the same as multiplying
by the reciprocal of that fraction:

c
a
b

= c × b

a
and

1
1
b

= 1 × b

1
= b

1
= b

For example, if a = 12, b = 3 and c = 4:

4
12
3

= 4 × 3

12
= 4 × 3

12
= 12

12
= 1 and

4
12
3

= 4

4
= 1
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Q3.11
Decide whether the answer is Yes or No for each of the following questions,
whatever the values of x, y, a and b. None of x, y, a and b are zero.

(i) Does
x × a

a × y
equal

x

y
? (iv) Does

x/a

y
equal

x

y × a
?

(ii) Does
2x

2y
equal

x

y
? (v) Does

x

y
equal

1

y/x
?

(iii) Does
x + 2

y + 2
equal

x

y
? (vi) Does

x/a

y/b
equal

bx

ay
?

3.2 Rearranging Simple Equations
3.2.1 Rearranging the whole equation
A mathematical equation is balanced. The value on the LHS equals the value on the RHS.

For example, in the straight line equation:

y = mx + c

the value of y is equal to the combined value of m times x then added to c.
In science, we often need to rearrange an equation.
For example, we may wish to make x the subject of the equation (i.e. on its own on the

LHS of the equation), and a rearrangement will give:

x = y − c

m

In this unit we introduce five basic rules for performing simple rearrangement of equations.

Rule 1

An equation will continue to be balanced if the same mathematical operation is applied
to both sides.

In Examples 3.13 to 3.23, we compare the rearrangement of algebraic equations with
equations of equivalent arithmetical values, using the values:

a=2 b=8 c=1
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We start with examples of addition and division on both sides of equations. You should note
that the equations continue to balance, i.e . both sides remain equal.

Example 3.13

Treating both sides of the equation equally:

a = 2c 2 = 2 × 1

Adding b to both sides : Adding 8 to both sides :

a + b = 2c + b 2 + 8 = 2 × 1 + 8

Note that, in Example 3.13, the rearrangement of arithmetic values on the right of the page
has maintained a balanced (true) equation. This is then also true for the rearrangement of
the algebraic symbols on the left of the page. The same equivalence is also true for the
following examples.

Example 3.14

Treating both sides of the equation equally:

b = a + 6c 8 = 2 + 6 × 1

Dividing both sides by 2: Dividing both sides by 2:

b

2
= a + 6c

2

8

2
= 2 + 6 × 1

2
b

2
= a

2
+ 3c 4 = 1 + 3 × 1

Q3.12
Starting with 8k = 16 − 2x

add ‘2x’ to both sides of the original equation, then

subtract ‘8k’ from both sides of the equation, then

divide both sides of the equation by 2.

Do you end up with x = 8 − 4k?
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Q3.13

Starting with
x

4
+ 2y = 3

subtract ‘2y’ from both sides of the original equation, then multiply both sides of
the equation by 4.

Do you end up with x = 12 − 8y?

We could use Rule 1 to explain and justify almost any rearrangement that we could perform.
However, it is useful to identify four other simple rules for the more common techniques used
to rearrange equations.

Rule 2

We can ‘swap’ the sides (LHS and RHS) of an equation.

Example 3.15

Swapping sides:

b − 3a = 2c 8 − 3 × 2 = 2 × 1

Swapping from side to side:

2c = b − 3a 2 × 1 = 8 − 3 × 2

Rule 3

We can change the signs of every term in the equation.

This is the same as multiplying every term by ‘−1’.
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Example 3.16

Changing the signs of every term:

−4c = 2a − b −4 × 1 = 2 × 2 − 8 ⇒ −4

Changing the sign of every term:

4c = −2a + b 4 × 1 = −2 × 2 + 8 ⇒ 4

Where there is a bracket, we only change the sign in front of the bracket, but do not change
any signs within the bracket.

Example 3.17

Treat a bracket as a single entity:

b = 2(a + 3c) − 2 8 = 2(2 + 3 × 1) − 2 ⇒ 8

Changing the sign of every term (but not inside the bracket):

−b = −2(a + 3c) + 2 −8 = −2(2 + 3 × 1) + 2 ⇒ −8

(Note that if a negative value multiplies out a bracket, then this will change the sign of each
term inside the bracket.)

Q3.14
Change the signs on both sides of the equations to make the LHS = ‘ + x’:

(i) −x = 4 − 2p

(ii) −x = 3(2 − µ) − 4p

(iii) −x = 8 − (q − t)

3.2.2 Moving ‘plus’ and ‘minus’ terms
We can move ‘plus’ or ‘minus’ terms from one side of the equation to the other, by simply
subtracting or adding (respectively) the same value to both sides of the equation:
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Starting with the balanced equations:

b − a = 6c 8 − 2 = 6 × 1

To move −a(= −2) we can add a(= 2) to both sides of the equations:

b − a + a = 6c + a 8 − 2 + 2 = 6 × 1 + 2

and the −a + a on the LHS cancels out to give:

b = 6c + a 8 = 6 × 1 + 2

In the above equations, the ‘minus’ a(= −2) on the LHS of the equation has the same effect
as ‘plus’ a(= +2) on the RHS.

Rule 4

We can move an addition or subtraction term from one side of the equation to the
other side, but we must change the sign in front of the term.

Example 3.18

Moving a ‘plus’ or ‘minus’ term:

3a = b − 2c 3 × 2 = 8 − 2 × 1

Move the ‘minus’ term from the RHS to the LHS:

3a + 2c = b 3 × 2 + 2 × 1 = 8

When a term in brackets is moved as a unit from one side of an equation to the other, the
sign in front of the bracket is changed, but any sign inside the bracket does not change.

Example 3.19

Moving a term in brackets:

2(b − a) + 3c = 15 2(8 − 2) + 3 × 1 = 15
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Move the bracket term from the LHS to the RHS:

3c = 15 − 2(b − a) 3 × 1 = 15 − 2(8 − 2)

= 15 − 2 × 6

Q3.15
‘Move’ terms to get ‘+x’ on its own on the LHS:

(i) 18 = p − x

(ii) 3(q − p) = 10 − x

(iii) 9 = x − p

(iv) (2v − t) = 8 + x − k

3.2.3 Moving ‘multiply’ and ‘divide’ terms
We can move ‘multiply’ or ‘divide’ factors from one side of the equation to the other, by
simply dividing or multiplying (respectively) both sides of the equation by the same value:

Starting with the balanced equations:

4a = b 4 × 2 = 8

We can divide both sides by 4:

4a

4
= b

4

4 × 2

4
= 8

4

Cancelling the ‘4’ on the LHS gives:

a = b

4
2 = 8

4
⇒ 2

In the above equations, the ‘multiply by 4’ on the LHS of the balance has the same effect as
the ‘divide by 4’ on the RHS.

Rule 5

We can take a factor that multiplies the whole of one side of the equation to become
the same factor dividing the whole of the other side of the equation.
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Similarly we can take a factor that divides the whole of one side of the equation
to become the same factor multiplying the whole of the other side of the
equation.

Example 3.20

Moving a ‘multiply’ term:

5a = b + 2c 5 × 2 = 8 + 2 × 1

We can replace the ‘5×’ on the LHS with ‘/5’ on the RHS (note that we must divide all
of the RHS by 5):

a = b + 2c

5
2 = 8 + 2 × 1

5
⇒ 8 + 2

5
⇒ 10

5
⇒ 2

Example 3.21

Moving a ‘divide’ term:

b

4
+ 3c = 5

8

4
+ 3 × 1 = 2 + 3 ⇒ 5

In this case the ‘4’ does not divide all of the LHS. We can first ‘move’ the ‘3c’ (3 × 1)
to the RHS so that the ‘4’ divides everything on the LHS:

b

4
= 5 − 3c

8

4
= 5 − 3 × 1 ⇒ 5 − 3

Replace the ‘/4’ on the LHS with ‘4×’ on the RHS:

b = 4(5 − 3c) 8 = 4(5 − 3)

⇒ 20 − 12c ⇒ 20 − 12

A term in brackets can also move across the equation as a multiplying or dividing term.
Any sign inside the brackets does not change.
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Example 3.22

Moving a divisor in brackets:

b

(6c − a)
= 2

8

(6 × 1 − 2)
= 2

Replace the ‘/()’ on the LHS with ‘×()’ on the RHS:

b = 2(6c − a) 8 = 2(6 × 1 − 2)

⇒ 12c − 2a ⇒ 12 − 4

Q3.16
Multiply or divide by factors to get ‘x’ on its own on the LHS:

(i) 2x = 60 + 20p

(ii)
x

4
= 5 − 2q

(iii) x(s − m) = k

(iv)
x

(2p − q)
= 8

3.2.4 Solving an equation for an unknown value
We often need to rearrange an equation to find the value of an unknown term.

The unknown value is often denoted by ‘x’.
For example, we may need to find the value, ‘x’, which satisfies the following equation:

x + 50 = 60

Simple inspection of the equation will tell us that the value of ‘x’ must be 10.
However, we can also use a formal rearrangement of the equation, by moving the +50 from

the LHS to become −50 on the RHS:

x = 60 − 50 = 10

The final equation giving x = 10 is the solution to the problem.
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When we get the unknown (often written as ‘x’) on its own on the LHS, it is said that the
unknown has become the subject of the equation.

In some situations, it is necessary to complete the rearrangement by using two or more
steps.

Example 3.23

Rearrange the following equations to make ‘x’ the subject of each equation, and then
solve for the value of ‘x’ by substituting for the values of a = 2, b = 8, c = 1.

Solve for x: x + 2a = b + 3c

Move the ‘2a’ term (Rule 4): x = b + 3c − 2a

Substitute values: x = 8 + 3 × 1 − 2 × 2 ⇒ 7

Solve for x: 3a − x = c

Move the ‘3a’ term (Rule 4): − x = c − 3a

Change all signs (Rule 3): x = −c + 3a

Substitute values: x = −1 + 3 × 2 ⇒ 5

Q3.17
Rearrange the following equations to make ‘x’ the subject, and solve for ‘x’, by
substituting with a = 2, b = 8, c = 1 where appropriate:

(i) x + 4 = 5 (iv) 3 − a = 4 − x

(ii) 6 + x = 4 (v) a + x − 3 = 4

(iii) a + x = 6 (vi) 25 − b − c = 30 − x

Q3.18
Rearrange the following equations to make ‘x’ the subject on the LHS:

(i) p − x = 6 (iii) 3 − x = 0

(ii) 3 − k = x − 4 (iv) 3p − 4 = 4 + x + 2p

We know that (Rule 5) multiplication or division factors can be ‘moved’ by dividing or
multiplying (respectively) the opposite side of the equation.
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Example 3.24

Make ‘x’ the subject of the equation: 3x = 6 + p

Group the RHS into a bracket first, then
divide the RHS by 3 (Rule 5):

x = (6 + p)

3
⇒ 2 + p

3

Example 3.25

Make ‘x’ the subject of the equation:
x

2
= 3 + p

Multiply the whole of the RHS by 2 (Rule 5): x = (3 + p) × 2 ⇒ 2(3 + p)

⇒ 6 + 2p

We can use the same principle when we need to ‘move’ the unknown from the denominator
of a fraction.

Example 3.26

Make ‘x’ the subject of the equation: 3p = (4q + 3)

x

Multiply the LHS by x (Rule 5): 3px = (4q + 3)

1

Divide the RHS by 3p (Rule 5): x = (4q + 3)

3p

It is possible to divide (or multiply) both sides of the equation by a term in brackets.

Example 3.27

Make ‘x’ the subject of the equation: (3 + p)x = 6 + p

Group the RHS into a bracket first, then

divide the RHS by the term (3 + p) (Rule 5): x = (6 + p)

(3 + p)
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Q3.19
Rearrange the following equations to make ‘x’ the subject:

(i) 5x = k − 6 (v)
x

3 − p
= 5

(ii) mx + c = y (vi)
(2 − p)x

3 − p
= 2

(iii)
x

3
+ 4 = p (vii) 8 = p + q

x

(iv) (2 − p)x = p + 4 (viii) (p − 4) = 5

x

3.3 Symbols
3.3.1 Variables and constants
In science, it is common to use italic characters from both the English and Greek alphabets
(see Website) to represent variables and constants in algebraic expressions.

Example 3.28

The concentration, C(mol L−1), of a solution is often calculated by measuring the amount
of light absorbed when passing through the solution. The relationship is given by Beer’s
law:

A = εbC

• A is the absorbance (5.1.9) which depends on the fraction of light absorbed;
• b (cm) is the path length through the cell holding the solution; and
• ε (epsilon) is the molar absorptivity , which is a measure of the absorbance, A, for a

solute concentration of 1.0 mol L−1 and a path length of 1.0 cm.

In this case A and C are both variables,

b is a constant for a given measurement cell, and

ε is a constant for the specific material (solute) being measured.

Some characters are generally reserved for specific universal constant values. For example,
π (pi) = 3.141 . . ., and Euler’s number, e = 2.718 . . ., represent important fundamental con-
stants.

The symbol ∞ is used to represent ‘infinity’, an infinitely large number.
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Q3.20
A student conducts an experiment to demonstrate Charles’s law, which states that,
for a given amount of an ideal gas at fixed pressure, the volume is proportional to
the absolute temperature.

The relationship between p (pressure), V (volume) and T (absolute temperature)
for an ideal gas is given by the equation:

V = nRT

p

where n is the number of moles of gas and R is the gas constant.

For each character in the above equation, identify whether it represents a variable,
a constant or a fundamental constant, in this particular experiment.

3.3.2 Subscripts and superscripts
The superscript following the variable is reserved for the power to which that variable must
be raised. For example, ‘a’ to the power of 3 (i.e. cubed) would be written as:

a3 = a × a × a

A subscript following a variable is often used to identify a specific value for that variable.
For example, the following equation can be used to describe the motion of a car at a constant
velocity, v:

xt = x0 + vt

where x is the position of the car and t is the variable time:

• The variable, xt , represents the position of the car at time, t ; and
• x0 represents the position of the car at the specific time when t = 0 (for a given problem x0

is a constant).

In both cases, x represents the position of the car, but the subscript is used to further define
the position at a specific time.

Similarly, in the following equation (see [5.24]) that describes the exponential growth of a
population:
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Nt = N0ekt

• Nt is a variable that describes the population at the time t .
• N0 is the specific population at the time t = 0. N0 is a constant for a particular problem.
• e is the fundamental exponential (Euler’s) constant (= 2.718 . . .), which is raised to the

power of k × t .
• k is a constant value for a particular problem which defines the rate of growth of the

population (or decay if k is negative).

Subscripts can also be used to identify repeated (replicate) measurements of the same variable
(e.g. 7.2.3). For example, we may use h to denote the heights of eight similar seedlings in
an experiment, and it would be useful to identify each specific seedling by using a subscript
after the variable. This will give us eight separate values, while still using the same variable
letter, h:

h1, h2, h3, h4, h5, h6, h7, h8

Specific functions use subscripts to identify specific values to be used in the calculation of the
function. For example, the combination function nCr may be given values 6C3, which would
specifically calculate the number of ways of selecting three items from a pool of six possible
items (7.5.4).

Similarly, the t-value, tT ,α,df , can be read from statistical tables, for specific values of T

tails, α significance and df degrees of freedom (10.1.3).
Superscripts and subscripts are also used for example in A

ZX, to describe the mass number,
A, and atomic number, Z, of a specific isotope of an element, X. For example, 37

17Cl describes
the chlorine isotope of mass number 37 and 35

17Cl describes the chlorine isotope of mass number
35. However, the subscript (e.g. 17 for Cl) is often omitted as each particular element has its
own unique value for Z, and its omission creates no ambiguity. So we often just write 37Cl
and 35Cl.

3.3.3 Annotations
Additional markings can be used to further define specific variables. Some examples include
the following:

• A value followed by an exclamation mark, ‘!’, gives the factorial (7.5.2) of that value, e.g.
6! = 6 × 5 × 4 × 3 × 2 × 1.

• Vertical bars on either side of a number will result in only the positive value of the number,
e.g. | − 6| = +6 and |+6| = +6. This is called the modulus of the value.

• Square brackets are often used in chemistry to denote the ‘concentration’ (5.1.9) of the
species identified inside the brackets, e.g. [H+] would represent the concentration of H+
ions in a solution.
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• A bar over the variable often denotes the average (7.2.4) of a sample of the val-
ues. For example, h (pronounced ‘h-bar’) may give the average of the eight values
h1, h2, h3, h4, h5, h6, h7, h8.

• In statistics, it is common practice to use Greek symbols for variables that represent
measurements on a whole population (7.2.2). For example, µ (pronounced ‘mu’) may
be used to represent the mean (or average) height of all boys aged 17 in the UK, but
x (pronounced ‘x-bar’) may represent the mean of a sample of boys taken from that
population.

• In the special case of a logical variable, the bar over the top (7.4.5) represents the opposite
logical value, e.g. Yes ⇒ NOT Yes ⇒ No.

3.3.4 Comparisons
Specific symbols are used to compare the magnitude of variables:

Symbol Comparison

x = y Value of x is equal to the value of y

x ≈ y Value of x is very close to the value of y

x ∼ y Value of x is similar to the value of y

x ∝ y Value of x is proportional to the value of y

x >y Value of x is greater than the value of y,∗
e.g. 13 > 8 and −8 >−13

x <y Value of x is less than the value of y,∗
e.g. 10 < 20 and −20 <−10

x  y Value of x is much greater than the value of y∗
(typically more than 10 times greater than y)

x � y Value of x is much less than the value of y∗
(typically less than one-tenth of y)

x � y Value of x is greater than, or equal to, the value of y∗

x � y Value of x is less than, or equal to, the value of y∗

∗Note that for negative numbers ‘greater than’ actually means ‘more positive than’ and vice versa for
‘less than’.

3.3.5 Functions
Some symbols are effectively instructions which describe a specific operation or function to
be performed on the variables given.

The data used by the function ‘x’ in log(x), for example, is called the argument of the
function. The symbols do not appear on their own without their argument.
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Symbol Purpose of the operation

�x or δx Difference between two values of x, e.g. �x = x2 − x1

� and δ are pronounced ‘delta’ (� is ‘capital’ delta)
(6.1.2)∑
Sum of a defined range of values, e.g.∑4

1 hi = h1 + h2 + h3 + h4∑
is pronounced ‘sigma’ (
 is ‘capital’ sigma) (7.2.3)

√
x Square root of x

3
√

x Cube root of x. Other roots use different numeric values

±x Positive value and/or negative value

sin(x), cos(x), tan(x) Trigonometric functions (2.4.4)

log(x) Logarithm to base 10 (5.1.5)

ln(x) Logarithm to base e, ‘natural logarithm’ (5.1.5)

exp(x) Alternative way of writing ex (5.1.4)

Example 3.29

Illustrating the use of various symbols

In making four repeated measurements of the pH of a solution, a student records the
values 8.5, 8.6, 8.3, 8.6, and then wishes to calculate the average (or mean) value.

If we use x to represent a replicate experimental result, we could write:

x1 = 8.5, x2 = 8.6, x3 = 8.3, x4 = 8.6

To calculate the mean value, we add up all of the xi values from x1 to x4:

Sum =
4∑
1

xi = x1 + x2 + x3 + x4 = 8.5 + 8.6 + 8.3 + 8.6 = 34.0

We then divide by the number of values, n = 4, for the mean value:

x = 34/4 = 8.5

We could write this overall process as the equation:

x =
∑n

1 xi

n
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Q3.21
Explain carefully what is meant by all the symbols, annotations, etc., in the fol-
lowing equations:

(i) pH = − log([H+]) (see 5.1.9)

(ii) At = A0 exp(−0.693t/T1/2) (see 5.2.4)

(iii) χ2 =
∑

i

(Oi − Ei)
2

Ei

(see 14.1.2)

3.4 Further Equations
3.4.1 Introduction
We introduced the basic rules for rearranging simple equations in 3.2:

Rule 1: Both sides of an equation must be treated equally .
Rule 2: The two sides of an equation can be swapped.
Rule 3: The signs for every term in an equation can be reversed (+/−).
Rule 4: A term can be moved from one side to the other, provided that its sign is reversed.
Rule 5: A multiplier/divisor factor of one side can become a divisor/multiplier factor of the

other .

We now derive Rule 6 for inverse operations, together with some additional techniques and
strategies.

3.4.2 Inverse operations
Sometimes we want to ‘undo’ an operation and take a step backwards by using an inverse
process. Some simple examples will illustrate the process.

If we are required to ‘solve’ the equation:

x = 52

we know that the ‘square’ of 5 is 25 (5 raised to the power of 2), hence we can write the
solution directly:

x = 25
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The inverse process to the ‘square’ is the ‘square root’. Taking the square root of a squared
number takes the value back to the original number! Thus:

√
x2 = x

The following example illustrates the ‘inverse’ problem.

Example 3.30

Solve the following equation for ‘x’:

x2 = 9

We must ‘undo’ the squaring process, and work ‘backwards’ to find a number which,
when squared, gives 9.

Using Rule 1 of rearranging equations, we take the square root of both sides to get:

√
x2 =

√
9

We know that
√

x2 = x, and finding
√

9 from a calculator (= 3), we would rewrite the
above equation to give:

x = 3

In fact, the square root of 9 could be either +3 or −3, and we should write the solution:

x = ±3

We cannot tell from the mathematics which solution (+ or −) is correct, but looking back
at the science of the problem will tell us whether both solutions are possible, or whether just
one is correct (see Examples 3.43 and 3.44).

In the above example, the square operation on the LHS can be ‘undone’, and the same effect
achieved, by the inverse operation of taking the square root of the RHS.

Example 3.31

If x2 = 22, calculate the value of ‘x’.

As the ‘square root’ is the inverse process for ‘square’, we take the square root of both
sides of the equation:

√
x2 =

√
22
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Using a calculator to evaluate
√

22 = 4.69, we can then write the solution:

x = ±4.69

We can also use the inverse operation approach to ‘undo’ an equation involving the reciprocal
of (‘one over’) the unknown value.

To ‘undo’ a reciprocal, 1/x, the inverse operation is to take the reciprocal again ‘to get
back’ to ‘x’ (see 3.1.9):

1
1
x

= x

Example 3.32

Solve the following equation for x:

1

x
= 4

We take the reciprocal of both sides:

1
1
x

= 1

4

The LHS just equals x, which then gives:

x = 1

4

In the above example, the reciprocal operation on the LHS can be ‘undone’, and the same
effect achieved, by the inverse operation of taking the reciprocal of the RHS.

Rule 6

The effect of an operation on (the whole of) one side of the equation can be ‘undone’,
and its effect replaced, by applying the inverse operation to (the whole of) the other side
of the equation.
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Note that the inverse operation must be applied to the whole of the other side. If
necessary the other side should be enclosed within brackets before applying the inverse
operation.

Performing an operation on a value, x, followed by its inverse operation will return to the
original value, x. This is illustrated by the equations in the central column of Table 3.1.

Table 3.1. Inverse operations.

Operation Inverse operations

Reciprocal of x = 5 Reciprocal
1

x
= 0.2 x = 1

1
x

= 1

0.2
⇒ 5.0

Square of x = 6 Square root
x2 = 36 x =

√
x2 = √

36 ⇒ ±6

Square root of x = 16 Square√
x = 4 x = (

√
x)2 = 42 ⇒ 16

Inverse trigonometric functions:

Starting with x = 30◦

sin(x) = 0.500 x = sin−1(0.500) = 30◦
cos(x) = 0.866 x = cos−1(0.866) = 30◦
tan(x) = 0.577 x = tan−1(0.577) = 30◦

Inverse of logarithmic and exponential functions (see 5.1.5):

Starting with x = 3.6

ln(x) = 1.281 x = e1.281 = 3.6
ex = 36.60 x = ln(36.60) = 3.6
log(x) = 0.5563 x = 100.5563 = 3.6
10x = 3981 x = log(3981) = 3.6

Q3.22
Solve the following equations, finding the value of x that will make each equation
true:

(i) x2 = 25 (v) ex = 26.2

(ii) x2 = 0.025 (vi) sin(x) = 0.34 (give x in degrees)

(iii)
√

x = 9 (vii) 10x = 569

(iv) log(x) = 1.3 (viii) 10x = 0.01
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3.4.3 Opening up expressions
In rearranging an equation, a given variable may often be ‘buried’ within several layers of
mathematical operations.

We demonstrate how it is possible to remove, step by step, the layers of mathematical
operations to expose the subject of the equation.

Each step in the process must follow Rule 1 – each side of the equation must be treated
equally to keep the equation in ‘balance’.

In Example 3.33, we start by making ‘x’ the subject of a simple equation.

Example 3.33

Make ‘x’ the subject of the following equation:

3x + 4 = 19

The ‘x’ is buried under two layers of operation. The first layer is the ‘+4’ and the second
layer the ‘×3’.

We remove the first layer by ‘moving’ the ‘4’ to the RHS (using Rule 4):

3x = 19 − 4 ⇒ 15

We then remove the next layer by ‘moving’ the ‘×3’ by dividing the RHS by 3 (using
Rule 5):

x = 15

3
⇒ 5

Q3.23
Rearrange the following equations, making ‘x’ the subject:

(i) 2x − 8 = 22 (iii) k = 5 − px

(ii) 3(2 − x) = 12 (iv) q(2 − x) = v

The next example demonstrates the use of the ‘inverse’ operation when removing layers.

Example 3.34

Make ‘x’ the subject of: √
(8 + x2) = k
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The first layer on the LHS is the square root. The effect of the square root on the LHS
can be replaced by the inverse operation of squaring both sides of the equation (see
Table 3.1):

8 + x2 = k2

We now move the ‘8’ to the RHS:

x2 = k2 − 8

The effect of the square on the LHS can now be replaced by the inverse operation of
taking the square root of both sides (see Table 3.1):

x =
√

(k2 − 8)

Q3.24
Rearrange the following equations, making ‘x’ the subject:

(i) x2 + t = 25 (v) y = e2x

(ii) (x + t)2 = 25 (vi) y = √
2x

(iii) 0.6k = sin(2x) (vii) y = 3 × √
(2x − 7)

(iv) y = a − 4

x
(viii) y =

√(
2

x
+ k

)

Q3.25
Solve the following equations, finding the value of ‘x’ that will make each equation
true:

(i) log(x + 200) = 2.6 (iv) e3x = 0.87

(ii) log(2x) + 0.3 = 2.5 (v) log(2x + 1.2) = 0.45

(iii) ex = 26 (vi) 10x+2 = 246

Example 3.35 now demonstrates how this process can be expanded so that the complex
exponential equation:

Nt = N0e−k(t−t0)
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can be rearranged to make ‘t’ the subject:

t = t0 − 1

k
× ln

(
Nt

N0

)

Example 3.35

Make ‘t’ the subject of the equation:

Nt = N0e−k(t−t0)

First, swap the equation round (Rule 2) to get the term containing ‘t’ on the LHS:

N0e−k(t−t0) = Nt

In this example ‘t’ is buried within several layers of mathematical operations.

In the first layer we need to move the multiplier, N0, to the RHS, where it will become
a divisor (see Rule 5):

e−k(t−t0) = Nt

N0

To remove the next layer, we need to ‘undo’ the operation of using the exponential, ‘e’.
The inverse operation of ‘e’ is the natural logarithm, ‘ln’ (see Table 3.1):

−k(t − t0) = ln

(
Nt

N0

)

We must now change signs on both sides of the equation to make the LHS positive
(Rule 3):

k(t − t0) = − ln

(
Nt

N0

)

We now use Rule 5 again to move the multiplier, k, to the RHS as a divisor:

t − t0 = −1

k
ln

(
Nt

N0

)

Finally, we use Rule 4 to move the ‘−t0’ to the RHS to become ‘+t0’:

t = t0 − 1

k
ln

(
Nt

N0

)
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Q3.26

(i) Make x the subject of the electrostatic force equation:

F = q1q2

4πε0x2

(ii) Make θr the subject of the refraction equation:

n = sin(θi)

sin(θr )

(iii) Make ared the subject of the Nernst equation:

E = E0 − RT

zF
ln

(
ared

aox

)

(iv) Make γ the subject of the adiabatic change equation:

pV γ = K

3.4.4 Grouping the unknown variable
If there is more than one term involving x, then it is necessary to collect all the x terms on
one side of the equation.

Example 3.36

Make ‘x’ the subject of the equation: 6 − 4p − 2x = 1 + 2a − 3x

Move ‘6’ and ‘−4p’ from LHS to RHS: −2x = 1 + 2a − 3x − 6 + 4p

Move ‘−3x’ from RHS to LHS: −2x + 3x = 1 + 2a − 6 + 4p

Simplify the LHS: −2x + 3x = x

Giving: x = −5 + 2a + 4p ⇒ 2a + 4p − 5

Q3.27
Rearrange the following equations to make ‘x’ the subject:

(i) 2x + 4 = x − 2 (iv) x = 2(p − x)

(ii) 3 − a + x = 6 − 2x (v) x(2 − a) = a(3 − x)

(iii) x − 3 − 2p = 5 + p − 3x (vi) 2(x − 1) = 3(3 − x)
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It is often necessary to group terms together using brackets.

Example 3.37

Using brackets to group x terms in the expression 3x + px − 2x − qx + x, we have
3x ′s + px ′s + (−2)x ′s + (−q)x ′s + one x, giving:

3x + px − 2x − qx + x = (3 + p − 2 − q + 1)x ⇒ (2 + p − q)x

Similarly:

3x + ax = (3 + a)x

3x − bx + x = (3 − b + 1)x = (4 − b)x

3x − ax − 2x = (1 − a)x

Q3.28
Simplify each of the following expressions, by collecting the x terms together. In
each expression, find the value, or expression, to write in place of the question
mark, ‘?’.

For example, if: 2x + px = (?) × x

we would write ? = 2 + p so that 2x + px = (2 + p) × x.

(i) 5x − 2x = (?) × x (iv) 5x − px − 2x = (?) × x

(ii) 3px + 2px = (?) × x (v) 5x − px − 7x = (?) × x

(iii) mx − 3x = (?) × x (vi) 3x + px − 4x + 2kx = (?) × x

Example 3.38

Make ‘x’ the subject of the equation: x + 4 = a − px

Collect all x terms on the LHS: x + px = a − 4

Group the x’s (see Example 3.37): (1 + p)x = a − 4

Use Rule 5 to move (1 + p) to the RHS: x = a − 4

(1 + p)

It is important, when rearranging equations, to separate x terms from non-x terms, and to
do this it is often necessary to first expand (or open up) brackets which contain both types
of terms.
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Example 3.39

Make ‘x’ the subject of the equation: 3(3 + x) = 2(x + 4)

Multiply out both brackets: 9 + 3x = 2x + 8

Collect all x terms on the LHS: 3x − 2x = 8 − 9

Giving: x = −1

Q3.29
Simplify each of the following expressions, by collecting the x terms together. It
will be necessary to multiply out the brackets first before simplifying the whole
expression.

(i) 3(2 + x) − 2x + 4 (iv) a(b − 2x) + b(2x − a)

(ii) 3(2 + x) + 2(3x + 1) (v) x(2 + a) − 3(a − x)

(iii) 2(3 − 3x) − 4(1 − 4x) (vi) 2(a − 4) − 4(a − 2 − x) + 2a − 3x

Q3.30
Rearrange the following equations to make ‘x’ the subject:

(i) 2 + x = 5 − x (vi) 4 − qx + p = 2x − px + 9

(ii) 2x − a = b + 4x (vii) x(1 − 2a) = 4a(x − 3)

(iii) x = 3(2 − x) (viii) (2 − x)p = 6

(iv) 3x + 3 = px + 8 (ix) (2 − x)p = 6 − x

(v) 3x + 3 = px + 8 − p

3.4.5 Removing fractions
A fractional term in an equation can be ‘cleared’ by multiplying both sides of the equation by
the denominator of the fraction.

Note that, provided a term (including a term in brackets) is a factor of both the top and
bottom of a fraction, it can be cancelled from the fraction (3.1.8).

Example 3.40

Make ‘x’ the subject of the equation: 6 = 2x

x − 1
+ p

2
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We must first remove the (x − 1) term from the denominator of the first fraction:

Multiply every term on both sides of
the equation by (x − 1):

6 × (x − 1) = 2x × (x − 1)

(x − 1)
+ p × (x − 1)

2

Cancelling the (x − 1) term where
possible:

6 × (x − 1) = 2x + p × (x − 1)

2

Multiply every term on both sides of
the equation by ‘2’:

12(x − 1) = 4x + p(x − 1)

Multiply out brackets: 12x − 12 = 4x + px − p

Collect x terms on LHS: 12x − 4x − px = 12 − p

Group the x terms with a bracket: (8 − p)x = 12 − p

Move (8 − p) to the RHS using
Rule 5:

x = (12 − p)

(8 − p)

Q3.31
Rearrange the following equations to make ‘x’ the subject:

(i) 2 = 4

x
(v)

1

(x + 1)
+ 1

a
= 3

(ii) 2 = 4 − a

x
(vi)

x

x + 1
+ 1

a
= 3

(iii) 2 = 4

x
− a (vii)

3

x + 1
= 4a

x − 2

(iv)
1

x
+ 1

a
= 3 (viii)

x + 1

x − 1
= y

3.5 Quadratic and Simultaneous Equations
3.5.1 Introduction
Quadratic and simultaneous equations are two further groups of equations in which we are
trying to find the value of unknown variables.

3.5.2 Quadratic equations
A common form of equation where a power is involved is a ‘quadratic equation’. The term
quadratic means that the highest ‘power’ in the equation is 2.
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For example:

2p2 − p − 6 = 0 is a quadratic equation in p.

In general, there will be two possible values of p that will make a quadratic equation true,
each of which will be a possible solution .

Example 3.41

Check, by substituting values, that both p = 2 and p = −1.5 will make the equation
2p2 − p − 6 = 0 true, i.e. 2p2 − p − 6 will equal zero.

Putting p = 2: 2 × 22 − 2 − 6 = 8 − 2 − 6 ⇒ 0 True

Putting p = −1.5: 2 × (−1.5)2 − (−1.5) − 6 = 2 × 2.25 + 1.5 − 6

⇒ 4.5 + 1.5 − 6 ⇒ 0 True

The general method for finding the solutions starts by rearranging the quadratic equation
into a standard form:

ax2 + bx + c = 0 [3.4]

where a, b and c are constants in the equation, and x is the unknown variable.
With the equation in the above form, the solutions can be found by substituting the values

of a, b and c into the formula:

x = −b ± √
b2 − 4ac

2a
[3.5]

The ± sign in the numerator of the equation tells us to take two solutions , one with the ‘+’
sign and one with the ‘−’ sign.

It is a straightforward process to use the above formula to solve any quadratic equation:

1. Rearrange the equation into the form ax2 + bx + c = 0.
2. Work out the values in the equation equivalent to a, b and c.
3. Substitute a, b and c into the formula for the solutions.
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Example 3.42

Solve the equation: 2.4x2 = 3.2x + 6.6

Rearrange as in [3.4]: 2.4x2 − 3.2x − 6.6 = 0

Compare directly with [3.4]: ax2 + bx + c = 0

giving the equivalences: a = 2.4, b = −3.2, c = −6.6

Substitute these values in [3.5]: x = −(−3.2) ±
√

(−3.2)2 − 4 × 2.4 × (−6.6)

2 × 2.4

x = +3.2 ± √
10.24 + 63.36

4.8
⇒ +3.2 ± √

73.6

4.8
⇒ +3.2 ± 8.58

4.8
giving two solutions for x: x = 2.45 or x = −1.12

Q3.32
Solve the following equations:

(i) 2x2 − 3x + 1 = 0 (iii) 4x = 5 − 2x2

(ii) 3.2x2 − 2.5x − 0.8 = 0 (iv) (x − 2)2 = 2x

When the quadratic equation represents a scientific relationship, then the correct solution in
the scientific context may be just one, or both, of the possible mathematical solutions. It is
necessary to use other information about the scientific problem to decide which solution (or
both) is correct.

Example 3.43

A cricket ball is hit directly upwards with an initial velocity of 16.0 m s−1. The equation
for the time, t (seconds), at which it passes a height of 5.0 m is given by:

5.0 = 16.0t − 4.9t2

Solving the quadratic equation gives two values , t = 0.35 and 2.92 s.

In the scientific context , the two values are the times (in seconds) at which the ball passes
the height 5.0 m, first going up and then coming down!
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Example 3.44

The refractive index, n, of a piece of glass is given by solving the equation
n(n − 1) = 0.75. Find the value of n.

Expanding the equation gives n2 − n = 0.75 or n2 − n − 0.75 = 0.

This quadratic equation can be solved giving n = 1.5 or n = −0.5.

However, the refractive index of a material is always positive, so in this case n = 1.5 is
the only solution.

In some equations, the value of b2 − 4ac, inside the square root, may be a negative value.
It is not normally possible to take the square root of a negative number. Hence:

If b2 < 4ac the equation has no real solutions [3.6]

Using complex numbers it is possible to derive a ‘square root’ from a negative number, but
these techniques are beyond the mathematical scope of this book.

When the value of b2 − 4ac is zero, the square root term also becomes zero:

If b2 = 4ac, both solutions to the equation have the same value [3.7]

Q3.33
Solve the following equations:

(i) x2 − 4x + 4 = 0 (iii) 2x2 − 3x + 4 = 0

(ii) x2 + 0.5x − 1.5 = 0 (iv) 4x2 + 12x + 9 = 0

3.5.3 Simultaneous equations
The simplest example of a simultaneous equations problem has:

• two equations, which contain
• the same two variables, e.g. x and y, and
• with the requirement that the two equations must both be true (simultaneously) for the same

values for x and y.
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For example, we may have:

3x + 2y = 7, and

4x + y = 6

Both of the above equations are true (simultaneously) if x = 1 and y = 2. Check by substituting
the values into the equations and finding that they both ‘balance’:

3 × 1 + 2 × 2 = 7 True

4 × 1 + 2 = 6 True

The solution for this pair of simultaneous equations is x = 1 and y = 2.
If the equations have three variables, e.g. x, y and z, then we will need three equations

to find a solution. In general, if we have n different variables then we will need n different
equations to find solutions for all n variables.

There are several different ways of finding the solution such that all the equations become
true simultaneously. Analytical methods will give an exact solution, but may be mathematically
difficult to perform. A graphical method can be used to find an (approximate) solution for more
complicated equations.

3.5.4 Analytical solution for simultaneous equations
The most reliable analytical method for solving simultaneous equations aims to rearrange the
equations so that one of the variables can be ‘eliminated’ from the equation.

The process follows four basic steps, which are illustrated by solving the simultaneous
equations in Example 3.45.

Example 3.45

Find values of p and q that make both of the following equations true:

4p − 2q = 9 [A]

3p + 7q = 2 [B]

The analysis is performed in the following text :
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Step 1: Rearrange the equations so that one variable is on its own on the LHS of both
equations. For example, taking the variable p, Equation [A] becomes:

4p = 9 + 2q [C]

and Equation B becomes:

3p = 2 − 7q [D]

Step 2: The aim of this step is to arrive at an equation with only one variable involved. In this
example we eliminate p, to get an equation with only q.
To do this, we multiply both sides of [C] by the multiplier of p(= 3) in [D]:

3 × 4p = 3 × 9 + 3 × 2q

12p = 27 + 6q [E]

Similarly we multiply both sides of [D] by the multiplier of p (= 4) in [C]:

4 × 3p = 4 × 2 − 4 × 7q

12p = 8 − 28q [F]

From [E], we see that 27 + 6q equals 12p, and from [F] we see that 8 − 28q also equals 12p.
So we can write this equality as a new equation:

27 + 6q = 8 − 28q [G]

Step 3: We can now solve this equation to find q, by rearranging it to make q the subject of
the equation:

6q + 28q = 8 − 27

34q = −19

q = −0.55882
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Note: We have ‘rounded off’ the value of q to 5 significant figures. It is important to be careful
about rounding off too much in the middle of a problem in case a subsequent step calculates
a small difference between two large numbers .

Step 4: We can now work backwards to find p, by substituting the value of q back into either
[C] or [D]. Using [C]:

4p = 9 + 2 × (−0.55882) ⇒ 7.8824

p = 7.8824/4 ⇒ 1.9706

Using the above four steps, the solutions (to 5 sf) to the equations are:

p = 1.9706 and q = −0.55882

Checking the results by substituting back into the original equations, [A] and [B], to make sure
that they are both true:

4 × 1.9706 − 2 × (−0.55882) = 9.0000

3 × 1.9706 + 7 × (−0.55882) = 2.0001

Allowing for small rounding errors, the calculated values on the RHS agree with the values
in the original equations. Hence we have confirmed that the calculated values for p and q are
the solutions to the original equations.

Q3.34
Two walkers, Alex and Ben, start walking towards each other along a path. Alex
starts 0.5 km from a village on the path and Ben starts 3.2 km from the village.
Alex walks at 1.2 m s−1 and Ben walks at 0.9 m s−1.

We can describe the position of each man by giving the distance, d (in metres) of
each man from the village as a function of time, t :

Alex: d = 500 + 1.2 × t

Ben: d = 3200 − 0.9 × t

Solve the simultaneous equations using an analytical method, and calculate

(i) The time taken before they meet.
(ii) Their distance from the village when they meet.
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Q3.35
We can sometimes calculate the individual concentrations, C1 and C2, of two
compounds in a chemical mixture by measuring the spectrophotometric absorbance,
Aλ, of the mixture at different wavelengths, λ.

The results of a particular experiment produce the following simultaneous
equations:

0.773 = 2.25 × C1 + 2.0 × C2

0.953 = 0.25 × C1 + 6.0 × C2

Use the analytical method to solve the equations and derive the solutions for C1

and C2.

It is possible to use a software procedure in Excel called ‘Solver’ to solve simultaneous
equations – see Appendix I and the Website.

3.5.5 Graphical method for simultaneous equations
In the graphical method, the equations are plotted as lines on the same graph. The solution is
given by the co-ordinates of the point where the lines cross.

Example 3.46

Solve the simultaneous equations:

y = x2

y = 1.5 − 0.5x

The analysis is performed in the following text .

To solve the simultaneous equations from Example 3.46 we plot these equations as lines on a
graph by choosing specific values of x and calculating the equivalent values of y for the two
equations, as in the table below:

x −2 −1 0 1 2

y = x2 4 1 0 1 4

y = 1.5 − 0.5x 2.5 2 1.5 1 0.5

Plotting the above data gives the graph in Figure 3.1.
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Figure 3.1 Simultaneous solutions.

The solutions to the simultaneous equations are given by the two points where the lines
cross. The intersection points are identified by two circles that have approximate values (x =
−1.45, y = 2.2) and (x = 1, y = 1). These give two approximate solutions to the equations:

Solution 1: x = −1.45 and y = 2.2
Solution 2: x = 1.0 and y = 1.0

There will always be uncertainties in reading the co-ordinates of the crossing point from the
graph. However, it is possible, once an approximate value is obtained, to redraw the graph to
a much larger scale just around the crossing point.

The particular problem in Example 3.46 can also be solved analytically by first eliminating
y from the two equations, giving

x2 = 1.5 − 0.5x

This is now a quadratic equation that can be solved using [3.5] to give two solutions for x – see
Q3.36.

Q3.36
Solve the simultaneous equations (given in Example 3.46)

y = x2

y = 1.5 − 0.5x

using an analytical method.

Q3.37
Use a graphical method to solve the problem in Q3.35.



4
Linear Relationships

Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Excel tutorials: drawing x –y graphs, performing linear regression, use of

best-fit trendlines and calibration lines, linearization of scientific data.
• Excel files appropriate to selected ‘Q’ questions and Examples.

The linear relationship is one of the most common mathematical relationships used in science,
and is often described on an x –y graph by the equation:

y = mx + c

where m is the slope of the line, and c is the intercept of the line where it crosses the
y-axis.

Note that, in various contexts, the equation of the straight line is also often written as
y = a + bx , where a is the intercept and b is the slope. However, for consistency in this book,
we will always use the form y = mx + c.

As a simple example of a straight line relationship, the values for temperature in the Celsius,
C, and Fahrenheit, F , scales are related by the linear equation:

F = 1.8 × C + 32 [4.1]

When plotted on an x –y graph, with F on the y-axis and C on the x-axis, the above relationship
appears as a straight line, as in Figure 4.1.

The slope, m, and intercept, c, of the straight line in Figure 4.1 are given by m = 1.8 and
c = 32. The plotted data points show the temperatures for:

Melting ice, (0,32): C = 0 ◦C and F = 32 ◦F

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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Boiling water, (100,212): C = 100 ◦C and F = 212 ◦F
Point of ‘equal values’, (−40, −40): C = −40 ◦C and F = −40 ◦F
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(−40, −40) (0, 32)

Figure 4.1 Relationship between Fahrenheit, F , and Celsius, C, temperature scales.

In Figure 4.1, the line does not pass through the origin (0, 0) of the graph.
In other scientific situations, we often find that the line does pass through the origin of the

graph, i.e. the intercept, c, will be zero. In such a case, the value of one variable is directly
proportional to the value of the other variable. For example, Beer–Lambert’s law (for dilute
solutions) states that the absorbance, A, of light by a solution in a spectrophotometer is directly
proportional to the concentration, C, of the solution:

A = k × C [4.2]

where k = εb is a constant for a particular measurement, ε is the absorptivity of the solute and
b is the path length of the light through the solution.

There are very many situations in science where it is believed that a linear (straight line) rela-
tionship exists between two variables, but when the experimental data is plotted, the data points
on the graph show random scatter away from any straight line. If the aim of the experiment is
to measure the slope and/or intercept of the straight line, then the scientist has the problem of
trying to interpret which straight line is the best fit for the given data. We see in 4.2 that the
process of linear regression is a powerful mathematical procedure, which allows information
from every data point to contribute to the identification of the (best-fit) line of regression.

Many scientific systems do not yield simple linear relationships but it is possible, in a number
of specific situations, to manipulate the nonlinear data so that it can be represented by a linear
equation – this is the process of linearization introduced in 4.3. The transformed data can then
be analysed using the familiar process of linear regression.

As an example of linearization, a spectrophotometer measures the transmittance, T , of
light, which is related to concentration, C, by the nonlinear equation of the form (where k is
a constant):

T = 10−kC [4.3]
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Equation [4.3] can be ‘linearized’ to [4.2] by taking the logs of both sides of the equation
and defining absorbance by the equation:

A = −log(T ) [4.4]

However, is important to note that the process of transforming nonlinear data to ‘linear’ data
can distort the significance of errors in the original data. Further advice should be sought in
interpreting the possible errors that might arise in the regression results from a process of
linearization.

4.1 Straight Line Graph
4.1.1 Introduction
The straight line is one of the most common mathematical representations used in science.

A ‘straight line’, or linear, relationship occurs when the change in one variable (e.g. y) is
proportional to the change in another variable (e.g. x), and is commonly represented by the
straight line equation: y = mx + c.

The slope, m, of the line gives the rate of change of y with respect to x. The point at which
the line crosses the y-axis is called the intercept , c – see Figure 4.2 below.

y-axis

x-axis

y1

y2

y2−y1

x2x1

x2−x1

(x2, y2)

(x1, y1)

y = mx + c

c

q

0

Figure 4.2 Straight line graph.

4.1.2 Plotting the graph
In an experiment, the independent variable is the one whose values are chosen , and the
dependent variable is the one whose values are measured . For example, the pH (dependent
variable) of the soil might be measured for known amounts (independent variable) of added
lime.

An x –y graph is normally plotted with x as the independent variable on the horizontal axis
(abscissa) and y as the dependent variable on the vertical axis (ordinate).

We say that y is plotted against x, or the graph is of the form y versus x .
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Q4.1
In an experiment to measure plant growth as a function of light exposure, different
plants are exposed to different levels of light exposure, L, and the resultant
growth, G, is recorded.

When the results are plotted, which of the following statements are True?

(i) G should be plotted against L (i.e. L on the x-axis).
(ii) L should be plotted against G (i.e. G on the x-axis).

(iii) It does not matter which way round the results are plotted.

4.1.3 Straight line equation
A point is located on an x –y graph by using its co-ordinates (x, y). Note that the x-value
is placed first.

Only one straight line can be drawn through any two particular points, as illustrated in
Figure 4.2.

In this book we will describe the straight line by using the common equation:

y = mx + c [4.5]

where m and c are constant values that define the particular line:

• Slope of the line is given by the coefficient of x: m.

• Intercept on the y-axis when x= 0 is given by the constant: c.
[4.6]

Example 4.1

Calculate the slope and intercept of the straight line described by the equation:

2y = 4x + 3

The first step is to rearrange the equation into the form y = mx + c:

Divide both sides of the equation by ‘2’: y = (4/2)x + (3/2)

giving: y = 2x + 1.5

Comparing with the standard equation, [4.5]: y = mx + c

we can see that: slope m = 2 and intercept c = 1.5
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Q4.2
Start by plotting the line y = 2x + 3 on a graph over the range −2 < x < +2:

(i) For each of the values of x in the table below, calculate the value of y given
by the equation y = 2x + 3; this gives the co-ordinates (x, y) of points that
will be on this straight line.

x −2 −1 0 +1 +2

y

(ii) Plot the co-ordinates from (i) on an x –y graph, and connect with a line.
(iii) Where does the graph intercept the y-axis?

Do the following points lie on the line?
(iv) (1.5, 5.5) Yes/No
(v) (0.5, 4) Yes/No

(vi) (−0.5, −1.0) Yes/No
Without carrying out any new calculations, sketch the following lines on
the same graph as (ii):

(vii) y = −2x + 3
(viii) y = 2x + 1

(ix) y = x + 3

Q4.3
The length, L (m), of a simple metal pendulum as a function of the ambient
temperature, T (◦C), is given by the equation:

L = (1 + α × T ) × 1.210

where α is the coefficient of linear expansion of the pendulum material, and 1.210
is the length of the pendulum when T = 0 ◦C. Assume α = 0.000 019 ◦C−1.

(i) Multiply out the bracket to obtain a straight line equation of the form
y = mx + c.

(ii) Calculate the slope, m, and intercept, c, of the equation in (i).

Q4.4
A straight line is given by the equation:

3x + 4y + 2 = 0



92 LINEAR RELATIONSHIPS

Rearrange the equation to make y the subject of the equation. Hence, calculate the
slope and intercept of the line.

If a particular point with co-ordinates (x, y) lies on the line, then the values of x and y will
make the equation balance, i.e. the value of y will equal the value of mx + c and the equation
will be TRUE.

If the point (x, y) does not lie on the line, then the equation will not balance, and the value
of y will not equal the value of mx + c.

Example 4.2

The point (3,10) lies on the straight line y = 2x + 4:

Check by replacing x with ‘3’: 2x + 4 ⇒ 2 × 3 + 4 ⇒ 6 + 4 ⇒ 10

which balances with y = 10 – the equation is TRUE.

The point (4,14) does not lie on the straight line y = 2x + 4:

Check by replacing x with ‘4’: 2x + 4 ⇒ 2 × 4 + 4 ⇒ 8 + 4 ⇒ 12

which does not balance with y = 14.

It is often necessary to calculate a value for x, given a value of y on a known straight line.
We need then to rearrange equation [4.5] to make x the subject of the equation:

x = (y − c)

m
[4.7]

Q4.5
A straight line (y = mx + c) has a slope of +4 and an intercept of −3. Calculate
the value of x when y = 4

Q4.6
The cooking time for a joint of meat is written as 40 minutes per kilogram plus
20 minutes.
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(i) Express this as an equation relating time, T (in minutes), and the mass, W (kg).
(ii) If there is only 2 hours available, what is the heaviest joint that could be

cooked?

Example 4.3

A car is travelling at a constant speed of 30 m s−1, along a straight road away
from a junction. I start a stopwatch with t = 0 when the car is 60 m away from the
junction.

(i) Write down an equation that will then relate the distance, z, of the car from the
junction and the time, t , in seconds on my stopwatch.

(ii) Calculate the distance of the car from the junction when t = 3 s.
(iii) What will be the time when the car is 210 m from the junction?

The analysis is performed in the following text .

The line and calculations for Example 4.3 can be represented on a graph of z against t :
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Figure 4.3 Graph for Example 4.3.

(i) The rate of change of distance, z, with time, t , is 30, and this will be a slope, m = 30 in
the equation – see Figure 4.3.
The intercept , c, is given by the value of z when t is zero. This is given in the question
as 60 m. Hence c = 60.
The equation is therefore:

z = 30 × t + 60

See Figure 4.3 for the above equation plotted on a graph of z against t .
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(ii) When t = 3, we can use the above equation to calculate:

z = 30 × 3 + 60 ⇒ 90 + 60 ⇒ 150 m

(iii) To find a value for t it is necessary to rearrange the above equation into the form given
by [4.7]:

t = (z − 60)

30

Substituting values gives: t = (210 − 60)/30 ⇒ 150/30 ⇒ 5 s.

Q4.7

A car is travelling at a constant speed of 20 m s−1 along a straight road towards
a junction. It is at a distance z = 140 m away from the junction when I start my
stopwatch at time t = 0 s.

(i) Which of the following equations will now describe the motion of the car?
(a) z = 20t + 140
(b) z = 20t − 140
(c) z = −20t + 140
(d) z = −20t − 140

(ii) What will be the time when the car passes the junction?
(iii) What will be the position of the car when t = 20 s?

4.1.4 Calculating slope and intercept
The slope, m , of the straight line (Figure 4.2) that passes through points (x1, y1) and (x2, y2)
is given by the equation:

m = (y2 − y1)

(x2 − x1)
or m = (y1 − y2)

(x1 − x2)
[4.8]

The intercept, c, of the straight line is the value of y at the point where the line passes through
the y-axis (Figure 4.2), i.e. the value of y when x = 0.

To calculate the equation of a straight line that passes through the two points (x1, y1) and
(x2, y2):

1. Calculate the slope, m, using [4.8].
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2. Substitute the value of m and the co-ordinates of one point (x1, y1) or (x2, y2) into
[4.5] – this gives an equation where the intercept, c, is the only unknown value. Rearrange
the equation to make c the subject:

c = y1 − m × x1 or c = y2 − m × x2

and calculate the value of the intercept, c.

Example 4.4

Calculate the equation of the line that passes through the points (−2, 3) and (2, 1).

Calculating the slope:

m = (y2 − y1)

(x2 − x1)
⇒ (1 − 3)

(2 − (−2))
⇒ −2

(2 + 2)
⇒ −2

4
⇒ −0.5

Substitute m into the equation y2 = mx2 + c, with the co-ordinates x2 = 2 and y2 = 1:

1 = (−0.5) × 2 + c ⇒ −1 + c

Rearranging gives the intercept:

c = 1 + 1 = 2

The equation of the straight line is therefore:

y = −0.5x + 2

Q4.8
Calculate the slopes of the straight lines which pass through each of the following
pairs of points:

(i) (1, 1) and (2, 3) (iv) (2.0, 3.0) and (1.0, 3.5)

(ii) (−1, 1) and (2, 3) (v) (0, 1) and (1, 0)

(iii) (1, 1) and (2, −3) (vi) (2.0, 3.0) and (1.0, −3.5)

In some cases where it is necessary to calculate the coefficients of a straight line, the slope,
m, may already be known. It is then possible to go directly to step 2 in the calculation process
outlined above.
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Q4.9
Derive the equations of the straight line that has:

(i) a slope of 2.0 and passes through the point (0, 3)
(ii) a slope of 0.5 and passes through the point (2, 3)

(iii) a slope of −0.5 and passes through the point (2, 3)

Q4.10
If C represents the temperature in degrees Celsius and F represents the temperature
in degrees Fahrenheit, water boils at a temperature given by C = 100 and F = 212
and water freezes at a temperature given by C = 0 and F = 32. Derive a straight
line equation which will give F as a function of C.

Hence calculate the value of C when F = 0
(hint: F and C become the y- and x-axes of a graph).

4.1.5 Intersecting lines
If two straight lines y = mAx + cA and y = mBx + cB meet at a point (x0, y0), then the values
of x0 and y0 will make both equations true simultaneously :

y0 = mAx0 + cA

y0 = mBx0 + cB

Any unknown variables can (usually) be found by the methods of simultaneous equations.

Example 4.5

Calculate the co-ordinates of the crossing point for the two straight lines:

y = −0.5x + 2

y = x − 1

Using simultaneous equations (3.5.3) to ‘solve’ the above equations, we find that the
values x = 2 and y = 1 will make both equations true simultaneously.
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Substituting these values back into the above equations makes both equations TRUE.

The point (2, 1) therefore lies on both lines. This is the point where the lines cross .

4.1.6 Parallel and perpendicular lines
Parallel lines have the same slope:

mA = mB [4.9]

(but different intercepts, cA 
= cB).
Perpendicular lines have slopes mA and mB given by the relationships:

mA = − 1

mB
and mB = − 1

mA
[4.10]

Example 4.6

Calculate the equation of the line which is perpendicular to the line y = −0.5x + 2 and
passes through the point (−2, 3).

The slope of the first line, mA = −0.5

Thus the slope of the perpendicular line, mB = −
(

1

mA

)
⇒ −

(
1

−0.5

)
⇒ 2

Substitute this value of m into the equation y = mBx + cB, with the co-ordinates (−2, 3),
and calculate the value of the intercept, cB:

3 = 2 × (−2) + cB ⇒ −4 + cB

Hence cB = 7, and the equation of the line becomes: y = 2x + 7

Q4.11
A second line is parallel to the line y = 3x + 2, and passes through the point
(1,1). What is the equation of this second line?
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Q4.12
A second line is perpendicular to the line y = 3x + 2, and passes through the
point (1,1). What is the equation of this second line?

Example 4.7

Write down the equation of the line that is parallel to the x-axis (horizontal) and passes
through the y-axis at y = 2.5.

A line that is parallel to the x-axis has slope m = 0.

If the line passes through the y-axis at y = 2.5, then c = 2.5.

Hence the equation of line is:

y = 2.5

Whatever the value of x, the horizontal line gives the same value, y = 2.5.

Q4.13
Write down the equation of the line that is parallel to the y-axis (vertical) and
passes through the x-axis at x = −1.5.

4.1.7 Interpolation and extrapolation
These are defined as follows:

Interpolation – finding the co-ordinates of a point on the line between existing points.
Extrapolation – finding the co-ordinates of a point on the line outside existing points.

In both interpolation and extrapolation, it is necessary to calculate first the equation of the line
that passes through the two points, and then find the value of x (or y) equivalent to a new
value of y (or x).

Q4.14
A straight line passes through the points (2, 3) and (4, 4). Calculate the values of:

(i) y when x = 3.8 (iii) y where the line crosses the y-axis

(ii) x when y = 5.6 (iv) x where the line crosses the x-axis
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Q4.15
Initially, at time t = 0, the height, h, of a plant is 15 cm, and it then grows linearly
over a 20-day period, reaching a height of 20 cm. Derive a straight line equation
which will give the height, h, as a function of the time, t , in days.

(i) What is the height when t = 5 days?
(ii) Estimate the height of the tree 8 days after the end of the 20-day period,

assuming that it continues to grow at the same rate.

4.1.8 Angle of slope
The angle, θ , between the line and the x-axis (Figure 4.2) is given by the equation:

tan(θ) = (y2 − y1)

(x2 − x1)
= m [4.11]

The angle, θ , can then be calculated using the inverse tangent function (2.4.7):

θ = tan−1(m) or arctan(m) [4.12]

Q4.16
A map shows the height contours on the side of a hill of fairly uniform slope. A
point on the 250 m contour line is seen to be 400 m horizontally from a point on
the 200 m contour line.

(i) Calculate the average slope, m, between the two points.
(ii) Calculate the average slope angle of the ground with respect to the horizontal.

4.2 Linear Regression
4.2.1 Introduction
There are very many situations in science where it is believed that a linear (straight line)
relationship exists between two variables. However, when experimental data is plotted, the
data points on the graph show some random scatter away from any straight line. If the aim of
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the experiment is to measure the slope and/or intercept of the straight line, then the scientist
has the problem of trying to interpret which straight line is the best fit for the given data.

The process of linear regression is a powerful mathematical procedure that calculates the
position of the ‘best-fit’ straight line. The mathematics of the technique, also called the ‘method
of least squares’, is covered more fully in 13.2.2.

It is fortunate that many software packages will perform the calculations necessary for linear
regression, and report directly both the slope, m, and the intercept, c, of the best-fit line – see
Appendix I for functions in Excel. Calculations by hand are not then required. Hence, this unit
is mainly concerned with the practicalities of using appropriate software to perform a linear
regression on scientific data.

