


Springer Series in Statistics

Advisors:
P. Bickel, P. Diggle, S. Fienberg,
U. Gather, I. Olkin, S. Zeger

For other titles published in this series, go to
http://www.springer.com/series/692



Paul R. Rosenbaum

Design of Observational
Studies

123



Paul R. Rosenbaum
Statistics Department
Wharton School
University of Pennsylvania
Philadelphia, PA 19104-6340
USA
rosenbaum@stat.wharton.upenn.edu

ISBN 978-1-4419-1212-1 e-ISBN 978-1-4419-1213-8
DOI 10.1007/978-1-4419-1213-8
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2009938109

c© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is a part of Springer Science+Business Media (www.springer.com).



For Judy



“Simplicity of form is not necessarily simplicity of experience.”

Robert Morris, writing about art.

“Simplicity is not a given. It is an achievement.”

William H. Gass, writing about literature.

“Simplicity . . . is a very important matter which must be constantly
borne in mind.”

Sir David Cox, writing about experiments.



Preface

An observational study is an empiric investigation of effects caused by treatments

when randomized experimentation is unethical or infeasible. The quality and

strength of evidence provided by an observational study is determined largely by

its design. Excellent methods of analysis will not salvage a poorly designed study.

The line between design and analysis is easier to draw in practice than it is in the-

ory. In practice, the design of an observational study consists of all activities that

precede the examination or use of those outcome measures that will be the basis

for the study’s conclusions. Unlike experiments, in some observational studies, the

outcomes may exist as measurements prior to the design of the study; it is their ex-

amination and use, not their existence, that separates design from analysis. Aspects

of design include the framing of scientific questions to permit empirical investiga-

tion, the choice of a context in which to conduct the investigation, decisions about

what data to collect, where and how to collect it, matching to remove bias from

measured covariates, strategies and tactics to limit uncertainty caused by covariates

not measured, and sample splitting to guide design using individuals who will not

be included in the final analysis. In practice, design ends and analysis begins when

outcomes are examined for individuals who will be the basis of the study’s conclu-

sions. An observational study that begins by examining outcomes is a formless,

undisciplined investigation that lacks design.

In theory, design anticipates analysis. Analysis is ever present in design, as any

goal is ever present in any organized effort, as a goal is necessary to organize effort.

One seeks to ask questions and collect data so that results will be decisive when

analyzed. To end well, how should we begin?

Philadelphia, PA Paul Rosenbaum
5 August 2009
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Chapter 1
Dilemmas and Craftsmanship

Abstract This introductory chapter mentions some of the issues that arise in obser-

vational studies and describes a few well designed studies. Section 1.7 outlines the

book, describes its structure, and suggests alternative ways to read it.

1.1 Those Confounded Vitamins

On 22 May 2004, the Lancet published two articles, one entitled “When are ob-

servational studies as credible as randomized trials?” by Jan Vandenbroucke [53],

the other entitled “Those confounded vitamins: What can we learn from the differ-

ences between observational versus randomized trial evidence?” by Debbie Lawlor,

George Smith, Richard Bruckdorfer, Devi Kundu, and Shah Ebrahim [32]. In a

randomized experiment or trial, a coin is flipped to decide whether the next person

is assigned to treatment or control, whereas in an observational study, treatment as-

signment is not under experimental control. Despite the optimism of the first title

and the pessimism of the second, both articles struck a balance, perhaps with a slight

tilt towards pessimism. Vandenbroucke reproduced one of Jim Borgman’s political

cartoons in which a TV newsman sits below both a banner reading “Today’s Ran-

dom Medical News” and three spinners which have decided that “coffee can cause

depression in twins.” Dead pan, the newsman says, “According to a report released

today. . . .” The cartoon reappeared in a recent report of the Academy of Medical

Sciences that discusses observational studies in some detail [43, page 19].

Lawlor et al. begin by noting that a large observational study published in the

Lancet [30] had found a strong, statistically significant negative association between

coronary heart disease mortality and level of vitamin C in blood, having used a

model to adjust for other variables such as age, blood pressure, diabetes, and smok-

ing. Adjustments using a model attempt to compare people who are not directly

comparable — people of somewhat different ages or smoking habits — removing

these differences using a mathematical structure that has elements estimated from

the data at hand. Investigators often have great faith in their models, a faith that

3P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
DOI 10.1007/978-1-4419-1213-8_1, © Springer Science+Business Media, LLC 2010 
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is expressed in the large tasks they expect their models to successfully perform.

Lawlor et al. then note that a large randomized controlled trial published in the

Lancet [20] compared a placebo pill with a multivitamin pill including vitamin C,

finding slightly but not significantly lower death rates under placebo. The random-

ized trial and the observational study seem to contradict one another. Why is that?

There are, of course, many possibilities. There are some important differences be-

tween the randomized trial and the observational study; in particular, the treatments

are not really identical, and it is not inconceivable that each study correctly answered

questions that differ in subtle ways. In particular, Khaw et al. emphasize vitamin C

from fruit and vegetable intake rather than from vitamin supplements. Lawlor et al.

examine a different possibility, namely that, because of the absence of randomized

treatment assignment, people who were not really comparable were compared in

the observational study. Their examination of this possibility is indirect, using data

from another study, the British Women’s Heart and Health Study, in which several

variables were measured that were not included in the adjustments performed by

Khaw et al. Lawlor et al. find that women with low levels of vitamin C in their

blood are more likely to smoke cigarettes, to exercise less than one hour per week,

to be obese, and less likely to consume a low fat diet, a high fiber diet, and daily

alcohol. Moreover, women with low levels of vitamin C in their blood are more

likely to have had a childhood in a “manual social class,” with no bathroom or hot

water in the house, a shared bedroom, no car access, and to have completed full time

education by eighteen years of age. And the list goes on. The concern is that one

or more of these differences, or some other difference that was not measured, not

the difference in vitamin C, is responsible for the higher coronary mortality among

individuals with lower levels of vitamin C in their blood. To a large degree, this

problem was avoided in the randomized trial, because there, only the turn of a coin

distinguished placebo and multivitamin.

1.2 Cochran’s Basic Advice

The planner of an observational study should always ask himself the question, ‘How would
the study be conducted if it were possible to do it by controlled experimentation?’

William G. Cochran [9, page 236]

attributing the point to H.F. Dorn.

At the most elementary level, a well designed observational study resembles,

as closely as possible, a simple randomized experiment. By definition, the resem-

blance is incomplete: randomization is not used to assign treatments in an observa-

tional study. Nonetheless, elementary mistakes are often introduced and opportuni-

ties missed by unnecessary deviations from the experimental template. The current

section briefly mentions these most basic ingredients.
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1.2.1 Treatments, covariates, outcomes

Randomized experiment: There is a well-defined treatment, that began at a well-

defined time, so there is a clear distinction between covariates measured prior to

treatment, and outcomes measured after treatment.

Better observational study: There is a well-defined treatment, that began at a

well-defined time, so there is a clear distinction between covariates measured

prior to treatment, and outcomes measured after treatment.

Poorer observational study: It is difficult to say when the treatment began, and

some variables labeled as covariates may have been measured after the start of

treatment, so they might have been affected by the treatment. The distinction

between covariates and outcomes is not clear. See [34].

1.2.2 How were treatments assigned?

Randomized experiment: Treatment assignment is determined by a truly random

device. At one time, this actually meant coins or dice, but today it typically

means random numbers generated by a computer.

Better observational study: Treatment assignment is not random, but circum-

stances for the study were chosen so that treatment seems haphazard, or at least

not obviously related to the outcomes subjects would exhibit under treatment or

under control. When investigators are especially proud, having found unusual

circumstances in which treatment assignment, though not random, seems unusu-

ally haphazard, they may speak of a ‘natural experiment.’

Poorer observational study: Little attention is given to the process that made

some people into treated subjects and others into controls.

1.2.3 Were treated and control groups comparable?

Randomized experiment: Although a direct assessment of comparability is pos-

sible only for covariates that were measured, a randomized trial typically has a

table demonstrating that the randomization was reasonably effective in balancing

these observed covariates. Randomization provides some basis for anticipating

that many covariates that were not measured will tend to be similarly balanced.

Better observational study: Although a direct assessment of comparability is pos-

sible only for covariates that were measured, a matched observational study typ-

ically has a table demonstrating that the matching was reasonably effective in

balancing these observed covariates. Unlike randomization, matching for ob-

served covariates provides absolutely no basis for anticipating that unmeasured

covariates are similarly balanced.

Poorer observational study: No direct assessment of comparability is presented.
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1.2.4 Eliminating plausible alternatives to treatment effects

Randomized experiment: The most plausible alternatives to an actual treatment

effect are identified, and the experimental design includes features to shed light

on these alternatives. Typical examples include the use of placebos and other

forms of sham or partial treatment, or the blinding of subjects and investigators

to the identity of the treatment received by a subject.

Better observational study: The most plausible alternatives to an actual treatment

effect are identified, and the design of the observational study includes features

to shed light on these alternatives. Because there are many more plausible al-

ternatives to a treatment effect in an observational study than in an experiment,

much more effort is devoted to collecting data that would shed light on these

alternatives. Typical examples include multiple control groups thought to be af-

fected by different biases, or a sequence of longitudinal baseline pretreatment

measurements of the variable that will be the outcome after treatment. When

investigators are especially proud of devices included to distinguish treatment

effects from plausible alternatives, they may speak of a ‘quasi-experiment.’

Poorer observational study: Plausible alternatives to a treatment effect are men-

tioned in the discussion section of the published report.

1.2.5 Exclusion criteria

Randomized experiment: Subjects are included or excluded from the experiment

based on covariates, that is, on variables measured prior to treatment assignment

and hence unaffected by treatment. Only after the subject is included is the

subject randomly assigned to a treatment group and treated. This ensures that

the same exclusion criteria are used in treated and control groups.

Better observational study: Subjects are included or excluded from the experi-

ment based on covariates, that is, on variables measured prior to treatment assign-

ment and hence unaffected by treatment. The same criteria are used in treated

and control groups.

Poorer observational study: A person included in the control group might have

been excluded if assigned to treatment instead. The criteria for membership in

the treated and control groups differ. In one particularly egregious case, to be

discussed in §12.1, treatment was not immediately available, and any patient who

died before the treatment became available was placed in the control group; then

came the exciting news that treated patients lived longer than controls.
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1.2.6 Exiting a treatment group after treatment assignment

Randomized experiment: Once assigned to a treatment group, subjects do not

exit. A subject who does not comply with the assigned treatment, or switches

to another treatment, or is lost to follow-up, remains in the assigned treatment

group with these characteristics noted. An analysis that compares the groups as

randomly assigned, ignoring deviations between intended and actual treatment,

is called an ‘intention-to-treat’ analysis, and it is one of the central analyses

reported in a randomized trial. Randomization inference may partially address

noncompliance with assigned treatment by viewing treatment assignment as an

instrumental variable for treatment received; see §5.3 and [18].

Better observational study: Once assigned to a treatment group, subjects do not

exit. A subject who does not comply with the assigned treatment, or switches to

another treatment, or is lost to follow-up, remains in the assigned treatment group

with these characteristics noted. Inference may partially address noncompliance

by viewing treatment assignment as an instrumental variable for treatment re-

ceived; see §5.3 and [22].

Poorer observational study: There is no clear distinction between assignment to

treatment, acceptance of treatment, receipt of treatment, or switching treatments,

so problems that arise in experiments seem to be avoided, when in fact they are

simply ignored.

1.2.7 Study protocol

Randomized experiment: Before beginning the actual experiment, a written pro-

tocol describes the design, exclusion criteria, primary and secondary outcomes,

and proposed analyses.

Better observational study: Before examining outcomes that will form the basis

for the study’s conclusions, a written protocol describes the design, exclusion

criteria, primary and secondary outcomes, and proposed analyses; see Chapter

19.

Poorer observational study: If sufficiently many analyses are performed, some-

thing publishable will turn up sooner or later.

1.3 Maimonides’ Rule

In 1999, Joshua Angrist and Victor Lavy [3] published an unusual and much ad-

mired study of the effects of class size on academic achievement. They wrote [3,

pages 533-535]:

[C]ausal effects of class size on pupil achievement have proved very difficult to measure.
Even though the level of educational inputs differs substantially both between and within
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schools, these differences are often associated with factors such as remedial training or
students’ socioeconomic background . . . The great twelfth century Rabbinic scholar, Mai-
monides, interprets the Talmud’s discussion of class size as follows: ‘Twenty-five children
may be put in charge of one teacher. If the number in the class exceeds twenty-five but is
not more than forty, he should have an assistant to help with instruction. If there are more
than forty, two teachers must be appointed.’ . . . The importance of Maimonides’ rule for
our purposes is that, since 1969, it has been used to determine the division of enrollment
cohorts into classes in Israeli public schools.

In most places at most times, class size has been determined by the affluence or

poverty of a community, its enthusiasm or skepticism about the value of educa-

tion, the special needs of students for remedial or advanced instruction, the obscure,

transitory, barely intelligible obsessions of bureaucracies, and each of these deter-

minants of class size clouds its actual effect on academic performance. However,

if adherence to Maimonides’ rule were perfectly rigid, then what would separate a

school with a single class of size 40 from the same school with two classes whose

average size is 20.5 is the enrollment of a single student.

Maimonides’ rule has the largest impact on a school with about 40 students in

a grade cohort. With cohorts of size 40, 80, and 120 students, the steps down in

average class size required by Maimonides’ rule when an additional student enrolls

are, respectively, from 40 to 20.5, from 40 to 27, and from 40 to 30.25. For this

reason, we will look at schools with fifth grade cohorts in 1991 with between 31

and 50 students, where average class sizes might be cut in half by Maimonides’

rule. There were 211 such schools, with 86 of these schools having between 31 and

40 students in fifth grade, and 125 schools having between 41 and 50 students in the

fifth grade.

Adherence to Maimonides’ rule is not perfectly rigid. In particular, Angrist and

Lavy [3, page 538] note that the percentage of disadvantaged students in a school

“is used by the Ministry of Education to allocate supplementary hours of instruction

and other school resources.” Among the 211 schools with between 31 and 50 stu-

dents in fifth grade, the percentage disadvantaged has a slightly negative Kendall’s

correlation of −0.10 with average class size, which differs significantly from zero

(P-value = 0.031), and it has more strongly negative correlations of −0.42 and

−0.55, respectively, with performance on verbal and mathematics test scores. For

this reason, 86 matched pairs of two schools were formed, matching to minimize to

total absolute difference in percentage disadvantaged. Figure 1.1 shows the paired

schools, 86 schools with 31 and 40 students in fifth grade, and 86 schools with be-

tween 41 and 50 students in the fifth grade. After matching, the upper left panel

in Figure 1.1 shows that the percentage of disadvantaged students was balanced;

indeed, the average absolute difference within a pair was less than 1%. The upper

right panel in Figure 1.1 shows Maimonides’ rule at work: with some exceptions,

the slightly larger schools had substantially smaller class sizes. The bottom panels

of Figure 1.1 show the average mathematics and verbal test performance of these

fifth graders, with somewhat higher scores in the schools with between 41 and 50

fifth graders, where class sizes tended to be smaller.
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Fig. 1.1 Eighty-six pairs of
two Israeli schools, one with
between 31 and 40 students in
the fifth grade, the other with
between 41 and 50 students
in the fifth grade, matched
for percentage of students
in the school classified as
disadvantaged. The figure
shows that the percentage
of disadvantaged students
is balanced, that imperfect
adherence to Maimonides’
rule has yielded substantially
different average class sizes,
and test scores were higher
in the group of schools with
predominantly smaller class
sizes.
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1.4 Seat Belts in Car Crashes

Do safety belts prevent fatalities in automobile accidents? Car crashes vary in sever-

ity, depending upon speed, road traction, the reaction time of a driver stepping on

the brakes, and physical forces that are rarely, if ever, measured. Wearing safety

belts is a precaution. Many people, perhaps most people, who wear safety belts

think that a serious accident is possible; this possibility is salient, and small incon-

veniences seem tolerable if the risk is reduced. In contrast, small inconveniences

may seem intolerable if a serious accident is seen as a remote possibility. Does

one take a single precaution? Perhaps some people do, but others will take several

precautions. If cautious drivers wear seat belts, but also drive at slower speeds, at a

greater distance from the car ahead, with greater allowance for road conditions – if
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Table 1.1 Crashes in FARS 1975–1983 in which the front seat had two occupants, a driver and a
passenger, with one belted, the other unbelted, and one died and one survived.

Driver Not Belted Belted
Passenger Belted Not Belted

Driver Died Passenger Survived 189 153
Driver Survived Passenger Died 111 363

risk-tolerant drivers do not wear seat belts, drive faster and closer, ignore road con-

ditions – then a simple comparison of belted and unbelted drivers may credit seat

belts with effects that reflect, in part, the severity of the crash.

Using data from the U.S. Fatal Accident Reporting System (FARS), Leonard

Evans [14] looked at crashes in which there were two individuals in the front seat,

one belted, the other unbelted, with at least one fatality. In these crashes, several

otherwise uncontrolled features are the same for driver and passenger: speed, road

traction, distance from the car ahead, reaction time. Admittedly, risk in the pas-

senger seat may differ from risk in the driver seat, but in this comparison there are

belted drivers with unbelted passengers and unbelted drivers with belted passengers,

so this issue may be examined. Table 1.1 is derived from Evans’ [14] more detailed

tables. In this table, when the passenger is belted and the driver is not, more often

than not, the driver dies; conversely, when the driver is belted and the passenger is

not, more often than not, the passenger dies.

Everyone in Table 1.1 is at least sixteen years of age. Nonetheless, the roles

of driver and passenger are connected to law and custom, for parents and children,

husbands and wives, and others. For this reason, Evans did further analyses, for

instance taking account of the ages of driver and passenger, with similar results.

Evans [14, page 239]wrote:

The crucial information for this study is provided by cars in which the safety belt use of
the subject and other occupant differ . . . There is a strong tendency for safety belt use or
non-use to be the same for different occupants of the same vehicle . . . Hence, sample sizes
in the really important cells are . . . small . . .

This study is discussed further in §5.2.6.

1.5 Money for College

To what extent, if any, does financial aid increase college attendance? It would not

do to simply compare those who received aid with those who did not. Decisions

about the allocation of financial aid are often made person by person, with consider-

ation of financial need and academic promise, together with many other factors. A

grant of financial aid is often a response to an application for aid, and the decision

to apply or not is likely to reflect an individual’s motivation for continued education

and competing immediate career prospects.
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To estimate the effect of financial aid on college attendance, Susan Dynarski [13]

used “a shift in aid policy that affect[ed] some students but not others.” Between

1965 and 1982, a program of the U.S. Social Security Administration provided sub-

stantial financial aid to attend college for the children of deceased Social Security

beneficiaries, but the U.S. Congress voted in 1981 to end the program. Using data

from the National Longitudinal Survey of Youth, Dynarski [13] compared college

attendance of high school seniors with deceased fathers and high school seniors

whose fathers were not deceased, in 1979–1981 when aid was available, and in

1982–1983 after the elimination of the program. Figure 1.2 depicts the comparison.

In 1979–1981, while the Social Security Student Benefit Program provided aid to

students with deceased fathers, these students were more likely than others to attend

college, but in 1982–1983, after the program was eliminated, these students were

less likely than others to attend college.

In Figure 1.2, the group that faced a change in incentives exhibited a change

in behavior, whereas the group that faced no change in incentives exhibited little

change in behavior. In the spirit of §1.2.4, Figure 1.2 studies one treatment using

four groups, where only certain patterns of response among the four groups are

compatible with a treatment effect; see also [7, 37] and [47, Chapter 5].

Is being the child of a deceased father a random event? Apparently not. It is

unrelated to the child’s age and gender, but the children of deceased fathers had

mothers and fathers with less education and were more likely to be black; how-

ever, these differences were about the same in 1979–1981 and 1982–1983, so these

differences alone are not good explanations of the shift in college attendance [13,

Table 1]. This study is discussed further in Chapter 13.

1.6 Nature’s ‘Natural Experiment’

In asking whether a particular gene plays a role in causing a particular disease, a key

problem is that the frequencies of various forms of a gene (its alleles) vary some-

what from one human community to the next. At the same time, habits, customs,

diets, and environments also vary somewhat from one community to the next. In

consequence, an association between a particular allele and a particular disease may

not be causal: gene and disease may both be associated with some cause, such as

diet, that is not genetic. Conveniently, nature has created a natural experiment.

With the exception of sex-linked genes, a person receives two versions of each

gene, perhaps identical, one from each parent, and transmits one copy to each child.

To a close approximation, in the formation of a fertilized egg, each parent con-

tributes one of two possible alleles, each with probability 1
2 , the contributions of the

two parents being independent of each other, and independent for different children

of the same parents. (The transmissions of different genes that are neighbors on the

same chromosome are not generally independent; see [51, §15.4]. In consequence,

a particular gene may be associated with a disease not because it is a cause of the

disease, but rather because it is a marker for a neighboring gene that is a cause.)
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Several strategies use this observation to create natural experiments that study

genetic causes of a specific disease. Individuals with the disease are identified.

Richard Spielman, Ralph McGinnis, and Warren Ewens [49] used genetic informa-

tion on the diseased individual and both parents in their Transmission/Disequilibrium

Test (TDT). The test compares the diseased individuals to the known distributions

of alleles for the hypothetical children their parents could produce. David Curtis

[12], Richard Spielman and Warren Ewens [50], and Michael Boehnke and Carl

Langefeld [5] suggested using genetic information on the diseased individual and

one or more siblings from the same parents, which Spielman and Ewens called the

sib-TDT. If the disease has no genetic cause linked to the gene under study, then

the alleles from the diseased individual and her siblings should be exchangeable.

The idea underlying the sib-TDT is illustrated in Table 1.2, using data from

Boehnke and Langefeld [5, Table 5], their table being derived from work of Mar-

garet Pericak-Vance and Ann Saunders; see [44]. Table 1.2 gives the frequency

of the ε4 allele of the apolipoprotein E gene in 112 individuals with Alzheimer

disease and in an unaffected sibling of the same parents. Table 1.2 counts sib-

ling pairs, not individuals, so the total count in the table is 112 pairs of an af-

Fig. 1.2 College attendance
by age 23 in four groups:
before (1979–1981) and af-
ter (1982–1983) the end of
the Social Security Student
Benefit Program for children
whose fathers were deceased
(FD) or not deceased (FND).
Values are proportions with
standard errors (se).
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Table 1.2 Alzheimer disease and the apolipoprotein E ε4 allele in 112 sibling pairs, one with
Alzheimer disease (affected), the other without (unaffected). The table counts pairs, not individ-
uals. The rows and columns of the table indicate the number (0, 1, or 2) of ApoE alleles for the
affected and unaffected sibling.

Unaffected Sib
# ApoEε4 Alleles 0 1 2

0 23 4 0
Affected Sib 1 25 36 2

2 8 8 6

fected and an unaffected sibling. Each person can receive 0, 1, or 2 copies of

the ε4 allele from parents. For any one pair, write (aff,unaff) for the number of

ε4 alleles possessed by, respectively, the affected and unaffected sibling. In Ta-

ble 1.2, there are 25 pairs with (aff,unaff) = (1,0). If Alzheimer disease had no

genetic link with the apolipoprotein E ε4 allele, then nature’s natural experiment

implies that the chance that (aff,unaff) = (2,0), say, is the same as the chance that

(aff,unaff) = (0,2), and more generally, the chance that (aff,unaff) = (i, j) equals

the chance that (aff,unaff) = ( j, i), for i, j = 0,1,2. In fact, this does not appear

to be the case in Table 1.2. For instance, there are eight sibling pairs such that

(aff,unaff) = (2,0) and none such that (aff,unaff) = (0,2). Also, there are 25 pairs

such that (aff,unaff) = (1,0) and only 4 pairs such that (aff,unaff) = (0,1).
A distribution with the property

Pr{(aff,unaff) = (i, j)} = Pr{(aff,unaff) = ( j, i)} for all i, j

is said to be exchangeable. In the absence of a genetic link with disease, na-

ture’s natural experiment ensures that the distribution of allele frequencies in af-

fected/unaffected sib pairs is exchangeable. This creates a test, the sib transmission

disequilibrium test [50] that is identical to a certain randomization test appropriate

in a randomized experiment [31].

1.7 What This Book Is About

Basic structure

Design of Observational Studies has four parts, ‘Beginnings,’ ‘Matching,’ ‘Design

Sensitivity,’ and ‘Planning Analysis,’ plus a brief summary. Part I, ‘Beginnings,’ is

a conceptual introduction to causal inference in observational studies. Chapters 2,

3, and 5 of Part I cover concisely, in about one hundred pages, many of the ideas

discussed in my book Observational Studies [38], but in a far less technical and less

general fashion. Parts II–IV cover material that, for the most part, has not previously

appeared in book form. Part II, ‘Matching,’ concerns the conceptual, practical, and

computational aspects of creating a matched comparison that balances many ob-
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served covariates. Because matching does not make use of outcome information,

it is part of the design of the study, what Cochran [9] called “setting up the com-

parisons”; that is, setting up the structure of the experimental analog. Even if the

matching in Part II is entirely successful, so that after matching, matched treated and

control groups are comparable with respect to all observed covariates, the question

or objection or challenge will inevitably be raised that subjects who look compa-

rable in observed data may not actually be comparable in terms of covariates that

were not measured. Chapters 3 and 5 and Parts III and IV address this central con-

cern. Part III, ‘Design Sensitivity,’ discusses a quantitative tool for appraising how

well competing designs (or data generating processes) resist such challenges. In

part, ‘Design Sensitivity’ will provide a formal appraisal of the design strategies

introduced informally in Chapter 5. Part IV discusses those activities that follow

matching but precede analysis, notably planning the analysis.

Structure of Part I: Beginnings

Observational studies are built to resemble simple experiments, and Chapter 2 re-

views the role that randomization plays in experiments. Chapter 2 also introduces

elements and notation shared by experiments and observational studies. Chapter

3 discusses two simple models for observational studies, one claiming that adjust-

ments for observed covariates suffice, the other engaging the possibility that they

do not. Chapter 3 introduces the propensity score and sensitivity analysis. Obser-

vational studies are built from three basic ingredients: opportunities, devices and

instruments. Chapter 5 introduces these ideas in an informal manner, with some of

the formalities developed in Part III and others developed in [38, Chapters 4, 6–9].

My impression is that many observational studies dissipate either by the absence

of a focused objective or by becoming mired in ornate analyses that may overwhelm

an audience but are unlikely to convince anyone. Neither problem is common in

randomized experiments, and both problems are avoidable in observational studies.

Chapter 4 discusses the first problem, while Chapter 6 discusses the second. In a

successful experiment or observational study, competing theories make conflicting

predictions; this is the concern of Chapter 4. Transparency means making evidence

evident, and Chapter 6 discusses how this is done.

Structure of Part II: Matching

Part II, entitled ‘Matching,’ is partly conceptual, partly algorithmic, partly data an-

alytic. Chapter 7 is introductory: it presents a matched comparison as it might (and

did) appear in a scientific journal. The basic tools of multivariate matching are de-

scribed and illustrated in Chapter 8, and various common practicalities are discussed

in Chapter 9. Later chapters in Part II discuss specific topics in matching, including

fine balance, matching with multiple groups or without groups, and risk-set match-

ing. Matching in the computer package R is discussed in Chapter 13.
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Structure of Part III: Design Sensitivity

In Chapter 3, it is seen that some observational studies are sensitive to small unob-

served biases, whereas other studies are insensitive to quite large unobserved biases.

What features of the design of an observational study affect its sensitivity to bias

from covariates that were not measured? This is the focus of Part III.

Chapter 14 reviews the concept of power in a randomized experiment, then de-

fines the power of a sensitivity analysis. Design sensitivity is then defined. Design

sensitivity is a number that defines the sensitivity of an observational study design

to unmeasured biases when the sample size is large. Many factors affect the design

sensitivity, including the issues discussed informally in Chapter 5. Chapter 15 re-

vives a very old debate between John Stuart Mill and Sir Ronald Fisher about the

relevance to causal inference of the heterogeneity of experimental material. Mill

believed it mattered quite a bit; Fisher denied this. Sometimes a treatment has lit-

tle effect on most people and a dramatic effect on some people. In one sense, the

effect is small — on average it is small — but for a few people it is large. Is an

effect of this sort highly sensitive to unmeasured biases? Chapter 16 provides the

answer. Chapter 17 takes up themes from Chapter 5, specifically coherence and

dose-response, and evaluates their contribution to design sensitivity.

Structure of Part IV: Planning Analysis

The sample has been successfully matched — treated and control groups look com-

parable in terms of measured covariates — and Part IV turns to planning the analy-

sis. Chapter 18 concerns three emprical steps that aid planning the analysis: sample

splitting to improve design sensitivity, checking that analytical adjustments are fea-

sible, and thick description of a few matched pairs. After reviewing Fisher’s advice

— “make your theories elaborate” — Chapter 19 discusses planning the analysis of

an observational study.

A less technical introduction to observational studies

The mathematician Paul Halmos wrote two essays, “How to write mathematics” and

“How to talk mathematics.” In the latter, he suggested that in a good mathematical

talk, you don’t prove everything, but you do prove something to give the flavor of

proofs for the topic under discussion. In the spirit of that remark, Observational
Studies [38] writes about statistics, where Design of Observational Studies talks

about statistics. This is done in several ways.

We often develop an understanding by taking something apart and putting it back

together. In statistics, this typically means looking at an unrealistically small ex-

ample in which it is possible to see the details of what goes on. For this reason,

I discuss several unrealistically small examples in parallel with real examples of

practical size. For instance, Chapter 2 discusses two versions of a paired random-
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ized experiment, one with five pairs, the other with 185 pairs. The five pairs are a

random sample from the 185 pairs. With 5 pairs, there are 25 = 32 possible treat-

ment assignments, and it is possible to see what is happening. With 185 pairs, there

are 2185 = 4.9× 1055 possible treatment assignments, and it is not possible to see

what is happening, although nothing new is happening beyond what you saw hap-

pening with five pairs. The larger experiment is just larger, somewhat awkward to

inspect, but no different conceptually. In a similar way, Chapter 7 discusses the

construction of 344 pairs matched for many covariates, while Chapter 8 discusses

the construction of 21 pairs matched for three covariates. With 21 pairs, you can

see what is happening, whereas with 344 pairs you cannot see as much, but nothing

new is happening.

Chapter 2 discusses a number of very old, very central concepts in statistics.

These include: the role of randomization in experiments, the nature of randomiza-

tion tests, obtaining confidence intervals by inverting hypothesis tests, building an

estimator using an estimating equation, and so on. This material is so old and central

to the subject that an article in a statistical journal might reduce the entire chapter

to a paragraph, and that would be fine for someone who had been around this track

a few times. My goal in Chapter 2 is not concise expression. My goal in Chapter 2

is to take you around this track a few times.

To prove something, not everything, I develop statistical theory only for the case

of matched pairs with continuous responses. The case of matched pairs is the sim-

plest nontrivial case. All of the important concepts appear in the case of matched

pairs, but most of the technical issues are easy. Randomization distributions for

matched pairs are little more than a series of independent coin flips. Everybody can

do coin flips. In a randomized experiment, the coin flips are fair, but in a sensitiv-

ity analysis, the coin flips may be biased. The matching methods in Part II are not

restricted to pair matching — matching with multiple controls, matching with vari-

able controls, full matching, risk set matching are all there — however, if you want

to work through the derivations of the associated statistical analyses for continuous,

discrete, censored, and multivariate responses, you will need to turn to [38] or the

references discussed in ‘Further Reading.’

Focusing the theoretical presentation on matched pairs permits discussion of key

concepts with the minimum of mathematics. Unlike statistical analysis, research de-

sign yields decisions rather than calculations — decisions to ask certain questions,

in certain settings, collecting certain data, adding certain design elements, attending

to certain patterns — and for such decisions, the concepts are more important than

details of general computations. What is being left out by focusing on matched

pairs? For one thing, sensitivity analyses in other cases are easy to do but require

more mathematical machinery to justify. Some of this machinery is aesthetically

pleasing, for instance exact results using Holley’s inequality [1, 6, 25] in I. R. Sav-

age’s [45] finite distributive lattice of rank orders or samples; see [35, 36] and [38,

§4]. Some of this machinery uses large sample approximations or asymptotics that

work easily and well even in small samples, but discussion of these approximations

means a step up in the level of technical detail; see [16] and [38, §4]. To get a

feeling for the difference between the paired case and other cases, see [39], where
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both cases are discussed in parallel, one right after the other. If you need to do a

sensitivity analysis for a situation other than matched pairs, see [38, §4] or other

references in Further Reading. Another item that is left out of the current discus-

sion is a formal notation and model for multiple groups, as opposed to a treated and

a control group; see [38, §8] for such a notation and model. Such a model adds

more subscripts and symbols with few additional concepts. The absence of such a

notation and model has a small effect on the discussion of multiple control groups

(§5.2.2), differential effects (§5.2.6), the presentation of the matching session in R
for a difference-in-differences example in Chapter 13, and the planned analysis with

two control groups (§19.3); specifically, these topics are described informally with

reference to the literature for formal results.

Dependence among chapters

Design of Observational Studies is highly modular, so it is not necessary to read

chapters in order. Part II may be read before or after Part I or not at all; Part II is

not needed for Parts III and IV. Part III may be read before or after Part IV.

In Part I, Chapter 5 depends on Chapter 3, which in turn depends on Chapter 2.

The beginning of Chapter 2, up through §2.4.3, is needed for Chapters 3 and 5, but

§2.5 is not essential except for Chapter 16, and the remainder of Chapter 2 is not

used later in the book. Chapters 4 and 6 may be read at any time or not at all.

In Part II, most chapters depend strongly on Chapter 8 but only weakly on each

other. Read the introductory Chapter 7 and Chapter 8; then, read what you like in

Part II.

The situation is similar in Part III. All of the chapters of Part III depend upon

Chapter 14, which in turn depends on Chapter 5. The remaining chapters of Part III

may be read in any order or not at all.

The two chapters in Part IV may be read out of sequence, and both depend upon

Chapter 5.

At the back of the book, there is a list of symbols and a glossary of statistical

terms. In the index, a bold page number locates the definition of a technical term

or symbol.

Some books (e.g., [38]) contain practice problems for you to solve. My sense

is that the investigator planning an observational study has problems enough, so

instead of further problems, at the back of the book there is a list of solutions.

As a scholar at a research university, I fall victim to periodic compulsions to make

remarks that are largely unintelligible and totally unnecessary. These remarks are

found in appendices and footnotes. Under no circumstances read them. If you read

a footnote, you will suffer a fate worse than Lot’s wife.1

1 She turned into a pillar of salt when she looked where her husband instructed her not to look.
Opposed to the story of Lot and his wife is the remark of Immanuel Kant: “Sapere aude” (Dare to
know) [27, page 17]. You are, by the way, off to a bad start with these footnotes.
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1.8 Further Reading

One might reasonably say that the distinction between randomized experiments and

observational studies was introduced by Sir Ronald Fisher’s [15] invention of ran-

domized experimentation. Fisher’s book [15] of 1935 is of continuing interest. As

noted in §1.2, William Cochran [9] argued that observational studies should be un-

derstood in relation to experiments; see also the important paper in this spirit by

Donald Rubin [41]. A modern discussion of quasi-experiments is given by William

Shadish, Thomas Cook , and Donald Campbell [47], and Campbell’s [8] collected

papers are of continuing interest. See also [17, 33, 54]. Natural experiments in

medicine are discussed by Jan Vandenbroucke [53] and the report edited by Michael

Rutter [43], and in economics by Joshua Angrist and Alan Kruger [2], Timothy

Besley and Anne Case [4], Daniel Hamermesh [19], Bruce Meyer [33], and Mark

Rosenzweig and Kenneth Wolpin [40]. Natural experiments are prominent also in

recent developments in genetic epidemiology [5, 12, 31, 49, 50]. The papers by Jerry

Cornfield and colleagues [11], Austin Bradford Hill [23] , and Mervyn Susser [52]

remain highly influential in epidemiology and are of continuing interest. Miguel

Hernán and colleagues [22] illustrate the practical importance of adhering to the

experimental template in designing an observational study. For a general discussion

of observational studies, see [38].
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Chapter 2
Causal Inference in Randomized Experiments

Abstract An observational study is an empiric investigation of treatment effects

when random assignment to treatment or control is not feasible. Because observa-

tional studies are structured to resemble simple randomized experiments, an under-

standing of the role randomization plays in experiments is important as background.

As a prelude to the discussion of observational studies in later chapters, the current

chapter contains a brief review of the logic of causal inference in a randomized ex-

periment. Only one simple case is discussed in detail, namely a randomized paired

experiment in which subjects are paired before randomization and one subject in

each pair is picked at random to receive treatment, the other receiving control. Al-

though a foundation for later chapters, much of the material in this chapter is quite

old, dating from Sir Ronald Fisher’s work in the 1920s and 1930s, and it is likely to

be familiar from other contexts, such as a course in the design of experiments.

2.1 Two Versions of the National Supported Work Experiment

2.1.1 A version with 185 pairs and a version with 5 pairs

Though discussed daily in the newspaper, unemployment is a curious phenomenon.

Defined abstractly, it implies that someone entered an active labor market intending

to sell their labor but was unable to find a buyer, often for long periods of time. Of

course, the abstract definition leaves out most of what is happening.

Robert LaLonde [30] reviews several decades of

public sector sponsored employment and training programs . . . [intended to] enhance par-
ticipants’ productive skills and, in turn, increase their future earnings and tax payments and
reduce their dependence on social welfare benefits. [. . . The] primary recipients of public
sector sponsored training [have been] economically disadvantaged or dislocated workers.
[30, page 149]
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The National Supported Work Demonstration (NSW) included a randomized ex-

periment evaluating the effects of one such program [7, 24]. Kenneth Couch writes:

The NSW provided work experiences primarily in service occupations for females and con-
struction for males. The jobs were designed to be consistent with a concept known as
graduated stress. Stress within the working environment increased gradually during the
training period until it simulated the workplace norms of the private sector. At that point,
not more than 18 month after entry, individuals who received services provided by the NSW
had to attempt a transition to unsubsidized employment. Screening criteria for the NSW
limited participation to individuals severely handicapped in the labor market. . . . After
screening by a local social service agency and referral into the program, each participant
was randomly assigned to a treatment (experimental) or control group. Treatments received
the services offered by the NSW. Controls continued enrollment in other available social
programs [7, pages 381–382].

The current chapter will use pieces of the NSW experiment to illustrate the logic

of randomized experimentation. A reader interested not in randomized experimen-

tation but rather in the full NSW program and its effects might begin with Couch’s

[7] study of the program’s long term effects. The NSW became important in think-

ing about methodology for observational studies in economics because of a series

of studies [12, 19, 29, 57], beginning with LaLonde’s 1986 study [29], in which

the randomized control group was set aside and various analytical methods were

applied to nonrandomized controls from survey data.

Because the goal is to discuss the logic of randomized experiments in a manner

that prepares for the discussion of observational studies in later chapters, several ad-

justments and simplifications were made. First, the data set is what Rajeev Dehejia

and Sadek Wahba [12, Table 1] call the “RE74 subset,” which in turn is a subset

of the data used by LaLonde [29]. The subset consists of males who were ran-

domized to treatment or control after December 1975 and who had left the program

before January 1978, with annual earnings recorded in 1974, 1975 and 1978. Be-

cause of these requirements, earnings in 1974 and 1975 are pretreatment covariates

unaffected by the NSW program, and earnings in 1978 is an outcome that may be af-

fected by treatment. Furthermore, to emphasize the parallel with matched observa-

tional studies, the randomized treated and control groups were matched: specifically,

all 185 treated men were matched to 185 untreated controls using eight covariates,

forming 185 matched pairs. 1

For the 185 matched pairs, Table 2.1 shows the distribution of the eight covari-

ates. Before treatment, the treated and control groups looked fairly similar.

1 As mentioned in Chapter 1, to keep the theoretical technicalities to a minimum, statistical theory
is developed only for the case of matched pairs, so I have slightly reshaped the NSW experiment
into a matched pair study. Randomization inference for unmatched randomized experiments is
similar and is discussed in [44, Chapter 2]. The matching used precisely the methods described
later in §8.4, using a penalty function to implement calipers on the propensity score, with the rank-
based Mahalanobis distance used within calipers. Multivariate matching before randomization
can improve the efficiency of a randomized experiment; see [17]. For illustration only in this
expository chapter, the matching is done after random assignment, which entails discarding some
of the randomized controls, something I would not do if the goal were to perform the most efficient
analysis of the NSW experiment.
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Table 2.1 Pretreatment covariates for 185 matched pairs from the NSW randomized experiment.
For age and years of education, means, median (50%) and quartiles (25% and 75%) are given. For
earnings, the mean of all earnings (including zero earnings) and the percentage of zero earnings
are given. For binary variables, the percentage is given.

Covariate Group Mean 25% 50% 75%

Age Treated 25.82 20 25 29
Control 25.70 20 25 29

Years of Treated 10.35 9 11 12
Education Control 10.19 9 10 11

Covariate Group Mean Percent $0

Earnings in $ Treated 2096 71%
in 1974 Control 2009 75%

Earnings in $ Treated 1532 60%
in 1975 Control 1485 64%

Covariate Group Percent

Black Treated 84%
Control 85%

Hispanic Treated 6%
Control 5%

Married Treated 19%
Control 20%

No High School Treated 71%
Degree Control 77%

Figure 2.1 displays the earnings in 1978 after treatment for the 185 matched pairs

of men. In the boxplot of 185 matched pair differences, the dotted lines are at 0 and

±5000. It appears that treated men earned somewhat more.

In general, in this book, I will use small examples to illustrate the details of what

goes on, and examples of practical size to illustrate analysis and interpretation. In

that spirit, Table 2.2 is a random sample of five of the 185 pairs; it will be used to

illustrate the details of randomization inference. The sample happens to consist of

pairs 15, 37, 46, 151, and 181 of the 185 pairs.

2.1.2 Basic notation

Table 2.2 exemplifies notation that will be used throughout the book. The index

of the pair is i, i = 1,2, . . . ,5 = I, and the index of the person in the pair is j, j =
1,2. In Table 2.2 and throughout the book, Z indicates treatment, Z = 1 for treated,

Z = 0 for control, x is an observed covariate — there are eight covariates, xi jk, k =
1, . . . ,8 = K, in Table 2.2 — and R indicates a response, in this case, earnings after

the end of treatment in 1978. The first pair in Table 2.2 consists of two unmarried,

young black men with seven or eight years of education and no earnings in 1974

and 1975, before the start of treatment; after treatment, in 1978, the treated man

earned more. The treated-minus-control matched pair difference in 1978 earnings
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Fig. 2.1 Earnings in 1978, after treatment, for 185 pairs of men in the NSW randomized experi-
ment. The dotted lines are at −$5000, $0, and $5000.

Table 2.2 Five pairs sampled at random from the 185 pairs in the NSW randomized experiment.
The variables are: id = pair number among the 185 pairs; pairs 1 to 5; person 1 or 2 in a pair; treat=1
if treated, 0 if control; age in years; edu=education in years; black=1 if black, 0 otherwise; hisp=1
if hispanic, 0 otherwise; married=1 if married, 0 otherwise; no degree=1 if no high school degree, 0
otherwise; and re74, re75, and re78 are earnings in dollars in 1974, 1975, and 1978. Also, in pair i,
Yi is the treated-minus-control matched pair difference in 1978 earnings, Yi = (Zi1−Zi2)(Ri1−Ri2).

treat age edu black hisp married nodegree re74 re75 re78
id i j Zi j xi j1 xi j2 xi j3 xi j4 xi j5 xi j6 xi j7 xi j8 Ri j Yi
15 1 1 1 17 7 1 0 0 1 0 0 3024 1456
15 1 2 0 18 8 1 0 0 1 0 0 1568

37 2 1 1 25 5 1 0 0 1 0 0 6182 3988
37 2 2 0 24 7 1 0 0 1 0 0 2194

46 3 1 1 25 11 1 0 1 1 0 0 0 −45
46 3 2 0 25 11 1 0 1 1 0 0 45

151 4 1 1 28 10 1 0 0 1 0 2837 3197 −2147
151 4 2 0 22 10 1 0 0 1 0 2175 5344

181 5 1 1 33 12 1 0 1 0 20280 10941 15953 3173
181 5 2 0 28 12 1 0 1 0 10585 5551 12780

is Yi = (Zi1 −Zi2)(Ri1 −Ri2), so Y1 = (1−0)(3024−1568) = $1456 for the first

pair of men.

It is convenient to have a symbol that represents the K covariates together, and

vector notation does this, so xi j =
(
xi j1, . . . ,xi jK

)T
contains the K covariate values

for the jth person or unit in the ith pair. If you are not familiar with vector notation,

it will not be a problem here. Vectors and vector notation have many uses, but for
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the most part, in the current book they are used simply to give concise names to

arrays of data. For instance, in Table 2.2, x11 = (17,7,1,0,0,1,0,0)T contains the

covariate values for the first man in the first pair.

In the same way, Z indicates the treatment assignments for all 2I subjects in

the I matched pairs, Z = (Z11,Z12,Z21, . . . ,ZI2)
T . For the I = 5 pairs in Table 2.2,

Z = (1,0,1,0,1,0,1,0,1,0)T . The notation is slightly redundant, because Zi2 =
1−Zi1, so that, now and then, when compact expression is needed, only the Zi1’s

are mentioned. Also, R = (R11,R12, . . . ,RI2)
T and Y = (Y1,Y2, . . . ,YI)

T .

It is possible to match for observed covariates, but not for a covariate that was not

observed. There is an important sense in which a failure to match or control for an

unobserved covariate presents no special problem in a randomized experiment but

can present substantial problems in an observational study. Clarification of this dis-

tinction is one goal of the current chapter. For this purpose, it is convenient to give

a name, ui j, to the unobserved covariate. In the current chapter, which is focused

on inference in randomized experiments, ui j could be any unmeasured covariate (or

any vector containing several unmeasured covariates). Success in finding and keep-

ing a job may depend on aspects of personality, intelligence, family and personal

connections, and physical appearance; then, in this chapter in connection with the

NSW experiment, ui j could be a vector of measurements of these attributes, a vector

that was not measured by the investigators. Also, u = (u11,u12, . . . ,uI2)
T .

To aid in reading the table, subject j = 1 is always the treated subject and subject

j = 2 is always the control subject; however, strictly speaking, one should not do

this. Strictly speaking, i j is the ‘name’ of a unique person; that person had his name,

i j, before treatments were randomly assigned. In a paired randomized experiment,

Zi1 is determined by I independent flips of a fair coin, so Z11 = 1 happens with

probability 1
2 and Z11 = 0 happens with probability 1

2 ; then Zi2 = 1−Zi1. That is, in

Table 2.2, Zi1 is 1 and Zi2 is 0 for every i, but this would happen by chance in a paired

randomized experiment with I = 5 pairs with probability
(

1
2

)5 = 1
32 = 0.03125.

Strictly speaking, some of the Zi1’s should be 1 and some of the Zi2’s should be 1.

Quantities in statistical computations, such as the treated-minus-control difference

in responses, Yi = (Zi1 −Zi2)(Ri1 −Ri2), are unaffected by the ordering of the table.

So there is a small inconsistency between the logic of random assignment and the

form of a readable table. Having mentioned this once, I will adhere to the logic of

random assignment in theoretical discussions, present tables in readable form, and

ignore the small inconsistency.

2.2 Treatment Effects in Randomized Experiments

2.2.1 Potential responses under alternative treatments

In Table 2.2, the first man, (i, j) = (1,1), was randomly assigned to treatment,

Z11 = 1, and had earnings of R11 = $3024 in 1978, but things might have been
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different. Had the coin fallen differently, the first man, (i, j) = (1,1), might have

been randomly assigned to control, Z11 = 0, and in this case his earnings in 1978

might have been different. We will never know what this first man’s earnings would

have been had the coin fallen differently, had he been assigned to control. Perhaps

the treatment was completely ineffective, and perhaps this first man would have held

the same job, with the same earnings, namely $3024, had he been assigned to con-

trol. Or perhaps the treatment raised his earnings, and his earnings under control

would have been lower. We will never know about this one man, but with 370 men

in 185 pairs, half randomly assigned to treatment, the others to control, we can say

something about what would have happened to the 370 men under treatment and

under control.

Not only the first man but each man (i, j) has two potential responses, a level

of earnings he would exhibit in 1978 if assigned to treatment, rTi j, and a level of

earnings he would exhibit in 1978 if assigned to control, rCi j. We see one of these.

Specifically, if (i, j) were assigned to treatment, Zi j = 1, we would see rTi j, but if

(i, j) were assigned to control, Zi j = 0, we would see rCi j. The response, Ri j, we

actually observe from (i, j) — that is, the 1978 earnings actually recorded in Table

2.2 — equal rTi j if Zi j = 1 or rCi j if Zi j = 0; that is, in a formula, Ri j = Zi j rTi j +
(1−Zi j) rCi j. Also, rT = (rT 11,rT 12, . . . ,rT I2)

T and rC = (rC11,rC12, . . . ,rCI2)
T .

To say that the treatment has no effect on this response from (i, j) is to say rCi j =
rTi j. To say that the treatment caused (i, j)’s earnings to increase by $1000 is to

say rTi j = rCi j + 1000 or rTi j − rCi j = 1000. We will never be in a position to

confidently assert either of these things about a single man. It is, however, a very

different thing to assert that all 370 men were unaffected by the treatment — to

assert that rCi j = rTi j for i = 1,2, . . .185, j = 1,2; in a randomized experiment, we

may be in a position to confidently deny that. The hypothesis that the treatment had

no effect on anyone, namely H0 : rCi j = rTi j for i = 1,2, . . .185, j = 1,2, is known

as Ronald Fisher’s [13] sharp null hypothesis of no effect. This hypothesis may be

written compactly as H0 : rT = rC.

The notation that expresses treatment effects as comparisons of potential re-

sponses under alternative treatments was introduced into the design of experiments

by Jerzy Neyman [35] in 1923 and was used to solve various problems in random-

ized experiments; e.g., [62, 64, 9, 40] and [28, § 8.3]. Donald Rubin [50] first

advocated use of this notation in observational studies.

2.2.2 Covariates and outcomes

In §1.2, the distinction between covariates and outcomes was emphasized. A co-

variate, such as xi j or ui j, is a pretreatment quantity, so there is only one version

of a covariate. A response or outcome has two potential values,
(
rTi j, rCi j

)
, one of

which is observed, namely Ri j, depending upon the treatment assignment Zi j, that

is, Ri j = Zi j rTi j +(1−Zi j) rCi j.
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Notice that
(
rTi j, rCi j, xi j, ui j

)
do not change when treatments are assigned at

random, that is, when Zi j is determined by a coin flip or a random number, but in

general the observed response, Ri j, does change. It is convenient to have a symbol

that represents the quantities that are not changed when treatments are randomized.

Let F denote the array of quantities
{(

rTi j, rCi j, xi j, ui j
)
, i = 1,2, . . . , I, j = 1,2

}
that do not change when Zi j is determined. (These quantities are fixed in Fisher’s

theory of randomization inference; hence, the symbol is F .)

2.2.3 Possible treatment assignments and randomization

The observed treatment assignment in Table 2.2 is Z = (1,0,1,0,1,0,1,0,1,0)T ,

but random assignment of treatments within pairs might have picked a different

assignment. Write Z for the set of the 2I possible values of Z; that is, z ∈Z if and

only if z = (z11,z12, . . . ,zI2)
T with zi j = 0 or zi j = 1 and zi1 +zi2 = 1 for each i, j. For

Table 2.2, there are 2I = 25 = 32 possible values z ∈ Z . Generally, if A is a finite

set, then |A| is the number of elements of A, so that, in particular, |Z | = 2I . Table

2.3 lists, in abbreviated form, the 32 possible treatment assignments for Table 2.2;

the abbreviation consists in listing zi1 but not zi2 because zi2 = 1−zi1. The observed

treatment assignment, Z = (1,0,1,0,1,0,1,0,1,0)T in Table 2.2, corresponds with

the first row of Table 2.3. In the second row of Table 2.3, the treatment assignment

for the fifth pair in Table 2.2 has been reversed, so the second man, not the first man,

in that pair is assigned to treatment.

For the I = 185 pairs in Table 2.1, the set Z of possible treatment assignments

contains 2I = 2185 .= 4.9× 1055 possible treatment assignments, z ∈ Z . It would

be inconvenient to list them.

What does it mean to randomly assign treatments? At an intuitive level, one as-

signment z ∈ Z is picked at random, each having probability 2−I , or 2−5 = 1
32 =

0.03125 for Table 2.3. For instance, one might flip a fair coin independently five

times to determine Z in Table 2.3. The intuition is that randomization is making a

statement about how Z alone was determined, that is, about the marginal distribu-

tion of Z. This intuition is not quite correct; in an important way, randomization

means more than this. Specifically, in a randomized experiment, the information

in
(
rTi j, rCi j, xi j, ui j

)
(or in F ) is of no use in predicting Zi j. That is, the coin is

fair not just in coming up heads half the time, independently in different pairs, but

more importantly the coin knows nothing about the individual and is impartial in

its treatment assignments. The design of the paired randomized experiment forces

Z to fall in Z — that is, it forces the event Z ∈ Z to occur — which is denoted

concisely by saying the event Z occurs. Randomization in the paired randomized

experiment means:

Pr(Z = z |F ,Z ) =
1

|Z | =
1

2I for each z ∈ Z . (2.1)
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Table 2.3 The set Z of 32 = 25 possible treatment assignments for the small version of the NSW
experiment with I = 5 pairs. Only Zi1 is listed because Zi2 = 1−Zi1.

Label Pair 1 Pair 2 Pair 3 Pair 4 Pair 5
Z11 Z21 Z31 Z41 Z51

1 1 1 1 1 1
2 1 1 1 1 0
3 1 1 1 0 1
4 1 1 1 0 0
5 1 1 0 1 1
6 1 1 0 1 0
7 1 1 0 0 1
8 1 1 0 0 0
9 1 0 1 1 1

10 1 0 1 1 0
11 1 0 1 0 1
12 1 0 1 0 0
13 1 0 0 1 1
14 1 0 0 1 0
15 1 0 0 0 1
16 1 0 0 0 0
17 0 1 1 1 1
18 0 1 1 1 0
19 0 1 1 0 1
20 0 1 1 0 0
21 0 1 0 1 1
22 0 1 0 1 0
23 0 1 0 0 1
24 0 1 0 0 0
25 0 0 1 1 1
26 0 0 1 1 0
27 0 0 1 0 1
28 0 0 1 0 0
29 0 0 0 1 1
30 0 0 0 1 0
31 0 0 0 0 1
32 0 0 0 0 0

In words, even if you knew the information in F — that is, the information in(
rTi j, rCi j, xi j, ui j

)
for every person, i = 1,2, . . . , I, j = 1,2 — and even if you knew

the structure of the paired randomized experiment, namely Z ∈ Z , you would be

unable to use that information to predict treatment assignments because, given all of

that information, the 2I possible assignments z ∈ Z have equal probabilities, 2−I .

2.2.4 Interference between units

The notation for treatment effects appears innocuous, but it actually entails a fairly

strong assumption, called “no interference between units” by David Cox [8, §2.4],
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namely “that the observation on one unit should be unaffected by particular assign-

ment of treatments to other units.” There would be interference between units in

Table 2.2 if switching man (i, j) = (2,1) — i.e., the first man in the second pair —

from treatment to control would affect the earnings of the man we discussed be-

fore, (i, j) = (1,1), that is, the first man in the first pair. Interference is probably not

widespread in the NSW experiment, but it cannot be entirely ruled out. For instance,

a potential employer might hire two subsidized workers under NSW, but retain for

unsubsidized permanent employment only the better of the two employees. In this

case, switching the treatment for one man might cause another man to gain or lose a

job. The two-outcomes notation makes no provision for interference between units;

each unit or man has only two potential responses depending exclusively on his own

treatment assignment. If there were interference between units, the response of each

man would depend upon all of the treatment assignments, (Z11,Z12, . . . ,ZI2). In Ta-

ble 2.2, there are two ways to assign treatments in each of five pairs, so there are

32 = 25 possible treatment assignments. If there were interference between units,

each man would have not two potential responses but 32 potential responses, de-

pending upon all of the treatment assignments, (Z11,Z12, . . . ,Z52).
Interference between units is likely to be very limited in the NSW experiment

because most men don’t interfere with each other. The situation is different when

the same person is studied repeatedly under different treatments in a randomized

order. For instance, this is common in many experiments in cognitive neuroscience,

in which a person’s brain is watched using functional magnetic resonance imaging

while she performs different cognitive tasks [36]. In this case, an experimental

unit is one time for one person. In experiments of this kind, interference between

different times for the same person is likely.

In randomized experiments with interference between units, inference is possible

but requires additional care [26, 47, 58]. There is considerable simplification if

only units in the same pair interfere with one another [46, §6].

2.3 Testing the Null Hypothesis of No Treatment Effect

2.3.1 Treated−control differences when the null hypothesis is true

What would happen if the null hypothesis of no effect were true?

As discussed in §2.2.1, the null hypothesis of no treatment effect says each person

would exhibit the same response whether assigned to treatment, Zi j = 1, or to con-

trol, Zi j = 0; that is, the hypothesis asserts H0 : rCi j = rTi j for all i, j, or concisely

H0 : rT = rC. In Table 2.2, if H0 : rT = rC were true, then the first man in the

first pair would have earned $3024 in 1978 whether he was assigned to treatment

or to control. Similarly, if H0 : rT = rC were true, the second man in the first pair

would have earned $1568 whether he was assigned to treatment or control. This null
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hypothesis is not implausible; it might be true. Many treatments you or I receive

during the course of a year do not change our earnings during the course of the year:

we work at the same job, receive the same pay. Then again, the NSW might have

had a beneficial effect, raising the earnings for treated men; in this case, H0 : rT = rC
would be false. A basic question is: To what extent do the data from the randomized

experiment provide evidence against the null hypothesis of no treatment effect?

If the null hypothesis of no treatment effect, H0 : rT = rC, were true, then de-

pending upon the fall of the coin for the first pair in Table 2.2, the treated-minus-

control difference in 1978 earnings in the first pair, namely Y1, would be either

3024−1568 = 1456 or 1568−3024 = −1456. In other words, if the null hypoth-

esis of no treatment effect were true, then the treatment does not do anything to

the responses, and it affects the treated-minus-control difference in responses only

by labeling one man as treated, the other as control. Recall that the observed re-

sponse for man j in pair i is Ri j = Zi j rTi j + (1−Zi j) rCi j and the treated-minus-

control difference in responses in pair i is Yi = (Zi1 −Zi2)(Ri1 −Ri2). If the treat-

ment had no effect, so that rTi j = rCi j for all i, j, then Yi = (Zi1 −Zi2)(Ri1 −Ri2)
is Yi = (Zi1 −Zi2)(rCi1 − rCi2) which equals rCi1 − rCi2 if (Zi1,Zi2) = (1,0) or

−(rCi1 − rCi2) if (Zi1,Zi2) = (0,1). If the treatment has no effect, randomization

just randomizes the labels ‘treated’ and ‘controls’; however, it does not change any-

body’s earnings, and it simply changes the sign of the treated-minus-control differ-

ence in earnings.

What experimental results might occur if the null hypothesis of no effect were
true?

Under the null hypothesis of no treatment effect, H0 : rT = rC, Table 2.4 displays

the possible treatment assignments Zi1 and possible treated-minus-control differ-

ences in responses Yi for the five pairs in Table 2.2. Each row of Table 2.4 is one

possible outcome of the experiment when the null hypothesis, H0, is true. The ran-

dom numbers actually gave us the first row of Table 2.4, but had the coins fallen

differently, another row would have occurred. If H0 were true, each row of Table

2.4 has probability 1
25 = 1

32 of turning out to be the results of the experiment: flip

the five coins and you get one row of Table 2.4 as your experiment. We know this

without assumptions. We know that each of the 32 treatment assignments in Table

2.3 has probability 1
25 = 1

32 because we randomized: Z was determined by the in-

dependent flips of five fair coins. We know ‘if H0 were true, each row of Table 2.4

has probability 1
25 = 1

32 ,’ because if H0 were true, then different Z’s simply change

the signs of the Yi’s as in Table 2.4. Nothing is assumed.
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Table 2.4 The set Z of 32 = 25 possible treatment assignments and the corresponding possible
treated-minus-control differences in responses Yi = (Zi1 −Zi2)(Ri1 −Ri2) under the null hypothe-
sis of no treatment effect, H0 : rT = rC , for the small version of the NSW experiment with I = 5
pairs. Only Zi1 is listed because Zi2 = 1−Zi1. Under the null hypothesis, different treatment assign-
ments relabel men as treated or control, but do not change their earnings, so the sign of Yi changes
accordingly.

Label Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 1 Pair 2 Pair 3 Pair 4 Pair 5
Z11 Z21 Z31 Z41 Z51 Y1 Y2 Y3 Y4 Y5

1 1 1 1 1 1 1456 3988 −45 −2147 3173
2 1 1 1 1 0 1456 3988 −45 −2147 −3173
3 1 1 1 0 1 1456 3988 −45 2147 3173
4 1 1 1 0 0 1456 3988 −45 2147 −3173
5 1 1 0 1 1 1456 3988 45 −2147 3173
6 1 1 0 1 0 1456 3988 45 −2147 −3173
7 1 1 0 0 1 1456 3988 45 2147 3173
8 1 1 0 0 0 1456 3988 45 2147 −3173
9 1 0 1 1 1 1456 −3988 −45 −2147 3173

10 1 0 1 1 0 1456 −3988 −45 −2147 −3173
11 1 0 1 0 1 1456 −3988 −45 2147 3173
12 1 0 1 0 0 1456 −3988 −45 2147 −3173
13 1 0 0 1 1 1456 −3988 45 −2147 3173
14 1 0 0 1 0 1456 −3988 45 −2147 −3173
15 1 0 0 0 1 1456 −3988 45 2147 3173
16 1 0 0 0 0 1456 −3988 45 2147 −3173
17 0 1 1 1 1 −1456 3988 −45 −2147 3173
18 0 1 1 1 0 −1456 3988 −45 −2147 −3173
19 0 1 1 0 1 −1456 3988 −45 2147 3173
20 0 1 1 0 0 −1456 3988 −45 2147 −3173
21 0 1 0 1 1 −1456 3988 45 −2147 3173
22 0 1 0 1 0 −1456 3988 45 −2147 −3173
23 0 1 0 0 1 −1456 3988 45 2147 3173
24 0 1 0 0 0 −1456 3988 45 2147 −3173
25 0 0 1 1 1 −1456 −3988 −45 −2147 3173
26 0 0 1 1 0 −1456 −3988 −45 −2147 −3173
27 0 0 1 0 1 −1456 −3988 −45 2147 3173
28 0 0 1 0 0 −1456 −3988 −45 2147 −3173
29 0 0 0 1 1 −1456 −3988 45 −2147 3173
30 0 0 0 1 0 −1456 −3988 45 −2147 −3173
31 0 0 0 0 1 −1456 −3988 45 2147 3173
32 0 0 0 0 0 −1456 −3988 45 2147 −3173

2.3.2 The randomization distribution of the mean difference

Randomization test of no effect using the mean as the test statistic

In general, the null distribution of a statistic is its distribution if the null hypothe-

sis were true. A P-value or significance level is computed with reference to a null

distribution. This section considers the null distribution of the sample mean differ-

ence; it was considered by Fisher [13, Chapter 3] in the book in which he introduced

randomized experimentation.
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Table 2.5 The possible treated-minus-control differences in responses Yi = (Zi1 −Zi2)(Ri1 −Ri2)
and their mean, Y , under the null hypothesis of no treatment effect, H0 : rT = rC , for the small
version of the NSW experiment with I = 5 pairs.