From the point of view of experiment design, it is important to understand that the process
of linear regression uses information from every data point . This means that the additional
data points (beyond the minimum requirement of two) become replicate (15.1.2) data points
in the calculation of the parameters of the best-fit straight line and improve the accuracy of
the overall fit.

4.2.2 Linear regression
Linear regression is a mathematical process for finding the slope, m, and intercept , c, of a
‘best-fit’ straight line. Example 4.8 illustrates the use of Excel (see also Appendix I) to perform
this process.

Example 4.8

The following x –y data is entered into an Excel spreadsheet:

x 0.4 0.8 1.2 1.6 2

y 0.48 0.72 0.8 1.07 1.16

Using the Chart Wizard in Excel, it is easy to plot the graph as in Figure 4.4.

y = 0.4275x + 0.333

0.0
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0.4

0.6

0.8
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1.2

1.4

0 0.5 1 1.5 2 2.5

x-axis

y
-a

xi
s

Slope, m = 0.4275

Equation of line:

Intercept, c = 0.333

Figure 4.4 Regression of y on x.
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The best-fit straight line is drawn using the Linear Trendline option in Excel, which can
also print the equation of the line on the graph.

The best-fit straight line in Figure 4.4 is called the line of regression of y on x .
The process of linear regression assumes that the only significant uncertainties are in the

y-direction . The x-values for each data point are assumed to be accurate.
The line of regression of x on y (note reversal of x and y) will usually give a slightly

different line.

Q4.17
The heart rates of athletes were measured 3 minutes after completing a series of
‘step-ups’ at different rates. If a process of linear regression is to be used to analyse
the relationship between step-up rate and heart rate, decide which variable should
be plotted on the y-axis and which variable on the x-axis.

4.2.3 Regression and correlation
It is important to know the difference (see also Chapter 13) between regression and
correlation:

Linear correlation is a specific measure of the extent to which the values of two variables
are known to change in a way that could be described by a straight line equation . The use
of linear correlation as a statistical test is introduced in 13.1.3.

Linear regression is a process that can be used to calculate the slope and intercept of a best-fit
linear equation after it has been shown that two variables are indeed linearly correlated.

Q4.18
In each of the following situations, one variable is plotted against another, but it is
necessary to decide whether to test for correlation between the variables or carry
out a regression analysis . (The process of carrying out a test for correlation is
given in 13.1.3.)

(i) Aluminium levels are recorded against sizes of fish
populations to investigate whether the level of alu-
minium in river water affects the size of the fish
population.

Correlation/
Regression

(ii) The increase in oxygen consumption of a species of
small mammal is measured as a function of body
weight, in order to derive an equation that relates the
two factors.

Correlation/
Regression
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(iii) A researcher records the abundance of heather plants
as a function of soil pH in different areas to see if the
pH has an effect on the survival of the plant.

Correlation/
Regression

(iv) Student marks are recorded for both coursework and
examination to see if good students generally perform
well in both and weaker students perform badly in
both.

Correlation/
Regression

4.2.4 Software calculations
Excel and other statistical software can be used to calculate both the slope and intercept of the
best-fit line of regression through a set of data points – see Appendix I:

Excel Functions, fx :

• SLOPE – calculates the best-fit slope (with no restriction on the intercept)
• INTERCEPT – calculates the best-fit intercept
• LINEST – calculates the best-fit slope (can be used to force zero intercept).

(Functions in Excel give dynamic results, which change if the input values change.)

Excel Data Analysis Tools:

• Regression options calculate slope and intercept (plus other data), and can force the
intercept to be zero (c = 0).

(Data Analysis Tools in Excel are non-dynamic, giving a ‘one-off’ calculation.)

Excel Trendline:

• Calculates slope and intercept, and can force the intercept to be any chosen value.

The slope and intercept can be displayed on the chart but cannot be used directly in further
calculations. It may be necessary to format Trendline in order to show an appropriate number
of significant figures for these values.

Other statistics software packages will produce similar results. For example, Minitab pro-
duces results for slope, m, and intercept, c, in the ‘equation’ form:

C2 = c + m C1

where C1 and C2 are the columns in Minitab that hold the x- and y-data respectively.
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Example 4.9

In an experiment to measure the relationship between the variables P and Q, the values
of P were measured for specific values of Q, and the data entered into rows 1 and 2 of
an Excel spreadsheet as below:

A B C D E F

1 Q 1 3 5 7 9

2 P 3.9 7.2 7.9 12.5 13.6

3 Slope = 1.235 Intercept = 2.845

The entry ‘= SLOPE(B2:F2,B1:F1)’ into cell B3 of the Excel spreadsheet gives the slope
of the best-fit line, m = 1.235.

And the entry ‘= INTERCEPT(B2:F2,B1:F1)’ into cell E3 of the Excel spreadsheet gives
the intercept of the best-fit line, c = 2.845.

The two expressions for SLOPE and INTERCEPT assume that cells B2 to F2 hold the
‘y-data’ and cells B1 to F1 hold the ‘x-data’.

Q4.19
Using the data from Example 4.9:

(i) Write down the equation of the line of regression, P on Q.
(ii) Plot the original data, plus the line of regression, on a graph.

(iii) Using the results from (i), calculate the value of P on the line of regression
equivalent to a value of Q = 3.4.

Q4.20
The data in the table below gives the result of a spectrophotometric measurement,
where the y variable is the absorbance, A, and the x variable is the concentration,
C (mmol L−1).

C (x) 10 15 20 25

A (y) 0.37 0.48 0.7 0.81
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Use Excel and/or other statistics software to perform a linear regression to obtain
values for:

(i) Slope of the best-fit straight line.
(ii) Intercept of the best-fit straight line.

4.2.5 Forcing zero intercept
Sometimes it is known that the best-fit straight line should pass through the origin of the graph,
i.e. have zero intercept, c = 0.

Excel can be used to perform a linear regression while forcing a zero intercept using any of
the following methods – see Appendix I:

• Function LINEST
• Data Analysis Tools > Regression
• Graph Trendline (can force the intercept to be any chosen value).

In Minitab it is possible to force a zero intercept by clicking ‘Options. . .’ in the Regression
dialogue box and checking the Fit Intercept option.

Q4.21
Using the same data as in Q4.20, make the assumption that the best-fit straight line
should pass through the origin of the A versus C graph.

Calculate the slope of the line of regression with zero intercept using:

(i) Excel function LINEST
(ii) Excel Data Analysis Tools

(iii) Excel Trendline
(iv) Other statistics software

4.2.6 Calibration line
The process of linear regression is frequently used to produce a best-fit calibration line. For
example, spectrophotometric measurements often measure the absorbances, A, of solutions
of known concentrations, C, and plot the best-fit straight line of A against C. The linear
relationship can then be used to calculate the concentration, CO, of the unknown solution from
a measured value of its absorbance, AO.

A line of linear regression is drawn (Figure 4.5) using n data points of known values of y,
corresponding to known values of x (calibration data). The coefficients of the line of regression
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are calculated:

Slope = m

Intercept = c

y

yo

xo x

y = mx + c

Figure 4.5 Regression of y against x.

The aim of the experiment is then to estimate the unknown value, x0, for a given value of y0.
The ‘best-estimate’ x-value, x0, of the unknown sample is then calculated by using the

equation (see also [4.7]):

x0 = (y0 − c)

m
[4.13]

Example 4.10

Using the data in Example 4.9 calculate the value of Q on the line of regression equivalent
to a value of P = 8.5.

The equation of the line is:

P = 1.235 × Q + 2.845

Rearranging this equation as in [4.13]:

Q = (P − c)

m
⇒ 8.5 − 2.845

1.235
⇒ 4.579

For many calibration lines, the science of the problem is such that it is known that the
calibration line must pass through the origin of the graph.
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For example, in a spectrophotometric measurement it may be known that:

• the absorbance of the solution obeys Beer’s Law (A = k × C); and
• the spectrophotometer was accurately set up so that a solution of zero concentration records

an absorbance of zero.

Then we can assume that the calibration line must pass through the origin of the graph of A

against C.
In this case, we can force the line of regression to pass through the origin and ensure that

the intercept c = 0.

Q4.22
Different masses w (in grams) of a sugar were dissolved in 100 mL of water and
the angle of rotation θ (in degrees) of polarized light in the solution was measured
in a polarimeter. The following results were obtained.

w(g) 1.5 3 4.5 6 7.5

θ (degrees) 1.3 2.7 4 5.2 6.6

(i) Assuming that pure water gives no rotation, find the best-fit equation for θ in
terms of w.

(ii) Calculate the best estimate of w for a sugar solution that gives a rotation of 4.9◦.

4.2.7 Interpolation and extrapolation errors
The processes of interpolation and extrapolation were introduced in 4.1.7.

There is inherent uncertainty in the values for the slope, m, and intercept, c, calculated
using linear regression. Hence there will also be uncertainty in the calculation of the value,
xO, when using [4.13].

The calculation for the experimental uncertainty in the final value for xO is given in 13.3.3.
From this calculation it is possible to draw some general conclusions.

The calibration data should be chosen such that the unknown test value falls within the
central half of the calibration range. For example, if the calibration data covers absorbances
from 0.2 to 0.6 (not forcing through the origin), then, ideally, the absorbance of the test solution
should fall within the range from 0.3 to 0.5.

Provided that the test data falls within this central calibration range, then equation [13.9] is
a good estimation of the overall uncertainty in the final value of xO.

As the interpolated test values move towards the ends of the calibration range, then the
uncertainties will increase – see Figure 13.7.

If the test values fall outside the range of calibration data (extrapolation) then the
uncertainties will begin to increase very rapidly, and great care must be taken in using
extrapolated values.

Good experimental design should take the above considerations into account when planning
the choice of calibration values.
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4.3 Linearization
4.3.1 Introduction
We have seen (4.2) how the mathematics of linear regression is a simple, yet powerful, pro-
cedure that can be used to identify a best-fit straight line in a set of data that is expected
to follow a linear relationship. However, many scientific systems do not yield simple linear
relationships.

There are statistical methods for fitting data to specific types of curves using nonlinear
regression but these methods are beyond the scope of this book. As an alternative to the
use of nonlinear regression, it is possible, in a number of specific situations, to manipulate
the nonlinear data so that it can be represented by a linear equation – this is the process
of linearization . The transformed data can then be analysed using the familiar process of
linear regression. However, it is important to note (4.3.4) that the process of transforming the
nonlinear data can distort the significance of errors in the original data.

4.3.2 General principles
Linearization is a mathematical process whereby a nonlinear equation (e.g. involving variables
P and Q) can be represented as a straight line on a suitable graph.

The original equation must be manipulated in such a way that it appears in the form:

f(P ) = m × f(Q) + c [4.14]

where f(P ) and f(Q) are functions of the original variables, P and Q, respectively.
The above equation is in the same form as the straight line equation:

y = m × x + c

and we can see that plotting f(P ) against f(Q) (in place of y and x) will give a straight line
with a slope m and an intercept c.

There are three common ways of linearizing a nonlinear function:

• Change of variable.
• Using logarithms (log or ln) to bring powers down onto the equation line.
• Using natural logarithms for an exponential equation.

In this chapter we only consider the ‘change of variable’ method.
Section 5.1.8 outlines the method for using logarithms to linearize equations with power

terms of the form T = k × Ln, where T and L are variables but n is an unknown constant.
Section 5.2.6 outlines the procedure for linearizing exponential equations of the form

Nt = N0ekt , where Nt and t are the variables.
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4.3.3 Change of variable
Where possible, the simplest linearization procedure is to plot the functions of P and/or Q

directly on the y- and x-axes of the graph.
Example 4.11 shows that the equation that relates the area, A, of a circle to its radius,

r , can be drawn as a ‘straight’ line by plotting the area, A, against the square of the
radius, r2.

Example 4.11

The following data gives the area, A, of a circle as a function of its radius, r , and as a
function of r2:

A 0 0.79 3.14 7.07 12.57 19.63 28.27

r 0 0.5 1 1.5 2 2.5 3

r2 0 0.25 1 2.25 4 6.25 9

Figure 4.6(a) shows the nonlinear curve when we plot A directly against r . However, if
we now plot A (as the y variable) against r2 (as the x variable), we get a straight line
that passes through the origin, Figure 4.6(b).

(a) (b)
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A = 3.1416 r2

Figure 4.6

Compare the two equations:

A = π × r2

y = m × x + c

If we plot A against r2, we can see that the slope, m, will equal the constant π (= 3.1416)
and that this area equation has no intercept term, giving c = 0:

A = 3.1416 × r2
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Other examples of ‘change of variables’ are given in Table 4.1.

Table 4.1. Examples of changes of variable for linearization.

Relationship Equation Variables to be plotted for
linearization

Volume of a sphere, V , as a function of
radius, r

V = 4

3
π × r3 Plot V against r3 (π is a

constant)

Kepler’s third law of planetary motion
giving period, T , against radius, r , of
orbit

T 2 = 4π2

GM
r3 Plot T 2 against r3

(π, G, M are constants)

Photoelectric effect equation of voltage,
V , as a function of wavelength, λ

V = hc

e

(
1

λ

)
− φ Plot V against

1

λ
(h, c, e, φ are
constants)

Q4.23

The relationship between the pressure, p (Pa), the volume, V (m3) and the absolute
temperature, T (K), of 1 mole of an ideal gas is given by the equation:

p = RT × 1

V

where R is the gas constant.

The relationship between p and V , for constant T , is plotted on the two graphs
in Figure 4.7. Figure 4.7(a) shows p against V and Figure 4.7(b) shows p against
1/V , both plotted for constant temperatures, T .

p versus V

V

p

p versus 1/V

1/V

(a) (b)

p

Figure 4.7
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(i) Is p a linear function of V (see Figure 4.7(a))?
(ii) Is p a linear function of 1/V (see Figure 4.7(b))?

(iii) If p is plotted against 1/V , what is the slope of the line in terms of R and T ?
(iv) If p is plotted against 1/V , what is the intercept of the line?
(v) In this analysis, should the line of regression of p against 1/V be forced to go

through the origin of the graph?
(vi) If a gas at a temperature of 300 K gives a line of p against 1/V with a slope

m = 2500 J mol−1, calculate the value of the gas constant, R.
(vii) How would the line in Figure 4.7(b) change, if the temperature of the gas were

to increase?

Q4.24
The Michaelis–Menten equation gives the initial velocity of an enzyme reaction,
v, as a function of the substrate concentration, S:

ν = vmaxS

KM + S

where KM is the Michaelis–Menten constant and vmax would be the maximum
reaction velocity for very large values of S.

Taking the reciprocal of the equation, and then dividing each term in the numerator
by the denominator, vmax × S, gives:

1

ν
= KM + S

vmaxS
⇒ KM

vmaxS
+ S

vmaxS

which rearranges to:

1

ν
=

(
KM

vmax

)
× 1

S
+ 1

vmax

(i) The variables in the above equation are v and S. Compare the above equation
to the straight line equation y = mx + c, and decide what function should be
plotted on the y-axis and what function on the x-axis.

(ii) Having decided to plot the data as in (i), show how each of the constants
KM and vmax can be calculated from the linear regression data: slope and
intercept.
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4.3.4 Error warning
When using a linearization technique for nonlinear data, the transformation process will also
act on the errors in the data points, and this can have the effect of distorting the importance
of some of the points in the final regression process.

It is always important to be careful about interpreting the accuracy of results obtained by
a linearization process, and possibly seek further guidance, particularly when relying on the
accuracy of an extrapolated value.
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Logarithmic and Exponential
Functions

Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Excel tutorials: use of powers, logarithms, exponentials, linearization of expo-

nential functions.

Logarithmic and exponential functions in mathematics are particularly useful (and common)
in science because they can be used as accurate models for many real-world processes.

The mathematics of these functions can be handled very easily, provided that a few basic
rules are learnt. The first unit here (5.1) concentrates on developing an understanding that will
directly underpin the use of the functions in a scientific context.

The exponential function is particularly important in modelling growth or decay systems in
all branches of science, e.g. elimination of a drug from the bloodstream, radioactive decay,
bacterial growth, etc. Although these processes are all based on the same mathematics, the
scientists in different areas have developed different ways of quantifying the processes. For
example:

• ‘1 log’ decay (or ‘2 log’, ‘3 log’, etc.) in drug elimination;
• ‘generation time’ in bacterial growth;
• ‘time constant’ in electronic circuits.

The second unit (5.2) demonstrates that it is easy to compare numerical calculations based on
these different historical methods.

We see in 5.1.5 that a logarithm is essentially the inverse function of an exponential function.
However, logarithms also have an important modelling role in their own right, particularly in
systems where a multiplication of an input to a system produces an additive effect on the
output, e.g. in decibel and pH scales.

The student will also often meet the use of logarithmic scales on graphs. These may be used
to linearize an exponential function (5.2.6) or may simply be used to condense data which
covers a wide data range.

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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5.1 Mathematics of e, ln and log
5.1.1 Introduction
The exponential constant, e, and logarithms are used extensively in science, but many students
find the purpose of the exponential function and the mathematics of logarithms very confusing.
However, the underlying ‘rules’ are quite simple and it is worthwhile spending some time
getting a good understanding of the basic concepts.

5.1.2 Powers and bases

mx is pronounced ‘m to the power of x’ [5.1]

where m is the base, and x is the exponent, power or index.
In general, m can have any value, but in this unit we are mainly concerned with the two

most commonly used ‘bases’:

• Base ‘10’ – this is useful because we use a decimal system of counting.
• Base ‘e’ (= 2.718 28 . . .) – this is useful because the number, e, has properties which sim-

plify the mathematics for many problems of growth and decay in science.

The specific value, 2.718 28 . . ., is called Euler’s number and denoted by e.
Note that, in electronic format (calculators and computers), the ‘to the power of’ is often

expressed using ‘∧’, and sometimes by using ‘**’, e.g. 8.03.1 may be written as 8.0∧3.1 or
8.0**3.1.

5.1.3 Properties of powers (exponents)
The properties of powers are the same for any base:

ep × eq = ep+q 10p × 10q = 10p+q [5.2]

ep

eq
= ep ÷ eq = ep−q 10p

10q
= 10p ÷ 10q = 10p−q [5.3]

(ep)q = ep×q (10p)q = 10p×q [5.4]

e1 = e 101 = 10 [5.5]

e0 = 1 100 = 1 [5.6]
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Q5.1

Simplify each of the following (e.g. e2 × e3 = e5):

(i) 102 × 103 (v) e2 × e0

(ii) (102)3 (vi) e3 × e2

(iii) 103 ÷ 102 (vii) e5 ÷ e3

(iv) 103 ÷ 10−2 (viii) (e2)3

5.1.4 Exponential functions, ex, 10x

For clarity, ex is often written as exp(x), e.g. exp(kT ) can be clearer to read than ekT .
Note also that the Excel function EXP(x) is used to calculate exponential value, ex .
When using a calculator:

• ex is calculated by using the ex key (often the shift function of the Ln key).
• 10x is calculated by using the 10x key (often the shift function of the Log key).

Do not confuse the 10x key (shift function of the Log key) with a ‘×10x’ key on some
calculators which includes the multiplication to enter the power of 10 directly in scientific
notation (2.1.2), e.g. keying [1][.][6][×10x ][3] would enter the value 1.6 × 103.

Using Excel (see also Appendix I):

• ex is calculated by using the EXP function ‘=EXP(??)’, and
• 10x is calculated by typing in the formula ‘=10∧??’,

where ?? is either the value of x entered directly or the cell address where the data value of x

is held.
However, it is important to note the difference between the EXP button (power of 10) on

some calculators and the EXP function (power of e) in Excel!

Q5.2
Use a calculator and/or Excel to evaluate:

(i) 103.4 (iv) e−0.42

(ii) 10−0.45 (v) e1

(iii) 100 (vi) e0
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5.1.5 Logarithms as inverse operations of taking the
power
Logarithms are defined as the inverse operations (see 3.4.2) of power terms. They have the
following essential properties:

ep=q ⇔ p= ln(q) 10p=q ⇔ p= log(q) [5.7]

For example: if ex = 8.0 then x = ln(8.0) ⇒ 2.08 (3 sf)

and the inverse: if ln(y) = 1.7 then y = e1.7 ⇒ 5.47 (3 sf)

ln(q) is the usual way of writing loge(q), the logarithm of q to base e
log(q) is the usual way of writing log10(q), the logarithm of q to base 10.

On a calculator, ex and 10x usually appear as the second (or shift) functions on the keys for
ln and log respectively.

The function loge(x), or ln(x), is also called the natural, or Naperian, logarithm.
The values for log(x) and ln(x) for any positive value of x can be found directly by using

the log and ln keys on a calculator, or by using the functions LOG and LN in Excel (see also
Appendix I). It is not possible to calculate the logarithm of a negative number.

Q5.3
Using a calculator or Excel, evaluate:

(i) log(348) (vi) log(0.5)

(ii) log(34.8) (vii) log(2)

(iii) log(3.48) (viii) log(20)

(iv) log(100) (ix) ln(e1)

(v) log(0.01) (x) ln(10)

We can use the inverse operations performed by logarithms to solve some simple equations
where the unknown value is in a power term.

Example 5.1

Use an inverse operation to solve equations of the form: e2x = 3.7.

Comparing the above equation with ep = q:

p = 2x and q = 3.7
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Using the inverse operation from [5.7]:

ep = q ⇔ p = ln(q)

we get that:

2x = ln(3.7) ⇒ 1.308

We can divide both sides by 2 to calculate:

x = 1.308/2 ⇒ 0.654(3 sf)

Example 5.2

Solve an equation of the form: log(0.43x) = −0.067.

Comparing the above equation with log(q) = p:

q = 0.43x and p = −0.067

Using the inverse operation [5.7] we can see that if log(q) = p then q = 10p and we
get that:

0.43x = 10−0.067 ⇒ 0.857

We can divide both sides by 0.43 to calculate:

x = 0.857/0.43 ⇒ 1.99(3 sf)

Q5.4
Calculate x in the following by using inverse operations from [5.7]:

(i) ex = 22 (vi) 10x = 18

(ii) e3x = 12 (vii) 102x = 18

(iii) e−2x = 3.1 × 10−3 (viii) 10−x = 1.0 × 10−7

(iv) ln(x) = 1.68 (ix) log(x) = −9.3

(v) ln(−0.81x) = 0.37 (x) log(−2.6x) = 3.2
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5.1.6 Important properties of logarithms
As the logarithm is the inverse operation of the power, taking the logarithm of a power can
bring the exponent value down onto the equation line and simplify the expression.

We have two very important sets of relationships, which are very useful when using loga-
rithms to simplify ‘power’ equations:

ln(ep) = p log(10p) = p [5.8]

and:

ln(pq ) = q × ln(p) log(pq ) = q × log(p) [5.9]

Other useful values and properties of logarithms include the following relationships:

ln(pq) = ln(p) + ln(q) log(pq) = log(p) + log(q) [5.10]

ln

(
p

q

)
= ln(p) − ln(q) log

(
p

q

)
= log(p) − log(q) [5.11]

ln(e) = 1 log(10) = 1 [5.12]

ln(1) = 0 log(1) = 0 [5.13]

ln(0) = −∞ log(0) = −∞ [5.14]

log(2) ≈ 0.30 [5.15]

ln(x) = 2.30 × log(x) [5.16]

This equation is true (to 3sf) for any value of x.
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Example 5.3

Check that you understand the following calculations (to 3 sf where appropriate).

Using equation [5.8]:

ln(ekT ) = kT

log(1000) = log(103) = 3

log(0.01) = log(10−2) = −2

Using equation [5.9]:

ln(83) = 3 × ln(8) = 6.24

log(ekT ) = kT × log(e) = 0.434kT

Using equation [5.10]:

ln(3 × 8) = ln(3) + ln(8) = 1.099 + 2.079 = 3.18

log(200) = log(2 × 100) = log(2) + log(100) = 0.301 + 2 = 2.30

Using equation [5.11]:

ln(3/8) = ln(3) − ln(8) = 1.099 − 2.079 = −0.98

log(0.02) = log(2/100) = log(2) − log(100) = 0.301−2 = −1.70

Q5.5
Use equations [5.8] to [5.16] to evaluate the following expressions without using
a calculator:

(i) log(10−0.3) Hint: use equation [5.8]

(ii) ln(e0.62) Hint: use equation [5.8]

(iii) log(2) Hint: use equation [5.15]

(iv) log(20) Hint: log(20) = log(2 × 10) and use equation [5.10]

(v) log(0.5) Hint: log(0.5) = log(1 ÷ 2) and use equation [5.11]

(vi) ln(1000) Hint: use equation [5.16]

(vii) ln(2) Hint: use equations [5.16] and [5.15]

(viii) log(23.1) Hint: use equations [5.9] and [5.15]
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Example 5.4

Show that, by taking natural logarithms of both sides, the equation:

Nt = N0ekt

can be converted to the form:

ln(Nt) = ln(N0) + kt

As the base in the equation is e, we will take natural logs of both sides:

ln(Nt ) = ln(N0 × ekt )

then using equation [5.10] for the logarithm of a product:

ln(Nt ) = ln(N0) + ln(ekt )

and using equation [5.8]:

ln(Nt) = ln(N0) + kt

5.1.7 Solving ‘power’ equations with logarithms
In solving equations, we need to make the unknown value (e.g. x) the subject of the equation.
When the variable x is in a power term, we need to bring it down onto the equation line by
using [5.7], [5.8] or [5.9].

Examples 5.1 and 5.2 show how we can use equation [5.7] with simple equations involving
powers of 10 and e.

With more complex equations we often need to make some initial rearrangements before
taking the inverse operation.

Example 5.5

Solve the following equation to find t : Nt = N0ekt

where N0 = 4260, Nt = 520 and k = −0.048 day−1. As the units of k are ‘per day’ we
know that the units of time, t , will be ‘days’.

Using the rules for rearranging equations developed in 3.2 and 3.4:
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Swap the equation round to put the t term on the LHS (Rule 2), and substituting
values:

4260 × e−0.048×t = 520

Divide both sides by 4260 to leave the ‘e term’ clear on the LHS (Rule 5):

e−0.048×t = 520/4260 ⇒ 0.1221(4 sf)

Now we can use the inverse operation for e, Rule 6 (3.4.2), or equation [5.7]:

−0.048 × t = ln(0.1221) ⇒ −2.103

and finally divide both sides by −0.048 (Rule 5):

t = −2.103/(−0.048) ⇒ 43.8 days (3 sf)

The calculation shows that the exponential decay will fall from an initial value,
N0 = 4260, to a value Nt = 520, after a time t = 43.8 days.

In problems where the base of the power is neither 10 nor e, it is necessary to take logarithms
of both sides of the equation and then to use equation [5.9].

Example 5.6

To solve equations of the form 86y = 0.6:

The ‘base’ is neither e nor 10 so we can take either ln (base e) or log (base 10) of both
sides.

For example, taking logs (base 10) of both sides gives:

log(86y) = log(0.6)

Using equation [5.9] we can write the LHS of the above equation as:

log(86y) = 6y × log(8) ⇒ 6y × 0.903

Hence combining the above two equations:

6y × 0.903 = log(0.6) ⇒ −0.2218

giving:

y = −0.2218/(6 × 0.903) ⇒ −0.0409
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Q5.6
Solve each of the following equations (i.e. find the value of p):

(i) 2e3p = 22 (iii) 4p = 33

(ii) 1.2 × 102p = 18 (iv) 0.3 = 0.2p

5.1.8 Using logarithms to linearize ‘power’ equations
It is sometimes possible to use linear regression for problems involving power equations by
following these steps:

1. Take logarithms of both sides to bring all the powers onto the equation line.
2. Choose appropriate variables (4.3.3) to plot the equation as a straight line.
3. Perform a linear regression to calculate ‘best-fit’ slope and intercept.
4. Interpret the unknown values from the slope and intercept.

Example 5.7

A student believes that the period of swing, T , of a simple pendulum is related to its
length, L, by a power equation of the form:

T = k × Ln

where k is an unknown constant and n is an unknown constant power.

The student records the following periods, T , for different pendulum lengths, L.

L(m) 0.20 0.40 0.60 0.80 1.00

T (s) 0.89 1.25 1.65 1.71 1.98

The calculation for the best estimates for the values of k and n is given in the following
text .

The data for T and L recorded in Example 5.7 does not give a straight line, so the first step
is to linearize the equation T = k × Ln, by taking logarithms of both sides:

log(T ) = log(k × Ln)
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Expanding the RHS using equation [5.10]:

log(T ) = log(k × Ln) ⇒ log(k) + log(Ln)

Using equation [5.9] to bring out the power, n, from log(Ln):

log(T ) = log(k) + n × log(L)

If we compare this equation with:

y = c + m × x

we can see that log(T ) is equivalent to y and log(L) is equivalent to x.
Plotting log(T ) on the y-axis against log(L) on the x-axis:

log(L) −0.6990 −0.3979 −0.2219 −0.0970 0.0000

log(T ) −0.0506 0.0969 0.2175 0.2330 0.2967

should give a straight line (4.3.2) with a slope m = n and an intercept c = log(k).
The calculation for Example 5.7 is performed on the Website using Excel, and a linear

regression analysis gives values for:

Slope, m = 0.4944

Intercept, c = 0.2987

From the slope we calculate n directly: n(= m) = 0.4944
From the intercept we know that log(k)(= c) = 0.2987
Taking the inverse of the log we calculate that:

k = 100.2987 ⇒ 1.989

This gives a best-estimate equation:

T = 1.989 × L0.4944
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In fact the true equation has values (g is the acceleration due to gravity):

T = 2π

√
L

g
⇒ 2.006 × L0.5

Note that it would be possible to use natural logarithms for the above calculation. In this case
the value of n would still equal the slope, n = m, but the value of k would be calculated using
k = ec.

Q5.7
For each of the following equations, identify the functions that would be used for
each axis to plot the equation as a straight line. In each case, identify how the
unknown power can be determined from the regression line.

(i) V = pAk V is the volume of an animal of surface area A (p and k

are unknown constants)

(ii) E = σ(T +273)z E is the intensity of radiation emitted from an object at a
temperature T ◦C (z and σ are unknown constants)

5.1.9 Logarithmic scales
Many systems in science are measured as a ratio of values. For example, in microbiology a
‘1-log’ decrease in bacterial population is used to indicate a drop in population by a factor of
10 to one-tenth of the initial value. Similarly a ‘2-log’ decrease would be a drop in population
to one-hundredth of the initial value etc.

Q5.8

A bacterial population has an initial value of 5.0 × 107. Calculate the population
following:

(i) a ‘1-log’ decrease
(ii) a ‘3-log’ decrease
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The decibel scale of loudness, L, appropriate to the human ear, compares the power density,
P , of the sound with the power density, P0 = 1.0 × 10−12 W m−2, which is the quietest sound
that can just be heard in normal hearing:

Loudness, L(dB) = 10 log(P/P0) [5.17]

When comparing two sounds the difference in loudness , L1 − L2, will be given by:

L1 − L2 = 10 log(P1/P2) dB [5.18]

The difference in loudness depends on the ratio of the power densities, P1 and P2. As
P1 and P2 have the same units, the ratio has no units, and 10 log(P1/P2) is simply a
number.

Example 5.8

If the power density of sound is doubled, P1/P2 = 2, calculate the increase in loudness.

Difference in loudness: L1 − L2 = 10 log(2) = 10 × 0.30 = 3.0 dB

A doubling of power gives an addition of 3 dB.

Q5.9
A sound has an initial loudness of 70 dB. Calculate the new loudness using [5.18]
if the power density of the sound is:

(i) doubled (i.e. by a factor of 2) (iv) halved

(ii) increased by a factor of 8 (v) reduced by a factor of 8

(iii) increased by a factor of 100 (vi) reduced by a factor of 100
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Another important area where students will encounter the use of logarithms is in electro-
chemistry.

The acidity of a solution depends on the concentration of hydrogen ions [H+] expressed
in units of mol L−1 (or mol dm−3). However, the acidity is normally measured using the
logarithmic pH scale (to base 10), by taking the log of the numerical value of [H+]:

pH = −log([H+]) [5.19]

Example 5.9 compares the logarithmic pH scale with the direct concentration scale.

Example 5.9

Values of [H+] and pH for pure water and example values for a strong acid and a
strong base:

Strong acid Pure water Strong base
(example) (example)

Hydrogen ion
concentration:
[H+]/mol L−1

0.1 1.0 × 10−7 1.0 × 10−13

pH value:
pH = − log[H+]

= − log(0.1)

= 1.0
= − log(1.0 × 10−7)

= 7.0
= − log(1.0 × 10−13)

= 13.0

The logarithmic pH scale can be considered to be a linear scale in ‘acidity’; the pH-value
increases for decreasing acidity. The numbers 1.0, 7.0, 13.0 are a more convenient linear
representation of ‘acidity’ than the absolute scale of hydrogen ion concentrations for the same
‘acidities’: 0.1, 10−7, 10−13.

Q5.10

Calculate the pH-values equivalent to the following values for [H+]:

(i) [H+] = 3.4 × 10−9 mol L−1 (ii) [H+] = 3.4 × 10−4 mol L−1

In spectrophotometric measurements, the absorbance, A, of a solution is related to its per-
centage transmittance, T %, according to the equation:

A = − log

(
T %

100

)
[5.20]
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Example 5.10 demonstrates the rearrangement of logarithmic equations using the rules devel-
oped in 3.2 and 3.4.

Example 5.10

(i) Calculate the hydrogen ion concentration, [H+], for a solution with pH = 8.3.
(ii) Calculate the transmittance, T %, for an absorbance, A = 0.36.

Substituting in equations [5.19] and [5.20]:

8.3 = −log([H+]) 0.36 = − log

(
T %

100

)

Swap the equations around to put the unknown on the LHS using Rule 2 (see 3.2):

−log([H+]) = 8.3 − log

(
T %

100

)
= 0.36

Change the signs of every term on both sides of the equation using Rule 3:

log([H+]) = −8.3 log

(
T %

100

)
= −0.36

Take the inverse of ‘log’ using Rule 6 (3.4.2) or equation [5.7]:

[H+] = 10−8.3 T %

100
= 10−0.36

Using a calculator to evaluate 10−8.3 and 10−0.36 (also using Rule 5 for T %):

[H+] = 5.01 × 10−9 mol L−1 T %

100
= 0.4365

T % = 100 × 0.4365 ⇒ 43.7%

Q5.11
Using [5.19], calculate the hydrogen ion concentrations equivalent to the following
values for pH:

(i) pH = 9.2 (ii) pH = 3.2
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Q5.12
Using [5.20], calculate the missing values in the following table of equivalent
values (∞ = infinite absorbance):

Percentage transmittance, T % 0 1 50

Absorbance, A ∞ 3 1 0

5.2 Exponential Growth and Decay
5.2.1 Introduction
A growth (or decay) is said to be exponential if time appears as an exponent or power in the
equation of growth.

There are many examples of exponential growth or decay systems in all branches of science,
and different disciplines have devised different ways of quantifying very similar processes, e.g.
half-life in radioactivity, the elimination constant for drug concentration and the amplification
of a photomultiplier. However, in this unit we see how many simple growth (or decay) systems
can be represented, and analysed, by using one common exponential equation using the base e.

5.2.2 Exponential systems
There are many systems in science where the future change in the system depends on the
current state of the system. For example:

• A population (e.g. bacterial cells in blood system) may increase by a constant proportion of
the current population .

• In radioactive decay, the rate of decrease in radioactivity is proportional to the current level
of radioactivity.

Q5.13
A poor (but consistent) gambler loses exactly half of his remaining money, M ,
every week. He starts with M0 = £640 at the beginning (n = 0) of the first week,
and is down to M1 = £320 at the end of the first week (n = 1) and down to
M2 = £160 at the end of the second week (n = 2).

For each value of n in the table below calculate:

(i) how much money, Mn, is left by halving the previous value
(ii) the value of Mn, using the equation M = 640 × 0.5n.
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End of week n = (0) 1 2 3 4 5 6 7

(i) Money, Mn(£) = 640 320 160

(ii) Mn = 640 × 0.5n = 640

The answers to Q5.13 show that a proportionate change can be mathematically represented
by an exponential equation. The exponential decay for Q5.13 is reproduced in Figure 5.1.

0

160

320

480

640

0 1 2 3 4 5 6 7

Number of weeks, n

1 week

Mn
2 weeks

3 weeks

Figure 5.1 Exponential decay: Mn = 640 × 0.5n.

If a population increases by a factor g within a given time period T , then

Growth factor, g = Population at end of period, T

Population at start of period, T

Example 5.11

Calculate the growth factors, g, in the following situations:

(i) a population increases by 5 % every 10 years
(ii) a bacterial population decreases by 20 % every hour.

(i) Period, T = 10 years: g = 100% + 5%

100%
= 105%

100%
= 1.05

A value of g > 1 shows a growing population.
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(ii) Period, T = 1 hour: g = 100% − 20%

100%
= 80%

100%
= 0.8

A value of g < 1 shows a decaying population.

Q5.14
Calculate the growth factors, g, in the following situations:

(i) A population doubles.
(ii) A population increases by 50 %.

(iii) A population falls by 10 %.
(iv) A population falls to 10 %.

When describing the growth (or decay) of a population we can write that:

Population at the start (n = 0) is given by N0.
Population after n periods is given by Nn.

The sequence of populations below for each period of a growth shows that the population
increases by a factor g every period, giving N0, N0 × g, N0 × g2, N0 × g3, etc.

Period Change in
population

Population

0 N0 (starting
population)

→ N0

1 N1 = N0 × g equivalent to: → N1 = N0 × g1

2 N2 = N1 × g substituting for N1: N2 = (N0 × g) × g → N2 = N0 × g2

3 N3 = N2 × g substituting for N2: N3 = (N0 × g2) × g → N3 = N0 × g3

n giving, after n steps: Nn = (N0 × gn−1) × g → N n=N 0 ×gn

Hence, after n periods, the population, Nn, is described by an exponential equation:

Nn = N0 × gn [5.21]

Example 5.12

What are the values for the period T (in days) and the factor g in the example given
in Q5.13?
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The question states that after 1 week the money remaining has fallen to one-half.

Hence g = 0.5 for a period T = 7 days.

In general, the time, t , taken for n periods of duration T will be given by

t = n × T and n = t

T
[5.22]

Hence we can rewrite equation [5.21] directly in terms of t instead of n.
A population, Nt , which grows by a factor g in a time T is given by:

Nt = N0 × g
t/T [5.23]

Figure 5.2 shows the exponential decay of an initial population of N0 = 640, which has a
growth factor of g = 0.5 over a time period, T = 7 days (= 1 week). This is the same decay
as in Figure 5.1, but the time, t , is now expressed in terms of days using equation [5.23].

0

160

320

480

640

0 10 20 30 40 50

Time, t /days

1 week

Nt
2 weeks

3 weeks

Figure 5.2 Exponential decay: Nt = 640 × 0.5
t/T with T = 7 days.

The equation, Nt = N0 × g
t/T , can be used to describe the growth (decay) of any exponential

system over a time, t .
For a particular system it would be necessary to choose appropriate values for each of the

variables, N0, g and T .

Example 5.13

The equation for the growth of bacteria (see 5.2.4) can be written as Nt = N0 × 2
t/TG ,

where TG is the generation time of the bacteria.
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In this case the bacteria numbers will double (growth factor, g = 2) within the period,
TG = generation time.

Q5.15
In a ‘chain letter’, one person sends a letter to six people who are each ‘encouraged’
to forward the letter to six new people within 2 weeks.

Assume that the chain is not broken and all six people actually forward the letter
to new recipients.

(i) What is the ‘period’ of change in this example?
(ii) What is the value for g in this example?

(iii) Using an equation of the form, Nt = N0 × g
t/T , estimate how many weeks,

months or years it would take before at least 20 million people have become
involved in the chain.

Q5.16

A bacterial culture in the ‘death phase’ has an initial population of 2.0 × 106 cells
per mL, which decays exponentially to one-tenth of its initial population in 1.2
hours.

(i) Calculate the population after 3.6 hours.
(ii) What is the value for g in this example?

(iii) Using an equation of the form, Nt = N0 × g
t/T , calculate the population after

2.2 hours.

5.2.3 Exponential growth equation Nt = N0ekt

Growth and decay in different areas of science have produced different expressions of the basic
equation Nt = N0 × g

t/T . However, the problem with this form is that different examples may
need different values for the base, g.

It is more convenient to use a standard equation that always uses the same ‘base’. For reasons
that may not be obvious at first, the best choice for a common ‘base’ is Euler’s number, e:

Nt = N0ekt [5.24]
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The base, e, is used extensively because of its simplicity when used in the differentiation
(6.2.2) of growth and decay equations.

In the above equation, we replaced the growth factor, g, and time period, T , with a single
exponential growth factor, k, whose value will depend on the value of g. Since the product,
k × t , is a pure number, k will have units of ‘1/time’.

Comparing equations [5.23] and [5.24], the two equations will be identical if:

ekt = g
t/T

Taking natural logarithms of both sides:

ln(ekt ) = ln
(
g

t/T
)

Using equation [5.8], the above equation becomes:

kt = t

T
× ln(g)

Cancelling t from both sides, we get:

k = ln(g)

T
and then T = ln(g)

k
[5.25]

5.2.4 Specific applications of Nt = N0ekt

We identify four examples of using specific time periods in growth and decay:

1. The exponential growth of a bacterial population is often measured by the generation time,
TG , which is the time that the population takes to double in number.

2. The decay of a radioactive isotope is measured by its half-life, T1/2, which is the time that
the radioactivity takes to fall to half of its initial value.

3. The decay of signals (particularly in electronics) is often described by a time constant, τ

(tau), which is the time taken to drop to a fraction , e−1, (∼36.8 %) of its initial value.
4. The decay of a bacterial population is often described by the decimal reduction time, TD ,

which is the time taken to fall to one-tenth of its initial value.

Values for k can be calculated from g and T for the four applications using [5.25] and are
given in Table 5.1.
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Table 5.1. Specific expressions for the growth factor, k.

Time period g k Equation Applications

Generation time 2.0 k = 0.693

TG

Nt = N0e0.693×t/TG Bacterial growth

Half-life 0.5 k = −0.693

T1/2
Nt = N0e−0.693×t/T1/2 Radioactive decay

Decrease to e−1 = 36.8% 0.368 k = −1.000

τ
Nt = N0e−t/τ Time constant

Decimal reduction time 0.1 k = −2.303

TD

Nt = N0e−2.303×t/TD Bacterial decay

These calculations show that, for an exponential decay , g will be less than 1.0, and k will
be negative.

Example 5.14

A bacterial colony has an initial population of 3.6 × 103 cells and a generation time,
TG = 25 minutes, calculate the population after:

(i) 50 minutes
(ii) 80 minutes

(i) From the definition of ‘generation time’, the population will double (g = 2) after
25 minutes, and then it will double again in the next 25 minutes, so that after 50
minutes the population will be:

N50 = 3.6 × 103 × 2 × 2 ⇒ 14.4 × 103 ⇒ 1.44 × 104 cells

(ii) The time, t = 80 minutes, is not a simple multiple of the generation time, and so we
cannot now use the quick method as in (i).
However, we can first calculate the value for k with equation [5.25]:

k = ln(g)/TG ⇒ ln(2)/25 ⇒ 0.693/25 ⇒ 0.02773(4 sf)

N0 = 3.6 × 103

Substituting into equation [5.24], the population, N80, after 80 minutes is:

N80 = 3.6 × 103 × e0.02773×80 ⇒ 3.31 × 104(3 sf)

Q5.17
The radioactive isotope radon-222 has a half-life of 3.8 days. If a sample has an
initial radioactivity of 10.8 s−1, calculate the radioactivity after:

(i) 11.4 days
(ii) 10.0 days
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Example 5.15

Calculate the decimal reduction time TD for a bacterial colony that decreases from
6.0 × 104 cells to 2.0 × 103 in 42 minutes.

The analysis is performed in the following text .

In Example 15.5, we use [5.24] and the expression for k in Table 5.1, to write directly:

Nt = N0 exp(−2.303 × t/TD)

where t is the time in minutes.
Substituting the values for N0 = 6.0 × 104 and N42 = 2.0 × 103 for t = 42.0:

2.0 × 103 = 6.0 × 104 × exp(−2.303 × 42.0/TD) ⇒ 6.0 × 104 × exp(−96.73/TD)

swapping the equation around (3.2.1) and dividing both sides by 6.0 × 104 (3.2.3)
gives:

exp(−96.73/TD) = 2.0 × 103/6.0 × 104 ⇒ 0.0333

Taking the inverse of the exponential (3.4.2):

−96.73/TD = ln(0.0333) ⇒ −3.402

Dividing both sides by −96.73 (3.2.3) and taking the reciprocal of both sides
(3.4.2):

TD = −96.73/−3.402 = 28.4 minutes

This decay is plotted in Figure 5.3.
The calculation in Example 5.15 gives the decimal reduction time TD as 28.4 minutes, and

we can see in Figure 5.3 that, when t = 28.4 minutes, the number of cells has decreased
to 6.0 × 104. This value is one-tenth of the initial value, which agrees with the definition of
decimal reduction time.
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Figure 5.3 Exponential decay in Example 5.15.

Q5.18
Calculate the generation time TG for a bacterial colony that increases from
2.0 × 104 cells to 1.7 × 106 in 180 minutes.

Example 5.16

A radioactive isotope decays with a half-life T1/2 = 30 days. Calculate:

(i) the proportion (fraction), F100, of activity remaining after 100 days
(ii) the time taken for the activity to fall to 1 % of its initial value.

(i) Using [5.24] and the expression for k in Table 5.1, we can write directly:

Nt = N0 exp(−0.693 × t/T1/2) ⇒ N0 exp(−0.0231 × t)

where t is the time in days.
The remaining proportion of activity is given by:

Ft = Nt

N0
⇒ N0 exp(−0.0231 × t)

N0
⇒ exp(−0.0231 × t)

After 100 days:

F100 = exp(−0.0231 × 100) ⇒ 0.0993

(ii) An activity of 1 % of the initial value after a time, t , equals a proportion:

Ft = Nt/N0 = 0.01
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Which, substituting into the equation in (i), gives:

0.01 = exp(−0.0231 × t)

Swapping the equation from side to side:

exp(−0.0231 × t) = 0.01

Taking the inverse operation of the power of e:

−0.0231 × t = ln(0.01) ⇒ −4.605

Hence:

t = −4.605/−0.0231 = 199.4days

Q5.19
The activity of an unknown radioactive isotope, X, is found to decay to one-tenth
of its initial activity after a period of 26 hours.

Calculate the half-life of the isotope.

Q5.20
The time constant, τ , of a capacitor of capacitance C which discharges through a
resistor of resistance R is given by:

τ = CR

Calculate the time taken for a capacitor to discharge to 1 % of its initial charge,
given that C = 0.01 × 10−6 F and R = 330 × 103�.

5.2.5 General use of the equation Nt = N0ekt

A common problem requires the calculation of the constant, k, when particular values of N0, Nt

and t are known. The solution is obtained by substituting the known values into [5.24] and
then rearranging the equation to calculate the unknown, k.
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Example 5.17

A bacterial population, initially with N0 = 5.2 × 105 cells per mL, is decaying exponen-
tially according to the equation Nt = N0 ekt , and it is found that after t = 2.0 hours, the
population has become N2.0 = 3.5 × 104 cells per mL.

(i) Calculate the value of k in the equation.
(ii) Hence calculate the expected population after 3.0 hours.

(i) Substituting the known values for t = 2.0 into [5.24]:

3.5 × 104 = 5.2 × 105 × ek×2.0

Swapping the equation around and dividing both sides by 5.2 × 105:

ek×2.0 = 3.5 × 104/5.2 × 105 ⇒ 0.06731

Using equation [5.7] to take the inverse operation:

k × 2.0 = ln(0.06731) ⇒ −2.699

which gives:

k = −1.349 h−1

(ii) Now we can substitute the values of N0, k and t = 3.0 to get:

N3.0 = 5.2 × 105 × e−1.349×3.0 ⇒ 9.09 × 103cells per mL

Q5.21
The population of a bacterial colony is initially measured as 450 and, after 10
hours, has grown to N10 = 620.

(i) Assuming that the growth is exponential, find the values N0 and k that will be
required to describe this growth when using the equation:

Nt = N0 ekt

Note that the units of k in this problem will be ‘h−1’.
(ii) Estimate the population after 12 hours.

Q5.22
The exponential growth of a population, N , can be written as an equation:

Nt = N0 ekt
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where Nt is the population at time t days, and N0 is the initial population at time
t = 0 days. If N0 = 3500 and k = 0.02 day−1, calculate the population after:

(i) 25 days (iii) 75 days

(ii) 50 days

Q5.23
A disease is spreading exponentially, such that the number of cases is increasing
by 10 % every week. If there are 100 cases at the beginning of the first week (when
t = 0), derive an equation of the form Nt = N0 ekt to give the number of cases,
Nt , after a time, t , measured in weeks.

Calculate the values for N0 and k appropriate to this problem.

Note that the units of k in this problem will be ‘week−1’.

An equation containing an exponential term can sometimes approach a non-zero value. An
example is illustrated by Q5.24 in which the value, Vt , starts at zero and then approaches a
constant value, V0, with a time constant, τ . The rate of change decreases as it approaches the
constant value.

Q5.24
The following equation represents a form of growth that reaches a maximum
saturation level, V0.

Vt = V0 ×
[

1 − exp

(
− t

τ

)]

(i) For V0 = 10.0 and τ = 1.5, plot the behaviour of Vt on a graph against values
of time, t = 0, 1, 2, 3 and 4.

(ii) From the graph, estimate values for the ratio (Vt/V0) when t = τ and when
t = 2τ .

(iii) Use the equation to calculate the values for the ratio (Vt/V0) when t = τ and
when t = 2τ .

It is also common to find exponential change occurring with a variable other than
time, t .
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Q5.25
The penetration of light intensity, Id , vertically downwards at a depth, d(m), into
a lake is given by the equation:

Id = 25.0 e−kd

If the light intensity I5 = 5.6 lumens (lm) at a depth d = 5.0 m, calculate the light
intensity I10 at a depth d = 10.0 m.

5.2.6 Linearizing Nt = N0 ekt

There are many occasions in science when we want to find the ‘best fit’ of a theoretical equation
to a set of experimental data.

The procedure for finding the best-fit for straight line data is straightforward using both
graphical and linear regression methods – see 4.2. However, it is far more difficult to calculate
a best-fit equation for an exponential curve.

We will develop a compromise procedure for the exponential equation [5.24]:

Nt = N0 ekt

where we manipulate the exponential equation so that the data can be plotted as a straight line
using appropriate co-ordinate axes.

The linearization procedure (see also 4.3.1) is to take logarithms of both sides of the
equation. It is possible to use either ‘ln’ or ‘log’:

ln(Nt) = ln(N0 × ekt ) or log(Nt) = log(N0 × ekt )

Using equation [5.10] for the logarithm of a product, each equation becomes:

ln(Nt) = ln(N0) + ln(ekt ) or log(Nt ) = log(N0) + log(ekt )

For linearization using the natural logarithm , equation [5.8] gives ln(ekt ) = kt , and we find:

ln(Nt) = ln(N0) + k × t [5.26]
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which is of the same form as the straight line equation:

y = c + m × x

If we plot ln(Nt) as the y variable and t as the x variable we will get a straight line with:

Slope, m = k

Intercept, c = ln(N0)

k can be derived directly from the slope : k = m [5.27]

N0 can be calculated from the intercept, c, using N0 = ec [5.28]

For linearization using logarithms to base 10 , equation [5.9] gives:

log(ekt ) = kt × log(e) ⇒ 0.4343 × k × t

and we find that the linearization equation from above becomes:

log(Nt) = log(N0) + 0.4343 × k × t [5.29]

Plotting log(Nt) against t will still give a straight line as for ln(Nt), but with different
coefficients:

Slope, m = 0.4343 × k

Intercept, c = log(N0)
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which can be rearranged to give:

k = 2.303 × m and N0 = 10c [5.30]

The specific period, T , of the growth/decay (e.g. generation time, TG) can then be calculated
from k by using the equation [5.25] or the equations in Table 5.1.

Example 5.18

Experimental measurements of the population, Nt , of the dying bacterial colony described
in Example 5.15 are recorded. Then, taking logarithms, the values of log(Nt ) are plotted
against the time, t (minutes).

A linear regression calculation (e.g. using the INTERCEPT and SLOPE functions in
Excel) gives a best-fit line with:

Initial value (intercept), c = log(N0) ⇒ 4.78

Slope, m = −0.0352min−1

Calculate the best estimate for the decimal reduction time, TD , for this colony.

The analysis is performed in the following text .

The data in Example 5.18 is plotted (see Figure 5.4) using log(Nt) so that we use
k = 2.303 × m from [5.30], giving:

k = 2.303 × (−0.0352) = −0.0811

The value for TD is calculated from k by rearranging the equation k = −2.303/TD from
Table 5.1:

TD = −2.303

k
⇒ −2.303

−0.0811
⇒ 28.4 minutes (as in Example 5.15)

Note that, when plotting log(Nt ) against the time, t , the decimal reduction time, TD , is equal
to the negative reciprocal of the slope, TD = −1/m = 1/(−0.0352) = 28.4.

The ‘linearized’ decay in Figure 5.4 should be compared with the same data when plotted,
in Figure 5.3, as Nt directly against t .

It can be seen from Figure 5.4 that after one ‘decimal reduction time’, when t = 28.4
minutes, the value of log(Nt) has fallen from 4.78 to 3.78, i.e. a fall of 1.0 on the logarithm
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Figure 5.4 ‘Linearized’ exponential decay in Example 5.18.

scale. It is also possible to see that this rate of fall is the same at any point on the graph, e.g.
the value of log(Nt ) also falls by 1.0 from 4.0 to 3.0 over the period from 22.2 to 50.6 minutes
= 28.4 minutes.

Using a plot of the logarithmic (to base 10) decay, the ‘decimal reduction time’, TD , can be
recorded directly by noting the time that the graph takes to fall by 1.0 on the log(Nt ) scale.

Q5.26
In an experimental measurement, the activity, At , of radon-220 (thoron) is plotted
as ln(At ) against the time, t (seconds).

A regression analysis of the data gives:

Slope = −0.012 s−1

Calculate the best estimate for the half-life, T1/2, for this isotope.

Q5.27
Most pharmokinetic processes are described by first-order kinetics. The drug con-
centration, C, in the body falls with time, t , according to the equation:

C = C0 e−Kt

where K is the elimination constant and C0 the concentration at zero time.

In an experimental measurement, values of concentration, C, are measured as a
function of time, t (hours), and a graph of ln(C) versus t is plotted.
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A regression analysis of the data gives:

Slope = −0.61

Intercept = 4.1

(i) Calculate the value of the elimination constant, K .
(ii) Calculate the value of the initial concentration, C0.

More complex equations sometimes involve the need to perform further changes to the
plotted variables (4.3.3).

Example 5.19

In the Arrhenius equation, the rate constant, k, of a chemical reaction is a function of
the activation energy, E (J mol−1) and absolute temperature, T (K):

k = Ae
(
−E/RT

)

where R is the gas constant (= 8.31 J mol−1 K−1) and A is a constant.

In an experiment, the rate constant, k, is measured as a function of different temperatures,
T . A graph of ln(k) is plotted against 1/T and a linear regression calculation gives a
‘best-fit’ slope, m = −6450.

Calculate the activation energy, E, for this reaction.

The first step in linearizing the Arrhenius equation is to take natural logarithms of both
sides:

ln(k) = ln(A) − E

RT

If we now plot ln(k) as the y variable and write (1/T ) as the x variable:

ln(k) = ln(A) − E

R

(
1

T

)

the slope of the resultant straight line will be:

m = −E

R

As the measured value of m = −6450, we can rearrange the equation to give:

E = 6450 × R ⇒ 6450 × 8.31 ⇒ 53.6 × 103 J mol−1 ⇒ 53.6 kJ mol−1
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Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Excel files appropriate to selected ‘Q’ questions and Examples.

Nature is not static, and much interesting science is concerned with how systems
change.

We start the first unit with familiar calculations of average speed, by recording change of
position within a finite time interval. The calculation of speed is related to the slope of a line
on a distance against time graph. We then develop the more general case for calculating speed
at an instant, when the speed is represented by a continuously varying curve on a graph. This
‘rate of change’ mathematics is also applied to other systems.

Simple examples in Excel are used to demonstrate how continuously varying data can be
modelled in a suitable spreadsheet format. The calculations for approximate models are rela-
tively simple, but it is often possible to develop solutions to the required degree of accuracy.

The analytical mathematics (calculus) of differentiation is beyond the scope of this book.
However, the second unit introduces the concept of ‘differentiation’ and gives a brief intro-
duction to some ideas of calculus.

6.1 Rate of Change
6.1.1 Introduction
The most familiar ‘rate of change’ is probably speed . We express speed, v, as a rate of
change of distance, z, with time, t , e.g. ‘miles per hour’ or ‘metres per second’. How-
ever, ‘rates of change’ are found in all areas of science involving a variety of different
variables.

We start with simple examples of average speeds within finite periods of time, and then
progress to the more general case of a continuously varying x –y relationship.

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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6.1.2 Rate of change with time
We can express a ‘rate of change’ with a simple equation:

Average speed, v = Change of distance

Change of time
= �z

�t
[6.1]

Note that:

Change = Final value − Initial value

The Greek symbol � (capital delta) is often used to denote a ‘difference’ in value.

Example 6.1

A motorcyclist is initially at a distance of 5000 m (5 km) along a road from a petrol
station.

(i) She drives away from the petrol station reaching a distance of 9000 m (9 km) after
200 s. Calculate her average speed in this period.

(ii) She continues to drive away from the petrol station, but at a faster speed, reaching a
distance of 12 000 m (12 km) after a further 100 s. Calculate her new average speed
in this period.

(iii) She then turns round and drives towards the petrol station, reaching it after a further
400 s. Calculate her average speed in this last period.

The analysis is performed in the following text .

Figure 6.1 uses a z–t diagram to represent the distance along the road, z, of the motorcyclist
in Example 6.1. The straight lines, which connect the points, assume that the motorcyclist
travels at a constant speed in each section of the journey.

(i) The first section of the journey is illustrated by triangle A in Figure 6.1, where:
Change in distance, �z = 9000 − 5000 = 4000 m
Change in time, �t = 200 s
The average speed in the first section is calculated using [6.1]:

v = �z

�t
= 4000

200
= 20 m s−1
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Figure 6.1 Distance–time graph for Example 6.1.

(ii) The second section of the journey is illustrated by triangle B in Figure 6.1, where the
average speed is calculated using [6.1]:

v = �z

�t
= 12 000 − 9000

300 − 200
= 3000

100
= 30 m s−1

(iii) In the third section of the journey, illustrated by the triangle C in Figure 6.1, the change
in distance is negative, which gives a negative average speed:

v = 0 − 12 000

400
= −12 000

400
= −30 m s−1

The speed is negative in (iii) because the motorcyclist is travelling in a direction opposite
to the direction in which the distance is being measured.

Example 6.2

Calculate the slopes of the straight line graph for each of the three triangular sections in
the graph in Figure 6.1

The slope, m, of the straight lines are calculated using [4.8], giving:

Triangle A: m = 9000 − 5000

200 − 0
= 4000

200
= 20 m s−1

Triangle B: m = 12 000 − 9000

300 − 200
= 3000

100
= 30 m s−1

Triangle C: m = 0 − 12 000

400
= −12 000

400
= −30 m s−1
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Comparing the results in Example 6.1 with those in Example 6.2, it can be seen that:

Rate of change of z with t equals the slope of the graph of z against t .

Q6.1
Calculate the missing values in the table below:

Initial Final Initial Final Speed
distance (m) distance (m) time (s) time (s) (m s−1)

2000 4000 100 150 40

2000 100 200 30

2000 6000 400 40

2000 100 200 −40

5000 3000 0 200

6.1.3 Modelling a continuous curve
In Example 6.1, the data is given at discrete intervals . We calculate an average speed between
the points by assuming a constant (straight line) speed between those points.

For a curve with a constantly changing slope we can still measure changes over finite
intervals to produce an approximate model for the variation in slope.

For example, in Figure 6.2 the slope at the point Q can be found by taking the differences,
�y and �x, between two points, P and R, on either side of Q.

In Figure 6.2, the slope at Q, mQ, is given approximately by:

mQ ≈ �y

�x
[6.2]
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Figure 6.2 Approximation for rate of change.
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If the curve is described by the co-ordinates of a series of points, then the slope of the curve
can be calculated approximately by repeating the calculation in [6.2] between successive pairs
of data points. This form of calculation can be modelled conveniently using Excel.