Label Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Mean

Y1 Y2 Y3 Y4 Y5 Y
1 1456 3988 −45 −2147 3173 1285.0
2 1456 3988 −45 −2147 −3173 15.8
3 1456 3988 −45 2147 3173 2143.8
4 1456 3988 −45 2147 −3173 874.6
5 1456 3988 45 −2147 3173 1303.0
6 1456 3988 45 −2147 −3173 33.8
7 1456 3988 45 2147 3173 2161.8
8 1456 3988 45 2147 −3173 892.6
9 1456 −3988 −45 −2147 3173 −310.2

10 1456 −3988 −45 −2147 −3173 −1579.4
11 1456 −3988 −45 2147 3173 548.6
12 1456 −3988 −45 2147 −3173 −720.6
13 1456 −3988 45 −2147 3173 −292.2
14 1456 −3988 45 −2147 −3173 −1561.4
15 1456 −3988 45 2147 3173 566.6
16 1456 −3988 45 2147 −3173 −702.6
17 −1456 3988 −45 −2147 3173 702.6
18 −1456 3988 −45 −2147 −3173 −566.6
19 −1456 3988 −45 2147 3173 1561.4
20 −1456 3988 −45 2147 −3173 292.2
21 −1456 3988 45 −2147 3173 720.6
22 −1456 3988 45 −2147 −3173 −548.6
23 −1456 3988 45 2147 3173 1579.4
24 −1456 3988 45 2147 −3173 310.2
25 −1456 −3988 −45 −2147 3173 −892.6
26 −1456 −3988 −45 −2147 −3173 −2161.8
27 −1456 −3988 −45 2147 3173 −33.8
28 −1456 −3988 −45 2147 −3173 −1303.0
29 −1456 −3988 45 −2147 3173 −874.6
30 −1456 −3988 45 −2147 −3173 −2143.8
31 −1456 −3988 45 2147 3173 −15.8
32 −1456 −3988 45 2147 −3173 −1285.0

Perhaps the most familiar test statistic is the mean of the I treated-minus-control

differences in response, Y = 1
I ∑I

i=1 Yi. The null distribution of Y is the distribution

of Y when the null hypothesis of no treatment effect, H0 : rT = rC, is true. Using

Table 2.4, we may compute Y from each of the 32 possible experimental outcomes;

see Table 2.5. For instance, in the experiment as it was actually performed, Y = 1285

in the first row of Table 2.5: on average, the five treated men earned $1,285 more

than their matched controls. If the null hypothesis, H0, were true, and the treatment

assignment in the i = 5th pair were reversed, as in the second row of Table 2.5, then

in that different randomized experiment, the mean would have been Y = 15.8, or

$15.80. Similar considerations apply to all 32 possible randomized experiments.
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In fact, Tables 2.5 and 2.6 give the null randomization distribution of the mean

difference Y . That is, the tables give the distribution of Y derived from the random

assignment of treatments and the null hypothesis, H0, that the treatment is without

effect. Table 2.5 lists the results in the order of Table 2.3, while Table 2.6 sorts Table

2.5 into increasing order of the possible values of Y . It is the same distribution,

but Table 2.6 is easier to read. In both tables, each possible outcome or row has

probability 1
25 = 1

32 = 0.03125. The tail probability, Pr
(

Y ≥ y
∣∣F ,Z

)
, used in

computing significance levels or P-values, is also given in Table 2.6. The one-

sided P-value for testing no treatment effect in Table 2.2 is Pr
(

Y ≥ 1285
∣∣F ,Z

)
=

0.1875 = 6
32 because 6 of the 32 random assignments produce means Y of 1285 or

more when the null hypothesis of no effect is true. The two-sided P-value is twice

this one-sided P-value,2 or 2×Pr
(

Y ≥ 1285
∣∣F ,Z

)
= 0.375 = 12

32 , which equals

Pr
(

Y ≤−1285
∣∣ F ,Z

)
+ Pr

(
Y ≥ 1285

∣∣ F ,Z
)

for the distribution in Table 2.6

because the distribution is symmetric about zero.

The reasoned basis for inference in experiments

Fisher [13, Chapter 2] spoke of randomization as the “reasoned basis” for causal

inference in experiments. By this, he meant that the distribution in Table 2.6 for the

mean difference Y and similar randomization distributions for other test statistics

provided a valid test of the hypothesis of no effect caused by the treatment. More-

over, these tests required no assumptions whatsoever. Fisher placed great emphasis

on this, so it is worthwhile to consider what he meant and why he regarded the issue

as important.

The distribution in Table 2.6 was derived from two considerations. The first

consideration is that the experimenter used coins or random numbers to assign treat-

ments, picking one of the 32 treatment assignments in Table 2.3, each with probabil-

ity 1/32. Provided the experimenter is not dishonest in describing the experiment,

there is no basis for doubting this first consideration. The first consideration is not

an assumption; it is a fact describing how the experiment was conducted. The sec-

ond consideration is the null hypothesis of no treatment effect. Table 2.6 is the null

distribution of the mean difference, Y ; that is, Table 2.6 is the distribution Y would
have if the null hypothesis of no treatment effect were true. The null hypothesis

may well be false — perhaps the experiment was undertaken in the hope of showing

it is false — but that is beside the point because Table 2.6 is the distribution Y would

2 In general, if you want a two-sided P-value, compute both one-sided P-values, double the smaller
one, and take the minimum of this value and 1. This approach views the two-sided P-value as a
correction for testing twice [10]. Both the sample mean in the current section and Wilcoxon’s
signed rank statistic in the next section have randomization distributions under the null hypothesis
that are symmetric, and with a symmetric null distribution there is little ambiguity about the mean-
ing of a two-sided P-value. When the null distribution is not symmetric, different definitions of
a two-sided P-value can give slightly different answers. As discussed in [10], the view of a two-
sided P-value as a correction for testing twice is one sensible approach in all cases. For related
results, see [55].
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Table 2.6 The randomization distribution of the sample mean Y of I = 5 matched pair differences
in 1978 earnings under the null hypothesis of no treatment effect in the NSW experiment. Because
the observed value of Y is $1285, the one-sided P-value is 0.1875 and the two-sided P-value is
twice that, or 0.375. With I = 5 pairs, the difference would be significant at the conventional 0.05
level in a one-sided test only if all five differences were positive, in which case Y = 2161.8 and the
one-sided P-value is 0.03125. Notice the that null distribution of Y is symmetric about zero.

y Pr
(

Y = y
∣∣ F ,Z

)
Pr

(
Y ≥ y

∣∣ F ,Z
)

2161.8 0.03125 0.03125
2143.8 0.03125 0.06250
1579.4 0.03125 0.09375
1561.4 0.03125 0.12500
1303.0 0.03125 0.15625
1285.0 0.03125 0.18750

892.6 0.03125 0.21875
874.6 0.03125 0.25000
720.6 0.03125 0.28125
702.6 0.03125 0.31250
566.6 0.03125 0.34375
548.6 0.03125 0.37500
310.2 0.03125 0.40625
292.2 0.03125 0.43750

33.8 0.03125 0.46875
15.8 0.03125 0.50000

−15.8 0.03125 0.53125
−33.8 0.03125 0.56250

−292.2 0.03125 0.59375
−310.2 0.03125 0.62500
−548.6 0.03125 0.65625
−566.6 0.03125 0.68750
−702.6 0.03125 0.71875
−720.6 0.03125 0.75000
−874.6 0.03125 0.78125
−892.6 0.03125 0.81250

−1285.0 0.03125 0.84375
−1303.0 0.03125 0.87500
−1561.4 0.03125 0.90625
−1579.4 0.03125 0.93750
−2143.8 0.03125 0.96875
−2161.8 0.03125 1.00000

have if the null hypothesis of no treatment effect were true. One tests a null hy-

pothesis using Y by contrasting the actual behavior of Y with the behavior Y would

have if the null hypothesis were true. A small P-value indicates that the behavior

Y actually exhibited would have been remarkably improbable if the null hypothesis

were true. In this sense too, the second consideration, the null hypothesis, is not an

assumption. One does not assume or believe the null hypothesis to be true when

testing it; rather, certain logical consequences of the null hypothesis are worked out

for the purpose of evaluating its plausibility. In brief, nothing was assumed to be
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true in working out the distribution in Table 2.6, that is, in testing the hypothesis

that the treatment caused no effect.

You sometimes hear it said that “You cannot prove causality with statistics.” One

of my professors, Fred Mosteller, would often say: “You can only prove causality

with statistics.” When he said this, he was referring to randomization as the rea-

soned basis for causal inference in experiments.

Some history: Random assignment and Normal errors

Concerning Table 2.6, one might reasonably ask how this null randomization dis-

tribution of the mean treated-minus-control difference, Y , compares with the t-
distribution that might be used if the Yi were assumed to be Normally distributed

with constant variance. The null distribution in Table 2.6 made no assumption

that the Yi were Normal with constant variance; rather, it acknowledged that the

experimenter did indeed randomize treatment assignments. Questions of this sort

received close attention in early work on randomization inference; see, for instance,

[62]. This attention focused on the moments of the distributions and their limit-

ing behavior as the number, I, of pairs increases. Generally, the two approaches to

inference gave similar inferences for large I when the
(
rCi j,rTi j

)
were sufficiently

well-behaved, but could diverge in other situations. In early work [13, 62], this

was often understood to mean that randomization formed a justification for infer-

ences based on Normal models without requiring the assumptions of those models

to be true. However, it was not long before attention focused on the divergences be-

tween randomization inference and Normal theory, so the concern ceased to be with

justifying Normal theory when applied to well-behaved data from a randomized

experiment; instead, concern shifted to inferences that would be valid and efficient

whether or not the data are well-behaved.3 This leads to the randomization distribu-

tion of statistics other than the mean difference, Y , because the mean was found to

be one of the least efficient statistics for responses that are not so well-behaved [1].

Two such statistics will be discussed: Frank Wilcoxon’s signed rank statistic [63]

in §2.3.3 and the randomization distribution of the statistics used in Peter Huber’s

m-estimation [25, 33] in §2.9. The close connection between rank statistics and m-

estimates is developed in detail in [27]. Sections 2.3.3 and 2.9 play different roles

in this book, and it is not necessary to read §2.9. The signed rank statistic will be

discussed at many points in the book. In contrast, m-estimation is mentioned here

to emphasize that the basic issues discussed here and later are not tied to any one

statistic and may be developed for large classes of statistics in an entirely parallel

way.

3 I write ‘Normal’ distribution rather than ‘normal’ distribution because Normal is the name, not
the description, of a distribution, in the same way that ‘Sitting Bull’ is the name of a man, not
a description of that man. The exponential distribution is exponential, the logistic distribution is
logistic, but the Normal distribution is not normal. Under normal circumstances, data are not Nor-
mally distributed.
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2.3.3 The randomization distribution of Wilcoxon’s statistic

Computing the randomization distribution under the null hypothesis of no
effect

Among robust alternatives to the mean treated-minus-control difference, Y , by far

the most popular in practice is Wilcoxon’s signed rank statistic, T ; see [63] or [32,

§3.2]. As with Y , Wilcoxon’s statistic uses the treated-minus-control differences in

responses, Yi = (Zi1 −Zi2)(Ri1 −Ri2), in the I pairs. First, the absolute differences

|Yi| are calculated; then these absolute differences are assigned ranks qi from small-

est to largest, from 1 to I; then Wilcoxon’s signed rank statistic, T , is the sum of

those ranks qi for which Yi is positive. With Y1 = 1456, Y2 = 3988, Y3 = −45,

Y4 = −2147, Y5 = 3173 in Table 2.2, the absolute differences are |Y1| = 1456,

|Y2| = 3988, |Y3| = 45, |Y4| = 2147, |Y5| = 3173, with ranks q1 = 2, q2 = 5, q3 = 1,

q4 = 3, and q5 = 4, and Y1, Y2, Y5 are positive, so T = q1 +q2 +q5 = 2+5+4 = 11.

In general, Wilcoxon’s signed rank statistic is T = ∑I
i=1 sgn(Yi) · qi, where

sgn(a) = 1 if a > 0, sgn(a) = 0 if a ≤ 0, and qi is the rank of |Yi|.
As in §2.3.2 and Table 2.5, if the null hypothesis of no treatment effect, H0 :

rT = rC, were true then Yi = (Zi1 −Zi2)(rCi1 − rCi2), and randomization simply

changes the signs of the Yi, as in Table 2.4. For each row of Table 2.4, Wilcoxon’s

signed rank statistic, T , may be computed, and this is done in Table 2.7. Under

the null hypothesis of no treatment effect, H0 : rT = rC, each row of Table 2.7 has

a probability of 1
25 = 1

32 of becoming the observed experimental results in the five

pairs, and 7 rows produce values of T that are 11 or more, so the one-sided P-

value is Pr(T ≥ 11| F ,Z ) = 7
32 = 0.21875. Table 2.8 reorganizes Table 2.7, sort-

ing by the possible values of the test statistic and removing repetitions of values

that occur several times. In parallel with §2.3.2, the two-sided P-value is twice

this one-sided P-value4, or 2 × Pr(T ≥ 11| F ,Z ) = 14
32 = 0.4375 which equals

Pr(T ≤ 4| F ,Z ) + Pr(T ≥ 11 | F ,Z ) for the distribution in Table 2.7 because

the distribution is symmetric about its expectation I (I +1)/4 = 5(5+1)/4 = 7.5.

The null distribution of Wilcoxon’s T is, in many ways, a very simple distri-

bution. In Table 2.7, as the signs change, the absolute values |Yi| stay the same,

so the ranks of the absolute values also stay the same; see the bottom of Table

2.7. That is, if H0 : rT = rC, were true, then the |Yi| = |rCi1 − rCi2| and qi are

4 In practice, statistical software is used to do the calculations. In the statistical package R, the
command wilcox.test(.) is used. Consider, first, the I = 5 matched pair differences in 1978 earnings
in Table 2.7, which are contained in the vector dif5.

> dif5
[1] 1456 3988 -45 -2147 3173
> wilcox.test(dif5)
Wilcoxon signed rank test
data: dif5
V = 11, p-value = 0.4375
In the case of I = 5, wilcox.test performs calculations that exactly reproduce the value

T = 11 and the two-sided P-value of 0.4375. By adjusting the call to wilcox.test, either of
the two one-sided P-values may be obtained.
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Table 2.7 The possible treated-minus-control differences in responses Yi = (Zi1 −Zi2)(Ri1 −Ri2)
and Wilcoxon’s signed rank statistic, T , under the null hypothesis of no treatment effect, H0 : rT =
rC , for the small version of the NSW experiment with I = 5 pairs.

Label Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Wilcoxon’s
Y1 Y2 Y3 Y4 Y5 T

1 1456 3988 −45 −2147 3173 11
2 1456 3988 −45 −2147 −3173 7
3 1456 3988 −45 2147 3173 14
4 1456 3988 −45 2147 −3173 10
5 1456 3988 45 −2147 3173 12
6 1456 3988 45 −2147 −3173 8
7 1456 3988 45 2147 3173 15
8 1456 3988 45 2147 −3173 11
9 1456 −3988 −45 −2147 3173 6

10 1456 −3988 −45 −2147 −3173 2
11 1456 −3988 −45 2147 3173 9
12 1456 −3988 −45 2147 −3173 5
13 1456 −3988 45 −2147 3173 7
14 1456 −3988 45 −2147 −3173 3
15 1456 −3988 45 2147 3173 10
16 1456 −3988 45 2147 −3173 6
17 −1456 3988 −45 −2147 3173 9
18 −1456 3988 −45 −2147 −3173 5
19 −1456 3988 −45 2147 3173 12
20 −1456 3988 −45 2147 −3173 8
21 −1456 3988 45 −2147 3173 10
22 −1456 3988 45 −2147 −3173 6
23 −1456 3988 45 2147 3173 13
24 −1456 3988 45 2147 −3173 9
25 −1456 −3988 −45 −2147 3173 4
26 −1456 −3988 −45 −2147 −3173 0
27 −1456 −3988 −45 2147 3173 7
28 −1456 −3988 −45 2147 −3173 3
29 −1456 −3988 45 −2147 3173 5
30 −1456 −3988 45 −2147 −3173 1
31 −1456 −3988 45 2147 3173 8
32 −1456 −3988 45 2147 −3173 4

All Absolute Differences
1–32 1456 3988 45 2147 3173

All Ranks of Absolute Differences
1–32 2 5 1 3 4

fixed (i.e., determined by F ) as the treatment assignment Z varies, so Wilcoxon’s

T is changing only as the I signs change, and the I signs are independent. In

a formula, under the null hypothesis of no effect, the signed rank statistic is

T = ∑I
i=1 sgn{(Zi1 −Zi2)(rCi1 − rCi2)} · qi where sgn(a) = 1 if a > 0, sgn(a) = 0

if a ≤ 0, and qi is the rank of |rCi1 − rCi2|. The expectation E (T | F ,Z ) and

variance var(T | F ,Z ) of the null distribution in Table 2.8 have simple formu-

las. Write si = 1 if |Yi| > 0 and si = 0 if |Yi| = 0. If H0 : rT = rC were true in a

randomized experiment, then E (T | F ,Z ) = (1/2)∑I
i=1 si qi and var(T | F ,Z ) =
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Table 2.8 The randomization distribution of Wilcoxon’s signed rank statistic, T , for I = 5 matched
pair differences in 1978 earnings under the null hypothesis of no treatment effect in the NSW
experiment. Count is the number of treatment assignments that yield T = t; for instance, there
are two ways to obtain T = 12. Because the observed value of T is 11, the one-sided P-value
is 0.21875 and the two-sided P-value is twice that, or 0.4375. With I = 5 pairs, the difference
would be significant at the conventional 0.05 level in a one-sided test only if all five differences
were positive, in which case T = 15 and the one-sided P-value is 0.03125. Notice the that null
distribution of T is symmetric about its expectation, I(I +1)/4 = 5(5+1)/4 = 7.5.

t Count Pr(T = t | F ,Z ) Pr(T ≥ t | F ,Z )
15 1 0.03125 0.03125
14 1 0.03125 0.06250
13 1 0.03125 0.09375
12 2 0.06250 0.15625
11 2 0.06250 0.21875
10 3 0.09375 0.31250

9 3 0.09375 0.40625
8 3 0.09375 0.50000
7 3 0.09375 0.59375
6 3 0.09375 0.68750
5 3 0.09375 0.78125
4 2 0.06250 0.84375
3 2 0.06250 0.90625
2 1 0.03125 0.93750
1 1 0.03125 0.96875
0 1 0.03125 1.00000

(1/4)∑I
i=1 (si qi)

2. When there are no ties, these formulas simplify because the

ranks are then 1, 2, . . . , I. If there are no ties, in the sense that |Yi|> 0 for all i and all

of the |Yi| are distinct, then the formulas simplify to E (T | F ,Z ) = I (I +1)/4 and

var(T | F ,Z ) = I (I +1)(2I +1)/24; see [32, §3.2] Moreover, under very mild

conditions, as I → ∞, the null distribution of {T −E (T | F ,Z )}/
√

var(T | F ,Z )
converges in distribution to the standard Normal distribution [32].

Testing no effect with all I = 185 matched pairs

If Wilcoxon’s test is applied to all I = 185 matched pairs in Figure 2.1, then the

two-sided P-value for testing no effect is 0.009934. When all I = 185 pairs are con-

sidered, the difference in 1978 earnings in Figure 2.1 appears to be an effect caused

by the intervention. The difference in 1978 earnings is too large and systematic to

be due to chance, the flip of the coin that assigned one man to treatment, the next to

control.5

5 Performing the calculations in R is straightforward. The I = 185 paired differences in 1978
earnings are contained in the vector dif.

> length(dif)
[1] 185
> dif[1:6]
[1] 3889.711 -4733.929 18939.192 7506.146 -6862.342 -8841.886
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The procedure used in Table 2.5 for the mean, Y , and in Table 2.7 for Wilcoxon’s

statistic, T , are entirely parallel and work in a similar way for any test statistic.6

The null distribution of Wilcoxon’s T in Table 2.8 has a curious property not

shared by the null distribution of the mean difference, Y , in Table 2.6. The null

distribution of Y in Table 2.6 depends on the numeric values of Yi, so this distribution

could not have been written down before the experiment was conducted. You need

to have the Yi’s to construct Table 2.6. In contrast, the distribution of T in Table

2.8 does not depend upon the differences in earnings, the Yi’s, provided the |Yi| are

nonzero and different (or untied) so that they can be ranked 1, 2, 3, 4, 5 and each

Yi is either positive or negative. Provided the I = 5 earnings differences are untied,

the null distribution in Table 2.8 could be written down before the experiment is

conducted, and indeed the distribution in Table 2.8 appears at the back of many

textbooks.

Ties and distribution-free statistics

What happens to Wilcoxon’s T when some |Yi| are tied? If several |Yi| are equal, it

does not seem reasonable to assign them different ranks, so instead they are assigned

the average of the ranks they would have had if they had differed ever so slightly. If

|Y4| = |Y5| and they would have had ranks 3 and 4 had they not been tied, then they

are both assigned rank 3.5. Under the null hypothesis of no effect, if |Yi| = 0 then

Yi = 0 no matter how treatments are assigned, and pair i contributes 0 to Wilcoxon’s

T for every treatment assignment. With ties, the null distribution of T is determined

as has been done twice before in Tables 2.5 and 2.7; however, the null distribution

now depends not only on the sample size I but also on the specific pattern of ties, so

the distribution is not known in advance of the experiment.

The phrase ‘distribution-free statistic’ is used in a variety of related but slightly

distinct senses. In one of these senses, both the sample mean, Y , and Wilcoxon’s

signed rank statistic, T , always have randomization distributions, as computed in

Tables 2.5 and 2.7, and if there are no ties among the |Yi|, then T is distribution-free,

in the sense that its null distribution does not depend upon the values of the Yi.

> wilcox.test(dif)
Wilcoxon signed rank test with continuity correction

data: dif
V = 9025, p-value = 0.009934
alternative hypothesis: true location is not equal to 0
Now, with I = 185 pairs, the statistic is T = 9025 and the two-sided P-value is 0.009934. In

computing this P-value, R has taken appropriate account of ties of both kinds and has made use of a
Normal approximation to the null distribution of T . It has also employed a ‘continuity correction’
intended to improve the accuracy of approximate P-values obtained from the Normal distribution.
6 This statement is true conceptually. That is, the statement would be true if we had an infinitely
fast computer. As a practical matter, producing a table like Table 2.5 for large I is quite tedious,
even for a computer, so randomization distributions are obtained either with clever algorithms [37]
or with the aid of large sample approximations [32]. It is not necessary to focus on these technical
details in a chapter whose focus is on concepts. In understanding concepts, we can pretend for the
moment that we have an infinitely fast computer.
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2.4 Testing Other Hypotheses; Confidence Intervals; Point
Estimates

2.4.1 Testing a constant, additive treatment effect

Section 2.3 tested Fisher’s [13] sharp null hypothesis of no treatment effect, which

asserts that each subject would exhibit the same response whether assigned to treat-

ment or control, that is, H0 : rTi j = rCi j for i = 1, . . . , I, j = 1,2, or equivalently

H0 : rT = rC. This test for no effect quickly provides the basis for testing any hy-

pothesis that specifies an effect, and from this to confidence intervals.

The simplest case is considered first, namely a constant, additive treatment ef-

fect, τ , in which rTi j = rCi j + τ for i = 1, . . . , I, j = 1,2, or equivalently rT =
rC + 1τ , where 1 = (1,1, . . . ,1)T . In this case, the observed response, Ri j =
Zi j rTi j +(1−Zi j) rCi j from the jth subject in pair i becomes Ri j = Zi j

(
rCi j + τ

)
+

(1−Zi j) rCi j = rCi j + τZi j, that is, the observed response, Ri j, equals the response

to control, rCi j, plus the treatment effect τ if i j is assigned to treatment, Zi j = 1. Of

course, Ri j and Zi j are observed, but rCi j and τ are not.

The hypothesis of a constant, additive effect is not strictly plausible for any τ �= 0

in the NSW study in §2.1. For instance, in Table 2.2, the j = 1st man in the i = 3rd

pair was treated but earned $0.00 in 1978. Because earnings are positive, the only

positive constant effect τ that can yield $0.00 for a treated man is τ = 0. Indeed,

in Figure 2.1, a quarter of the controls had $0.00 of earnings in 1978. Moreover,

even if negative earnings were possible, the boxplots in Figure 2.1 for all 185 pairs

of men strongly suggest the treatment effect is not an additive constant. In a very

large randomized experiment with an additive, constant effect τ , the two boxplots of

responses, Ri j, on the left in Figure 2.1 would look the same, except that the treated

boxplot would be shifted up by τ , and the boxplot of pair differences, Yi, on the right

in Figure 2.1 would be symmetric about τ . In fact, neither of these two conditions

appears to be true in Figure 2.1. After illustrating the most commonly used methods

for an additive effect, three alternative approaches will be considered for the NSW

study: a multiplicative effect, a truncated additive effect similar to that found in a

Tobit model, and ‘attributable effects’ of various kinds. As will be seen, although

the hypothesized effects are different, the method of inference is much the same.

Suppose that we hypothesized that the additive effect τ is some particular num-

ber, τ0. For instance, in §2.1, a rather extreme hypothesis says that the NSW pro-

gram increases earnings by $5000, or H0 : τ = 5000, or H0 : τ = τ0 with τ0 = 5000.

It will soon be seen that this hypothesis is quite implausible. If this hypothesis

were true, the observed response would be Ri j = rCi j + τ0 Zi j = rCi j + 5000Zi j,

so rCi j could be computed from the observed (Ri j,Zi j) together with the sup-

posedly true hypothesis, H0 : τ = 5000, as rCi j = Ri j − τ0 Zi j = Ri j − 5000Zi j.

Moreover, the matched treated-minus-control difference in observed earnings is

Yi = (Zi1 −Zi2)(Ri1 −Ri2), so if the hypothesis H0 : τ = τ0 were true,

Yi = (Zi1 −Zi2)(Ri1 −Ri2)
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Table 2.9 Five matched pair differences from the NSW experiment adjusted for the hypothesis
H0 : τ = 5000.

i 1 2 3 4 5

Yi 1456 3988 −45 −2147 3173
τ0 = 5000 5000 5000 5000 5000 5000

Yi − τ0 −3544 −1012 −5045 −7147 −1827

= (Zi1 −Zi2){(rCi1 + τ0 Zi1)− (rCi2 + τ0 Zi2)}
= τ0 +(Zi1 −Zi2)(rCi1 − rCi2) ,

and Yi − τ0 = (Zi1 −Zi2)(rCi1 − rCi2). In other words, if H0 : τ = τ0 were true with

τ0 = 5000, then the observed difference in earnings, Yi, in pair i, less τ0 = 5000,

would equal ±(rCi1 − rCi2) depending upon the random treatment assignment Zi1 −
Zi2 in pair i. In particular, if H0 : τ = 5000 were true, then the sign of Yi − 5000

would be determined by a coin flip, and we would expect about half of the Yi−5000

to be positive, half to be negative. If H0 : τ = 5000 were true for the five pairs in

Table 2.2, then, for pair i = 1, the adjusted difference is rC11 − rC12 = Y1 − 5000

= 1456 − 5000 = −3544. The five adjusted differences are listed in Table 2.9.

Even with just the five pairs in Table 2.9, the hypothesis H0 : τ = 5000 does not

look plausible: all five adjusted differences are negative, whereas if the hypothesis

were true, the signs would be ±1 independently with probability 1
2 . Only one of

the 32 treatment assignments z ∈ Z would give negative signs to all five adjusted

responses, and that one assignment has probability 1/32 = .03125 in a randomized

experiment. If H0 : τ = 5000 were true, to produce Table 2.9 would require quite a

bit of bad luck when Z is picked at random from Z .

Table 2.10 displays all 32 treatment assignments, z ∈ Z , together with all pos-

sible adjusted responses, Yi − τ0 = (Zi1 −Zi2)(rCi1 − rCi2), when H0 : τ = 5000 is

true, together with Wilcoxon’s signed rank statistic T computed from these adjusted

responses. In the first row, for the actual treatment assignment, T = 0 because

all five differences are negative. From Table 2.10, Pr(T ≤ 0| F ,Z ) = 1/32 =
.03125 if H0 : τ = 5000 is true, and the two-sided P-value is Pr(T ≤ 0| F ,Z )+
Pr(T ≥ 15| F ,Z ) = 2/32 = .0625.

2.4.2 Confidence intervals for a constant, additive effect

If the treatment has an additive effect, rTi j = rCi j + τ for i = 1, . . . , I, j = 1,2, then

a 95% confidence set for the additive treatment effect, τ , is formed by testing each

hypothesis H0 : τ = τ0 and retaining for the confidence set the values of τ0 not

rejected at the 5% level. In general, a 1−α confidence set is the set of hypothesized

values of a parameter not rejected by a level α test [31, §3.5]. If the parameter is a

number, such as τ , then a 1−α confidence interval is the shortest interval containing

the 1−α confidence set, and this interval may be a half-line or the entire line. For
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Table 2.10 Using Wilcoxon’s signed rank statistic T to test the null hypothesis that the training
program increased wages by an additive constant of $5000, that is, H0 : rTi j = rCi j + 5000 for all
i, j.

Label Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 1 Pair 2 Pair 3 Pair 4 Pair 5
Z11 Z21 Z31 Z41 Z51 Y1 − τ0 Y2 − τ0 Y3 − τ0 Y4 − τ0 Y5 − τ0 T

1 1 1 1 1 1 −3544 −1012 −5045 −7147 −1827 0
2 1 1 1 1 0 −3544 −1012 −5045 −7147 1827 2
3 1 1 1 0 1 −3544 −1012 −5045 7147 −1827 5
4 1 1 1 0 0 −3544 −1012 −5045 7147 1827 7
5 1 1 0 1 1 −3544 −1012 5045 −7147 −1827 4
6 1 1 0 1 0 −3544 −1012 5045 −7147 1827 6
7 1 1 0 0 1 −3544 −1012 5045 7147 −1827 9
8 1 1 0 0 0 −3544 −1012 5045 7147 1827 11
9 1 0 1 1 1 −3544 1012 −5045 −7147 −1827 1
10 1 0 1 1 0 −3544 1012 −5045 −7147 1827 3
11 1 0 1 0 1 −3544 1012 −5045 7147 −1827 6
12 1 0 1 0 0 −3544 1012 −5045 7147 1827 8
13 1 0 0 1 1 −3544 1012 5045 −7147 −1827 5
14 1 0 0 1 0 −3544 1012 5045 −7147 1827 7
15 1 0 0 0 1 −3544 1012 5045 7147 −1827 10
16 1 0 0 0 0 −3544 1012 5045 7147 1827 12
17 0 1 1 1 1 3544 −1012 −5045 −7147 −1827 3
18 0 1 1 1 0 3544 −1012 −5045 −7147 1827 5
19 0 1 1 0 1 3544 −1012 −5045 7147 −1827 8
20 0 1 1 0 0 3544 −1012 −5045 7147 1827 10
21 0 1 0 1 1 3544 −1012 5045 −7147 −1827 7
22 0 1 0 1 0 3544 −1012 5045 −7147 1827 9
23 0 1 0 0 1 3544 −1012 5045 7147 −1827 12
24 0 1 0 0 0 3544 −1012 5045 7147 1827 14
25 0 0 1 1 1 3544 1012 −5045 −7147 −1827 4
26 0 0 1 1 0 3544 1012 −5045 −7147 1827 6
27 0 0 1 0 1 3544 1012 −5045 7147 −1827 9
28 0 0 1 0 0 3544 1012 −5045 7147 1827 11
29 0 0 0 1 1 3544 1012 5045 −7147 −1827 8
30 0 0 0 1 0 3544 1012 5045 −7147 1827 10
31 0 0 0 0 1 3544 1012 5045 7147 −1827 13
32 0 0 0 0 0 3544 1012 5045 7147 1827 15

many simple statistics, including Wilcoxon’s signed rank statistic, the confidence

set and the confidence interval for τ are the same [32, Chapter 4].

The five pairs in Table 2.10 cannot reject at the 5% level any two-sided hypothe-

sis using Wilcoxon’s statistic, T , because the smallest two-sided significance level is

Pr(T ≤ 0| F ,Z )+Pr(T ≥ 15| F ,Z ) = 2/32 = .0625. However, a 1− .0625 =
93.75% confidence interval for τ may be constructed. The endpoints of the confi-

dence interval are determined in Table 2.11, where Wilcoxon’s signed rank statistic,

T , rejects hypotheses below H0 : τ =−2147 and above H0 : τ = 3988 in a two-sided,

0.0625 level test, and the 93.75% confidence interval for τ is [−2147, 3988].
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Table 2.11 The endpoints of the 93.75% confidence interval for an additive treatment effect τ in
five pairs from the NSW experiment. Wilcoxon’s signed rank statistic T takes steps at −2147 and
3988, which define the endpoints of the two-sided confidence interval, [−2147, 3988].

τ0 −2147.0001 −2147 3987.9999 3988
T 15 14 1 0

P-value .0625 0.1250 0.1250 .0625

With the full sample of I = 185 pairs, the 95% confidence interval for τ is

[391, 2893] or between $391 and $2893, a long interval but one that excludes zero

treatment effect.7

2.4.3 Hodges-Lehmann point estimates of effect

In §2.4.1, the hypothesis of an additive treatment effect, H0 : rTi j = rCi j + τ0 for

i = 1, . . . , I, j = 1,2, was tested by applying Wilcoxon’s signed rank statistic to the

adjusted pair differences, Yi − τ0, which equal (Zi1 −Zi2)(rCi1 − rCi2) if H0 is true.

In §2.4.2, a 1−α confidence interval for an additive effect was formed by testing

every value τ0 and retaining for the interval all values not rejected by the Wilcoxon

test at level α . The same logic was used by Joseph Hodges and Erich Lehmann

[21, 32] to create a point estimate. They asked: What value τ0 when subtracted

from Yi makes Wilcoxon’s statistic T computed from Yi − τ0 behave the way we

expect Wilcoxon’s statistic to behave with a true hypothesis? As noted in §2.3.3,

when Wilcoxon’s signed rank statistic T is computed from (Zi1 −Zi2)(rCi1 − rCi2),
it has expectation E (T | F ,Z ) = I (I +1)/4 provided |rCi1 − rCi2|> 0 for all i. In-

tuitively, one finds a value, τ̂ , such that Wilcoxon’s statistic T equals I (I +1)/4

when T is computed from Yi − τ̂ . The intuition does not quite work, because the

7 Continuing the discussion from Note 5, calculating the confidence interval in R is straightforward:
the call to wilcox.test(.) includes the option conf.int=T.

>wilcox.test(dif,conf.int=T)
Wilcoxon signed rank test with continuity correction
data: dif
V = 9025, p-value = 0.009934
alternative hypothesis: true location is not equal to 0
95 percent confidence interval:
391.359 2893.225
sample estimates:
(pseudo)median
1639.383

In addition to the confidence interval, R supplies the Hodges-Lehmann point estimate 1639.383
of τ , as discussed in §2.4.3. In the R output, the Hodges-Lehmann estimate is labeled a (pseudo)
median.

In calculating this confidence interval, R makes use of various computational short-cuts. Be-
cause these computational shortcuts do not change the confidence interval, because they make the
subject seem more complex than it is, and because they do not generalize to other situations, I do
not discuss such shortcuts in this book.
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Wilcoxon statistic is discrete, taking on a finite number of values, so it may never

equal I (I +1)/4 or it may equal I (I +1)/4 for an interval of values of τ0. So

Hodges and Lehmann added two very small patches. If the signed rank statis-

tic never equals I (I +1)/4, then there is a unique value of τ0 where T passes

I (I +1)/4, and that unique value is the Hodges-Lehmann estimate, τ̂ . If the

signed rank statistic equals I (I +1)/4 for an interval of values of τ0, then the mid-

point of that interval is the Hodges-Lehmann estimate, τ̂ . In Table 2.2, I = 5,

so I (I +1)/4 = 5(5+1)/4 = 7.5. Wilcoxon’s T is T = 8 if computed from

Yi − 1455.9999, but it is T = 7 if computed from Yi − 1456.0001, so τ̂ = $1456.

For all I = 185 pairs, the point estimate8 of the increase in earnings is τ̂ = $1639.

Although τ̂ is one of the two well-known estimates that are called ‘Hodges-

Lehmann (HL) estimates,’ Hodges and Lehmann [21] had actually proposed a gen-

eral method for constructing estimates from tests of no treatment effect. The test

statistic need not be the Wilcoxon statistic, and the parameter need not be an addi-

tive treatment effect. One equates a test statistic to its null expectation and solves

the resulting equation for the point estimate. The method is applicable with other

statistics. In a mildly dull way, if you take the sample mean of Yi − τ0 as a test

statistic, as in §2.3.2, then the mean of Yi − τ0 has expectation zero when H0 is true,

so the estimating equation is (1/I)∑(Yi − τ̂) = 0 with solution τ̂ = Y ; that is, the

Hodges-Lehmann estimate derived from the mean is the mean of the Yi. Almost,

but not quite, the same thing happens with the randomization distribution of m-tests

in §2.9. In §2.4.5 there are Hodges-Lehmann estimates of a multiplicative effect [2]

and a Tobit effect.

2.4.4 Testing general hypotheses about treatment effects

Any hypothesis that specifies the 2I treatment effects, rTi j − rCi j, may be tested

using the same reasoning as in §2.4.1. Let τ0i j be 2I specific numbers, and let

θ0 = (τ011,τ012, . . . ,τ0I2)
T collect them into a vector of dimension 2I. Consider

the hypothesis H0 : rTi j = rCi j + τ0i j for i = 1, . . . , I and j = 1,2, or equivalently

H0 : rT = rC + θ0. Any specific hypothesis about effects may be expressed in this

way.

For instance, a basic hypothesis of this form entails interaction between the treat-

ment and a covariate, or so-called ‘effect-modification.’ In Table 2.1, one might

entertain a hypothesis in which there are two values of τ0i j depending upon whether

the jth man in the ith pair has or does not have a high school degree. The hypothesis

might assert that τ0i j = $1000 if i j has a high school degree and τ0i j = $2000 if i j
does not have such a degree, so the program has a larger benefit for men without a

degree.

The logic of §2.4.1 barely changes. If H0 : rT = rC +θ0 were true, the observed

response Ri j = Zi j rTi j +(1−Zi j) rCi j from the jth person in pair i would be Ri j =

8 To compute the Hodges-Lehmann estimate in R, see Note 7.
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rCi j + Zi j τ0i j, so that the observable data, (Ri j,Zi j), together with the hypothesis

permit the computation of rCi j = Ri j −Zi j τ0i j, in parallel with §2.4.1. Indeed, using

the fact that Zi2 = 1−Zi1, if H0 : rT = rC +θ0 were true, the treated-minus-control

matched-pair difference in responses is

Yi = (Zi1 −Zi2)(Ri1 −Ri2)
= (Zi1 −Zi2){(rCi1 + τ0i1 Zi1)− (rCi2 + τ0i2 Zi2)}
= (Zi1 −Zi2)(rCi1 − rCi2)+(τ0i1 Zi1 + τ0i2 Zi2)

so the adjusted difference

Yi − (τ0i1 Zi1 + τ0i2 Zi2) = (Zi1 −Zi2)(rCi1 − rCi2) (2.2)

is ±(rCi1 − rCi2) depending upon the random assignment of treatments Zi1 − Zi2.

The rest of the argument in §2.4.1 is as before, with a statistic, such as Wilcoxon’s

signed rank statistic, T , computed from the the adjusted differences (2.2), and com-

pared to its randomization distribution formed from all 2I assignments of signs to

(Zi1 −Zi2)(rCi1 − rCi2).
In abstract principle, a 95% confidence set for θ = (rT 11 − rC11, . . . ,rT I2 − rCI2)

T

could be constructed by testing every hypothesis H0 : rT = rC +θ0 and retaining for

the confidence set the values of θ0 that are not rejected by some 5% level test. In

practice, such a confidence set would not be intelligible, for it would be a subset

of 2I-dimensional space. In the NSW data in §2.1, the confidence set would be a

subset of 2I = 2×185 = 370 dimensional space and would be beyond human com-

prehension. In brief, it is straightforward to make valid statistical inferences that

are so complex, so faithful to the minute detail of reality, that they are unintelligible

and of no practical use whatsoever. The 1-dimensional confidence interval for the

single (scalar) constant effect τ in §2.4.2 provides insight into the 2I-dimensional

confidence set for θ because the constant model rT = rC + 1τ defines a line in

2I-dimensional space as τ varies over the real numbers. If all the tests were per-

formed using the same test statistic, say Wilcoxon’s signed rank statistic T , then τ0

is excluded from the 1-dimensional confidence interval for an additive effect if and

only if θ0 = (τ0,τ0, . . . ,τ0)
T is excluded from the 2I-dimensional confidence set for

θ ; after all, it is the same hypothesis tested by the same test. In this sense, a 1-

dimensional model for the 2I dimensional effect, such as the constant effect model,

may be understood as an attempt to glean insight into the 2I dimensional confidence

set for θ while recognizing that any 1-dimensional model, indeed any intelligible

model, is to some degree an oversimplification. Understanding of θ is often aided

by contrasting several intelligible models, rather than discarding them. Two other

1-dimensional effects are considered in §2.4.5. Arguably, the joint consideration

of three 1-dimensional models for the 2I-dimensional parameter θ provides more

humanly accessible insight into θ than would a 2I-dimensional confidence set.

An alternative approach to understanding the 2I-dimensional confidence set for

θ uses ‘attributable effects.’ In typical practice, an attributable effect provides a 1-
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dimensional summary statement about the 2I-dimensional θ , but this summary does

not determine θ uniquely. Attributable effects are discussed in §2.5.

2.4.5 Multiplicative effects; Tobit effects

A constant multiplicative effect β

As noted in §2.4.1, the hypothesis of a positive, constant additive effect, H0 : rTi j =
rCi j + τ for i = 1, . . . , I, j = 1,2, has the disagreeable property that it implies that a

man with zero earnings under treatment would have negative earnings under con-

trol. In this section, two other 1-dimensional families of hypotheses for the 2I-

dimensional effect θ = (rT 11 − rC11, . . . ,rT I2 − rCI2)
T are considered; they do not

produce negative earnings.

The first hypothesis asserts that the effect is a constant multiplier rather than a

constant addition, H0 : rTi j = β0 rCi j for i = 1, . . . , I, j = 1,2 with β0 ≥ 0. This

hypothesis avoids the implication of negative earnings under one of the treatments.

The multiplicative effect hypothesis is a special case of the hypothesis in §2.4.4,

namely the hypothesis H0 : rT = rC + θ0 with τ0i j = rTi j − rCi j = β0 rCi j − rCi j =
(β0 −1) rCi j.

For an additive effect, the treatment effect is removed by subtraction, but for a

multiplicative effect, the effect is removed by division [2]. If H0 : rTi j = β0 rCi j

were true for all i j, then Ri j/β Zi j
0 = rCi j; that is, if Zi j = 0 then Ri j = rCi j and

β Zi j
0 = 1, while if Zi j = 1, then Ri j = rTi j, β Zi j

0 = β0 and Ri j/β Zi j
0 = rTi j/β0 =

rCi j. The hypothesis H0 : rTi j = β0 rCi j is tested by applying Wilcoxon’s signed

rank statistic to the I adjusted, treated-minus-control matched pair differences,

(Zi1 −Zi2)
(

Ri1/β Zi1
0 −Ri2/β Zi2

0

)
, which equal (Zi1 −Zi2)(rCi1 − rCi2) if the hy-

pothesis is true. The set of values of β0 not rejected in a 5%-level test is a 95%

confidence set for a constant multiplicative effect β .

In the NSW experiment with I = 185 pairs, the two-sided, 95% confidence in-

terval for β is [1.08, 1.95], or between an 8% increase and a 95% increase. The

Hodges-Lehmann point estimate is β̂ = 1.45.

Although a multiplicative effect avoids the implication of negative earnings, it

has peculiarities of its own. If the effect is multiplicative, then a man who has rCi j =
0 earnings under control also has rTi j = β rCi j = 0 earnings under treatment. Many

controls did have zero earnings in 1978; see Figure 2.1. Among its several goals,

the NSW program intended to bring into employment men who would otherwise be

out of work, and a multiplicative effect says this cannot happen. This leads to the

consideration of a ‘Tobit effect.’
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Tobit effects

Two men with the same positive earnings, rCi j, under control in 1978 have some-

thing in common: the labor market attached the same dollar value to their labor.

Two men with zero earnings under control in 1978 have less in common: the labor

market declined to attach a positive value to the labor they might supply. One might

entertain the thought that two unemployed men are unequally unemployed: perhaps

the market attaches negative but unequal values to the labor they might supply. Ex-

pressed in operational terms, the subsidy that an employer would require before

employing the two unemployed men might be different because one man could sup-

ply labor of greater net value to the employer than the other. In a simple economic

model, workers are paid the values of the marginal products of their labor, and a

worker is unemployed if the marginal product of his labor is negative. (We have

all known people like that.) ‘Tobit effects,’ named for James Tobin [60], attempt to

express this idea.

Suppose the NSW program raises the marginal value of every worker’s labor by

the same constant, τ0, but the worker is employed, with positive earnings, only if

the marginal value of the labor is positive. In this case, if the jth man in the ith
pair would have earnings of rTi j in the NSW program, and if rTi j ≥ τ0, then rCi j =
rTi j − τ0, but if rTi j < τ0 then rCi j = 0; that is, in general, rCi j = max(rTi j − τ0,0).
This hypothesis is another special case of the general hypothesis in §2.4.4.

If the hypothesis, H0 : rCi j = max(rTi j − τ0,0) for i = 1, . . . , I, j = 1,2, were

true, then max(Ri j − τ0 Zi j, 0) = rCi j. The hypothesis rCi j = max(rTi j − τ0,0) may

be tested by applying Wilcoxon’s signed rank test to the I adjusted treated-minus-

control differences, (Zi1 −Zi2)
{

max(Ri j − τ0 Zi j, 0)−max(Ri j − τ0 Zi j, 0)
}

,which

equal (Zi1 −Zi2)(rCi1 − rCi2) if the hypothesis is true. The test is the same as before;

see §2.4.4.

For the Tobit effect rCi j = max(rTi j − τ,0), the 95% confidence interval for τ is

[$458, $3955], and the Hodges-Lehmann point estimate is τ̂ = $2114.

Comparing the three effects: additive, multiplicative, tobit

Figure 2.2 compares an additive effect, rCi j = rTi j −τ , a multiplicative effect, rCi j =
rTi j/β , and a Tobit effect, rCi j = max(rTi j − τ,0). In each of the three panels of

Figure 2.2, the 1978 earnings of the 185 treated men (Zi j = 1) and the 185 control

men (Zi j = 0) are displayed after removing the estimated treatment effect from the

earnings of the treated men. In each case, the Hodges-Lehmann estimate is used

to estimate the treatment effect. For an additive effect, Ri j − τ̂Zi j is plotted; for a

multiplicative effect, Ri j/β̂ Zi j is plotted; for a Tobit effect, max(Ri j − τ̂ Zi j, 0) is

plotted. If the number I of pairs were large, then the pair of treated-control boxplots

would look the same with an effect of the correct form. The boxplots for an additive

effect suggest the effect is not, in fact, additive, in part because the boxplots look

quite different, and in part because negative earnings are produced. The boxplots

for the multiplicative effect look better, although the lower quartile for the treated
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Fig. 2.2 Earnings in 1978 after adjustment to remove three possible treatment effects, an additive
effect of $1639, a multiplicative effect of 1.45, and a Tobit effect of $2114. If the correct effect
were removed, the two boxplots would look similar, differing only by chance.

group is positive while for the control group it is zero. The boxplots for the Tobit

effect are better than for the additive effect, and the lower quartile in both groups is

now zero. Although the Tobit effect is, arguably, the best of the three, it misses the

long right tail in the treated group: a handful of treated men earned much more than

is accounted for by the Tobit effect. This was clearly visible in Figure 2.1 as well.

More will be said about the tail in §2.5.
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2.5 Attributable Effects

Why use attributable effects?

As seen in §2.4.4, it is straightforward to test a hypothesis that specifies all 2I
treatment effects, rTi j − rCi j, say the hypothesis H0 : rTi j = rCi j + τ0i j for i =
1, . . . , I and j = 1,2, or equivalently the hypothesis H0 : rT = rC + θ0 with θ0 =
(τ011,τ012, . . . ,τ0I2)

T . We were barred from using such a test to produce a con-

fidence set for θ = (rT 11 − rC11, . . . ,rT I2 − rCI2)
T in part by our inability to make

practical sense of a confidence set that is a subset of 2I-dimensional space. In §2.4.5,

some insight into θ was gleaned by contrasting three 1-dimensional effects, that is,

three paths or curves through the 2I-dimensional space of possible effects. By con-

trast, ‘attributable effects’ make summary statements about θ without restricting

the form of θ in any way. Attributable effects are a general concept [42, 43] but, in

the current section, only the case of matched pairs is considered using Wilcoxon’s

signed rank statistic [46] and an extension of it by W. Robert Stephenson [59, 49].

The discussion is simplified by assuming that there are no ties of any kind and dis-

cussing ties separately at the end.

Aligned responses: Shifting attention from pairs to individuals

If no simplifying form is imposed upon θ = (rT 11 − rC11, . . . ,rT I2 − rCI2), then it

is easiest to understand a treatment effect on one man, rTi j − rCi j, rather than on

the matched pair difference between two men. In simple cases, such as an additive

effect, the difference of two matched men has a simple relationship with the sepa-

rate responses of the two individual men (§2.4.1), but in general this is not so. At

the same time, the men were carefully matched for important characteristics, such

as education, age and pretreatment earnings, and it seems wise to retain the com-

parison of two similar men. These two considerations lead to ‘aligned responses,’

introduced by Hodges and Lehmann [20] in an extension of Wilcoxon’s signed rank

statistic. With matched pairs, the aligned response for the jth man in the ith pair

is the difference between his observed response, Ri j, and the average response in

his pair, Ri = (Ri1 +Ri2)/2, so the aligned response is Ri j −Ri. Talk about aligned

responses is, in a sense, talk about one man while taking account of the pairing.

Of course, the treated-minus-control pair difference of aligned responses Ri j −Ri
equals the treated-minus-control difference in the responses Ri j themselves because

Ri appears twice and cancels. If Wilcoxon’s signed rank statistic were computed

from the aligned responses, it would equal Wilcoxon’s signed rank statistic com-

puted from the responses themselves. So far, the switch to aligned responses is a

switch in the way we talk rather than a switch in what we calculate.9

9 At this point, we part company with Hodges and Lehmann [20]. They were interested in creating
a generalization of Wilcoxon’s signed rank statistic so that the matched sets were no longer pairs
and might, for example, include several controls. Their statistic, the aligned rank statistic, ranks
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If the null hypothesis of no treatment effect, H0 : rTi j = rCi j for i = 1, . . . , I and

j = 1,2, were true, then the pair of aligned responses in pair i would be(
rCi1 − rCi1 + rCi2

2
, rCi2 − rCi1 + rCi2

2

)
(2.3)

no matter how treatments were assigned. In contrast, if the treatment has an effect,

then the pair of aligned responses in pair i would be(
rTi1 − rTi1 + rCi2

2
, rCi2 − rTi1 + rCi2

2

)
(2.4)

if the first man were the treated man, Zi1 = 1, Zi2 = 0, and the aligned responses

would be (
rCi1 − rCi1 + rTi2

2
, rTi2 − rCi1 + rTi2

2

)
(2.5)

if the second man were the treated man, Zi1 = 0, Zi2 = 1, so in either case the pair

of aligned responses is

(
Ri1 −Ri, Ri2 −Ri

)
= Zi1

(
rTi1 − rTi1 + rCi2

2
, rCi2 − rTi1 + rCi2

2

)
(2.6)

+Zi2

(
rCi1 − rCi1 + rTi2

2
, rTi2 − rCi1 + rTi2

2

)
. (2.7)

For instance, it might happen that rTi1 − (rTi1 + rCi2)/2 = $1000 in (2.4) and

rTi2 − (rCi1 + rTi2)/2 = $5000 in (2.5), so the effect in pair i is positive and sub-

stantial but far from constant; rather it depends upon which man is treated. Can

Wilcoxon’s statistic (and Stephenson’s generalization) help to draw inferences about

effects that vary in size from person to person?

Thinking about heterogeneous effects by focusing on small groups of pairs

To think about effects that are not constant, that are heterogeneous, it is natural to

look at several pairs at once. If the effect varies, variations in effect have to part

of the story. Let I ⊆ {1, . . . , I} be a subset of m pairs of the I pairs. Wilcoxon’s

statistic looks at pairs m = 2 at a time, so I = {i, i′} for i �= i′, 1 ≤ i < i′ ≤ I.

the aligned responses (not the absolute differences) and sums the ranks of treated subjects. For
matched pairs, they would rank the Ri j −Ri from 1 to 2I and sum the I ranks for the I treated
subjects. Hodges and Lehmann [20] show that, for matched pairs, Wilcoxon’s signed rank statistic
and the aligned rank statistic produce virtually the same inferences. Can you see why? In pairs,
how are Ri1 −Ri and Ri2 −Ri related? Think about the pair with largest Ri j −Ri, the pair that
contains the aligned response that gets the largest aligned rank. How is that pair related to the pair
that has the largest |Ri1 −Ri2|, the one that has the largest rank in Wilcoxon’s statistic?
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Stephenson [59] suggested using other values of m, 1 ≤ m ≤ I. For the moment,

focus on one subset I , perhaps I = {1,2}; later, the statistic will average over all

subsets.

Among the m pairs in I , there are 2m men, or 2m = 4 men for Wilcoxon’s

statistic. Which one man among these 2m men seems to have the most exceptionally

positive earnings, in the sense that his observed aligned response, Ri j −Ri, is the

largest, the most positive, of the 2m aligned responses? That one man seems to

be an interesting man, deserving special attention, because he entered or reentered

the workforce with high earnings in 1978 relative to someone else of similar age,

education and so forth. This man is the most interesting of 2m men. Now that we

have focused on one interesting man, it is time to ask: was he a treated man? We

ought to tally one success for the NSW treatment if this man — the man with the

highest aligned earnings among the 2m men in I — is a treated man. So write

HI = 1 if indeed he is a treated man, and HI = 0 if he is a control.

Even if the treatment had no effect, so that the aligned responses were always

(2.3), the random assignment of treatments would grant a success, HI = 1, to the

treatment with probability 1
2 . One of the two values in the pair (2.3) is positive, and

even if the treatment is without effect, randomization picks the positive entry for

treatment half the time. That is true for each pair, so it is true for the pair i ∈ I
with the largest rCi j − (rCi1 + rCi2)/2 in (2.3). Evidently, some work needs to be

done to distinguish apparent successes that are merely due to luck of the random

assignment and successes that were actually caused by the treatment.

To distinguish successes caused by treatment from successes that happen by luck,

a new quantity, HCI , is introduced. Imagine, for a brief moment, that we could ob-

serve the response to control, rCi j, for all 2I subjects, so that, in particular, we could

calculate the pair of aligned control responses in (2.3). In point of fact, we observe

only half of the rCi j because half of the men receive treatment, so we observe (2.4)

or (2.5) not (2.3). If we could calculate (2.3), we could calculate a quantity HCI

which is similar to HI , but is computed from the aligned control responses in (2.3).

Specifically, with (2.3) in hand, we could find the man with the largest, most pos-

itive of the 2m aligned responses to control (2.3) for the m pairs i ∈ I and score

HCI = 1 if that man was a treated man and HCI = 0 if that man was a control.

Like HI , the quantity HCI depends on the random assignment of treatments, Z, so

HI and HCI are random variables; however, HI is observed but HCI is not.

If HI −HCI = 1−0 = 1, then in the set I an effect of the treatment caused a

success to be tallied that would not have been tallied if all 2m men had received the

control. If HI −HCI = 0− 1 = −1, then in the set I an effect of the treatment

prevented a success from being tallied that would have been tallied if all 2m men

had received the control. If HI −HCI = 0, then in the set I the effects of the

treatment did not change whether a success was tallied. One might say, with some

imprecision, that HI gives credit for successes that occur by chance, but HI −HCI

does not. We cannot calculate quantities like HI −HCI because we see HI but

not HCI ; however, if we could calculate HI −HCI , we would know whether a

success or failure was attributable to effects caused by the treatment. That we never

see HCI turns out to be less of a problem than one might suppose.
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It seems arbitrary to focus on just the 2m men in I when there are data on 2I
men. For Wilcoxon’s statistic, with m = 2, this would mean focusing on 2m = 4

men when there are 2I = 370 men to consider. To drive out the arbitrary element

of what otherwise seems to be a promising idea, it is natural to consider every sub-

set I of m distinct pairs, to compute HI for each one, and to tally up the total

number of successes for the treatment in all of these comparisons. So let K be

the collection of all subsets I of m distinct pairs. For Wilcoxon’s statistic, with

m = 2, the collection is K contains {1,2}, {1,3}, {2,3}, . . . , {I −1, I}. In general,

K contains |K |= I!/{m!(I −m)!} subsets, or 17,020 subsets of two pairs for the

Wilcoxon statistic in the NSW experiment. The statistic T̃ = ∑I∈K HI tallies up

the successes for the treatment in all possible comparisons of m distinct pairs.10 In

a parallel, the unobservable quantity T̃C = ∑I∈K HCI tallies the success for the

treatment that would have occurred had all 2I men received the control. Finally,

A = T̃ − T̃C = ∑I∈K HI −HCI tallies the number of successes attributable to

effects of the treatment, that is, the net increase in successes due to effects of the

treatment. If the treatment has no effect, then HI = HCI for every I ∈ K and

A = 0. In general, A is an integer between −|K | and |K |. It is often convenient

to think of the proportions, T̃/ |K |, T̃C/ |K |, and A/ |K | rather than the counts.

Computations; null distribution

Computing T̃ sounds as if it would be an enormous amount of work: even for

m = 2, there are 17,020 terms HI for the I = 185 pairs in the NSW exper-

iment. Actually, it is easy. Stephenson [59] wrote T̃ in the form of a signed

rank statistic, similar to the form for Wilcoxon’s T in §2.3.3, specifically T̃ =
∑I

i=1 sgn{(Zi1 −Zi2)(rCi1 − rCi2)} · q̃i, where sgn(a) = 1 if a > 0, sgn(a) = 0 if

a ≤ 0, and q̃i is a new quantity that will be defined in just a moment. With pairs, it

is always true that Ri1 −Ri = −Ri2 + Ri, so
∣∣Ri1 −Ri

∣∣ =
∣∣Ri2 −Ri

∣∣. Rank the pairs

from 1 to I based on the value of
∣∣Ri1 −Ri

∣∣; therefore, pair i gets rank qi where this

rank qi is the same as the rank qi in §2.3.3 of |Yi| that appears in Wilcoxon’s signed

rank statistic. The pairs with ranks qi = 1, qi = 2, . . . , qi = m− 1, never contain

the largest observed aligned response Ri j −Ri in a subset of m pairs, so set q̃i = 0

for these pairs. The pair with rank qi = m contains the largest observed aligned

response Ri j −Ri in exactly one subset of m pairs, so set q̃i = 1 for this pair. The

pair with rank qi = m+1 contains the largest observed aligned response Ri j −Ri in

exactly m subsets I of m pairs, so set q̃i = m for this pair. In general, the pair with

rank qi contains the largest aligned response in exactly q̃i pairs, where

10 A statistic built in this way is known as a U-statistic, a type of statistic invented by Wassily Ho-
effding [22], and for m = 2, the statistic T̃ is the U-statistic that most closely resembles Wilcoxon’s
signed rank statistic; see [32, Chapter 4] or [39, §3.5]. Wilcoxon’s statistic T does not quite equal
T̃ , but the behavior of the two statistics is virtually identical when I is large. If Wilcoxon had
ranked the I pairs from 0 to I −1, he would have produced T̃ rather than T [39, §3.5]. If the col-
lection K were expanded to include the I self-pairs, (1,1), (2,2), . . . , (I, I), then T̃ would equal T
[32, Chapter 4].
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q̃i =
(

qi −1

m−1

)
for qi ≥ m, q̃i = 0 for qi < m. (2.8)

With q̃i so defined,

T̃ = ∑
I∈K

HI

=
I

∑
i=1

sgn{(Zi1 −Zi2)(rCi1 − rCi2)} · q̃i .

With m = 2 for Wilcoxon’s statistic,(
qi −1

m−1

)
=

(
qi −1

1

)
= qi −1, (2.9)

so T and T̃ are very similar, except the ranks in T̃ are 0, 1, . . . , I −1 rather than 1,

2, . . . , I; see Note 10 and [39, §3.5]. With m = 5, the ranks q̃i are 0, 0, 0, 0, 1, 5, 15,

35, 70, 126, . . . .

If the null hypothesis of no treatment effect, H0 : rTi j = rCi j for i = 1, . . . , I and

j = 1,2, were true, then the exact null distribution of T̃ could be determined by

direct enumeration, as was done for Wilcoxon’s T in Tables 2.7 and 2.8. If H0 is

true, then T̃ has the distribution of the sum of I independent random variables taking

the values 0 and q̃i each with probability 1
2 , for i = 1, . . . , I. Also, the central limit

theorem would provide a Normal approximation to the null distribution of T̃ based

on its null expectation and variance.

This null distribution of T̃ shares with Wilcoxon’s statistic the curious property

noted in §2.3.3, namely that, in the absence of ties, the null distribution may be writ-

ten down before the experiment is conducted, without seeing any of the responses.

This turns out to be convenient. In particular, even though we cannot observe the 2I
potential responses to control in (2.3), we do know that, by definition, they satisfy

the null hypothesis of no treatment effect. In light of this, even though we cannot

observe any of the HCI , we do know the distribution of

T̃C = ∑
I∈K

HCI . (2.10)

The distribution of the unobservable T̃C is the known null distribution of T̃ . That is,

even when the treatment has an effect, in the absence of ties, the distribution of T̃C
is available by direct enumeration with the ranks, q̃i; moreover,

E
(

T̃C

∣∣∣ F ,Z
)

= (1/2)
I

∑
i=1

q̃i, (2.11)

var
(

T̃C

∣∣∣ F ,Z
)

= (1/4)
I

∑
i=1

q̃2
i (2.12)
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and the distribution of
{

T̃C −E
(

T̃C

∣∣∣ F ,Z
)}

/

√
var

(
T̃C

∣∣∣ F ,Z
)

converges in

distribution to the standard Normal distribution as I → ∞ with m fixed. Using this

known distribution of T̃C, find the smallest value tα such that Pr
(

T̃C ≤ tα
∣∣∣ F ,Z

)
≥

1−α . For large I, the critical value tα is approximately

E
(

T̃C

∣∣∣ F ,Z
)

+Φ−1 (1−α)
√

var
(

T̃C

∣∣∣ F ,Z
)

(2.13)

where Φ−1 (·) is the standard Normal quantile function, or

E
(

T̃C

∣∣∣ F ,Z
)

+1.65

√
var

(
T̃C

∣∣∣ F ,Z
)

(2.14)

for α = 0.05.