Example 6.3 illustrates the use of repeated calculations to model the change in surface
gradient on a path that crosses a hill peak.

Example 6.3

Figure 6.3 is a map of height contours around a hill peak. Adjacent contours differ in
height by 20 m, with the outer contour at a height h = 60 m. A straight path, given as
the x-axis (in km), passes directly over the hill peak.

Figure 6.3 Height contours around a hill peak.

Calculate (approximately) the slope of the ground at the points where each contour
(except the outer) crosses the x-axis.

The analysis is performed in the following text .

The positions where each contour crosses the x-axis in Example 6.3 are given in Table 6.1,
as an extract from an Excel worksheet:

Table 6.1. Heights along x-axis in Example 6.3.

A B C D E F G H I J K L M

4 Height, h (m) 60 80 100 120 140 160 160 140 120 100 80 60

5 Distance, x (km) 2.9 3.4 3.8 4.0 4.1 4.3 4.4 4.9 5.2 5.4 5.9 6.5

6 Slope, m (m km−1) 44 67 133 133 67 −33 −50 −80 −57 −36

The calculation of slope at the position where x = 3.4 km is achieved by using the data
points on either side, x = 2.9 and x = 3.8, and entering appropriate differences into [6.2] (the
results are formatted to integer values):

mx=3.4 ≈ �h

�x
= (100 − 60)

(3.8 − 2.9)
= 44.4 m km−1

The entry in the Excel worksheet for cell C6 is ‘=(D4-B4)/(D5-B5)’.
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The slopes at each subsequent point are calculated by repeating the above calculation, moving
from point to point. This form of repetitive calculation is very easily performed in Excel.

Notice that the slope is positive leading up to the peak and then negative after the peak.

Example 6.4

The following data shows the results of a potentiometric titration, where the cell potential
is recorded as more titrate is added.

Calculate the ‘end-point’ of the titration, where the rate of change of cell potential is
greatest .

Volume
added

V (cm3) 8.0 8.5 9.0 9.2 9.4 9.6 9.8 10.0 10.2 10.4 10.6 10.8 11.0 11.5 12.0

Cell
potential

E (mV) 154 161 173 178 188 197 211 228 237 248 255 260 265 269 273

Slope
�E

�V
19.0 24.3 37.5 47.5 57.5 77.5 65.0 50.0 45.0 30.0 25.0 12.9 8.0

The rate of change (or slope) of the cell potential with volume is calculated using an
equation derived from [6.2]. For example, the slope when volume added, V = 8.5 mL,
is calculated:

Slope (at V = 8.5) ≈ �E

�V
= 173 − 154

9.0 − 8.0
= 19.0 mV cm−3

The graphs in Figure 6.4 show the cell potential and its slope plotted against the volume
added.
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Figure 6.4 (a) Cell potential versus volume. (b) Slope versus volume.
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The volume, V = 9.8, where the slope is greatest, can be seen most easily from the
graph of the slope of the curve, at the point where this graph reaches a maximum.

Q6.2
The data in the table below gives the speed of a car as a function of time, as it
accelerates to overtake a slower vehicle.

Take Acceleration = Rate of change of speed with time, and use [6.2] to estimate
the acceleration between the times 2 and 28 seconds inclusive, and plot your results
on a suitable graph.

Time (s) 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Speed
(m s−1)

20 20 20 21 23 27 31 34 35 35 35 34 33 32 32 32

Acceleration
(m s−2)

6.1.4 Slope of a graph at a point
We can aim to measure the slope of the graph at a particular point by making the measurement
interval as small as possible. By making the measurement interval ‘infinitely’ small, we can
then obtain a value for the slope of the curve at that point.

Figure 6.2 shows a continuous x–y curve with three points on the curve, P, Q and R. The
points P and R are used to estimate the slope of the curve around Q, and are separated by
small differences �x and �y in the x- and y-directions respectively.

The average slope of the curve between P and R is given approximately by equation [6.2].
In Figure 6.2, a straight line drawn between the points P and R crosses the curve at the

two points P and R. If we now bring P and R closer towards Q, we can imagine reaching a
situation when the straight line only just touches the curve at the point Q.

The straight line that just touches a curve at a point Q, but does not cross the curve, is
called the tangent to the curve at the point Q .

When we bring P and R closer towards Q, and make �x approach zero, we rewrite the
ratio, �y/�x, as, and the slope of the curve at Q is given by:

Limit�x→0
�y

�x
⇒ dy

dx
[6.3]

dy/dx (pronounced ‘dee’ y by ‘dee’ x) is called the differential coefficient, the derivative, or
the slope at the point.
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The value of the differential coefficient (or slope), dy/dx, will vary from point to point along
a curve.

Q6.3
The graph in Figure 6.5 shows the population, Nt , of a bacterial colony as a
function of time, t .
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Figure 6.5

The population at time t = 60 min is 37.85 × 104, and the straight line is the
tangent to the graph at that point.

(i) Using the drawn tangent, estimate the rate of growth of the colony at the time
t = 60 min.

(ii) Draw a tangent to the curve at time t = 90 min, and hence estimate the rate
of growth of the colony at the time t = 90 min.

6.2 Differentiation
6.2.1 Introduction
The concept of the differential coefficient was introduced in 6.1.4 as being the slope of a
curve at a single point. In this unit we give some examples of equations that describe the
slope of a function at any given point. These equations were derived using the mathematical
processes of calculus . However, it is beyond the scope of this book to develop this advanced
form of mathematics, but we include this section as a brief introduction to its power and
uses.
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We also see in 6.2.2 that an important property of Euler’s number, e, is that the slope (or
differential coefficient) of the curve y = ex is also equal to ex . This is a unique property that
only applies to the number e = 2.718 28 . . ., and is the reason that ‘e’ is used so often in the
mathematics of growth and decay.

6.2.2 Differentiation
Differentiation is the mathematical process (in calculus) for calculating the differential coef-
ficient, dy/dx, directly from the equation that relates y to x. We introduce this concept using
Example 6.5

Example 6.5

Plot the curve y = x3 between x = 0.0 and 2.5.

(i) Draw tangents to the curve at points x = 1.0 and 2.0.
(ii) Calculate the slopes of the tangents in (i) from the graph.

(iii) Hence, show that the results in (ii) are consistent with the fact that the slope, m(=
dy/dx), of the curve y = x3 is given by:

dy

dx
= 3x2

The analysis is performed in the following text .

Plotting the curve y = x3 in Figure 6.6, we calculate the slope, mx=1, when x = 1, and mx=2,
when x = 2, by drawing tangents at these points and measuring the slopes of these tangents.
The slope of each tangent is calculated by using equation [4.8] applied to the points at both
ends of each tangent.
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Figure 6.6 Slopes of y = x3.
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By construction, we find that when x = 1, mx=1 = 3, and when x = 2, mx=2 = 12. Using
the equation for the slope (or differential coefficient), dy/dx = 3x2:

for x = 1, slope mx=1 =
(

dy

dx

)
x=1

= 3 × 12 ⇒ 3

for x = 2, slope mx=2 =
(

dy

dx

)
x=2

= 3 × 22 ⇒ 12

We can see that our graphical construction is consistent with the equation for the differential
coefficient in this particular problem.

In general, there are a number of rules in calculus for deriving the differential equation from
the original equation. In this book we only give some simple examples – see Table 6.2.

Table 6.2. Differentials of common equations (c, A and B are constants)

Equation Differential coefficient Comment

y = c
dy

dx
= 0 The rate of change of a constant is zero

y = AxB
dy

dx
= ABxB−1 Differentiation of a power

y = AeBx
dy

dx
= AB eBx Differentiation of an exponential

Example 6.5 is a ‘power’ equation, y = AxB , where A = 1 and B = 3. From Table 6.2
we can see that the differential coefficient of this equation would become (substituting for A

and B):

dy

dx
= ABxB−1 ⇒ 1 × 3 × x3−1 ⇒ 3x2

If, in Table 6.2, we consider the simple exponential equation y = ex , with A = 1 and
B = 1, then its differential coefficient will be:

dy

dx
= 1 × 1 × e1x ⇒ ex

Hence the differential coefficient of ex is also ex . This is the special property of ‘e’ which
makes it such an important number in growth and decay equations.
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Example 6.6 now illustrates the differentiation of an exponential equation to calculate the
rate of growth of a bacterial colony.

Example 6.6

The number, Nt , in a bacterial colony with a generation time of 28 minutes can be
described (5.2.4) using the following equation, where t is given in minutes:

Nt = N0e0.0247×t

If the initial colony size is N0 = 8.6 × 104 (when t = 0), calculate the rate of growth
(in cells per minute) when t = 60 minutes.

If we compare the equation with the general exponential equation y = AeBx , we find
the equivalences:

y → Nt, A → N0, B → 0.0247, x → t

We see from Table 6.2 that the differential coefficient of the general exponential equation
y = AeBx is then given by:

dy

dx
= ABeBx

Substituting the values for y, x, A and B appropriate to this problem:

dNt

dt
= 8.6 × 104 × 0.0247 × e0.0247×t

Then substituting for t = 60 gives:(
dNt

dt

)
t=60

= 9350 min−1

i.e. when t = 60, the rate of growth is 9350 cells per minute.

The rate of change with time is sometimes written with a ‘dot’ over the variable. For
example, the cardiac output in terms of volume, V , of millilitres of blood per minute can be
written as:

V̇ = dV

dt
mL min−1
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Note that, when writing out the differential coefficient of an expression for y, it is often
convenient to write the expression in a bracket after d/dx. For example, if y = AeBx , then we
would write:

dy

dx
= d

dx
(AeBx)

Example 6.7

The distance, z, travelled by a falling stone as a function of time, t (ignoring air resis-
tance), is given by:

z = 4.9 × t2

Given that velocity = rate of change of distance with time, calculate the velocity of the
stone after 2 seconds.

We know that:

Velocity, v = Rate of change of distance,
dz

dt
= d

dt
(4.9 × t2)

Comparing with the standard equation from Table 6.2:

d

dx
(AxB) = A × B × xB−1 = ABxB−1

we can deduce, by putting A = 4.9, B = 2 and x = t , that:

v = d

dt
(4.9 × t2) = 4.9 × 2 × t2−1 = 9.8 × t

When t = 2.0, we can calculate that:

vt=2 = 9.8 × 2.0 = 19.6 m s−1

6.2.3 Rate equations
There are many examples in science where the rate at which a quantity grows or decays is
proportional to the quantity at that time, as illustrated in Example 6.8.
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Example 6.8

A chemical A breaks down into other compounds B and C:

A → B + C

In a first-order rate equation, the rate at which the concentration of A decreases with
time, t , is proportional to the concentration of A at time t (usually written as [A]t ).
Hence we can write:

d[A]t
dt

= −k[A]t

where k is a constant and the negative sign shows a decay.

How will the decay of [A]t appear on a graph as a function of t?

The analysis is performed in the following text .

To answer Example 6.8, we need to find an expression for [A]t that makes the differential
equation true (i.e. a solution to the equation).

With experience, we can anticipate that substituting [A]t = [A]0e−kt will make the differen-
tial equation in the question balance. Using Table 6.2:

d[A]t
dt

= [A]0 × (−k) × e−kt ⇒ −k[A]t

Hence the exponential decay [A]t = [A]0e−kt is a true solution to the equation, and will
describe the decay of chemical, A.

Q6.4
In microbiology, the rate of growth of a population of Nt organisms at a time t is
given by:

dNt

dt
= kNt

where k is a constant.

Derive an equation that describes the population Nt as a function of time, t .
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Q6.5
The decay of a bacterial population is described by the equation:

Nt = 5.6 × 108 × exp(−0.4 × t)

where Nt is the population at a time t(s).

Calculate the number of bacteria dying per second at the following times (the
differential coefficient will be negative as the numbers of bacteria are decreasing):

(i) t = 0 s (iii) t = 10 s

(ii) t = 5 s

6.2.4 Estimating changes
If the value of the differential coefficient can be calculated, it is then possible to estimate the
effect of small changes, �x and �y, by using the approximation:

�y

�x
≈ dy

dx
[6.4]

which can be rearranged to give:

�y ≈ dy

dx
× �x [6.5]

Example 6.9

Using the results from Example 6.6, the rate of growth of a particular bacterial colony
when t = 60 min is:(

dNt

dt

)
t=60

= 9350 min−1

Estimate the increase in colony size, �N , between t = 58 min and t = 62 min.
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The time interval, �t = 62 − 58 = 4 min. Using [6.5] for this problem, we can write:

�N ≈
(

dNt

dt

)
t=60

× �t

giving:

�N ≈ 9350 × 4 = 37 400 cells

Q6.6

The volumes, V (m3), of adult animals of a particular species are related approxi-
mately to their heights, h (m), by the equation V = 0.04 × h3.

(i) Derive an expression for the differential coefficient, dV /dh.
(ii) Hence estimate the increase in volume (�V ) of an animal of height h = 1.6 m,

if it then grows by (�h =) 0.02 m.
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Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Excel tutorial: statistical calculations.
• Excel and Minitab files appropriate to selected ‘Q’ questions and Examples.

All scientific experiments suffer from experimental uncertainty due to either subject variability
and/or measurement variability (1.2). This variability can occur with the actual subjects being
measured, e.g. different colonies of bacteria will grow at different rates even though the condi-
tions appear to be the same. The variability can also appear in the actual measurement process
itself, e.g. repeated measurements on the same fragment of glass may yield slightly different
values for its refractive index, because of the limited accuracy of the measurement process.

There are three main ways in which statistical analysis is particularly useful in science:

• Presenting data in visual formats which aid understanding of the underlying patterns.
• Calculating ‘best estimates’ for the ‘true’ values of the parameters being measured.
• ‘Testing’ for the ‘truth’ of possible scientific hypotheses through an evaluation of the prob-

abilities of error.

This chapter starts with a common situation in data analysis, i.e. repeated (replicate) measure-
ments made to obtain a best estimate of an unknown value. The first step is to be able to
display the data using a box and whisker plot . The next is to be able to calculate a quantitative
result, the confidence interval , which incorporates an expression of the underlying uncertainty
in the data.

The following units then develop the elements of statistics that are particularly useful for data
analysis in science, introducing methods that are used to describe and quantify the variability
that occurs in a simple set of experimental data. The section highlights the fact that a set of
experimental results only represents a sample of all the possible values that could be obtained
if the experiment could be repeated over and over again. We then use statistics to infer , from
a data sample, best estimates for the characteristics of the actual system being measured.

With more extensive data sets it is often more convenient to record the number (or frequency)
of data values falling within given data ranges . The characteristics of the data are then described
by the characteristics of the overall frequency distribution or probability distribution.

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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Finally, a section on factorials, permutations and combinations gives further basic statistics
that underpin the later development of the binomial theorem and non-parametric tests.

Additional material on the Website includes the Bayesian approach to probability, which
uses prior and posterior odds and likelihood ratios. Bayesian statistics are being used more
extensively in managing probabilities in complex ‘real-life’ situations.

7.1 Analysing Replicate Data
7.1.1 Introduction
Experimental measurements are often made to discover the ‘true’ value of some parameter,
e.g. the pH of a solution. However, all experimental measurements are subject to uncertainty,
which means that the final value will only be a ‘best estimate’ for the unknown ‘true’ value.
It is therefore common to make repeated (replicate) measurements to counteract the effects of
random experimental uncertainties.

In this context, statistics can be used to perform two key functions:

1. Provide a description of the experimental ‘raw’ data that has been recorded, often presenting
this in the form of a visual ‘picture’ of the distribution of the values.

2. Calculate, using certain statistical assumptions, a ‘best estimate’ of the ‘true’ value being
measured.

We will use the experimental data in Example 7.1 to introduce the use of a box and whisker
plot to describe the raw data and then we will use a case study to investigate the cal-
culation of a 95 % confidence interval to give the best estimate of the ‘true’ value being
measured.

7.1.2 Ranked data – box and whisker plots

Example 7.1

The following data set has nine replicate experimental measurements of an unknown
‘true’ value, µ.

Data 2.3 11.3 3.8 4.5 4.2 8.1 6.3 3.7 3.3

Produce a visual representation of the values in this data set.

The worked answer is given the following text .

Ranked data has the data values sorted into ascending (or descending) order and assigned a
rank position .

The nine data values in Example 7.1 can be sorted into ascending order and assigned rank
positions from 1 to 9.
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Data: 2.3 3.3 3.7 3.8 4.2 4.5 6.3 8.1 11.3

Rank: 1 2 3 4 5 6 7 8 9

Ranking is used extensively in non-parametric statistics (Chapter 12), where only the ‘order’
of the data values is important and not the actual (parametric) values.

The location of a set of, n, data values is described by the following:

• Median is the middle value in a set of ranked data values and gives the location of the data.
The median is the value with the rank 0.50 × (n + 1).

• Lower quartile, Q1, is the value one-quarter of the way from the lowest to the highest
value. The lower quartile is the value with the rank 0.25 × (n + 1).

• Upper quartile, Q3, is the value three-quarters of the way from the lowest to the highest
value. The upper quartile is the value with the rank 0.75 × (n + 1).

In the above data, the number of data values, n = 9. Thus:

• Median value has the rank = 0.5 × (9 + 1) = 5
Median value with rank 5 = 4.2

• Lower quartile value has the rank = 0.25 × (9 + 1) = 2.5
Lower quartile value with rank 2.5 is halfway between 3.3 and 3.7 = 3.5

• Upper quartile value has the rank = 0.75 × (9 + 1) = 7.5
Upper quartile value with rank 7.5 is halfway between 6.3 and 8.1 = 7.2

The spread of non-parametric data is described by the following:

• Interquartile range, IQR, is the difference in value between the upper quartile and lower
quartile:

IQR = Q3 − Q1

• Total range is the difference in value between the lowest value and the highest value.

Q7.1
For each of the sets below, calculate:

Median Lower Upper IQR
quartile quartile

(i) 5.0, 8.2, 7.9, 6.6, 7.6, 5.7, 3.2, 7.5, 5.9

(ii) 11, 8, 13, 9, 21, 24, 12, 22, 29, 43

(iii) 45, 67, 23, 78, 67, 56, 98, 23, 49
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A box and whisker plot (often just called a boxplot) is very useful way of visualizing raw
experimental data.

Figure 7.1 shows the box and whisker plot for the data in Example 7.1, drawn against the
data value axis.

9 10 11 122 3 4 5 6 7 8

Data

Figure 7.1 Box and whisker plots of data in Example 7.1 (using Minitab).

The ‘middle’ line drawn inside the box shows the position of the median value.
The ends of the ‘box’ give the positions of the upper and lower quartiles .
The ends of the ‘whiskers’ give the maximum and minimum values in the data.

The fact that the median is not at the centre of its ‘box’ shows that the data is not symmetrical.

Q7.2
Represent all of the number sets in Q7.1 as box and whisker plots.

It is not possible to use standard Excel to draw box and whisker plots. However, statistics
packages such as Minitab can produce these diagrams easily.

7.1.3 Confidence interval for an unknown value
If we are trying to measure some experimental property with a true value of µ, then we are
more likely to record a value, x, close to µ, and less likely to record a value a long way away
from µ. The graph in Figure 7.2 shows the likelihood distribution for getting an experimental
result, x, when measuring a true blood–alcohol level of µ = 80 mg of alcohol in each 100 mL
of blood, i.e. 80 mg per 100 mL.

x
807876 82 84 8674

Figure 7.2 Distribution of possible experimental values.
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In this example, we have assumed that most measurements fall between 78 and 82 and
nearly all between 76 and 84, with only a few outside this range.

The mathematical name for this ‘bell-shaped’ distribution is the normal distribution (see
8.1.3). Most random experimental errors can be considered to have a frequency spread of
results that follow a normal distribution.

Example 7.2

Twenty analysts each make five replicate measurements on a blood sample which has
a true value of 80 mg per 100 mL. The individual recorded values are distributed at
random with probabilities given by the curve in Figure 7.2.

How can their results be presented and interpreted?

The worked answer is given in the following text .

For Example 7.2, a random selection of values by computer has been used to simulate the
realistic spread of 20 possible data sets, each with five experimental data values. The results
are described by the 20 box and whisker plots in Figure 7.3.

86

84

82

80 80

78

76

74
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

D
at

a

Figure 7.3 Box and whisker plots for 20 data sets (using Minitab).

It is important to realize that, in a real experimental measurement, none of the 20 analysts
would know either the true value (µ = 80) being measured or the uncertainty in the measure-
ments. Individually, they must rely on just their five measurements to estimate both the true
value and measurement uncertainty.

For example:

• Set 14 has data values that happen to be grouped closely together and all on the high side of
the true value, and the analyst would tend to believe that his or her results are quite precise
and close to a value of about 81.
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• Set 5 has a wide spread of values and the analyst would not claim the same precision as
analyst 14.

• Set 15 shows results that are skewed to low values (the median value is close to the lower
end of the range) and set 1 is skewed to high values, whereas set 13 is fairly symmetrical.

• Set 18 only just includes the true value of 80.

The data for these six sets are given in Table 7.1.

Table 7.1. Data for analyst sets 1, 5, 13, 14, 15 and 18.

Set Data Mean 95 % confidence interval

Minimum Maximum

1 80.2 79.6 80.7 80.4 76.4 79.5 77.3 81.6
5 81.7 83.4 78.9 75.3 79.0 79.7 75.8 83.5

13 78.0 79.0 81.7 80.7 84.1 80.7 77.7 83.7
14 80.8 82.1 80.5 80.6 81.3 81.1 80.2 81.9
15 78.1 81.7 78.3 78.2 78.0 78.9 76.9 80.8
18 78.6 79.1 76.4 80.0 77.9 78.4 76.7 80.1

Based on their own five measurements, each analyst is required to give a best estimate of
the unknown true value in the form of a confidence statement. For example, analyst 5 would
present his or her results as follows:

On the basis of my five data values, I am 95 % confident that the true value, µ, lies between 75.8
and 83.5.

This range of values, called the 95 % confidence interval, is a symmetrical range centred on
the mean (average) value of the set of sample data – see 8.2.4. The minimum and maximum
values of the confidence interval in Table 7.1 have been calculated using theory that will be
developed in Chapter 8.

The 95 % confidence intervals are calculated for each data set and recorded in Figure 7.4 as
‘error bars’ on either side of the sample mean values.

The statement that the ‘true value, µ, lies within the 95 % confidence interval’ has a 5 %
chance of being wrong . Hence we could expect that 5 % of claims (i.e. 1 in 20) will indeed
prove to be wrong. The simulated data agrees with this probability, in that it can be seen that
just one confidence interval (from set 14) does not include the true value (µ = 80).

Example 7.3

Which of the 20 analysts, whose results are given in Figure 7.4, would answer Yes to
the following question:

On the basis of your results, are you 95 % confident that the true blood–alcohol level is
not 82 mg per 100 mL?”
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We can see in Figure 7.4 that the confidence intervals for sets 1, 4, 6, 7, 8, 9, 14, 15
and 18 do not cross the 82 mg per 100 mL grid line.

As the ‘82’ value is outside their separate confidence intervals for the true blood–alcohol
level, each of these analysts would answer yes to the above question.
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Figure 7.4 The 95 % confidence intervals for 20 data sets (using Minitab).

Q7.3
Case study data has been presented using both box and whisker plots in Figure 7.3
and confidence intervals in Figure 7.4.

Explain the fundamental difference between the information described by the two
forms of presentation.

The difference between the two types of presentation can be illustrated by the effect of
increasing the sample size of data values. The presentations in Figure 7.5 show a sample size
n = 5 (set 1 from the data), sample size n = 10 (set 1 plus set 2), sample size n = 20 (sets 1
to 4), sample size n = 40 (sets 1 to 8) and sample size n = 80 (sets 1 to 16).

The interquartile ranges of the box and whisker plots (Figure 7.5a) approach a constant range
which is representative of the underlying uncertainty in the data being measured, and the ends
of the whiskers extend to the most extreme data values in the set.

However, the confidence interval (Figure 7.5b) is a measure of confidence in locating the
true value being measured, and as the sample size increases, the increased information means
that it is possible to be more precise about the true value – the confidence interval becomes
narrower. This effect due to the central limit theorem is explained in 8.2.3.
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(a) (b)

Boxplot of n = 5, n = 10, n = 20, n = 40, n = 80 95% CI for n = 5, n = 10, n = 20, n = 40, n = 80

n = 5 n = 10 n = 20 n = 40 n = 80 n = 5 n = 10 n = 20 n = 40 n = 80
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Figure 7.5 Effect of increasing sample size on (a) boxplots and (b) confidence intervals (using Minitab).

7.2 Describing and Estimating
7.2.1 Introduction
We saw in 7.1 that a set of replicate experimental measurements could be considered as being
a statistical sample of the much larger population of all the replicate measurements that could
be made. For example, the calculation of confidence intervals based on the sample data can
then be used as an estimate for the true value for the mean of the population.

In this unit we develop the calculations for mean and standard deviation of a data set, and
we start by addressing an important question:

Are the values in the set to be considered as a self-contained set of numbers (a population), or are
they representative (a sample) of a bigger set of other possible measurements (source population)?

The statistics that must be used for samples and populations are subtly different.
The results of an experiment are normally just a sample of the many different results that

could be obtained if the experiment were to be repeated. Hence we normally apply sample
statistics to experimental data and not population statistics.

7.2.2 Populations and samples
We start by considering the data set given in Example 7.4.

Example 7.4

Describe the characteristics of the data set A:

A 31 36 44 39 40

The worked answer is given in the following text .



7.2 DESCRIBING AND ESTIMATING 169

The way in which we treat the five numbers in Example 7.4 will depend on whether the data
set A is:

• a population consisting of just the numbers 31, 36, 44, 39, 40, with no other numbers
involved; or

• a sample of five replicate experimental measurements, which form part of a much larger
source population of measurements that could be created if the experiment were repeated
many times.

We can test whether a data set is a sample or a population by considering the effect of repeating
the process by which the data values were identified .

If repeating the process of identification still gives the same values, then the data set is a
population , but if different values can be produced then the set is a sample.

A student collects all 200 frogs (a population) from a specific pond and, finding that 120
are female and 80 male, he concludes that the proportion of females in that pond is 0.60. A
second student collects all the frogs again (the same population) and will record exactly the
same proportion of females to males. By comparison, a student who randomly picks just 50
frogs only collects a sample, and may get a different proportion of females and males in every
different sample of 50 frogs that he may select – see Example 14.7.

A sample of values only gives us best estimates of the population values that we are trying
to measure. However it is possible, through good experiment design (15.1), to obtain results
that are sufficiently accurate for the purpose, without the need to make an excessive number
of measurements.

Q7.4
Identify, for each of the following data sets, whether the data set is a sample or a
population:

(i) The four numbers {5.1, 5.2, 5.1, 5.3}. Sample/Population

(ii) Four repeated measurements of the pH of a
solution.

Sample/Population

(iii) The numbers recorded in 37 spins of a roulette
wheel.

Sample/Population

(iv) The 37 numbers (including ‘0’) on a roulette
wheel.

Sample/Population

(v) The scores achieved by England in all their
football matches during the 2002 World Cup.

Sample/Population

(vi) The amount of pocket money received by a
random selection of children as part of a
‘lifestyle’ survey.

Sample/Population

If data set A (Example 7.4) is a self-contained population , then we can use statistics simply
to describe the characteristics of the data set.
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If, however, the data set A is a sample of experimental values, then we will use statistics to
estimate the characteristics of the source population of experimental measurements from which
the sample was derived. For example, we will use the average (mean) value of the sample data
to estimate what would be the average (mean) value if the experiment were repeated many
more times.

A parameter is a variable that is used to describe some characteristic of a population . A
parameter is usually given a Greek letter as a symbol, e.g. µ for population mean and σ for
population standard deviation.

A statistic is a variable that is used to describe some characteristic of a sample, e.g. x for
sample mean and s for sample standard deviation.

The value of the statistic of a sample (e.g. mean of the sample) is used to estimate the value
of the equivalent parameter of the population (i.e. mean of the population) from which the
sample was drawn. Different samples from the same population will typically give different
values for the same statistic (i.e. different sample means).

7.2.3 Statistics notation
Typically, a calculation in statistics may be dealing with very many data values, and it would
be time consuming to write out every single number. Instead, statistics often use a form of
shorthand to show what is happening in the calculations.

Subscripts are used to identify particular values in a set of data. For example, the values
from data set A in Example 7.4 could be written as a1, a2, a3, a4, a5, where a1 = 31, a2 = 36,
etc.

The Greek symbol
∑

(capital sigma) is often used to indicate the summation (addition) of a
range of numbers:

∑5
1 (ai) is shorthand in statistics for saying ‘add together a1, a2, a3, a4, a5’.

Example 7.5

Using the values of data set A from Example 7.4, the summation is written as:

∑5

1
(ai) = a1 + a2 + a3 + a4 + a5 = 31 + 36 + 44 + 39 + 40 = 190

In general, for n values of x to be added together, we would write:

∑n

1
(xi) = x1 + x2 + x3 + · · · + xn−1 + xn [7.1]

The above equation says ‘sum all values of xi for i ranging from 1 to n’.
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Note that when the values of all the possible variables in a set are to be added together, the
summation is often written in simplified forms:

∑n

1
(xi) =

∑
i

(xi) =
∑

(xi)

It is well worth taking a few minutes to understand each new symbol when it appears. The abil-
ity to ‘read’ statistics more fluently will be an enormous help in developing a good understand
of statistics as a whole.

Q7.5

Calculate
∑5

1 (xi) for the following set of x-values:

x1 = 4.9, x2 = 4.7, x3 = 5.1, x4 = 4.9, x5 = 4.4

7.2.4 Means and averages
The mean (or average value) for a population is usually written as µ(mu).

The mean (or average value) for a sample is usually written as x.
The mean value, x, of a sample of data is the best estimate for the unknown mean, µ, of

the source population from which the sample was derived. Note that x is a statistic, which is
used to estimate the value of the parameter, µ.

For example, opinion pollsters take samples of about 1000 people to get best estimates
for the way in which the population may choose to vote in a political election. The voting
intentions of the population are estimated from the sample results.

The mean values for the sample, x, and the population, µ, are both calculated as the simple
averages of the data values:

Sample mean, x = Sum of all data values

Number of data values
=

∑n
1 (xi)

n
=

∑
(xi)

n
[7.2]

Population mean, µ = Sum of all data values

Number of data values
=

∑n
1 (xi)

n
=

∑
(xi)

n
[7.3]
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Excel uses the function AVERAGE to calculate the mean value – see Appendix I.

Example 7.6

Calculate the sample mean of data set A in Example 7.4:

Sample mean, x =
∑5

1 (ai)

5
= 31 + 36 + 44 + 39 + 40

5
= 190

5
= 38

The mean value for a data set is useful because it gives the location of the data set on the
value axis. We now know, for example, that data set A is spread around a ‘central’ value of 38.

Q7.6
Calculate the mean values, x, for each of the following sets of x values:

(i) x1 = 4.9, x2 = 4.7, x3 = 5.1, x4 = 4.9, x5 = 4.4
(ii) x1 = 0.25, x2 = 0.27, x3 = 0.19, x4 = 0.22

7.2.5 Experimental uncertainty, standard deviation
and variance
Due to experimental uncertainty, any measurement may result in a deviation away from the
true value, µ, and also away from the sample mean value, x.

The deviation, di , of a specific data value, xi , from the mean value, x, of a set of sample
data is given by:

di = xi − x [7.4]

The deviation, di , of the data value tells us how far that value, xi , is from the mean value (or
‘centre’), x, of the data set (Figure 7.6).

As a first step to developing a parameter/statistic that will give an ‘average’ measure of all
of the deviations , we could try taking the simple average of all deviations. However, we soon
find that this average is zero, because the sum of all deviations in any data set is always zero:

d2 d3d1

X1 X2 X3 X4

X 
d4

X

Figure 7.6 Deviation of data values from the mean.
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∑n

1
(di) =

∑n

1
(xi − x) = 0

Instead of the simple average of deviations, we can try the average of (deviations)2, because
the sum of all (deviations)2 is not zero:

∑n

1
(d2

i ) =
∑n

1
(xi − x)2 
= 0

The next step is to provide an ‘average’ value for (deviations)2 by dividing the sum by n − 1
to produce a statistic called the sample variance of the data:

Sample variance, s2 =
∑n

1 d2
i

n − 1
⇒

∑n
1 (xi − x)2

n − 1
[7.5]

However, variance cannot be used as a direct measure of spread , because it has units which
are the square of the units for the data value, e.g. the variance of a measurement of time in
seconds would have units of (seconds)2.

Finally, by taking the square root of the sample variance, we produce the sample standard
deviation (equation [7.6]), which does have the same units as the data values, and has become
the most commonly used indicator to describe the spread of experimental data values:

Sample standard deviation, s =
√∑n

1 (xi − x)2

n − 1
[7.6]

If we were trying to describe the spread of a population , where the mean value is given by
µ, then we would use the statistic:

Population standard deviation, σ =
√∑n

1 (xi − µ)2

n
[7.7]

In most experimental situations we only have a sample set of data. In this case our best
estimate of the unknown population standard deviation, σ , is given by the sample standard
deviation , s.

The difference between the divisors in equations [7.6] and [7.7] results from the fact that
σ is describing the spread of the actual data values, whereas s is estimating the spread of
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population values from which the sample was taken. In the latter case, n − 1 instead of just n

allows for increased uncertainty in using the sample mean, x, as just a best estimate for the
unknown true mean, µ.

In practice, calculations of standard deviation are usually performed either by using suitable
functions in software or by using a simple hand-held calculator. In some calculators, the
population standard deviation is given as σn and the sample standard deviation as σn−1.

It is useful to restate the relationship between variance and standard deviation:

Variance = (Standard deviation)2 [7.8]

Excel uses the functions (Appendix I): STDEV to calculate the standard deviation of a data
sample; VAR to calculate the variance of a data sample; and STDEVP and VARP for the
standard deviation and variance of a population.

Example 7.7

Using the data from Table 7.1 for analyst 5, calculate:

(i) Mean value, x =
∑n

1 xi

n

(ii) Sum of deviations,
∑n

1 (di) = ∑n
1 (xi − x)

(iii) Sum of (deviations)2,
∑n

1

(
d2

i

) = ∑n
1 (xi − x)2

(iv) Sample variance, s2 =
∑n

1 d2
i

n − 1
⇒

∑n
1 (xi − x)2

n − 1

(v) Sample standard deviation, s =
√∑n

1 d2
i

n − 1
⇒

√∑n
1 (xi − x)2

n − 1

Calculations are in the following text .

The calculation in Example 7.7 is best performed by setting up a table, as in Table 7.2.

Table 7.2. Calculation of sample standard deviation.

Data labels Value Deviation Deviation2

x di = (xi − x) d2
i = (xi − x)2

x1 81.7 0.74 0.55
x2 83.4 0.14 0.02
x3 78.9 1.24 1.54
x4 75.3 0.94 0.88
x5 79.0 −3.06 9.36

(continued overleaf)
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Table 7.2. (continued )

Data labels Value Deviation Deviation2

x di = (xi − x) d2
i = (xi − x)2

Sum,
∑n

1 xi = 397.3
∑n

1 di = 0.0
∑n

1 d2
i = 12.35

Sample size, n = 5

Mean, x =
∑n

1 xi

n
= 79.46

Sample variance, s2 =
∑n

1 d2
i

n − 1
⇒

∑n
1 (xi − x)2

n − 1
⇒ 12.35

5 − 1
⇒ 3.09

Sample standard deviation, s =
√∑n

1 d2
i

n − 1
⇒

√∑n
1 (xi − x)2

n − 1
⇒ √

3.09 ⇒ 1.76

Q7.7
For the following set of x sample values:

x1 = 4.9, x2 = 4.7, x3 = 5.1, x4 = 4.9, x5 = 4.4

(i) Calculate the mean value of the sample: x.
(ii) Calculate each of the deviations: d1, d2, d3, d4, d5.

(iii) Calculate the sum of all deviations:
∑n

1 (di).
(iv) Will the answer for (iii) always be the same for any set of data?
(v) Calculate the sum of all (deviations)2 :

∑n
1 (d2

i ).
(vi) Calculate the sample variance: s2.

(vii) Calculate the sample standard deviation: s.

Q7.8
For each of the three (sample) sets of experimental data values below, calculate
the values in the table below and answer (iv):

Mean Sample Sample
variance standard

deviation

(i) 8, 6, 7, 4, 7

(ii) 68, 66, 67, 64, 67

(iii) 418, 416, 417, 414, 417

(iv) What similarities are there about the answers for (i), (ii) and (iii)?
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7.2.6 Sample and population standard deviations
When measuring an unknown quantity, it is useful to understand the difference between the
standard deviation, s, of a sample of measurements and the population standard deviation, σ ,
of all the measurements that could be made.

The sample standard deviation, s, is the best estimate, based on the sample data, for the true
population standard deviation, σ .

When the sample size, n, is small, then there are likely to be considerable variations in the
measured value of s, but if the sample size is increased, s will approach the true value, σ .

In Table 7.3 we have taken data from Example 7.2. The first five columns give the sample
standard deviations recorded by analysts 1 to 5 in Example 7.2. These all had a sample size
n = 5, and show a variation in the recorded sample standard deviation. The next four columns
show the effect of combining results to give larger sample sizes – grouping the data from sets
1 and 2, then sets 1 to 4, 1 to 8 and finally 1 to 16, to give the standard deviations for samples
of increasing size.

Table 7.3. Sample standard deviation and sample size.

Data source 1 2 3 4 5 1+2 1–4 1–8 1–16

Sample size, n 5 5 5 5 5 10 20 40 80
Sample standard deviation, s 1.76 2.42 2.27 1.45 3.09 2.02 1.89 1.91 1.98

Example 7.8

On the basis of the results in Table 7.3 give the best estimate that can be made for the
true population standard deviation for the measurement of blood–alcohol made by the
analysts in Example 7.2.

The standard deviations of the individual analysts (1 to 5) show a considerable variation
between 1.45 and 3.09, but as the sample size increases, the values become closer,
leading to 1.98 for a sample size of n = 80 measurements.

Hence the best estimate available from the data in Table 7.3 is s = 1.98.

In fact, we know that the example data was created randomly from a true distribution
with a population standard deviation σ = 2.00. The ‘experimental’ observations agree
well with the true value, provided that the sample size is sufficiently large.

7.3 Frequency Statistics
7.3.1 Introduction
In statistics, we often need to count the number of times that a particular outcome, x, occurs,
e.g. the number of large eggs laid by a group of chickens, or the number of students who
achieve an upper second classification in their degree.
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The number of times a particular outcome, x, occurs is called ‘frequency’. The value of
using the concept ‘frequency’ is that it provides a useful method of describing and handling
large quantities of data. In this unit we will write the frequency of x as f (x) or fx . The two
expressions are equivalent, but it is sometimes easier to print one than the other.

We will also establish the link between the frequency, f (x), with which particular events
have occurred in the past, with the probability, p(x), with which similar events may be expected
to occur in the future.

7.3.2 Plotting data values
An important function of statistics is to handle large numbers of data values in such a way
that the analyst can easily understand the essential characteristics of the data set.

A stem and leaf diagram is a quick way of displaying a spread of data values for initial
analysis.

Example 7.9

The stem and leaf diagram in Figure 7.7 shows the examination marks, M , for 50
final-year students:

30 | 7 9 9
40 | 1 2 2 4 5 6 7 7 8 9
50 | 1 1 1 1 1 2 2 3 3 4 5 5 5 6 8 9 9 9
60 | 0 0 1 2 2 2 3 4 4 5 5 5 6 7
70 | 0 0 1 2 7

Figure 7.7 Stem and leaf diagram.

The first row shows that there were students with marks 37, 39 and 39 respectively, and,
similarly, the final row shows that students had marks 70, 70, 71, 72 and 77.

The ‘stem’ is the column on the left, which shows a value that is common to all data
values on that level. The ‘leaves’ are the individual marks that must be added to the
stem level to get the actual data value. For example, the circled bold italic values show
that one student achieved a mark of 54 = 50 (stem) plus 4 (leaf).

The value of a stem and leaf diagram is that it can be hand-drawn very quickly to review
the spread of results as they are being recorded in an experiment.

Another quick way of displaying information is the dot plot, which just gives a ‘dot’ for
each data value.

Example 7.10

The graph in Figure 7.8 shows a dot plot for the examination marks data for the 50
students given in Figure 7.7:
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40 50 60 70

Figure 7.8 Dot plot.

Q7.9
The following data gives the weights, w (in grams), of a collection of 24 seeds.

48 46 46 66 55 55 47 44

49 40 33 57 42 25 58 32

49 51 39 67 61 42 62 27

(i) Represent the data by drawing a stem and leaf diagram.
(ii) Use the diagram to count the numbers of seeds that fall within the following

ranges:

20 � w < 30; 30 � w < 40; 40 � w < 50; 50 � w < 60; 60 � w < 70

(Note that 20 � w < 30 means that w is a number that is greater than or equal
to 20, but also less than 30.)

7.3.3 Frequency data
When we have a large number of data values it can be unnecessarily cumbersome to treat
them as individual data items. It is more convenient to divide the data range into a number of
divisions, and then simply count how many data values fall in each division.

Each division, g, is called a class (or bin), and the number of data values in the class is
called its class frequency, fg.

For example, Table 7.4 summarizes the examination marks, M , of the 50 final-year students
given in Example 7.9. The class frequency is found by counting the number of values in each
class.

The degree grade (class) is decided on the basis of the numerical range within which the
student’s aggregate mark, M , falls.

Each class may also be described as a category and given a categorical name: Fail (F),
Third (3rd), Lower Second (2.2), Upper Second (2.1) and First (1st).
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Table 7.4. Final-year performance of 50 students.

Mark range Categorical name Class frequency Relative frequency

M < 40 Fail (F) f (F) = 3 3/50 = 0.06
40 � M < 50 Third (3rd) f (3rd) = 10 10/50 = 0.20
50 � M < 60 Lower Second (2.2) f (2.2) = 18 18/50 = 0.36
60 � M < 70 Upper Second (2.1) f (2.1) = 14 14/50 = 0.28
M � 70 First (1st) f (1st) = 5 5/50 = 0.10

Total = 50 1.00

The results are expressed as the number, class frequency, f (g) or fg , of students achieving
each grade (class, g) of degree: e.g. three students fell into the ‘Fail’ category and five students
were in the ‘First’ category.

The proportion of data values in each class is given by the relative class frequency (see
Table 7.4):

Relative class frequency = Class frequency
Total of all frequencies

[7.9]

Relative class frequency may often be expressed as a percentage.

Q7.10
A group of 24 graduates were surveyed to record their salaries, S, two years after
graduation. The results, measured in £000s, were as follows:

20.1 17.7 22.2 15.0 22.0 23.7 15.4 16.7

14.7 18.7 20.4 24.5 26.2 24.9 17.7 21.3

16.2 21.7 17.1 17.0 19.0 12.0 18.8 18.5

Use the table below to record answers to the following questions:

(i) Count the number (frequency) of graduates, f (g), who achieve salaries, S , in
the ranges (classes), g, that are given in the table below.

(ii) Calculate the relative frequency (rounding to 3 significant figures) for each of
the classes, g.

(iii) Calculate the ‘total’ for all relative frequencies.
(iv) Is the answer in (iii) what was expected?
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Salary range Number (frequency) Relative frequency

g f (g)

12.0 � S < 16.0

16.0 � S < 20.0

20.0 � S < 24.0

24.0 � S < 28.0

Totals: 24

7.3.4 Plotting frequency data
If the data values are grouped into different categories , we can conveniently plot this cate-
gorical class data using a column graph or a pie chart. For example, Figure 7.9 is a column
graph (or bar graph) which records the performance (Table 7.4) of the cohort of 50 final-year
students (from Example 7.9).

0

5

10

15

20

F 3rd 2.2 2.1 1st

Figure 7.9 Column (or bar) graph for the final-year performance of 50 students.

Note that Excel draws a column graph with vertical ‘columns’ and a bar graph with hori-
zontal ‘bars’.

The overall shape of the column (or bar) graph conveys a lot of information, without the
need to write down the mark of every individual student.

In a column graph, each class frequency is proportional to the height of the relevant column.
Figure 7.10 is a pie chart that records the same data as Figure 7.9, but the values for each

class are recorded as percentage relative frequencies .
In a pie chart, each class frequency is proportional to the angle of the relevant slice.
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F
6%

3rd
20%

2.2
36%

2.1
28%

1st
10%

Figure 7.10 Pie chart for the final-year performance of 50 students.

Q7.11
The following data gives the areas of four regions of the United Kingdom, given
in units of 1000 km2.

Area (1000 km2) Fraction Angle (degrees)

England 130 0.533 192

Northern Ireland 14

Scotland (incl. Islands) 79

Wales 21

Total: 244

(i) Represent the area data by drawing a column graph.
(ii) Calculate the fraction of the total area covered by each region, by dividing the

area of the region by the total, e.g. England covers a fraction 130/244 = 0.533
(iii) Multiply each fraction by 360 to calculate the angles for a pie chart, e.g. for

England 0.533 × 360 = 192◦.
(iv) Plot the data as a pie chart.

7.3.5 Histograms
The data can be plotted as a histogram, provided that a quantitative variable can be plotted
along the x-axis instead of categorical data , e.g. plotting the actual degree marks instead of
the degree classifications – see Figure 7.11.

It is very important to understand that, in a histogram:

• The area of each block (= height × width) is proportional to the class frequency .
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• The data is continuous along the value axis, i.e. there are no gaps between the blocks (unless
a block has a zero height).

• The total area of a frequency histogram is equal to the total number , n, of data values.

0.0

0.5

1.0

1.5

2.0

40 50 60 70 90 1003020100

Area = 10

fd
 (

g)

80

Area = 18 Area = 14

Area = 5Area = 3

Mark (%)

Figure 7.11 Histogram for the final year performance of 50 students.

The height of each block on the ordinate (y-axis) scale of the histogram is given by the
frequency density, fd (g):

Frequency density, f d(g) or f dg = Class frequency

Width of class
= fg

�xg

[7.10]

The Greek symbol � is often used to indicate a difference in a variable – see 6.1.2. In the
above equation �x refers to a small change in the x variable.

The area of each block is given by class frequency, f (g), which, by rearranging [7.10], is
given by:

f (g) or fg = f d(g) × �xg [7.11]

Example 7.11

Figure 7.11 shows the histogram for the final-year performance of 50 students (from
Figure 7.7).

The ‘heights’ (frequency density) of the histogram blocks were calculated as follows:
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Class Class frequency Class range Class width Frequency density

g fg = f (g) �xg = �x(g) f dg = f d(g)

Fail 3 0 � x < 40 40 = 3/40 = 0.075

Third 10 40 � x < 50 10 = 10/10 = 1.0

2.2 18 50 � x < 60 10 = 18/10 = 1.8

2.1 14 60 � x < 70 10 = 14/10 = 1.4

First 5 70 � x � 100 30 = 5/30 = 0.167

Compare the shape of the column graph (drawn using categories) in Figure 7.9 with the
histogram (drawn using a continuous quantitative axis) in Figure 7.11. The differences occur
when the class widths are not the same, i.e. for the ‘Fail’ and ‘First’ categories.

Q7.12
In Year 8 of school, 84 children were given a project to record the distribution
of their heights, h (cm); they chose to count the number of pupils whose heights
fell within specific ranges. However, they used different widths for the different
ranges, with the result that the final data is recorded as follows:

Class range Class frequency Class width Frequency density

h (cm) fg = f (g) �xg = �x(g) f dg = f d(g)

144 <h � 154 6 10 = 6/10 = 0.6

154 <h � 158 21 4 = 21/4 = 5.25

158 <h � 160 17

160 <h � 162 15

162 <h � 166 16

166 <h � 176 9

(i) Use the empty columns of the table to calculate the class width and class
density (f d(g) = f (g)/�x(g)) for each class (two classes have already been
completed).

(ii) Decide if it is possible to present the data graphically using a histogram (even
though the class widths are not all the same).

(iii) If the answer to (ii) is Yes, then draw the relevant histogram.
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7.3.6 Mean and standard deviation
In frequency data we often do not know the exact value of each data item. We only know that
its value falls somewhere within a particular class range, e.g. a student with an upper second
grade has a mark somewhere between 50 and 59.

We make the approximation that every data item in a particular class, g, has a value equal
to the mean class value, xg, of that class.

The mean class value is obtained by calculating the average of all the data values that could
be included in that class. For example, the mean class value of a class that has any value in
the range 50 � x < 60 would be xg = 55.

Note, however, that the mean class value of a class that has only integer values 50 to 59
would be the mean value of 50, 51, 52, 53, 54, 55, 56, 57, 58 and 59, giving xg = 54.5.

Thus:

Approximate sum of the fg values in class,g = fg × xg [7.12]

For example, if the mean class value is xg = 55, and there are fg = 4 items in that class (e.g.
51, 53, 55, 58), then the approximate sum of those four values is fg × xg = 4 × 55 = 220.
This is not the exact sum (= 217 for the example values) but will often give a sufficiently
good approximation.

In the equations below, the symbol,
∑

g , means ‘add up the following expression for all
classes’. For example,

∑
g(fg) means ‘add up the values of fg for all classes’:

Total number of data values : n =
∑

g
(fg) [7.13]

Approximate sum of all values in all classes: Sum =
∑

g
(fg × xg) [7.14]

We can derive approximate equations for calculating the mean and standard deviation.
Sample mean values:

x =
∑

g (fg × xg)

n
[7.15]

Sample standard deviations:

s =
√∑

g

[
fg × (xg − x)2

]
n − 1

[7.16]
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Example 7.12

The number of students in a sample group obtaining (integer) marks in different ranges is
given in the table below. Use Excel to calculate the mean and sample standard deviation
for the distribution of frequency values.

Range 0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80–89 90+
Number 0 1 4 18 39 80 47 9 2 0

Note (for example) that the mean value, xg , for the range 30–39 will be 34.5 when the
possible scores have only integer values. A similar calculation applies for all ranges.

Using [7.15] and [7.16], a calculation in Excel gives:

Mean value, x = 53.50

Standard deviation, s = 11.47

Q7.13
In this question we compare two ways of calculating the sum and the mean of a
set of data. We will use the same data for the salaries, S, of 24 graduates as used
in Q7.10.

20.1 17.7 22.2 15.0 22.0 23.7 15.4 16.7

14.7 18.7 20.4 24.5 26.2 24.9 17.7 21.3

16.2 21.7 17.1 17.0 19.0 12.0 18.8 18.5

In the first part, we estimate (iv) the sum and (v) the mean by first dividing the
data values into classes and using the mean class values.

We then compare these values to (vi) the sum and (vii) the mean calculated by
using each individual data value.

(i) Using classes g, as in the table below, count the frequency, fg , for each class,
and the total, n, for all classes. (Check these with the answer to Q7.10.)

(ii) Calculate the mean class values, Sg , for each class, g. (Take the mean of all
possible values within each range, e.g. Sg for the first class is 14.0.)

(iii) For each class g, multiply the number (fg) in the class by the mean class
value, Sg, to give the class sum, fg × Sg , and enter the value in the right-hand
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column. This is an estimate of the sum of salaries for all graduates in that
class.

(iv) Find the sum,
∑

g fg × Sg , for all classes. This gives an estimate of the sum
of all 24 graduates’ salaries .

(v) Estimate the mean value, S, of all the salaries by dividing the value in (iv) by
the number of graduates, n.

(vi) Find the true sum by adding all the individual salaries. Is this value the same
as the result in (iv)?

(vii) Find the true mean by dividing the value in (vi) by the number of graduates,
n. Is this value the same as the result in (iv)?

(viii) When might the method used in steps (i) to (v) be preferable to the more
accurate method used in (vi) and (vii)?

Salary range Frequency Mean class value Class sum

Class, g fg Sg fg × Sg

12.0 � S < 16.0 14.0

16.0 � S < 20.0

20.0 � S < 24.0

24.0 � S < 28.0

n = ∑
g (fg) = Sum = ∑

g (fg × Sg) =

Mean value, S =
∑

g (fg × Sg)

n
=

7.3.7 Relative frequency and probability
The outcomes of random events (or ‘trials’) are often governed by particular probabilities, e.g.
the scores recorded by six-sided cubic dice are governed by a 1 in 6 chance.

Frequency data, f (g), can be used to describe the number of times particular outcomes , g,
have occurred .

Probability, p(g), is a prediction of the relative frequency with which future outcomes , g,
can be expected to occur .

The relative frequency with which particular events have occurred in the past can some-
times be used to predict the probability with which similar events will occur in the future:

p(g) = f (g)

n
[7.17]

A frequency distribution is easily transformed into a probability distribution.
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The area under a frequency distribution equals n, the sum of the individual frequencies.
The area under a probability distribution equals 1.0, the sum of the individual probabili-

ties.

Q7.14
In a game where two six-sided dice are thrown (e.g. backgammon, Monopoly), the
combined score, x, can be any value from 2 to 12.

(i) Work out the number of ways, f (x), of obtaining each score value x. For
example, there are two ways of getting a combined score of 3 using two dice:
1 + 2 or 2 + 1, giving f (3) = 2.

(ii) Present the results as a histogram on the chart, Figure 7.12 (in this case, fre-
quency density, f d(x), equals frequency, f (x), because the class width is
equal to 1).

(iii) What is the total ‘area’ of the histogram?
(iv) What does the total ‘area’ of the histogram represent?

0

1

2

3

4

5

6

Combined Score, x

f(
x)

2 3 4 5 6 7 8 9 10 11 12

Figure 7.12

Q7.15
Convert the ‘frequency’ histogram, f (x), produced in Q7.14 into a ‘probability’
histogram, p(x). Remember that, when rolling two dice, there are a total of 36
different possible outcomes.

(i) For each combined score, x, calculate the probability, p(x), that one roll of the
two dice will give that particular result. For example, there are two ways of
getting a combined score of 3 using two dice: 1 + 2 or 2 + 1. There are a total
of 36 different possible outcomes. Hence the probability of getting a combined
score of 3 is p(3) = 2/36 = 0.0556.
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(ii) Present the results as a histogram on the chart, Figure 7.13.
(iii) What is the total ‘area’ of the histogram?
(iv) What does the total ‘area’ of the histogram represent?

0.00

0.04

0.08

0.12

0.16

0.20

Combined Score, x

p(
x)

2 3 4 5 6 7 8 9 10 11 12

Figure 7.13

7.3.8 Continuous distribution
A histogram is normally characterized by a number of clearly visible blocks, e.g. Figure 7.11.

If the width of each block is reduced and the number of blocks increased in proportion,
then the envelope (outer curve) of the histogram will generally become ‘smoother’, i.e. we
change from a histogram to a continuous distribution.

For example, on the basis of past student performance, a particular university estimates the
distribution of students who will gain different course marks. Figure 7.14 shows the probability
density, pd (x ), for the expected course marks.

pd
(x

)

Mark (%)

0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70 80 90 100

Figure 7.14 Probability density of course marks.

In a continuous probability distribution, the total area under the curve is 1.0, i.e. any student
who completes the course has a mark that falls somewhere in the range covered by the curve.
For a continuous distribution, we assume that the course mark can be calculated to any specific
value and not just presented as an integer.
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In a continuous probability distribution, the probability that a trial falls within a given range
of x-values is given by the area under the curve between those values.

Example 7.13

In Figure 7.14, the probability that a student, selected at random, will have a mark
between 60 % and 70 % is equal to the shaded area under the curve. We can make a
rough estimate of this probability by noting that:

• the width of the area = 70 − 60 = 10; and
• the average height of the area is about 0.025.

This gives a probability area of about 0.025 × 10 = 0.25, i.e. there is about a 25 %
chance that any particular student will get a mark in this range (an upper second). An
exact calculation gives a probability of 24.17 %.

Q7.16
Use the graph in Figure 7.14 to make a rough estimate of the probability that a
student, selected at random, will have a course mark between 30 % and 40 %.

7.3.9 Cumulative Probability
Cumulative probability, cp(x), is the probability that the result of a trial may fall anywhere in
the range from −∞ to x.

The cumulative probability, cp(x), for a specific value of x is equal to the probability area
under the pd (x) curve from −∞ to x.

In situations where the value of x can only be positive (as for examination marks), the
cumulative probability, cp(x), is equal to the probability area from 0 to x.

The cumulative probability, cp(x), will increase from 0 to 1.0 as the value of x increases.
Using the example from Figure 7.15, the probability (= 0.84) of selecting a student with a

mark between 0 % and 65 % is given by the shaded area in Figure 7.15. This probability is

pd
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)

Mark (%)
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Figure 7.15 Probability area (shaded) for a mark between 0 % and 65 %.
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Figure 7.16 Cumulative probability of exam scores.

represented by the circled point on the cumulative probability curve in Figure 7.16: 0.84 of
students will get a mark of 65 % or less and so 1 − 0.84 = 0.16 of students will get a mark
greater than 65 %.

Similarly, the cumulative probability curve in Figure 7.16 shows that half (probability =
0.5) of all students will get a mark of 55 % or less, and all students (probability = 1.0) will
get 100 % or less!

Q7.17
Using the data from the ‘probability’ histogram produced in Q7.15:

(i) For each combined score, x, calculate the cumulative probability that one roll
of the two dice will give that score or any score below that value.

(ii) What is the cumulative probability that a roll of two dice will give a combined
score of 6 or less?

(iii) What is the probability that a roll of two dice will give a combined score of
at least 10?

7.4 Probability
7.4.1 Introduction
Probability is a measure of the certainty with which we may expect a particular outcome to
occur. Probability is based on a scale of 0 to 1.

An impossible event, e.g. a cow jumping over the Moon, has a probability of 0:
p(cow will jump over Moon) = 0.0.

A certain event, e.g. an iron bar sinking in water, has a probability of 1:
p(iron bar will sink in water) = 1.0.

The concept of probability is often used when the outcome of some event (or trial) appears
to be governed solely by chance, e.g. in rolling dice in a board game.

The fact that many outcomes appear to be governed by chance is often due to the complexity
of the factors leading up to the particular outcome. The behaviour of playing dice, as they
bounce and roll on the table, is actually governed by the laws of mechanics. However, the
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complexity of their motion is such that it is impossible to control their behaviour and predict
the number that will be shown. In practice, the numbers shown by dice are random and
unpredictable – each number has an equal chance of appearing (assuming that the dice are not
biased!).

Excel (Appendix I) can be used for the logical operations AND, OR, NOT and IF.

7.4.2 Probability and frequency
There are two main ways of estimating the probability with which a future event may occur:

• Calculated on the basis of the science of the situation, e.g. as playing dice are symmetrical
cubes, we would expect an equal probability for any number to appear.

• Estimated from the frequency with which particular events have occurred in the past , e.g.
past experience may show that one in three eggs laid by a particular chicken are small eggs
and we may then expect that the future probability would also be one in three.

Frequency , in statistics, is a measure of the number of times a particular outcome occurs: f (X)

represents the number of times the outcome, X, occurs.
If we group the possible outcomes into different classes , then the class frequency is the

number of times an outcome falls into a particular class (see also 7.3.3).

Example 7.14

For example, if we collect 180 eggs and divide them into ‘small’, ‘medium’ or ‘large’
categories (or classes), we may find that we have 60 ‘small’ eggs, 80 ‘medium’ eggs
and 40 ‘large’ eggs. The class frequencies in this case are described by the frequencies,
f (small), f (medium), and f (large) respectively. This particular situation is described in
Table 7.5.

Table 7.5. Example of a frequency (or probability) distribution of egg sizes.

Class Class frequency Relative frequency Probability

Small f (small) = 60 f (small)/n = 60/180 p(small) = 1/3 ≈ 0.333
Medium f (medium) = 80 f (medium)/n = 80/180 p(medium) = 4/9 ≈ 0.445
Large f (large) = 40 f (large)/n = 40/180 p(large) = 2/9 ≈ 0.222
Totals: n = 180 = 1/3+4/9+2/9 = 1 = 1.000

Relative frequency [7.8] is the observed frequency divided by the total, n , of all frequen-
cies.

The sum of all relative frequencies is 1.00.

In the ‘egg’ example in Example 7.14, there were 180 ‘events’ (sometimes called ‘trials’
in statistics), and, for each event or trial, there were three possible class ‘outcomes’: small,
medium or large.
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The probability, p(X), of a future outcome, X, is a prediction of the relative frequency of
that outcome assuming the same situation could be repeated many times in the future:

p(X) = f (X)

n
[7.18]

Similarly, the future frequency, f (X), of a particular outcome, X, can be calculated by mul-
tiplying the probability of that particular outcome, p(X), by the number, n, of events or trials:

f (X) = p(X) × n [7.19]

Taking the example of the eggs in Example 7.14, we know that the relative frequency,
f (small)/n, of getting a ‘small’ egg was 1/3, based on 180 previous eggs. We can then make
a prediction for the probability that the next egg will be small, p(small) = 1/3.