Our interest is in the number A = T̃ − T̃C of successes attributable to effects of

the treatment, where T̃ can be calculated from the data and T̃C is not observed.

It is easy to see that Pr
(

A ≥ T̃ − tα
∣∣∣ F ,Z

)
≥ 1−α , where T̃ − tα is something

that can be calculated, so A ≥ T̃ − tα may be asserted with 1−α confidence.11 In

terms of proportions of successes rather than counts, the confidence statement is

A/ |K | ≥
(

T̃ − tα
)

/ |K |.

Ties

Ties are a minor inconvenience. Among the I = 185 pairs in the NSW experi-

ment, there are 14 ties among the |Yi|, all with |Yi| = 0. Briefly, ties make the

procedure conservative, so A ≥ T̃ − tα occurs with probability at least 1−α for

large I. Specifics follow. Although the distribution of T̃C is known in the absence

of ties, it is not known if ties occur, because the pattern of ties in the unobserv-

able (2.3) affects the distribution. For the observable T̃ , it is natural to use av-

erage ranks, averaging the q̃i for pairs with tied |Yi|, and setting sgn(a) = 1 for

a > 0, sgn(a) = 1
2 for a = 0, sgn(a) = 0 for a < 0. Speaking informally, a tie for

the highest Ri1 −Ri for i ∈ I means one success is shared as a fractional success

equally among the tied values. The same thing cannot be done for T̃C because the

ties in (2.3) are not observed. Suppose that the unobserved T̃C allowed for ties in

the manner proposed for the observed T̃ , but the distribution used to determine tα
ignored ties, using instead the ranks q̃i in (2.8) for qi = 1, 2, . . . , I; then the ex-

pectation is correct, E
(

T̃C

∣∣∣ F ,Z
)

= (1/2)∑I
i=1 q̃i or E

(
T̃C/ |K |

∣∣∣ F ,Z
)

= 1
2 ,

11 To see this, observe that: Pr
(

A ≥ T̃ − tα
∣∣∣ F ,Z

)
= Pr

(
T̃ − T̃C ≥ T̃ − tα

∣∣∣ F ,Z
)

=

Pr
(

T̃C ≤ tα
∣∣∣ F ,Z

)
≥ 1−α by the definition of tα . The assertion A ≥ T̃ − tα is a confidence

interval for an unobservable random variable. Confidence sets for random variables are less famil-
iar than confidence sets for parameters, but they are hardly new; see, for instance, Weiss [61].
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the variance is too large, var
(

T̃C

∣∣∣ F ,Z
)
≤ (1/4)∑I

i=1 q̃2
i , the approximate tα =

E
(

T̃C

∣∣∣ F ,Z
)

+Φ−1 (1−α)
√

var
(

T̃C

∣∣∣ F ,Z
)

is too large for large I and α < 1
2 ,

so Pr
(

T̃C ≤ tα
∣∣∣ F ,Z

)
≥ 1−α , and A ≥ T̃ − tα may be asserted with at least 1−α

confidence. For m = 2 in the NSW experiment, the ratio of the tied to untied vari-

ances for T̃ is 0.9996 for m = 2, and is closer to 1 for larger m.

Results for the NSW experiment: Big effects, now and then

Using the Wilcoxon signed rank statistic means looking at pairs m = 2 at a time.

For the I = 185 pairs, there are 17020 subsets of two pairs. In 60.8% of these

17020 subsets, the man with the highest aligned earnings Ri1 − Ri was a treated

man, whereas 50% is expected by chance, so the point estimate is a 10.8% increase

attributable to effects of the treatment, but we are 95% confident of only a 3.8%

increase.

More interesting is what happens in groups of m = 20 pairs or 2m = 40 men.

Here, there are 3.1× 1026 comparisons I in K . In 85.7% of these comparisons,

the man with the highest aligned earnings Ri1 −Ri was a treated man, whereas 50%

were expected by chance, so the point estimate is a 35.7% increase attributable to

effects of the treatment, but we are 95% confident of only a 15.8% increase. When

you look at 40 matched men and you pick the man with the most impressive increase

in aligned earnings, that man is typically a treated man: it happened 85.7% of the

time. When there are big gains in earnings, mostly they occur in the treated group.

As Figure 2.1 suggests, the treatment has a big effect on a subset of men, with

perhaps little effect on many others. Indeed, the possibility of detecting large but

rare effects is the motivation for considering m > 2.

Uncommon but dramatic responses to treatment

If the effect of a treatment is not constant, then it is larger for some people than for

others. Perhaps the NSW training program changed the lives of some people and

had little or no effect on many others. David Salsburg [52] argued that common

statistical procedures were poorly equipped to detect uncommon but large treatment

effects, but he argued that such effects were often important; see also [53]. William

Conover and David Salsburg [5] proposed a type of mixture model in which a small

fraction of the population responds strongly to treatment, so rTi j−rCi j is large, while

the rest of the population is unaffected by treatment, so rTi j − rCi j = 0. Under this

model, they derived the locally most powerful rank test. The ranks they obtained are

difficult to interpret, so they do not lend themselves to use with attributable effects.

It turns out, however, that for large I, after rescaling, their ranks are virtually the

same as the ranks (2.8) that Stephenson [59] proposed on the basis of other consid-

erations. As has been seen, Stephenson’s ranks have a straightforward interpretation
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in terms of attributable effects. This subject is developed in detail in Chapter 16 and

[49]. In short, the methods described in this section are well adapted to the study

of uncommon but dramatic responses to treatment of the type that seem to have

occurred in the NSW experiment.

2.6 Internal and External Validity

In Fisher’s theory of randomized experiments, the inference is from the responses

the 2I subjects did exhibit under the treatments they did receive, and it is to the

2I unobserved responses these same individuals would have exhibited had they re-

ceived the alternative treatment. In brief, the inference concerns the unobservable

causal effects rTi j − rCi j for the 2I individuals in the experiment. See, for instance,

Welch [62].

A distinction is often made between ‘internal’ and ‘external’ validity [54]. A

randomized experiment is said to have a high level of ‘internal validity’ in the sense

that randomization provides a strong or ‘reasoned’ basis for inference about the

effects of the treatment, rTi j − rCi j, on the 2I individuals in the experiment. Causal

inference is challenging even if one were only interested in these 2I individuals,

and randomization meets that specific challenge. Often, one is interested not just

in these 2I people, but in people generally, people on other continents, people who

will be born in the future. ‘External’ validity refers to the effects of the treatment

on people not included in the experiment.

For instance, suppose that four large hospitals, say in Europe and the United

States, cooperated in a randomized trial of two forms of surgery, with sixty day

mortality as the outcome. Properly conducted, the trial would provide a sound basis

for inference about the effects of the two forms of surgery on the 2I patients in this

one clinical trial. One might plausibly think that similar effects would be found

at other large hospitals in Europe and the United States, Canada, Japan and other

countries, but nothing in a statistical analysis based on four hospitals provides a

warrant for this plausible extrapolation. The extrapolation sounds plausible because

of what we know about surgeons and hospitals in these countries, not because data

from four cooperating hospitals provides a sound basis for extrapolation. Would

similar effects be found at the small ambulatory surgical centers that are increasingly

common in the United States and elsewhere? Will the same effects be found at large

hospitals ten years from now as other technologies improve? Statistical analysis of

a clinical trial at four large hospitals provides no warrant for these extrapolations,

although surgeons may be able to offer an informed guess. These questions refer to

the degree of external validity of the clinical trial.

The common view [54], which I share, is that internal validity comes first. If

you do not know the effects of the treatment on the individuals in your study, you

are not well-positioned to infer the effects on individuals you did not study who live

in circumstances you did not study. Randomization addresses internal validity. In

actual practice, external validity is often addressed by comparing the results of sev-
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eral internally valid studies conducted in different circumstances at different times.

These issues also arise in observational studies, and so will be discussed at various

points later on.

2.7 Summary

The goal of causal inference in the NSW experiment is not to say that the earnings of

treated and control men differed systematically, but rather that the treatment was the

cause of the difference, so that if the treatment had been withheld from the treated

men, there would have been no systematic difference between the two groups. Many

statistical procedures can recognize a systematic difference, providing the sample

size is sufficiently large. Randomization plays a key role in experiments that study

the effects actually caused by a treatment.

The current chapter has done several things. It has introduced many elements

that randomized experiments and observational studies have in common, such as

treatment effects, treatment assignments and pretreatment covariates unaffected by

treatment. The chapter has discussed the large role played by random treatment

assignment in experiments in justifying, or warranting, or being the ‘reasoned ba-

sis’ for inference about effects caused by treatment. Without random assignment, in

observational studies, this justification or warrant or reasoned basis is absent. There-

fore, the chapter has framed the problem faced in an observational study, where the

goal is again to draw inferences about the effects caused by treatment, but treatments

were not assigned at random [4].

2.8 Further Reading

Randomized experimentation is due to Sir Ronald Fisher [13], whose book of 1935

is of continuing interest. David Cox and Nancy Reid [11] present a modern dis-

cussion of the theory of randomized experiments. For randomized clinical trials in

medicine, see [16, 38], and for experiments in the social sciences, see [3, 6]. Among

books that discuss permutation and randomization inferences, Erich Lehmann’s [32]

book is especially careful in distinguishing properties that follow from random as-

signment and properties that involve sampling a population. For causal effects as

comparisons of potential outcomes under alternative treatments, see the papers by

Jerzy Neyman [35], B.L. Welch [62] and Donald Rubin [50]. Donald Rubin’s paper

[50] is the first parallel, formal discussion of causal effects in randomized and obser-

vational studies. For three important illustrations of the enhanced clarity provided

by this approach, see [14, 15, 51]. Fisher [13], Welch [62], Kempthorne [28], Wilk

[64], Cox [9], Robinson [40], and many others viewed sampling models as approx-

imations to randomization inferences. Randomization inference is, of course, not
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limited to matched pairs [32, 44] and it may be used in conjunction with general

forms of covariance adjustment [45, 56].

In labor economics, the National Supported Work experiment became a small

laboratory for methods for observational studies when Robert LaLonde [29] set

aside the randomized control group and replaced it with a nonrandomized control

group drawn from a survey; see [12, 18, 19, 29, 57] for discussion.

2.9 Appendix: Randomization Distribution of m-statistics

Giving observations controlled weight using a ψ function

Sections 2.3.2 and 2.3.3 were similar in structure, even though the sample mean Y
and Wilcoxon’s signed rank statistic are not similar as statistics. It was suggested in

§2.3.3 that randomization inference is very general and virtually any statistic could

be handled in a parallel manner. This is illustrated using another statistic, an m-test,

that is, a test associated with Peter Huber’s [25] m-estimates. The discussion here

derives from a paper by J. S. Maritz [33]; see also [34, 48]. It should be emphasized

that the statistics used in m-tests differ in small but consequential ways from the

statistics used in m-estimation, and the description that follows is for m-tests.12

As in Huber’s m-estimation of a location parameter, Maritz’s test statistic in-

volves a function ψ (·) that gives weights to scaled observations. Rather than ‘re-

ject outliers’ from a statistical analysis, a suitable ψ-function gradually reduces the

weight of observations as they become increasingly extreme. Because we want an

observation that is high by 3 units to pull up as strongly as an observation that is

low by 3 units pulls down, the function ψ (·) is required to be an odd function,

meaning ψ (−y) = −ψ (y) for every y ≥ 0, so in particular ψ (−3) = −ψ (3) and

ψ (0) = 0. For testing and confidence intervals, it is wise to insist that ψ (·) be

monotone increasing, so y < y′ implies ψ (y) ≤ ψ (y′). One such function, similar

to a trimmed mean, was proposed by Huber; it has ψ (y) = max{−1,min(y, 1)}, so

that ψ (y) = −1 for y < −1, ψ (y) = y for −1 ≤ y ≤ 1, and ψ (y) = 1 for y > 1. In

effect, the mean Y has a ψ (·) function of ψ (y) = y.

Consider using the treated-minus-control differences in paired responses, Yi =
(Zi1 −Zi2)(Ri1 −Ri2), in testing the hypothesis of an additive treatment effect, H0 :

rTi j = τ0 + rCi j, for all i j, where τ0 is a specified number. When τ0 = 0, this is

12 The difference involves the scaling factor. In estimation, the scaling factor might be the median
absolute deviation from the sample median. In testing, the scaling factor might be the median
absolute deviation from the hypothesized median, which for testing no effect is zero. In testing
a hypothesis, one can presume the hypothesis is true for the purpose of testing it. By using the
hypothesized median rather than the sample median, the scaling factor becomes fixed as the treat-
ment assignments vary — as illustrated later — with the consequence that Maritz’s statistic has a
null randomization distribution that is the sum of independent bounded random variables, and this
greatly simplifies the creation of a large sample approximation to the null randomization distribu-
tion. This small difference has various consequences that should be considered before designing a
new m-test; see [33, 48] for discussion.
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Fisher’s sharp null hypothesis of no treatment effect, and this is the case presented in

detail in Table 2.12. As seen in §2.4, if H0 were true, then the treated-minus-control

difference in responses in pair i is Yi = τ0 +(Zi1 −Zi2)(rCi1 − rCi2). In particular,

if H0 were true, Yi − τ0 would be ±(rCi1 − rCi2) and |Yi − τ0| = |rCi1 − rCi2| would

be fixed13 not varying with the randomly assigned treatment Zi j. This is visible

for τ0 = 0 at the bottom of Table 2.12: assuming H0 : rTi j = τ0 + rCi j with τ0 = 0

for the purpose of testing it, the |Yi − τ0| are the same for all |Z | = 32 treatment

assignments in Z .

Scaling

The observations are scaled before the ψ (·) function is calculated. The scaling

factor sτ0
used by Maritz’s [33] statistic is a specific quantile of the I absolute dif-

ferences, |Yi − τ0|, most commonly the median, sτ0
= median |Yi − τ0|. When used

with Huber’s ψ (y) = max{−1,min(y, 1)}, scaling by sτ0
= median |Yi − τ0| trims

half the observations and is analogous to a midmean. If a larger quantile of the

|Yi − τ0| is used for scaling, say the 75th or the 90th quantile rather than the median,

then there is less trimming. If the maximum |Yi − τ0| is used for scaling with Hu-

ber’s ψ (y) = max{−1,min(y, 1)}, then Maritz’s statistic becomes the sample mean

and it reproduces the randomization inference in §2.3.2.

Because sτ0
is calculated from |Yi − τ0|, if H0 : rTi j = τ0 +rCi j, were true, then sτ0

would have the same value for each of the 32 treatment assignments, or sτ0
= 2147

in Table 2.12. In the example in Table 2.12, the calculations continue with Huber’s

function ψ (y) = max{−1,min(y, 1)}, specifically the scaled absolute responses,

|Yi − τ0|/sτ0
, and the scored, scaled absolute responses, ψ

(|Yi − τ0|/sτ0

)
. Notice

that ψ
(|Yi − τ0|/sτ0

)
takes the same value for all 32 treatment assignments.

Randomization test of a hypothesized additive effect, H0 : rTi j = rCi j + τ0

For testing the hypothesis of an additive treatment effect, H0 : rTi j = τ0 + rCi j,

Maritz’s [33] m-test statistic is T ∗ = ∑I
i=1 ψ

{
(Yi − τ0)/sτ0

}
. Recall that ψ (·) is

an odd function, ψ (−y) = −ψ (y) for y ≥ 0, so ψ (y) = sign(y) · ψ (|y|) where

sign(y) = 1 if y > 0, sign(y) = 0 if y = 0, sign(y) =−1 if y < 0. If H0 : rTi j = τ0 +
rCi j were true, then Yi − τ0 = (Zi1 −Zi2)(rCi1 − rCi2), so T ∗ = ∑I

i=1 sign(Yi − τ0) ·
ψ

(|Yi − τ0|/sτ0

)
or equivalently

T ∗ =
I

∑
i=1

sign{(Zi1 −Zi2)(rCi1 − rCi2)} ·ψ
(|rCi1 − rCi2|/sτ0

)
. (2.15)

13 That is, |Yi − τ0| = |rCi1 − rCi2| is determined by F .
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Table 2.12 The possible treated-minus-control differences in adjusted responses Yi − τ0 = (Zi1 −
Zi2)(rCi1 − rCi2) and Huber-Maritz m-statistic, T ∗, under the null hypothesis of an additive treat-
ment effect, H0 : rTi j = rCi j + τ0, for τ0 = 0 for the small version of the NSW experiment with
I = 5 pairs.

Label Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Huber-Maritz
Y1 − τ0 Y2 − τ0 Y3 − τ0 Y4 − τ0 Y5 − τ0 T ∗

1 1456 3988 −45 −2147 3173 1.66
2 1456 3988 −45 −2147 −3173 −0.34
3 1456 3988 −45 2147 3173 3.66
4 1456 3988 −45 2147 −3173 1.66
5 1456 3988 45 −2147 3173 1.70
6 1456 3988 45 −2147 −3173 −0.30
7 1456 3988 45 2147 3173 3.70
8 1456 3988 45 2147 −3173 1.70
9 1456 −3988 −45 −2147 3173 −0.34

10 1456 −3988 −45 −2147 −3173 −2.34
11 1456 −3988 −45 2147 3173 1.66
12 1456 −3988 −45 2147 −3173 −0.34
13 1456 −3988 45 −2147 3173 −0.30
14 1456 −3988 45 −2147 −3173 −2.30
15 1456 −3988 45 2147 3173 1.70
16 1456 −3988 45 2147 −3173 −0.30
17 −1456 3988 −45 −2147 3173 0.30
18 −1456 3988 −45 −2147 −3173 −1.70
19 −1456 3988 −45 2147 3173 2.30
20 −1456 3988 −45 2147 −3173 0.30
21 −1456 3988 45 −2147 3173 0.34
22 −1456 3988 45 −2147 −3173 −1.66
23 −1456 3988 45 2147 3173 2.34
24 −1456 3988 45 2147 −3173 0.34
25 −1456 −3988 −45 −2147 3173 −1.70
26 −1456 −3988 −45 −2147 −3173 −3.70
27 −1456 −3988 −45 2147 3173 0.30
28 −1456 −3988 −45 2147 −3173 −1.70
29 −1456 −3988 45 −2147 3173 −1.66
30 −1456 −3988 45 −2147 −3173 −3.66
31 −1456 −3988 45 2147 3173 0.34
32 −1456 −3988 45 2147 −3173 −1.66

All Absolute Differences |Yi − τ0|
1–32 1456 3988 45 2147 3173

All Scaled Absolute Differences |Yi − τ0|/sτ0

1–32 0.68 1.86 0.02 1.00 1.48

All Scored, Scaled Absolute Differences ψ(|Yi − τ0|/sτ0
)

1–32 0.68 1.00 0.02 1.00 1.00
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In words, if H0 : rTi j = τ0 + rCi j were true, T ∗ would be the sum of I independent

quantities that take the fixed values ψ
(|rCi1 − rCi2|/sτ0

)
and −ψ

(|rCi1 − rCi2|/sτ0

)
each with probability 1

2 .

For instance, the observed value of T ∗ is 1.66 in the first row of Table 2.12; that

is, T ∗ = 1.66 = 0.68 + 1.00 + (−0.02) + (−1.00) + 1.00. Ten of the 32 equally

probable treatment assignments z ∈ Z yield values of T ∗ that are at least 1.66, so

the one-sided P-value for testing H0 : rTi j = τ0 + rCi j with τ0 = 0 is 10
32 = 0.3125 =

Pr(T ∗ ≥ 1.66| F ,Z ). The two-sided P-value is 20
32 = 0.625 which equals both

2 ·Pr(T ∗ ≥ 1.66| F ,Z ) and Pr(T ∗ ≤ −1.66| F ,Z )+Pr(T ∗ ≥ 1.66| F ,Z ) be-

cause the null distribution of T ∗ given F ,Z is symmetric about zero.

Table 2.12 calculates the exact null distribution of T ∗, but a large sample ap-

proximation using the central limit theorem is easy to obtain as I → ∞. The

null distribution of T ∗ is the distribution of the sum of I independent terms tak-

ing the fixed values ±ψ
(|rCi1 − rCi2|/sτ0

)
each with probability 1

2 . Therefore,

in a randomized experiment under the null hypothesis, E (T ∗| F ,Z ) = 0 and

var(T ∗| F ,Z ) = ∑I
i=1

{
ψ

(|rCi1 − rCi2|/sτ0

)}2
. With a bounded ψ (·) function,

such as Huber’s ψ (y) = max{−1,min(y, 1)}, as I → ∞, the null distribution of

T ∗/
√

var(T ∗| F ,Z ) converges in distribution to the standard Normal distribution

provided Pr
(
sτ0

> 0
) → 1; see [33].

The discussion in this section has focused on matched pairs, but essentially the

same reasoning may be applied when matching with multiple controls [48].

m-tests in the NSW experiment

As seen in §2.5, in the NSW experiment, much of the treatment effect is in the tail,

so less trimming is better. In testing the hypothesis of no effect, H0 : τ0 = 0, scaling

by sτ0
= median |Yi − τ0| trims half the observations and yields a two-sided P-value

of 0.040, while scaling by the 90th percentile of |Yi − τ0| yields a two-sided P-value

of 0.0052. Using the 90th percentile, the 95% confidence interval for an additive

effect is $475 to $2788.
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Chapter 3
Two Simple Models for Observational Studies

Abstract Observational studies differ from experiments in that randomization is

not used to assign treatments. How were treatments assigned? This chapter intro-

duces two simple models for treatment assignment in observational studies. The first

model is useful but naı̈ve: it says that people who look comparable are comparable.

The second model speaks to a central concern in observational studies: people who

look comparable in the observed data may not actually be comparable; they may

differ in ways we did not observe.

3.1 The Population Before Matching

In the population before matching, there are L subjects, � = 1, 2, . . . , L. Like

the subjects in the randomized experiment in Chapter 2, each of these L subjects

has an observed covariate x�, an unobserved covariate u�, an indicator of treat-

ment assignment, Z�, where Z� = 1 if the subject receives treatment or Z� = 0 if

the subject receives the control, a potential response to treatment, rT �, which is

seen if the subject receives treatment, Z� = 1, a potential response to control, rC�,

which is seen if the subject receives the control, Z� = 0, and an observed response,

R� = Z� rT � + (1−Z�) rC�. Now, however, treatments Z� are not assigned by the

equitable flip of a fair coin.

In the population before matching, we imagine that subject � received treatment

with probability π�, independently of other subjects, where π� may vary from one

person to the next and is not known. More precisely,

π� = Pr(Z� = 1 | rT �, rC�, x�, u�) , (3.1)

Pr(Z1 = z1, . . . ,ZL = zL|rT 1, rC1, x1, u1, . . . ,rT L, rCL, xL, uL)

= πz1
1 (1−π1)

1−z1 · · ·πzL
L (1−πL)1−zL = Π L

�=1 πz�
� (1−π�)

1−z� .
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It is natural to ask whether very little or a great deal has just been assumed.

One might reasonably worry if a great deal has just been assumed, for perhaps the

central problems in observational studies have just been assumed away. Addressing

difficult problems by assuming they are not there is one of the less reliable tactics,

so it is reasonable to seek some assurance that this has not just happened. Indeed,

it has not. Actually, because of the delicate nature of unobserved variables, nothing

at all has been assumed: there is always an unobserved u� that makes all of this

true, and true in a fairly trivial way. Specifically, if we set u� = Z�, then π� =
Pr(Z� = 1 | rT �, rC�, x�, u�) is Pr(Z� = 1 | rT �, rC�, x�, Z�) which is, of course, π� = 1

if Z� = 1 and π� = 0 if Z� = 0; moreover, with π� so defined, Π L
�=1 πz�

� (1−π�)
1−z� is

1 for the observed treatment assignment and 0 for all other treatment assignments,

and

Pr(Z1 = z1, . . . ,ZL = zL|rT 1, rC1, x1, u1, . . . ,rT L, rCL, xL, uL)

= Pr(Z1 = z1, . . . ,ZL = zL|rT 1, rC1, x1, Z1, . . . ,rT L, rCL, xL, ZL)

is also 1 for the observed treatment assignment and 0 for all other treatment as-

signments; so it’s all true, in a trivial way, with u� = Z�. Until something is done to

restrict the behavior of the unobserved covariate u�, nothing has been assumed: (3.1)

is a representation, not a model, because there is always some u� that makes (3.1)

true. A representation, such as (3.1), is a manner of speaking; it does not become a

model until it says something that may be false.

3.2 The Ideal Matching

Imagine that we could find two subjects, say k and �, such that exactly one was

treated, Zk + Z� = 1, but they had the same probability of treatment, πk = π�, and

we made those two subjects into a matched pair.1 Obviously, it is something of a

challenge to create this matched pair because we do not observe uk and u�, and we

observe either rT k or rCk but not both, and either rT � or rC� but not both. It is a chal-

lenge because we cannot create this pair by matching on observable quantities. We

could create this pair by matching on the observable x, so xk = x�, and then flipping

a fair coin to determine (Zk,Z�), assigning one member of the pair to treatment, the

other to control; that is, we could create this pair by conducting a randomized paired

experiment, as in Chapter 2. Indeed, with the aid of random assignment, matching

on x may be prudent [27], but is not necessary to achieve πk = π� because the π’s

are created by the experimenter. If randomization is infeasible or unethical, then

1 The alert reader will notice that the supposition that there could be two subjects, k and �, with
Zk + Z� = 1 but πk = π� is already a step beyond the mere representation in (3.1), because it
precludes setting ui = Zi for all i and instead requires 0 < πi < 1 for at least two subjects.
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how might one attempt to find a treated-control pair such that the paired units have

the same probability of treatment, πk = π�?

Return for a moment to the study by Joshua Angrist and Victor Lavy [3] of class

size and educational test performance, and in particular to the I = 86 pairs of Israeli

schools in §1.3, one with between 31 and 40 students in the fifth grade (Z = 0), the

other with between 41 and 50 students in the fifth grade (Z = 1), the pairs being

matched for a covariate x, namely the percentage of disadvantaged students. Strict

adherence to Maimonides’ rule would require the slightly larger fifth grade cohorts

to be taught in two small classes, and the slightly smaller fifth grade cohorts to be

taught in one large class. As seen in Figure 1.1, adherence to Maimonides’ rule

was imperfect but strict enough to produce a wide separation in typical class size.

In their study, (rT , rC) are average test scores in fifth grade if the fifth grade co-

hort was a little larger (Z = 1) or a little smaller (Z = 0). What separates a school

with a slightly smaller fifth grade cohort (Z = 0, 31–40 students) and a school with a

slightly larger fifth grade cohort (Z = 1, 41–50 students)? Well, what separates them

is the enrollment of a handful of students in grade 5. It seems reasonably plausible

that whether or not a few more students enroll in the fifth grade is a relatively hap-

hazard event, an event not strongly related to the average test performance (rT , rC)
that the fifth grade would exhibit with a larger or smaller cohort. That is, building

a study in the way that Angrist and Lavy did, it does seem reasonably plausible that

πk and π� are fairly close in the I = 86 matched pairs of two schools.

Properly understood, a ‘natural experiment’ is an attempt to find in the world

some rare circumstance such that a consequential treatment was handed to some

people and denied to others for no particularly good reason at all, that is, hap-

hazardly [2, 7, 31, 47, 58, 83, 92, 96, 102, 106]. The word ‘natural’ has various

connotations, but a ‘natural experiment’ is a ‘wild experiment’ not a ‘wholesome

experiment,’ natural in the way that a tiger is natural, not in the way that oatmeal is

natural. To express the same thought differently: to say that ‘it does seem reason-

ably plausible that πk and π� are fairly close’ is to say much less than ‘definitely,

πk = π� by the way treatments were randomly assigned.’ Haphazard is a far cry

from randomized, a point given proper emphasis by Mark Rosenzweig and Ken

Wolpin [92] and by Timothy Besley and Anne Case [7] in reviews of several natural

experiments.

Nonetheless, it does seem reasonable to think that πk and π� are fairly close for

the 86 paired Israeli schools in Figure 1.1. This might be implausible in some other

context, say in a national survey in the United States where schools are funded by

local governments, so that class size might be predicted by the wealth or poverty

of the local community. Even in the Israeli schools, the claim that πk and π� are

plausibly close depended upon: (i) matching for the percentage of students who

were disadvantaged, xk, and (ii) defining Zk in terms of cohort size rather than class

size. In the pair of boxplots on the upper right of Figure 1.1 depicting class size and

cohort size, there is considerable adherence to Maimonides’ rule, but there are a few

deviations: in particular, two large fifth grade cohorts that strict adherence to the rule

would have divided, and several small cohorts that were taught in smaller classes

than strict adherence to the rule would have permitted. Small variations in the size
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of the fifth grade cohort are plausibly haphazard, but deviations from Maimonides’

rule may have been deliberate, considered responses to special circumstances, and

hence not haphazard. As defined in Figure 1.1, Zk reflects the haphazard element,

namely susceptibility to Maimonides’ rule based on cohort size, rather than realized

class size. Defining Zk in this way is analogous to an ‘intention-to-treat’ analysis

(§1.2.6) in a randomized experiment.2

Suppose indeed we could find two subjects, k and �, with the same probability

of treatment, πk = π�, where the common value of πk and π� is typically unknown.

What would follow from this? From (3.1),

Pr(Zk = zk, Z� = z�|rT k, rCk, xk, uk, rT �, rC�, x�, u�) (3.2)

= πzk
k (1−πk)

1−zk πz�
� (1−π�)

1−z� (3.3)

= πzk+z�
� (1−π�)

(1−zk)+(1−z�) because πk = π�, (3.4)

which is, so far, of limited use, because π� is unknown. Suppose, however, that we

found two subjects, k and �, with the same probability of treatment, πk = π�, with

precisely the additional fact that exactly one was treated, Zk + Z� = 1. Given that

one of these subjects was treated, the chance that it was k and not � would be

Pr(Zk = 1, Z� = 0 |rT k, rCk, xk, uk, rT �, rC�, x�, u�,Zk +Z� = 1)

=
Pr(Zk = 1, Z� = 0 |rT k, rCk, xk, uk, rT �, rC�, x�, u�)

Pr(Zk + Z� = 1 |rT k, rCk, xk, uk, rT �, rC�, x�, u�)

=
π1+0

� (1−π�)
(1−1)+(1−0)

π1+0
� (1−π�)

(1−1)+(1−0) +π0+1
� (1−π�)

(1−0)+(1−1)

=
π� (1−π�)

π� (1−π�)+π� (1−π�)
=

1

2

which, unlike (3.2), would be immensely useful. If we could find among the L sub-

jects in the population a total of 2I different subjects matched in I pairs in just this

way, then we would have reconstructed the distribution of treatment assignments

Z in the paired, randomized experiment, and inference about the effects caused by

treatments would be straightforward; indeed, the methods of Chapter 2 would be

applicable.3 Keep in mind that we are speaking here about mere imaginings, sup-

positions, hopes, aspirations and attempts, as distinct from simple, undeniable facts

created by randomization in Chapter 2. In the words of the proverb: “If wishes were

horses, beggars would ride.”

2 As in §1.2.6, this definition of Zk leaves open the possibility of using cohort size Zk as an in-
strument for the actual size of the class, and indeed Angrist and Lavy [3] reported instrumental
variable analyses.
3 The argument just presented is the simplest version of a general argument developed in [69].
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Where do things stand? As has been seen, the ideal matching would pair indi-

viduals, k and �, with different treatments, Zk + Z� = 1, but the same probability of

treatment, πk = π�. If we could do this, we could reconstruct a randomized exper-

iment from observational data; however, we cannot do this. The wise attempt to

find ‘natural experiments’ is the attempt to move towards this ideal. That is what

you do with ideals: you attempt to move towards them. No doubt, many if not most

‘natural experiments’ fail to produce this ideal pairing [7, 92]; moreover, even if one

‘natural experiment’ once succeeded, there would be no way of knowing for sure

that it had succeeded. A second attempt to approach the ideal is to find a context in

which the covariates used to determine treatment assignment are measured covari-

ates, xk, not unobserved covariates, u�, and then to match closely for the measured

covariates, xk.4 Matching for observed covariates is the topic of Part II of this book.