Similarly we can also predict the other probabilities, p(medium) = 4/9 and p(large) =
2/9 – see Table 7.5.

When we predict future probabilities based on past frequencies , we are assuming that there
will be no changes that may affect the outcomes, e.g. a change in diet for the chickens may
reduce the proportion of small eggs.

A probability calculated on the basis of past experience is called an experimental probability.

Q7.18
Over a number of years it is found that the 140 graduates of the honours degree in
horticulture include 34 with a third-class degree, 50 with a lower second degree,
38 with an upper second degree and 18 with a first-class degree.

(i) Calculate the relative frequencies for each class of degree.
(ii) Estimate the future probability that a particular student may gain a first-class

degree.
(iii) What assumptions were made in order to answer (ii) above?
(iv) Estimate the number of students, in a cohort of 30 graduates, who would attain

each of the four classes of degree.

In many other cases, we can use the science of the problem to calculate the relative frequen-
cies without the need to carry out extensive trials. For example, we can use the symmetry of
six-sided dice to calculate that the relative frequency (and hence probability) of getting any spe-
cific number (e.g. a 5) on a normal die. Each ‘number’ has an equal chance (1 in 6) of occurring:

p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1/6

where p(1), p(2), etc., are the probabilities of recording a 1, 2, etc., when throwing the die.
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A probability that is calculated using the science and mathematics of the problem is called
a theoretical probability.

Example 7.15

The numbers observed of gene types AB, Ab, aB, ab are expected to be in the ratio
9:3:3:1 respectively, and each observation will give one of these four.

(i) Calculate the probabilities of observing each of the four types.
Starting with the ratios, we know that, in a total of n = 9 + 3 + 3 + 1 = 16 obser-
vations, we would expect to see 9, 3, 3, 1 of each type respectively.
Using the equation p(X) = f (X)/n, we can calculate the future probabilities from
the observed frequencies:

p(AB) = 9/16, p(Ab) = 3/16, p(aB) = 3/16, p(ab) = 1/16

(ii) Calculate the number of each type that would be expected out of a total of 200
observations.
Out of a new total of 200 observations, we can calculate the expected number for
each type by using [7.19]: f (X) = p(X) × n giving

9/16 × 200 = 112.5

3/16 × 200 = 37.5

3/16 × 200 = 37.5

1/16 × 200 = 12.5

Q7.19
A standard pack of 52 playing cards contains four suits (hearts, clubs, diamonds
and spades), and each suit contains one each of cards numbered 2 to 10, plus a
jack, a queen, a king and an ace. The jack, queen, king are called picture cards.

Calculate the probabilities of selecting at random:

(i) the king of clubs (iv) an ace

(ii) a king (of any suit) (v) a card of the club suit

(iii) a picture card
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7.4.3 Combining independent probabilities with AND
If two independent trials occur, with the probability of getting A in the first trial being p(A)

and the probability of getting B in the second trial being p(B), then the probability of getting
A followed by B is:

p(A AND B) = p(A) × p(B) [7.20]

Note the use of ‘×’ with the ‘AND’ combination.

Example 7.16

Calculate, using the egg example from Table 7.5, the probability, when picking two eggs,
that the first egg is small and the second is large:

p(small AND large) = p(small) × p(large) ⇒ (1/3) × (2/9) ⇒ 2/27

Note that the multiplication of probabilities for the AND combination assumes that the two
probabilities are independent of one another . The outcome for the first event or trial must have
no influence over the outcome for the second event.

Q7.20
It is observed that in a particular group of plants: 75 % are tall and 25 % are short;
and 75 % have a round seed shape and 25 % have a wrinkled seed shape.

Calculate the probability of finding each of the following four combinations
(assume that the height and seed shape are not related):

(i) tall with a round seed
(ii) short with a round seed

(iii) tall with a wrinkled seed
(iv) short with a wrinkled seed

7.4.4 Combining probabilities with OR
If A and B are two of the possible outcomes of a trial, which have probabilities of p(A) and
p(B) respectively, then the probability of either A or B occurring is given by:
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p(A OR B) = p(A) + p(B) − p(A AND B) [7.21]

Note the use of ‘+’ for the ‘OR’ combination.
If the outcomes A and B are mutually exclusive, i.e. they cannot occur together and p(A

AND B) = 0, then we have the simple form of the equation:

p(A OR B) = p(A) + p(B)

Example 7.17

(i) Calculate, using the data from Table 7.5, the probability of getting either a medium
egg or a large egg:

p(medium OR large) = p(medium) + p(large) ⇒ 4/9 + 2/9 ⇒ 6/9 ⇒ 2/3

(ii) Calculate the probability of getting a small egg or a medium egg or a large egg:

p(small OR medium OR large) = p(small) + p(medium) + p(large)

⇒ 1/3 + 4/9 + 2/9 ⇒ 1

The probability of ‘1’ in (ii) shows that it is certain (p = 1) that the egg will definitely
be one of the three possible sizes!

Q7.21
A trial has four possible outcomes, A, B, C and D, which have the following
probabilities:

p(A) = 1/8, p(B) = 1/6, p(C) = 1/3, p(D) = 9/24

Calculate the probabilities that a single outcome will result in:

(i) A or B (i.e. calculate the probability p(A OR B))

(ii) A or B or C

(iii) A or B or C or D
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Q7.22
Using the standard pack of playing cards described in Q7.19, calculate the proba-
bility of selecting at random:

(i) the king of clubs or the king of diamonds,
(ii) the king of hearts or the king of clubs or the king of diamonds or the king of

spades,
(iii) any picture card or any ace.

7.4.5 Combining probabilities with NOT
If A is one possible outcome of a trial, then the outcome ‘NOT A’ means that the outcome A

has not occurred.
‘NOT A’ is normally written as A, and sometimes (for convenience on web pages) as ∼A.

Do not confuse A (NOT A) with x, which is the mean value of a set of x data!
If an event or trial has possible outcomes A, B, C, then the ‘NOT A’ condition requires that

either B or C must occur:

p(A) = p(B OR C) = p(B) + p(C)

In any event or trial where A is one possible outcome, then either A or NOT A must definitely
occur, hence:

p(A OR NOT A) = 1

which is the same as:

p(A) + p(A) = 1

giving:

p(A) = 1 − p(A) [7.22]
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Example 7.18

Calculate, using the data from Table 7.5, the probability of getting an egg that is NOT
small.

In the case of three categories of eggs, the outcome of ‘NOT small’ means that the egg
produced must be either ‘medium’ or ‘large’.

Using the data from Table 7.5:

p(NOT small) = 1 − p(small) ⇒ 1 − 1/3 ⇒ 2/3

which gives the same result as using:

p(NOT small) = p(medium OR large) ⇒ 4/9 + 2/9 ⇒ 6/9 ⇒ 2/3

Q7.23
Using the standard pack of playing cards described in Q7.19, calculate the proba-
bility of selecting at random:

(i) a king (of any suit),
(ii) a card that is not a king,

(iii) either a king or a card that is not a king.

7.4.6 Multiple outcomes
For more complicated probability outcomes, it is often possible that one overall outcome
may be achieved by any one of several different separate outcomes. In this case, the overall
probability is given by the addition of the probabilities of the separate outcomes .

Example 7.19

Calculate the probability, when two dice are thrown together, of getting a total score
of 4.

When two dice are thrown together, the important overall outcome is the sum of the two
dice values. The same overall sum can be achieved (except for 2 and 12) in more than
one way, e.g. an overall value of 4 can be achieved from the values of the two dice in
three ways:

1 + 3 or 2 + 2 or 3 + 1
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(Note that the outcome 1 + 3 is different from 3 + 1 – swapping the values on the two
dice.)

The overall probability of getting a total of 4 from two dice is therefore:

p(sum of 4) = p(1 AND 3) + p(2 AND 2) + p(3 AND 1)

The probability of throwing a 1 followed by a 3 is given by:

p(1 AND 3) = p(1) × p(3) ⇒ 1/6 × 1/6 ⇒ 1/36

Similarly: p(2 AND 2) = p(3 AND 1) = 1/36 giving:

p(sum of 4) = 1/36 + 1/36 + 1/36 ⇒ 3/36 ⇒ 1/12

Q7.24
When rolling two dice, calculate the probabilities of scoring a total of exactly:

(i) 2 (iii) 7

(ii) 3 (iv) 12

Q7.25
On average, 90 % of seeds of a given type of seed have been found to germinate
successfully.

Calculate the probabilities that:

(i) one selected seed will germinate;
(ii) one selected seed will not germinate;

(iii) every one of four selected seeds will germinate;
(iv) none of four selected seeds will germinate;
(v) just one of four selected seeds will germinate (hint: consider how many dif-

ferent ways it is possible to have one seed germinating and three seeds not
germinating);

(vi) three of four selected seeds will germinate.
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7.4.7 Conditional probability
The probability of a given outcome (e.g. getting wet, W ) may be dependent on (conditional
on) an existing condition (e.g. it is raining, R). Such a conditional probability would be written
as p(W |R), i.e. the probability of W occurring, given that condition R exists.

Quite clearly, the probability of getting wet if it is not raining, p(W |R), will generally be
considerably less than the probability of getting wet if it is raining, p(W |R).

A good example of conditional probability occurs with diagnostic testing for a particular
disease.

The probability of getting a positive (P ) result from a diagnostic test for a particular illness
will normally depend on whether the person being tested has (D), or does not have (D),
the disease. Note that a positive result for the test indicates that the person does have the
disease.

The probability of a:

• true positive result (having the disease) would be given by p(P |D);
• false positive result (not having the disease) would be given by p(P |D);
• true negative result (not having the disease) would be given by p(P |D);
• false negative result (having the disease) would be given by) p(P |D).

The use of conditional probability can be illustrated by the following example:

Example 7.20

It is known that the conditional probabilities for the results for a new diagnostic screening
test for a male disease are as follows:

Man does have disease Man does not have disease

Probability of positive result p(P |D) = 0.9 p(P |D) = 0.2

Probability of negative result p(P |D) = 0.1 p(P |D) = 0.8

Total probabilities p(P |D) + p(P |D) = 1.0 p(P |D) + p(P |D) = 1.0

Assuming that 5 % (0.05) of men of age 60 do have the disease, calculate, for this age
group:

(i) the probability that a man selected at random would record a true positive result,
(he must both have the disease and then record positive);

(ii) the probability that a man selected at random would record a false positive result,
(he must be both free of the disease and then record positive);

(iii) the probability that a man selected at random would record a positive result (this
will include the possibility of a true positive as well as a false positive);

(iv) the probability that a man selected at random, who tests positive, would actually
have the disease.
See the following text for the calculation .
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We perform the calculations for Example 7.20 by combining probabilities directly, but, for
illustration, we also assume a random population of (say) 1000 men and work out the equivalent
number of men who would fall into each category based on these probabilities.

(i) For a man, selected at random, to record a true positive result requires that the man must
have the disease AND he must then test positive.

• Probability that a man, selected at random, has the disease, p(D) = 0.05
Hence, out of 1000 men, the number with the disease, n(D) = 0.05 × 1000 = 50

• Probability that a man, with the disease, will test positive, p(P |D) = 0.9
Hence, the probability that a man, selected at random, will record a true positive
result:

p(true positive) = p(P |D) × p(D) ⇒ 0.9 × 0.05 ⇒ 0.045

which is equivalent to a number of men (out of 1000):

n(true positive) = p(P |D) × n(D) ⇒ 0.9 × 50 ⇒ 45

(ii) For a man, selected at random, to record a false positive result requires that the man does
NOT have the disease AND he must then test positive.
• Probability that a man, selected at random, does not have the disease,

p(D) = 1 − p(D) ⇒ 1 − 0.05 ⇒ 0.95

Hence, out of 1000 men, the number with no disease, n(D) = 0.95 × 1000 ⇒ 950
• Probability that a man, free of the disease, will test positive, p(P |D) = 0.2

Hence, the probability that a man, selected at random, will record a false positive
result:

p(false positive) = p(P |D) × p(D) ⇒ 0.2 × 0.95 ⇒ 0.19

which is equivalent to a number of men (out of 1000):

n(false positive) = p(P |D) × n(D) ⇒ 0.2 × 950 ⇒ 190



7.4 PROBABILITY 201

(iii) For a man, selected at random, to record a positive result (either true or false) requires
that either a true positive OR a false positive is recorded:

p(positive) = p(true positive) + p(false positive) = 0.045 + 0.19 = 0.235

Hence the number of men (out of 1000) recording a positive result:

n(positive) = n(true positive) + n(false positive) ⇒ 45 + 190 ⇒ 235

(iv) For a man, selected at random , who then records positive, the probability that he does in
fact have the disease will be given by:

Probability of having disease = p(true positive)

p(true positive) + p(false positive)
⇒ 0.045

0.235
⇒ 0.191

We could also work out this probability by using the fact that, out of the 235 men who
test positive, only 45 will actually have the disease, giving the probability:

Probability of having disease = 45

235
⇒ 0.191

This example shows the care that must be taken with random screening tests. The possibility
of false positives occurring in the majority of people who do not have the disease can make
the probability of a false diagnosis quite high. In the above example, a man tested at random
who gives a positive result has less than a 20 % chance of actually being ill.

Screening tests are normally conducted with people identified as already being ‘at risk’, and
are then followed up by more accurate diagnostic techniques.

Q7.26
Using the data from Example 7.20, calculate the probability that a man, selected at
random, who then tests negative for the disease, could actually have the disease.

7.4.8 Probability Trees
In complex conditional probability problems, as in Example 7.20, it is often useful to describe
the dependent probabilities using a probability tree (Figure 7.17).

Probability trees are particularly useful when the probabilities in the second stage of the
analysis are conditional on the outcomes from the first stage of the analysis.
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Disease/
No disease

First Stage
Probabilities

p(P |D) = 0.9 p (true positive) = 0.05 × 0.9 ⇒ 0.045
n (true positive) =    50 × 0.9 ⇒ 45

Disease
p(D) = 0.05
n(D) = 50

p(P |D) = 0.1
p (false negative) = 0.05 × 0.1 ⇒ 0.005
n (false negative) =    50 × 0.1 ⇒ 5

p(P |D) = 0.2 p (false positive) = 0.95 × 0.2 ⇒ 0.190
n (false positive) =  950 × 0.2 ⇒ 190

No disease
p(D ) = 0.95
n(D) = 950

p(P |D) = 0.8
p (true negative) = 0.95 × 0.8 ⇒ 0.760
n (true negative) =  950 × 0.8 ⇒ 760

Positive result/
Negative result

Second Stage
Probabilities

Figure 7.17 Probability tree for Example 7.20 based on 1000 men.

Q7.27
A bag initially contains three black sweets and four red sweets. In this problem
two sweets are taken from the bag one at a time, and the first sweet is not returned
to the bag.

Note that the probabilities for selection of the second sweet depend on what sweets
are left after the first selection has been made.

Use a probability tree to work out the answers.

Calculate the probabilities of drawing:

(i) a black sweet followed by another black sweet;
(ii) a black sweet followed by a red sweet;

(iii) a red sweet followed by another red sweet;
(iv) a red sweet followed by a black sweet;
(v) any one of the above four combinations.

Q7.28
What is the probability that, out of five people, at least two of them have their
birthdays in the same month? (Assume that every month = 1/12 of a year.)

Hint 1: it is easiest to calculate first the probability that no one has their birthday
in the same month as anyone else.
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Hint 2: pick one person and then calculate the probability that the next person to be
picked will have a birthday in a different month, and then the probability that the
next person will also have a birthday in a different month to the previous two, etc.

7.5 Factorials, Permutations and Combinations
7.5.1 Introduction
This unit develops the statistics for calculating the number of ways of obtaining particular
arrangements of objects and events. These calculations have particular relevance in a range of
probability calculations, from the likelihood of winning the National Lottery to the distribution
of plants across a field.

7.5.2 Factorial
The factorial, n!, of a number, n, is the number multiplied by every integer between itself
and one:

n! = n × (n − 1) × (n − 2) × · · · × 3 × 2 × 1 [7.23]

Scientific calculators can calculate the factorial of a number directly – look for the x ! function.
The factorial can be calculated in Excel (Appendix I) using the function FACT(x).
It is useful to note some particular values:

1! = 1 [7.24]

n! = n × (n − 1)! [7.25]

0! = 1(This is not obvious, but should be remembered!) [7.26]

Example 7.21

1! = 1 0! = 1

2! = 2 × 1! = 2 × 1 = 2 0!/3! = 1/6

3! = 3 × 2! = 3 × 2 = 6 20! = 20 × 19!

4! = 4 × 3! = 4 × 3 × 2 = 24

etc.
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Division using factorials Using a simple numerical example first:

Example 7.22

8!

5!
= 8 × 7 × 6× 
 5× 
 4× 
 3× 
 2 × 1


 5× 
 4× 
 3× 
 2 × 1
= 8 × 7 × 6

1
= 336

In Example 7.22, the 5! in the denominator cancels with all the terms from 5 to 1 in the
numerator, leaving only 8 × 7 × 6.

Hence, we can write a general formula for the division of factorials, where n> m:

n!

m!
= n × (n − 1) × · · · × (m + 2) × (m + 1) [7.27]

Example 7.23

Using equation [7.27]:

(i) 6!/4! = 6 × 5 = 30
(ii) 46!/41! = 46 × (46 − 1) × · · · × (41 + 2) × (41 + 1) = 46 × 45 × 44 × 43 × 42

Q7.29
Work out the values of each of the following without using a calculator (check the
results afterwards using a calculator):

(i) 5! (iv) 3! − 3!

(ii) (4 − 3)! (v)
7!

5!

(iii) (3 − 3)! (vi)
101!

99!

7.5.3 Permutations
A mathematical permutation is the number of ways of arranging r items in order when selected
from n items.
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Arranging n items in order The simplest problem is to find out how many ways it is
possible to arrange n items into different sequences (or order).

Example 7.24

If we have three items, X, Y and Z, we can produce six possible arrangements which
differ in the ordering of the items:

XYZ, XZY, YXZ, YZX, ZXY, ZYX

We can calculate the number of ways mathematically by considering how many ‘choices’
we have when filling the first, second and third places in order. Initially we have three
choices for which letter to put in first place (e.g. Y), but we will then only have a choice
of two letters left (e.g. X and Z) for the second place, and then only one letter for the
third place:

We have a choice
of three items
for the first
place (X, Y or
Z)

We now have
two choices
left for the
second place

We only have
one ‘choice’
left for the
final place

Total number of
different ways

3 ×2 ×1 = 3! = 6

Thus the total number of possible arrangements was 3 × 2 × 1 = 3!.

In general:

Number of ways of arranging n items in order = n! [7.28]

Q7.30
In how many ways can the four nitrogen bases, A, T, G and C, be arranged in
different orders?

Arranging r items in order when selected from n possible items We can illustrate the
problem using the following example.
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Example 7.25

As a specific example, consider selecting 3 (= r) items, in a specific order , from
7 (= n) items (e.g. TUVWXYZ). The number of ways can be calculated as
follows:

We have a choice
of n = 7 items
for the first
place

We now have
(7 − 1)

choices left for
the second
place

We now have
(7 − 2)

choices left for
the third place

Total number of
different ways

7 ×6 ×5 = 7 × 6 × 5

In this example the total number of ways of ordering 3 (= r) from 7 (= n) items is
7 × 6 × 5 = 210.

We can rewrite the number as follows:

7 × 6 × 5 = 7 × 6 × 5× 
 4× 
 3× 
 2 × 1


 4× 
 3× 
 2 × 1
= 7!

4!
= 7!

(7 − 3)!
= n!

(n − r)!

The general formula for arranging r items in order when selected from n possible items is
given by the permutation function:

nPr = n!

(n − r)!
[7.29]

This function can also be calculated directly in most scientific calculators. Enter the ‘n’ value
first, press the nPr button, enter the ‘r’ value, and press ‘=’.

The nPr function can be calculated in Excel (Appendix I) using the function PERMUT
(n, r).

Example 7.26

Calculate the number of ways of selecting the first, second and third horses (order
important) in a race with 10 horses:

10P3 = 10!/(10 − 3)! = 10 × 9 × 8 = 720
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Q7.31
An athlete has eight different trophies, but only has room for four trophies in a
display cabinet.

How many different ways is it possible to display just four trophies out of eight,
assuming that the display order is important?

7.5.4 Combinations
A mathematical combination is the number of different ways of selecting ‘r’ items from ‘n’
items when the order is not important.

Example 7.27

Calculate the number of ways of selecting 2 items from 4 possible items.

There are 12(= 4P2) different ways of ordering 2 letters from the 4 letters W, X, Y
and Z:

WX, WY, WZ, XW, XY, XZ, YW, YX, YZ, ZW, ZX, ZY

However, if the order of selection is not important, then there are no differences between
each of the following 6 pairs of selections:

WX and XW, WY and YW, WZ and ZW, XY and YX, XZ and ZX, YZ and ZY

In this case there will then be only 6 different ways of selecting 2 items from 4 items
with the order not important:

WX, WY, WZ, XY, XZ, ZY

The number of ways of selecting r items from n items when the order is not important is
given by the function nCr .

We know that the number of ways that each selection of the r items can be ordered amongst
themselves is r!. Hence, from the previous two statements, we see that the number of ways of
first selecting and then ordering r items from n items, nPr , is given by the equation:

nPr = nCr × r! [7.30]
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The number of combinations can therefore be calculated using:

nCr = nPr

r!
[7.31]

which is the same as:

nCr = n!

r! × (n − r)!
[7.32]

This function can also be calculated directly in most scientific calculators. Enter the ‘n’
value first, press the nCr button, enter the ‘r’ value, and press ‘=’.

The nCr function can be calculated in Excel (Appendix I) using the function COMBIN(n, r).
Example 7.27 can be solved using [7.32], to give the number of ways of selecting (r =) 2

items from (n =) 4 items (W, X, Y and Z) where the order is not important:

4C2 = 4!

2! × (4 − 2)!
= 24

2 × 2
= 6

Example 7.28

Calculate the number of ways of selecting the first, second and third horses in a race
with 10 horses, where order is not important (see Example 7.26):

10C3 = 10P3/3! = 720/6 = 120

Example 7.29

UK National Lottery (Lotto)

Calculate the probability of getting the jackpot in the UK National Lottery (Lotto), where
6 different numbers must be selected from 49 numbers.

The number of arrangements of 6 numbers selected from 49 numbers is:

49P6 = 1.0068 × 1010
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However, many of the above arrangements will have selected the same numbers but in
a different order . For each set of 6 numbers, there are 6! ways of rearranging them into
a different order.

To win the lottery, the order of the six numbers is not important. The number of ways
of selecting 6 numbers in any order from 49 numbers is:

49C6 = 49P6/6! = 1.0068 × 1010/6! = 139 838 16 ≈ 14million

The aim, when buying a lottery ticket, is to guess which one of the 14 million possible
selections of the 6 numbers will occur.

Thus the probability of selecting the correct six numbers is 1 in 14 million!

Q7.32
A football manager has a squad of 20 players.

How many different teams of 11 players could be selected from the squad?
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Distributions and Uncertainty

Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Excel tutorials: statistical calculations, calculation of uncertainties.
• Excel files appropriate to selected ‘Q’ questions and Examples.

The concept of a continuous ‘distribution’ in statistics was introduced in 7.3.8, and is a method
of describing how the values of a data variable may be spread over a given range. The
distribution may record the variability of data that has been recorded in the past (frequency
distribution) or predict the variability with which data values might be expected to be recorded
in the future (probability distribution).

This chapter describes three distributions important in science – the normal, binomial and
Poisson distributions. These have importance in modelling different systems in science:

• The normal distribution can be used to model a very wide range of systems where the
distribution follows the familiar ‘bell-shaped’ curve. A particularly common application in
science occurs in relation to experimental uncertainty.

• The binomial distribution applies to systems where, at the fundamental level, the system
can be in one of two possible states – hence the prefix ‘bi’. A classic example of binomial
statistics might calculate the probability of getting eight heads when a coin is tossed 10
times.

• The Poisson distribution is a special case of the binomial distribution, which occurs when
the individual probability of a given event is low. This distribution can be used to estimate
the probabilities for the occurrences of such events, e.g. the probability that a particular
number of cases of a randomly occurring disease may appear in a specific locality.

The most important parameters used to describe a distribution – mean, standard deviation,
variance – have already been introduced in 7.2.4 and 7.2.6, and are used to describe the location
and spread of the distribution.

Other parameters that are used to describe the characteristic shape of distributions are given
on the Website.
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Different types of scientific mechanisms may produce experimental data with different dis-
tributions. If it is possible to confirm that the data falls into one or other type of distribution,
then it is possible to deduce that one mechanism is more likely to be operating than a possible
alternative. In this respect, ‘goodness of fit’ (14.2) is a useful hypothesis test that can be used
to assess whether an experimental distribution might be different from a particular theoretical
model.

The impact of experimental uncertainty on scientific measurements has been introduced in
1.2. The normal distribution has particular value in dealing with experimental uncertainty, as
it closely models the variability in the results of many types of experimental measurement. In
particular, the random uncertainty can be quantified by defining a confidence interval at X%,
which has an X% probability of including the true value being measured.

For example, if an experimental result is presented as:

4.67 ± 0.05 (95 % CI)

then it can be stated with 95 % probability that the true value of the variable being measured
lies between 4.62 (= 4.67 − 0.05) and 4.72 (= 4.67 + 0.05).

The ways in which the uncertainties in separate variables combine in a calculation of overall
uncertainty is discussed in 8.3.3.

8.1 Normal Distribution
8.1.1 Introduction
The bell-shaped normal distribution is the most widely used distribution in science. Of particular
importance is the fact that many experimental variations can be described effectively by using
the normal distribution.

8.1.2 Experimental uncertainty
There is always some uncertainty when making any experimental measurement. If we are
trying to measure some experimental property whose true value is µ, then we are more
likely to record a value close to µ, and less likely to record a value a long way away
from µ.

The probability density, pd (x) (7.3.8), of recording a particular value, x, is largest when
x is close to µ, but then the probability falls off as a ‘bell-shaped’ curve on either side
of µ.

Example 8.1

Figure 8.1 shows the probabilities of getting an experimental result, x, in specific ranges,
when measuring a true blood–alcohol level of 80 mg per 100 mL, i.e. 80 mg of alcohol
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in each 100 mL of blood. The standard deviation uncertainty in the measurement process
being used is 2.0 mg per 100 mL.

0.
19

15

0.
19

15

0.
09

18

0.
14

99

0.
04

41

0.
00

49

0.
00

02

0.
01

65

0.
00

00

0.
00

11

80 82 847876 86 887472

Blood–alcohol level (mg per 100 mL−1)

0.
14

990.
09

18

0.
04

41

0.
01

65

0.
00

49

0.
00

11

0.
00

02

0.
00

00

Figure 8.1 Histogram of blood–alcohol measurements.

For example, the histogram shows that the probability of recording a value between 81
and 82 is 0.1499 (or about 15 %).

The mathematical name for this ‘bell-shaped’ distribution is the normal distribution.
Most random experimental errors can be considered to have a frequency spread of results

that follow a normal distribution.

Q8.1
Figure 8.1 shows the probabilities of a single experimental result, with a standard
deviation of 2.0, falling within unit ranges about a mean value of 80.

Calculate, using the data in Figure 8.1, the probabilities that a single experimental
result will fall within the following ranges (in mg per 100 mL):

(i) 80–81
(ii) 81–83

(iii) >80
(iv) 78–82 (i.e. 80 ± 1 standard deviation)
(v) 76–84 (i.e. 80 ± 2 standard deviations)

(vi) 74–86 (i.e. 80 ± 3 standard deviations)
(vii) 72–88 (i.e. 80 ± 4 standard deviations)

8.1.3 Normal distribution
The normal distribution (also called the Gaussian distribution) is defined by the probability
density, pd (x), as a function of the variable, x (with mean value, µ, and standard deviation,
σ ).
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Figure 8.2 Normal distribution with mean, µ, and standard deviation, σ .

The normal curve in Figure 8.2 gives the probability density, pd (x), or frequency density,
fd (x), of recording a particular value, x, when the values are distributed with a standard
deviation, σ , about a mean, µ.

Example 8.2

Make a careful note of the ‘width’ of the curve in Figure 8.2 compared with the size of
the standard deviation, σ . That is:

• There are about three standard deviations, 3σ , between the centre of the distribution
and the extreme ‘tail’ on each side.

• The distribution width at half its maximum height is approximately equal to 2.4 × σ .

There are very many different normal curves, each defined by a different mean and standard
deviation . However, two important facts are that:

• they all have the same overall ‘bell’ shape; and
• they all have the same area (in the case of the probability distribution, this area is 1.0).

Figure 8.3 shows normal distributions with means 12 and 18 and standard deviations 2 and
4 respectively. Note that they have the same probability area (= 1.0), with one curve having
twice the height of the other but half the width.

0 5 10 15 20 25 30

pd
 (

x
)

x

m = 12, s = 2

m = 18, s = 4

Figure 8.3 Normal distributions.
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Q8.2

(i) Estimate, by eye, the mean of the normal distribution given in Figure 8.4.

pd
 (

x)

x2.00.0 4.0 6.0−2.0

Figure 8.4

(ii) Estimate the standard deviation by using the fact there are approximately three
standard deviations between the centre and each extreme tail.

(iii) Estimate the standard deviation by using the fact that the width of a normal
distribution at half its maximum height is approximately equal to 2.4 × σ ,
where σ is the standard deviation. (On the graph in the figure, estimate the
width of the distribution at half of the maximum height of the curve, and then
divide the value by 2.4.)

8.1.4 Common probability areas
Figure 8.5 shows the probabilities (areas) of recording values in specific regions defined by
the ‘numbers of standard deviations’ from the mean value.

The probability of recording a value between x1 and x2 can be written as p(x1 <x <x2).
The probability , p(x1 <x <x2), is equal to the area under the standard normal distribution

between values x1 and x2.
The total probability (area) for all values of x, p(−∞ <x <+∞) = 1.0, and the probability

area for each ‘half’ of the distribution, p(−∞ <x < 0) = p(0 <x < +∞) = 0.5.
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Figure 8.5 Some probability areas for a normal distribution.
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The normal distribution is symmetrical – the areas on the negative side of the distribution
are the same as the equivalent areas on the positive side.

Calculations involving the probability areas of a normal distribution can be performed in
Excel or by reading probability areas directly from the table in Appendix II – see Appendix I
and the Website.

Example 8.3

Using the probability areas in Figure 8.5, we can calculate the probabilities of recording
values of x within specific ranges (it is often necessary to add or subtract areas to get
the desired final area):

(i) Probability of recording a value within one standard deviation (±1σ ) of the
mean:

p(−1σ <x < +1σ) = 2 × 0.3413 = 0.6826 ≈ 68.3 %

(ii) Probability of recording a value within two standard deviations (±2σ ) of the
mean:

p(−2σ <x <+2σ) = 2 × (0.3413 + 0.1359) = 0.9544 ≈ 95.4 %

(iii) Probability of recording a value within three standard deviations (±3σ ) of the
mean:

p(−2σ <x < +2σ) = 2 × (0.3413 + 0.1359 + 0.0215) = 0.9974 ≈ 99.7 %

Incorporating the results from Example 8.3, we can list in Table 8.1 some common proba-
bilities associated with all normal distributions.

Table 8.1. Useful probability areas for the normal distribution.

68.3% of all data points lie within ±1.00 × σ of the mean value
90% of all data points lie within ±1.64 × σ of the mean value
95% of all data points lie within ±1.96 × σ of the mean value
95.4% of all data points lie within ±2.00 × σ of the mean value
99% of all data points lie within ±2.58 × σ of the mean value
99.7% of all data points lie within ±3.00 × σ of the mean value

Q8.3
It is known that a specific measurement process produces results which are normally
distributed with a standard deviation of 4.
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If 100 000 replicate measurements could be made of a true value equal to 50, use
the information in Table 8.1 to estimate the number of results that would record a
value:

(i) between 46 and 54
(ii) between 42.16 and 57.84

(iii) outside the range 38 to 62
(iv) greater than 54 (hint: use your result from (i))

8.2 Uncertainties in Measurement
8.2.1 Introduction
We have seen in 1.2 that a typical experimental measurement will have a random uncertainty,
which may be due to either:

• a variation in the measurement procedure itself (e.g. uncertainty in the response of a pH
electrode); or

• a natural variation in the subjects being measured (e.g. different plants of the same crop
grow at different rates).

The problems of experimental uncertainty are fundamental to all experimental science, and
a more extensive discussion of experimental variation is given in 11.1.2.

8.2.2 Experimental variation and true value
In a typical experimental measurement, we aim to try to identify the unknown value, µ, of
some scientific parameter (e.g. pH of a particular solution, or the average growth rate of crop
plants).

The true value (1.2) means something slightly different in each of the two types of experi-
mental uncertainty:

• Where the uncertainty is due entirely to the measurement process itself, the true value is
the single actual value, µ, of the subject that is being measured (e.g. the true pH of the
solution).

• Where the major uncertainty lies in the subjects that are being measured, the true value is
the mean value, µ, of all the possible measurements (population) that could be made (e.g.
the mean growth rate of all the plants of a given crop).

Fortunately, we can apply the same statistics to both of the above situations. We see that the
mean value, x, of a sample of n experimental measurements is used as a ‘best estimate’ for
true mean value, µ, that would be obtained if a full population (see 7.2.2) of measurements
could be made.
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A population of measurements for measurement uncertainty would be an infinite number of
replicate (repeated) measurements, and a population of measurements for subject uncertainty
would include every possible measurement (e.g. every plant in the crop).

Q8.4
Consider the two experimental investigations:

A: a metallurgist makes four repeated (replicate) analyses for the concentration
of cadmium in a piece of iron.

B: a biologist measures the lengths of 30 stems from a crop of soya bean.

Both of these scientists will record a mean value, x, and a standard deviation, s,
for their experimental results.

(i) Explain, in both cases, the probable sources of the variation, s, in the experi-
mental results.

(ii) What will be the relevance of the value, x, to the metallurgist in A?
(iii) What will be the relevance of the value, x, to the biologist in B?

The effect of experimental variation can be described by using the probability density, pd (x),
of recording a particular experimental value, x.

Figure 8.6 shows that the true value being measured is µ, but experimental uncertainty
means that the probability of getting an experimental value, x, is often given by a bell-shaped
normal distribution.

The distribution shows that it is more likely that the experimental result, x, will be close
to µ, but there is also a decreasing probability that a result, x, might be recorded a long way
from µ.

From 8.1.7 we can see that, for individual experimental results, x:

90 % of x would fall in the range µ − 1.64 × σ to µ + 1.64 × σ

95 % of x would fall in the range µ − 1.96 × σ to µ + 1.96 × σ [8.1]

99 % of x would fall in the range µ − 2.58 × σ to µ + 2.58 × σ

m
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x

m+sm−s m+2sm−2s

m+1.96sm−1.96s

95% Probability Range

Figure 8.6 Distribution of individual results, x, for an experimental uncertainty which has a normal
distribution with a mean, µ, and standard deviation, σ .
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It is worth remembering the numbers 1.64, 1.96 and 2.58 – they occur frequently.

Q8.5
In a particular experiment to measure the concentration of lead in drinking water,
the experimental procedure has a standard deviation uncertainty of 2.0 ppb. A
number of analysts each make a single experimental measurement.

If the true value of the concentration is 23 ppb, estimate the range of values within
which 95 % of the analysts’ results are likely to fall.

8.2.3 Replicate measurements, sample means and
standard error
The uncertainty in a single experimental measurement is given directly by the standard devi-
ation, σ , of the experimental variation – see 8.2.2. However, it is good scientific practice to
take several repeat (or replicate) measurements, n, and then take the average (mean) of that
sample of n measurements.

When we take an increasing number of replicate measurements, the mean, x, of our replicates
will tend to become closer to the ‘true’ value, µ. This is a consequence of a statistical theory
called the ‘central limit theorem’.

Another important consequence of the central limit theorem is that the distribution of sam-
ple mean values will tend towards a normal distribution, even if the distribution of the
individual measurements is not normal (e.g. a Poisson distribution). By taking the mean
values of data samples, we are more likely to ensure that our experimental uncertainties
do follow normal distributions – this is important for the validity of much of the statistics
used to analyse such data. In practice, a sample size of at least 30 data values is usually
sufficient.

The reduced uncertainty (or improved precision) when taking the mean of n replicate mea-
surements is given by:

Standard error of the mean, SE = σ√
n

[8.2]

Note that the equivalent statistic when using the sample standard deviation, s, is called the
standard uncertainty – see [8.4].

According to the central limit theorem, the distribution of the possible mean values, x, of
n experimental measurements follows a normal distribution, as in Figure 8.7, with a mean (of
mean values) = µ and a standard deviation of SE = σ/

√
n.

Figure 8.7 gives the probability density, pd (x), for recording mean values, x, of
different sample sizes, n. The sample size n = 1 represents a single measurement as in
Figure 8.6.
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Figure 8.7 Distribution of mean values, x, for samples of different sizes.

As the sample size, n, increases:

• the uncertainty in the mean value gets smaller;
• the probability curve gets narrower; and
• the experimental result, x, is likely to be closer to the ‘true’ value, µ.

Comparing with equations [8.1], we can see that, for the mean values , x, of n experimental
measurements (note the effect of the number of replicate measurements, n):

90 % of x - values would fall in the range µ −
(

1.64 × σ√
n

)
to µ +

(
1.64 × σ√

n

)

95 % of x - values would fall in the range µ −
(

1.96 × σ√
n

)
to µ +

(
1.96 × σ√

n

)
[8.3]

99 % of x - values would fall in the range µ −
(

2.58 × σ√
n

)
to µ +

(
2.58 × σ√

n

)

Q8.6
In the same experimental procedure as in Q8.5 the standard deviation uncertainty
of measurement is 2.0 ppb. In this case, each analyst makes four measurements
and then calculates the mean value, x, of their four measurements:

(i) Calculate the standard error of the mean values, x.
(ii) If the true value of the concentration is 23 ppb, estimate the range of values

within which 95 % of the experimental means, x, are likely to fall.

8.2.4 Experimental perspective and confidence
intervals
The discussion of the normal distribution above assumes that the true (or population) mean
value, µ, is known and that the standard deviation of the distribution, σ , is also known.
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However, in most experimental measurements it is the unknown value, µ, that is being mea-
sured and very often the inherent standard deviation, σ , of data values is also unknown.

The typical experimental measurement with n replicate measurements will report a sample
mean value, x, and a sample standard deviation, s:

• x is the ‘best estimate’ for the true mean value, µ;
• s is the ‘best estimate’ for the true standard deviation, σ .

The best estimate for the inherent uncertainty in a single experimental measurement is given
by the sample standard deviation, s.

The resultant uncertainty in the final mean value, x, is reduced by having taken n repli-
cate measurement. On the basis of the central limit theorem (8.2.3) and equation [8.2] which
describes how the uncertainty in the mean is reduced as the square root of the number of data
values, we can then define:

Standard uncertainty in experimental value, ux = s√
n

[8.4]

It would now be possible to report the results of the experiment, giving the observed mean
value, x, and quoting the standard uncertainty, s/

√
n.

For example, if nine replicate measurements gave a mean value of 8.7 and a sample standard
deviation of 0.6, the results could be quoted as a best estimate for the true value of 8.7 with
a standard uncertainty of 0.6/

√
9 = 0.2.

However, it is even more useful to be able to quote the experimental results in a statement
which gives a calculated range of possible values:

With 95 % confidence the true value being measured is within the range 8.7 ± 0.46, i.e. between
8.7 − 0.46 (≈8.2) and 8.70 + 0.47 (≈9.2).

The range quoted above is called the ‘95 % confidence interval’ and is a standard method of
communicating these results.

The confidence interval, CIX %, is defined as the total range within which we are X%
confident in stating that the true value, µ, lies:

CIX% = x ±
(

t2,α,df × s√
n

)
[8.5]

The confidence interval is centred on the sample mean, x, and extends a distance on either
side, called the confidence deviation:

CdX% = t2,α,df × s√
n

[8.6]
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The new factor in equations [8.5] and [8.6] is the ‘2-tailed’ t-value, t2,α,df (see also 10.1.3),
where

α is the significance level (see also 9.4.4) with: α = 1 − X%
100

(typically α = 0.05 when X% = 95 %) and
df is the degrees of freedom for the calculation.
Degrees of freedom is a statistical concept dependent on the number of separate bits of

information available for the calculation. For the confidence interval calculation the number
of degrees of freedom is given by df = n − 1, where n is the number of data values in the
sample.

A selection of ‘2-tailed’ t-values, t2,α,df , for 95 % confidence (α = 0.05) is given in Table 8.2
for a number of sample sizes. A more extensive table of t-values is given in Appendix III.

Table 8.2.

Sample size, n 2 3 4 5 6 8 11 21 ∞
Degrees of freedom, df 1 2 3 4 5 7 10 20 ∞
t2,0.05,df 13.7 4.30 3.18 2.78 2.57 2.36 2.23 2.09 1.96

The variation of the t-value is due to the fact that the calculation is based on the assumption
that the sample standard deviation, s, is the best estimate for the true standard deviation, σ , of
the data values. This has two consequences that can be seen in Table 8.2:

• For large sample sizes (n large), s will become a good approximation for σ , and the t-value
approaches 1.96, which is the numerical value in equations [8.3] for the 95 % range of data
values calculated using σ .

• For small sample sizes (n small), there will be increasing uncertainty that s is a good
approximation for σ , and this increasing uncertainty must be reflected in a wider confidence
interval, which in turn requires a larger value for t2,0.05,dḟ .

The confidence interval is equivalent to the range:

x − CdX% to x + CdX%

or:

x −
(

t2,α,df × s√
n

)
to x +

(
t2,α,df × s√

n

)
[8.7]

It is interesting to note that the statistical calculations for the confidence interval based on
t-values were first developed by William Gosset to analyse small statistical samples arising
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from measurements being made in the brewing of Guinness in Dublin in 1908. Due to industrial
secrecy he published his work under the pseudonym ‘Student’.

Note that the Excel function CONFIDENCE (Appendix I) should not be used for sample
standard deviations . The function assumes that the population standard deviation, σ , is known,
which is not normally true in an experimental context.

Example 8.4

A set of n = 6 replicate measurements is made, giving experimental results: 25, 28, 23,
20, 25, 24.

Calculate the range of values within which we can be 95 % confident that the unknown
true value, µ, lies.

The mean of the six results, x = 24.17.

The calculated sample standard deviation of the six replicates, s = 2.64 (this is our best
estimate for the unknown population standard deviation, σ ).

From Table 8.2, a sample size n = 6 gives a value of t2,0.05,5 = 2.57:

CI95 % = x ±
(

t2,0.05,5 × s√
n

)
⇒ 24.17 ±

(
2.57 × 2.64√

6

)
⇒ 24.17 ± 2.77

We can then say with 95 % confidence that, on the basis of six replicate measurements,
which have a mean of 24.17 and a sample standard deviation of 2.64, the true value
being measured lies between 21.4 and 27.0 (rounded to 1 dp).

Q8.7
A student develops a new quick technique to measure the concentration of cadmium
(Cd) in river water, and uses the technique to record the values given below (in
ppb) for an unknown sample. In each of the cases below the student wishes to
report the true concentration for the unknown sample, with a 95 % probability of
being correct.

(i) The student makes three replicate measurements: 18.2, 20.2, 19.6. What can
the student say about the true value?

(ii) The student makes six replicate measurements: 18.2, 20.2, 19.6, 17.6, 18.5,
19.5. What can the student say about the true value?

(iii) The student records only one value: 18.2. What can the student say about the
unknown true value?
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Example 8.5

Two analysts are both measuring the concentration of the same solution and report their
individual findings for their 95 % confidence intervals as 18.6 ± 1.2 and 14.9 ± 2.6,
respectively.

Is it possible for the true value to fall within both confidence Intervals?

The two confidence intervals overlap between the values 17.4 and 17.5, so that a true
value within that range would also be in both confidence intervals.

8.3 Presenting Uncertainty
8.3.1 Introduction
The management of uncertainty in experimental measurements is a recurrent theme throughout
this book. In mathematical terms, the aim of a typical measurement is to determine the true
value, µ (population mean), of a given variable, for which the scientist makes n replicate
measurements of the variable, x, to give an experimental mean value, x, with a sample standard
deviation, s.

Within this unit, we start by introducing some of the principal terms that are used by
scientists to present this experimental uncertainty. We then develop the methods that can be
used to combine the separate uncertainties of individual measurements into a single uncertainty
in a final experimental result.

8.3.2 Terminology
It is useful to review some of the terms that we use for describing the uncertainty in a particular
experimental measurement.

Standard uncertainty, ux , in the mean value, x, of n measurements of a variable, x, is
defined by the International Organization for Standardization (ISO) Guide to the Expression of
Uncertainty in Measurement as the standard deviation, s, of the measurements divided by the
square root of n:

ux = s√
n

[8.8]

The standard uncertainty (see also 8.2.4) is the best estimate of the standard error of the
mean, SE (8.2.3), of the population of measurements from which the sample of experimental
measurements was drawn.
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We define a new term, relative uncertainty, Rux , in the mean value, x, as the percentage
ratio of the standard uncertainty to the mean value. Relative uncertainty is the percentage
uncertainty in a particular experimental result :

Rux = 100 × ux

x
and ux = x × Rux

100
[8.9]

We have defined, in 8.2.4, a new term, confidence deviation (Cd ), which is the range in either
direction from the mean value, x, within which the true value, µ, can be expected to lie, with
a confidence of X%:

CdX% = t2,α,df × s√
n

[8.10]

Confidence interval (CI ) is the range of values (8.2.4) within which the true value, µ, can
be expected to lie, with a confidence of X%:

CIX% = x ± CdX%

CIX% = x ±
(

t2,α,df × s√
n

)
[8.11]

It is also useful to note two terms that are used to describe the precision of an experimental
process rather than the uncertainty in a particular measurement: relative standard deviation
(RSD) and coefficient of variation (CV ) both give the ratio of the population standard devi-
ation, σ , to the mean value, i.e. the fractional standard deviation. The coefficient of variation
is the ‘percentage’ equivalent of relative standard deviation:

RSD = σ

x

CV = 100 × σ

x
% [8.12]

When presenting results, the experimental method used should be made explicit, and sufficient
information (e.g. sample size, n) should be given to enable the readers to interpret the uncer-
tainty in any of the formats given. The final result should be given with an appropriate number
of significant figures (2.1.7).
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Example 8.6

Nine experimental measurements give a mean value of 56.26 with a sample standard
deviation of 5.7.

(i) Calculate values for the standard uncertainty, ux , and relative uncertainty, Rux .
(ii) Express the final result using a 95 % confidence interval.

Here:

(i) ux = 5.7√
9

⇒ 1.9

Rux = 100 × 1.9

56.26
⇒ 3.38 %

(ii) Degrees of freedom, df = n − 1 ⇒ 9 − 1 ⇒ 8
t-value for two-tailed, 95 %, 8 degrees of freedom = 2.31:

CI95 % = 56.26 ± 2.31 × 1.9 ⇒ 56.26 ± 4.389

which would give a final result, with rounding, expressed as:

µ = 56.3 ± 4.4 (95 %CI)

Q8.8
A particular measurement procedure is quoted as having a coefficient of variation
[8.12] of 5 %. Calculate the standard error of the mean [8.2] that would be expected
for the mean of eight replicate measurements of a true value of 4.5 ppm.

8.3.3 Combining uncertainties
There are many occasions in science when a final result, x, will be given by the combination
of two or more values, e.g. a, b. The initial uncertainties in a, b can be expressed as:

• standard uncertainties, ua and ub; and/or
• relative uncertainties:

Rua = 100 × ua

a
and Rub = 100 × ub

b
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The ways in which we combine the uncertainties depend on the way in which the values a

and b are combined.
For addition and subtraction equations we combine the squares of standard uncertainties,

but for multiplication and division we combine the squares of relative uncertainties:

If x = k × a (k is a constant) then use: ux = k × ua or Rux = Rua [8.13]

If x = a + b or x = a − b, then use: ux =
√

u2
a + u2

b [8.14]

If x = a × b or x = a

b
, then use: Rux =

√
Ru2

a + Ru2
b [8.15]

If x = an (n is a constant) then use: Rux = n × Rua [8.16]

In performing calculations, it is often necessary to change between standard uncertainty and
relative uncertainty using equations [8.9].

Example 8.7

The measurements of the two sides of a rectangle record the values:

a = 8.4 mm with a standard deviation uncertainty, ua = 0.5 mm

b = 6.7 mm with a standard deviation uncertainty, ub = 0.5 mm

Calculate the following values, together with both the standard and relative uncertainties
in each value:

(i) Sum of the two lengths: t = a + b

(ii) Difference in the lengths: d = a − b

(iii) Perimeter of the rectangle: p = 2(a + b)

(iv) Ratio of the lengths of the sides: r = a/b

(v) Area of the rectangle: A = a × b

Answers are given in the following text .

We can answer Example 8.7 by using equations [8.13] to [8.16]:

(i) The addition of the two lengths gives t = 8.4 + 6.7 = 15.1 mm.
As this is an ‘addition’, we must calculate the uncertainty, ut , by using [8.14]:

ut =
√

0.52 + 0.52 = 0.707 mm
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The relative uncertainty is: Rut = 100 × ut

t
⇒ 100 × 0.707

15.1 ⇒ 4.68 %
(ii) The difference between the two lengths gives d = 8.4 − 6.7 = 1.7 mm.

As this is a ‘subtraction’, we still calculate the uncertainty, ut , by using [8.14]:

ut =
√

0.52 + 0.52 = 0.707 mm

The relative uncertainty is: Rut = 100 × ut

t
⇒ 100 × 0.707

1.7 ⇒ 41.6 %
In (i) and (ii), notice that, although the absolute error, u, is the same, the relative error,
Ru t , becomes much larger in (ii) because the actual value is much less (1.7 instead of
15.1).

(iii) To calculate the perimeter, p = 2(a + b), we can use t = a + b from (i), where t =
15.1 mm and ut = 0.707, and calculate p = 2t ⇒ 30.2 mm.
As we are multiplying by a constant, we use [8.13]:

up = 2 × ut = 2 × 0.707 = 1.414 mm

The relative uncertainty is: Rup = 100 × up

p
⇒ 100 × 1.414

30.2 ⇒ 4.68 %
Note that the relative uncertainty has stayed the same (4.7 %) when simply multiplying t

by the constant.
(iv) The ratio of the sides gives: r = a

b
⇒ 8.4

6.7 ⇒ 1.254 (pure number with no units)
As this is a ‘division’, we must use [8.9] to calculate the relative uncertainties of a and b:

Rua = 100 × ua

a
⇒ 100 × 0.5

8.4
⇒ 5.952 %

Rub = 100 × ub

b
⇒ 100 × 0.5

6.7
⇒ 7.463 %

Using [8.15], the relative uncertainty is:

Rur =
√

Ru2
a + Ru2

b ⇒
√

5.9422 + 7.4632 ⇒ 9.55 %

Using [8.9] to calculate the absolute uncertainties:

ur = r × Rur

100
⇒ 1.254 × 9.55

100
⇒ 0.120 mm
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(v) The area of the rectangle gives A = a × b = 8.4 × 6.7 = 56.28 mm2.
As this is a ‘multiplication’, and using [8.15] will give us the same relative uncertainty
as for the ‘division’ in (iv), the relative uncertainty is:

RuA =
√

Ru2
a + Ru2

b ⇒
√

5.9422 + 7.4632 ⇒ 9.55 %

Using [8.9] to calculate the absolute uncertainties:

uA = A × RuA

100
⇒ 56.28 × 9.55

100
⇒ 5.37 mm2

Q8.9
Calculate (with the combined uncertainty) the density, ρ, of a piece of compact
bone which has been measured to have mass m = 4.3 g with um = 0.3 g and
volume V = 2.3 cm3 with uV = 0.2 cm3. Use the equation:

ρ = m

V

Use the table below to set out the results.

Variable Value, x ux Rux

Mass, m(g)

Volume, V (cm3)

Density, ρ (g cm−3)

Q8.10
Using the same data as in Example 8.7, calculate the value and uncertainty for the
diagonal of the rectangle, h = √

a2 + b2 (using Pythagoras), given that:

a = 8.4 mm with a standard deviation uncertainty, ua = 0.5 mm

b = 6.7 mm with a standard deviation uncertainty, ub = 0.5 mm.
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8.4 Binomial and Poisson Distributions
8.4.1 Introduction
The binomial distribution applies to a situation where, for each particular statistical trial , there
are only two possible results (e.g. Y or N , 1 or 0, X or X – hence the prefix ‘bi’). For example:

• A room might contain 10 randomly selected people, each of whom will be either right-handed
or left-handed – binomial statistics can calculate the probability that exactly three people will
be left-handed.

• In an experiment to toss a coin 100 times, each toss of the coin is a trial – the binomial
distribution describes the probabilities of obtained specific numbers of heads in the overall
experiment (see Figure 9.1).

The Poisson distribution is a special case of the binomial distribution where the probability,
p, of one outcome of each particular statistical trial is very low. For example, it could be
appropriate to use the Poisson distribution to calculate the probability of occurrence of random
genetic mutations.

With both the binomial and Poisson distribution, it is assumed that the result of each trial
is independent of the results of any other trial, and that the subject of each trial is randomly
selected.

8.4.2 Binomial distribution
We will use the following example as an introduction to the distribution.

Example 8.8

The parents of five offspring both carry the gene for albinism, which gives each offspring
a 1 in 4 probability (p = 0.25) of being an albino.

We wish to calculate the probability, p(r), that, within the group of n = 5 offspring,
there will be exactly r = 2 albinos.

The worked answer is given in the following text .

In a typical binomial problem with a total of n trials , each trial could have an outcome, Y

or N .
The term trial is often used in statistics, and, in Example 8.8, refers to a test as to whether

a particular offspring is an albino (Y ) or not (N ).
If r trials have an outcome Y , then (n − r) trials will have an outcome N .
If p is the probability that each trial will result in Y , then the probability, p(r), that there

will be exactly r trials with outcome Y is given by:

p(r) = nCr × pr × (1 − p)(n−r) [8.17]
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where the combination function, nCr , (7.5.4), is often also called the binomial coeffi-
cient .

The Excel function BINOMDIST(r, n, p,FALSE) can be used to calculate values for the
probabilities of a binomial distribution. Entering ‘TRUE’, instead of ‘FALSE’, in the last
argument value would give the cumulative probability of p(r).

The derivation of equation [8.17] is given on the Website.
In Example 8.8, we can substitute r = 2, n = 5 and p = 0.25 into equation [8.17], giving

the probability that there will be exactly (r =) 2 albinos in the five offspring:

p(2) = 5C2 × 0.252 × (1 − 0.25)(5−2) ⇒ 10 × 0.252 × 0.753 ⇒ 0.2637

Similarly the probability of finding exactly (r =) 4 albinos would be given by:

p(4) = 5C4 × 0.254 × (1 − 0.25)(5−4) ⇒ 10 × 0.254 × 0.75 ⇒ 0.0146

Q8.11
Repeat the calculation in Example 8.8 for each of the probabilities for 0, 1, 2, 3,
4 and 5 albinos.

Calculate the total of all of these probabilities.

Example 8.9

It is known that there are 1500 plants randomly distributed over an area of 1000 m2.

(i) Use the binomial distribution to derive the probability of finding exactly r plants in
a randomly chosen quadrat of area 1.0 m2.

(ii) Calculate the probabilities, p(r), for r = 0, 1, 2, 3, 4, 5, 6.
(iii) Plot the results as a histogram.

(i) In this question, each of (n =) 1500 plants is a statistical trial , and may be either
inside (Y ) or outside (N ) the specific quadrat area of 1.0 m2.
The value of the probability, p, is the probability that a particular plant will appear
in the quadrat. This will be given by the area of the quadrat divided by the total
area:

p = 1.0/1000 = 0.001
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The values for p(r) can then be calculated using:

p(r) = 1500Cr × 0.001r × (1 − 0.001)(1500−r)

(ii), (iii) The specific values for p(r) are calculated in the following table and plotted in
Figure 8.8.

Number, r 0 1 2 3 4 5 6

Probability (binomial), p(r) 0.223 0.335 0.251 0.126 0.047 0.014 0.004

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

0 1 2 3 4 5 6

Number of plants per m2

Figure 8.8 Probabilities of finding specific numbers of plants.

Note that we will see in Example 8.12 that this type of problem, with a low value for
p, approximates to the Poisson distribution.

Q8.12
A certain drug treatment cures 70 % of people having a particular disease. If ten
people suffering from the disease are treated, calculate the probability (to 3 signif-
icant figures) that:

(i) no one will be cured;
(ii) only one person will be cured;

(iii) exactly eight people will be cured;
(iv) exactly nine people will be cured;
(v) exactly ten people will be cured;

(vi) at least eight people will be cured;
(vii) no more than seven people will be cured.
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8.4.3 Parameters of the binomial distribution
The mean value, µ, of the binomial distribution is given by:

µ = n × p [8.18]

When making experimental measurements of a binomial distribution, the experimental mean
value, r , would be a best estimate of the true mean, µ. The best estimate of the individual
probability, p, would then be given by:

p ≈ r

n
[8.19]

The standard deviation, σ , of the binomial distribution is given by:

σ =
√

n × p × (1 − p) [8.20]

Example 8.10

Calculate the probabilities, p(r), of recording r heads when a balanced coin is tossed
100 times.

(i) Plot the results on a probability distribution as a function of r .
(ii) Calculate the mean and standard deviation of this distribution.

The worked answer is given in the following text .

In Example 8.10, the probability that a single toss of the coin will give a ‘head’ is p = 0.5.
Using equation [8.17], the probability distribution will then be defined by:

p(r) = 100Cr × 0.5r × 0.5(100−r) ⇒ 100Cr × 0.5100
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and is plotted in Figure 8.9.

30 35 40 45 50 55 60 65 70

Figure 8.9 Relative probabilities of recording r heads from 100 throws.

Using equation [8.18], the mean value of the distribution in Figure 8.9 is:

µ = n × p ⇒ 100 × 0.5 ⇒ 50

Using equation [8.20], the standard deviation of the distribution in Figure 8.9 is:

σ =
√

n × p × (1 − p) ⇒ √
100 × 0.5 × 0.5 ⇒

√
25 ⇒ 5

The distribution in Figure 8.9 is symmetrical, and we will see (8.4.7) that it can be approximated
to a normal distribution. However, if p 
= 0.5, the distribution can be very non-symmetrical as
in Figure 8.8.

Example 8.11

The aim of this exercise is to use the results for p(r) from Example 8.9 and use the
techniques from 7.3.6 to estimate the mean value, r , of the number of plants found per
square metre.

Using the probabilities, p(r), for r = 0, 1, 2, 3, 4, 5, 6:

(i) Calculate the sum of the probabilities over this range,
∑

r p(r).
(ii) Calculate the products, r × p(r), for each value of r , and the sum of these values,∑

r r × p(r).
(iii) Calculate the mean value of r, r = [

∑
r r × p(r)]/[

∑
r p(r)].

The calculations for (i) and (ii) are completed in the following table:

Number, r 0 1 2 3 4 5 6 Total

Probability 0.223 0.335 0.251 0.126 0.047 0.014 0.004 0.999
(binomial), p(r)

r × p(r) 0.000 0.335 0.502 0.377 0.188 0.070 0.021 1.495
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Note that, in the table above, the sum of probabilities,
∑

r p(r), is not exactly equal to
1.000. This is because there is still a very small probability that seven or more plants
may be recorded, and we have not included this in our total.

The experimental mean value can be calculated:

r =
[∑

r

r × p(r)

] /[∑
r

p(r)

]
= 1.495/0.999 ≈ 1.50

The true mean of the distribution is given by equation [8.18]:

µ = n × p ⇒ 1500 × 0.001 ⇒ 1.5

which agrees with the result calculated from the values of p(r).

8.4.4 Poisson distribution
As with the binomial distribution, the Poisson distribution calculates the probabilities of observ-
ing a certain number, r , of outcomes, each of which has a probability, p, of occurring. However,
the Poisson distribution assumes that the probability that an individual trial will produce a
specific outcome is very small, i.e. p � 0.1.

Typical examples of Poisson distributions include situations where relatively few events are
being counted in a small section of a much larger environment, such as:

• numbers of plants in a small area of a large field;
• radioactive decay events occurring in a small time interval out of an overall decay period;
• occurrences of a rare illness in a town.

In each of the above examples, the probability, p, that a particular event (plant, decay event,
ill person) will be found in the particular situation (area, time interval, town) will be small.

The Poisson probability, p(r), of finding r occurrences of a particular outcome is defined
by:

p(r) = e−µ × µr

r!
[8.21]

where µ is the mean number of such outcomes that would normally be expected to occur.
Note that the Poisson probability does not depend on a value of n (total number of possible

trials).
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The Excel function POISSON(r , µ, False) can be used to calculate values for the probabilities
of a binomial distribution. Entering ‘True’, instead of ‘False’, in the last argument value would
give the cumulative probability of p(r).

We now use Example 8.12, in comparison with Example 8.9, to investigate the use of the
Poisson equation when p is very small.

Example 8.12

It is known that, on average, a random spread of particular rare plants in a field gives
an average of 1.5 plants per square metre. Use the Poisson distribution to derive the
probability of finding exactly r plants in a quadrat of area 1.0 m2.

Calculate the probabilities, p(r), for r = 0, 1, 2, 3, 4, 5, 6. (Note the similarity with the
question in Example 8.9.)

The worked answer is given in the following text .

In Example 8.12, we are given the mean value, µ = 1.5, of the number of plants that will fall
within an area of 1.0 m2.

As we are testing an area of 1.0 m2 out of a whole field, then the probability, p, that any
particular plant will randomly fall within the quadrat will be very small. For example, the value
of p in Example 8.10 was calculated to be 0.001. Hence we can use the Poisson probability
from equation [8.21]:

p(r) = e−1.5 × 1.5r

r!

The results of the calculation for r = 0, 1, 2, 3, 4, 5, 6 are given in Table 8.3, together with
the results from the binomial calculation from Example 8.9.

Table 8.3.

Number, r 0 1 2 3 4 5 6

Probability (Poisson), p(r) 0.223 0.335 0.251 0.126 0.047 0.014 0.004
Probability (binomial), p(r) 0.223 0.335 0.251 0.126 0.047 0.014 0.004

It can be seen from Table 8.3 that, to 3 decimal places, the results from the Poisson and
binomial distributions are the same for this problem with p = 0.001.

Q8.13
The number of deaths due to a specific disease per year per 100 000 people is
on average 50. Assuming that the occurrence of each incidence of the disease is
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random, calculate the probability that in a particular group of 1000 people there
may be:

(i) no deaths (iii) two deaths

(ii) one death (iv) more than two deaths

8.4.5 Using binomial and/or Poisson distributions
When the individual probability, p, is very small, then it is possible to use either the binomial
or the Poisson distribution. However:

• for the binomial distribution it is necessary to know values for n and p; but
• for the Poisson distribution it is only necessary to know the value of µ.

It is useful to note that, for the binomial distribution, the maximum value for r would be equal
to n, but that for the Poisson distribution there is no theoretical maximum value for r .

The use of the above ideas is illustrated in Example 8.13.

Example 8.13

A service engineer is responsible for responding to emergency breakdowns from 2500
customers. He normally receives four calls per day.

Calculate the probability that he would receive eight calls in a particular day.

(assume no customer has more than one breakdown per day)

Use both the binomial and Poisson distributions to answer the question.

This is a binomial-type problem because any one customer will only have a breakdown
(Y ) or no breakdown (N ).

Calculation assuming a binomial distribution

We need to calculate values for n and p to use in [8.17].

The value of n equals the maximum possible value for r , which is the maximum number
of calls per day, n = 2500.

The mean number of calls is known to be µ = 4.

From [8.18], the probability, p, that any one customer will have a breakdown, is:

p = µ/n = 4/2500 = 0.0016
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We need to calculate p(r), where r = 8:

p(8) = 2500C8 × 0.00168 × (1 − 0.0016)2492 = 0.02972

Calculation assuming a Poisson distribution

For the Poisson distribution we already have the mean value, µ = 4. Hence:

p(8) = e−4 × 48

8!
= 0.02977

The two results are virtually identical.

8.4.6 Cumulative distributions
The expression for p(r) calculates the probability that exactly r occurrences of a particular con-
dition (Y ) will occur. In practice, many problems are concerned with the combined probability
of several possible values of r occurring.

The cumulative probability (see 7.3.9) for all values of r from 0 to r ′ is given by:

cp(r � r ′) = p(0) + p(1) + · · · + p(r ′ − 1) + p(r ′)

Example 8.14

Using the data from Table 8.3, we can calculate the probabilities of finding:

(i) two or less plants per quadrat
(ii) three or more plants per quadrat.

Here:

(i) cp(r � 2) = p(0) + p(1) + p(2) = 0.223 + 0.335 + 0.251 = 0.809
(ii) cp(r � 3) = 1 − cp(r � 2) = 1 − 0.809 = 0.191

8.4.7 Approximations for the binomial distribution
There are two important approximations for the binomial distribution, which occur when:
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Figure 8.10 Comparisons of binomial distribution (circle points).

• p � 1 (i.e. p is
very small)

the probabilities of the binomial distribution become approximately the
same as the Poisson distribution .

Figure 8.10(a) compares the binomial distribution (n = 200, p = 0.02)
with the Poisson distribution (µ = n × p = 4) shown as a solid line.

• np(1 - p) 1
(typically
np(1 − p) � 5)

the probabilities of the binomial distribution become approximately the
same as the normal distribution . Figure 8.10(b) compares the binomial
distribution (n = 20, p = 0.6) with the normal distribution
(µ = n × p = 12, σ = √

np(1 − p) = 2.19) shown as a solid line.

The approximation, p � 1, to the Poisson distribution is considered in 8.4.4. The approxima-
tion, np(1 − p)  1, to the normal distribution is useful because we can then use the equations
developed for the normal distribution. For example, it is possible to develop the confidence
interval, CI (at X%), for the true mean of the binomial distribution (see also 8.2.4):

Confidence interval, CIX% ≈ r ±
[
t2,α,∞ ×

√
np(1 − p)

]
≈ r ±

[
t2,α,∞ ×

√
r ×

(
1 − r

n

)]

[8.22]

where r is the experimentally measured value of r , and t2,α,∞ is the 2-tailed t-value with
df = ∞ (e.g. t2,0.05,∞ = 1.96).

The one proportion test, given in 14.3.2, is the hypothesis test equivalent to the above
confidence interval.

Example 8.15

A country is due to have a referendum with only two choices – Yes or No. In anticipation
of the referendum, 1000 people are selected at random in an ‘opinion poll’ and it is found
that 520 will vote Yes and 480 will vote No.
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Calculate the 95 % confidence interval for the true proportion of people who will vote
Yes.

From the sample, n = 1000 and r = 520.

The two-tailed confidence interval (see [8.22]) for the true number of Yes votes out of
each group of 1000 people will be:

CI95 % ≈ 520 ±
[

1.96 ×
√

520 ×
(

1 − 520

1000

)]
⇒ 520 ± 31

Thus, for each group of 1000 voters, the number predicted (at 95 % confidence) to vote
Yes lies between 489 and 551.

This converts to a proportion of between 0.489 and 0.551.

Q8.14
A random sample of 50 frogs is taken from a lake, and it is found that 37 are female
and 13 are male. Estimate, with a 95 % confidence interval, the true proportion of
female frogs in the lake’s frog population.

(See also Example 14.6)

8.4.8 Shape of a distribution
The mean and standard deviation of a distribution are, respectively, measures of location (or
position) and spread (or width).

As we have seen (compare Figures 8.8 and 8.9) distributions can also have different
shapes . Other statistical parameters have been introduced to describe different shape
characteristics:

Skewness. is a measure of the extent to which the distribution is skewed to one side or the
other.

Kurtosis. is a measure of the extent to which the top of the distribution may be either flatter
or more peaked than the normal distribution.

A more in-depth discussion of these is given on the Website.
One further measure of interest is the ratio of the variance of the distribution to the mean

value. The coefficient of dispersion, CD , is given by:
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CD = Variance

Mean
= σ 2

µ

which, using equations [8.18] and [8.20], for the binomial distribution becomes:

CD = n × p × q

n × p
= q [8.23]

A good example in the use of the coefficient of dispersion, CD , is in the distribution of random
‘events’, e.g. plants in a field:

• If the events (plants) are individually distributed at random, then the number of plants in
a small area will be given by the Poisson distribution (see Example 8.12). For the Poisson
distribution, CD ≈ 1.

• If there is a supportive ‘interaction’ between the events (plants), then the events may group
together (plant clumping). Another example would be the development of ‘clusters’ of an
otherwise random disease, e.g. possible increase in the incidence of disease cases due to
local pollution. In this case, the increased probability of ‘high-count’ groups would give
CD > 1.

• If the events compete for resources, then they will tend to spread out and give a more even
distribution. This will give a smaller dispersion of values around the mean value, resulting
in CD < 1.

Q8.15
In assessing the distribution of a species of plant, the two data sets, A and B, in
the table below record the frequencies with which specific numbers were recorded
in 100 quadrats. The means and standard deviations of the two distributions are
given.

Number of
plants

0 1 2 3 4 5 6 7 8 9 10 Mean Standard
deviation

Frequency, A 5 13 21 22 18 11 6 3 1 0 0 3.13 1.76

Frequency, B 10 14 17 18 16 12 7 4 1 1 0 3.13 2.04

The frequency distributions are also recorded in the line graph shown in
Figure 8.11.
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(i) Calculate the coefficients of dispersion for the two data sets.
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Figure 8.11 Plant distributions.

(ii) On the basis of (i), decide which data set shows a Poisson distribution.
(iii) For the data set that is not Poisson, decide whether the distribution of plants

shows possible clumping of plants or a more even spread.



9
Scientific Investigation

Overview

Website • Excel files appropriate to selected Examples.
• Example hypothesis tests in Excel and Minitab.

Science is concerned with understanding the way in which the natural world works. This
includes the biology of the living world, the chemistry of atomic and molecular structures,
the physics of forces and systems, but it also includes the more applied sciences, e.g. sports
science, forensic science, the environmental sciences, etc.

In this chapter we see that science is used to investigate a wide range of different systems,
and that there are many different types of ‘scientific investigation’.

We also see that the power and effectiveness of science, as a way of accurately describing
nature, grew out of the Renaissance in the sixteenth century with the development of the
‘scientific method’.

As an essential feature of the ‘scientific method’, we concentrate on the issues involved with
the setting and testing of hypotheses. The statistical implementation of hypothesis tests for a
range of different system parameters is developed using both parametric and non-parametric
tests.

The final chapter in the book takes hypothesis testing into more complex scientific investi-
gations, and highlights the interdependence between the experiment design and the statistics
involved in assessing the validity of the proposed hypotheses.

9.1 Scientific Systems
Any system that is being investigated can normally be characterized by:

• Outcomes – observable changes in the system.
• Factors – ‘inputs’ to the system that may affect the outcomes.
• Mechanisms – the actual processes (often hidden) within the system that link the ‘input’

factors to the ‘observed’ outcomes.
• Subjects – representative examples of the ‘scientific system’ that are used for the particular

experiment.

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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Each ‘factor’ will have two, or more, ‘levels’, and a change of ‘level’ may cause a particular
‘outcome’ from the system. ‘Outcomes’ and ‘levels’ will be measured by suitable experimental
variables.

Example 9.1

It is claimed that omega 3 oils, found in many fish, reduce ‘clogging’ of the arteries. In
this case the ‘system’ is the human body, the ‘outcome’ is reduced deposits in the arteries,
the ‘factor’ relates to different ‘levels’ of intake of omega 3 oils, and the ‘mechanism’ is
the way in which the body metabolizes these oils. In an experiment, suitable ‘variables’
must be used to measure the amount of arterial deposit and the intake (‘levels’) of omega
3 oils.

There are three main levels in which science can normally understand such a system, such
as that described in Example 9.1. It may be possible to:

1. Confirm a correlation (or association) between the input factor(s) and the system out-
come(s), e.g. an outcome may change following a change in a factor. However, a correlation
between factor and outcome does not necessarily mean that the change in the factor is the
reason for the change in the outcome.

2. Confirm a causal relationship between the input factor(s) and the system outcome(s). In
this case, a change in a factor (cause) can be demonstrated to be the reason for the change
in outcome (effect).

3. Explain the mechanism by which the factor causes the outcome to change. The under-
standing of this mechanism must give more than a description of past observations; it
must be sufficiently good to be able to predict how the system will work under modified
conditions.

In the case of the omega 3 example (Example 9.1):

• At level 1, the variable that records arterial deposits and the variable that measures oil intake
may show close correlation, but the oil intake might not be the ‘cause’ of the reduction in
deposits. For example, the reduction in arterial deposits may be due to the fish diet for
reasons not related to the omega 3 oils. The fish diet may be the ‘cause’ that both reduces
arterial deposits (an effect) and, coincidentally, increases the intake of omega 3 oils (now
an effect and not a cause).

• Alternatively at level 2, a ‘cause and effect’ relationship could be shown to exist between
‘factor’ and ‘outcome’ (i.e. the omega 3 oils actually reduce arterial deposits), but the
mechanism by which this works might not be fully understood.

• Ideally, at level 3, science should be able to demonstrate, within the constraints of the
‘scientific method’ (9.2), a robust understanding of the mechanism involved in the process.
This understanding must continue to be essentially correct as further discoveries are made
about the system.

Scientific ‘systems’ can be recognized in all branches of science – from an understanding of
the properties of subatomic particles to the behaviour of the Universe itself. In all cases,
the development of understanding identifies the same three levels: correlation, causation,
mechanism .
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9.2 The ‘Scientific Method’
At a minimum level, any work in science must be characterized by an accuracy and objectivity
in the collection of data, and a commitment to base conclusions solely on experimental results.

An important distinction should now be made between the processes used to reach conclu-
sions:

Induction: comparative conclusions about one system are made on the basis of what is known
to happen in a different system.

Deduction: new conclusions are drawn as direct logical consequences of known facts.

Inductive reasoning may be considered to be equivalent to an intelligent guess that might prove
to be wrong. Inductive reasoning is often a good starting point to consider how a new system
might work and suggest possible hypotheses, but we will see that deduction, and not induction,
is the fabric of true science.

Example 9.2

In trying to understand the mechanism of elasticity in the common elastic band, we may
compare the effect with elasticity in other materials. For example, we know that when
we pull on a metal wire it will stretch and when we pull on an elastic band it will also
stretch. We may make an induction that the mechanisms are basically similar in the two
cases, although different in magnitude.

If our induction is correct, we might expect that, when we heat up an elastic band, it
will stretch in the same way that a metal wire will stretch on heating. However, when
we perform the experiment, we find that a stretched elastic band will tend to contract
on heating. Our induction about similar mechanisms must be wrong in this case!

Deductive reasoning starts from known facts, and then proceeds to work out the inevitable
consequences of those facts. The process of deduction is faultless, but the accuracy of the
conclusions still depends on the accuracy of the original facts on which the deduction was
based.

The ‘scientific method’ itself is based on a cycle of hypothesis, experiment, deduction and
prediction:

• Observations or inductive reasoning are often the starting point where observations begin
to suggest a possible mechanism that might explain the behaviour of a system. (In Example
9.2 it is thought that the mechanism for elasticity in the elastic band could be similar to that
in the metal wire.)

• A hypothesis is developed which describes an aspect of the proposed mechanism in the
scientific system. The choice between the truth or otherwise of this hypothesis is often
written as two alternatives:
H1: Proposed hypothesis – the proposed mechanism is correct.
H0: Null hypothesis – the proposed mechanism is not correct.
(In Example 9.2 the proposed hypothesis is that the mechanism in the elastic band is similar
to that in the metal wire.)



246 SCIENTIFIC INVESTIGATION

• An experiment is devised, whose outcome should give evidence to support, or not support,
the proposed hypothesis, H1. (In Example 9.2 the proposed hypothesis predicts that an elastic
band should expand on heating.)

• The experiment is performed and a decision is made as to whether the new understanding
of the system is likely to be true. The conclusion is a deduction based on the observed
facts. (In Example 9.2, the observed facts do not support the proposed hypothesis. A new
mechanism must be found to explain the behaviour of the elastic band.)

• If the proposed hypothesis is supported, then the proposed mechanism should be used to
predict other observable behaviour patterns for the system. If these predictions are tested
using the ‘hypothesis-testing’ approach, and continue to confirm the new explanations, then
this understanding begins to be accepted as a good description of the system.

The process of the ‘scientific method’ is also referred to as the ‘hypothetico-deductive’ method,
emphasizing the two key elements of the concept.

When a hypothesis continues to satisfy more and more experimental tests, then it will
gradually be accepted as a scientific fact. However, it must be remembered that the process
of the ‘scientific method’ does not end with the discovery of ‘fact’, just because it satisfies
all current experimental data. Any scientific ‘fact’ may be modified in the future if further
experimental results fail to conform to the accepted theory.

Example 9.3

An excellent example of the ‘scientific method’ occurred in the development of the theory
of relativity by Albert Einstein. The new theory, for which there were many doubters,
predicted that light from a star would be deflected as it passed close to our Sun.

This prediction would test the theory of relativity, and in 1919 during an eclipse of the
Sun the apparent positions of stars close to the Sun were found to shift according to
Einstein’s prediction. Since that time, the theory of relativity has continued to predict
events accurately, and is now an accepted ‘fact’ of science.

However, as part of the ‘cycle’ of the scientific method, it is always probable that the cur-
rent theory of relativity will be superceded by new ‘facts’ as more precise measurements
demand a revised or alternative explanation.

9.3 Decision Making with Statistics
9.3.1 Introduction
Many investigations in science seek to answer a simple ‘Yes or No’ question. For example:

• Is a new vaccine effective in preventing an infection?
• Do glass fragments at the scene of a crime come from different sources?
• Does a particular training regime improve athletic performance?

The statement of the initial ‘Yes or No’ question is a hypothesis statement, which we can
present in two parts:



9.3 DECISION MAKING WITH STATISTICS 247

• ‘Yes’ is the Proposed hypothesis; and
• ‘No’ is the Null hypothesis.

However, any scientific investigation is subject to errors and uncertainties, and the results do
not give an absolute answer to the ‘Yes or No’ question – this is where the statistics come in!

The statistical analysis in a hypothesis test is based on the experimental data recorded,
and normally calculates the probability (p-value) that it would be wrong to choose the ‘Yes’
(proposed hypothesis) answer to the question. There is never an absolute certainty in the final
answer, but at least it is possible to assess the probability of making at least one type of error.

We will introduce hypothesis testing by working through an extended example in 9.3.2. The
following sections then highlight the separate elements of the hypothesis-testing procedure.

9.3.2 Calculation of p-values
We will introduce the concept of the p-value in hypothesis testing by using the investigation
outlined in Example 9.4.

Example 9.4

A sports club follows a long-standing tradition in which it always tosses the same special
coin at the start of a game. However, some club members believe that the coin might be
biased so that it produces more heads than tails. They ask you to toss the coin 100 times
and then, using your knowledge of statistics, decide whether the coin is indeed biased
in favour of heads.

The analysis is performed in the following text .

You accept the task outlined in Example 9.4. You realize that the true situation must be one
of two alternatives, which you express in terms of a proposed hypothesis (labelled as H1) and
its ‘null’ option (labelled as H0):

Proposed hypothesis, H1: The coin gives more heads than tails.

Null hypothesis, H0: The coin does not give more heads than tails.

You will toss the coin n = 100 times, and on the basis of the number of heads, r , recorded,
you will decide whether you will ‘accept’ or ‘not accept’ that the proposed hypothesis, H1, is
correct.

Clearly there could be two possible correct outcomes. You might be correct by ‘Accepting
H1’ for a biased coin, or you might be correct by ‘Not accepting H1’ where there is no bias.

However, there could be two different types of error that you could make, each with different
consequences:

• Type I error. You accept H1 believing that the coin is biased, when in fact it is perfectly
fair. The consequence is that you have unnecessarily ended the long-standing tradition.

• Type II error. With limited experimental data, you choose not to accept H1, but the coin
is actually biased. Your poor experimental skills have failed to identify a real problem.
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The four possibilities are illustrated in Table 9.1. The columns give the ‘true’ condition of the
coin, and the rows give your decision.

You realize that, due to the random nature of the process, there will be an inherent uncertainty
when you make your decision. You decide that you will only claim that the proposed hypothesis,
H1, is true if the probability of error is less than (or equal to) 5 %.

Table 9.1.

Your decision: True condition of the coin

H1 is true H1 is not true

Accept H1

Correct

The coin is replaced

Well done!

Type I error

You unnecessarily end

an important tradition.

Do not accept H1

Type II error

Your experimental skills 

are inadequate

Correct

No action is necessary

Well done!

In general, we define the significance level, α (alpha), as the largest probability of error
that is acceptable when choosing the proposed hypothesis, H1. For this experiment, you have
chosen a decision criterion of α = 0.05. (Note that a 5 % probability is equal to a probability
of 0.05 or ‘1 in 20’.)

You toss the coin 100 times, expecting (for an unbiased coin) to record about 50 heads, but
you actually record 60 heads.

At first sight, it might appear that the coin is giving more heads than tails, but you decide
to work out the probability, p, that an unbiased coin could, by random chance, record 60 or
more heads.

The probabilities with which a balanced coin will produce different numbers of heads
can be calculated using the binomial distribution (see Example 8.10), giving the probability
distribution in the graph shown in Figure 9.1.

Probability
sum = 0.0284

30 35 40 45 50 55 60 65 70

Figure 9.1 Probabilities that a balanced coin will record r heads in 100 throws.

From this distribution, it is possible to identify the key probability area:

Probability of recording 60 heads or more, p(r � 60) = 0.0284
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You now realize that the p-value, p = 0.0284, is:

• the probability that a perfectly balanced coin might, by random chance, record 60 or more
heads;

• the probability that the null hypothesis, H0, might be true;
• the probability of a Type I error if you accept H1 (reject H0).

On the basis of the information in the text, you must now make the critical decision, comparing
the observed probability p-value, p = 0.0284, with your initial significance level criterion,
α = 0.05:

Do you ‘Accept H1’ and declare the coin to be biased, or do you ‘Not accept H1’ and say that
you cannot be sure that it is biased?

As the probability that you will be wrong (p = 0.0284) is less than your upper limit of
(α =) 0.05, you actually choose to accept H1 and claim that coin is biased.

The old coin is discarded and the club committee choose a new coin.

Example 9.5

Having discarded the original coin (Example 9.4), the committee now ask you to check
whether the new coin might be biased, giving either more heads or more tails.

The worked answer is given in the following text .

The question posed in Example 9.5 requires a new experiment, so you establish the new
hypotheses which take into account that the coin might be biased in either direction:

Proposed hypothesis, H1: The number of heads is different from the
number of tails.

Null hypothesis, H0: The number of heads is the same as the
number of tails.

In this case you would accept that the coin is biased (H1) if it gives either a significantly high
or a low number of heads.

You toss the new coin 100 times and again you record 60 heads. However, you now express
this result as:

Difference between the recorded result of 60 and the ‘expected’ result of 50 = 10.

You now need to work out the probability, p, that an unbiased coin could, by random chance,
record a difference of 10 or more heads, i.e. either 40 or less, or 60 or more.

The probabilities with which a balanced coin will produce different numbers of heads can
be calculated again using the binomial distribution (Figure 9.2).

From this distribution, it is possible to identify the total probability area of recording a
difference or 10 or more heads:

p(difference � 10) = p(r � 40) + p(r � 60) = 0.0284 + 0.0284 = 0.0568
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Probability
sum = 0.0284

Probability
sum = 0.0284

30 35 40 45 50 55 60 65 70

Figure 9.2 Probabilities that a balanced coin will record r heads in 100 throws.

You now realize that the p-value, p = 0.0568, is:

• the probability that a perfectly balanced coin might, by random chance, record either 40 or
less, or 60 or more heads;

• the probability that the null hypothesis, H0, might be true;
• the probability of a Type I error if you accept H1 (reject H0).

On the basis of the information in the text, you must now make the critical decision, comparing
the observed probability p-value, p = 0.0568, with your initial significance level criterion,
α = 0.05:

Do you ‘Accept H1’ and declare the coin to be biased, or do you ‘Not accept H1’ and say that
you cannot be sure that it is biased?

As the probability that you will be wrong (p = 0.0568) is greater than your upper limit of
(α =) 0.05, you do not accept H1 because there is not enough evidence to say that this coin
is biased.

There might appear to be an apparent contradiction, because you accepted H1 for the first test
but did not accept H1 for the second test even though you had obtained the same experimental
results (60 heads) for both tests. However, there is no contradiction, because the different
conclusions relate to different questions .

You must decide, before you perform the experiment , whether you are just testing for a
difference between an observed and expected value, or whether you are testing that one value
is greater (or less) than the other. If you change your mind after performing the experiment,
then you must conduct the experiment again to collect new data. You must not look at the data
before deciding which type of test to apply on that same data – this may lead to an invalid
conclusion.

9.4 Hypothesis Testing
9.4.1 Introduction
This unit provides a concise review of the main elements involved in the hypothesis-testing
process. However, to gain a good understanding of the underlying processes involved in hypoth-
esis testing, it is recommended that readers work through Examples 9.4 and 9.5 in the previous
unit entitled ‘Decision Making with Statistics’.
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9.4.2 Hypothesis statement
It is essential, before performing any experimental measurements, to state the proposed hypoth-
esis being tested, usually written as H1, and the null hypothesis , usually written as H0:

Proposed hypothesis, H1: Smoking increases the probability of lung cancer.

Null hypothesis, H0: Smoking does not affect the probability of lung cancer.

The proposed hypothesis usually demonstrates that a factor (9.1) does indeed cause some
‘effect’ or ‘change of value’. The null hypothesis usually demonstrates ‘no factor effect’ or the
‘status quo’.

A scientific experiment must be precise about what is actually being measured, and will
normally measure some physical, chemical or biological variable, which will then be used as
an indicator in choosing which hypothesis is believed to be correct.

It is also important that any ‘vague’ terminology should be accurately defined – for example,
‘smoking’ in the above example may be defined as five cigarettes per day.

Example 9.6

As part of a monitoring procedure, an analyst wishes to test whether the lead content of
a water supply exceeds 50 ppb. State the relevant hypotheses.

If the true lead content is µ, the appropriate hypotheses for this test would be:

Proposed hypothesis, H1: Lead content is greater than 50 ppb, µ > 50 ppb.

Null hypothesis, H0: Lead content equals 50 ppb, µ = 50 ppb.

9.4.3 Tails
In defining a hypothesis statement in respect of a possible factor ‘effect’, there are two possi-
bilities:

• 2-tailed: the factor effect may operate in either direction; or
• 1-tailed: the factor is only being tested for an effect in one particular direction .

The hypothesis statement in Example 9.6 is ‘1-tailed’, because the proposed hypothesis only
proposes an increase in lead concentration. Example 9.7 gives an example of a ‘2-tailed’
hypothesis in a similar context. In this case the proposed hypothesis proposes either an increase
or a decrease.

Example 9.7

As part of a monitoring procedure, an analyst wishes to test whether the lead content of
a water supply is not equal to 50 ppb. State the relevant hypotheses.
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If the true lead content is µ, the appropriate hypotheses for this test would be:

Proposed hypothesis, H1: Lead content does not equal 50 ppb, µ 
= 50 ppb.

Null hypothesis, H0: Lead content equals 50 ppb, µ = 50 ppb.

It is useful to remember that, for the same data set (for a symmetrical distribution) :

p-value for a 2-tailed test = 2 × p-value for a 1-tailed test [9.1]

Q9.1
Decide, for each of the following statements for proposed hypotheses, which
implies a 1-tailed test and which implies a 2-tailed test.

Number of tails

(i) An athlete’s performance is enhanced when using a
particular dietary supplement.

1/2

(ii) Low-level background music affects people’s
capacity to memorize a list of names.

1/2

(iii) The mean content of breakfast cereal packets filled
by a certain filling machine is less than 580 g.

1/2

(iv) An increase in a car driver’s blood–alcohol level to
40 mg per 100 mL will change the probability of
having an accident.

1/2

9.4.4 Decisions based on the p-value
The decision process starts with the assumption that the null hypothesis might be true.

Statistics software is used to calculate the probability (p-value) that the null hypothesis
could produce the observed experimental results. If this probability is sufficiently small (i.e. it
is unlikely that the null hypothesis is true), then the proposed hypothesis would be accepted
as being true instead.

With this type of question, there are two ways of being wrong :

• deciding ‘proposed’ when ‘null’ is correct (Type I error); and
• deciding ‘null’ when ‘proposed’ is correct (Type II error).

In terms of the hypotheses, the Type I and Type II errors could occur as in Table 9.2.
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Table 9.2. Errors in a hypothesis test.

Conclusion: True situation
H1 true H1 not true

Accept H1 Correct result Type I error
Do not accept H1 Type II error Correct result

In making the decision that the proposed hypothesis is true, it is necessary to decide how
small the p-value must be so that we can confidently reject the null hypothesis and avoid a
Type I Error.

Before starting the experiment, we must choose the value of the significance level, α (see
9.3.2). The significance level, α (alpha), is the largest probability of error that is acceptable
when choosing the proposed hypothesis, H1.

If a conclusion is claimed to be significant , then the results normally indicate that H1 is
correct with less than a 0.05 (5 %) chance of being wrong. If a conclusion is claimed to be
highly significant , then the probability of H1 being wrong is normally less than 0.01 (or 1 %).

Note that the term confidence level is often used to express the percentage probability
of being right , e.g. confidence levels of 95 % and 99 % for being right are equivalent to
significance levels of 0.05 and 0.01, respectively, for being wrong!

The choice of a value for the significance level, α, depends on the context of the problem,
and the consequences that would arise if H1 were chosen in error. The default level for most
scientific research is taken as α = 0.05.

The probability of a Type I error for a given experiment is given by the p-value, which can
be calculated from the experimental results – see 9.3.2. The probability of a Type II error is
denoted by β (beta), which is usually much more difficult to calculate.

The significance level, α, is the maximum probability of a Type I error that would be
acceptable. Its value must be decided as part of the initial experiment design process.

On the basis of the relative values of α and p, it is then possible to make the decision:

If p � α Accept proposed hypothesis, H1, at a significance level of α

[9.2]
If p >α Insufficient evidence to accept proposed hypothesis

Most software programs (e.g. Excel, Minitab) will calculate a p-value for the given statistical
test. This makes performing a statistical test very easy, as the decision is based only on the
relative sizes of p and α.

9.4.5 Power of the experiment
The power of an experiment is a measure of how successful the experiment will be in con-
firming the existence of a ‘factor’ effect, if such an effect actually exists. It is the ‘opposite’
of the probability of a Type II error:
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Power = 1 − β [9.3]

Ideally the power of the experiment should be as close to 1.0 as possible. In practice, the
power of an experiment is often limited by many experimental uncertainties that may make
the existence of the ‘factor’ effect difficult to detect.

It is only possible to calculate the value of power (and β) for a particular experiment if all
the effects of any random uncertainties and external bias are known and understood. This is
not normally the case.

9.4.6 Stating results
Before choosing the proposed hypothesis, H1, it is necessary to define the significance level for
making the decision. Hence, an appropriate statement of the ‘Yes’ conclusion would then be:

Accept the proposed hypothesis, H1, at a significance level of (for example) 0.05.

However, it is not usually possible to calculate the probability of the Type II error for accepting
the null hypothesis, H0. In other words, it is often difficult to ‘prove’ a negative. Do not
therefore use the statement ‘Accept the null hypothesis’.

An appropriate statement for the ‘No’ result would therefore be either:

Insufficient evidence to accept the proposed hypothesis, H1, at a significance level of (for example)
0.05

or:

Insufficient evidence to reject the null hypothesis, H0, at a significance level of (for example) 0.05.

Q9.2
The results of a statistical test give a p-value, p = 0.03. Which of the following
statements could be correct?

(i) Accept the proposed hypothesis, H1, at a significance
level of 0.01.

True/False

(ii) Accept the proposed hypothesis, H1, at a significance
level of 0.05.

True/False

(iii) The null hypothesis, H0, should be accepted at a
significance level of 0.01.

True/False

(iv) Insufficient evidence to reject the null hypothesis, H0,
at a significance level of 0.05.

True/False
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9.4.7 Statistic and critical value method
We have already demonstrated how a computer calculation of p-values provides the calculated
probability value on which the outcome of the test is decided. However, an alternative method
of calculation exists, which predates the use of computers. It is important to be aware of the
general procedure involved when using test statistics:

1. For each test it is possible to calculate the value of a test statistic for the given data set.
Each test will have its own statistic, e.g. tSTAT when testing mean values, χ2

STAT when testing
frequencies.

2. The value of the statistic depends on the strength of the experimental evidence that the
hypothesis, H1, might be true.

3. To make the decision on whether to accept the proposed hypothesis or not, it is necessary
to compare the relative magnitudes of the calculated test statistic with a critical value
(e.g. tCRIT, χ2

CRIT) that can be obtained from sets of tables.
4. The choice of the appropriate critical value for a given experiment will depend on the

significance level, α, required and the degrees of freedom available in the experimental
data – see the individual tests in Chapters 10 to 14.

Example 9.8

Two of the following sets of results from a t-test are valid. Two of the sets have
inconsistent data values. In this particular t-test, the proposed hypothesis is accepted
if tSTAT � tCRIT.

Identify the two result sets that have inconsistencies:

A tSTAT = 2.24, tCRIT = 1.86, α = 0.05, p = 0.028

B tSTAT = 2.46, tCRIT = 2.68, α = 0.05, p = 0.015

C tSTAT = 2.45, tCRIT = 2.45, α = 0.05, p = 0.02

D tSTAT = 2.61, tCRIT = 3.00, α = 0.01, p = 0.017

Set A is consistent – both comparisons give the same conclusion:
tSTAT > tCRIT leads to ‘Accept the proposed hypothesis’.
p <α leads to ‘Accept the proposed hypothesis’.

Set B is not consistent – data gives conflicting conclusions:
tSTAT < tCRIT leads to ‘Insufficient evidence to accept the proposed hypothesis’.
p <α leads to ‘Accept the proposed hypothesis’.

Set C is not consistent:
tSTAT = tCRIT exactly on the choice boundary, and we would then expect that p = α, but

in the data p <α.

Set D is consistent – both comparisons give the same conclusion:
tSTAT < tCRIT leads to ‘Insufficient evidence to accept the proposed hypothesis’.
p >α leads to ‘Insufficient evidence to accept the proposed hypothesis’.
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9.5 Selecting Analyses and Tests
9.5.1 Introduction
This unit provides an introduction to some of the most commonly used statistical tests. For the
detailed workings and examples of each test, readers are referred elsewhere in the book or on
the Website.

An investigation in science often involves making one or more sets of replicate experimental
measurements (7.1.2) which are statistical samples (7.2.2) of the population of all the mea-
surements (possibly infinite) that could be made. A typical statistical test then calculates the
probability (p-value) that the null hypothesis might explain the observed experimental data.

It is important to remember that the statistical test calculates the probability that the proposed
hypothesis is not true. It does not directly calculate the probability that the proposed hypothesis
is true.

The choice of an appropriate test is an integral part of the overall process of designing the
experimental procedure – see Chapter 15. The detailed choice depends on a range of factors,
but, in particular, it is essential to be clear about:

• what statistic is being tested, e.g. mean values, distribution of frequencies, proportions, etc.;
• whether the distribution of values being tested follows a specific distribution, e.g. a normal

distribution;
• whether the test is 1-tailed or 2-tailed; and
• what is the significance level being used for the test?

9.5.2 Assumptions in using statistical tests
Statistical tests make certain assumptions about how the test was performed and possibly the
underlying variation of the data being measured.

Each measurement must be randomly selected and independent of any other measurement.
For example, ‘random selection’ would require that seedlings being selected for different

growth conditions must be chosen by an objectively random procedure (15.1.3).
The requirement for ‘independence’ between measurements aims to counteract any ‘hidden’

association between replicate measurements. This is particularly important in relation to possi-
ble errors in the measurement process itself. For example, if one instrument is used to measure
one sample set of replicates and another instrument is used to measure a second sample set,
then any bias between the instruments will be translated into an apparent difference between
the experimental results.

There is a wide range of tests, called parametric tests, which make the assumption that the
data values are being sampled from a known distribution , and for these tests the exact data
values are used directly in the calculations.

An alternative range of tests, called non-parametric tests, do not make any assumption about
an underlying distribution, and use data values only to rank the data in order.

The parametric t-tests, F -tests, ANOVAs, Pearson’s correlation and regression all assume
that the data is drawn from a normal distribution. This is often a valid assumption for most
experimental data, particularly where mean values are calculated from large sample sizes. It
has also been shown that these most commonly used tests are quite robust when dealing with
data that is not normally distributed in that they still provide correct conclusions.
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For some types of non-normal data, it is possible to apply a mathematical transformation to
produce a distribution that is sufficiently close to normal (see the Website).

9.5.3 Common statistical tests
The first step is to be clear about what is being measured, e.g. mean values of two samples,
proportions, frequencies, etc. This identifies the ‘statistic’ relevant to the particular test, leading
to the following groups of tests:

Statistic: Sample mean values (one or two samples)

Test: Student’s t-test

Compares the mean(s) of one or two sets of replicate data
Assumes that data is taken from a normal distribution

One-sample t-test: Compares the mean of the sample data with a
specific value. See Example 10.1

Two-sample t-test: Compares the means of two data sample sets. See
Example 10.5

Paired t-test: Compares two sets of replicate data in which pairs of
data items from each set have unique relationships. See Example 10.7

Statistic: Sample mean values (multiple samples)

Test: ANOVA – Analysis of Variance

Compares the mean(s) of (usually) more than two sets of replicate data
Assumes that data is taken from a normal distribution

One-way ANOVA: Tests for the effect of one factor on the mean
values of the samples. See Example 11.1

Two-way ANOVA: Tests for the effects of two factors on the mean
values of the samples. See Example 11.3

A two-way ANOVA with replication will also test for an interaction
between the factors. See Example 11.6

GLM – General Linear Model: More flexible implementation of the
ANOVA technique to test for multiple factors and interactions

It does not require equal numbers of data values (‘balanced’) between
each combination of factor levels. See Website

ANCOVA – Analysis of Covariance: Performs an ANOVA analysis
when one variable is also dependent on an additional variable. See
Website

Tukey test: Post hoc test to locate the specific differences between
samples following a ‘significant’ ANOVA result. See Example 11.9



258 SCIENTIFIC INVESTIGATION

Statistic: Sample variances or standard deviations (two samples)

Test: F -test

Compares the variances of two sets of replicate data
Assumes that data is taken from a normal distribution. See Example

10.8

Statistic: Sample medians

Test: Range of non-parametric tests

Compares the median(s) of sets of replicate data
Does not make any assumptions about the distribution of the source

data

One-sample Wilcoxon test: Compares the median of the sample data
set with a specific value. See Example 12.2

Two-sample Mann–Whitney U -test: Compares the medians of two
data sample sets. See Example 12.4

Paired Wilcoxon test: Compares two sets of replicate data in which
pairs of data items from each set have unique relationships. See
Example 12.6

One-way Kruskal–Wallis test: Tests for the effect of one factor on
the median values of more than two sample sets. See Example 12.8

Two-way Friedman test: Tests for the effects of two factors on the
median values of more than two sample sets. See Example 12.10

Statistic: ‘x and y’ values of two variables

Test: Correlation and regression

Analysis of data in which one variable is expected to change in
response to a change in another variable

Correlation: Tests whether a significant change in one variable is in
proportion to a change in the other variable. See Example 13.2

Pearson’s correlation coefficient assumes that data is taken from a
normal distribution

Spearman’s correlation coefficient does not make any assumptions
about the distribution of the source data
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Regression: Once correlation and causation between two variables is
confirmed, a regression analysis will calculate the magnitude of the
effect that one variable has on the other, and produce a ‘best-fit’
linear model to describe the interaction.

‘Regression’ is a calculation and not, strictly speaking, a test. See
Example 4.8

Statistic: Frequencies – counting the numbers in categories

Test: Chi-squared, χ2, test

Tests whether the observed frequencies of events in (more than two)
specific categories could have occurred by chance

Contingency table: Tests whether the distribution of frequencies
between categories may depend on another factor. See Example
14.1

Goodness of fit: Tests whether the distribution of frequencies
between categories is consistent with an expected distribution. See
Example 14.4

Statistic: Proportions

Test: Fisher’s exact test

Tests whether the observed distribution of frequencies between just
two categories could have occurred by chance.

Could also be performed by:

χ2-test using the Yates correction – see 14.1.5
Normal distribution approximation – see 14.3.3

One-proportion: Compares an observed proportion with a specific
expected value. See Example 14.6

Two-proportion: Compares an observed proportion with another
observed proportion. See Example 14.10
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t-tests and F-tests

Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• t-tests and F -tests in Excel and Minitab.

We saw in 7.2 that the basic characteristics that describe a data set are:

• mean value;
• standard deviation; or
• variance = (standard deviation)2.

In this chapter we introduce the statistical tests that test for differences based on these values:

• The t-test looks for differences in mean value (location) between data samples.
• The F -test looks for differences in variance (spread) between data samples.

This chapter outlines the interpretation of these tests, using the ‘p-value method’, and also
introduces the test statistics tSTAT and FSTAT. It is assumed that readers are already familiar
with the general procedures for hypothesis testing that were introduced in 9.3 and 9.4.

In understanding the t-test, it is also useful to be familiar with the concept of the confidence
interval that was introduced in 8.2.4.

An important assumption with both t-tests and F -tests is that the underlying populations
of data values are normally distributed (see 8.1.3). However, the t-test is robust to deviations
from normality and can be used reliably with many non-normal distributions, provided that the
actual distribution is fairly symmetrical and without a long ‘tail’.

The ‘tests’ in this chapter are categorized as ‘parametric’ because the actual data values are
used directly in the calculations. In ‘non-parametric’ tests (Chapter 12) the data values are used
only to rank the values in order, and the tests are then based on the ranking of data rather than
actual values. It is necessary to use non-parametric tests either for ordinal data or for data that
does not follow the normal distribution (see 9.5).

Excel functions and Data Analysis Tools can be used to perform two-sample t-tests and
F -tests – see Appendix I. The Excel functions TINV and FINV can also be used to give
values for tCRIT (10.1.3) and FCRIT (10.4.3) respectively.

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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10.1 One-sample t-tests
10.1.1 Introduction
The mean value, x, of a sample of replicate measurements is the ‘best estimate’ of the true
value (or population mean), µ, of the variable being measured (see 8.2.4). For a very large
(ideally infinite) number of replicate measurements the sample mean value would become
equal to the true value, µ.

The one-sample t-test compares the mean, x, of one sample of data with a specific value,
µ0, to test whether the true value, µ, of the variable being measured might differ from that
specific value, µ0.

Example 10.1

Four replicate measurements of blood–alcohol level (in mg per 100 mL, see Example 8.1)
are made, giving one statistical sample with n = 4 values:

77.7 79.9 76.8 78.0

which have a mean value x = 78.1 and a sample standard deviation s = 1.3.

We wish to test whether we could claim with 95 % confidence that the true blood–alcohol
level, µ, being measured was actually less than 80 mg per 100 mL.

The analysis is performed in the following text .

The hypotheses for the 1-tailed (see 9.4.3) test outlined in Example 10.1 are as follows:

The proposed hypothesis, H1, is that the true blood–alcohol, µ, is indeed less than µ0 (=80),
i.e. µ<µ0.

The null hypothesis, H0, is that the observed mean value, x, actually originated as the mean of
n random values from a distribution of values (shown in Figure 10.1) with a true mean of µ0,
i.e. µ = µ0.

10.1.2 Using the p-value
The use of p-values for hypothesis testing has been introduced in 9.3 and 9.4.

If the null hypothesis were true in Example 10.1, then the possible mean values for samples
of size n = 4 would follow a probability distribution as outlined in Figure 10.1.

The shaded area in Figure 10.1 gives the probability that the experimental mean value of a
sample, x, might be equal to, or less than, 78.1, even when the true value is given by µ0 = 80.

Thus the shaded area is the probability, p, of making a Type I error (see 9.4.4), i.e. by
deciding that the proposed hypothesis was true, and that the null hypothesis was not true.
However, when accepting that the proposed hypothesis is true, we must be willing to accept a
small probability (significance level, α) that we might make a Type I error.
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Figure 10.1 Possible variation of sample means.

If the probability, p-value, is less than, or equal to, the significance level, α(p � α), then
we accept the proposed hypothesis, that the true value, µ, is not equal to µ0. The requirement
for ‘95 % confidence’ in the question implies a significance level of α = 0.05.

The calculation for Example 10.1 is performed on the Website using Minitab and returns a
value for the p-value equal to 0.031. Since p <α(0.05), we accept the proposed hypothesis
and decide that the true blood–alcohol level, µ, is less than 80 mg per 100 mL.

10.1.3 Using the t-statistic, tSTAT
The tSTAT is calculated as the ratio of the difference between x and µ0 to the estimated standard
uncertainty in the sample mean, s/

√
n (see equation [8.4]):

tSTAT = (x − µ0)

s/√n

[10.1]

A large difference between x and µ0 would tend to give a large value for tSTAT (either positive
or negative). Hence we will set that criterion that:

H1 is accepted if the positive value of tSTAT (ignoring any signs) is greater than, or equal
to, the critical value, tCRIT, i.e. |tSTAT| � tCRIT.

The values for tCRIT are given in Appendix III and depend on:

• whether the test is 1- or 2- tailed;
• the chosen significance level, α (typically 0.05); and
• the degrees of freedom for a one-sample t-test, df = n − 1.

Using the t-statistic method for Example 10.1, and entering the values x = 78.1, µ0 = 80,
s = 1.3 and n = 3 into equation [10.1] gives:

tSTAT = (78.1 − 80.0)/(1.3/
√

4) = −2.92
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From Appendix III, for a 1-tailed t-test with df = 4 − 1 = 3 and α = 0.05 we find that:

tCRIT = 2.35

Since |tSTAT| � tCRIT we accept the proposed hypothesis, H1: µ < 80.0.

Q10.1
The mean level of pollutant in the wastewater of an industrial company should not
exceed 3.50 × 10−8 g L−1.

An experiment is conducted to decide whether the wastewater has a mean level of
pollutant greater than 3.50 × 10−8 g L−1. If it is concluded that it does, then the
probability of error in the conclusion should not be greater than 1 in 20.

Replicate analysis of six samples of the water reveal levels of
3.45, 3.65, 3.58, 3.56, 3.68 and 3.59 × 10−8 g L−1.

(i) State the hypotheses appropriate to this problem.
(ii) What is the appropriate level of confidence for this test?

(iii) Calculate the mean and standard deviation of the sample.
(iv) Calculate the t-statistic, tSTAT, appropriate to this problem.
(v) Decide if this is a 1-tailed or 2-tailed t-test.

(vi) Calculate the number of degrees of freedom for tCRIT.
(vii) Look up the value for t−critical, tCRIT.

(viii) Comment on whether the level of pollutant is greater than 3.50 × 10−8 g L−1.

10.1.4 Applying one-sample t-tests
We will illustrate the use of the one-sample t-test by using the replicate data of the sample
sets 13, 14 and 18 from Example 7.2, which are given in Table 7.1 and reproduced here in
Table 10.1.

Table 10.1.

Set Data Mean, x Std dev., s

13 78.0 79.0 81.7 80.7 84.1 80.7 2.384
14 80.8 82.1 80.5 80.6 81.3 81.1 0.658
18 78.6 79.1 76.4 80.0 77.9 78.4 1.355
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Example 10.2

Test whether the analysts who record data sets 13, 14 and 18 would conclude (separately)
that the true blood–alcohol level, µ, was not equal to (i.e. different from) the specific
value, µ0 = 80.0 mg per 100 mL.

The analysis is performed in the following text .

The relevant 2-tailed hypotheses for the question in Example 10.2 would be

H1: µ 
= 80.0
H0: µ = 80.0

We can calculate values for tSTAT using equation [10.1], look up values for tCRIT and use
software to calculate p-values, leading to the following conclusions:

Analyst tSTAT tCRIT p-value Decision Conclusion
(α = 0.05)

13 0.66 2.78 0.547 Do not accept H1 µ could be 80.0

14 3.60 2.78 0.023 Accept H1 µ is not 80.0

18 −2.64 2.78 0.058 Do not accept H1 µ could be 80.0

We know that the ‘true’ value from which the data samples were drawn was indeed 80.0 (see
Example 7.2). Hence we can see that:

• Analysts 13 and 18 have arrived at the correct conclusion.
• However, the data for analyst 14 has, by chance, led to an incorrect Type I error (compare

the results of confidence intervals given in Table 7.1 and displayed in Figure 7.4).

Example 10.3

We have seen (in Table 7.1 and displayed in Figure 7.4) that, for data set 18, the
confidence interval (with 95 % confidence) is from 76.7 to 80.1. Is this consistent with
the conclusion reached by analyst 18 using the 2-tailed t-test that the true value could
be 80.0?

The value of 80.0 falls within the limits of the calculated confidence interval. Hence it
must be accepted that the true value could be 80.0, and this is indeed consistent with the
conclusion reached by using the 2-tailed t-test in Example 10.2.
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Example 10.4

Analyst 18 then notices that most of the data values in set 18 fall below 80.0 and decides
to redo the t-test, but this time using a 1-tailed test (α = 0.05) to ask whether the true
value of the blood–alcohol is less than 80.0.

The new, 1-tailed, hypotheses are:

H1: µ < 80.0
H0: µ = 80.0

The calculation gives the results:

Analyst tSTAT tCRIT p-value Decision Conclusion

18 −2.64 2.13 0.029 Accept H1 µ is less than 80.0

Note that the value of tCRIT has changed with the number of ‘tails’ implied in the question.

As the p-value is now less than 0.05, analyst 18 decides to accept H1 and concludes that
the true blood–alcohol level µ is less than 80.0.

Which of the following is the correct conclusion (they cannot both be right)? Either:

The evidence is sufficient to claim that µ is less than 80.0 (from the 1-tailed test).

or:

There is not enough evidence to claim a difference between µ and 80.0 (from the
2-tailed test in Example 10.2)

The answer is given in the following text .

The ‘conclusion’ reached in Example 10.4 using the 1-tailed test was invalid, because the
analyst used the same data twice – once to decide on the direction to test for the 1-tailed test,
and then again to actually carry out the test. The choice and direction of any test must be
decided independently of the data that is being analysed.

Q10.2
Two new sets of measurements, X and Y, of the same blood–alcohol
level as in Example 7.2 give the following values for tSTAT, tCRIT and the
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p-value. What should be the appropriate decisions and conclusions, assuming
α = 0.05?

Set tSTAT tCRIT p-value Decision Conclusion

X −2.05 2.13

Y 0.048

Q10.3
Three scientists perform statistical analyses on the following set of replicate data
for the measurement of the true pH of a solution:

8.49 8.46 8.03 8.72 8.96 9.26 9.42 8.17

(i) Scientist 1 calculates the 95 % confidence interval correctly as 8.69 ± 0.42.
Would scientist 1 claim that the true pH value was not equal to 8.34?

(ii) Scientist 2 performs a 2-tailed t-test on the same data to test whether the true
value is not equal to 8.34, and records one of the following p-values:

(a) 0.036 (b) 0.050 (c) 0.088

On the basis of the data in (i), which of the above would be correct?
(iii) Scientist 3 performs a 1-tailed t-test on the same data to test whether the true

value is greater than 8.34, and records one of the following p-values:

(a) 0.072 (b) 0.050 (c) 0.044

On the basis of the result in (ii), which of the above would be correct?

10.2 Two-sample t-tests
10.2.1 Introduction
Replicate measurements in two sets, A and B, of sample data will record mean values, xA and
xB , which are the best estimates of the true means, µA and µB , respectively, of the populations
from which the samples were derived.

The two-sample t-test tests whether the difference between experimental sample means xA

and xB is large enough to imply an actual difference between the true values of µA and µB .
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Example 10.5

In a survey of pollution, the chemical oxygen demand (COD) was measured for two
sources of wastewater, A and B. Measurements were made on samples from A (six
replicates) and B (five replicates). The numerical data values, together with the means
and sample standard deviations, are given below:

Mean Standard deviation

A 77.8 82.6 80.4 72.4 80.2 76.4 xA = 78.3 sA = 3.61

B 73.2 76.8 73.8 71.3 74.8 xB = 74.0 sB = 2.03

Assess whether it can be said with 95 % confidence that the COD values for the two
sources are different.

The analysis is performed in the following text .

The distribution of the experimental values in the two samples can be represented by boxplots
as in Figure 10.2.

74 76 78 80 82 8470

B

A

72

COD

Figure 10.2 Boxplots of COD measurements for Example 10.5 (using Minitab).

In respect of the test outlined in Example 10.5, the 2-tailed hypotheses are:

The proposed hypothesis, H1, is that the true COD values, µA and µB , from different sources
are different, i.e. µA 
= µB .

The null hypothesis, H0, is that the true COD values are the same (i.e. µA = µB), and that
the observed mean values, xA and xB , actually originated as two random values from a
single distribution of values.

If the null hypothesis were true, then possible values for the sample means might follow
a probability distribution as outlined in Figure 10.3, in which it is possible that the different
experimental mean values of xA and xB were recorded even though the true values were the
same, µA = µB , in both cases.
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Figure 10.3 Possible variation of sample means.

10.2.2 Using the p-value
The calculation for Example 10.5 is performed on the Website using both Excel and Minitab
and returns a value for the p-value equal to 0.042. The calculation assessed the probability,
p, that the observed values, xA and xB , might have originated from a single distribution as
in Figure 10.3. However, since p < α(0.05), we accept the proposed hypothesis and that the
COD values of the two sources, A and B, are actually different .

In using a software calculation for a two-sample t-test, it is usually necessary to choose
whether or not the population standard deviations, σA and σB , can be assumed to be the same
(i.e. equal or unequal variances). Unless there is clear evidence that the spread of one data
sample is very different from the other, then it is usual to ‘assume equal variances’. If in doubt
it is possible to apply an F -test (see 10.4) to check for a difference between variances.

10.2.3 Using the t-statistic, tSTAT
For a two-sample t-test, tSTAT is calculated as the ratio of the difference between xA and xB to
the estimated standard deviation of the possible sample mean values. In this case we assume
‘equal variances’ for the population sources of the data two samples, and calculate a single
pooled standard deviation, s ′, as an ‘average’ of the two sample standard deviations, sA and sB :

Pooled standard deviation, s ′ =
√

(nA − 1)s2
A + (nB − 1)s2

B

(nA + nB − 2)
[10.2]

where nA and nB are the numbers of data values in sample A and B respectively.
The tSTAT then becomes (compare this with equation [10.1]):

tSTAT = (xA − xB)

s ′ × √
1/nA + 1/nB

[10.3]

A large difference between xA and xB would tend to give a large value for tSTAT (either
positive or negative). Hence we will set that criterion that:

H1 is accepted if the positive value of tSTAT (ignoring any signs) is greater than, or equal
to, the critical value, tCRIT, i.e. |tSTAT| � tCRIT.
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The values for tCRIT for are given in Appendix III and depend on:

• whether the test is 1- or 2- tailed;
• the chosen significance level, α (typically 0.05); and
• the degrees of freedom for a two-sample t-test, df = nA + nB − 2.

Using the t-statistic method for Example 10.5, and entering the values xA = 78.3, sA = 3.61,
nA = 6, xB = 74.0, sB = 2.03 and nB = 5:

s ′ =
√

(nA − 1)s2
A + (nB − 1)s2

B

(nA + nB − 2)
=

√
(6 − 1) × 3.612 + (5 − 1) × 2.032

(6 + 5 − 2)
= 3.01

then:

tSTAT = (xA − xB)

s ′ × √
1/nA + 1/nB

= (78.3 − 74.0)

3.01 × √
1/6 + 1/5

= 2.37

From Appendix III, for a 2-tailed t-test with df = 6 + 5 − 2 = 9 and α = 0.05 we find that:

tCRIT = 2.26

Since |tSTAT| � tCRIT we accept the proposed hypothesis, H1: µA 
= µB .

Q10.4
Samples of two powders were analysed for their particle diameters. Use a t-test to
test whether the two powders came from original distributions that had the same,
or different, mean diameters. The level of confidence should be 95 %.

The results of the measurements (in arbitrary units) were:

Sample A (11 observations): mean = 6.65, standard deviation = 3.91
Sample B (16 observations): mean = 4.28, standard deviation = 2.83

10.2.4 Applying two-sample t-tests
We will illustrate the use of the two-sample t-test with Example 10.6.
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Example 10.6

The levels of a pollutant in three rivers were analysed giving results as below (each
value is multiplied by 10−8 g L−1 to give the correct magnitudes and units):

River Data Mean, x Std dev., s

A 6.80 7.25 6.27 6.60 6.37 6.66 0.390

B 7.44 8.52 7.35 8.28 7.15 7.61 7.73 0.549

C 6.64 7.35 7.14 6.55 6.92 0.387

Use 2-tailed t-tests to test whether there are any significant differences in the true pol-
lution levels (µA, µB and µC) between each pair of rivers (A, B and C) respectively.

The analysis is performed in the following text .

The distribution of the experimental values in the three samples can be represented by boxplots
as in Figure 10.4.

A

B

C

6.0 6.5 7.0 7.5 8.0 8.5 9.0
Data

Figure 10.4 Boxplots for pollutant levels for Example 10.6 (using Minitab).

The overall aim of the investigation was to identify any differences in pollution between the
rivers.

The relevant 2-tailed hypotheses when comparing rivers A and B (for example) in Example
10.6 would be of the form:

H1: µA 
= µB

H0: µA = µB
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We can calculate values for tSTAT using equation [10.3], look up values for tCRIT and use
software to calculate p-values, leading to the following conclusions:

Comparison pairs tSTAT tCRIT p-value Decision Conclusion (α = 0.05)

A and B −3.64 2.26 0.005 Accept H1 µA 
= µB

B and C 2.52 2.31 0.036 Accept H1 µB 
= µC

A and C −1.01 2.36 0.348 Do not
accept H1

No evidence of a difference
between µA and µC

As can be expected from Figure 10.4, there is not enough evidence to suggest a difference
between the pollutant levels for rivers A and C. However, the t-tests confirm that there is a
significant difference between river B and both rivers A and C, even though there is a small
overlap in the ranges of all data samples.

10.3 Paired t-tests
10.3.1 Introduction
A paired t-test is a special form of a two-sample test, in which each data value in one sample
can be ‘paired’ uniquely with one data value in the other sample.

Example 10.7

A student aims to test whether exercise increases systolic blood pressure. Seven subjects
measure their systolic blood pressure (BP , in mm Hg) before and after exercise, with
the results given in Table 10.2.

Table 10.2.

Subject: 1 2 3 4 5 6 7
Standard

BP before 115 122 145 133 147 118 130 Mean, deviation,
BP after 125 127 155 136 142 124 139 xDIFF sDIFF

Difference 10 5 10 3 −5 6 9 5.43 5.32

The analysis is performed in the following text .

The differences in blood pressure are also listed in Table 10.2 for each subject, which indicate
that, for all except one subject, the blood pressure does increase.

The paired test effectively tests whether the true mean of the differences (for all subjects),
µDIFF, is greater than zero. This part of the calculation has become a one-sample t-test, com-
paring the mean of the experimental differences, xDIFF, with zero.
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The relevant 1-tailed hypotheses for the question in Example 10.7 would be:

H1: Mean differences are greater than zero, µDIFF > 0

H0: Mean differences are zero, µDIFF = 0

The degrees of freedom for the paired test are df = n − 1, where n is the number of data
pairs.

10.3.2 Applying the paired t-test
Treating the differences in Example 10.7 as a one-sample, 1-tailed test, the data values:

xDIFF = 5.43, sDIFF = 5.32, n = 7

give the following results:

p-value method: p = 0.0178 p < 0.05 Accept H1

t-statistic method: tSTAT = 2.70, tCRIT = 1.94 tSTAT > tCRIT Accept H1

Q10.5
If we just enter the same data from Example 10.7 into a two-sample t-test, without
taking differences, we obtain a p-value of 0.205.

Which test was the most powerful – the two-sample t-test or the paired t-test?