Although we cannot see πk and π� and so cannot see whether they are fairly close,

perhaps there are things we can see that provide an incomplete and partial check

on the closeness of πk and π�. This leads to the devices of ‘quasi-experiments’

[10, 12, 58, 97] mentioned in §1.2.4, such as multiple control groups [51, 75, 78],

‘multiple operationalism’ or coherence [12, 36, 63, 82, 105], ‘control constructs’

and known effects [57, 77, 78, 97, 110], and one or more pretreatment measures of

what will become the response.5 Even when it ‘seems reasonably plausible that πk

4 See, for instance, the argument made by David Gross and Nicholas Souleles, quoted in §4.2 from
their paper [29]. The example in Chapter 7 attempts to use both approaches, although it is, per-
haps, not entirely convincing in either attempt. In Chapter 7, the dose of chemotherapy received
by patients with ovarian cancer is varied by comparing two types of providers of chemotherapy,
gynecological oncologists (GO) and medical oncologists (MO), where the latter treat more inten-
sively. The most important clinical covariates are measured, including clinical stage, tumor grade,
histology, and comorbid conditions. Despite these two good attempts, it is far from clear that the
GO-vs-MO assignment is haphazard, even after adjustments, and it quite likely that the oncologist
knew considerably more about the patient than is recorded in electronic form.
5 Figure 1.2 is an example of quasi-experimental reasoning. Instead of comparing college atten-
dance in two groups, say the children of deceased fathers in 1979–1981, when the benefit program
was available, and the children of deceased fathers in 1982–1983, after the program was with-
drawn, Figure 1.2 follows Susan Dynarski’s [20] study in comparing four groups. Figure 1.2
shows at most a small shift in college attendance by the group of children without deceased fa-
thers, who were never eligible for the program. This is a small check, but a useful one: it suggests
that the comparison of children of deceased fathers in 1979–1981 and 1982–1983, though totally
confounded with time, may not be seriously biased by this confounding, because a substantial shift
in college attendance by unaffected groups over this time is not evident. The quasi-experimental
design in Figure 1.2 is widely used, and is known by a variety of not entirely helpful names,
including ‘pretest-posttest nonequivalent control group design’ and ‘difference-in-differences de-
sign.’ Kevin Volpp and colleagues [108] used this design in a medical context to study the possible
effects on patient mortality of a reduction, to 80 hours per week, of the maximum number of hours
that a medical resident may work in a hospital. See [1, 5, 6, 11, 84] for discussion in general terms.

The study by Garen Wintemute and colleagues [112], as discussed in §4.3, contains another ex-
ample of quasi-experimental reasoning using a ‘control construct,’ that is, an outcome thought to
be unaffected by the treatment. They were interested in the possible effects of a change in gun
control laws on violent crimes using guns. One would not expect a change in gun control laws
to have a substantial effect on nonviolent, nongun crimes, and so the rate of such crimes is their
control construct or unaffected outcome. See §4.3. An example with two control groups subject
to different biases is discussed in §11.3.
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and π� are fairly close,’ we will need to ask about the consequences of being close

rather than equal, about the possibility they are somewhat less close than we had

hoped, about the possibility that they are disappointingly far apart. Answers are

provided by sensitivity analysis; see §3.4.

3.3 A Naı̈ve Model: People Who Look Comparable Are
Comparable

Assigning treatments by flipping biased coins whose unknown biases are
determined by observed covariates

The first of the two models in the title of this chapter asserts, rather naı̈vely, that

people who look comparable in terms of measured covariates, xk, actually are com-

parable, and to a nontrivial extent, an element of luck determined every treatment

assignment. Most observational studies report, perhaps briefly or perhaps at length,

at least one analysis that tentatively assumes that the naı̈ve model is true. Most of

the controversy and skepticism associated with observational studies is a reference

of one sort or another to this model’s naı̈veté.

The naı̈ve model restricts the representation (3.1) in two quite severe ways. First,

it says that treatment assignment probabilities, π� = Pr(Z� = 1 | rT �, rC�, x�, u�), that

condition on (rT �, rC�, x�, u�) may depend upon the observed covariates x� but not

upon the potential responses (rT �, rC�) or the unobserved covariate u�. Second, the

model says 0 < π� < 1 for all �, so that every person � has a chance of receiving

either treatment, Z� = 1, or control, Z� = 0. Putting this together with (3.1), the

naı̈ve model says:

π� = Pr(Z� = 1 | rT �, rC�, x�, u�) = Pr(Z� = 1 | x�) (3.5)

and

0 < π� < 1, � = 1,2, . . . ,L, (3.6)

with

Pr(Z1 = z1, . . . ,ZL = zL|rT 1, rC1, x1, u1, . . . ,rT L, rCL, xL, uL) (3.7)

=
L

∏
�=1

πz�
� (1−π�)

1−z� . (3.8)

The naı̈ve model would be true if treatments Z� were assigned by independent

flips of a fair coin: then π� = 1
2 for � = 1,2, . . . ,L, and all of (3.5)–(3.8) is true. In-

deed, the naı̈ve model would be true if treatments Z� were assigned by independent

flips of a group of biased coins, where the same biased coin is used whenever two

people, k and �, have the same observed covariate, xk = x�, and no coin has proba-

bility 1 or 0 of a head; then all of (3.5)–(3.8) is true. For (3.5)–(3.8) to be true, it is

not necessary that the biases of these coins be known, but it is necessary that the bias
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depend on x� alone. The first feature of the model (3.5)–(3.8) says treatment assign-

ment Z is conditionally independent of (rT , rC,u) given x, or in Phillip Dawid’s [17]

notation, Z | | (rT , rC, u)
∣∣∣ x. In [67], Donald Rubin and I gave the name ‘strongly

ignorable treatment assignment given x’ to this naı̈ve model (3.5)–(3.8).6

As will be seen in a moment, it would be very convenient if the naı̈ve model

(3.5)–(3.8) were true. If (3.5)–(3.8) were true, causal inference in an observational

study would become a mechanical problem, so that if the sample size were large, and

you followed certain steps, and you did not make mistakes in following the steps,

then a correct causal inference would result; a computer could do it. So it would

be convenient if (3.5)–(3.8) were true. To believe that something is true because it

would be convenient if it were true is a fair definition of naı̈veté.

The ideal match and the naı̈ve model

If the naı̈ve model were true, then the ideal match of §3.2 could be produced sim-

ply by matching treated and control subjects with the same value of the observed

covariate x. This follows immediately from (3.5)–(3.8) and the discussion in §3.2.

If the naı̈ve model were true, one could reconstruct the distribution of treatment as-

signments Z in a randomized paired experiment from observational data simply by

matching for the observed covariates, x. Conventional methods of statistical anal-

ysis — the paired t-test, Wilcoxon’s signed rank test, m-estimates, etc. — would

work if (3.5)–(3.8) were true, and are quite likely to fail if (3.5)–(3.8) is false in a

nontrivial way.

6 Techincally, strongly ignorable treatment assigment given x is Z | | (rT , rC)
∣∣∣ x and 0 <

Pr(Z = 1 | x) < 1 for all x, or in a single expression, 0 < Pr(Z = 1 | rT , rC, x) = Pr(Z = 1 | x) < 1
for all x; that is, no explicit reference is made to an unobserved covariate u. I introduce u here,
rather than in §3.4 where it is essential, to simplify the transition between §3.3 and §3.4. The re-
mainder of this footnote is a slightly technical discussion of the formal relationship between (3.5)
and the condition as given in [67]; it will interest only the insanely curious.

In a straightforward way [17, Lemma 3], condition (3.5) implies Z | | (rT , rC)
∣∣∣ x and 0 <

Pr(Z = 1 | x) < 1 for all x. Also, in a straightforward way [17, Lemma 3], if (3.5) is true then (i)

Z | | (rT , rC)
∣∣∣ (x,u), (ii) 0 < Pr(Z = 1 | x) < 1 for all x, and (iii) Z | | u

∣∣∣ x are true. Moreover,

(ii) and (iii) together imply (iv) 0 < Pr(Z = 1 | x,u) < 1 for all (x,u). In words, condition (3.5)
implies both strong ignorability given x and also strong ignorability given (x,u). Now, conditions
(i) and (iv), without condition (iii), are the key elements of the sensitivity model in §3.4: they say,
that treatment assignment would have been strongly ignorable if u had been measured and included
with x; so the failure to measure u is the source of our problems. Moreover, if condition (iii) were
true in addition to (i) and (iv), then (3.5) and strong ignorability given x follow. In brief, strong
ignorability given x is implied by the addition of condition (iii) to strong ignorability given (x,u).
In words, one can reasonably think of the naive model §3.3 as the sensitivity model of §3.4 together

with the irrelevance of u as expressed by Z | | u
∣∣∣ x in condition (iii).
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What is the propensity score?

So far, the talk has been of matching exactly for x as if that were easy to do. If

x contains many covariates, then matching treated and control subjects with the

same or similar x will be difficult if not impossible. Imagine, for instance, that

x contains 20 covariates. Then any one subject, �, might be above or below the

median on the first covariate (two possibilities), above or below the median on the

second covariate (two more possibilities, making 2 × 2 = 4 possibilities so far),

and so on. Just in terms of being above or below the median on each covariate,

there are 2× 2× ·· · × 2 = 220 = 1,048,576 possibilities, or more than a million

possibilities. With thousands of subjects, it will often be difficult to find two subjects

who even match in the limited way of being on the same side of the median for all

20 covariates. This turns out to be less of a problem than it might seem at first,

because of a device called the ‘propensity score’ [67].

In a sample of L subjects from an infinite population, the propensity score [67]

is the conditional probability of treatment Z = 1 given the observed covariates x, or

e(x) = Pr(Z = 1 | x). Several aspects of this definition deserve immediate empha-

sis. The propensity score is defined in terms of the observed covariates, x, whether

or not the naı̈ve model (3.5)–(3.8) is true, that is, whether or not the ‘ideal match’ of

§3.2 can be produced by matching on the observed covariates x. The form of (3.5)–

(3.8) correctly suggests that the propensity score e(x) = Pr(Z = 1 | x) will be more

useful when (3.5)–(3.8) is true; however, the propensity score is defined in terms

of the observable quantities, Z and x, whether or not (3.5)–(3.8) is true. In a ran-

domized experiment, the propensity score is known because of random assignment.

In contrast, in an observational study the propensity score is typically unknown;

however, because e(x) = Pr(Z = 1 | x) is defined in terms of observable quantities,

namely treatment assignment Z and observed covariates, x, it is straightforward to

estimate the propensity score in an observational study. In a randomized experi-

ment, π� in (3.1) is known and in an observational study π� is unknown, but because

π� depends upon the unobservable (rT , rC, u) as well as x, it is not possible to es-

timate π� in an observational study. Of course, if the naı̈ve model (3.5)–(3.8) were

true, then π� = e(x�); indeed, this is virtually the defining feature of that model.

Balancing property of the propensity score

The propensity score has several useful properties. The first property, the balancing

property, is always true, whether or not the naı̈ve model (3.5)–(3.8) is true. The bal-

ancing property [67] says that treated (Z = 1) and control (Z = 0) subjects with the

same propensity score e(x) have the same distribution of the observed covariates, x,

Pr{x | Z = 1, e(x)} = Pr{x | Z = 0, e(x)} (3.9)

or equivalently

Z | | x
∣∣∣ e(x) , (3.10)
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so treatment Z and observed covariates x are conditionally independent given the

propensity score.7

Because of the balancing property (3.10), if you pair two people, k and �, one

of whom is treated, Zk +Z� = 1, so that they have the same value of the propensity

score, e(xk) = e(x�), then they may have different values of the observed covariate,

xk �= x�, but in this pair, the specific values of the observed covariate (xk,x�) will

be unrelated to the treatment assignment (Zk,Z�). If you form many pairs in this

way, then the distribution of the observed covariates x will look about the same in

the treated (Z = 1) and control (Z = 0) groups, even though individuals in matched

pairs will typically have different values of x. Although it is difficult to match on 20

covariates at once, it is easy to match on one covariate, the propensity score e(x),
and matching on e(x) will tend to balance all 20 covariates.

In the randomized NSW experiment in Chapter 2, Table 2.1 displayed balance on

observed covariates, x. Randomization alone tends to balance observed covariates,

x, and Table 2.1 combined randomization and matching. In an observational study,

it is often possible to match on an estimate ê(x) of the propensity score e(x) and to

produce balance on observed covariates x similar to the balance in Table 2.1; see,

for example, Chapter 7.

Randomization is a much more powerful tool for balancing covariates than

matching on an estimate of the propensity score. The difference is that the propen-

sity score balances the observed covariates, x, whereas randomization balances

observed covariates, unobserved covariates, and potential responses, (rT , rC, x, u).
This difference is not something you can see: randomization makes a promise about

something you cannot see. Stated formally, if you match on e(x), then Z | | x
∣∣∣ e(x),

but if you assign treatments by flipping fair coins, then Z | | (rT , rC, x, u) . Random-

ization provides a basis for believing that an unobserved covariate u is balanced, but

matching on propensity scores provides no basis for believing that.

Part II of this book discusses the practical aspects of matching, and an estimate

ê(x) of the propensity score e(x) is one of the tools used; see §8.2.8 In common

practice, the estimate of the propensity score, ê(x), is based on a model, such as a

logit model, relating treatment assignment, Z, and observed covariates, x. The logit

model may include interactions, polynomials, and transformations of the covariates

in x, so it need not be a linear logit model narrowly conceived. Logit models for

ê(x) are used for convenience; other methods can and have been used instead [56].

7 The proof is easy [67]. Recall the following basic facts about conditional expecta-
tions: if A, B and C are random variables, then E (A) = E {E (A | B)} and E (A | C ) =
E {E (A | B,C ) |C}. From the definition of conditional independence, to prove (3.10), it suffices
to prove Pr{Z = 1 | x, e(x)} = Pr{Z = 1 | e(x)}. Because e(x) is a function of x, conditioning
on x fixes e(x), so Pr{Z = 1 | x, e(x)} = Pr(Z = 1 | x) = e(x). Because Z = 0 or Z = 1, for any
random variable D, we have Pr(Z = 1 | D) = E (Z | D). With A = Z, B = x, C = e(x), we have
Pr{Z = 1 | e(x)} = E {Z | e(x)} = E {E {Z | x, e(x)}| e(x)} = E {Pr{Z = 1 | x, e(x)}| e(x)}
= E { e(x) | e(x)} = e(x) = Pr(Z = 1 | x), which is what we needed to prove.
8 Part II makes use of a stronger version of the balancing property than stated in (3.10). Specif-
ically, if you match on e(x) and any other aspect of x, say h(x), you still balance x, that is,

Z | | x
∣∣∣ {e(x) , h(x)} for any h(x). See [67] for the small adjustments required in the proof.
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After matching, balance on observed covariates is checked by comparing the dis-

tributions of observed covariates in treated and control groups, as in Tables 2.1 and

7.1; for general discussion, see §9.1. Because (3.10) is known to be true for the true

propensity score, e(x), a check on covariate balance, as in Table 7.1, is a diagnostic

check of the model that produced the estimated propensity score, ê(x), and may

lead to a revision of that model.

In most but not all cases, when you substitute an estimate, say ê(x), for the un-

known true parameter, e(x), the estimate performs somewhat less well than the true

parameter would perform. In fact, this is not true for propensity scores: estimated

scores, ê(x), tend to work slightly better than true scores, e(x). Estimated scores

tend to slightly overfit, producing slightly better than chance balance on observed

covariates, x, in the data set used to construct the score. Estimated scores produce

‘too much covariate balance,’ but because propensity scores are used to balance

covariates, ‘too much covariate balance’ is just fine.9

Propensity scores and ignorable treatment assignment

The balancing property of propensity scores (3.10) is always true, but a second

property of propensity scores would follow if the naı̈ve model (3.5)–(3.8) were true.

Recall that if (3.5)–(3.8) were true, then the ‘ideal match’ of §3.2 could be produced

simply by matching for the observed covariate x. Recall also that it may be difficult

to match closely for every one of the many covariates in x, but it is easy to match on

one variable, the propensity score, e(x), and doing that balances all of x. The second

property closes this loop. It says: if (3.5)–(3.8) were true, then the ‘ideal match’ of

§3.2 could be produced by matching on the propensity score, e(x), alone [67]. The

proof is very short: the ‘ideal match’ is to match on π� = Pr(Z� = 1 | rT �, rC�, x�, u�),
but if the naı̈ve model (3.5)–(3.8) were true, then π� = e(x�), so matching on the

propensity score is matching on π�. In words, if it suffices to match for the observed

covariates, x, then it suffices to match for the propensity score, e(x).
The issue just discussed concerns a second property of propensity scores that

holds when the naı̈ve model (3.5)–(3.8) is true. This second property may be ex-

pressed in a different way. The naı̈ve model (3.5)–(3.8) assumes

Z | | (rT , rC, u)
∣∣∣ x , (3.11)

and the second property says that (3.11) implies

Z | | (rT , rC, u)
∣∣∣ e(x) (3.12)

9 Theoretical arguments also show that estimated propensity scores can have better properties than
true propensity scores; see [69, 76].
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so the single variable e(x) may be used in place of the many observed covariates in

x.10

Summary: Separating two tasks, one mechanical, the other scientific

If the naı̈ve model (3.5)–(3.8) were true, then the distribution of treatment assign-

ments Z in a paired randomized experiment could be produced in an observational

study by simply matching on observed covariates, x. That might be a challenge

if x contains many observed covariates, but in fact, matching on one covariate, the

propensity score, e(x), will balance all of the observed covariates, x, and if (3.5)–

(3.8) were true, this match would also produce the distribution of treatment assign-

ments Z in a paired randomized experiment. Better still, it is straightforward to

check whether matching has balanced the observed covariates; one simply checks

whether matched treated and control groups are similar in terms of x.

The naı̈ve model (3.5)–(3.8) is important, but not because it is plausible; it is not

plausible. The controversy and skepticism that almost invariably attends an observa-

tional study almost invariably refers back to this model’s naı̈veté. Rather, the naı̈ve

model (3.5)–(3.8) is important because it cleanly divides inference in observational

studies into two separable tasks. One is a fairly mechanical task that typically can be

completed successfully, and can be seen to have been completed successfully, before

the second task is engaged. This first task can take the form of matching treated and

control subjects so that observed covariates are seen to be balanced. The first task

is to compare treated and control subjects who look comparable prior to treatment.

The second task engages the concern that people who look comparable may not be

comparable. If people were not randomly assigned to treatments, then perhaps there

are reasons they received the treatments they did, but those reasons are not visible

to us because the observed covariates x provide an incomplete picture of the situ-

ation prior to treatment. The second task is not a mechanical but rather a scientific

task, one that can be controversial and difficult to bring to a rapid and definitive

closure; this task is, therefore, more challenging, and hence more interesting. The

clever opportunities of natural experiments, the subtle devices of quasi-experiments,

the technical tools of sensitivity analysis that extract information from nonidentified

models — each of these is an attempt to engage the second task.

10 In technical terms, if treatment assignment is strongly ignorable given x, then it is strongly
ignorable given e(x). The proof of this version is also short [67]. In Note 7, we saw that
Pr{Z = 1 | e(x)}= Pr(Z = 1 | x). Condition (3.11) says Pr(Z = 1 | rT , rC, x, u) = Pr(Z = 1 | x).
Together they say Pr(Z = 1 | rT , rC, x, u) = Pr{Z = 1 | e(x)}, which implies (3.12).
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3.4 Sensitivity Analysis: People Who Look Comparable May
Differ

What is sensitivity analysis?

If the naı̈ve model (3.5)–(3.8) were true, the distribution of treatment assignments

Z in a randomized paired experiment could be reconstructed by matching for the

observed covariate, x. It is common for a critic to argue that, in a particular study,

the naı̈ve model may be false. Indeed, it may be false. Typically, the critic accepts

that the investigators matched for the observed covariates, x, so treated and control

subjects are seen to be comparable in terms of x, but the critic points out that the

investigators did not measure a specific covariate u, did not match for u, and so are

in no position to assert that treated and control groups are comparable in terms of

u. This criticism could be dismissed in a randomized experiment — randomization

does tend to balance unobserved covariates — but the criticism cannot be dismissed

in an observational study. This difference in the unobserved covariate u, the critic

continues, is the real reason outcomes differ in the treated and control groups: it is

not an effect caused by the treatment, but rather a failure on the part of the inves-

tigators to measure and control imbalances in u. Although not strictly necessary,

the critic is usually aided by an air of superiority: “This would never happen in my

laboratory.”

It is important to recognize at the outset that our critic may be, but need not be,

on the side of the angels. The tobacco industry and its (sometimes distinguished)

consultants criticized, in precisely this way, observational studies linking smoking

with lung cancer [103]. In this instance, the criticism was wrong. Investigators and

their critics stand on level ground [8].

It is difficult if not impossible to give form to arguments of this sort until one

has a way of speaking about the degree to which the naı̈ve model is false. In an

observational study, one could never assert with warranted conviction that the naı̈ve

model is precisely true. Trivially small deviations from the naı̈ve model will have a

trivially small impact on the study’s conclusions. Sufficiently large deviations from

the naı̈ve model will overturn the results of any study. Because these two facts are

always true, they quickly exhaust their usefulness. Therefore, the magnitude of the

deviation is all-important. The sensitivity of an observational study to bias from an

unmeasured covariate u is the magnitude of the departure from the naı̈ve model that

would need to be present to materially alter the study’s conclusions.11

The first sensitivity analysis in an observational study concerned smoking and

lung cancer. In 1959, Jerry Cornfield and his colleagues [15] asked about the mag-

nitude of the bias from an unobserved covariate u needed to alter the conclusion

11 In general, a sensitivity analysis asks how the conclusion of an argument dependent upon as-
sumptions would change if the assumptions were relaxed. The term is sometimes misused to refer
to performing several parallel statistical analyses without regard to the assumptions upon which
they depend. If several statistical analyses all depend upon the same assumption — for instance,
the naı̈ve model (3.5) — then performing several such analyses provides no insight into conse-
quences of the failure of that assumption.
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from observational studies that heavy smoking causes lung cancer. They concluded

that the magnitude of the bias would need to be enormous.

The sensitivity analysis model: Quantitative deviation from random
assignment

The naı̈ve model (3.5)–(3.8) said that two people, k and �, with the same observed

covariates, xk = x�, have the same probability of treatment given (rT , rC, x, u), i.e.,

πk = π�, where πk = Pr(Zk = 1 | rT k, rCk, xk, uk) and π� = Pr(Z� = 1 | rT �, rC�, x�, u�).
The sensitivity analysis model speaks about the same probabilities in (3.1), saying

that the naı̈ve model (3.5)–(3.8) may be false, but to an extent controlled by a pa-

rameter, Γ ≥ 1. Specifically, it says that two people, k and �, with the same observed

covariates, xk = x�, have odds12 of treatment, πk/(1−πk) and π�/(1−π�), that dif-

fer by at most a multiplier of Γ ; that is, in (3.1),

1

Γ
≤ πk/(1−πk)

π�/(1−π�)
≤ Γ whenever xk = x� . (3.13)

If Γ = 1 in (3.13), then πk = π�, so (3.5)–(3.8) is true; that is, Γ = 1 corresponds

with the naı̈ve model. In §3.1, expression (3.1) was seen to be a representation

and not a model — something that is always true for suitably defined u� — but

that representation took π� = 0 or π� = 1, which implies Γ = ∞ in (3.13). In other

words, numeric values of Γ between Γ = 1 and Γ = ∞ define a spectrum that begins

with the naı̈ve model (3.5)–(3.8) and ends with something that is hollow in the

sense that it is always true, namely (3.1). The hollow statement that is always true,

namely (3.1), is the statement that ‘association does not imply causation,’ that is,

a sufficiently large departure from the naı̈ve model can explain away as noncausal

any observed association.

If Γ = 2, and if you, k , and I, �, look the same, in the sense that we have the

same observed covariates, xk = x�, then you might be twice as likely as I to receive

the treatment because we differ in ways that have not been measured. For instance,

if your πk = 2/3 and my π� = 1/2, then your odds of treatment rather than control

are πk/(1−πk) = 2 or 2-to-1, whereas my odds of treatment rather than control

are π�/(1−π�) = 1 or 1-to-1, and you are twice as likely as I to receive treatment,

{πk/(1−πk)}/{π�/(1−π�)} = 2 in (3.13).13

12 Odds are an alternative way of expressing probabilities. Probabilities and odds carry the same
information in different forms. A probability of πk = 2/3 is an odds of πk/(1−πk) = 2 or 2-to-1.
Gamblers prefer odds to probabilities because odds express the chance of an event in terms of fair
betting odds, the price of a fair bet. It is easy to move from probability πk to odds ωk = πk/(1−πk)
and back again from odds ωk to probability πk = ωk/(1+ωk).
13 Implicitly, the critic is saying that the failure to measure u is the source of the problem, or that
(3.5) would be true with (x,u) in place of x, but is untrue with x alone. That is, the critic is saying
π� = Pr(Z� = 1 | rT �, rC�, x�, u�) = Pr(Z� = 1 | x�, u�). As in §3.1, because of the delicate nature
of unobserved variables, this is a manner of speaking rather than a tangible distinction. If the
formalities are understood to refer to π� = Pr(Z� = 1 | rT �, rC�, x�, u�), then it is not necessary to
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Sensitivity analysis model when pairs are matched for observed covariates

The sensitivity analysis model (3.13) is quite general in its applicability [85, Chap-

ter 4], but here its implications for matched pairs are developed [74]. Suppose

that two subjects, k and �, with the same observed covariates, xk = x�, are paired,

with precisely the additional fact that one of them is treated and the other control,

Zk + Z� = 1. Then in the representation (3.1), the chance that k is treated and � is

control is:

Pr(Zk = 1, Z� = 0 |rT k, rCk, xk, uk, rT �, rC�, x�, u�,Zk +Z� = 1) =
πk

πk +π�
. (3.14)

If in addition the sensitivity model (3.13) were true in (3.1), then simple algebra

yields
1

1+Γ
≤ πk

πk +π�
≤ Γ

1+Γ
. (3.15)

In words, the condition (3.13) becomes a new condition (3.15) on paired individuals

where one is treated and the other control, Zk +Z� = 1. If Γ = 1, then all three terms

in (3.15) equal 1
2 , as in the randomized experiment in Chapter 2. As Γ → ∞, the

lower bound in (3.13) tends to zero and the upper bound tends to one.

Instead of pairing just two individuals, k and �, suppose we pair 2I distinct indi-

viduals of the L individuals in the population in just this way, insisting that within

each pair the two subjects have the same observed covariates and different treat-

ments. Renumber these paired subjects into I pairs of two subjects, i = 1, 2, . . . , I,

j = 1,2, so xi1 = xi2, Zi1 = 1−Zi2 in each of the I pairs.14 If (3.1) and (3.13) are

true, then the distribution of treatment assignments in the I pairs satisfies

Zi1, i = 1, . . . , I are mutually independent, (3.16)

Zi2 = 1−Zi1, i = 1, . . . , I, (3.17)

1

1+Γ
≤ πi1

πi1 +πi2
≤ Γ

1+Γ
, i = 1, . . . , I. (3.18)

This is very similar in form to the distribution of treatment assignments in a ran-

domized paired experiment in Chapter 2, except that in the experiment (3.14) was 1
2

insist that π� = Pr(Z� = 1 | x�, u�). Conversely, if (3.1) and (3.13) were true as they stand, then
there is an unobserved covariate ũ� such that (3.1) and (3.13) are true with π� = Pr(Z� = 1 | x�, ũ�);
simply take ũ� = π� = Pr(Z� = 1 | rT �, rC�, x�, u�).
14 In a fussy technical sense, the numbering of pairs and people within pairs is supposed to convey
nothing about these people, except that they were eligible to be paired, that is, they have the same
observed covariates, different treatments, with 2I distinct people. Information about people is
supposed to be recorded in variables that describe them, such as Z, x, u, rT , rC , not in their position
in the data set. You can’t put your brother-in-law in the last pair just because of that remark he
made last Thanksgiving; you have to code him in an explicit brother-in-law variable. Obviously,
it is easy to make up subscripts that meet this fussy requirement: number the pairs at random, then
number the people in a pair at random. The fussy technical point is that, in going from the L people
in (3.1) to the 2I paired people, no information has been added and tucked away into the subject
numbers — the criteria for pairs are precisely xi1 = xi2 , Zi1 +Zi2 = 1 with 2I distinct individuals.
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for i = 1, . . . , I, whereas in (3.16)–(3.18) the treatment assignment probabilities may

vary from pair to pair, are unknown, but are bounded by 1/(1+Γ ) and Γ /(1+Γ ).
If Γ = 1.0001, then (3.14) would differ trivially from a randomized paired experi-

ment, but as Γ → ∞ the difference can become arbitrarily large.

Suppose that we had calculated a P-value or a point estimate or confidence inter-

val from a paired observational study matched for observed covariates x, by simply

applying conventional statistical methods, that is, the methods in Chapter 2 for a ran-

domized paired experiment. Those inferences would have their usual properties if

the naı̈ve model (3.5)–(3.8) were true, that is, if Γ = 1. How might those inferences

change if Γ were some specific number larger than 1, indicating some bias due to

failure to control for u? Using (3.16)–(3.18) and a few calculations, we can often

deduce the range of possible P-values or point estimates or confidence intervals for

a specified Γ . Consider, for instance, the P-value for testing the null hypothesis of

no treatment effect. If the naı̈ve model, Γ = 1, led to a P-value of, say, 0.001, and if

Γ = 2 yields a range of possible P-values from 0.0001 to 0.02, then a bias of mag-

nitude Γ = 2 creates greater uncertainty but does not alter the qualitative conclusion

that the null hypothesis of no effect is not plausible. If the critic is thinking in terms

of a moderately large deviation from a randomized trial, in which similar looking

people may differ by a factor of Γ = 2 in their odds of treatment, then the critic is

simply mistaken: the bias would have to be considerably larger than Γ = 2 to make

no treatment effect plausible.

Every study is sensitive to sufficiently large biases. There is always a value of

Γ such that, for that value and larger values of Γ , the interval of possible P-values

includes small values, perhaps 0.0001, and large values, perhaps 0.1. A sensitivity

analysis simply displays how the inference changes with Γ . For smoking and lung

cancer, the bias would have to be enormous, Γ = 6; see [85, Chapter 4]. The ques-

tion answered by a sensitivity analysis is: how large does Γ have to be before one

must concede that the critic’s criticism might be correct?

It is time to consider an example.

3.5 Welding Fumes and DNA Damage

Sensitivity analysis when testing the hypothesis of no treatment effect

The fumes produced by electric welding contain chromium and nickel and have

been judged genotoxic in laboratory tests [39]. Werfel and colleagues [111] looked

for evidence of DNA damage in humans by comparing 39 male welders to 39 male

controls matched for age and smoking habits. Table 3.1 displays the comparability

of the two groups with respect to the three covariates used in matching. Clearly,

Table 3.1 is a rather limited demonstration of comparability.

Werfel et al. [111] presented several measures of genetic damage, including the

measurement of DNA single strand breakage and DNA-protein cross-links using

elution rates through polycarbonate filters with proteinase K. Broken strands are
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Table 3.1 Covariate balance in 39 matched welder-control pairs. Covariates are gender, smoking
and age.