Q10.6
Seven ‘experts’ in the taste of real ale have been asked to give a ‘taste’ score to
each of two brands of beer, Old Whallop and Rough Deal. The results, ai and bi

for each expert are as follows, together with the differences, di , between the scores
for each expert:

Expert A B C D E F G

Old Whallop, ai 60 59 65 53 86 78 56

Rough Deal, bi 45 62 53 47 65 80 46

Difference, di = ai − bi 15 −3 12 6 21 −2 10

This is a paired test , because the identification of the specific expert is the factor
that links the values ai and bi in the pair of values for each expert.
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Assume that the scoring for each expert follows a normal distribution. Complete
a paired t-test, by carrying out a one-sample t-test on the set of seven difference
values to test whether the mean of the differences is significantly different (at a
level of 0.05) from zero.

The equivalent non-parametric test, where the data may not be normally distributed,
is given in Q12.3.

10.4 F-tests
10.4.1 Introduction
Sometimes we want to test whether there is a difference in the ‘spread’, or uncertainty, of two
data samples, e.g. testing whether the data from one measurement process shows a significantly
greater experimental uncertainty than another.

The direct measure of data uncertainty is given by the standard deviation of the data values.
However the F -test actually compares the variances of two data samples, where:

Variance = (standard deviation)2

We see elsewhere (8.3.3 and 11.1.2) that calculations involving experimental uncertainty often
use variance.

Example 10.8

Two technicians, A and B, regularly perform the same type of analysis. However, it
is suspected that technician B has become less precise in his procedures, leading to a
greater variability in the results that he produces. The data in Table 10.3 shows replicate
measurements made by each technician on the same material.

Is there evidence to say that the results from B are significantly (at 95 % confidence)
more variable than those from A?

Table 10.3.
Mean Standard deviation Variance

A 23.4 24.3 23.4 24.2 23.8 23.8 23.7 24.3 23.86 0.370 0.137

B 23.6 25.4 23.5 25.2 24.3 24.5 24.2 25.3 24.50 0.745 0.554

The analysis is performed in the following text .
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The relevant 1-tailed hypotheses for the question in Example 10.8 would be:

H1: Variance of the B-data is greater than the A-data, σ 2
B >σ 2

A.
H0: Variance of the B-data is equal to the A-data, σ 2

B = σ 2
A.

10.4.2 Using the p-value
In some software (e.g. Minitab) the F -test appears as one option under tests for ‘Two Variances’.
The calculation for Example 10.8 is performed on the Website using both Excel and Minitab
and returns a value for the p-value equal to 0.043. Since p <α (0.05), we accept the proposed
hypothesis that the variance of B is greater than that of A.

10.4.3 Using the F-statistic, FSTAT
The F -statistic is defined as:

FSTAT = s2
B

s2
A

[10.4]

where s2
B and s2

A are the two sample variances being compared.
For a 1-tailed test, the variance that is expected to be greater must be placed in the numerator.

For a 2-tailed test, the variance that is seen to be greater should be placed in the numerator.

H1 is accepted if the value of FSTAT is greater than, or equal to, the critical value, FCRIT,
i.e. FSTAT � FCRIT.

The values for FCRIT are given in Appendix IV and depend on:

• whether the test is 1- or 2- tailed;
• the chosen significance level, α (typically 0.05); and
• the degrees of freedom for the two samples, dfB = nB − 1 and dfA = nA − 1.

Using the F -statistic method for Example 10.8, and entering the values s2
B = 0.554 and

s2
A = 0.137, gives:

FSTAT = 0.554

0.137
= 4.04
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From Appendix IV, for a 1-tailed F -test with dfB = 8 − 1 = 7 and dfA = 8 − 1 = 7 and
α = 0.05 we find that:

FCRIT = 3.79

Since FSTAT � FCRIT we accept the proposed hypothesis, H1 : σ 2
B >σ 2

A.

Q10.7
Find the values for FCRIT for:

(i) A 1-tailed test for a significance level of 0.05 and a numerator with 10 data
values and denominator with 8 data values.

(ii) A 2-tailed test for a significance level of 0.05 and a numerator with 16 data
values and denominator with 10 data values.

Q10.8
In order to assess whether two examinations, P and Q, had a difference in the
spread of their results, it was decided to compare the variance of their results for
a sample group of 21 students who took both exams.

Recorded variances were as follows: s2
P = 85.0 and s2

Q = 195.5.

Apply:

(i) a 2-tailed test, with a proposed hypothesis which states that there is no differ-
ence between the variances of the two exams;

(ii) a 1-tailed test, with a proposed hypothesis which states that the variance of
exam P would be less than that of exam Q.

Q10.9
We wish to compare two different methods, X and Y, for measuring the lead
content of water. The same sample of water is analysed by each method, giving
eight replicate results using method X and seven replicate results using method Y,
as given in the table below:
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Mean Standard Variance
deviation

X 83.3 81.4 81.0 79.8 82.5 84.7 83.2 83.3 82.40 1.57 2.47

Y 81.5 77.9 76.9 74.7 79.9 84.3 81.3 79.50 3.24 10.47

(i) As we can see from the data that s2
Y > s2

X, would it be acceptable to use a
1-tailed test when testing for a difference in variance?

(ii) Test for a difference in the experimental uncertainty between the two methods.
(iii) Test for a difference in the mean values reported by the two methods.





11
ANOVA – Analysis of Variance

Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Implementation of ANOVAs in Excel and Minitab.
• Additional material: ANCOVAs.

We saw in Chapter 10 how the two-sample t-test tests for a difference between the mean values
of two data samples.

ANOVAs form a set of analytical tests which can be used to identify possible differences in
the mean values of more than two data samples.

As its name suggests, an ANOVA uses the analysis of variances in the overall data to identify
whether there are factors involved which cause variations beyond the inherent experimental
variation in the data values. At its simplest level, the ANOVA performs an F -test to test
whether the overall variance in the data values from all samples is significantly greater than
the inherent experimental variance within each sample. If the F -test gives a significant result,
then it can be concluded that there is a significant difference between the mean values of the
samples.

In this chapter we look at some increasing sophistication in the ANOVA, identifying the
effects of multiple factors and any interaction between them. The introduction of even more
powerful ANOVAs is continued on the Website.

We also discuss what can be done after an ANOVA has detected an effect, by introducing
the use of post hoc tests.

11.1 One-way ANOVA
11.1.1 Introduction
We can illustrate the use of the ANOVA analytical approach by considering the following
example.

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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Example 11.1

A student chooses to compare the growth rates of plants in four different soils, A, B, C
and D, and selects seeds at random, planting three in each of the soils. She wishes to
test whether there may be a significant difference, at a significance level of α = 0.05,
between the growth rates in the different soils.

The mean heights measured after a certain time are recorded in the table below:

Soil Heights Mean Std dev.

A 11.9 11.0 11.8 11.6 0.493

B 11.6 11.8 12.2 11.9 0.306

C 9.6 11.1 9.9 10.2 0.794

D 10.4 11.0 10.7 10.7 0.300

The analysis is performed in the following text .

The different heights ‘within’ each soil sample show a natural variation due to the different
growth rates of plants. These can be reproduced graphically as shown in Figure 11.1.

Soil A Soil B Soil C Soil D

Figure 11.1 Three seedlings in four different soils.

We can also use boxplots to give a visual representation of the data variations (Figure 11.2)
within each group.

From the visual representations, there appear to be differences between the four sets of data,
in both variability and mean values. As part of an initial guess, we might expect that there
is a significant difference between the mean values of B and D because their ‘boxes’ do not
overlap, but that there is no significant difference between C and D because their ‘boxes’ do
overlap. However, we must use quantifiable tests if we are to make reliable decisions.

The student is familiar with the t-test for testing for differences in mean values and applies
a two-sample t-test for the means xA and xB of the two soils A and B. She records a p-value
of 0.421, which suggests that there is not a significant difference between the qualities of soils
A and B.
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Figure 11.2 Boxplots of the heights of seedlings in four different soils (using Minitab).

As there were four soils under test as shown, each of which has a natural variation, the student
performs five further two-sample t-tests between other data pairs, obtaining the pairwise results
in Table 11.1.

Table 11.1. The p-values for
pairwise t-tests between samples.

B C D

A 0.421 0.064 0.060
B 0.027 0.009
C 0.365

These results might suggest that pairs A/B, A/C, A/D and C/D are not dissimilar but that
soil B is significantly different from both C and D. However, we will see later (11.4.3) that
the use of multiple t-tests in this way can lead to incorrect conclusions. This is because the
individual t-tests are only using subsets of the overall data in each calculation. In addition,
using multiple t-tests increases the probability that one or more of the tests might give a Type
I error.

In the following sections, we will introduce the process of analysis of variance (or ANOVA),
which uses a single analytical calculation comparing the mean values of any number of possible
samples.

11.1.2 Analysing variances
It can be seen from the boxplots in Figure 11.2 that we can describe the variation of the data
in two parts:

• The variation within each sample (or box). The differences in box widths are due to differ-
ences in the random variations within each of the three samples.

• The overall variation between samples which includes variation due to the different soils in
addition to the natural variation within each soil.
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This concept of ‘separating’ the different variances is the basis on which the analysis of variance
technique performs its analysis.

In a simple set of experimental results, as in this example, we can expect to find two main
sources of variation:

Experimental variation. This variation is inherent in the experimental process (1.2), and will
normally be due to:
• measurement uncertainty (e.g. variations in instrumental results); or
• subject uncertainty due to the natural variation in the subjects being measured (e.g.

different growth rates from similar biological systems).
Experimental variations are described by the experimental variance: σ 2

E .
Factor variation. This variation may be due to the different factor levels between the samples.

In Example 11.1 the ‘factor’ is the soil and the ‘level’ is the choice of particular soil. The
different ‘levels’ of the factor are often called different ‘treatments’. Factor variations are
described by the factor variance: σ 2

F .

The variance within each sample is only dependent on the experimental uncertainty , because
each measurement is at the same factor ‘level’. The variance within each sample is therefore
an estimate for the experimental uncertainty, σ 2

E .
The total variance in the observed results, σ 2

TOT, is equal to the addition of the separate
variances, σ 2

E and σ 2
F :

σ 2
TOT = σ 2

E + σ 2
F [11.1]

Note that random variations are combined by adding variances (see 8.3.3). Remember that the
variance, σ 2, is the square of the standard deviation, σ .

Q11.1
The true standard deviation variation in pH between a range of different soil sam-
ples is given by σF = 0.08. If the pH meter used to make the measurements has a
standard deviation uncertainty of σE = 0.05, estimate the combined standard devi-
ation that might be expected in a large number of repeated measurements from
randomly selected soil samples.

11.1.3 Mean squares
We now define two ‘mean square’ values, equivalent to ‘variance’, which are normally calcu-
lated during an analysis of variance:

• Mean square (within), MSW, gives a measure of the variance ‘within’ one level of the factor,
and will be dependent only on the experimental variation:
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Mean square(within), MSW = σ 2
E [11.2]

• Mean square (between), MSB, gives a measure of the variance including both experimental
and factor effects:

Mean square (between), MSB = (n × σ 2
F ) + σ 2

E [11.3]

The justification for equation [11.3] is that σ 2
F is the variance of the true mean values for the

different sample sets, each of which has n data values. The variance of each single value due
to the factor variance would then be equal to n × σ 2

F (see central limit theorem, 8.2.3). This
variance is then combined with the variance σ 2

E due to experimental uncertainty to get the
overall uncertainty.

11.1.4 Significance of the factor effect
If there were no significant difference effect due to different levels of the factor, then we would
expect that σ 2

F would be zero, and we would find that the variances measured by MSB and
MSW would be of similar magnitude: MSB ≈ MSW.

On the other hand, if there were a significant factor effect, then MS B would be significantly
greater than MS W: MS B >MS W.

We can use an F -test to test that any difference that we might observe has not been caused
purely by statistical fluctuations in the experimental data. We use the following hypotheses:

Proposed hypothesis, H1: The variance MSB is greater than MSW.

Null hypothesis, H0: The variance MSB is equal to MSW.

The appropriate 1-tailed F -statistic (10.4.3) is:

F = MSB

MSW
[11.4]

The degrees of freedom for this F -test are:

Numerator dfB = k − 1 and denominator, dfW = k(n − 1) [11.5]

where k is the number of samples and n the number of replicates in each sample.
The standard ANOVA calculation for Example 11.1 gives the results in the form shown in

Table 11.2.
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Table 11.2. Excel output from one-way ANOVA calculation.

ANOVA

Source of Variation SS df MS F p-value F crit

Between Groups 5.323333 3 1.774444 6.71714 0.014101 4.066181
Within Groups 2.113333 8 0.264167
Total 7.436667 11

Here MSB = 1.774, MSW = 0.264, k = 4 and n = 3, giving:

dfB = k − 1 ⇒ 4 − 1 ⇒ 3 and dfW = k(n − 1) ⇒ 8

The SS values are ‘sum of squares’ and can be calculated by:

SSB = MSB × dfB = 1.774 44 × 3 = 5.323

SSW = MSW × dfW = 0.264 17 × 8 = 2.113

The total ‘sum of squares’ equals the total SS values of the ‘Between’ and the ‘Within’ groups.
It can be seen that the F -value is given by the ratio:

F = 1.7744

0.264 17
⇒ 6.717

The 1-tailed value for FCRIT = 4.07 can be found from Appendix IV for degrees of freedom
dfB = 3 and dfW = 8, at a significance of α = 0.05. The value is also given in the table of
results.

Since F >FCRIT we accept the proposed hypothesis that the overall variance in the results
is greater than the experimental variance alone.

We can come to the same conclusion, and accept H1, by noting that the p−value, 0.014, is
less than the significance level, α = 0.05.

Having accepted that the overall variance in the results, MSB, IS greater than the experimental
variance, MSW, on its own, the further conclusion is that there is a significant difference
between some (or all) of the sample mean values.

The ANOVA has detected a difference between some (or all) of the samples, but at
the moment we do not know where these difference(s) might lie. The next step will be to
apply a post hoc test to find out which sample might be significantly different from other
samples–see 11.4.2.
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Example 11.2

An example is given in the table below, showing the efficiency of a chemical process
using three different catalysts (A, B and C) on each of four days:

Catalyst Day 1 Day 2 Day 3 Day 4

A 84 83 79 80

B 78 79 78 76

C 83 80 78 78

A one-way ANOVA performed in Excel (with the data organized in rows) gives the
following results:

ANOVA

Source of Variation SS df MS F p-value F crit

Between Groups 28.16667 2 14.08333 3.292208 0.084525 4.256492

Within Groups 38.5 9 4.277778

Total 66.66667 11

The analysis is performed in the following text .

In Example 11.2, the ‘Groups’ refer to the different catalysts. The source of variation of the
‘Within Groups’ is dependent only on the experimental variance, but the source of variation
of the ‘Between Groups’ depends on variances due to the different catalysts, in addition to the
experimental variance.

From the results, we can conclude that the one-way analysis of this data is unable to detect
any significant ‘catalyst’ effect, because p > 0.05 and F <FCRIT.

Q11.2
In an ecological study of the lifespan of a certain species of protozoan, 50 individ-
uals were divided into five groups of 10. Each group was fed on a different feed.
The results of a one-way ANOVA at a significance level of α = 0.05 are shown
below with some of the data removed:
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ANOVA

Source of Variation SS df MS F p-value F crit

Between Groups 67.7072

Within Groups 236.4800

Total 304.1872

(i) Calculate the missing values for dfB, dfW, MSB, MSW, F , F crit
(ii) On the basis of your results in (i) decide whether the missing p-value would

be greater than, or less than, 0.05.

11.2 Two-way ANOVA
11.2.1 Introduction
We have already seen how a simple one-way ANOVA can identify differences in the mean
values or several samples. We now see how the ANOVA technique can begin to unravel more
complex problems.

Example 11.3

Two students, Andrew and Bernard, measured the time in minutes that it took them to
solve similar sets of statistics problems in the morning and then in the afternoon. The
results, together with mean times for rows and columns, are given below:

Morning Afternoon Mean time

Andrew 11.0 16.0 13.5

Bernard 15.5 20.0 17.75

Mean time 13.25 18.0

Does the data show any significant factor differences?

The analysis is performed in the following text .

At first glance it appears that Andrew takes less time than Bernard. However, if we use a
two-sample, 2-tailed t-test to test for a difference in the ‘student’ factor between Andrew
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(11.0, 16.0) and Bernard (15.5, 20.0) we find p = 0.334, suggesting that there is no significant
difference between the students. Using a one-way ANOVA on the same data we obtain the
results in Table 11.3, giving the same p-value of 0.334.

Table 11.3. One-way ANOVA for ‘Student’ factor.

Source of Variation SS Df MS F p-value F crit

Between Groups 18.0625 1 18.0625 1.596685 0.333717 18.51282
Within Groups 22.625 2 11.3125
Total 40.6875 3

Similarly, it appears that, on average, the students take less time in the morning than in
the afternoon. However, using either a t-test or one-way ANOVA to test for the ‘time of day’
factor between Morning (11.0, 15.5) and Afternoon (16.0, 20.0) we find p = 0.255, which
suggests that again there is no significant difference.

We can get a visual impression of the data by plotting the results on a two-dimensional
‘interaction’ plot in Figure 11.3.
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Figure 11.3 Plot of times taken to solve statistics problems (using Minitab).

Looking at the data in just one dimension (i.e. only along the performance time axis), we
might see why the single factor tests fail to find any significant differences:

• If we look for a ‘student’ effect, the differences in times between morning and afternoon
create large data variations which reduce the chance of identifying the effect due to the
different student.

• Similarly, testing for an effect due to the ‘times of day’ factor is masked by the variations
between ‘students’.

11.2.2 Two-way ANOVA
The problem of one factor masking the effect of a second factor can be overcome by
using a single two-way ANOVA which tests simultaneously for the possible effects of
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two factors. Applying a two-way ANOVA to Example 11.3 produces the output given in
Table 11.4.

Table 11.4. Two-way ANOVA for ‘Student’ and ‘Time of Day’ factors.

Source of Variation SS Df MS F p-value F crit

Student 18.0625 1 18.0625 289 0.037405 161.4462
Time of Day 22.5625 1 22.5625 361 0.033475 161.4462
Error 0.0625 1 0.0625
Total 40.6875 3

The two-way ANOVA has analysed the data on the basis of two possible factors , each of
which has two levels :

Factor Levels

Student Andrew/Bernard

Time of Day Morning/Afternoon

The output from the two-way ANOVA looks similar to the one-way ANOVA (Table 11.3), but
with the addition of a second factor. The MS variance values are calculated for both factors.
The remaining variance, MSERROR, includes the inherent uncertainties in the data, plus an
additional variance due to interactions between the factors (see 11.3).

As with the one-way ANOVA, the significance of each factor is calculated by performing
an F -test to compare each factor variance independently with MSERROR.

The two-way ANOVA gives p-values:

p = 0.037 for the ‘Student’ factor; and
p = 0.033 for the ‘Time of Day’ factor.

Hence both factors are now found to have a significant effect (with α = 0.05) on the time it
takes to solve the problems.

The two-way ANOVA has taken both factors into account simultaneously and can identify
the ‘two-dimensional’ difference that occurs when plotting the data against both factors:

• The lines in Figure 11.3 representing each student are separated, showing a difference in
performance times.

• Both lines also show an increase in times between morning and afternoon.

11.2.3 Applying the two-way ANOVA (without
replication)
The data in Example 11.3 has no replication , i.e. there is only a single experimental measure-
ment for each combination of conditions (of ‘Student’ and ‘Time of Day’). We will see in 11.3
how repeated (replicate) measurements can provide another level of information in the results
of the analysis.
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Example 11.4

This example uses the same data as Example 11.2, showing the efficiency of a chemical
process using three different catalysts (A, B and C) on each of four days:

Catalyst Day 1 Day 2 Day 3 Day 4

A 84 83 79 80

B 78 79 78 76

C 83 80 78 78

The analysis using a two-way ANOVA (without replication) is performed in the following
text .

In the one-way ANOVA analysis of the data in Example 11.2, it was assumed that there is
no difference between the conditions, from day to day, under which the replicate measure-
ments were made. It was assumed that within each catalyst sample the only variation was the
experimental variation, with the result that no significant effect due to the catalyst was found.

However, by using the ‘interactions’ plot in Figure 11.4, a visual examination of the data
suggests that the values tend to decrease from day 1 to day 4. Is this likely to be an actual
outcome of randomized data, or could there be some effect due to the ‘day’ in our experiment
that was not taken into account? For example, we may suspect that one of the reagents in the
experiment may be deteriorating over the four days and affecting the efficiency of the process.
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Figure 11.4 Plot of data from Example 11.4 (using Minitab).

We can introduce the ‘day’ as a second factor in the analysis, and each column would become
a different ‘level’ in that second factor. In terms of experiment design we are now blocking these
‘replicates’ in an organized way, with each block representing different days. The experimental
design that blocks the replicate samples is called a randomized block design – see 15.1.4.

The results from a two-way ANOVA analysis are given in Table 11.5.
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Table 11.5. Excel results for the two-way ANOVA for Example 11.4.

Source of Variation SS df MS F p-value F crit

Catalyst 28.16667 2 14.08333 8.59322 0.017328 5.143249
Day 28.66667 3 9.555556 5.830508 0.032756 4.757055
Error 9.833333 6 1.638889
Total 66.66667 11

The results now indicate that there is a significant ‘catalyst’ effect, because p = 0.017, giving
p < 0.05. The results also show a significant variation due to the ‘day’, because p = 0.033,
giving p < 0.05.

By comparing the results in Example 11.2 with those in Example 11.4, the one-way ANOVA
was unable to detect a significant catalyst effect due to the experimental uncertainty introduced
by the variation between days. The two-way ANOVA is now able to identify the contribution
by the ‘blocks’ (or days) to the total variance, and can therefore perform a more sensitive test
for the significance of the variance due to the catalyst.

Q11.3
As part of a project in forensic science, a student measures the times to emergence
for larvae collected from a recently deceased pig. The times given in the table below
were recorded for larvae collected on different days (Day1, Day2 and Day3) and
grown on different media (M1, M2, M3 and M4).

Day1 Day2 Day3

M1 27 19 33

M2 25 24 32

M3 20 19 24

M4 21 20 28

Analyse the data to investigate whether ‘day of collection’ and/or ‘media’ have
any significant effect (at 0.05) on the emergence times of the larvae.

11.3 Two-way ANOVA with Replication
11.3.1 Introduction
In Example 11.3, we were able to see how a two-way ANOVA was able to detect significant
effects due to two separate factors. We now investigate, with Example 11.5, a more complex
situation where the effect of one factor depends on the level of the other factor.



11.3 TWO-WAY ANOVA WITH REPLICATION 291

Example 11.5

This example has very similar data to Example 11.3. Andrew has the same results as
before, but Bernard is replaced by his twin sister, Carol. Carol is quicker at statistics in
the afternoon than in the morning, as shown below:

Morning Afternoon Mean time

Andrew 11.0 16.0 13.5

Carol 20.0 15.5 17.75

Mean time 15.5 15.75

Does the data show any significant factor differences?

The analysis is performed in the following text .

A two-way ANOVA analysis of the data in Example 11.5 gives the output shown in Table 11.6.

Table 11.6. Two-way ANOVA for ‘Student’ and ‘Time of Day’ factors.

Source of Variation SS df MS F p-value F crit

Student 18.0625 1 18.0625 0.800554 0.535331 161.4476
Time of Day 0.0625 1 0.0625 0.00277 0.966525 161.4476
Error 22.5625 1 22.5625
Total 40.6875 3

The results in Table 11.6 show no significant effects for either the ‘Student’ or ‘Time of
Day’ factors. The interaction plot in Figure 11.5 might give us a clue to understanding the data:
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Figure 11.5 Plot of times taken to solve problems (using Minitab).
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The plot in Figure 11.5 appears to show that, ‘on average’, Andrew takes less time than Carol,
but, while Andrew takes more time in the afternoon than in the morning, Carol’s performance
is reversed.

We can see that the effect of the ‘Time of Day’ factor depends on the ‘Student’ factor.
There appears to be an interaction between the two factors. However, with the data as given,
the two-way ANOVA calculation is unable to separate the data variation due to the possible
interaction from the variations due to random experimental uncertainty – both are included in
MSERROR.

We will see in the next section that the analytical process can be made more powerful
by collecting additional data. It is possible to separate the effect of the interaction from the
experimental uncertainty by estimating the magnitude of experimental uncertainty through
repeated data values , or replicates , for measurement.

11.3.2 Two-way ANOVA with replication
In the context of an ANOVA, a replicate measurement requires repeating a measurement under
exactly the same combinations of conditions. For example, in Example 11.5 this would require
at least two measurements for each combination of student and time of day.

Example 11.6

The data in the table below has the same mean values as Example 11.5, but now includes
two replicate measurements for each factor combination:

Morning Afternoon Mean time

Andrew 11.3, 10,7 15.8, 16.2 13.5

Carol 21.2, 18.8 15.2, 15.8 17.75

Mean time 15.5 15.75

Does the data show any significant effects?

The analysis is performed in the following text :

We can perform a two-way ANOVA with replication , to obtain the output in
Table 11.7.

The replicate data has enabled the ANOVA to estimate the average variance within each
factor combination, giving an estimate of the inherent experimental uncertainty in each mea-
surement. With this information the ANOVA is able to separate the variance due to the
interaction, MSINTERACTION, from that due to the experimental uncertainty, which is given
by the mean square (within) value, MSW. Without replication data, these two variances had
been combined in Table 11.6 in the MSERROR value.
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Table 11.7. Two-way ANOVA for Example 11.6.

Source of Variation SS df MS F p-value F crit

Student 36.125 1 36.125 43.5241 0.002735 7.708647
Time of Day 0.125 1 0.125 0.150602 0.717729 7.708647
Interaction 45.125 1 45.125 54.36747 0.001803 7.708647
Within 3.32 4 0.83
Total 84.695 7

The results in Table 11.7 are:

p = 0.0027 for the ‘Student’ factor;
p = 0.7177 for the ‘Time of Day’ factor; and

p = 0.0018 for the interaction between the two factors.

Hence there is a significant difference (with α = 0.05) between the two students, and a strong
interaction between the performance of the student and the time of day. On average, between
the two students, the time of day is not a significant factor.

Q11.4
The percentage yields from a chemical reaction are recorded as functions of both
temperature and pressure. Three replicate measurements were made at each of three
different pressures, P 1, P 2 and P 3, and two different temperatures, T 1 and T 2,
as recorded in the table below:

Pressures

Temperature P 1 P 2 P 3

T 1 79 68 62

T 1 76 71 65

T 1 77 69 65

T 2 76 69 68

T 2 72 70 71

T 2 73 73 69

Analyse the above data, using a two-way ANOVA with replication, to assess
whether temperature, pressure and/or an interaction between the two have sig-
nificant effects on the efficiency of the process.
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11.3.3 Applying the two-way ANOVA with replication

Example 11.7

The table below gives the relative efficiency of two different motor engines when run
on three different varieties of fuel, A, B, C. There are three replicate measurements for
each combination of engine and fuel.

Fuel mixture

A B C

66.2 67.2 73.1

Engine 1 65.3 68.4 71.8

68.0 69.6 70.9

78.8 78.0 76.6

Engine 2 76.1 76.0 77.6

79.8 77.0 75.4

Analyse the data to investigate for significant effects on efficiency due to:

(i) type of engine used;
(ii) variety of fuel used;

(iii) interaction between the variety of fuel and the type of engine.

In Example 11.7, the three replicate measurements give additional information (compared
with the basic two-way ANOVA) that enables the experimental variation to be calculated
directly. The ANOVA can then calculate the effect of any possible interaction between the
type of engine and fuel used.

A two-way ANOVA with replication gives the results in Table 11.8 for Example 11.7.

Table 11.8. Two-way ANOVA for Example 11.7.

Source of Variation SS df MS F p-value F crit

Engine 310.8356 1 310.8356 178.8124 1.43E-08 4.747221
Fuel 11.89333 2 5.946667 3.420901 0.066735 3.88529
Interaction 38.35111 2 19.17556 11.031 0.001912 3.88529
Within 20.86 12 1.738333
Total 381.94 17
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The conclusions that can be drawn from Table 11.8 are that there is:

• Significant difference between the performance of the two engines, since p = 1.43 × 10−8

< 0.05. Excel also gives the overall averages (given in Example 11.8) for the engine effi-
ciencies, which show that Engine 2 is more efficient than Engine 1.

• Significant interaction between the engine and the fuel, since p = 0.0019 < 0.05.
The calculated averages in Example 11.8 show that Fuel C increases the efficiency of
Engine 1 but decreases the efficiency of Engine 2 – this is an interaction between engine
and fuel.

• No significant overall difference between the effects of the fuels, since p = 0.0667 > 0.05.

It is possible to represent the interaction between two factors graphically using an interaction
plot. In this plot, the mean outcome for each level of one factor is plotted against the levels
of the other factor.

Example 11.8

Taking the data from Example 11.7, the mean values are as given in the table below:

A B C

Engine 1 66.5 68.4 71.93

Engine 2 78.23 77 76.53

For each engine a ‘line’ is drawn on an Excel chart to give efficiency as a function of
fuel. The two lines (Figure 11.6) represent the two different engines.

62

66

70

74

78

82

A B C

Engine 1

Engine 2

Figure 11.6 Interaction plot for engine efficiences.

From the graph in Figure 11.6 it can be seen that:

• Engine 2 is more efficient than Engine 1 for all fuels, which agrees with p < 0.05 for the
‘Engine’ row in Table 11.8.
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• There is an interaction between the fuels and engine – changing from Fuel A to Fuel C
improves the performance for Engine 1, but degrades the performance for Engine 2, which
agrees with p < 0.05 for the ‘Interaction’ row in Table 11.8.

• The effect of changing the fuel has no ‘overall’ effect as the effects are opposite for the two
engines, which agrees with p > 0.05 for the ‘Fuel’ row in Table 11.8.

Interaction plots can be interpreted by identifying the following:

• A significant effect due to the factor defined by the different ‘lines’ will give differences
between the vertical positions of the lines. For example, this is the case with the significant
difference in performance between the two engines in Figure 11.6.

• A significant interaction effect will cause the slopes of the lines to be different. This is the
case with the interaction between engine and fuel.

• A significant effect due to the abscissa (x) variable will give an overall slope up or down .
In this case, one line goes up and the other down, resulting in no significant overall fuel
effect.

The interaction plot can also be redrawn with the other factor as the abscissa.

Q11.5
Redraw the interaction plot in Example 11.8 using the ‘engine’ as the abscissa
variable.

11.4 ANOVA Post Hoc Testing

11.4.1 Introduction
We introduced the ANOVA as a single analytical procedure that detected whether there was
a significant factor effect present when comparing the means of several data samples. How-
ever, the ANOVA itself does not then identify which sample(s) might be different from the
others.

Example 11.9

A one-way ANOVA applied to the four soil samples A, B, C and D in Example 11.1
shows that there is a difference between the seedling heights in some (or all) of the soils.

Investigate where the significant difference(s) exist, i.e. which soil is significantly dif-
ferent from which other soil?

The analysis is performed in the following text .
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In Example 11.9, we find that comparative boxplots, such as Figure 11.2, can be useful in giving
an initial indication of the possible differences. However, it is necessary to use quantitative
methods to decide whether apparent differences can be considered as significant.

The procedures for locating significant differences are called post hoc testing, and can be
achieved through a range of possible quantitative post hoc tests. In this unit we will introduce
the Tukey post hoc test, but other options include the Scheffé, Sidak, Dunnett tests, etc.

11.4.2 Tukey post hoc test
The Tukey test compares the mean values, x1 and x2, of each possible pair of samples in
turn – a pairwise comparison. In each case it applies a test with the hypotheses:

Proposed hypothesis, H1: Means are different, x1 
= x2.

Null hypothesis, H0: Means are not different, x1 = x2.

The option to include a Tukey comparison (e.g. in Minitab) when performing an ANOVA
analysis of Example 11.1 results in the p-values given in Table 11.9 for possible differences
between each pair of soils:

Table 11.9. The p-values for
pairwise Tukey tests between

samples.

B C D

A 0.889 0.046 0.243
B 0.017 0.091
C 0.648

These results suggest that, at a significance of α = 0.05, differences exist between the means
of pairs A/C and B/C.

11.4.3 Comparison with multiple t-tests
In 11.1.1, we performed pairwise t-tests between the soil samples in Example 11.1 and obtained
the p-values in Table 11.10.

Table 11.10. The p-values for
pairwise t-tests between samples.

B C D

A 0.421 0.064 0.060
B 0.027 0.009
C 0.365

The multiple t-test approach suggests that significant differences lay between pairs B/C and
B/D, whereas the Tukey test puts the differences between pairs A/C and B/C.
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The Tukey test is the most reliable because, for each comparison, it calculates the experi-
mental uncertainty from all of the available data. The t-tests only use the data available from
the specific pair of samples used.

For example, the samples B and D both happen to have narrow ranges of data values
(Figure 11.2), which will imply that the random experimental uncertainties are less than they
actually are, leading to a false significance for the difference between pair B/D. Similarly the
correct (Tukey) difference between pair A/C is masked in the t-test by the wider data spread
in both samples A and C.

Q11.6
The yield of a chemical reaction is measured at four different temperatures, with
three replicate measurements at each temperature, as in the table below:

T1 T2 T3 T4

67.2 66.4 62.3 63.2

62.4 63.2 59.1 62.4

66.4 64 60.7 62.4

Means = 65.33 64.53 60.70 62.67

Use an ANOVA with Tukey comparison to identify if the reaction yields at any
particular temperatures are significantly different (at 0.05) from other temperatures.
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Non-parametric Tests
for Medians

Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Wilcoxon, Mann–Whitney, Kruskal–Wallis and Friedman tests in Minitab.

Chapter 9 introduced the concept of a ‘hypothesis test’, and Chapters 10 and 11 developed
the parametric t-tests and ANOVAs for performing hypothesis tests for differences in mean
values. The term parametric refers to the fact that the data values are used directly in the
calculations for the various test statistics. This can be contrasted with non-parametric tests
where the numerical values are only significant in establishing the ‘ranking’, or order, of the
data values.

In this chapter, we introduce a range of non-parametric tests for differences in median values:
the Wilcoxon, Mann–Witney, Kruskal–Wallis and Friedman tests. The Wilcoxon tests are the
non-parametric equivalents of one-sample t-tests and paired t-tests, and the Mann–Whitney
test is equivalent to a two-sample t-test. The Kruskal–Wallis and Friedman tests analyse
experimental data with more than two samples and are the non-parametric equivalents of the
one-way and two-way ANOVAs (Chapter 11).

Non-parametric statistics must be used for ordinal data (Chapter 2 Overview), which does
not have an inherent numerical value, but does have a sense of progression. For example,
‘opinion’ scores in a questionnaire may be ranked 1 = excellent, 2 = good, 3 = satisfactory,
4 = poor, 5 = bad, but these values cannot be used directly in calculations of parametric
variables such as mean and standard deviation . Non-parametric statistics use the median value
and interquartile range (7.1.2) as the equivalent measures of location and spread.

Non-parametric tests can sometimes be used in place of their parametric equivalents for
quantitative data. For example, the parametric data values, 21.2 m, 23.7 m and 22.3 m can be
ranked in order as 1, 3 and 2 respectively, and the data could be used in either parametric or
non-parametric tests. However, due to the loss of information in transforming parametric data
to non-parametric data, the non-parametric tests are usually less powerful (9.4.5) then their
parametric equivalents.
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The only data type (Chapter 2 Overview) that cannot be ranked is nominal data, because
it has no sense of progression from one category to the next, e.g. categorizing people on the
basis of their preferences for different sports.

Before proceeding with the following tests, it is recommended that students confirm that
they have a good understanding of the principles of hypothesis testing developed in 9.3
and 9.4.

The standard version of Excel does not have the functions or tools to perform non-parametric
tests directly. However, dedicated statistics software can perform non-parametric tests easily,
albeit with a variety of approaches between the different packages.

The answers, on the Website, to the examples given in the chapter demonstrate the indirect
use of Excel in performing non-parametric calculations, in addition to the direct use of statistics
software.

Example 12.1

Eight science students (a to h) were asked to what extent they agreed with the following
three statements:

S1: The skills for rearranging equations were easy to learn.
S2: The theory of statistics was easy to understand.
S3: The techniques of data analysis in Excel were easy to master.

They were required to mark their answers on a Likert scale from −2 to +2:

Disagree strongly Neutral Agree strongly

−2 −1 0 +1 +2

Their results are given in Table 12.1.

Table 12.1.

Statements

Student S1 S2 S3

a 2 0 1
b 0 −1 0
c 1 −1 2
d 2 0 2
e 0 −2 1
f −1 −1 1
g −2 −2 −1
h 0 −1 1
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This example has been developed for illustrative purposes only. The sample of only eight
students would be too small to provide robust results, but are sufficient here to illustrate
the use of the relevant statistics:

A visual representation of the data is given in the text .

Figure 12.1 shows the variation between students, with some giving generally higher scores
than other students. We can also see that all students give their lowest agreement with statement
S2, and, except for student ‘a’, they give highest agreement with statement S3. The relative
score for statement S1 varies from student to student.

Figure 12.2 shows that, overall , S2 got the lowest score and S3 the highest.
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Figure 12.1 Responses to the three statements
for each student (using Minitab).
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Figure 12.2 Boxplots of the responses for each
of the three statements (using Minitab).

Later in this chapter, we will use this example to investigate the use of:

• the one-sample Wilcoxon test to find whether any statement gives a median value signifi-
cantly different from the neutral response of ‘0’;

• the two-sample Mann–Whitney test to find significant differences in the median values of
pairs of student responses;

• the paired Wilcoxon test compared with the two-sample Mann–Whitney test;
• the Kruskal–Wallis test for differences in the medians of the three or more statements; and
• the Friedman test for differences between students, by blocking responses to different

statements.

12.1 One-sample Wilcoxon Test
12.1.1 Introduction
The Wilcoxon test is a one-sample test – the non-parametric equivalent of the one-sample
t-test (10.1). The Wilcoxon test can also be used within a paired test in the same way that a
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one-sample t-test can be used within a paired t-test (10.3). Due to the strong parallels between
the Wilcoxon test and the one-sample t-test, it would be useful for the readers first to review
the use of t-tests.

12.1.2 Test statistic, W
The one-sample Wilcoxon test aims to test whether the observed data sample has been drawn
from a population that has a median value, m, that is significantly different from (or greater/less
than) a specific value, m0. The tests may be 1-tailed or 2-tailed.

A one-sample Wilcoxon test compares the median of the sample data with a specific value,
to test whether the true value (or population median), m, of the variable being measured might
differ from that specific value.

The procedure for this test is illustrated using Example 12.2.

Example 12.2

The generation times (5.2.4), t , of 10 cultures of the same micro-organisms were
recorded.

Time, t(h) 6.3 4.8 7.2 5.0 6.3 4.2 8.9 4.4 5.6 9.3

The microbiologist wishes to test whether the generation time for this micro-organism
is significantly greater than a specific value of 5.0 hours.

The analysis is performed in the following text .

We can display the data in Example 12.2 using a box and whisker plot (Figure 12.3).

5

54 6 7 8 9 10
Generation times (hours)

Figure 12.3 Boxplot of data in Example 12.2 (using Minitab).

The test required in Example 12.2 is 1-tailed, i.e. testing for ‘greater than 5.0’.
The hypotheses for the Wilcoxon test are therefore:

Proposed hypothesis, H1: m > 5.0

Null hypothesis, H0: m = 5.0

We choose the significance level α = 0.05.



12.1 ONE-SAMPLE WILCOXON TEST 303

The next step is to take the differences (ti − m0) between each data value, ti , and the
target median, m0 = 5.0. The differences are then ranked in order of their absolute values (i.e.
ignoring the plus or minus signs) giving the results in Table 12.2. The sign of each difference
is retained in the last row.

Table 12.2. Ranking of data for Example 12.2.

Time, t(h) 6.3 4.8 7.2 5.0 6.3 4.2 8.9 4.4 5.6 9.3

Differences (t − m0) 1.3 −0.2 2.2 0.0 1.3 −0.8 3.9 −0.6 0.6 4.3

Ranks (ignoring sign) 5.5 1 7 5.5 4 8 2.5 2.5 9

Sign + − + + − + − + +

Three main rules should be observed when calculating rank values:

1. Data items that have a zero difference should be excluded from the ranking process
and ignored in subsequent calculations. For example, in Table 12.2, one item has a zero
difference and is then ignored, leaving only nine data values for subsequent calculations.

2. Data items are ranked in order of their absolute values (i.e. ignoring their signs).
3. If two (or more) data items have the same absolute values (ties), then the rank value is

shared between the values. For example in Table 12.2, the differences ‘−0.6’ and ‘+0.6’
are the joint second and third values and receive the shared ranking of 2.5. Similarly the
difference ‘1.3’ occurs twice and the two values are given equal ranking of 5.5.

The test statistic, W (+), is the sum of the rankings for all positive differences.
Similarly, the test statistic, W (−), is the sum of the rankings for all negative differences.

The test statistics can be calculated from Table 12.2:

W(+) = 5.5 + 7 + 5.5 + 8 + 2.5 + 9 = 37.5

W(−) = 1 + 4 + 2.5 = 7.5

It should be noted that the sum of all rank values is given by:

W(+) + W(−) = 0.5 × n × (n + 1) [12.1]

where n is the number of values included in the calculation, after any with zero differences
have been excluded .

In Example 12.2, n = 9, giving from (12.1):

W(+) + W(−) = 0.5 × n × (n + 1) = 45

which is in agreement with the sum of the calculated values.
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If the sample median, m, is close to the specific value, m0 (null hypothesis), we would expect
the values of W(+) and W(−) to be very similar.

However, for the proposed hypothesis to be true, we would expect there to be a significant
difference between W(+) and W(−), with one of them having a significantly low value.

The critical values normally given for the Wilcoxon test are the lower critical values, WL.
Appendix V gives critical values at α = 0.5 for sample sizes, n.

The conditions for accepting the proposed hypothesis, H1, are:

Accept H1 if either W(+) � WL or W(−) � WL.

In Example 12.2, the lower critical value, WL, for a 1-tailed test with n = 9 and α = 0.5 is
WL = 8. Since W(−) < WL we accept the proposed hypothesis, H1.

A 1-tailed Wilcoxon test for the problem in Example 12.2 is performed on the Website
using Minitab and returns a p-value of 0.043. Since p < 0.05, we again accept the proposed
hypothesis, H1.

12.1.3 Applying the one-sample Wilcoxon test
For problems involving ordinal data, the data is already ranked.

Example 12.3

Referring to the data in Example 12.1 presented in Chapter 12 Overview, we now wish
to test separately whether the medians, m, for the student responses for each statement,
S1, S2 and S3, in Table 12.1 are significantly different from the specific value, m0 = 0.

The analysis is performed in the following text .

The relevant 2-tailed hypotheses for the question in Example 12.3 would be:

H1: m 
= 0

H0: m = 0

Using Minitab on the Website to perform a 2-tailed Wilcoxon test we obtain the values in
Table 12.3 for W(+), W(−), WL and p-value.

When the p-value results in Table 12.3 are compared with the boxplots in Figure 12.2:

• The conclusions for statements S1 (m could be 0) and S2 (m 
= 0) agree with the visual
boxplot display.

• It would be difficult to make a decision from the boxplot data for S3 as the values overlap
the value m0 = 0. The p-value is close to 0.05, but there is just not enough evidence to
accept H1.



12.2 TWO-SAMPLE MANN–WHITNEY U-TEST 305

Table 12.3. Results from Example 12.3.

Statement W(+) W(−) WL p-value Decision Conclusion

S1 9.5 5.5 – ∗ 0.686 Not accept H1 True median, m, could be 0
S2 21 0 0 0.036 Accept H1 m 
= 0.0
S3 39 3.0 2 0.076 Not accept H1 True median, m, could be 0

∗After taking tied values, the sample size for S1 is too small for a WL-value.

Q12.1
In a survey to assess whether 18 trainees found a particular exercise regime useful,
they were asked to reply on a scale from −5 (not at all useful) to +5 (very useful).
Their scores are listed below:

3 5 −3 5 4 −2 2 4 −1

0 5 0 −4 −2 3 0 1 3

(i) Use a non-parametric test to assess whether the results show that the regime
was considered to be useful (i.e. the median score is greater than ‘0’).

(ii) What result would have been obtained for a test to assess whether the results
show a median value which is not equal to ‘0’, i.e. either greater than or less
than ‘0’?

12.2 Two-sample Mann–Whitney U-test
12.2.1 Introduction
The Mann–Whitney test is a two-sample test – the non-parametric equivalent of the
two-sample t-test (10.2). Due to the strong parallels between the Mann–Whitney test and the
two-sample t-test, it would be useful for the readers first to review the use of t-tests.

12.2.2 Test statistics, W and U
The Mann–Whitney test compares the median values of two samples. The procedure for this
test is illustrated using Example 12.4.

Example 12.4

Is there a significant difference between the median values of the populations from which
the following data sets, A and B, were drawn?
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Set A 21 23 24 18 20 25

Set B 18 16 20 18 22

The analysis is performed in the following text .

We can plot the raw data using box and whisker plots, as in Figure 12.4.

Set A

Set B

16 18 20 22 24 26
Data

Figure 12.4 Boxplots of data in Example 12.4 (using Minitab).

The hypotheses for the 2-tailed Mann–Whitney test in Example 12.4 are:

Proposed hypothesis, H1: mA 
= mB

Null hypothesis, H0: mA = mB

where mA and mB are the true median values of populations A and B.
We choose the significance level α = 0.05.
The first step is to rank the data values in order, keeping a record of the data set to which

each value belongs – see Table 12.4. Where two or more data items have the same value, then
they are given the same average rank, e.g. the three data items that have the value ‘18’ share
ranks ‘2’, ‘3’ and ‘4’, giving the average rank ‘3’ for all of them.

Table 12.4. Ranking data for Example 12.4.

Set B A B B A B A B A A A
Value 16 18 18 18 20 20 21 22 23 24 25
Rank 1 3 3 3 5.5 5.5 7 8 9 10 11

The sums of ranks are calculated for each set separately:

WA = 3 + 5.5 + 7 + 9 + 10 + 11 = 45.5

WB = 1 + 3 + 3 + 5.5 + 8 = 20.5
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The test statistic is the U-statistic that is calculated for each set, x:

Ux = Wx − nx(nx + 1)/2 [12.2]

where nx is the number of data values in set x.
In Example 12.4, we get

UA = 45.5 − 6 × (6 + 1)/2 = 24.5

UB = 20.5 − 5 × (5 + 1)/2 = 5.5

If the sample medians, mA and mB, are similar (null hypothesis), we would also expect the
values of UA and UB to be similar. However, for the proposed hypothesis to be true, we
would expect there to be a significant difference between UA and UB, with one of them having
a significantly low value.

The critical values normally given for the Mann–Whitney test are the lower critical values,
UL. Appendix VI gives critical values at α = 0.5 for sample sizes nA and nB.

The conditions for accepting the proposed hypothesis, H1, are:

Accept H1 if either UA � UL or UB � UL.

In Example 12.4, the lower critical value, UL, for a 2-tailed test with nA = 6, nB = 5 and
α = 0.5 is UL = 3.

Since UA > UL and UB > UL, we do not accept H1.
A 2-tailed Mann–Whitney test for the problem in Example 12.4 is performed on the

Website using Minitab and returns a p-value of 0.097. Since p > 0.05, we do not accept
H1, which agrees with the analysis above.

12.2.3 Applying the two-sample Mann–Whitney test

Example 12.5

Referring to the data in Example 12.1 presented in Chapter 12 Overview, we wish to
use 2-tailed Mann–Whitney tests to investigate whether there are significant differences
in the true medians between the responses to each pair of statements S1/S2, S1/S3 and
S2/S3 respectively.

The analysis is performed in the following text .
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The relevant 2-tailed hypotheses for the question in Example 12.5 would be of the form:

H1: mX 
= mY

H0: mX = mY

Using Minitab on the Website to perform a 2-tailed Mann–Whitney test we obtain the values
in Table 12.5 for the lower U value, UL, and p-value:

Table 12.5. Results for Example 12.5.

Comparison pairs W U UL p-value Decision Conclusion

S1 and S2 50 14 13 0.0572 Do not accept H1 mS1 could equal mS2

S1 and S3 59 23 13 0.3571 Do not accept H1 mS1 could equal mS3

S2 and S3 41 5 13 0.0042 Accept H1 mS2 
= mS3

It appears that there is a clear difference between the opinion scores for statements S2 and S3.
The result for the S1/S2 pair fails to provide sufficient evidence that there is a difference

between these two statements. However, in this calculation we have not considered the fact that
some students may record generally higher or lower opinion scores than the other students – see
Figure 12.1. The variation between students may mask a genuine difference between state-
ments – refer to the use of the paired Wilcoxon test which will be considered in Example 12.7.

Q12.2
The generation times (5.2.4), t , of cultures of the same micro-organisms were
recorded under two conditions X and Y and reproduced in the table below:

Condition X 6.7 5.8 6.9 9.6 8.9 8.2 6.1 4.8 9.2

Condition Y 3.9 6.3 4.4 5.6 6.3 4.2 7.2

Is there evidence that the generation times are significantly different under the two
conditions?

12.3 Paired Wilcoxon Test
12.3.1 Introduction
The paired Wilcoxon test is the non-parametric equivalent of the paired t-test (10.3). Due to
the strong parallels between the paired Wilcoxon test and the paired t-test, it would be useful
for the readers first to review the use of paired t-tests.
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12.3.2 Test statistic, W
The one-sample Wilcoxon test forms the basis of this paired test, in a similar way to the
one-sample t-test which forms a basis for a paired t-test (10.3).

A paired test is performed between two samples, in which each data value in one sample
can be ‘paired’ uniquely with one data value in the other sample.

To perform the non-parametric paired test, it is first necessary to calculate the differences
between each pair of values, and then the one-sample Wilcoxon test is used to compare those
differences with a ‘null’ median value of zero.

The procedure for this test is illustrated using Example 12.6.

Example 12.6

The reaction times of nine subjects, before and after being given a particular drug, are
recorded below.

The differences between the reaction times have also been calculated, together with the
ranking of these differences.

Subject 1 2 3 4 5 6 7 8 9

Before 15.5 16.6 24.0 11.8 14.5 19.4 14.7 23.1 22.7

After 17.6 17.5 25.3 10.8 17.6 19.4 17.2 26.1 20.6

Differences 2.1 0.9 1.3 −1.0 3.1 0 2.5 3.0 −2.1

Ranks (ignoring sign) 4.5 1 3 2 8 6 7 4.5

Sign + + + – + + + −

Is there sufficient evidence to show that the drug has affected reaction time?

The analysis is performed in the following text .

The hypotheses for the 2-tailed paired Wilcoxon test are therefore:

Proposed hypothesis, H1: mAFTER 
= mBEFORE

Null hypothesis, H0: mAFTER = mBEFORE

The differences between each pair of the data values in Example 12.6 are ranked using the
conditions that:

• Pairs with zero difference should be excluded from further calculations.
• Pairs with equal differences should share the ranking values.
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The test statistics can be calculated for Example 12.6:

W(+) = 4.5 + 1 + 3 + 8 + 6 + 7 = 29.5

W(−) = 2 + 4.5 = 6.5

In Example 12.6, the hypothesis test is 2-tailed, and if we assume that α = 0.5, the critical
value for n = 8 is WL = 3.

Since both W(−) > WL and W(+) > WL we do not accept the proposed hypothesis.
A 2-tailed paired Wilcoxon test for the problem in Example 12.6 is performed on the Website

using Minitab and returns a p-value of 0.123. Since p > 0.05, we do not accept H1, which
agrees with the analysis above.

12.3.3 Applying the paired Wilcoxon test

Example 12.7

Referring to the data in Example 12.1 presented in Chapter 12 Overview, we wish to use
a paired Wilcoxon test to test whether there is a difference between S1 and S2, taking
the students as being the unique factor that defines each data pair.

The analysis is performed in the following text .

Table 12.6 contains the differences between the results S1 and S2 for each student.

Table 12.6. Differences in the responses from individual
students.

Student a b c d e f g h
S1–S2 2 1 2 2 2 0 0 1

Using Minitab on the Website to perform a one-sample Wilcoxon test we obtain the values
in Table 12.7.

Table 12.7. Results for Example 12.7.

Difference W(−) WL p-value Decision Conclusion
S1–S2 0 0 0.036 Accept H1 mS1 
= mS2

It is important to compare the ‘significant’ result obtained by using a paired test for this
problem with the ‘not significant’ result obtained in Example 12.5 when using a Mann–Whitney
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test to compare the results for S1 and S2. The paired test is more powerful (9.4.5) because it
uses the extra information linking data differences to individual students.

Q12.3
This is the same as Q10.6, but assumes that the data may not necessarily be
normally distributed.

Seven ‘experts’ in the taste of real ale have been asked to give a ‘taste’ score to
each of two brands of beer, Old Whallop and Rough Deal. The results, ai and bi ,
for each expert are as follows, together with the differences, di , between the scores
for each expert:

Experts A B C D E F G

Old Whallop, ai 60 59 65 53 86 78 56

Rough Deal, bi 45 62 53 47 65 80 46

Difference, di = ai − bi 15 −3 12 6 21 −2 10

Perform a paired Wilcoxon test on the two data sets to test whether their medians
are significantly different.

12.4 Kruskal–Wallis and Friedman Tests
12.4.1 Introduction
The Mann–Whitney test (12.2) looked for differences in median values between just two
samples. Both the Kruskal–Wallis and Friedman tests look for differences in median values
between more than two samples.

The Kruskal–Wallis test is used to analyse the effects of more than two levels of just one factor
on the experimental result. It is the non-parametric equivalent of the one-way ANOVA (11.1).

The Friedman test analyses the effect of two factors, and is the non-parametric equivalent
of the two-way ANOVA (11.2).

12.4.2 Test statistics, H and S
The calculations for the Kruskal–Wallis and Friedman test statistics, HSTAT and SSTAT respec-
tively, are based on the ranking of individual data values. These calculations are given on the
Website.
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12.4.3 Applying the Kruskal–Wallis test

Example 12.8

Referring to the data in Example 12.1 presented in Chapter 12 Overview, we wish to
use a single Kruskal–Wallis test to test whether there are any significant differences in
the true medians between the responses to all the statements (S1, S2 and S3).

The analysis is performed in the following text .

In Example 12.5 we used three Mann–Whitney tests to check for any difference between the
three statements, but here we aim to use just the one Kruskal–Wallis test.

Using Minitab on the Website to perform the Kruskal–Wallis test with ‘statement’ as the
factor gives us the results in Table 12.8.

Table 12.8. Results of Kruskal–Wallis test for ‘statement’ as a factor.

Factor/levels p-value Decision Conclusion

Statements S1,
S2, S3

0.012 Accept H1 Difference(s) exist between statement
medians

The Kruskal–Wallis test is similar to the one-way ANOVA in that it will identify that a
difference exists, but then we would have to use a post hoc investigation to decide where the
differences between the samples might lie.

Example 12.9

Referring again to the data in Example 12.1 presented in Chapter 12 Overview, we will
investigate whether the Kruskal–Wallis test will identify any differences between the
median responses of individual students (a, b, c, d, e, f, g, h).

The analysis is performed in the following text .

Using Minitab on the Website to perform the Kruskal–Wallis test with ‘student’ as the factor
gives us the results in Table 12.9.

Table 12.9. Results of Kruskal–Wallis test for ‘student’ as a factor.

Factor/levels p-value Decision Conclusion

Students a, b, c, d, e, f, g, h 0.142 Not accept H1 No evidence of differences

The test has been unable to detect any significant differences between the students, although
it appears from Figure 12.1 that there is some considerable variation between their median
values.
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The problem here is that the variation of each student’s response to the three statements has
masked any trend between the students. We will see that it is necessary to use the two-way
Friedman test (12.4.4) to resolve the problem. Compare this situation with Example 11.3 and
the use of one-way and two-way ANOVAs.

Q12.4
The fungi species richness was measured on a 10-point scale on four different
species of trees over a period of 4 days, and the results tabulated as below:

Day 1 Day 2 Day 3 Day 4

Tree 1 6 4 3 3

Tree 2 4 3 3 2

Tree 3 4 2 1 1

Tree 4 2 1 2 1

Perform a Kruskal–Wallis test to investigate whether there is a significant dif-
ference in fungi species richness between the trees. Take the measurements on
different days as being replicate measurements.

12.4.4 Applying the Friedman test
The Friedman test is similar to a two-way ANOVA in that it will take account of the effect
of two possible factors at the same time. However, in each calculation, the Friedman test will
only evaluate the significance of one, main , factor, by dividing the data into ‘blocks’ on the
basis of the second, blocking , factor. The significance of the second factor can be found in a
separate calculation by reversing the roles of the two factors.

Example 12.10

Referring to the data in Example 12.1 presented in Chapter 12 Overview, we wish to
use a single Friedman test to test whether there are any significant differences in the true
medians between the students while blocking the data according to the responses to the
separate statements.

The analysis is performed in the following text .

Using Minitab on the Website to perform the Friedman test with the ‘student’ as the main
factor and ‘statement’ as the blocking factor , we find:
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Factor Blocking p-value Decision Conclusion

Student Statement 0.020 Accept H1 Difference(s) exist between
student medians

By taking into account the variation between statements, this test has now been able to
detect a significant difference between the students. This was not possible (see Example 12.9)
by using the Kruskal–Wallis test alone.

Q12.5
Use the same data as in Q12.4 for fungi species richness:

Day 1 Day 2 Day 3 Day 4

Tree 1 6 4 3 3

Tree 2 4 3 3 2

Tree 3 4 2 1 1

Tree 4 2 1 2 1

Perform a Friedman test to investigate whether there is a significant difference in
fungi species richness between the trees (treatment), while blocking the data by
‘day’.

Q12.6
Use the same data as in Q12.4 and Q12.5 for fungi species richness.

Perform a Friedman test to investigate whether there is a significant difference in
fungi species richness between the days, while blocking the data by ‘tree’.
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Correlation and Regression

Overview
Website • ‘How to do it’ video answers for all ‘Q’ questions.

• Correlation tests in Excel and Minitab.
• Excel tutorial: uncertainty in linear calibration.

Correlation is a measure of the extent to which the values of two variables of a system are
related (or correlated). For example, both the height and weight of a child normally increase
as the child gets older – there is a correlation between height and weight.

It must be noted, however, that the fact that two parameters are correlated does not nec-
essarily mean that one is a cause and the other an effect . In the example of the height and
weight of a child, both increases are the result of the growth of the child. The underlying
‘cause’ (factor) is the maturity of the child, and the height and weight are both ‘effects’
(outcomes).

If two variables are correlated, the relationship between them could follow very many dif-
ferent mathematical functions, e.g. the numbers of bacteria in a dying population may follow
an exponential decay equation. However, linear correlation is a measure of the extent to which
there is a linear relationship between two variables, i.e. the extent to which their relationship
can be expressed in terms of a straight line.

A linear regression analysis is the process of deriving the slope and intercept of the straight
line equation that can be used to describe the relationship between the two variables. When
performing a linear regression it is normally assumed that there is a causal relationship, i.e.
the value of one variable is dependent on the value of the other. We saw in 4.1.2 that the
dependent variable is placed on the y-axis of an x –y graph with the independent variable on
the x-axis.

In simple terms:

• ‘correlation’ asks if there is a relationship between two variables; and
• ‘regression’ measures how one variable is dependent on the other through the slope and

intercept of a ‘best-fit’ straight line.

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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In this chapter, we first introduce the correlation coefficient (13.1) as the test statistic for
correlation before developing the statistics of regression and correlation (13.2). We then (13.3)
use the statistics to develop calculations for the experimental uncertainty that arises from using
a linear calibration line.

13.1 Linear Correlation
13.1.1 Introduction
The correlation statistic measures how accurately a change in one variable may be predicted
by the change in another variable.

For example, the mass of a pure copper bar can be predicted very accurately by its volume,
i.e. near-perfect correlation between mass and volume, depending only on the accuracy of the
measurement conditions. However the mass of an adult man cannot be predicted so accurately
from his volume, because of variations in body structures and densities, i.e. some correlation
between mass and volume, but certainly not perfect.

13.1.2 Linear correlation coefficient
The linear correlation coefficient, r , between two variables, x and y, is a measure of the
extent to which the data follows a straight line relationship of the form y = mx + c, where m

is the slope and c is the intercept [4.5].
The statistic, r , is also called the ‘product-moment correlation coefficient’ or Pearson’s cor-

relation coefficient. The use of r as a statistic in a hypothesis test assumes a normal distribution
in the uncertainty of the y data values (8.1.3).