Welders Controls

Male 100% 100%
Smokers 69% 69%

Age Mean 39 39
Minimum 23 23

Lower Quartile 34 32
Median 38 36

Upper Quartile 46 46
Maximum 56 59

expected to pass through filters more quickly, at a higher rate. Figure 3.1 depicts the

elution rates and their matched pair differences. The differences are mostly positive,

with higher elution rates for welders, and the differences are fairly symmetric about

their median, with longer tails than the Normal distribution.

Table 3.2 is the sensitivity analysis for the one-sided P-value using Wilcoxon’s

signed rank statistic to test the null hypothesis of no treatment effect against the

alternative that exposure to welding fumes caused an increase in DNA damage. The

first row, Γ = 1, is the usual randomization inference, which would be appropriate

if the 78 men had been paired for age and smoking and randomly assigned to their

careers as a welder or a nonwelder. In the first row, the range of possible P-values

is a single number, 3.1× 10−7, because there would be no uncertainty about the

distribution of treatment assignments, Z, in a randomized experiment. The naı̈ve

model (3.5)–(3.8) would also lead to Γ = 1 and the single P-value in the first row of

Table 3.2. If this had been a randomized experiment, there would have been strong

evidence against the null hypothesis of no effect. However, it was not a randomized

experiment. The P-value in the first row of Table 3.2 says that it is implausible that

the difference seen in Figure 3.1 is due to chance, the flip of a coin that assigned

one man to treatment, another to control. The P-value in the first row of Table

3.2 does not speak to the critic’s concern that the difference seen in Figure 3.1 is

neither due to chance nor due to an effect caused by welding, but reflects instead

some way that the matched welders and controls are not comparable. A small P-

value, here 3.1×10−7, computed assuming either randomization or equivalently the

naı̈ve model (3.5)–(3.8) does nothing to address the critic’s concern. It is, however,

possible to speak to that concern.

The second row permits a substantial departure from random treatment assign-

ment or (3.5)–(3.8). It says that two men of the same age and smoking status — the

same x — may not have the same chance of a career as a welder: one such man may

be twice as likely as another to choose a career as a welder, Γ = 2, because they dif-

fer in terms of a covariate u that was not measured. This introduces a new source of

uncertainty beyond chance. Using (3.16)–(3.18), we may determine every possible

P-value that could be produced when Γ = 2, and it turns out that the smallest pos-

sible P-value is 3.4×10−12 and the largest possible P-value is 0.00064. Although
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Fig. 3.1 DNA elution rates through polycarbonate filters with proteinase K for 39 male welders
and 39 male controls matched for age and smoking. This assay is a measure of DNA single strand
breakage and DNA-protein cross-links. In the boxplot of differences, there is a line at zero. In the
Normal quantile plot, the line is fitted to the median and quartiles.

Table 3.2 Sensitivity analysis for the one-tailed P-value for testing the null hypothesis of no treat-
ment effect on DNA elution rates with proteinase K in 39 pairs of a male welder and a male control
matched for age and smoking. The table gives the lower (min) and upper (max) bounds on the one-
sided P-value for departures from random assignment of various magnitudes, Γ . For Γ = 1, the
two P-values are equal to each other and equal to the randomization P-value from Chapter 2. For
Γ > 1, there is a range [Pmin, Pmax] of possible P-values. This study is sensitive only to very large
biases, for instance Γ = 5, because at this point the range includes both small and large, significant
and insignificant, P-values.

Γ Pmin Pmax

1 3.1×10−7 3.1×10−7

2 3.4×10−12 0.00064

3 < 10−15 0.011

4 < 10−15 0.047

5 < 10−15 0.108
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a bias of magnitude Γ = 2 would introduce greater uncertainty, there would be no

real doubt that the null hypothesis of no treatment effect is not plausible.

As seen in Table 3.2, all possible P-values are less than 0.05 for departures from

randomization as large as Γ = 4. A bias of Γ = 4 is a very large departure from

a randomized experiment. In a randomized experiment, each man in each pair has

probability 1
2 of receiving treatment. If Γ = 4, then in a matched pair, one man

might have probability Γ /(1+Γ ) = 4/5 of treatment and the other might have

probability 1/(1+Γ ) = 1/5; however, even such a large departure from a random-

ized experiment is quite unlikely to produce the difference seen in Figure 3.1.

By Γ = 5, the situation has changed. Now the range of possible P-values in-

cludes some that are much smaller than the conventional 0.05 level and others that

are considerably higher, the range being from < 10−15 to 0.108. A very large de-

parture from random assignment of magnitude Γ = 5 could produce the difference

seen in Figure 3.1 even if welding has no effect on DNA elution rates.

Computations

The P-values in Table 3.2 are exact: in principle, they could be produced by direct

enumeration analogous to those in §2.3.3, except that, now, different treatment as-

signments Z have different probabilities constrained by (3.16)–(3.18). The actual

exact computations are done more efficiently; see Appendix §3.9.

Look back at (3.16)–(3.18) and consider how to set the probabilities to make T
as large or as small as possible. In the absence of ties, the upper bound in Table

3.2 is obtained by comparing Wilcoxon’s signed rank statistic to the distribution of

a random variable, T , which is the sum of I independent random variables, i = 1, 2,

. . . , I, that take the value i with probability Γ /(1+Γ ) or the value 0 with probability

1/(1+Γ ). In parallel, the lower bound in Table 3.2 is obtained by comparing

Wilcoxon’s signed rank statistic to the distribution of a random variable, T , which

is the sum of I independent random variables, i = 1, 2, . . . , I, that take the value i
with probability 1/(1+Γ ) or the value 0 with probability Γ /(1+Γ ).

Although exact computation is quite feasible for moderate sample sizes, I, a large

sample approximation is easier and typically adequate. In Table 3.2, Wilcoxon’s

signed rank statistic is T = 715 and there are no ties. In the absence of ties, for a

specified Γ , the largest null distribution15 of T subject to (3.16)–(3.18) has expec-

15 What does it mean to speak of the ‘largest distribution’? One random variable, A, is said to
be stochastically larger than another random variable, B, if Pr(A ≥ k) ≥ Pr(B ≥ k) for every k.
That is, A is more likely than B to jump over a bar at height k, no matter how high k the bar
is set. Because this must be true for every k, it is a rather special relationship between random
variables. For instance, it might happen that Pr(A ≥−1.65) = 0.95, Pr(A ≥ 1.65) = 0.05 while
Pr(B ≥−1.65) = 0.80, Pr(B ≥ 1.65) = 0.20, so neither A nor B is stochastically larger than the
other. For instance, this is true if A is Normal with mean zero and standard deviation 1, and
B is Normal with mean zero and standard deviation 2. The intuition is overwhelmingly strong
that the largest null distribution of Wilcoxon’s signed rank statistic is obtained by driving the
chance of a positive difference up to its maximum, namely Γ /(1+Γ ) in (3.18), and this intuition
turns out to be correct. It takes a small amount of effort in this case to show the distribution is
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tation

E
(

T
∣∣∣ F ,Z

)
=

Γ
1+Γ

· I (I +1)
2

(3.19)

and variance

var
(

T
∣∣∣ F ,Z

)
=

Γ
(1+Γ )2

I (I +1)(2I +1)
6

. (3.20)

For Γ = 1, formulas (3.19) and (3.20) reduce to the formulas for randomiza-

tion inference in §2.3.3, namely E (T | F ,Z ) = I (I +1)/4 and var(T | F ,Z ) =
I (I +1)(2I +1)/24. For Γ = 3, the expectation is

E
(

T
∣∣∣ F ,Z

)
=

3

(1+3)
· 39(39+1)

2
= 585 (3.21)

in (3.19) and the variance is

var
(

T
∣∣∣ F ,Z

)
=

3

(1+3)2

39(39+1)(2 ·39+1)
6

= 3851.25 (3.22)

in (3.20). For large I, the standardized deviate,

T −E
(

T
∣∣∣ F ,Z

)
√

var
(

T
∣∣∣ F ,Z

) =
715−585√

3851.25
= 2.0948 (3.23)

is compared to the standard Normal cumulative distribution, Φ (·), to yield the ap-

proximate upper bound on the one-sided P-value, 1−Φ (2.0948) = 0.018, which

is close to the exact value of 0.011 in Table 3.2. The lower bound is obtained in a

parallel manner, with

E
(

T
∣∣ F ,Z

)
=

1

1+Γ
· I (I +1)

2
(3.24)

and var
(

T
∣∣ F ,Z

)
= var

(
T

∣∣∣ F ,Z
)

given again by (3.20).

Ties are a minor inconvenience. In the notation of §2.3.3, the expectations be-

come

E
(

T
∣∣∣ F ,Z

)
=

Γ
1+Γ

I

∑
i=1

si qi, (3.25)

actually stochastically largest; see [85, Chapter 4]. In other cases, the same result is available
with somewhat more effort. In still other cases, one can speak of a ‘largest distribution’ only
asymptotically, that is, only in large samples; see [26] or [85, Chapter 4]. This presents no problem
in practice, because the asymptotic results are quite adequate and easy to use [85, Chapter 4];
however, it does make the theory of the paired case simpler than, say, the theory of matching with
several controls matched to each treated subject. To see a parallel discussion of the paired case
and the case of several controls, see [89].
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Table 3.3 Sensitivity analysis for the one-sided 95% confidence interval for a constant, additive
treatment effect τ on DNA elution rates. As usual, the hypothesis of a constant effect H0 : τ = τ0

is tested by testing no effect on Yi − τ0 for the given value of Γ . The one-sided 95% confidence
interval is the set of values of τ0 not rejected in the one-sided, 0.05 level test. As Γ increases,
there is greater potential deviation from random treatment assignment in (3.13), and the confidence
interval grows longer. For instance, a treatment effect of τ0 = 0.30 would be implausible in a
randomized experiment, Γ = 1, but not in an observational study with Γ = 2.

Γ 1 2 3
95% Interval [0.37, ∞) [0.21, ∞) [0.094, ∞)

E
(

T
∣∣ F ,Z

)
=

1

1+Γ

I

∑
i=1

si qi, (3.26)

while the variance becomes

var
(

T
∣∣ F ,Z

)
= var

(
T

∣∣∣ F ,Z
)

=
Γ

(1+Γ )2

I

∑
i=1

(si qi)
2 . (3.27)

The remaining calculations are unchanged.

Sensitivity analysis for a confidence interval

Table 3.3 is the sensitivity analysis for the one-sided 95% confidence interval for an

additive, constant treatment effect discussed in §2.4.2. As in a randomized experi-

ment, the hypothesis that H0 : rTi j = rCi j +τ0 is tested by testing the null hypothesis

of no treatment effect on the adjusted responses, Ri j − τ0 Zi j, or equivalently on the

adjusted, treated-minus-control pair differences, Yi − τ0. The one-sided 95% con-

fidence interval is the set of values of τ0 not rejected by a one-sided, 0.05 level

test.

From Table 3.2, the hypothesis H0 : τ = τ0 for τ0 = 0 is barely rejected for Γ = 4

because the maximum possible one-sided P-value is 0.047. For Γ = 3, the max-

imum possible one-sided P-value is 0.04859 for τ0 = .0935 and is 0.05055 for

τ0 = .0936, so after rounding to two significant digits, the one-sided 95% confi-

dence interval is [0.094, ∞).

Sensitivity analysis for point estimates

For each value of Γ ≥ 1, a sensitivity analysis replaces a single point estimate,

say τ̂ , by an interval of point estimates, say [τ̂min, τ̂max] that are the minimum and

maximum point estimates for all distributions of treatment assignments satisfying

(3.16)–(3.18). Unlike a test or a confidence interval, and like a point estimate, this

interval [τ̂min, τ̂max] does not reflect sampling uncertainty; however, it does reflect

uncertainty introduced by departures from random treatment assignment in (3.13)

or (3.16)–(3.18).
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Table 3.4 Sensitivity analysis for the Hodges-Lehmann (HL) point estimate for a constant, addi-
tive treatment effect τ on DNA elution rates.

Γ 1 2 3
HL Estimate [0.51, 0.51] [0.36, 0.69] [0.27, 0.81]

In a randomized experiment in §2.4.3, the Hodges-Lehmann point estimate of a

constant, additive treatment effect, τ , was obtained by computing Wilcoxon’s signed

rank statistic T from Yi − τ0 and solving for the estimate, τ̂ , as the value of τ0 that

brings T as close as possible to its null expectation, I (I +1)/4. It is not difficult to

show16 the interval of point estimates, [τ̂min, τ̂max], is obtained by finding the value

τ̂min such that when Wilcoxon’s T is computed from Yi − τ̂min it is as close as pos-

sible to (3.19), and the value τ̂max such that when T is computed from Yi − τ̂max

it is as close as possible to (3.24). For example, with Γ = 2, the maximum ex-

pectation in (3.19) is {Γ /(1+Γ )} I (I +1)/2 or {2/(1+2)}39(39+1)/2 = 520.

When Wilcoxon’s T is computed from Yi − .35550001 it is T = 519, but when it is

computed from Yi − .35549999 it is T = 521, so τ̂min = 0.3555.

Table 3.4 displays [τ̂min, τ̂max] for three values of Γ . For Γ = 1, there is a single

point estimate, τ̂ = 0.51, the value that would be obtained in a randomized experi-

ment. A large departure from random assignment of magnitude Γ = 3 could reduce

that by almost half, to τ̂min = 0.27.

3.6 Bias Due to Incomplete Matching

Chapter 3 has followed Chapter 2 in focusing on internal validity, as discussed in

§2.6. That is, the focus has been on inference about treatment effects for the 2I
matched individuals, not on whether the same treatment effects would be found in

the population of L individuals. When treatment effects vary from person to person,

as seemed to be the case in §2.5, changing the individuals under study may change

the magnitude of the effect.

Although not required for internal validity, it is common in practice to match all

of the treated subjects in the population, so that the number of matched pairs, I,

equals the number of treated subjects ∑Z� in the available population of L individ-

uals. The goal here is an aspect of external validity, specifically the ability to speak

about treatment effects in the original population of L individuals. If the population

of L individuals were itself a random sample from an infinite population, and if all

treated subjects were matched, then under the naı̈ve model (3.5)–(3.8), the average

treated-minus-control difference in observed responses, (1/I)∑Yi, would be unbi-

ased for the expected treatment effect on people who typically receive the treatment,

namely E ( rT − rC | Z = 1); however, this is typically untrue if some treated subjects

are deleted, creating what is known as the ‘bias due to incomplete matching’ [72].

16 See [80] or [85, Chapter 4].



86 3 Two Simple Models for Observational Studies

Unless explicitly instructed to do otherwise, the matching methods in Part II will

match all treated subjects.

If some treated subjects, �, in the population have propensity scores near 1,

e(x�) ≈ 1, they will be very difficult to match. Virtually everyone with this x� will

receive treatment. Rather than delete individuals one at a time based on extreme

propensity scores, e(x�), it is usually better to go back to the covariates themselves,

x�, perhaps redefining the population under study to be a subpopulation of the orig-

inal population of L subjects. A population defined in terms of e(x�) is likely to

have little meaning to other investigators, whereas a population defined in terms of

one or two familiar covariates from x� will have a clear meaning. In this redefined

population, all treated subjects are matched. For instance, in a study of the effects of

joining a gang at age 14 on subsequent violence [33, 34], a handful of the most ex-

tremely violent, chronically violent boys at age 13 all joined gangs at age 14. These

few extremely violent boys had no plausible controls — all of the potential controls

were substantially less violent than these few boys prior to age 14. Disappointing

as this may be, there is no plausible way to estimate the effect of a treatment in a

subpopulation that always receives the treatment. Using violence prior to age 14,

the study population was redefined to exclude the extremely chronically violent sub-

population, with no claim that similar effects would be found in that subpopulation.

See §12.4 for further discussion of the gang study.

3.7 Summary

Two simple models for treatment assignment in observational studies have been

discussed. The two models define and divide the two tasks faced by the investigator.

The first model is naı̈ve: it says that two people who look comparable in terms of

observed covariates x� are comparable. People who look comparable in terms of x�

are said to be ‘ostensibly comparable’; on the surface, they appear to be comparable,

but they may not be so. If the naı̈ve model were true, it would suffice to match

treated and control subjects for the observed covariates x�. More precisely, if the

naı̈ve model were true, and treated and control subjects were matched so that xi j =
xik for different subjects j and k in the same matched set i, then this alone would

reproduce the distribution of treatment assignments in a randomized experiment.

The key difficulty in an observational study is that there is usually little or no reason

to believe the naı̈ve model is true.

The sensitivity analysis model says people who look comparable in terms of

observed covariates x� may differ in terms of one or more covariates u� that were

not measured. The sensitivity analysis model says that two subjects, j and k, who

look comparable in terms of observed covariates, and so might be placed in the

same matched set i — that is, two subjects with xi j = xik — may differ in their

odds of treatment by a factor of Γ ≥ 1. When Γ = 1, the sensitivity analysis model

reduces to the naı̈ve model, yielding the distribution of treatment assignments in a

randomized experiment. When Γ > 1, the treatment assignment probabilities are
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unknown, but unknown to a bounded degree. For each fixed value of Γ ≥ 1, there

is a range of possible inferences, for instance an interval of possible P-values or

point estimates. For Γ = 1, the interval is a single point, namely the randomization

inference. As Γ → ∞, the interval widens until, at some point, it is so long as to be

uninformative, for instance, including both small and large P-values. The sensitivity

analysis determines the magnitude of bias, measured by Γ , that would need to be

present to qualitatively alter the conclusions of the study, that is, to produce an

interval so long that it is uninformative. There is always such a Γ , but the numerical

value of Γ varies dramatically from one observational study to the next. The naı̈ve

model assumes Γ = 1. The phrase ‘association does not imply causation’ refers to

letting Γ → ∞. The sensitivity analysis determines the value of Γ that is relevant in

light of the data at hand.

The two models define and divide the two tasks in an observational study. The

first task is to compare people who look comparable. The first task can be done

somewhat mechanically and completed: we may reach a stage where we are all

forced to agree that the people who are being compared under alternative treatments

do indeed look comparable in terms of observed covariates x. At this point, the

first task is done. Part II of this book discusses the first task, namely matching

for observed covariates. The second task is to address the possibility that differing

outcomes in treated and control groups are not effects caused by the treatment, but

instead reflect some way in which treated and control groups are not comparable in

terms of covariates that were not measured. The second task is not a mechanical

task, not one that could be handed over to a computer. The second task, being at-

tended by controversy, is more challenging, and hence more interesting. Sensitivity

analysis, the tactics in Chapter 5, and the concepts in Parts III and IV are aimed at

the second task.

3.8 Further Reading

In this book, see Chapter 8 for further discussion of propensity scores, and see Chap-

ter 5 and Parts III and IV for further discussion of sensitivity analysis. Propensity

scores originate in [67] and are discussed in [16, 18, 30, 37, 35, 41, 56, 52, 54, 64,

65, 69, 70, 71, 76, 86, 93, 94, 95, 107] and [85, §3]. The method of sensitivity anal-

ysis described here is not restricted to matched pairs and is discussed in [74, 79, 80,

81, 26, 86, 89] and [85, §4]; see also [48]. That one-parameter sensitivity analysis

may be reexpressed in terms of two parameters, one describing the relationship be-

tween Z and u, the other describing the relationship between rC and u; see [91]. The

one-parameter and two-parameter analyses are numerically the same, but the latter

may aid in interpreting the former. Other approaches to sensitivity analysis are dis-

cussed in [13, 14, 15, 24, 25, 28, 42, 68, 53, 54, 55, 50, 66, 68, 73, 113, 99, 59]. For

a few applications of sensitivity analysis, see [60, 19, 49, 100].
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3.9 Appendix: Exact Computations for Sensitivity Analysis

Exact sensitivity distribution of Wilcoxon’s statistic

For small to moderate I, the exact upper bound on the distribution of Wilcoxon’s

signed rank statistic may be obtained quickly in R as the convolution of I proba-

bility generating functions. Only the situation without ties is considered. Pagano

and Tritchler [62] observed that permutation distributions may often be obtained in

polynomial time by applying the fast Fourier transform to the convolution of char-

acteristic functions or generating functions. Here, probability generating functions

are used along with the R function convolve.

The distribution of T is the distribution of the sum of I independent random

variables, i = 1,2, . . . , I, taking the value i with probability Γ /(1+Γ ) and the value

0 with probability 1/(1+Γ ). The ith random variable has probability generating

function

hi (x) =
1

1+Γ
+

Γ xi

1+Γ
, (3.28)

and T has generating function Π I
i=1hi (x). In R, the generating function of a random

variable taking integer values 0, 1, . . . , B is represented by a vector of dimension

B + 1 whose b + 1 coordinate gives the probability that the random variable equals

b. For instance, h3 (x) is represented by(
1

1+Γ
, 0, 0,

Γ
1+Γ

)
. (3.29)

The distribution of T is obtained by convolution as a vector with 1 + I (I +1)/2

coordinates representing Π I
i=1hi (x) and giving the Pr

(
T = b

)
for b = 0, 1, . . . ,

I (I +1)/2 where I (I +1)/2 = ∑ i.

The 39 matched pair differences are

> dif
[1] 0.148 0.358 1.572 2.526 0.287 -0.271 0.494
[8] 0.716 0.411 0.988 1.073 1.097 0.491 0.294
[15] 0.062 0.417 -0.886 0.314 0.178 0.867 0.539
[22] 1.791 -0.001 -0.067 0.779 0.113 0.729 0.374
[29] 0.610 2.277 0.303 -0.326 0.527 1.203 0.854
[36] 0.269 0.683 -0.190 0.778

For Γ = 2 in Table 3.2, the upper bound on the one sided P-value is

> senWilcoxExact(dif,gamma=2)
pval T ties
[1,] 0.0006376274 715 0

The R functions that compute this exact P-value follow.
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> senWilcoxExact
function(d,gamma=1){
a<-abs(d)
rk<-rank(a)
s<-(d>0)*1
tie<-1*(d==0)
sgn<-s+tie/2
wt<-sum(sgn*rk)
out<-matrix(NA,1,3)
colnames(out)<-c("pval","T","ties")
out[1,3]<-sum(tie)
out[1,2]<-wt
out[1,1]<-wilcsenexacttail(floor(wt),length(d),gamma=gamma)
out

}
> wilcsenexacttail
function(k,n,gamma=1){
#Upper tail probability for Wilcoxon’s signed rank statistic
#Prob(T>=k) in n pairs with specified gamma
1-sum(wilcsenexact(n,gamma=gamma)[1:k])}
> wilcsenexact
function(n,gamma=1){
#Computes the upper bound distribution of
#Wilcoxon’s signed rank statistic with n pairs
#Returns a vector g of length 1+sum(1:n)
#where g[k+1] is the probability the statistic
#equals k, for k in 0:sum(1:n)
#Uses gconv
p<-gamma/(1+gamma)
g<-c(1-p,p)
for (i in 2:n){
gi<-rep(0,i+1)
gi[1]<-1-p
gi[i+1]<-p
g<-gconv(g,gi)
}
g

}
> gconv
function(g1,g2){
#convolution of g1 and g2
convolve(g1,rev(g2),type="o")}
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Chapter 4
Competing Theories Structure Design

Abstract In a well designed experiment or observational study, competing theories

make conflicting predictions. Several examples, some quite old, are used to illus-

trate. Also discussed are: the goals of replication, empirical studies of reasons for

effects, and the importance of systemic knowledge in eliminating errors.

About thirty years ago there was much talk that geologists ought only to observe and not
theorise; and I well remember some one saying that at this rate a man might as well go into a
gravel-pit and count the pebbles and describe the colours. How odd it is that anyone should
not see that all observation must be for or against some view if it is to be of any service.

Charles Darwin 1861 [16]

Letter to Henry Fawcett

What goes on in science is not that we try to have theories that accommodate our experi-
ences; it’s closer that we try to have experiences that adjudicate among our theories.

Jerry Fodor [21, pages 202–203]

It takes a theory to kill a theory . . . given our need to have a systematic way of thinking
about complicated reality.

Paul A. Samuelson [55, page 304]

4.1 How Stones Fall

In his Physics, Aristotle claimed a heavy object falls faster than a light one. Much

in daily experience confirms this, or seems to. Stones fall faster than feathers, for

instance. Everyone has seen this. How can you doubt what you and everyone else

have seen?

95P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
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Galileo doubted that Aristotle had it right. In his dialogue1 Two New Sciences
[25], Galileo proposed a thought experiment, perhaps the most famous of all thought

experiments. Suppose Aristotle were correct, says Galileo, and suppose we con-

nected a large stone to a small one. Would the two connected stones fall faster or

slower than the large stone falling alone? In Galileo’s words [25, pages 66–67]:

Salviati: But without other experiences, by a short and conclusive demonstration, we can
prove clearly that it is not true that a heavier moveable is moved more swiftly than another,
less heavy, these being of the same material, and in a word, those of which Aristotle speaks.
. . . if we had two moveables whose natural speeds were unequal, it is evident that were we
to connect the slower to the faster, the latter would be partly retarded by the slower, and this
would be partly speeded up by the faster. Do you not agree with me in this opinion?
Simplicio: It seems to me that this would undoubtedly follow.
Salviati: But if this is so, and it is also true that a large stone is moved with eight degrees
of speed, for example, and a smaller one with four degrees, then joining both together, their
composite will be moved with a speed less than eight degrees. But the two stones joined
together make a larger stone than that first one which was moved with eight degrees of
speed; therefore this greater stone is moved less swiftly than the lesser one. But this is
contrary to your assumption. So you see how, from the supposition that the heavier body is
moved more swiftly than the less heavy, I concluded that the heavier moves less swiftly.
Simplicio: I find myself in a tangle . . .

Galileo develops his own theory involving a ‘law of uniformly accelerated mo-

tion:’ [25, page 166]:

Proposition II. Theorem II: If a moveable descends from rest in uniformly accelerated
motion, the spaces run through in any times whatever are . . . as the squares of those times.

In later Newtonian terms, if an object is acted upon by a single, constant force,

namely gravity, its acceleration will be constant in time, its velocity will increase

linearly with time, and the distance it travels will increase with the square of the

time spent traveling.2 Galileo’s proposition concerns a theory that asserts that the

instantaneous velocity of a falling stone is ever increasing at a constant rate of in-

crease, is never the same for two distinct instants. Instantaneous velocity is not

measurable, but the proposition says the theory has a measurable consequence, a

relationship between distance traveled and time spent traveling.

Naturally, Galileo set up an experiment to test the testable consequence of his

theory. Or, at least, it seems natural to us, though it was something of a new idea

at the time. Things fall quickly, making measurement difficult, so Galileo began by

slowing the speed of the fall. Harré [29, pages 79–81] writes:

The experiment involved cutting and polishing a groove in a wooden beam and lining the
groove with parchment. A polished bronze ball was let roll down the groove when the

1 The full title is “Discourses and Mathematical Demonstrations Concerning Two New Sciences
Pertaining to Mechanics and Local Motions” by Galileo Galilei, chief philosopher and mathe-
matician to the most serene Grand Duke of Tuscany. It was written while Galileo was under house
arrest for teaching the Copernican theory. Galileo could not publish it in Italy, and it was published
by Elzevir in Leyden in 1638.
2 This is, of course, a simple calculus problem. Then again, calculus was invented, in part, with a
view to making this a simple problem.
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beam was set on an incline . . . Variations in time for many runs of the same descent were
very small. The theoretically derived relation between distances and times for uniformly
accelerating motion was tested by letting the ball roll a quarter, then half, then two-thirds
and so on, of the length of the groove, measuring the times for the journey in each case.
The ball did indeed take half the time required for a full descent to reach the quarter way
point.

Much is instructive in Galileo’s approach.

• Galileo develops his theory in dialogue with, in opposition to, existing theories.3

• Everyday impressions that might casually be taken to support Aristotle’s theory

are immediately challenged, not as false impressions, but as providing no support

to Aristotle’s theory. Galileo turns attention to a “heavier moveable . . . of the

same material.” If stones fall faster than feathers, but heavy, larger stones fall

no faster than lighter, smaller stones of the same material, then that is evidence

against, not evidence in favor of Aristotle’s theory, for it says that something

besides weight causes stones and feathers to fall at different rates.4 Repeatedly,

either by abstraction in argument or by experimental procedure — “polishing

a groove . . . lining the groove with parchment . . . a polished bronze ball” —

disturbing influences are removed so that weight and weight alone varies.5

• The case Galileo makes is neither strictly theoretical nor strictly empirical. Using

a thought experiment, he argues that Aristotle’s theory contradicts itself, that it

is necessarily false without reference to any particular experimental observation.

The thought experiment is not totally convincing: if an actual experiment failed to

reproduce the thought experiment, we would be puzzled rather than certain that

the actual experiment erred. Nonetheless, Galileo’s theoretical argument creates

a space for competing theories and their experimental evaluation.6

• Galileo introduces a competing theory, a beautiful theory, in terms of constant ac-

celeration. In point of fact, this theory speaks about things that cannot be seen or

measured, namely instantaneous velocity and how it changes. Galileo develops

an observable, testable consequence of this theory. The testable consequence

involves very precise predictions concerning the relationship between distance

traveled and time spent traveling.

3 The importance of working with several theories at once is often stressed. Paul Feyerabend
writes: “You can be a good empiricist only if you are prepared to work with many alternative
theories rather than with a single point of view and ‘experience.’ . . . Theoretical pluralism is
assumed to be an essential feature of all knowledge that claims to be objective . . . [19, pages 14–
15] [T]he evidence that might refute a theory can often be unearthed only with the help of an
incompatible alternative [20, page 29].” See also [11, 45].
4 Robert Nozick [42, pages 261–263], Peter Achinstein [1], and Kent Staley [59] argue that whether
or not E consitutes evidence for T is a matter itself open to empirical challenge and investigation.
5 The systematic exclusion of sources of variation besides the one cause under study is familiar in
every scientific laboratory, and it was named the ‘method of difference’ by John Stuart Mill [38];
see Chapter 15.
6 Thomas Kuhn [34] and J.R. Brown [5] present perspectives on the role of thought experiments
in scientific work. In particular, Kuhn writes [34, page 264]: “By transforming felt anomaly to
concrete contradiction, the thought experiment [. . . provided the. . . ] first clear view of the misfit
between experience and implicit expectation . . . .”
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• The experiment is limited in scope and is atypical of situations in which objects

fall. The descent is slowed by a beam set on an incline, permitting precise mea-

surements to be compared with a theory that makes precise predictions. The ob-

ject, a polished bronze ball, is atypical of falling objects. And so on. No attempt

is made to survey the falls of all of the world’s falling objects, because those

comparisons would be subject to innumerable disturbing influences that would

obscure the issue under examination. Laura Fermi and Gilberto Bernardini [18,

page 20] write that Galileo’s experiments “reproduced the essential elements of

the phenomenon under controlled and simplified conditions.”