For ordinal data, or data from non-normal distributions, Spearman’s rank correlation coef-
ficient, rS , is based on the ranking of the data values – see other non-parametric tests in
Chapter 12.

The square of Pearson’s correlation coefficient, r2, is called the coefficient of determination
and is also often used as a measure of correlation.

Each of the graphs in Figure 13.1 shows the best-fit straight line drawn through five data
points:

• If the data values for x and y fall exactly on straight lines as in (a), (b) and (c), there is
perfect linear correlation, r2 = 1, and either r = +1 or r = −1.

• Note that the sign of r is the same as the sign of the slope of the line,
e.g. r is positive for graphs (a), (b) and (e), but negative for (c) and (f).

• However, the magnitude of r does not depend on the slope of the line, e.g. graphs (a) and
(b) have the same value of r but different slopes.

• Where the data points do not fall exactly on the straight line, then the magnitude of r lies
between −1 and +1, e.g. graphs (e) and (f).

• If the ‘best-fit’ straight line has zero slope, then r = 0 as in (d).
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Figure 13.1 Data relationships.

The relationship can be summarized as in Table 13.1.
Excel calculates the correlation coefficient using functions CORREL and PEARSON

(Appendix I).

Table 13.1. Ranges of the correlation coefficient.

Correlation Coefficient of
Relationship Slope coefficient determination

m r r2

Perfect linear correlation Positive +1 +1
Correlation plus random variation Positive 0 < r < +1 0 < r2 < +1
No correlation Zero 0 0
Correlation plus random variation Negative −1 < r <0 0 < r2 < +1
Perfect linear correlation Negative −1 +1

Example 13.1

The best-fit straight line for the data in Figure 13.2 is a horizontal line, with zero slope
and a correlation coefficient equal to zero: r = 0.

y

x

r = 0.0000

Figure 13.2



318 CORRELATION AND REGRESSION

Using the above information, can you say that the data in Figure 13.2 is correlated?

The fact that r = 0 is a clear statement that there is no linear correlation in the data.
However, simple observation of the data does show a very definite nonlinear correlated
relationship between x and y. In fact y is proportional to x2.

From Example 13.1, we can see that it is important to remember that the correlation coef-
ficient only records the significance of a linear term in a relationship. It is always necessary
to plot the data (e.g. in Excel) and examine the data by eye to see whether there may be a
nonlinear relationship, before deriving the correlation coefficient (13.3.2).

13.1.3 Hypothesis test for linear correlation
The hypothesis test for linear correlation between variables x and y will test whether a best-fit
straight line (4.2) will give a slope that is not zero (for a 2-tailed test), or sloping in a particular
direction (for a 1-tailed test).

The basic hypotheses for a 2-tailed test would be:

Proposed hypothesis, H1: Slope of y against x is not zero, m 
= 0.

Null hypothesis, H0: Slope of y against x is zero, m = 0.

The test statistic for correlation is the value of the correlation coefficient, r .
Statistics software will usually also provide a p-value for a correlation test, in addition to

calculating the correlation coefficient, r .
The critical value, rCRIT, can be derived from the table of Pearson’s correlation coefficients

(Appendix V), using appropriate values for:
T , number of tails;
α, the significance level required (typically α = 0.05); and
df , the degrees of freedom, df = n − 2 (where n = the number of data pairs).
The proposed hypothesis would be accepted if the positive value of r were greater than or

equal to the critical value:

Accept H1 if |r| � +rCRIT [13.1]

Example 13.2

The data below shows the number of ‘press-ups’ and ‘sit-ups’ achieved by seven children
(subjects). From experience of previous experiments, we devise the hypothesis that a
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more athletic child who can perform more ‘press-ups’ will also be able to perform more
‘sit-ups’. Hence we investigate whether the data shows a 1-tailed correlation between
the performances in the two activities.

Subject 1 2 3 4 5 6 7

Press-ups 10 8 2 6 7 3 5

Sit-ups 24 27 12 14 21 16 22

The analysis is performed in the following text .

For Example 13.2, a 1-tailed test for correlation at a significance level of 0.05 gives the
values in Table 13.2.

Table 13.2. Results for Example 13.2.

r rCRIT p-value Decision Conclusion

0.781 0.669 0.038 Accept H1 The numbers of press-ups and
sit-ups show positive linear
correlation

Q13.1
An investigation was conducted into whether students’ performances in music are
related to their performances in mathematics. The data given in the table shows the
performance scores of a group of eight students in both mathematics and music.

Student 1 2 3 4 5 6 7 8

Maths mark 65 53 71 63 49 58 54 73

Music mark 59 47 61 65 52 65 51 64

(i) Use Excel to calculate the correlation coefficient for the above data.
(ii) Compare the result in (i) with the critical value for a 1-tailed test for positive

correlation between music and mathematics scores.
(iii) Use statistics software to calculate the appropriate p-value, and compare with

the conclusion reached in (ii).
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13.2 Statistics of Correlation and Regression
13.2.1 Introduction
It is useful to consider again the difference between testing for correlation and performing a
regression calculation:

• The correlation calculation tests whether two variables might show a linear relationship
with a line of best fit which has a non-zero slope.

• The regression calculation is performed after it has been accepted that there is correlation
between the variables and the regression then calculates the actual values of the best-fit slope
and intercept.

The use of a best-fit straight line was introduced in 4.2. In this unit we develop the statistics
that calculate the slope and intercept of this line, and then proceed to see how this leads to a
correlation test for a non-zero slope.

13.2.2 Statistics of linear regression of ‘y on x’
The process of linear regression calculates the coefficients of the best-fit straight line to a set
of ‘linear’ data (4.2).

The best-fit line of regression of y on x can be described by:

y = mx + c

where the regression coefficients are:

m = slope (also called the coefficient of x)

c = intercept

For the ‘regression of y on x’, it is assumed that the only uncertainties in the data are in the
measurement of the y-values. Hence it is important that the measured variable with the greatest
uncertainty is placed on the y-axis; this is normally the dependent variable. Reversing the data
would give slightly different results.

The residual, R, for a given data point, (x, y), is the difference in the y-values between
the data point (y) and the point on the best-fit straight line (y ′) at the same x-value - see
Figure 13.3.

In general, for a point (xi, yi), the residual is given by:

Ri = yi − y ′
i [13.2]
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Figure 13.3 Residual on a best-fit line (using data from Example 13.4).

Example 13.3

A data point with co-ordinates (20, 0.7) in Figure 13.3 is part of a data set (see Example
13.4) that has a best-fit line of linear regression given by the equation:

y = 0.0308x + 0.051

Calculate:

(i) The y-value, y ′, of the point on the line of regression at the same value of x.
(ii) The ‘vertical’ difference between the data point and the line of regression.

(i) Substituting x = 20 into the equation of the line gives:

y ′ = 0.0308 × 20 + 0.051 = 0.667

(ii) The ‘vertical’ difference is:

Residual, R = y − y ′ = 0.700 − 0.667 = +0.033

The residual sum of the squares (SS RESID) is defined by taking the sum of the squares of
the residuals for all the data points:

SSRESID =
∑

i
R2

i [13.3]

A regression calculation in software works by adjusting the slope, m, and intercept, c, of the
straight line to obtain a minimum value for the ‘residual sum of the squares’. The best-fit
straight line has the smallest possible value for SS RESID.
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For the above reason, the process of finding the best-fit straight line is also described as the
method of least squares.

Once the best-fit has been achieved, residual differences in y-values still exist between each
data point and the line of regression. The overall residual difference in the ‘fit’ is quantified
by the standard error of regression, SE yx :

SEyx =
√

SSRESID

n − 2
[13.4]

The standard error of regression is a ‘best estimate’ for the standard deviation of the experi-
mental uncertainty, σE (11.1.2).

The standard error of regression can be calculated directly in Excel by using the STEYX
function.

Example 13.4

In an experiment to find the concentration, Co, of an unknown chemical solution, the
absorbances, A, of four standard solutions of known concentrations were measured in a
spectrophotometer, recording the values in the table below. Plotting the data on an x –y

graph, the y variable is the absorbance, A, and the x variable is the concentration, C.

The slope and intercept of the best-fit straight line are calculated using the SLOPE and
INTERCEPT functions in Excel, giving m = 0.0308 and c = 0.051 respectively.

For each value of C, calculate the values of:

(i) A′ (the y-value for the point on the calibration line); and
(ii) A − A′ (the residual for that point).

Calculate the values of:
(iii) SSRESID

(iv) SSYX

C (x) 10 15 20 25

A (y) 0.37 0.48 0.7 0.81

(i) Each value of A′ is calculated using the equation A′ = m × C + c:

(ii)

A′ (y ′) 0.359 0.513 0.667 0.821

A − A′ (y − y ′) 0.011 −0.033 0.033 −0.011

(A − A′)2 (y − y ′)2 0.121 × 10−3 1.089 × 10−3 1.089 × 10−3 0.121 × 10−3
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(iii) SS RESID = ∑
(A − A′)2 = 0.00242

(iv) SEyx =
√

SSRESID

n − 2
=

√
0.00242

4 − 2
= 0.0348

13.2.3 Statistics of linear correlation
In this section we give a simplified approach to the statistics of correlation. A more in-depth
approach is given on the Website.

y

x

r = + 1.0000

y

x

r = + 1.0000

y

x

r = + 0.8819

(a)

(b)

(c)

Figure 13.4 Comparative correlation.

In Figure 13.4, the x-data has the same values in each of the three graphs, hence the sample
standard deviation, sx , is also the same in each case.

In graphs (a) and (b) the data points are perfectly correlated on the straight line, so that the
standard deviation, sy , of the data in the y-direction will be directly related to the standard
deviation, sx , of the data in the x-direction, and dependent on the slope of the line, i.e. for
perfect correlation sy can be predicted using the equation:

sy = m × sx [13.5]

Equation [13.5] shows that the ‘spread’ of the y-values, sy , will be greater for lines with a
larger slope – as can be seen in moving from graph (a) to (b).
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If we now add additional uncertainty in the y-values, as in (c), the spread of y-values will
increase, such that sy will be greater than m × sx .

We can now define the correlation coefficient, r , as the proportion of the variation in y
predicted by the variation in x, giving equation [13.6]:

r = m × sx

sy

[13.6]

For perfect correlation in (a) and (b), sy = m × sx , giving r = 1.0.

With additional uncertainty, as in (c), sy > m × sx , making |r|<1.0.

Q13.2
The following data shows the distances for a standing jump achieved by 10 stu-
dents, whose heights are recorded:

Student 1 2 3 4 5 6 7 8 9 10

Height (m) 1.59 1.63 1.67 1.7 1.72 1.8 1.74 1.75 1.82 1.84

Jump (m) 1.49 1.45 1.78 1.6 1.9 1.55 1.69 1.81 1.69 1.93

Performing a linear regression analysis on the data gives:

Slope of best-fit line, m = 1.11

Sample variance of height data, s2
x = 0.006627

Sample variance of jump data, s2
y = 0.027721

(i) Calculate Pearson’s correlation coefficient between the two data sets.
(ii) Compare the result in (i) with the critical value for a 1-tailed test for positive

correlation between jump distance and height.
(iii) Use statistics software to calculate the appropriate p-value, and compare with

the conclusion reached in (ii).

13.3 Uncertainty in Linear Calibration
13.3.1 Introduction
The use of linear best-fit calibration lines is a very common procedure in experimental mea-
surements. However, it is also common that the possible errors or uncertainty in the result of
a given calculation are often omitted.
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In this unit we first use a plot of residuals to confirm that there is no underlying curvature in
the calibration data, and then introduce the equation that can be used to estimate the uncertainty
in a calculated value.

A more in-depth examination of the statistics involved in these topics is given on the Website.

13.3.2 Curvature in calibration – checking residuals
When the data is being used for a linear calibration graph (4.2.6), it is normal to expect a
high level of linear correlation, with (typically) r2 > 0.99. However, a high value of r2 can
still hide significant nonlinear characteristics that might indicate an inherent problem with the
‘linear’ calibration process.

The residual for each data point is the deviation (in the y-direction) between the point
itself and the best-fit calibration line (13.2.2). In an experiment involving linear calibration,
it is advisable to check the residuals arising from the best-fit straight line. Example 13.5
illustrates how a simple plot of residual values highlights inherent curvature within a ‘linear’
calibration.

Example 13.5

Two ‘linear’ calibration graphs, A and B, are shown in Figure 13.5(a) and Figure 13.5(b)
respectively. Both show good linear correlation with r2 = 0.991.

The ‘residuals’ for every data point in the two lines are shown (magnified) in the graphs
underneath: Figure 13.6(a) and Figure 13.6(b) respectively.

y

x

r 2 = 0.991

y

x

r 2 = 0.991

(a)

(b)

Figure 13.5 (a) Calibration A. (b) Calibration B.

What information do the ‘residual’ plots provide?
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x

(a)

y

x

(b)

Figure 13.6 (a) Residuals A. (b) Residuals B.

The residuals for line A show a ‘systematic’ variation along the line, clearly indicating
that the ‘true’ line has a distinct curvature. The ‘less than perfect correlation’ for line
A is due mainly to the curvature of the line and not to measurement uncertainty. The
experimenter should investigate the reason for this apparent curvature before proceeding
with the experiment.

The residuals for line B show ‘random’ variations consistent with experimental uncer-
tainty. The ‘less than perfect correlation’ for line B is due mainly to experimental
uncertainty which can then be taken into account (13.2.2) when calculating the overall
uncertainty in the final result of the experiment.

Q13.3
Analyse the linear correlation of the following data sets and comment on their use
as possible calibration graphs (the dependent variable is in the second row of each
data set):

(i) x 1 3 5 7 9 11

y 0.60 1.77 2.80 3.85 4.77 5.55

(ii) T 0.1 0.3 0.5 0.7 0.9 1.1

V 0.07 0.18 0.31 0.46 0.57 0.73

(iii) C 1 3 5 7 9 11

A 0.06 0.18 0.30 0.42 0.52 0.59
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13.3.3 Uncertainty in linear calibration

Example 13.6

In an experiment to find the concentration, Co, of an unknown chemical solution, the
absorbances, A, of four standard solutions of known concentrations were measured in a
spectrophotometer, recording the values (as in Example 13.4) below.

Concentration, C (x) 10 15 20 25

Absorbance, A (y) 0.37 0.48 0.70 0.81

Three replicate measurements were made of the absorbance of the unknown solution,
obtaining an average value of Ao = 0.57:

(i) Use a best-fit calibration line for the standard solutions’ data to obtain a best estimate
of the value of Co corresponding to the measured value of Ao.

(ii) Estimate the uncertainty in the value of Co obtained in (i).
(iii) Calculate the 95% confidence interval for the true value of Co.

Answers are given in the following text .

Example 13.6 illustrates a typical calibration procedure, in which we aim to calculate the
unknown value of a ‘test sample’ (e.g. its chemical concentration, Co) by comparison with
the known values of a number of prepared ‘standard’ samples.

We assume that the sample being measured has a property ‘y’ that varies linearly with the
value ‘x ’ that we are trying to find. For example, the absorbance, ‘A’, of a chemical solution
often varies linearly with its concentration, ‘C’ (Beer–Lambert law).

We start with a number of standard samples with known x-values (e.g. known concentra-
tions, C), measure the y-values (e.g. absorbances, A) of the standard samples, and plot the data
points on the x–y (or A–C ) graph, together with a best-fit calibration line – see Figure 13.7.
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Figure 13.7 Using a calibration line for Example 13.6.
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We then measure the y−value, yo (e.g. Ao) of the test sample, and use the calibration line
to find the equivalent x-value, xo(Co = 16.9), by reading the value of xo (= 16.9) equivalent
to yo (Ao = 0.57) – see the arrows in Figure 13.7.

It is possible to use a graphical construction to obtain an estimate for xo (or Co), as above.
However, we now find the value of xo by calculation:

• Typically the best-fit calibration line is drawn with n calibration data points .
• The slope, m , and intercept, c, of the calibration line are calculated.
• A ‘best-estimate’ y-value, yo, of the unknown sample is calculated by taking the mean value

of k replicate sample measurements .
• The ‘best-estimate’ x-value, x o, of the unknown sample is then calculated by using the

equation:

xo = yo − c

m
[13.7]

For Example 13.6:

xo = 0.57 − 0.051

0.0308
= 16.85

Having calculated the best estimate of the unknown, xo, value, the next step is to calculate
an estimate of the experimental uncertainty, uxo , in that value.

The uncertainty, uxo , arises from two sources:

• Uncertainty in the true position of the calibration line, based on n data points.
• Uncertainty in the true value of yo, based on k replicate measurements.

In Figure 13.7 the dashed lines in the diagram show the ranges within which it is possible
to be 95% confident of drawing the position of a best-fit calibration line as a ‘free fit’ of both
slope and intercept.

For the ‘free fit’ calibration line in Figure 13.7, the uncertainty uxo is given by:

uxo = SEyx

m
×

√
1

k
+ 1

n
+ (yo − y)2

m2 × (n − 1) × s2
x

[13.8]

where:

• SE yx is the standard uncertainty of regression – see 13.2.2;
• m is the slope of the calibration line, e.g. a ‘flatter’ slope (small m) would increase the

range of uncertainty in the x-value for a given uncertainty in the y-value;
• y is the mean value of the y-data calibration values;
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• s2
x is the sample variance ( = standard deviation2) of the x-data calibration values;

• n is the number of calibration data values;
• k is the number of replicate measurements made to calculate yo.

The last term in the square root of [13.8] is the factor that is responsible for the ‘opening
up’ of the uncertainty range at both ends of the calibration line in Figure 13.7. This term
becomes zero (and disappears) when yo equals the mean y-value (y) of the points used to
generate the best-fit line, i.e. when the measured value falls in the ‘middle’ of the calibration
values.

For well-designed experiments where the measured value of yo falls within the middle half
of the calibration line, we can make the approximation that the last term in the square root
will then be small, and can usually be omitted. This gives the approximate equation for the
free fit calibration line:

uxo ≈ SEyx

m
×

√
1

k
+ 1

n
[13.9]

For Example 13.6 these values are:

SEyx = 0.0348, m = 0.0308 (from Example 13.4)

y = 0.59, s2
x = 41.67 (by calculation, e.g. in Excel)

yo = 0.57

n = 4, k = 3

Then, entering these values into [13.8] we find:

uxo = 0.0348

0.0308
× √

0.333 + 0.25 + 0.0034 = 0.865

We can see that, in this case, the last term in the square root is having negligible effect, being
much smaller than the other terms in the square root. This is because our value for yo = 0.57
is very close to the middle of the calibration line, y = 0.59.

If we just use equation [13.9] we get uxo = 0.863.
The standard uncertainties, uxo , calculated in [13.8] and [13.9] give a 68% confidence range

for the unknown true value, µ.
The confidence deviation, Cdµ,X%, for X% confidence (8.2.4) is given by:

Cdµ,X% = t2,α,df × uxo [13.10]
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where the t-value is calculated for degrees of freedom df = n − 2 and α = 1 − X%/100,
giving the confidence interval, CI µ,X%:

CIµ,X% = xo ± Cdµ,X% [13.11]

For Example 13.6 these values are:

t−value t2,α,n−2 = 4.30

Using [13.10] Cd = 4.30 × 0.865 = 3.72

Using [13.11] CI = 16.85 ± 3.72

Hence there is a 95% probability that the true value lies between 13.13 and 20.57.
The uncertainty ranges due to calibration are often much wider than expected.
Example 13.6 showed a wide uncertainty range due to the relatively ‘low’ correlation in

the calibration data, r = 0.9899. For a good calibration, many experimenters would expect a
correlation with at least r = 0.999.

Q13.4
The data in the table below give the calibration for a spectrophotometric mea-
surement, where the y variable is the absorbance, A, and the x variable is the
concentration, C, of the standard solutions.

Concentration, C (x) 0.5 1 1.5 2 2.5

Absorbance, A (y) 0.13 0.27 0.30 0.49 0.53

Three replicates of the test solution give an average value Ao = 0.36.

Calculate:

(i) The best estimate of the concentration, Co, of the test solution.
(ii) The standard uncertainty, uCo , of the concentration, Co.

(iii) The 95% confidence interval of the concentration, Co.
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Frequency and Proportion

Overview

Website • ‘How to do it’ video answers for all ‘Q’ questions.
• Chi-squared tests in Excel and Minitab.
• Proportion tests in Minitab.

There are many occasions when the experimental variable being measured is the frequency with
which particular events occur, e.g. counting how many seeds have germinated under different
sets of conditions.

The chi-squared, χ2, hypothesis tests provide a family of tests often used to analyse sets
of frequencies. The calculated χ2 statistic is used to test whether an observed distribution of
frequencies might have occurred purely by chance or whether an underlying factor had caused
a deviation from an expected distribution.

The first unit applies the χ2 test to a contingency table which assesses whether differences
between frequency distributions of observed events might be due to different external condi-
tions. For example, we might investigate whether the number of seeds germinating is dependent
on (contingent on) particular conditions of temperature and moisture.

The second unit tests whether a single set of frequencies represent a ‘good fit’ with an
expected set of frequencies. The ‘goodness of fit’ test is used to test whether the observed
distribution of events might be consistent with an underlying theory. This test can be used to
assess whether observed distributions may, or may not, follow certain predicted distributions
(e.g. Poisson).

When the possible observed events fall into one of just two possible categories , then we
have a simple proportion, e.g. the proportion of times that a tossed coin will give a ‘head’.
We saw in 9.3.2 that the simple choice of two alternatives can be analysed using the binomial
distribution, and in 14.3.2 this is developed into Fisher’s exact test. We also investigate the use
of both χ2 statistics and a normal distribution when comparing an observed proportion with
an expected proportion.

Excel functions can be used to perform a χ2 test – see Appendix I. The Excel function
CHIINV can also be used to give values for χ2

CRIT (14.1.2 and 14.2.2).
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14.1 Chi-squared Contingency Table
14.1.1 Introduction
The chi-squared, χ2, test is a hypothesis test which uses the frequency of events as the response
variable being measured.

Perhaps the most common χ2- test is a contingency test (or contingency table) which inves-
tigates whether the observed distribution of occurrences between categories depends on some
external factor. This dependency can also be described as an association between the observed
distribution and the given factor.

14.1.2 Chi-squared, χ2, contingency table
The operation of the chi-squared, χ2, contingency test is illustrated in Example 14.1, which
aims to investigate whether the distribution of river creatures is contingent on (i.e. depends
on) the particular river environment.

Example 14.1

An environmental scientist has investigated two rivers, the Exe and the Wye, and wants
to find out whether the distribution of certain water creatures is the same in both. He
recorded numbers of mayflies, sludge worms and hog lice in each river as in Table 14.1
below. He counted a grand total, T , of 150 creatures, with ‘column’ totals of 75 mayflies,
50 sludge worms and 25 hog lice. There were ‘row’ totals of 60 creatures in the Exe
and 90 in the Wye, distributed as shown in the table:

Table 14.1. Observed frequencies.

Mayflies Sludge worms Hog lice Row totals

Exe 24 21 15 R1 = 60

Wye 51 29 10 R2 = 90

Column totals C1 = 75 C2 = 50 C3 = 25 Grand total: T = 150

A simple inspection of the numbers might suggest that there are proportionately more
hog lice in the Exe than the Wye and proportionately fewer mayflies. However, is there
evidence, at a confidence level of 95 %, that this apparent difference in the distributions
of the creatures within the two rivers did not occur just by chance?

The analysis is performed in the following text .

The first step is to calculate the numbers that would be expected in each category, assuming
that the total numbers of creatures in the two rivers followed exactly equal distributions.
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We start by noting values for:

• the row totals, R1(= 60) and R2 (= 90);
• the column totals, C1 (= 75), C2 (= 50) and C3(= 25); and
• the grand total, T (= 150).

Notice that the row and column totals must each add up to 150 – this is a useful check for
your additions.

We can see from the column totals that overall in the two rivers, the mayflies, sludge worms
and hog lice are in the ratio of 75:50:25, which, for these convenient numbers, is the same as
the simple ratio of 3:2:1.

Distributing the total of 60 creatures in the Exe according to this ratio, we would get 30
mayflies, 20 sludge worms and 10 hog lice. Similarly, distributing the total of 90 creatures in
the Wye according to the same distribution , we would get 45 mayflies, 30 sludge worms and
15 hog lice. This calculation would give expected frequencies as in Table 14.2.

Table 14.2. Expected frequencies.

Mayflies Sludge worms Hog lice Row totals

Exe 30 20 10 R1 = 60

Wye 45 30 15 R2 = 90

Column totals C1 = 75 C2 = 50 C3 = 25 T = 150

Notice that the row and column totals are the same for both the ‘observed frequencies’ and
the ‘expected frequencies’ – the only difference is that, in Table 14.2, the row distributions are
the same and all the column distributions are the same.

The name ‘expected’ can be confusing. In reality we would not expect to see these ‘expected’
frequencies, because we would also expect some differences due to the randomness with which
such events actually occur. The purpose of the chi-squared analysis is to test whether the
differences between the observed frequencies and the ‘ideal’ expected frequencies are too
great to be accounted for purely by chance randomness.

The relevant hypotheses for this chi-squared, χ2, contingency test would now be:

Proposed hypothesis, H1: The differences between observed and expected frequencies have
not occurred purely by chance, and hence an additional factor is significant.

Null hypothesis, H0: The differences between observed and expected frequencies could have
occurred purely by chance.

We now derive a ‘χ2 statistic’ to compare the observed frequencies with the expected
frequencies that would occur if the distribution did not depend on the river. If the χ2-test
reports a significant difference, then we will conclude that the distribution is influenced by
the choice of river.

The basic χ2 statistic is calculated using the equation:

χ2 =
∑

i

(Oi − Ei)
2

Ei

[14.1]
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where:

Oi is the observed frequency in category i, and
Ei is the expected frequency in category i.

We calculate the value of the χ2 statistic for Example 14.1:

χ2 = (24 − 30)2

30
+ (21 − 20)2

20
+ (15 − 10)2

10
+ (51 − 45)2

45
+ (29 − 30)2

30
+ (10 − 15)2

15

= 6.25

In general, a large value for the χ2 statistic would indicate that observed frequencies were
very different from the expected frequencies. However, we need to know how large the value
of the χ2 statistic must be before we can accept that the difference is due to more than just
random chance (i.e. accept the proposed hypothesis, H1). Tables of critical values, χ2

CRIT are
given in Appendix III.

The number of degrees of freedom for a contingency table with r rows and c columns is
given by:

df = (r − 1) × (c − 1)

(We will see in 14.1.5, that if df = 1, we need to modify equation (14.1) and use the Yates
correction.) For a 3 × 2 table, df = (3 − 1) × (2 − 1) = 2. For a confidence of 95 %, the
significance level α = 0.05. Referring to Appendix III, for df = 2 and α = 0.05, we find that
χ2

CRIT = 5.99.
The decision on the hypothesis test can now be made:

χ2 � χ2
CRIT : Accept the proposed hypothesis

χ2 <χ2
CRIT : Do not accept the proposed hypothesis

In this example, the value of χ2 is 6.25, giving:

χ2 > χ2
CRIT

Hence we conclude that there is evidence that the pattern of frequencies differs from that which
could be expected by chance – we accept the proposed hypothesis.

The calculation for Example 14.1 is performed on the Website using both Excel and Minitab
and returns a p-value equal to 0.044. On this basis (p < 0.05) we would again accept the
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proposed hypothesis that these results are not due to chance and that there is a significant
difference between the distributions of creatures within the two rivers.

Q14.1

Look up the critical values, χ2
CRIT, for the following conditions:

(i) 4 degrees of freedom at a significance level of 0.05;
(ii) 1 degree of freedom at a significance level of 0.01.

Q14.2

A χ2 test records a value of χ2 = 3.6. Is it possible to say, with a confidence level
of 95 % and degrees of freedom df = 3, that the differences between observed and
expected frequencies did not occur just by chance?

14.1.3 Calculation of ‘expected frequencies’
The numbers in Example 14.1 occurred in easy ratios, providing very easy calculations. How-
ever, we can also use a simple formula to calculate the frequencies in each cell in Table 14.2.
The expected frequency, Exy , for the cell in column x and row y is given by:

Exy = Cx × Ry

T
[14.2]

where Cx is the column total for column x and Ry is the row total for row y.
For example, for the number of sludge worms within the Exe, x = 2 and y = 1:

E21 = C2 × R1

T
= 50 × 60

150
= 20

Example 14.2

In a double blind drug trial, 200 randomly selected patients who are all suffering from
a specific disease are given either the drug or a placebo, and the numbers of each group
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who show no improvement, some improvement or much improvement are recorded and
reproduced in Table 14.3. The row and column totals have also been calculated:

Table 14.3. Observed frequencies.

Drug Placebo Row totals

Much improvement 26 13 R1 = 39
Some improvement 56 36 R2 = 92
No improvement 32 37 R3 = 69
Column totals C1 = 114 C2 = 86 T = 200

Calculate the expected frequencies assuming that there was no effect due to the drug.

The analysis is performed in the following text .

To calculate the number of people expected to show ‘some improvement’ with the ‘drug’ we
use equation (14.2) to combine the first column total, C1 = 114, the second row total, R2 = 92,
and the grand total, T = 200:

E12 = C1 × R2

T
⇒ 114 × 92

200
⇒ 52.44

Note that it is acceptable to have non-integer values for the ideal expected frequencies.
Performing similar calculations for the other column/row combinations we obtain the results

given in Table 14.4.

Table 14.4. Expected frequencies for Example 14.2.

Drug Placebo Totals

Much improvement 22.23 16.77 R1 = 39
Some improvement 52.44 39.56 R2 = 92
No improvement 39.33 29.67 R3 = 69
Totals C1 = 114 C2 = 86 T = 200

Q14.3
Complete the contingency test calculation for the observed and expected frequen-
cies calculated in Example 14.2.
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Q14.4
Two students, A and B, are performing similar projects to investigate whether there
is an association between the leaf colour (green, yellow/green, yellow) of seedlings
and the soil in which they grow.

Of those seeds that germinate in each of three soil types, the students count the
number of seedlings that fall into each of the categories for leaf colour. The results
are given in the tables below.

Do both students arrive at the same conclusion concerning the suggestion that there
is an association between leaf colour and soil type?

Student set A Student set B

Soil 1 Soil 2 Soil 3 Soil 1 Soil 2 Soil 3

Green 63 79 60 56 79 86

Yellow/green 20 25 19 11 25 19

Yellow 4 11 19 6 10 8

14.1.4 Expected frequency less than 5
If the expected frequency in one or more cells has a value of less than 5, then the result of the
χ2 test becomes unreliable. In this case the test should not proceed.

One way of dealing with this problem is to amalgamate some of the cells so that the
‘combined’ expected frequency is equal to 5 or more. Example 14.3 shows how this can be
achieved in a simple example.

If the total number of ‘frequencies’, or the number of categories, is so small that this cannot
be done, then it is probably necessary to repeat an enlarged experiment and record more data
values.

Example 14.3

A student investigates whether there is a relationship between the colour of a car
and the speed at which it is driven. Selecting an open stretch of road, he counts the
numbers of cars of each colour that could be considered to be driving Very Fast,
Fast, at a Moderate speed, or Slow. The observed frequencies are given in the table
below:
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Red Green

Very Fast 5 1

Fast 20 24

Moderate 12 18

Slow 3 17

What conclusion does the student reach?

The analysis is performed in the following text .

The expected frequencies for Example 14.3 are calculated as in the following table:

Red Green

Very Fast 2.4 3.6

Fast 17.6 26.4

Moderate 12 18

Slow 8 12

which then give a p-value for a χ2 contingency test of p = 0.033.
Although the p-value might suggest that the student should accept the proposed hypothesis

at α = 0.05, it should be noted that there are two cells (in the Very Fast category) that have
expected frequencies of less than 5, and the conclusion arising from the χ2 contingency test
would be unreliable.

One way forward is for the student is to combine the Very Fast data and the Fast data into
just one ‘Fast’ category for both observed and expected frequencies:

Observed Expected

Red Green Red Green

‘Fast’ 25 25 20 30

Moderate 12 18 12 18

Slow 3 17 8 12

The expected frequencies are now all above 5, and the χ2 contingency test for the reduced
categories now gives a p-value of 0.062. The student should therefore not accept the proposed
hypothesis (at α = 0.05).
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14.1.5 The 2 × 2 contingency table (Yates correction)
A contingency table with two rows (r = 2) and two columns (c = 2) is a special case of a
general r × c table.

The degrees of freedom for the 2 × 2 contingency table, df = (2−1) × (2−1) = 1. How-
ever, for χ2 calculations with df = 1, the normal equation for the χ2 statistic (14.1) tends
to overestimate the true χ2-value. This means that the test is more likely to accept the pro-
posed hypothesis in borderline cases when the null hypothesis is actually true – a Type I
error.

It is still possible to use a χ2 test, but when df = 1 it is necessary to use a revised form of
the test statistic, called the Yates correction:

χ2 =
∑

i

(|Oi − Ei | − 0.5)2

Ei

[14.3]

Note that |Oi − Ei | means take the positive value of Oi − Ei (see 3.3.3).
After the calculation of the χ2 statistic, the rest of the chi-squared test is performed normally.

Q14.5
A student on an education course decided to investigate whether there was a sig-
nificant difference between the proportions of male and female students on two
courses, A and B.

The numbers are given in the table below:

Course A Course B

Male 32 28

Female 87 40

(i) Calculate the numbers that would be expected if there were no preference
between the courses for male and female students.

(ii) Perform a contingency test, using the Yates correction, to assess whether
there is a significant difference in the proportions between the courses.

(iii) Repeat the test in (ii) without using the Yates correction. Does this give a
different result? If yes, which is the best answer?

The 2 × 2 contingency test is effectively comparing two proportions , and we will see in 14.3.5
that, if data analysis software is available, it would be more appropriate to use Fisher’s exact
test.
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14.2 Goodness of Fit
14.2.1 Introduction
A goodness of fit test tests whether an observed distribution of occurrences in specific categories
is significantly different from the distribution that would have been expected. For example, we
could test whether the numbers of students obtaining various grade categories is significantly
different between years.

We will see that the χ2 test can be used to compare the observed frequency , O , in each
category with the expected frequency , E. In some examples, it may be necessary to calculate
expected frequencies on the basis of an expected set of ratios .

The procedure can also be used to test whether the distribution of some experimentally
observed frequencies might follow a known distribution pattern, e.g. a normal distribution or
a Poisson distribution – see the Website.

It should be noted that there are also alternative methods available in statistics software for
testing for goodness of fit to a distribution, e.g. for testing whether a given set of sample data
is likely to have been drawn from a normal distribution.

14.2.2 Comparison with defined ratios
Example 14.4 illustrates the use of the χ2 statistic when comparing observed frequencies with
a set of ratios that is predicted, either by theory or by historical measurements.

Example 14.4

Measurement of genotypes is expected to show types AB, Ab, aB, ab occurring in the
ratio 9:3:3:1. A sample of T = 200 observations gave observed frequencies, Oi , of 131,
28, 32 and 9 respectively in the four groups.

Test whether this distribution of values shows a significant difference from the expected
ratios.

The analysis is performed in the following text .

The relevant hypotheses for the test in Example 14.4 would be:

Proposed hypothesis, H1: The differences between observed frequencies and the given ratios
have not occurred just by chance, and hence an additional factor is significant.

Null hypothesis, H0: The differences between observed frequencies and the given ratios might
have occurred just by chance.

We set out the calculations in the form of a table (Table 14.5) in which we calculate the
totals, T and RT , for both the observed numbers and the ratio values respectively:

We can see that the fraction of observations falling into the category AB would be equal to
RAB = 9 of a total of RT = 16. Thus the expected frequency for category AB would be found
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Table 14.5. Goodness of fit calculation.

Category i AB Ab aB ab Totals

Oi 131 28 32 9 T = 200
Ratio, Ri 9 3 3 1 RT = 16
Ei 112.5 37.5 37.5 12.5 200

(Oi − Ei)
2/Ei 3.042 2.407 0.807 0.980 7.236

by multiplying the total number of observations, 200, by the fraction 9/16:

EAB = T × RAB

RT

⇒ 200 × 9

16
⇒ 112.5

In general, the expected frequency, Ei , for each category, i, is calculated using the simple
equation:

Ei = T × Ri

RT

[14.4]

The calculation of the χ2 statistic uses equation (14.1) giving the value:

χ2 = (131 − 112.5)2

112.5
+ (28 − 37.5)2

37.5
+ (32 − 37.5)2

37.5
+ (9 − 12.5)2

12.5
= 7.236

In a goodness of fit test with n data values, the number of degrees of freedom is given by df
= n − 1. Assuming a significance level of α = 0.05, we have from Appendix III:

χ2
CRIT = 7.81(for α = 0.05 and df = 4 − 1 = 3)

In this case, because χ2 < χ2
CRIT, we should not accept the proposed hypothesis (at

0.05).
There is not enough evidence to claim that the apparent differences in numbers for each

category occurred by chance.
The calculation for Example 14.4 is performed on the Website using both Excel and Minitab

and returns a p-value equal to 0.065. This agrees (p > 0.05) with the conclusion that we
should not accept the proposed hypothesis.
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Q14.6
A normal playing die is thrown 120 times and we record the number of occurrences
of each of the six possible scores, giving observed frequencies, Oi . Each of the
six scores represents a different category, i.

We might expect that, on average, each particular score should occur 120/6 =
20 times.

The results, for both observed and expected frequencies, are shown in the table
below. A quick visual examination of the data might suggest that the die is biased
because, for the score ‘6’, there appears to be a large difference between observed
(31) and expected (20) frequencies.

Category, i Score 1 2 3 4 5 6 Sum

Observed frequency O 15 22 20 14 18 31 120

Expected frequency E 20 20 20 20 20 20 120

Can we deduce from the data, with a confidence level of 95 %, that the die is
indeed biased?

Q14.7
In a telephone switchboard for a large company, the calls should be directed ran-
domly to the various operators. In a 5-hour period, four operators each receive the
following number of calls: 44, 32, 56, 28.

Is there evidence to suggest that the calls are not actually being directed ran-
domly?

Q14.8
A self-pollinating pink flower is expected to produce red, pink and white progeny
with the following relative frequencies: 1:2:1.

A student grows 50 flowers and finds the following division of colours: Red, 18;
Pink, 22; and White, 10.

Can the student conclude that his observed distribution of colours is significantly
different (at 95 % confidence) from the expected frequencies?
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14.2.3 Testing a simple proportion: Yates correction for
df = 1
When testing just two frequencies, n = 2, the degrees of freedom df = 1, and we saw in 14.1.5
that it is then necessary to use the Yates corrected equation (14.3).

After the calculation of the χ2 statistic using the Yates correction, the rest of the chi-squared
test is performed normally.

Example 14.5

A random sample of 50 frogs is taken from a lake, and it is found that 37 are female
and 13 are male. The expected proportion, �O, of female to male frogs is 60:40.

Are the observed numbers significantly different from those expected?

Use both equations (14.1) and (14.3) to calculate the value for χ2
STAT.

Observed Oi 37 13

Expected Ei 30 20

Oi − Ei 7 −7

Normal χ2 (Oi − Ei)
2/Ei 1.63 2.45 χ2 = 1.63 + 2.45 = 4.08

Yates χ2 (|Oi − Ei | − 0.5)2/Ei 1.41 2.11 χ2 = 1.41 + 2.11 = 3.52

The critical value for df = n − 1 = 2 − 1 = 1 and α = 0.05 is:

χ2
CRIT = 3.84

We find that, using the normal χ2 value (14.1), χ2
STAT > χ2

CRIT, suggesting that we
should accept the proposed hypothesis. However, using the Yates correction (14.3),
χ2

STAT < χ2
CRIT, suggesting that we should not accept the proposed hypothesis.

The Yates correction gives a more cautious conclusion.

The above test effectively compares a single proportion , P , to a specific value, �O, and we
will see in 14.3.5 that, if data analysis software is available, it would be more appropriate to
use a Fisher’s Exact Test.

14.3 Tests for Proportion
14.3.1 Introduction
When frequency counts fall into one of two categories (e.g. yes or no, male or female, wet or
dry) it is possible to express the ratio as a simple proportion. If, in a questionnaire, 120 people
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respond Yes to a specific question and 80 respond No, then the proportion of Yes responses is:

P = 120

120 + 80
⇒ 120

200
⇒ 0.60 ⇒ 60 %

In this unit we will see that the fundamental statistics of simple proportion are based on the
binomial distribution, which leads to Fisher’s exact test. However, the χ2 test can also be
used with the Yates correction and, under suitable conditions, the normal distribution can also
be used to calculate a confidence interval for the true proportion.

The one-proportion Fisher’s exact test looks for a difference between the measured propor-
tion, P , of responses in one sample and a specific value for the proportion, �O.

The two-proportion Fisher’s exact test looks for a difference between the measured propor-
tions, PA and PB, of two separate samples.

It is important to note that the value of the proportion is not itself sufficient data for the
test. It is essential to have the actual frequencies of events which fall into the two categories
of the proportion.

14.3.2 Exact one-proportion test
A simple proportion, where the outcome is either Y or N (= Y), is a direct binary choice, and
the associated probabilities are determined by the statistics of the binomial distribution (8.4).

The statistics of an exact test using the binomial distribution were developed in Example 9.4.
These statistics form the basis of Fisher’s exact test which would normally be used in software
analysis.

Example 14.6

It is expected that, for a particular species of frog, 60 % will be females and 40 % males.

A random sample of 50 of these frogs is taken from a lake, and it is found that 37 are
female and 13 are male. Is this proportion significantly greater than expected? (See also
Example 14.5.)

The analysis is performed in the following text .

In Example 14.6 the hypotheses will be:

Proposed hypothesis, H1: The proportion of female frogs is greater than 0.6.
Null hypothesis, H0: The proportion of female frogs is equal to 0.6.

If the null hypothesis were true, then the probability that any given frog would be female
is 0.6, and we can use the binomial theorem to calculate the probability of recording different
numbers of female frogs.
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The shaded areas in Figure 14.1 show that the probability of recording 37 or more females
is 0.0280. This is the p-value for this test, and since p < 0.05, we would accept the proposed
hypothesis for α = 0.05.

15 20 25 30 35 40 45

Probability
sum

= 0.0280

Figure 14.1 Probabilities for specific numbers of female frogs for Example 14.6.

The calculation for Example 14.6 is performed on the Website using Minitab for a 1-tailed,
one-proportion, Fisher’s exact test, returning the same p-value equal to 0.028.

Example 14.7

Using the same data as in Example 14.6, test whether the observed proportion of 37
females out of 50 is different from the expected 0.6 ratio.

The worked answer is given in the text .

Example 14.7 is now a 2-tailed problem. On careful inspection of Figure 14.1, it can be seen
that the distribution is not exactly symmetrical, and we cannot expect that the 2-tailed p-value
is double the one-tailed p-value as would be expected from equation (9.1) for a symmetrical
distribution.

The calculation for Example 14.7 is performed on the Website using Minitab for a 2-tailed,
one-proportion, Fisher’s exact test, returning a p-value equal to 0.044. At a significance level
of 0.05 we would accept the proposed hypothesis.

Q14.9
A coin is tossed 100 times and records 60 heads.

Refer to the calculations performed for Examples 9.4 and 9.5 to find the p-values
that would be returned by:

(i) a 1-tailed, one-proportion test for possible bias; and
(ii) a 2-tailed, one-proportion test for possible bias.

(iii) Explain why, in this case, you would expect that the answer for (ii) is double
the answer for (i), although the same is not true for Examples 14.6 and 14.7.
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14.3.3 Confidence interval (approximate) of the true
proportion
The unknown true proportion for a system is a parameter of the system and we will describe
it by the Greek symbol � (capital pi). The true value, �, is the proportion of Y outcomes that
would be achieved if the whole population of the system were measured.

The experimentally measured proportion, P , from a sample of n ‘trials’ is the best estimate
for both the unknown true proportion, �, of the population, and also for the probability, p, of
outcome Y for each individual event (8.4.2).

Provided that the total number of ‘trials’, n, recorded is sufficiently large and that the
probability, p, for each event is not very close to either 0.0 or 1.0 (i.e. np(1 − p) � 5, see
8.4.7), then it is possible to use the normal distribution as a good approximation for the
binomial distribution.

Using the normal approximation we can calculate the 95 % confidence interval (8.3.2) for
the value of the true proportion, �:

CI 95 % ≈ P ± 1.96 ×
√

P × (1 − P )

n
[14.5]

Example 14.8

Take the same data as in Example 14.6, with 37 female frogs out of 50, and use the normal
approximation to the binomial distribution to calculate the 95 % confidence interval for
the true proportion of females in the population of frogs.

The experimental data gives:

Proportion, P = 37/50 = 0.74
Total number, n = 50

Hence, using equation (14.5):

CI 95 % ≈ 0.74 ± 1.96 ×
√

0.74 × (1 − 0.74)

50
⇒ 0.74 ± 0.12

which gives a 95 % confidence interval, CI 95 %, from 0.62 to 0.86.

It is important to note that the confidence interval in Example 14.8 assumes the normal
approximation to the binomial distribution.
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Q14.10
A coin is tossed 100 times and records 60 heads.

(i) Use the normal distribution approximation to calculate the 95 % confidence
interval for the true probability of recording a ‘head’ in a single toss.

(ii) Does your answer in (i) suggest that, at a significance level of 0.05, the coin
is biased and does not have a true probability of 0.5?

14.3.4 Comparison of statistical tests
Example 14.9 illustrates the fact that it is not uncommon to find that there is more than just
one way of addressing a given analytical problem.

Example 14.9

Compare Examples 14.5, 14.7 and 14.8 to investigate three ways of addressing the same
two-tailed, one-proportion test.

Do the conclusions differ on whether the proportion of 37 out of 50 is significantly
different from 0.6?

Chi-squared test

The standard calculation of the chi-squared test (Example 14.5) identifies a significant
difference, but the Yates correction is more cautious, suggesting that there is no significant
difference.

Confidence interval calculation

The confidence interval (Example 14.8) for the true proportion gives a range from 0.62
to 0.86, and as 0.6 is just outside this range, this suggests a significant difference.

One-proportion exact test

The p-value of 0.044 from Fisher’s exact test (Example 14.7) is just in favour of a
significant difference.

Clearly from Example 14.9, the approximations using the chi-squared distribution or the
normal distribution can return slightly different values and conclusions. However, provided the
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relevant software is available, Fisher’s exact test is easy to perform and gives an ‘exact’ result
based on the binomial distribution.

14.3.5 Exact two-proportion test
A two-proportion test looks for a difference between two experimental proportions, PA and
PB.

Example 14.10

A student on an education course decided to investigate whether there was a significant
difference between the proportions of male and female students on two courses, A and B.

The numbers are given in the table below.

Course A Course B

Male 32 28

Female 87 40

The analysis is performed in the following text .

In Example 14.10 the proportions for male students are:

Number in course A, nA = 119, giving a proportion of males : PA = 32

119
⇒ 0.269

Number in course B, nB = 68, giving a proportion of males : PB = 28

68
⇒ 0.412

The calculation is performed on the Website using Minitab for a 2-tailed, two-proportion,
Fisher’s exact test, returning a p-value equal to 0.051. At a significance level of 0.05 we
would not accept the proposed hypothesis that the two proportions, PA and PB, were different.

It is important to note that, when testing for proportion, it is still necessary to know values
for the numbers nA and nB, as well as the actual proportions PA and PB.

Q14.11

Compare the analysis used for Example 14.10 with the χ2 test used in Q14.5 for
the same problem. Do they both reach the same conclusion?



15
Experimental Design

Overview

There is an enormous variety of possible ways to design experiments, and it is important that
each design is tailored to fit the particular investigation. Consequently, it is not possible to give
a step-by-step guide to producing the correct design in any given situation. The only practical
approach is to develop each new experiment on the basis of knowledge and experience of the
range of fundamental design principles and data analysis techniques that may be appropriate.
This chapter aims to provide an overview of key aspects of experimental design and their links
with suitable statistical tests.

The objective of good experimental design is to reduce the errors in any measurement
and improve the confidence in the final experimental result. In particular, a good experimen-
tal design will counteract the effects of possible systematic errors, and take account of the
magnitude of possible random errors.

The process of experimental design proceeds hand in hand with the availability of statistical
techniques for analysing data. In particular, readers are recommended to read Chapters 9 to
14 in conjunction with this chapter, and follow the development of statistical tests in parallel
with their use in supporting good experimental design.

15.1 Principal Techniques
15.1.1 Introduction
In general there are five main techniques used in experimental design:

Replication – counteracts the effect of random experimental uncertainties, and makes their
effect more explicit in the analysis.

Randomization – counteracts hidden systematic errors (bias) and makes the effects of random
subject uncertainties more explicit in the analysis.

Repeated measures or pairing – counteracts for systematic differences between subjects by
linking subject responses in all factor levels.

Essential Mathematics and Statistics for Science 2nd Edition Graham Currell and Antony Dowman
Copyright c© 2009 John Wiley & Sons, Ltd
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Blocking of factors – used to separate the effects of known factors, including possible
systematic (bias) effects.

Allocation of subjects – used to counter the effects of remaining unknown factors and bias.

15.1.2 Replication
Replication is the process of repeating the experimental measurement under exactly the same
conditions. With replicated measurements, the only variations are those inherent in the exper-
imental process itself – all other factors remain the same.

If the replication is performed with the same subject – within subjects – then any variation
will only be due to measurement uncertainty, e.g. repeating the measurement of blood–alcohol
level on the same sample of blood will demonstrate the variability of the measurement itself.

If the replicate experiments involve different subjects – between subjects – then any varia-
tion will be due to subject uncertainty in addition to measurement uncertainty, e.g. the growth
of several bacteria colonies exposed to the same experimental conditions will demonstrate the
variability of bacterial growth.

The process of replication provides information that can be used directly to calculate the
magnitude of the experimental uncertainty. Example 15.1 illustrates the calculation of the
confidence interval (8.2.4).

Example 15.1

An experimental measurement of the sodium content of a water sample is repeated,
giving five replicate results:

Sodium content (mg L−1) 31.2 32.3 31.9 31.7 31.5

Give the best estimate for the true sodium content, together with an estimate of mea-
surement uncertainty and the 95 % confidence interval.

Mean value, x = 31.72

Sample standard deviation, s = 0.4147

Standard uncertainty [8.4], ux = s/
√

n = 0.415/
√

5 = 0.185

The t-value (Table 8.2) for df (= n − 1 = 4) and default significance level α(= 0.05),
t = 2.78

Confidence deviation [8.6], Cd95 % = t × ux = 2.78 × 0.185 = 0.515

Confidence interval [8.5] of the mean value, CI95 % = x ± Cd95 % = 31.72 ± 0.52

The process of linear regression (13.2.2) is also based on a form of replication. Two points
are all that is required to define a straight line, so that additional points provide ‘replicate’
information for the calculation of the ‘best-fit’ straight line. The calculation of experimental
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uncertainty is based on the spread of points (residuals) around the ‘best-fit’ straight line, and
is expressed using the standard error of regression [13.4].

15.1.3 Randomization
Randomization is the process of making a truly random choice in the allocation of the subjects
to the different factor levels.

In an experiment where the major uncertainty may be due to a subject variability or bias,
it is necessary to make a random selection of subjects between samples or factor levels.
Although we may believe that we could pick subjects randomly (e.g. seedlings for a growth
experiment, patients for a drug trial), experience shows that we would almost always be biased
subconsciously in some way.

The process of random allocation can be performed simply by giving each subject a number,
and then allocating each subject to a factor level (treatment) by reference to a set of random
numbers.

Example 15.2

As a simple example of random allocation, use the following set of random numbers:

7, 3, 7, 8, 2, 6, 6, 7, 9, 1, 2, 2, 9, 4, 6, 6, 2, 6, 5, 3, 8, 2, 4

to produce a random allocation of the eight letters ABCDEFGH to two samples, X and
Y, of four letters each.

Allocate a number to each of the letters:

A = 1, B = 2, C = 3, D = 4, E = 5, F = 6, G = 7, H = 8

Work through the list of random numbers and allocate the letter that corresponds to
the first number to sample X, and the letter that corresponds to the next number to the
sample Y. Continue with allocations to alternative samples. If a number appears which
does not correspond to an available letter just pass on to the next number.

Resulting allocation:

Sample X: G, H, F, D

Sample Y: C, B, A, E

Drugs trials are conducted as ‘double blind’ trials, in which the patients are allocated randomly
to the drug or placebo option in such a way that:

• the medical staff do not know which patients are taking the drug, so that their treatment
does not become biased; and

• the patients do not know whether they are taking the drug, so that their response to the
treatment is not affected subconsciously.
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An experiment where subjects are randomly allocated to the different levels of a factor is often
called a completely randomized design. The experiment described in Example 11.1 is an
example of such a design.

15.1.4 Blocking of factors
Blocking is a process in which groups (blocks) of subjects are identified with particular com-
binations of levels for different factors. The process of ‘blocking’ is aimed at separating the
effects of known, and possibly unknown, factors that may affect the outcome of the experiment.

The analysis performed in Example 11.2 assumed that it was a completely randomized
design experiment where the effects of three different catalysts were each measured with
four replicates. A one-way ANOVA gave a p-value of 0.0845, which suggested that, at a
significance level of α = 0.05, there was not sufficient evidence to identify any difference
between the catalysts.

However, using the same data, Example 11.4 treated the ‘days’ as a possible second factor ,
and ‘blocked’ the repeated measurements into columns for each of the four days. It then
analysed the two-factor data using a two-way ANOVA, giving p-values for both catalyst and
day effects:

p(catalyst) = 0.0173

p(day) = 0.0328

which suggested that, at a significance level of α = 0.05, there was now sufficient evidence
for a difference between the catalysts, and also between the days.

The effect of blocking in Example 11.4 enabled the analytical software to allow for system-
atic variations between the days and provide a more powerful (9.4.5) analysis of the possible
effects of the catalysts.

The experimental design used in Example 11.4 is a randomized block design.
It is possible to extract still more information from the basic two-factor randomized block

design if we also add replication; that is, for every ‘cell’ in the table, we make at least two
replicate measurements. In this case, the replicate information allows an ANOVA calculation
to estimate the magnitude of the experimental variation, and then any remaining variation in
the data can be explained by an interaction (11.3) between the two factors.

15.1.5 Repeated measures or pairing
An effective way of counteracting subject variation is to ensure that each subject is ‘tested’ at
all levels of each factor, and that the results are compared individually for each subject. The
simplest example is the paired t-test (10.3) where the differences of response, di , are calculated
between the responses for the two factor levels, and then a one-sample test applied to the set
of difference values. See Example 10.7 which uses a pairing of data values to reduce the
uncertainty due to variations between subjects.
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The procedure of testing the same subject at all levels of a test factor is also used in more
complex experiments, and it is then referred to as a repeated measures experiment.

Within ‘repeated measures’ or ‘paired’ designs it is necessary to remember that a subject
might gain ‘experience’ from one test which can then affect a subsequent test; for example, in
a sports test there may be an element of training in having already performed the test under
one set of conditions. Example 15.3 shows that this problem can be counteracted by using a
cross-over design, where different groups of subjects are allocated to do the repeated measures
in a reverse order.

Example 15.3

As part of a project to investigate the factors that affect reaction times, 10 subjects
perform standard reaction tests whose timing is measured through a computer.

Five subjects (1 to 5) perform the test, first with a high level of background noise, and then
repeat the test with no background noise. Five other subjects (6 to 10) perform the same
tests, but first with no noise, followed by the test with the high level of background noise.

The experiment is a ‘cross-over’ design to ensure that the order of the testing is opposite
for the two groups. This counteracts the possibility that performing one test may affect
performance in the second test, e.g. through ‘training’.

Perform a paired t-test to investigate whether there is any significant difference (at 0.05)
between the reaction times under the two conditions. The results are given in the table
below, where Difference = Noise − No noise.

Subject 1 2 3 4 5 6 7 8 9 10

Noise 6.5 8.2 4.0 7.5 4.8

No noise 5.6 8.7 3.4 6.2 4.4 6.9 4.2 5.9 3.3 7.6

Noise 7.6 4.0 6.3 4.3 8.0

Difference 0.9 −0.5 0.6 1.3 0.4 0.7 −0.2 0.4 1.0 0.4

Each subject links unique ‘pairs’ of data in the ‘No noise’ and ‘Noise’ data sets.

Take the differences, di , between the values in each data pair.

Sample standard deviation of the differences, s = 0.5395

Mean value of differences, x = 0.50

Using the one-sample tSTAT in [10.1], compare x with µO = 0:

tSTAT = (x − µO)

s/√n

= 0.50
0.5395/

√
10

= 2.93
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Degrees of freedom, df = n − 1 = 9

For the two-tailed test at 0.05 significance, tCRIT = 2.26

Since tSTAT > tCRIT, we accept the proposed hypothesis that there is a difference in reac-
tion times between the different conditions.

15.1.6 Allocation of subjects
We saw in 15.1.3 that, where there are no systematic differences between the subjects, they
should be allocated randomly to the various factor levels.

However, in situations where there may be bias between subjects or between the measure-
ment of the subjects, it is appropriate to allocate the subjects in such a way that is likely to
counteract the possible effects of the bias.

In particular, hidden bias between subjects might give the appearance of a significant factor
effect when, in fact, no such effect actually exists. For example, in testing for difference in
athletic performance, an allocation of young athletes to one sample, and older athletes to the
other, might produce a biased effect due to age that masks the factor being tested. Undetected
bias can lead directly to a Type I error (9.4.4).

We can illustrate this situation with the following examples that investigate the effect of
subject allocation.

Example 15.4

An analytical laboratory decided to test whether there was any difference between the
effects of three different catalysts (C1, C2, C3) in an industrial process. The process was
repeated using three different temperatures (T 1, T 2, T 3) for each catalyst.

The yields from each experiment, recorded in the table below, are those that would be
recorded assuming that no systematic measurement errors are made in recording the data
(see also the following Example 15.5).

T 1 T 2 T 3

C1 39 33 32

C2 36 36 31

C3 32 30 29

Use a two-way ANOVA to test whether there is a significant difference between the
effects of the three catalysts.

The analysis is performed in the following text .
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The results of a two-way ANOVA for Example 15.4 give:

Table 15.1. ANOVA results for Example 15.4.

Variation SS df MS F P-value F crit

Catalyst 34.88889 2 17.44444 5.607143 0.069122 6.944276
Temperature 37.55556 2 18.77778 6.035714 0.061946 6.944276
Error 12.44444 4 3.111111
Total 84.88889 8

The results in Table 15.1:

p-value for catalyst = 0.069

p-value for temperature = 0.062

show that there is not sufficient evidence (at 0.05) to suggest that either the catalyst or tem-
perature has a significant effect on the experiment yield.

The next example considers the effect of possible bias due to a specific allocation of ‘sub-
jects’. In this case each ‘subject’ represents an experiment carried out by a particular scientist.

Example 15.5

Consider the situation where the experiments given in the previous example, Example
15.4, are actually carried out by three scientists, A, B and C, two of whom produce
systematic errors:

Scientist A produces results that are too high by 1.0.
Scientist B produces accurate results.
Scientist C produces results that are too low by 1.0.

Scientist A measures the performance of Catalyst 1 at each of the three temperatures,
and Scientists B and C measure the performances of Catalysts 2 and 3 respectively – the
allocation of ’subjects’ to scientists is shown in Table 15.2(a).

Table 15.2. (a) Allocation of scientists. (b) Experimental results.

T1 T2 T3 T1 T2 T3
C1 A A A leads C1 40 34 33
C2 B B B to data values: C2 36 36 31
C3 C C C C3 31 29 28

(a) (b)
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The actual data values recorded by the scientists can then be calculated from the data in
Example 15.4, and these values are given in Table 15.2(b).

Use a two-way ANOVA to decide what conclusions would be drawn from these results.

The analysis is performed in the following text .

The results of a two-way ANOVA for Example 15.5 give the results:

p-value for catalyst = 0.025

p-value for temperature = 0.062

which appear to show that the catalyst does have a significant effect. We know from the
analysis in Example 15.4 that this is a false result (Type I error). It has arisen because of the
bias between the different scientists .

Example 15.6 now investigates the possible effects of different subject allocation patterns.

Example 15.6

Repeat the calculations performed in the previous example, Example 15.5, but for the
different allocations for the three scientists as given below:

T 1 T 2 T 3 T 1 T 2 T 3 T 1 T 2 T 3

C1 A B C C1 B A A C1 A B C

C2 A B C C2 B C A C2 C A B

C3 A B C C3 C C B C3 B C A

(1) (2) (3)

The analysis is performed in the following text .

The results of a two-way ANOVA carried out for each of the allocations in Example 15.6 give
the results:

p-value for catalyst = 0.069 0.013 0.217

p-value for temperature = 0.021 0.049 0.200

Subject allocation: (1) (2) (3)

Compared with the ‘true’ results of Example 15.4, it can be seen that subject allocation (1)
gives a false result for the effect of temperature, and allocation (2) gives false results for both
the effects of the catalyst and temperature.
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In subject allocations (1) and (2) the systematic errors in measurement have created the
appearance of significant effects in the results, leading to Type I errors. However, the
results for subject allocation (3) show increased p-values (compared with Example 15.4),
which reduces the probability of making a Type I error. This is consistent with the fact that
greater errors have been introduced into the measurement process because of the bias of two
scientists.

The important aspect of allocation (3) is that each of the values of A, B and C appears once
only in each row and column . By ensuring that every level of every factor has at least one
occurrence of each subject type (A, B or C), the differences between subject types are more
likely to be reduced.

Any arrangement of items where each item appears just once in every row and column is
called a Latin square. A very popular example of a Latin square is the number arrangement
for the Japanese Sudoku puzzle. Tables of Latin squares are available for each size of square,
and the particular one to be used should be selected at random.

In the above example, the allocation of scientists to the labels A, B and C should be made
at random.

As a final note, it is important to understand that any particular allocation of subjects may
coincidentally work with other variations in measurement to produce increased errors. How-
ever, provided that the proper procedures are followed, then it is more likely that an appropriate
allocation of subjects will reduce the probability of errors.

15.2 Planning a Research Project
Carrying out a science project as an undergraduate is likely to be the first major piece of
original work carried out by a student.

Many student projects are marred by the fact that the student did not anticipate how the
data would be analysed and failed to collect data that was essential for the process of analysis.
Too often, a student reports ‘no measurable effect was discovered’ because the design of the
experiment did not ensure that the data collected would match the methods used to analyse it.

If the process of data collection is not planned to match the requirements of the analytical
process, then information will be lost. A loss of information will then lead to:

• increased uncertainty in the experimental results; and
• a reduction in the ‘power’ of a hypothesis test (9.4.5).

Before starting the project, the student should:

• be clear about the type of investigation – hypothesis testing or direct measurement;
• focus clearly on the types of quantitative conclusions that could be drawn from the results

of the experiments;
• identify the possible sources of uncertainty (random and systematic) in the measurements;
• decide what mathematical or statistical process could be used for analysing the data;
• create an experiment design;
• plan the complete experimental process from measurement to analysis
• carry out a short ‘pilot’ experiment to assess the methods to be used, and to obtain some

example data; and
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• check all stages of the analytical process using ‘test’ data derived either from the pilot
experiment, or by taking an intelligent guess at the sort of values that might be produced in
the experiments.

A set of short ‘pilot’ measurements at the very beginning of the project can be extremely
useful in picking up any unforeseen problems at an early stage, and can often suggest useful
modifications to the main experimental plan. In addition, ‘pilot’ measurements will produce
‘test’ data with appropriate precision and variance suitable for checking the data analysis
procedures.

This procedure of working through the whole process of data collection and analysis allows
the student to check that nothing has been left out, and prevents the embarrassing scenario of
preparing to write up the project only to realize that an essential element of data was never
recorded!



Appendix I: Microsoft Excel

A spreadsheet software package (e.g. Excel) is very convenient for managing, recording and
displaying scientific data. It can also be used directly for many of the calculations involved in
scientific data analysis. In addition, where it is necessary to use dedicated packages to perform
additional analysis, the spreadsheet can be used to prepare the data in a form which is then
easy to copy and paste into the new package.

Calculations in Excel can be performed by entering equations directly into the spreadsheet
cells, using normal mathematical operations: + ‘add’, − ‘subtract’, * ‘multiply’, /‘divide’,
and ˆ for to the ‘power of’. Excel also provides Functions, which can be used to perform
more complex calculations, Data Analysis Tools which perform specific statistical analyses,
and Solver which can provide a numerical solution to complex problems. The Trendline option
is also very useful for drawing best-fit lines of regression in x –y graphs (4.2.2).

Tutorials on the use of Excel for scientific data analysis are provided on the Website.

Functions

Excel uses many different functions to perform specific calculations. A typical example is the
TTEST function for a two-sample t-test (10.2.1):

=TTEST(array1 , array2 , tails, type)

The expression is placed in an Excel cell. The four components inside the brackets are called
the arguments, and identify the values that the TTEST function will use in its calculation.

The values for the arguments of functions can be entered:

• directly as numbers, e.g. ‘=SQRT(16)’ calculates the square root of 16, giving the answer 4;
• as cell references, e.g. ‘=SQRT(C8)’ gives the square root of the number that is found in C8;
• as arrays of data, e.g. ‘=SUM(B2:E4)’ would calculate the sum of all the values in the

rectangular block of cells defined by B2 in the top left-hand corner and E4 in the bottom
right-hand corner;

• as calculations using equations and/or other functions, e.g. ‘=SQRT(2*SUM(A4:B5))’ would
calculate the square root of twice the sum of the four values held in the block of cells between
A4 and B5.

For example, the entry ‘=TTEST(A5:A10,B5:B9,1,2)’ in cell D2 would perform a 1-tailed,
two-sample t-test between one sample of six data values held in cells A5 to A10 and a second
sample of five data values held in cells B5 to B9, leaving the calculated p-value in cell D2.

A list of some of the most commonly used functions for scientific data analysis are given
at the end of this appendix. There are also some special Array Functions in Excel, which are
sometimes difficult to use. However, two useful array functions, LINEST and FREQUENCY,
are included in the list. Further information on their use is given on the Website.
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Data Analysis Tools

The Data Analysis Tools facility contains a range of specific statistical calculations, e.g.
ANOVA tests, F-Test, t-Tests and Regression . Using Data Analysis Tools is slightly different in
Excel 2003 and Excel 2007.

In Excel 2003, these are available from the Menu bar using Tools > Data Analysis. If this
option does not appear, it is necessary to go to Tools > Add-Ins, select the Analysis ToolPak
and then click OK. This should install the Data Analysis tools. When next selecting Tools
from the Menu, the option should be available, otherwise it may require the Excel installation
disc or assistance from a network manager.

In Excel 2007, Data Analysis may well need to be added in. The procedure is to click the
‘Office Button’ icon at the top left of the Excel window, click ‘Excel Options’ at the bottom,
then ‘Add-Ins’, Click ‘Analysis ToolPak’, then ‘Go. . .’, and finally ‘OK’. Having completed
the add-in process, clicking ‘Data’ in the top menu will open an ‘Analysis’ section with ‘Data
Analysis’ within it. Click ‘Data Analysis’ and the analysis tools will appear.

Note that the results of the calculations using Data Analysis Tools are not dynamic; if the
original data is changed it is necessary to recalculate the results. This is in contrast to all
Excel functions, which are dynamic and automatically change immediately the original data is
changed.

Solver

Solver is an interactive programme within Excel that can be used to provide ‘solutions’ to a
variety of mathematical problems. It is first necessary to define the mathematical conditions
that must be met (e.g. two equations must be simultaneously true – see 3.5.3). Solver then
uses a numerical process of iteration to find values for the unknown variables that will make
those conditions as true as required . Note that the solution is not absolutely exact, but for the
majority of simple problems the errors are extremely small, and it is possible to define how
accurate the iterative process should be before it stops to present the results.

The use of Solver is introduced on the Website.
Solver may well need to be added in, by finding ‘Solver’ within the ‘Add-Ins’ in a similar

way to Data Analysis Tools above.

Trendline for ‘Line of Best Fit’ in x–y Graphs

The commands for using a Trendline are again slightly different in Excel 2003 and Excel 2007.
In Excel 2003, highlighting a chart gives a Chart menu along the top, from which ‘Add

Trendline’ should be clicked. Under the Type tab the default Linear Trend/Regression type
should be selected by entering ‘OK’. Under the Options tab it is possible to display the
equation on the chart, set the intercept to zero if required, and forecast (extend) the Trendline
forwards and backwards.

In Excel 2007, highlighting the chart gives the Layout menu with a Trendline section. By
clicking on Trendline it is then possible to choose ‘Linear Trendline’ or ‘More Trendline
Options’ at the bottom and then choose Type (e.g. Linear), Display Equation on chart, etc., as
for Excel 2003 above.

The quicker way in both versions of Excel is to click the right mouse button on any data
point in the chart to obtain the ‘Add Trendline’ option.
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Useful Functions for Scientific Data Analysis

Angles (2.4.9)

SIN(θ ), COS(θ ), TAN(θ ) calculate the respective trigonometric functions for the angle, θ ,
assuming that θ is given in radians.

ASIN(x), ACOS(x), ATAN(x) calculate the respective inverse trigonometric functions for the
value of x, giving the result in radians.

DEGREES(θ ) converts the angle, θ , in radians, to the equivalent value in degrees.
RADIANS(θ ) converts the angle, θ , in degrees to the equivalent value in radians.
PI() with no value in the argument returns the value for the constant π .

Straight line calculations for the ‘best-fit’ straight line passing through data points defined
by y-data and x-data (4.2.4)

SLOPE(y-data, x-data) calculates the slope (gradient).
INTERCEPT(y-data, x-data) calculates the intercept.
LINEST(y-data, x-data , FALSE, FALSE) calculates the slope (gradient) of the best-fit straight

line that is forced to pass through the origin of the graph. This is an array function, but by
entering ‘FALSE’ twice as shown, it acts as a simple function.

STEYX(y-data, x-data) calculates the standard error of regression (13.2.2).

Logarithms and exponential (5.1.4 and 5.1.5)

LOG(x) calculates the logarithm to base 10 of x.
10∧x is a simple expression used to calculate 10 to the power of x.
LN(x) calculates the natural logarithm to base e of x.
EXP(x) calculates e to the power of x.

Logical values and probability

AND(logic1, logic2 ) returns the logical value of logic1 AND logic2 (7.4.3).
OR(logic1, logic2 ) returns the logical value of logic1 OR logic2 (7.4.4).
NOT(logic) returns the logical value of NOT logic (7.4.5).
IF(logic, ans1, ans2 ) returns the value ans1 if the statement logic is true, otherwise it returns

the value ans2 .
FACT(x) calculates the factorial, x!, of the integer x (7.5.2).
PERMUT(n, r) calculates the value of nPr (7.5.3).
COMBIN(n, r) calculates the value of nCr (7.5.4).

Basic statistical calculations

SUM(data) calculates the sum of the values in data (7.2.3).
AVERAGE(data) calculates the average of the values in data (7.2.4).
STDEV(data) calculates the sample standard deviation of the values in data (7.2.5).
STDEVP(data) calculates the population standard deviation of the values in data (7.2.5).
VAR(data) calculates the sample variance of the values in data (7.2.5).
VARP(data) calculates the population variance of the values in data (7.2.5).
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Statistical distributions

NORMDIST(x, µ, σ , logic) calculates the probability at a value, x, for a normal distribution
with mean µ and standard deviation σ . If logic is TRUE then it returns the cumulative
probability, otherwise it gives the probability density (8.1.3).

BINOMDIST(r, n, p, logic) calculates probability in a binomial distribution for r results from
n trials, each with a probability p of occurring. If logic is TRUE then it returns the cumulative
probability, otherwise it gives the probability density (8.4.2).

POISSON(r , µ, logic) calculates probability in a Poisson distribution for r results for an
expected mean number µ. If logic is TRUE then it returns the cumulative probability,
otherwise it gives the probability density (8.4.4).

CONFIDENCE This function should not be used for the confidence interval of sample data
(8.2.4) because it assumes a population standard deviation.

FREQUENCY(data array,bin array) This is an array function which returns the frequency of
values in the data array that fall within each of the intervals described by the bin array . It
requires careful use – see the Website.

Statistical tests

TTEST(array1, array2, tails, type) calculates the p-value for a two-sample or paired t-test
with the data values held in array1 and array2 (10.2.2 and 10.3.2).

TDIST(tSTAT, df, tails) returns the p-value corresponding to a calculated value of tSTAT for
degrees of freedom, df , with the given number of tails (10.1.3 and 10.2.3).

TINV(α,df ) returns the 2-tailed value of tCRIT for a significance level of α and degrees of
freedom, df (10.1.3 and 10.2.3).

FTEST(array1, array2 ) calculates the p-value for a 2-tailed F -test with the data values held
in array1 and array2 (10.4.2).

FDIST(FSTAT, dfN , dfD) returns the 1-tailed p-value for an F -test with degrees of freedoms
dfN and dfD for the numerator and denominator. The 2-tailed value can be obtained by
using 2×FDIST(FSTAT,dfN , dfD) (10.4.3).

FINV(α, dfN , dfD) returns the 1-tailed value of FCRIT for a significance level of α and degrees
of freedoms dfN and dfD for the numerator and denominator. The 2-tailed value can be
obtained by using FINV(α/2, dfN , dfD) (10.4.3).

CHITEST(observed, expected ) calculates the p-value for a χ2 test based on the observed
and expected frequencies (14.1.2 and 14.2.2). Excel does not perform a Yates correction
(14.1.5).

CHIDIST(χ2
STAT, df ) returns the p-value corresponding to a calculated value of χ2

STAT for
degrees of freedom df (14.1.2 and 14.2.2).

CHIINV(α, df ) returns the value of χ2
CRIT for a significance level of α and degrees of freedom

df (14.1.2 and 14.2.2).
CORREL(array1, array2 ) and PEARSON(array1,array2 ) both calculate the linear correla-

tion coefficient, r , between two samples of data held in array1 and array2 (13.1.2).



Appendix II: Cumulative z-areas for
standard normal distribution
Area shown is the cumulative probability
between z = − infinity and the given value of z

Initial example for z = 0.445 gives
Probability Area = 0.6718

0.6718 z = 0.445

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

−4 −3 −2 −1 0 1 2 3 4

z-value





Appendix III: Critical values –
t-statistic and chi-squared, χ2

t-statistic Chi-squared
Tails Degrees Significance Significance

of freedom
1 or 2

2

1
2

1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1

95%
0.05

3.84

5.99

7.81

9.49

11.07

12.59

14.07

15.51

16.92

18.31

19.68

21.03

22.36

23.68

25.00

26.30

27.59

28.87

30.14

31.41

37.65

67.50

99%
0.01

6.63

9.21

11.34

13.28

15.09

16.81

18.48

20.09

21.67

23.21

24.72

26.22

27.69

29.14

30.58

32.00

33.41

34.81

36.19

37.57

44.31

76.15
2

df
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

25

50

Infinity

1

95%
0.05

12.71

6.31
4.30

2.92
3.18
2.35
2.78
2.13
2.57
2.02
2.45
1.94
2.36
1.89
2.31
1.86
2.26
1.83
2.23
1.81
2.20
1.80
2.18
1.78
2.16
1.77
2.14
1.76
2.13
1.75
2.12
1.75
2.11
1.74
2.10
1.73
2.09
1.73
2.09
1.72
2.06
1.71
2.01
1.68
1.96

1.64

99%
0.01

63.66

31.82
9.92

6.96
5.84
4.54
4.60
3.75
4.03
3.36
3.71
3.14
3.50
3.00
3.36
2.90
3.25
2.82
3.17
2.76
3.11
2.72
3.05
2.68
3.01
2.65
2.98
2.62
2.95
2.60
2.92
2.58
2.90
2.57
2.88
2.55
2.86
2.54
2.85
2.53
2.79
2.49
2.68
2.40
2.58

2.33





Appendix IV: Critical F values at 0.05 (95 %) significance

dfN = Degrees of freedom for Numerator

dfD = Degrees of freedom for Denominator

Tails dfN = 1 2 3 4 5 6 7 8 9 10 15 20 30 50 100

1 or 2 dfD

2 1 648 799 864 900 922 937 948 957 963 969 985 993 1001 1008 1013

1 161 199 216 225 230 234 237 239 241 242 246 248 250 252 253

2 2 38.5 39.0 39.2 39.2 39.3 39.3 39.4 39.4 39.4 39.4 39.4 39.4 39.5 39.5 39.5

1 18.5 19.0 19.2 19.2 19.3 19.3 19.4 19.4 19.4 19.4 19.4 19.4 19.5 19.5 19.5

2 3 17.4 16.0 15.4 15.1 14.9 14.7 14.6 14.5 14.5 14.4 14.3 14.2 14.1 14.0 14.0

1 10 10 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.70 8.66 8.62 8.58 8.55

2 4 12.2 10.6 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.66 8.56 8.46 8.38 8.32

1 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.86 5.80 5.75 5.70 5.66

2 5 10.0 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.43 6.33 6.23 6.14 6.08

1 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.62 4.56 4.50 4.44 4.41

2 6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.27 5.17 5.07 4.98 4.92

1 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 3.94 3.87 3.81 3.75 3.71

2 7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.57 4.47 4.36 4.28 4.21

1 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.51 3.44 3.38 3.32 3.27

2 8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.10 4.00 3.89 3.81 3.74

1 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.22 3.15 3.08 3.02 2.97

2 9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.77 3.67 3.56 3.47 3.40

1 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.01 2.94 2.86 2.80 2.76

2 10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.52 3.42 3.31 3.22 3.15

1 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.85 2.77 2.70 2.64 2.59

2 15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 2.86 2.76 2.64 2.55 2.47

1 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.40 2.33 2.25 2.18 2.12

2 20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.57 2.46 2.35 2.25 2.17

1 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.20 2.12 2.04 1.97 1.91

2 30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.31 2.20 2.07 1.97 1.88

1 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.01 1.93 1.84 1.76 1.70

2 50 5.34 3.97 3.39 3.05 2.83 2.67 2.55 2.46 2.38 2.32 2.11 1.99 1.87 1.75 1.66

1 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.03 1.87 1.78 1.69 1.60 1.52

2 100 5.18 3.83 3.25 2.92 2.70 2.54 2.42 2.32 2.24 2.18 1.97 1.85 1.71 1.59 1.48

1 3.94 3.09 2.70 2.46 2.31 2.19 2.10 2.03 1.97 1.93 1.77 1.68 1.57 1.48 1.39

Example

Critical F -value for one-tailed test with dfN = 15 and dfD = 8 at 0.05 significance:

F1,0.05,15,8 = 3.22





Appendix V: Critical values at 0.05 (95%) significance for
Pearson’s correlation coefficient, r, Spearman’s Rank
correlation coefficient, rS, and Wilcoxon lower limit, WL

Tails Sample size Pearson’s Spearman’s Wilcoxon

1 or 2 n

-
2

2

3

3

5

5

8

WL

10

13

13

17

17

21

21

25

25

30

29

35

34

41

40

47

46

53

52

60

89

100

137

151

4

5

6

7

8

9

11

12

13

14

15

16

17

18

19

20

25

30

10 8

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

r

0.950

0.900

0.878

0.805

0.811

0.729

0.754

0.669

0.707

0.622

0.666

0.582

0.602

0.521

0.576

0.497

0.553

0.476

0.532

0.456

0.514

0.441

0.497

0.426

0.482

0.412

0.468

0.400

0.456

0.389

0.444

0.378

0.396

0.337

0.361

0.306

0.632

0.549

-
0.900

0.886

0.829

0.786

0.714

0.738

0.643

0.683

0.600

rS

0.623

0.523

0.591

0.497

0.566

0.475

0.545

0.457

0.525

0.441

0.507

0.425

0.490

0.412

0.476

0.399

0.462

0.388

0.450

0.377

0.400

0.336

0.364

0.305

0.648

0.564 10





Appendix VI: Mann–Whitney lower limit, UL,
at 0.05 (95 %) significance

Tails Sample sizes

1 or 2 n2 n1 = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 2 0 1 1 1 1 1 2 2 2 2

1 0 1 1 1 1 2 2 3 3 3 3 4 4 4

2 3 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

1 0 1 2 2 3 4 4 5 5 6 7 7 8 9 9 10 11

2 4 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 14

1 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18

2 5 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

1 1 2 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25

2 6 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27

1 2 3 5 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32

2 7 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

1 0 2 4 6 8 11 13 15 17 19 21 24 26 28 30 33 35 37 39

2 8 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41

1 1 3 5 8 10 13 15 18 20 23 26 28 31 33 36 39 41 44 47

2 9 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48

1 1 4 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54

2 10 0 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55

1 1 4 7 11 14 17 20 24 27 31 34 37 41 44 48 51 55 58 62

2 11 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62

1 1 5 8 12 16 19 23 27 31 34 38 42 46 50 54 57 61 65 69

2 12 57 61 65 69

1 64 68 72 77

2 13 63 67 72 76

1 70 75 80 84

2 14 69 74 78 83

1 77 82 87 92

2 15 75 80 85 90

1 83 88 94 100

2 16 81 86 92 98

1 89 95 101 107

2 17 87 93 99 105

1 96 102 109 115

2 18 93 99 106 112

1 102 109 116 123

2 19 99 106 113 119

1 109 116 123 130

2 20 105 112 119 127

1

1 4 7 11 14 18 22 26 29 33 37 41 45 49 53

2 5 9 13 17 21 26 30 34 38 42 47 51 55 60

1 4 8 12 16 20 24 28 33 37 41 45 50 54 59

2 6 10 15 19 24 28 33 37 42 47 51 56 61 65

1 5 9 13 17 22 26 31 36 40 45 50 55 59 64

3 7 11 16 21 26 31 36 41 46 51 56 61 66 71

1 5 10 14 19 24 29 34 39 44 49 54 59 64 70

3 7 12 18 23 28 33 39 44 50 55 61 66 72 77

1 6 11 15 21 26 31 37 42 47 53 59 64 70 75

3 8 14 19 25 30 36 42 48 54 60 65 71 77 83

2 6 11 17 22 28 34 39 45 51 57 63 69 75 81

3 9 15 20 26 33 39 45 51 57 64 70 77 83 89

2 7 12 18 24 30 36 42 48 55 61 67 74 80 86

4 9 16 22 28 35 41 48 55 61 68 75 82 88 95

2 7 13 19 25 32 38 45 52 58 65 72 78 85 92

4 10 17 23 30 37 44 51 58 65 72 80 87 94 101

2 8 14 20 27 34 41 48 55 62 69 76 83 90 98

4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138





Short Answers to ‘Q’ Questions

The answers below give the numerical answer to most of the ‘Q’ questions. Full worked
answers on video are available on the Website. Some answers, given as ‘Web’ below, are only
available on the Website.

Chapter 2
Q2.1 4.26 × 104, 3.62 × 10−3, 1.0 × 104, 1.0 × 10−4, 4.5 × 102, 2.66 × 104, 3.2 × 103,

4.5 × 10−6

Q2.2 3.6 × 102, 1.5 × 103, 4.0 × 101, 5.0 × 104, 2.24 × 101, 4.0 × 107

Q2.3 1.2042 × 103, 2.3771 × 109

Q2.4 0.047, 0.046, 14.0, 7.35 × 103, 27000, 11.3, 11.2, 5.65 × 10−3

Q2.5 0047, 8.00, 426.89, 1.35
Q2.6 3.89 g
Q2.7 500 mph
Q2.8 4.0 × 10−5, 2083.33, 0.1555, 12.159, ±0.259
Q2.9 12

Q2.10 3150 kJ, 285.7 kcal, 65.9 kg, 152.4 mm by 25.4 mm, 22.72 L, 11.5 g
Q2.11 100, 7.9 × 103 kg m−3, 0.15 kg m−2, 7.06 L per 100 km
Q2.12 10.80
Q2.13 180, 180 g mol−1, 180 g
Q2.14 106 g, 15.9 g, 0.033 mol
Q2.15 122.2 g mol−1, 122.2
Q2.16 0.01 L, 1.16 × 10−5 L, 67 mL, 0.26 µL
Q2.17 0.2 mol L−1

Q2.18 1.867 mol L−1

Q2.19 0.292 g
Q2.20 6.2425 g
Q2.21 0.1 mol L−1

Q2.22 5 mL
Q2.23 20 mL
Q2.24 2π (= 6.283), 0.5π (= 1.57), 2.967, 57.30◦, 120.32◦, 630◦
Q2.25 6.98 cm
Q2.26 8.66 m
Q2.27 149.67 m
Q2.28 Web
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Q2.29 3840 km
Q2.30 36.87◦
Q2.31 D1*TAN(RADIANS(D3))

Chapter 3
Q3.1 12, 36, 4, 0.222, −4, 36, 0, 2.5
Q3.2 17 m s−1

Q3.3 0 m s−1

Q3.4 F, T, T, T
Q3.5 6 + 3x, 6 + 12x, 6–8x, px + 2p, −6p + 3px, px +p2

Q3.6 v2 − 4v + 4, v2 − t2, 3v − tv 2 − 4vt +12, 3xv + vy +3tx + ty, px− qx−2py +2qy ,
5v + v2 − t2 + 6 − t

Q3.7 9, 7, 10, [2,6,11]
Q3.8 A = (1/2)bh, d = vt, BMI = m/(h2), V = ( 4/3)πr3, v = √

2gh

Q3.9 4 and (x + y), 2 and (2x + 3y), 2 and x and (2 + 3x), p and x and (q + b)

Q3.10 2a/b, 2a/b, (4a + 1)/2b, (2a + 3)/2b

Q3.11 Y, Y, N, Y, Y, Y
Q3.12 8k + 2x = 16, 2x = 16–8k, x = 8 − 4k, Yes
Q3.13 (x/4) = 3 − 2y, x = 4(3 − 2y) = 12–8y, Yes
Q3.14 x = 2p − 4, x = −3(2 − µ) +4p, x = −8+ (q − t)
Q3.15 x = p − 18, x = 10–3(q – p), x = 9 + p, x = (2v − t) − 8 + k

Q3.16 x = 30 + 10p, x = 20–8q, x = k/(s − m), x = 16p − 8q

Q3.17 1, −2, 4, 3, 5, 14
Q3.18 x = p − 6, x = 7 − k, x = 3, x = p − 8
Q3.19 Web
Q3.20 R is fundamental constant, p and n are constants for Charles’ law, V and T are

variables
Q3.21 Web
Q3.22 ±5, ±0.158, 81, 19.95, 3.27, 19.88, 2.76, −2
Q3.23 x = 20, x = −2, x = (5 − k)/p, x = (2q − v)/q

Q3.24 x = √
(25 − t), x = √

25 − t, x = [sin−1(0.6k)]/2, x = 4/(a − y), x = ln(y)/2,
x = y2/2, x = y2/18 + 7/2, x = 2/(y2 − k)

Q3.25 198.1, 79.24, 3.258, −0.0464, 0.809, 0.39
Q3.26 Web
Q3.27 x = −6, x = (3 + a)/3, x = (8 + 3p)/4, x = 2p/3, x = 3a/2, x = 11/5
Q3.28 3, 5p, (m − 3), (3 − p), −2 − p, p + 2k − 1
Q3.29 x + 10, 9x + 8, 10x + 2, 2x(b − a), (a + 5)x − 3a, x

Q3.30 x = 1.5, x = −(a + b)/2, x = 1.5, x = 5/(3 − p), x = (5 − p)/(3 − p),
x = (5 − p)/ (p − q − 2), x = 12a/(6a − 1), x = (2p − 6)/6, x = (2p − 6)/(p − 1)

Q3.31 Web
Q3.32 1.0 or 0.5, 1.025 or −0.244, −2.87 or 0.871, 5.24 or 0.764
Q3.33 Equal roots = 2, 1 or −1.5, no real solutions, equal roots = −1.5
Q3.34 1285.7 s, 2042.9 m
Q3.35 C1 = 0.210, C2 = 0.150
Q3.36 (1,1) or (−1.5,2.25)
Q3.37 Web
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Chapter 4
Q4.1 T , F, F

Q4.2 [−1, 1, 3, 5, 7], Web, 3, N, Y, N , Web
Q4.3 L = 2.299 × 10−5 × T + 1.21, 2.299 × 10−5, 1.21
Q4.4 −0.75, −0.5
Q4.5 7/4
Q4.6 T = 40W + 20, 2.5 kg
Q4.7 (c), 7 s, −260 m
Q4.8 2, 2/3, −4, −0.5, −1, 6.5
Q4.9 y = 2x + 3, y = 0.5x + 2, y = −0.5x + 4

Q4.10 F = 1.8C + 32, −17.78
Q4.11 y = 3x − 2
Q4.12 y = − (1/3)x+ (4/3)
Q4.13 x = −1.5
Q4.14 3.9, 7.2, 2, −4
Q4.15 16.25, 22
Q4.16 0.125, 7.125◦
Q4.17 y = Heart rate, x = Step−up rate
Q4.18 C, R, C, C
Q4.19 P = 1.235Q + 2.845, 7.044
Q4.20 0.0308, 0.051
Q4.21 0.03344
Q4.22 θ = 0.8788w, 5.58 g
Q4.23 No, Yes, RT , 0, Yes, 8.33 J K−1 mol−1, Slope increases
Q4.24 y = 1/v, x = 1/S, vmax = 1/c, KM = m/c

Chapter 5
Q5.1 105, 106, 10, 105, e2, e5, e2, e6

Q5.2 2511.9, 0.3548, 1, 0.657, 2.718, 1
Q5.3 2.54, 1.54, 0.54, 2, −2, −0.301, 0.301, 1.301, 1, 2.303
Q5.4 3.09, 0.828, 2.888, 5.366, −1.788, 1.255, 0.628, 7, 5.01 × 10−10, −609.57
Q5.5 −0.3, 0.62, 0.3, 1.3, −0.3, 6.9, 0.69, 0.93
Q5.6 0.799, 0.588, 2.52, 0.748
Q5.7 (i) Plot log(V ) against log(A), slope m = k and intercept c = log(p), so p = 10c

(ii) Plot log(E) against log(T + 273), slope m = z and intercept c = log(σ ), so
σ = 10c

Q5.8 5.0 × 106, 5.0 × 104

Q5.9 73 dB, 79 dB, 90 dB, 67 dB, 61 dB, 50 dB
Q5.10 8.47, 3.47
Q5.11 6.31 × 10−10 mol L−1, 6.31 × 10−4 mol L−1

Q5.12 0.1 %, 10 %, 100 %, 2, 0.3
Q5.13 Web
Q5.14 2, 1.5, 0.9, 0.1
Q5.15 2 weeks, 6, 19 weeks
Q5.16 2.0 × 103, 0.1, 2.936 × 104
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Q5.17 1.35 s−1, 1.743 s−1

Q5.18 28 minutes
Q5.19 7.825 hours
Q5.20 0.0152 s (or 15.2 ms)
Q5.21 Nt = 450 exp(0.0320 × t), 661
Q5.22 5771, 9514, 15686
Q5.23 Nt = 100 exp(0.0953t), N0 = 100, k = 0.0953
Q5.24 Web, 0.632, 0.865
Q5.25 1.257 lumens
Q5.26 57.75 s
Q5.27 K = 0.61 h−1, C0 = 60.3

Chapter 6
Q5.1 5000, 300, −2000, −10
Q6.2 0, 0.25, 0.75, 1.5 , 2, 1.75, 1, 0.25, 0, −0.25, −0.5, −0.5, −0.25, 0
Q6.3 Estimated values: 9350 cells per minute, 19 600 cells per minute
Q6.4 Nt = N0ekt

Q6.5 2.24 × 108, 3.03 × 107, 4.10 × 106

Q6.6 6.22 × 10−3 (Web)

Chapter 7
Q7.1 (i) 6.6, 5.35, 7.75, 2.4 (ii) 17, 10.5, 25.25, 14.75 (iii) 56, 34, 72.5, 38.5
Q7.2 Web
Q7.3 Web
Q7.4 P, S, S, P, P, S
Q7.5 24.0
Q7.6 (i) 4.8 (ii) 0.2325
Q7.7 (i) 4.8 (ii) 0.1, −0.1, 0.3, 0.1, −0.4 (iii) 0 (iv) Yes (v) 0.28 (vi) 0.07 (vii) 0.0265
Q7.8 (i) 6.4, 2.3, 1.517 (ii) 66.4, 2.3, 1.517 (iii) 416.4, 2.3, 1.517
Q7.9 (i) Web (ii) 2, 3, 10, 5, 4

Q7.10 (i) 4, 10, 7, 3 (ii) 0.167, 0.417, 0.292, 0.125 (iii) 1.001 (iv) Web
Q7.11 (i) Web (ii) 0.533, 0.057, 0.324, 0.086 (iii) 192, 21, 117, 31 (iv) Web
Q7.12 (i) 10, 4, 2, 2, 4,10 (ii) 0.6, 5.25, 8.5, 7.5, 4, 0.9 (iii) Web
Q7.13 (i) 4, 10, 7, 3 (ii) 14, 18, 22, 26 (iii) 56, 180, 154, 78 (iv) 468 (v) 19.5 (vi) £461 500

(vii) £19 229
Q7.14 (i) 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1 (ii) Web (iii) 36
Q7.15 (i) 0.0278, 0.0556, 0.0833, etc. (ii) Web (iii) 1.00
Q7.16 0.05
Q7.17 (i) 0.0278, 0.0833, 0.1667, etc. (ii) 0.4167 (iii) 0.1667
Q7.18 (i) 0.243, 0.357, 0.271, 0.129 (ii) 0.129 (iii) Web (iv) 7, 11, 8, 4
Q7.19 1/52, 1/13, 3/13, 1/13, 1/4
Q7.20 9/16, 3/16, 3/16, 1/16
Q7.21 7/24, 15/24, 1
Q7.22 1/26, 1/13, 4/13
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Q7.23 1/13, 12/13, 1
Q7.24 1/36, 1/18, 1/6, 1/36
Q7.25 0.9, 0.1, 0.6561, 0.0001, 0.0036, 0.2916
Q7.26 0.0065
Q7.27 1/7, 2/7, 2/7, 2/7, 1
Q7.28 0.618
Q7.29 120, 1, 1, 0, 42, 10100
Q7.30 24
Q7.31 1680
Q7.32 167 960

Chapter 8
Q8.1 0.1915, 0.2417, 0.5000, 0.6828, 0.9546, 0.9974, 1.000
Q8.2 1.5, 1.2, 1.2
Q8.3 68 300, 95 000, 300, 15 850
Q8.4 Web
Q8.5 19.08 to 26.92
Q8.6 1.0, 21.04 to 24.96
Q8.7 16.8 to 21.9, 17.9 to 20.0, Web
Q8.8 0.08 ppm
Q8.9 1.87, 0.21

Q8.10 10.75, 0.5
Q8.11 0.2373, 0.3955, 0.2637, 0.0879, 0.0146, 0.0010, 1.0000
Q8.12 5.9 × 10−6, 1.4 × 10−4, 0.233, 0.121, 0.028, 0.383, 0.617
Q8.13 0.606, 0.303, 0.076, 0.014
Q8.14 0.74 ± 0.12
Q8.15 (i) CDA = 0.99, CDB = 1.33 (ii) A (iii) Clumping

Chapter 9
Q9.1 1, 2, 1, 2
Q9.2 F, T, F, F

Chapter 10
Q10.1 (ii) 0.05 (iii) 3.585 × 10−8, 0.080 × 10−8 (iv) 2.60 (v) 1 (vi) 5 (vii) 2.02
Q10.2 Web
Q10.3 (i) No (ii) c (iii) c
Q10.4 Web
Q10.5 Paired t-test
Q10.6 tSTAT = 2.54, tCRIT = 2.45, Sig., p = 0.044 (Web)
Q10.7 3.68, 3.77
Q10.8 Web
Q10.9 Web
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Chapter 11
Q11.1 0.094
Q11.2 Web
Q11.3 Web
Q11.4 Web
Q13.5 Web
Q13.6 Web

Chapter 12
Q12.1 W+ = 92, W− = 28, WL = 30, Sig.
Q12.2 UY = 12, UL = 12, Sig., p = 0.044
Q12.3 W(−) = 3, WL = 2, Not sig.
Q12.4 H = 7.43, χ2

CRIT = 7.81, Not sig.

Q12.5 S = 9.53, χ2
CRIT = 7.81, Sig.

Q12.6 S = 7.73, χ2
CRIT = 7.81, Not sig. (Web)

Chapter 13
Q13.1 (i) r = 0.715 (ii) rcrit = 0.622, Sig. (iii) p = 0.023
Q13.2 (i) r = 0.542, (ii) rcrit = 0.549, Not sig. (iii) p = 0.0526
Q13.3 Web
Q13.4 1.578, 0.1477, 1.11 to 2.05

Chapter 14
Q14.1 9.49, 6.63
Q14.2 χ2

CRIT = 7.81, χ2
STAT = 3.6, No

Q14.3 χ2
STAT = 5.23, χ2

CRIT = 5.99, No

Q14.4 A : χ2
STAT = 10.61, B : χ2

STAT = 2.06, χ2
CRIT = 9.49, Web

Q14.5 (ii) χ2
STAT = 3.42 (iii) χ2

STAT = 4.05, χ2
CRIT = 3.84

Q14.6 χ2
STAT = 9.5, χ2

CRIT = 11.07, No

Q14.7 χ2
STAT = 12, χ2

CRIT = 7.81, Yes

Q14.8 χ2
STAT = 3.28, χ2

CRIT = 5.99, No
Q14.9 0.0284, 0.0568, symmetrical distribution

Q14.10 (i) 0.504 to 0.696 (ii) biased
Q14.11 Yes, if the Yates correction used
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Note: Figures and Tables are indicated by italic page numbers

abscissa 89
absorbance 63, 88, 89, 104, 106, 126, 127, 322,

327, 331
see also Beer–Lambert law; Beer’s law

acceleration 151
accuracy of measurement 3
adiabatic change equation 75
algebraic equations 42–5

reading 48–9
rearranging 53–62

analysis of covariance (ANCOVA) 258
analysis of variance (ANOVA) 257, 279–98

assumption in using 257
Excel calculations 283, 285, 290
one-way 257, 279–85
post hoc testing 296–8
two-way 257, 286–90, 356–7, 358

AND [logical operator], combining with
probabilities 194

angle(s)
conversion between degrees and radians 33–4,

39
small (approximations) 36–7
units 32

angular measurements 31–40
calculating 39
Excel calculations 39

annotations 65–6, 155
arccos 38
arcsin 38
arctan 38
arguments of functions 66

in Excel calculations 361
Arrhenius equation 144
association 244

test for 334
see also contingency; correlation

atomic mass, relative 22, 23
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average 171–2
symbol for 66

average mass 23
Avogadro constant/number 21

bar graph 180
bases 114
Bayesian statistics 162
Beer–Lambert law 88, 327
Beer’s law 63, 106
‘bell-shaped’ curve 164–5, 211, 212–13, 218

see also normal distribution
bias 4
bin 178

see also class
binomial coefficient 231
binomial distribution 211, 230–2

approximations 238–39, 348
examples 230, 231, 233
Excel calculations 231, 364
parameters describing 233–5
using 237–8

binomial probability 231
blocking of factors (in experiment design) 352,

354
blood-alcohol levels 164–7, 264–6
BODMAS (or BIDMAS) rules 42
box and whisker plot (boxplot) 161, 164, 165,

268, 271, 281, 301, 302, 306
brackets 46–8

expanding/opening up 76–7

calculator 14
angle calculations 39
combination calculations 208
EXP button 9, 115
factorials 203
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calculator (continued )
logarithms 116
permutation calculations 206
standard deviation calculations 174

calibration line 104–6, 324–31
checking residuals 325–6
uncertainty in 327–30

categorical data 7
plotting 180

categorical name 178, 179
category 178
causal relationship 244
Celsius/Fahrenheit temperature scales conversion

87–8
central limit theorem 219
certain event 190
change

estimating 158–9
rate of 145–51

chemical quantities 20–31
chi-squared (χ2) statistic 333, 335–6

critical values 336, 369–71
chi-squared (χ2) test 259, 333, 334–40

comparison with other tests 349
Excel calculations 333, 364–5
with Yates correction 260, 341

class 178
class frequency 178, 179, 191, 192

in histogram 181, 182, 183
clustering/clumping of events 241
coefficient of determination 316

ranges 317
coefficient of dispersion 241
coefficient of variation 225
coin tossing 211, 230, 233–4, 247–50,

333
column graph 180
combinations 207–8

Excel functions 208–9, 364
comparisons, symbols for 66
concentration, chemical symbol 65
concentration of solutions 26–9

in grams per litre 26
molarity 26

conditional probability 199–201
confidence deviation 221, 225, 329
confidence interval 161, 212

for binomial distribution 239
in calibration 330
95% confidence interval 166–7, 221
of proportion 348, 349
of sample mean 221, 225
for unknown value 164–8

confidence level 253
constants 2, 43

symbols 63
contingency, test for 259, 333, 334–7

contingency table 334–7
2 x 2 (Yates correction) 341

continuous curve, rate of change 148–51
continuous data 7
continuous distribution 188–9, 211
conversion of units 17–19
co-ordinates (on graph) 90
correlation 244, 315

calculation 320
linear 315, 316–19
statistics 323–4
test for 259, 318–19
see also Pearson’s correlation coefficient;

Spearman’s rank correlation coefficient
correlation coefficient 316–18, 324

ranges 317
cosine 34, 35
critical value method 255
critical values

chi-squared statistic 369–71
F -statistic 275, 284, 373–4
Mann–Whitney test statistic 377–8
t-statistic 263, 270, 369–71
Wilcoxon test statistic 304, 375–6

cumulative distributions 238
cumulative probability 189–90, 238

data 2, 7–40
continuous 7
discrete 7
frequency 178–9, 186
interval 7
nominal 8
ordinal 8
ratio 7

Data Analysis Tools (Excel) 362
data values, plotting 177–8
decay 130, 131, 134, 135–6, 138
decibel scale 124–5
decimal places (dp) 11
decimal reduction time 133, 134, 135, 136,

142–3
decision making, statistics used 246–50
deduction 245, 246
degrees 32

conversion to radians 33–4, 39
degrees of freedom (df) 2

ANOVA 283, 284, 287, 288, 290, 291, 293,
294, 357

chi-squared tests 336, 341
confidence interval calculation 222
contingency table 336, 341
correlation test 318
F -test 275, 283
goodness-of-fit test 343, 345
t-tests 263, 270
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denominator (in fraction) 51, 77
density 15
dependent variable 89
derivative see differential coefficient
deviation 172
differential coefficient 151–2

calculating 153–6
differentiation 152–9
dilution equation 29–30
dilution factor or ratio 30
dilutions 29–31
discrete data 7
dispersion of values 241
distance–time graph 147
distribution

binomial 211, 230–2
continuous 188–9, 211
frequency 161, 186–7, 191, 211
normal 165, 211, 212–16
parameters describing 171–2, 176, 211, 214
Poisson 6, 211, 230, 235–7
probability 161, 186–7, 191, 211
shapes 240
standard normal 215, 367

division
factorials 203–4
fractions 52
scientific notation 9

dot plot 177, 178
double blind trials 353

Einstein’s theory of relativity 4, 246
electrostatic force equation 75
energy equivalence equation 4–5, 43
equations 4–5, 41

algebraic equations 42–5
basic techniques 41–53
differential coefficients (listed) 154
grouping the unknown variable 75–7
moving ‘multiply’ and ‘divide’ terms 58–60
moving ‘plus’ and ‘minus’ terms 56–8
opening up expressions 72–4
quadratic equations 78–81
reading 48–9
rearranging 53–62, 68
removing fractions 77–8
simplifying 51–2
simultaneous equations 81–2
solving for unknown value(s) 60–2
subject of equation 53, 61, 72, 74, 75, 76, 77

error 2
random 3, 4
systematic 3, 4
Type I 247, 252, 253, 262, 356, 358, 359
Type II 247, 252, 253

error bars 4

estimations 14
Euler’s number (e) 63, 65, 114, 132, 153
exact one-proportion test 240, 260, 346–7

comparison with other tests 349
exact two-proportion test 260, 350
Excel calculations 361–5

angles 39, 363
ANOVA 283, 285, 290
best-fit straight line calculations 100, 322,

362–3, 363
combinations 208, 364
exponentials 115, 363
factorials 203, 363
graph drawing 180, 295
linear regression 100–1, 102, 103, 142, 362–3
logarithms 116, 363
logical operations 363
permutations 204, 364
slope of curve 149
solutions for simultaneous equations 85, 362
statistical calculations 172, 174, 364
statistical distributions 223, 231, 236, 364
statistical tests 261, 316, 333, 364–5

Excel functions 361–2, 363–5
expected frequency

calculation of 337–8, 342–3
less than 5 (five) 339–40

expected proportion 345
experiment 246

power of 253–4
experiment design 351–60

blocking of factors 352, 354
completely randomized 354
objective of good design 351
pairing in 351, 354–6
randomization in 351, 353–4
randomized block 354
repeated measures in 351, 354–6
replication in 351, 352–3
subject allocation 352, 356–9
techniques 351–9

experimental uncertainty/variation 2–4, 106,
172–5, 212–13, 217–19, 282

presenting 224–9
standard deviation 282, 322

exponent 114
exponential constant (e) 63, 65, 114, 132, 153
exponential equations 132–3

differential coefficients 154–5
exponential functions 5, 113, 115

Excel calculations 115
inverse of 71, 113, 116–17

exponential growth and decay 128–44
exponential growth equation 132–3

general use 137–9
linearizing 140–4
specific applications 133–7
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exponential notation see scientific notation
exponential systems 128–32
extrapolation (on graph) 98

errors (linear regression) 106

F -statistic 275
critical values 275, 284, 373–4

F -test 258, 274–6
F -statistic used 275–6
mean squares and 283
p-value used 275

factor variance 282
factor variation 282
factorials 203–4

division using 203–4
Excel functions 203, 363

factorization 50
factors

experimental 243, 244, 282
blocking of 289, 352, 354

mathematical 49–50
Fahrenheit/Celsius temperature scales conversion

87–8
false negatives 199
false positives 199–201
first-order rate equation 157
Fisher’s exact test 260, 333, 346–7

comparison with other tests 349
fractions

cancelling terms in 51
dividing by 52
division of 52
multiplication of 52
removing from equations 77–8
simplifying 51

frequency
compared with probability 191–3
relative 186
tests for 259, 333, 334–41

frequency data 178–9, 186
plotting 180–1

frequency density, in histogram 182, 183
frequency distribution 161, 186–7, 191, 211
frequency statistics 176–90, 177
Friedman test 259, 299, 301, 311, 313–14
functions 5

with subscripts 65
symbols for 66–7

Gaussian distribution see normal distribution
general linear model (GLM) 258
generation time 131–2, 133, 134, 142, 302
‘goodness of fit’ test 212, 259, 333, 342–3
gradient see slope
graph

co-ordinates 90

intercept 87, 88, 89, 90, 93
slope 87, 88, 89, 90, 93
straight line graph 89–98

graphical methods, solving simultaneous
equations 85–6

Greek letters/symbols 44–5, 63, 66, 146, 170,
182, 348

growth 128, 129–30, 131–2, 133, 134, 155

H -statistic 311
half-life 133, 134, 136
height contours 149
histograms 181–3, 213, 232
hypotenuse (of right-angled triangle) 34
hypothesis 245
hypothesis statement 246–7, 251
hypothesis testing 250–5

chi-squared test 259, 333, 334–40
correlation tests 259, 318–19
F -test 257, 274–6
Friedman test 259, 299, 301, 311, 313–14
goodness of fit test 212, 259, 333, 342–3
Kruskal–Wallis test 259, 299, 301, 311,

312–13
Mann–Whitney U -test 258, 299, 301, 305–8
p-value calculation 247–50
stating results 254
t-tests 257, 262–73
Wilcoxon tests 258, 299, 301, 301–5, 308–11

impossible event 190
independence between measurements 256
independent variable 89
index/indices 114
induction 245
infinity symbol 63
instructions 48, 66
interaction of factors 287, 289, 294, 295, 354
interaction plot 287, 289, 295
intercept of graph 87, 88, 89, 90, 93

calculating 94–5
interpolation (on graph) 98

errors (linear regression) 106
interquartile range (IQR) 163, 299
intersecting lines (on graph) 96–7
interval data 7
inverse cosine function 38, 71
inverse operations 68–71, 116
inverse sine function 38, 71
inverse tangent function 38, 71, 99
inverse trigonometric functions 38, 71

Kepler’s third law of planetary motion 109
Kruskal–Wallis test 259, 299, 301, 311–13
kurtosis 241
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Latin square 359
least significant figure/number 11
least squares, method of 100, 321
Likert scale 300
linear correlation 315, 316–19

compared with linear regression 101, 315
statistics 323–4

linear correlation coefficient 316–18
linear regression 88, 99–106

best-fit straight line 100–1, 320–2
calibration line 104–6, 324
compared with linear correlation 101, 315
Excel calculations 100–1, 102, 103, 142,

362–3
extrapolation errors 106
interpolation errors 106
‘power’ equations solved using 122–4
software calculations 102–3
statistics 320–3
zero intercept forced 104

linear relationships 87–111
linearization 88–9, 107–11

change-of-variable method 108–9
error warning 111
general principles 107
logarithmic approach 122–4, 140–4

logarithmic functions 113
inverse of 71

logarithmic scales 124–7
logarithms

Excel calculations 116
as inverse operations 116–17
linearization using 122–4, 140–4
natural/Naperian 116
properties 118–19, 120
solving ‘power’ equations 120–1
see also natural logarithms

logical operations
combining probabilities with 193–7
Excel functions 363–4

Lotto (UK National Lottery) 208
loudness 124–5
lower quartile 163

Mann–Whitney U -test 258, 299, 301,
305–8

applying 307–8
test statistic 305–7
see also U -statistic

mathematical models 4–6
mean squares (MS) 282–3
mean value(s) 171–2

binomial distribution 233–35
calculations 174, 175
effect of sample size 220
normal distribution 214

standard error of 219
symbol(s) for 66, 171
tests for 257–8, 262, 267

measurement uncertainty 3, 217, 218, 282
mechanisms 243, 244, 245
median(s) 163, 299

tests for 258–9, 299–314
method of least squares 100, 321
Michaelis–Menten equation 110
Minitab

box and whisker plots 164, 165, 268, 271, 281,
301, 302, 306

graph plotting 287, 289, 291
linear regression 102
non-parametric tests 304, 307, 308, 310, 312,

313–14
mixed units 15

conversion of 18–19
modelling 4–6
modulus 65
molar concentration 26, 27
molar mass 23
molarity 26
molecular mass, relative 22, 23
molecular weight 22
moles 21–2

conversion to mass in grams 24–5
most significant figure/number 11
motor engine–fuel combinations, ANOVA

calculations 294–6
multiple t-tests 281

compared with Tukey test 297–8
multiplication

fractions 52
scientific notation 9–10

Naperian logarithms 116
natural logarithms 116

linearization using 124, 140
negative values 45–6
Nernst equation 75
nominal data 8, 300
non-parametric tests 163, 256, 258–9,

299–314
normal distribution 165, 211, 212–16

as approximation for binomial distribution 238,
348

Excel calculations 364
parameters describing 214
probability areas for 215–16, 263, 367

NOT [logical operator], combining with
probabilities 196

notation
scientific 8–9
statistics 170–1

numerator (in fraction) 51
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observed value 2
one-proportion exact test 240, 260, 346–7

comparison with other tests 349
one-sample t-test 257, 262–6

applying 264–6
non-parametric equivalent 299, 301
p-value used 262–3
significance of factor effect 283–5

one-sample Wilcoxon test 258, 299,
301–5

applying 304–5
test statistic used 302–4
see also W -statistic

one-tailed test 251, 262, 264
one-tailed Wilcoxon test 304
one-way ANOVA 257, 279–85

analysing variances 281–2
mean squares and 282–3
non-parametric equivalent 299, 311
significance of factor effect 283–5

OR [logical operator], combining with
probabilities 194–5

order of magnitude 13–14
ordinal data 8, 299
ordinate (on graph) 89
outcomes 243, 244

p-value
in ANOVA 281, 284, 285, 287, 288, 290, 291,

293, 294, 295, 296, 357, 358
calculation 247–50
in correlation test 319
decisions based on 252–3
in F -test 275
in non-parametric tests 304, 305, 308, 310,

312, 314
in t-tests 262–3, 269, 297

paired t-test 257, 272–3
applying 273, 281
non-parametric equivalent 299, 308

paired Wilcoxon test 258, 299, 301, 308–11
applying 310–11
test statistic 309–10
see also W -statistic

pairing (in experiment design) 351, 354–6
parallel lines (on graph) 97, 98
parameter 2, 170
parametric tests 256, 261, 299
parentheses see brackets
Pearson’s correlation coefficient 259, 316

critical values 318, 375–6
percentage concentrations 29
permutations 204–6

Excel functions 206, 364
perpendicular lines (on graph) 97
pH scale 126, 127

pharmacokinetic processes 143
photoelectric effect equation 109
pi (π ) 63
pie chart 180, 181
pilot experiment/measurements 359, 360
Poisson distribution 6, 211, 230, 235–7

as approximation for binomial distribution
238

examples 235–36
Excel calculations 236, 364
using 237

Poisson probability 236
pooled standard deviation 269
population 168, 169

characteristics 170
population growth and decay 128, 129–32,

134–6, 138, 155
population mean 171
population standard deviation 173, 176
potentiometric titration 150–1
power 114

inverse operations 116–17
properties 114

‘power’ equations
differential coefficients 154
linearizing using logarithms 122–4
simplifying 118
solving by logarithms 120–1

power of experiment 253–4
non-parametric tests 299, 311

power of hypothesis test (β) 254
precision of measurement 3
predictions 246
pressure 15
probability 190–201

binomial 231
combining with AND 194
combining with NOT 196
combining with OR 194–5
compared with frequency 191–3
conditional 199–201
cumulative 189–90
experimental 191
multiple outcomes 197
Poisson 236
theoretical 192

probability areas (in distributions) 215–16, 250,
263, 367

probability density 188
probability distribution 161, 186–7, 191,

211
probability trees 201
product-moment correlation coefficient see

Pearson’s correlation coefficient
proportion, tests for 260, 345–50
proportionality 49
Pythagoras’s equation 35
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quadratic equations 78–81
qualitative data 7
quantitative data 7
quartiles 163

radians 32
conversion to degrees 33–4, 39

radioactive decay 128, 133, 134, 136–7,
143

random error 3, 4
random selection 256
randomization 351, 353–4
randomized block design 289, 354
ranking of data 162–3

in non-parametric tests 256, 261, 299, 303, 304
rate of change 145–51

annotation 155
continuous curve 148–51
with time 146–8

rate equations 156–7
ratio data 7
ratio of values 124, 125
reciprocal 70, 71
reciprocal conversion of units 17
refraction equation 75
regression

calculation 259, 320
compared with correlation 101, 315
linear 99–106, 315, 320
standard error of 322
statistics 320–3

relative class frequency 179, 191, 191
relative frequency 186
relative molecular mass 22, 23
relative standard deviation 225
relative uncertainty 225

combining 226, 227, 228–9
relativity theory 4, 246
repeated measures experiment 351, 354–6
replicate data 100, 352

analysing 162–8
replicate measurements 219, 292, 352
replication

in experiment design 351, 352–3
two-way ANOVA with 290–6

research project, planning 359–60
residual 320, 321

for linear calibration line 325–6
residual sum of squares 321
rounding 12–13

S-statistic 311
sample 168, 169

characteristics 170
sample mean 171, 219

calculations 171, 172, 184, 185

sample standard deviation 173, 176
calculations 174, 175, 184, 185

sample variance 173
calculations 174, 175
relationship to standard deviation 174, 274
test for 258, 274–6

scientific data 7–40
scientific method 243, 245–6

example 246
scientific notation 8–9

addition in 10–11
division in 9
multiplication in 9–10
subtraction in 10–11

scientific numbers 8–14
scientific quantities 15–20
scientific systems 243–4
screening tests 201
SI units 16

derived 16
fundamental 16

significant figures (sf) 11
significant level (α) 248, 253

F -test 275
t-tests 263, 270

simultaneous equations 81–2
analytical solution 82–5
Excel procedure for solving 85, 362
graphical method for solving 85–6

sine 34, 35
skewness 240
slope of graph 87, 88, 89, 90, 93

angle 99
at point on curve 151–2
average 148, 151
calculating 94–5

solutions, concentration 26–9
solutions to equations 60–2
Solver (Excel) 362
Spearman’s rank correlation coefficient 259, 316

critical values 375–6
spectrophotometric measurements 63, 88–9, 106,

126, 127, 331
speed 15, 18–19, 145–8
spread of population 173–4
square 68–9, 71
square root 69, 71
standard deviation 172, 173

binomial distribution 233–235
normal distribution 214
pooled, in two-way t-test 269
relationship to variance 174, 274, 282
test for 258, 274–6
see also population standard deviation; relative

standard deviation; sample standard
deviation

standard error of regression 322
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standard error of sample mean 219
standard normal distribution, probability areas for

215, 367
standard notation see scientific notation
standard uncertainty 219, 221, 224

combining 226, 227
statistic 2, 170, 255
statistical tests

assumptions in using 256–7
overview 257–60

statistics 161–209
notation 170–1

stem and leaf diagram 177
straight line graph 89–99

best-fit line 100–6
equation describing 87, 90–4
extrapolation 98
interpolation 98
intersecting lines 96–7
parallel lines 97, 98
perpendicular lines 97
plotting 89–90

Student’s t-test 223, 257
subject of equation 53, 61, 72, 74, 75, 76, 77
subject uncertainty 3, 217, 218, 282
subjects 243

allocation in experiments 352, 356–9
subscripts 64–5, 170
sum of squares (SS) 284

residual 321
superscripts 64–5
symbols 63–7
systematic error 3, 4

t-statistic
critical values 263, 270, 369–71
use in one-sample t-test 263–4
use in two-sample t-test 269–70

t-tests 257
multiple 281, 297–8
one-sample 257, 262–6
paired 257, 272–3
two-sample 257, 267–72

tails 251–2
see also one-tailed . . .; two-tailed . . .

tangent to curve 148, 151
tangent (trigonometric function) 34, 35
terms (in algebra) 44
test assumptions 256–7

ANOVA 257
chi-squared test 334
correlation 259
F -test 258, 261
non-parametric tests 258
t-test 257, 261

test statistics 255

see also chi-squared statistic; F -statistic;
H -statistic; S-statistic; t-statistic;
U -statistic; W -statistic

test(s) for
contingency 259, 333, 334–7
correlation 259, 318–19
frequency 259, 333, 334–41
goodness of fit 259, 342–4
means 257–8, 262–73
medians 258–9, 299–314
proportion 260, 345–50
standard deviations 258, 274–6
variances 258, 274–6

time constant (τ ) 133
transmittance 88, 126, 127
treatments (factor levels) 282, 353
Trendline (Excel) for line of best fit 362–3
trial, meaning of term 186, 191, 230–232
trigonometric functions 34–5

inverse 38, 71
true negatives 199
true positives 199–201
true proportion, confidence interval 348
true value 2, 217
trueness of measurement 3
Tukey test 258, 297

comparison with multiple t-tests 297–8
two-proportion exact test 260, 346, 350
two-sample Mann–Whitney U -test 258, 299,

301, 305–8
applying 307–8
test statistic(s) 305–7

two-sample t-test 257, 267–72
applying 270–2, 280
non-parametric equivalent 299, 305
p-value used 262–3
t-statistic used 263–4

two-tailed hypothesis 251, 304, 306, 307, 308,
309

two-tailed Mann–Whitney test 306, 307, 308
two-tailed paired Wilcoxon test 309–10
two-tailed t-test 270
two-tailed Wilcoxon test 304
two-way ANOVA 257, 286–90

applying 288–90, 356–7, 358
non-parametric equivalent 299, 311

two-way ANOVA with replication 290–6
applying 294–6

Type I error 247, 252, 253, 262, 356, 358,
359

Type II error 247, 252, 253

U -statistic 307
lower limit, critical values 307, 377–8

uncertainty
calibration line 328–30
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combining uncertainties 226–9
experimental 2–4, 106, 172–5, 212–13,

217–19
relative 225
standard 219, 221, 224
terminology 224–6

unit values 19
units

conversion of 17–19
mixed 15, 18–19
SI 16

upper quartile 163

variables 2, 43
dependent 89
independent 89
symbols for 63

variance(s) 173

analysing 281–2
relationship to standard deviations 174, 274,

282
test for 258, 274–6

volume of sphere 109

W -statistic 302–4
critical values 304, 375–6
use in Mann–Whitney test 306

Wilcoxon test
one-sample 258, 299, 301–5
paired 258, 299, 301, 308–11

x –y graph 89
best-fit lines 100–6, 318, 362–3, 363

Yates correction 260, 341, 345
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