• Galileo conducted a severe test of his theory, but did little to demonstrate that

it is always true: perhaps the theory is correct only for one bronze ball, on one

inclined beam, with suitable parchment, in Italy, in the 1600s.7

4.2 The Permanent-Debt Hypothesis

In his permanent income hypothesis, Milton Friedman argued that personal con-

sumption today is guided by expected long-term income, not current income or cash

on hand.8 Much in daily experience confirms this, or seems to. At a business school,

doctoral students receive tuition and a stipend but spend modestly, while MBAs pay

tuition with no stipend, yet spend less modestly. This is consistent with the perma-

nent income hypothesis: MBAs expect to earn more in the long run. Whatever may

be the ultimate fate of the permanent income hypothesis, it embodies a plausible

claim: a rational person would anticipate future income in deciding about current

consumption.9

The permanent income hypothesis has been challenged in various ways. David

Gross and Nicholas Souleles [27, page 149] write:

The canonical Permanent-Income Hypothesis (PIH) assumes that consumers have certainty-
equivalent preferences and do not face any liquidity constraints. Under these assumptions
the marginal propensity to consume (MPC) out of liquid wealth depends on model parame-
ters, but generally averages less than 0.1. The MPC out of predictable income or ‘liquidity’
(e.g., increases in credit limits), which do not entail wealth effects, should be zero. The
leading alternative view of the world is that liquidity constraints are pervasive. Even when

7 The notion that scientific theories are testable but not demonstrable is thematic in the work of Sir
Karl Popper [48]. He writes: “Theories are not verifiable, but they can be ‘corroborated’ . . . [W]e
should try to assess what tests, what trials, [the theory] has withstood [48, page 251] . . . [I]t is not
so much the number of corroborating instances which determines the degree of corroboration as the
severity of the various tests to which hypothesis can be, and has been, subjected [48, page 267].”
Obviously, if you doubted Galileo, you could polish a bronze ball . . .
8 Friedman discusses his permanent income hypothesis in his A Theory of the Consumption Func-
tion [23]. A concise, simplified version of the permanent income hypothesis is given in a couple of
pages by Romer [51, Chapter 7]. Zellner [72, III.C] and Friedman [24, Chapter 12] reprint sections
of Friedman’s A Theory of the Consumption Function.
9 Perhaps there is a certain similarity between a rational person and a polished bronze ball: both
are uncommon in nature, but their behavior is of interest nonetheless.
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they do not currently bind, they can be reinforced by precautionary motives concerning the
possibility that they bind in the future. Under this view the MPC out of liquidity can equal
one over a range of levels for “cash-on-hand,” defined to include available credit.

As in §4.1, the starting point is not one theory, but the contrast between two the-

ories. Contrast must become conflict: one must find a quiet undisturbed location

where contrasting theories make conflicting predictions. Gross and Souleles [27,

pages 150–151] continue:

To test whether liquidity constraints and interest rates really matter in practice, this paper
uses a unique new data set containing a panel of thousands of individual credit card accounts
from several different card issuers. The data set . . . includes essentially everything that the
issuers know about their accounts, including information from people’s credit applications,
monthly statements, and credit bureau reports. In particular, it separately records credit
limits and credit balances, allowing us to distinguish credit supply and demand, as well
as account specific interest rates. These data allow us to analyze the response of debt to
changes in credit limits and thereby estimate the MPC out of liquidity, both on average and
across different types of consumers. The analysis generates clean tests distinguishing the
PIH, liquidity constraints, precautionary saving, and behavioral models of consumption . . .

The permanent income hypothesis predicts that an offer of credit unrelated to per-

manent income should not prompt an increase in spending. Gross and Souleles are

seeking a circumstance in which there is a change in available credit with no change

in expected long-term income. There is a great deal of activity in these credit card

accounts that obscures the intended contrast of theories, and efforts are needed to re-

move these irrelevant disturbances. Gross and Souleles adopt two strategies: “first,

we use an unusually rich set of control variables. . . ” [27, page 154]. For instance,

a person might be offered more credit because of increased credit scores or debts

that appear to be under control, and perhaps these are related to income, but Gross

and Souleles know what the card issuers know about these matters, so variations in

these quantities can be controlled. Second, they exploit “‘timing rules’ built into

the credit supply functions . . . many issuers will not consider . . . an account for a

line change if it has been less than six months or less than one year since the last

line change” [27, page 155]. Their point is that these timing rules generate small

jumps in available credit that are not much related to an individual’s financial cir-

cumstances: if your credit account is entirely unchanged in all its aspects (or more

accurately, if this is the case after adjustment for the many control variables), you

will be offered more credit after a lapse of time. Gross and Souleles are trying, per-

haps successfully, to isolate a change in credit availability accompanied by no other

consequential change. They conclude [27, page 181]: “We found that increases in

credit limits generate an immediate and significant rise in debt, counter to the PIH.”

The goal here is no different than the goal in §4.1: to display an effect that con-

trasts two theories as sharply as possible, removing to the greatest degree possible

all disturbances that might obscure that contrast. There is no attempt to generalize

from a sample to a population. The two theories began as general theories; there is

no need to generalize further. The goal is to contrast conflicting predictions of two

general theories in the stillness of a laboratory.
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4.3 Guns and Misdemeanors

The 1968 Federal Gun Control Act prohibits the purchase of guns by felons. Be-

ginning in 1991, California prohibited the purchase of handguns by individuals con-

victed of violent misdemeanors, including assault or brandishing a firearm. It is not

clear whether such prohibitions are effective at reducing gun-related violence. On

one theory, it is fairly easy to purchase a handgun illegally, for instance by purchas-

ing the gun from someone who can buy it legally, so the prohibitions deter only

those who wish to avoid illegal activity, perhaps not the best target for deterrence.

On a different theory, legal prohibitions backed by punishment deter individuals

who wish to avoid punishment.

The two theories are plain enough, but contrasting them is not so easy. Under

what circumstances do the two theories make conflicting predictions? Under both

theories, it would not be surprising if violent men remain violent, with or without re-

strictions on handgun purchases. The laws restrict purchases by violent individuals;

these individuals cannot be compared with unrestricted, nonviolent individuals.

The effects of California’s law were investigated by Garen Wintemute, Mona

Wright, Christiana Drake, and James Beaumont [71] in the following way. They

compared two groups of Californians who had been convicted of violent misde-

meanors of the sort that would have prevented a legal purchase of a handgun be-

ginning in 1991. One group consisted of individuals who had applied to purchase a

handgun in 1989 or 1990, before the law took effect. The second group consisted of

individuals who applied to purchase a handgun in 1991 and whose application was

denied. These two groups may not be perfectly comparable, but at least both groups

had been convicted of violent misdemeanors and both groups sought to purchase

a handgun. In terms of demographics and previous convictions, the two groups

looked fairly similar [71, Table 1].

If California’s law were effective, one expects to see a lower rate of gun and vio-

lent crime in the group denied a handgun purchase, with no difference in nongun or

nonviolent crime. If the law were ineffective, one expects to see similar rates of gun

and violent crime in both groups. With or without adjustments for demographics

and previous convictions, Wintemute et al. [71, Tables 2 and 3] found lower rates of

gun and violent crime in the group denied a handgun purchase, with little indication

of a difference in the rate of other crimes.

The reasoning here is much the same as in §4.1 and §4.2. Admittedly, the two

theories are quite plain: one says the policy works, the other denies this. And yet,

because the policy is targeted at offenders, care is needed to identify circumstances

in which these theories make conflicting predictions.

4.4 The Dutch Famine of 1944–1945

Does malnutrition in utero reduce mental performance at age 19? The two theories

are straightforward: it does or it doesn’t. It is not straightforward, however, to iden-
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tify circumstances in which these theories lead to different predictions. Reliable

information is needed about mental performance at age 19 and about mother’s diet

20 years prior to that. Controls are needed whose mothers were not malnourished

but who were otherwise similar in background, education, social class, etc. Neither

such information nor such controls are commonly available.

Zena Stein, Mervyn Susser, Gerhart Saenger and Francis Marolla [61] found

what was needed in the Dutch famine of 1944–1945. They wrote [61, page 708]:

On 17 September 1944 British paratroops landed at Arnhem in an effort to force a bridge-
head across the Rhine. At the same time, in response to a call from the Dutch government-
in-exile in London, Dutch rail workers went on strike. The effort to take the bridgehead
failed, and the Nazis in reprisal imposed a transport embargo on western Holland. A se-
vere winter froze the barges in the canals, and soon no food was reaching the large cities
. . . At their lowest point the official food rations reached 450 calories per day, a quarter of
the minimum standard. In cities outside the famine area, rations almost never fell below
1300 calories per day. . . . The Dutch famine was remarkable in three respects: (i) Famine
has seldom if ever struck where extensive, reliable and valid data allow the effects to be
analyzed within specified conditions of social environment. (ii) The famine was sharply
circumscribed in both time and place. (iii) The type and degree of nutritional deprivation
during the famine were known with a precision unequaled in any large human population
before or since.

To know a child’s date and place of birth is to know whether the mother was affected

by the famine. So Stein et al. defined famine and control regions in Holland, as

well as a cohort of children born just before the start of the famine, several cohorts

exposed to the famine at various times in utero, and a cohort conceived after the

famine ended. In these cohorts, virtually all males received medical examinations

and psychological testing, including an IQ test, in connection with induction into

the military. For 1700 births at two hospitals, one in a famine region (Rotterdam)

and one in a control region (Heerlan), birth weights were available. Stein et al. [61,

page 712] concluded: “Starvation during pregnancy had no detectable effects on the

mental performance of surviving male offspring.”

Subsequent studies used the Dutch famine to examine other outcomes, includ-

ing schizophrenia, affective disorders, obesity, and breast cancer; see [35, 63] for

reviews of these studies. For studies that have taken a similar approach in other

situations, see [3, 57].

The Dutch famine was unrepresentative both of typical in utero development and

typical famines, and it was useful for studies of development precisely in the ways it

was unrepresentative. In representative situations, famine is confounded with other

factors that obscure the effects caused by malnutrition in utero.

4.5 Replicating Effects and Biases

The randomized experiment in its idealized, perhaps unattainable, form is subject

to a single source of uncertainty — that stemming from a finite sample size. In

this ideal, biases of every sort have been eliminated by blocking and randomization;
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therefore, the sole function of replication is to increase the sample size. Actual ex-

periments are a step or two removed from the ideal, and observational studies are

several steps removed from that. In an observational study, even an excellent one,

there is the possibility that can never be entirely eliminated: treated and control sub-

jects who look comparable may not actually be comparable, so differing outcomes

may not be treatment effects.10 In observational studies, the principal and important

function of replication is to shed some light on biases of this sort.

Here, too, there are two theories. The first theory asserts that previous studies

have produced estimates of treatment effects without much bias. The competing

theory denies this, asserting instead that previous studies were biased in certain

particular ways, and if those biases were removed, then the ostensible treatment

effect would be removed with them. The replication does not repeat the original

study; rather, it studies the same treatment effect in a context that is not subject to

particular biases claimed by the competing theory. Replication is not repetition: the

issue at hand is whether the ostensible effect can be reproduced if a conjectured bias

is removed.

An example is David Card and Alan Krueger’s [9, 10] replication of their earlier

study [8] of the effects of the minimum wage on employment11; see also §11.3. On

1 April 1992, New Jersey raised its minimum wage by about 20%, whereas neigh-

boring Pennsylvania left its minimum wage unchanged. In their initial study, Card

and Krueger [8] used survey data to examine changes in employment at fast food

restaurants, such as Burger King and Wendy’s, in New Jersey and eastern Pennsyl-

vania, before and after the increase in New Jersey’s minimum wage. They found

“no evidence that the rise in New Jersey’s minimum wage reduced employment at

fast food restaurants in the state.” Their careful and interesting study received some

critical commentary; e.g., [41]. One of several issues was the quality of the employ-

ment data obtained by a telephone survey, and another was simply that New Jersey

and Pennsylvania differ in many ways relevant to employment change, not just in

their approach to the minimum wage. In 1996, the minimum wage as set by the

U.S. Federal Government was raised, forcing up the minimum wage in Pennsylva-

nia, without forcing changes in New Jersey whose state minimum wage was already

above the new Federal minimum wage. Card and Krueger [9, 10] then replicated the

original study with the roles of New Jersey and Pennsylvania now reversed, using

employment data from payroll records for Unemployment Insurance made available

by the U.S. Bureau of Labor Statistics. Their findings were similar. The replication

does not eliminate all concerns raised about the original study, but it does make two

specific concerns less plausible.

10 In an observational study, an increase in sample size ensures only that the estimator is closer to
whatever the estimator estimates. Typically, the estimator estimates the sum of a treatment effect
and a bias whose unknown magnitude does not decrease as the sample size increases. When a bias
of this sort is not zero, as the sample size increases, confidence intervals shrink in length to exclude
the true treatment effect, and hypothesis tests are ever more likely to reject the true hypothesis. It is
a mistake to attach great importance to an increase in the sample size (or to an increase in statistical
efficiency) when substantial biases of fixed size are present or likely.
11 For a brief survey of the economics of the minimum wage, see [6, §12.1].
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Mervyn Susser writes:

The epidemiologist [. . . seeks. . . ] consistency of results in a variety of repeated tests . . .
Consistency is present if the result is not dislodged in the face of diversity in times, places,
circumstances, and people, as well as of research design [65, page 88] . . . The strength of
the argument rests on the fact that diverse approaches produce similar results [64, page 148].

Susser’s careful statement is easily, perhaps typically, misread. Mere consistency

upon replication is not the goal. Mere consistency means very little. Rather, the

goal is “consistency . . . in a variety of . . . tests” and “consistency . . . not dislodged

in the face of diversity.” The mere reappearance of an association between treat-

ment and response does not convince us that the association is causal — whatever

produced the association before has produced it again. It is the tenacity of the as-

sociation — its ability to resist determined challenges — that is ultimately convinc-

ing. For a similar view with examples from physics, see Allan Franklin and Colin

Howson [22]. For a similar view with examples from mathematics in a Bayesian

formulation, see Georg Polya [47, especially pages 463–464].

To illustrate, consider two sequences of studies, one sequence involving the ef-

fectiveness of treatments for drug addiction, the other involving the effects of ad-

vertising on prices. The first sequence increases the sample size, but the bias of

greatest concern remains the same. The second sequence asks the same question in

very different contexts.

Several nonexperimental studies of the effects of treatments for heroin or co-

caine addiction have found that people who remain in treatment for at least three

months are more likely to remain drug-free than people who drop out of treatment

before three months. These studies had involved the Drug Abuse Reporting Pro-

gram (DARP) and the Treatment Outcomes Prospective Study (TOPS). In a third

study using a different source of data, Hubbard et al. [31, page 268] wrote:

The general finding from DARP and TOPS that treatment duration of at least three months
is associated statistically and clinically with more positive outcomes supports the inference
of treatment effectiveness. The following analysis retests this hypothesis . . .

In their new study, Hubbard et al. [31] found, again, that people who dropped out of

treatment went on to use more illegal drugs than people who remained in treatment.

Is this an effect caused by treatment? Or is it simply that a person who has little

enthusiasm for ending his addiction is both more likely to drop out of treatment and

more likely to use illegal drugs? A summary report of the National Academy of

Sciences [36, page 17] was understandably skeptical:

Depending on the process by which users are selected into treatment programs and the
determinants of dropout from such programs . . . the data may make treatment programs
seem more or less cost-effective than they actually are.

These three studies are all open to the same question: Is a comparison of people

who remain in treatment and people who drop out revealing an effect caused by the

treatment, or is it revealing something about the people who stay in treatment and

those who drop out? Because the same question can be asked of each study, the
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replications increase the sample size — which was large from the start, and never

much at issue — but they do not make progress towards answering a basic concern.

What is the effect of advertising on prices? More precisely, what is the effect on

prices of imposing or removing a restriction on the advertising of prices? One study

by Amihai Glazer [26] made use of a strike from 10 August 1978 to 5 October 1978

that shut down three daily New York City newspapers, the New York Times, the

New York Post, and the Daily News. The strike reduced advertising of retail food

prices in New York City. Glazer looked at changes in retail food prices in Queens,

the eastern borough of New York City, comparing Queens with adjacent Nassau

County, outside the City, where the major newspaper, Newsday, was unaffected by

the strike. A second study by Jeffrey Milyo and Joel Waldfogel [39] examined

changes in liquor prices in Rhode Island before and after the U.S. Supreme Court

struck down Rhode Island’s ban on liquor advertising, comparing Rhode Island with

adjacent areas of Massachusetts that were unaffected by the Court decision. In a

third study, C. Robert Clark [12] examined the effect on the prices of children’s

breakfast cereals of Quebec’s ban on advertising aimed at children under the age of

13. Clark compared the prices of cereals for children and cereals for adults in Que-

bec and in the rest of Canada. Each situation — the newspaper strike in New York,

the Supreme Court decision in Rhode Island, the ban on advertising to children in

Quebec — has idiosyncrasies that might be mistaken for an effect of advertising

on prices, but there is no obvious reason why these idiosyncrasies should align to

reproduce the same association between advertising and prices. Unlike the studies

of treatments for drug addiction, where one alternative explanation suffices for three

studies, in the advertising studies, three unrelated idiosyncrasies would have to pro-

duce similar associations. That could happen, but it seems less and less plausible as

more and more studies are designed to replicate an effect, if it is a real effect, but to

avoid replicating biases.

The goal in replication is to study the same treatment effect in a new context that

removes some plausible bias that may have affected previous studies [53].

4.6 Reasons for Effects

To suppose universal laws of nature capable of being apprehended by the mind and yet
having no reason for their special forms, but standing inexplicable and irrational, is hardly
a justifiable position. Uniformities are precisely the sort of facts that need to be accounted
for. . . . Law is par excellence the thing that wants a reason.

Charles Sanders Peirce [44]

The Architecture of Theories

There is an obvious distinction between empirical evidence in support of a theory

and a reasoned argument in support of a theory, but as is often the case with obvious

distinctions, this one becomes less obvious upon close inspection. It is, after all,

common to argue that what was taken as empirical evidence in support of a theory is
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not evidence at all.12 It is equally common to cast doubt upon a reasoned argument

with the aid of empirical evidence. To offer a reasoned argument in support of the

claim that a treatment does or should or would have a certain effect is to create a

new object for empirical investigation, namely the argument itself.13 Consider an

example.

In an effort to reduce gun violence, various municipalities have created programs

to buy handguns from their owners. For instance, Milwaukee did this in 1994-1996,

offering $50 for a workable gun. Buyback programs are popular because they are

voluntary: they do not meet the same resistance that a coercive program might meet.

However, voluntary programs may also be less effective than coercive programs. Do

voluntary buyback programs work to reduce gun violence?

One could argue that buybacks have to work: whenever a gun is destroyed, that

gun cannot be used in a future homicide or suicide. One could argue that the pro-

gram can’t really work: a rational person would turn in a gun for $50 only if he

does not plan to use it, so the program is buying guns that would otherwise rest

harmlessly in the attic. One could argue that buybacks work because people aren’t

rational: many gun deaths are accidents, and others stem from impulsive responses

to rage or depression, so buying guns from people who do not plan to use them helps

people to adhere to their peaceful plans. (See Ainslie [2] or Rachlin [50] for cogent

general discussions of rational control of irrational impulses.) One could argue that

buybacks can’t really work because many violent individuals do not have peaceful

plans and will not sell their guns, intending to thwart their own violent inclinations:

“[T]he self-images of violent criminals are always congruent with their violent crim-

inal actions,” wrote Athens [4, page 68] in a careful, perceptive study. In short, it is

not difficult to offer a variety of reasons in support of a variety of possible effects.

Whatever the strengths or weakness of these arguments as arguments for or against

particular effects, the arguments create objects for empirical investigation, namely

the validity of the arguments themselves.

Basic to each of these arguments is the question: Do buyback programs buy the

guns that would otherwise be used in gun violence? One aspect of this question

is: Do buyback programs typically buy the types of guns typically used in gun vi-

olence? A second aspect is: Do buyback programs buy guns in sufficient quantity

to affect gun violence? Evelyn Kuhn and colleagues [33] addressed the first aspect

and a report of the U.S. National Academy of Sciences [69, pages 95–96] addressed

the second.

Table 4.1 is Kuhn et al.’s [33] comparison of the caliber of repurchased guns

and homicide guns. To a dramatic degree, with an odds ratio of ten or more, re-

12 See §4.1 and Note 4.
13 Dretske [17, pages 20–22] writes: “More often than not a reason, or the giving of reasons,
supplies a recipe . . . for the possible falsification of the statement or statements for which the
reason is given. By this I mean that although some statements, considered in isolation, may appear
irrefutable, they lose this invulnerability when taken in the context provided by evidential support.
. . . If Q is a reason for believing P true, then although P need not be true, Q must be. We can, and
often do, give reasons — sometimes very good reasons — for believing something that is not true
. . . [A]ny challenge to the truth of Q is simultaneously a challenge to the acceptability of Q as a
reason.”
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Table 4.1 Homicide and buyback handguns in Milwaukee by caliber. As the odds ratios indicate,
homicide and buyback guns are quite different.

Caliber Buyback Homicide Odds Ratio

Small: .22, .25, .32 719 75 1.0
Medium: .357, .38, 9mm 182 202 10.6

Large: .40, .44, .45 20 40 19.2

Total 941 369

purchased guns are small caliber and homicide guns are large caliber. Kuhn et al.

make several similar comparisons, finding that repurchased guns tended to be small,

obsolete revolvers, whereas homicide guns tended to be large, inexpensive, semiau-

tomatic pistols. They found similar but not identical results for suicide guns. The

buyback programs are buying types of guns infrequently used in gun violence.

The report of the U.S. National Academy of Sciences makes this same point and

two others [69, pages 95–96]:

The theory on which gun buy-back programs is based is flawed in three respects. First,
the guns that are typically surrendered in gun buy-backs are those that are least likely to
be used in criminal activities . . . Second, because replacement guns are relatively easily
obtained, the actual decline in the number of guns on the street may be smaller than the
number of guns that are turned in. Third, the likelihood that any particular gun will be used
in a crime in a given year is low. In 1999, approximately 6,500 homicides were committed
with handguns. There are approximately 70 million handguns in the United States. Thus,
if a different handgun were used in each homicide, the likelihood that a particular handgun
would be used to kill an individual in a particular year is 1 in 10,000. The typical buy-back
program yields less than 1,000 guns.

In brief, their third point claims that the scale of buyback programs is too small to

have a meaningful effect.

Table 4.1, related results in [33], and the arguments in the quoted paragraph from

[69, pages 95–96] are intended to undermine the reasoning that justifies gun buyback

programs, but they provide no direct evidence about the effects of such programs on

violence. In [33], violence is not measured. Table 4.1 and the quoted paragraph

attack the idea that gun buyback programs could work by buying the guns used in

gun violence, because the programs buy the wrong types of guns and too few of

them. It is, nonetheless, not entirely inconceivable that gun buyback programs do

work to reduce violence, but do this in some other way. Imagine a highly publicized

buyback program, in which, each night, the television news interviews someone who

turned in a gun, reporting the accumulated total of guns repurchased, accompanied

by comments from civic leaders about how the city is “getting rid of its guns and

ridding itself of violence.” Even if the program bought the wrong guns and too few

of them, it is not entirely inconceivable that the publicity, fanciful though it may

be, would affect public sentiment in a way that ultimately affected the level of gun

violence. Of course, in arguing for a new policy, one might hope to say more than:

‘it is not entirely inconceivable that the policy might work.’

In the discussion here, a precise distinction is intended between ‘direct evidence

of a treatment effect’ and a ‘reason for a treatment effect.’ The distinction does not
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refer to the presence or absence of empirical evidence: empirical evidence is present

in some form in most scientific work. Nor does the distinction refer to the strength

or quality of the evidence: in the case of gun buybacks, the evidence against the

reasons for an effect may be more compelling than the direct evidence of ineffec-

tiveness [69, pages 95–96]. ‘Direct evidence of a treatment effect’ means a study

of the relevant treatment, on the relevant subjects or units, measured in terms of the

relevant outcome. A randomized experiment or an observational study may provide

direct evidence of an effect in this sense, and the evidence is likely to be stronger

if it comes from a well-conducted randomized experiment. In contrast, an empiri-

cal study of a ‘reason for an effect’ is a study that is a step removed; it provides a

reason for thinking the relevant treatment would have a particular effect were it to

be applied to the relevant subjects measured in terms of the relevant response, but

one or more of these elements is not actually present. In the case of gun buybacks

in Table 4.1 and in [33], the relevant outcome is the level of gun violence, which is

not measured; instead, the results refer to the types of guns that are repurchased. In

the paragraph above quoted from [69, pages 95–96], the relevant outcome is again

gun violence, but the results refer to the number of guns repurchased. Dafna Kanny

and colleagues [32] studied the effects on helmet use of a law requiring bicyclists

to wear helmets: this provides a plausible reason for thinking the law reduced ac-

cidents, but it is a step removed, because helmet use rather than accident reduction

is the outcome. In the 1964 U.S. Surgeon General’s Report, Smoking and Health,

it is noted that [60, page 143] “there is evidence from numerous laboratories that

tobacco smoke condensates and extracts of tobacco are carcinogenic for several an-

imal species.” This is a reason for thinking that tobacco is carcinogenic in humans,

but it is a step removed, because the subjects are not human. Much laboratory work

in the biomedical sciences studies reasons for effects in humans by examining ef-

fects on animals or cell cultures or molecules. The use of surrogate outcomes in

medicine is the study of a reason for an effect in the sense defined here; for exam-

ple, the use of colonic polyps as a surrogate for mortality from colorectal cancer

[56]. Laboratory style experimentation in economics studies reasons for effects

when small experimental incentives are proxies for incentives faced in actual eco-

nomic decisions [46]. A theoretical argument about what effect would appear in a

tidy and simple theoretical world may constitute a reason for an effect in the untidy

and complex world we actually inhabit; see, for instance, §11.3.

There is no substitute for direct evidence of the effect of a treatment. And yet,

evidence about reasons for an effect remains important. Evidence about reasons for

an effect may either strengthen or undermine direct evidence of an effect, and either

outcome is constructive [54, 67].
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4.7 The Drive for System

A good scientific theory is under tension from two opposing forces: the drive for evidence
and the drive for system. Theoretical terms should be subject to observable criteria, the
more the better; and they should lend themselves to systematic laws, the simpler the better,
other things being equal. If either of these drives were unchecked by the other, it would
issue in something unworthy of the name of scientific theory: in the one case a mere record
of observations, and in the other a myth without foundation.

W.V.O. Quine [49, page 90]

[I]mpersonal knowledge . . . has a special commitment to reasons. Bodies of knowledge are
essentially, if to varying degrees with different subjects, systematic. There is both a pure
and an applied reason for this. Pure, because the aim is not just to know but to understand,
and in scientific cases at least understanding necessarily implies organization and economy.
Applied, because a body of knowledge will only be freely extensible and open to criticism
if rationally organized. . . . So knowledge, in this sense, must have reasons.

Bernard Williams [70, page 56]

The first paragraph of Chapter 1 recalled Borgman’s political cartoon in which a

TV newsman presents “Today’s Random Medical News” that “according to a report

released today . . . coffee can cause depression in twins.” The cartoon accurately de-

picts a popular misconception. It is often thought, incorrectly, that a scientific study

has a clear and stable interpretation on the day it is published, and that interpretation

is ‘news.’ In fact, the considered judgment about a scientific study hardens slowly,

like cement, as the study is subjected to critical commentary, reconciled with other

studies, both past and future, and integrated into a systemic understanding of the

larger topic to which the study is a contribution. The science of the undergraduate

classroom — that is, the science that is presented simply as the way things are — is

not a list of findings from a sequence of individually decisive studies, but rather the

systemic reconciliation and integration of many, perhaps conflicting, studies. The

study of ‘reasons for effects’ in §4.6 is part of this systemic reconciliation. Gaps and

conflicts in systemic knowledge provoke new investigations aimed at closing gaps,

resolving conflicts. In this sense, there is no ‘science news.’ On the day of its re-

lease, the new report faces a fate that is far too uncertain to constitute news. By the

time a systemic understanding has hardened, by the time today’s report has found a

resting place in that understanding, both the report and the systemic understanding

are far too old to constitute news.

Consider, for instance, Steven Clinton and Edward Giovannucci’s [13] review in

1998 of the possibility that diet affects the risk of prostate cancer. Their review

attempted to organize, reconcile, and lend systematic form to 193 scientific reports.

The following excerpts indicate the flavor of their review.

Studies of prostate cancer have yielded inconsistent results concerning the relationship be-
tween various measurements of adult body mass or obesity and risk [of prostate cancer,
citing 11 studies, which are then contrasted in detail] [13, page 422]. . . . An association be-
tween prostate cancer incidence and tobacco use has been inconsistent . . . Additional stud-
ies focusing on the critical timing of smoking during the life cycle . . . are necessary [13,
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page 419]. . . . The relationship between alcohol consumption and risk of prostate cancer
has been evaluated in a series of studies. No strong evidence has emerged for an association
[citing 4 studies] [13, page 424]. . . . Reports of a correlation between diets rich in meat or
dairy products and risk of prostate cancer are frequent [citing 12 studies] [13, page 425].
. . . [Citing Giovannucci’s own study, in which a nutrient, lycopene, found in tomatoes, was
studied:] men in the highest quintile of lycopene intake experienced a 21% lower risk [. . .
but . . . ] investigators should use caution in assuming that lycopene mediates a relationship
between consumption of tomato products and lower risk of prostate cancer [13, page 429].
. . . A recent study was designed to examine the effects of selenium supplementation on re-
currence of skin cancer in a high-risk population [citing a randomized clinical trial]. Sele-
nium treatment did not influence the risk of skin cancer, although selenium-treated patients
had a nonsignificant reduction in total cancer mortality, as well as a lower risk of prostate
cancer. Additional studies are necessary . . . [13, pages 429–30]

The serious, evenhanded, cautious tone of Clinton and Giovannucci’s review is in

marked contrast to the presentation of diet and health in the popular press. Clinton

and Giovannucci’s calls for additional studies are often cited by subsequent stud-

ies [40, 43]. An updated review six years later reports some progress but many

questions still open [37].

Most scientific fields seek a systemic understanding that: (i) contrasts and rec-

onciles past studies, (ii) guides future studies towards promising gaps in the current

understanding, and (iii) integrates theoretical and empirical work. For an example

from economics, see Jonathan Gruber’s [28] review of the economic issues related

to providing health insurance to the uninsured. For an example from criminology,

see the report by Charles Wellford and colleagues [69] concerning firearms and vio-

lence. For an example from the epidemiology of dementia emphasizing methodol-

ogy as the origin for inconsistent results, see the review by Nicola Coley, Sandrine

Andrieu, Virginie Gardette, Sophie Gillette-Guyonnet, Caroline Sanz, Bruno Vellas,

and Alain Grand [14].

The drive for system plays a key role in eliminating scientific error, but it also

plays a key role in deciding what to study next. A new experiment or observational

study contributes to an extant understanding, one that is partly systematic, partly

incomplete, partly conflicting, and doubtless partly, perhaps substantially, in error.

A new study is judged by its contribution to organizing, completing, reconciling, or

correcting that understanding.

4.8 Further Reading

Karl Popper [48], Georg Polya [47], John Platt [45], and Paul Feyerabend [19] offer

abstract discussions relevant to the current chapter; see also [52]. The material in

§4.5 and §4.6 is discussed in greater detail in [53] and [54], respectively.
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Chapter 5
Opportunities, Devices, and Instruments

Abstract What features of the design of an observational study affect its ability to

distinguish a treatment effect from bias due to an unmeasured covariate ui j? This

topic, which is the focus of Part III of the book, is sketched in informal terms in the

current chapter. An opportunity is an unusual setting in which there is less confound-

ing with unobserved covariates than occurs in common settings. One opportunity

may be the base on which one or more natural experiments are built. A device is in-

formation collected in an effort to disambiguate an association that might otherwise

be thought to reflect either an effect or a bias. Typical devices include: multiple con-

trol groups, outcomes thought to be unaffected by the treatment, coherence among

several outcomes, and varied doses of treatment. An instrument is a relatively hap-

hazard nudge towards acceptance of treatment where the nudge itself can affect the

outcome only if it prompts acceptance of the treatment. Although competing the-

ories structure design, opportunities, devices, and instruments are ingredients from

which designs are built.

5.1 Opportunities

The well-ordered world

. . . a nostalgia for caprice and chaos . . .
E.M. Cioran [23, Page 2]

In a well-ordered world, a rationally ordered world, each person would have no

choice but to receive the best treatment for that person, the decision being based on

undisputed knowledge and expert deliberation. That well-ordered world would be

the antithesis of a randomized experiment, in which people receive treatments for

no reason at all, simply the flip of a fair coin, the experimental design reflecting

our acknowledged ignorance about the best treatment and our determined efforts

113P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
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to reduce that ignorance. In that well-ordered world, it would be difficult to learn

anything new. In that world, policy has settled into the “deep slumber of decided

opinion” [59, page 42]. Happily for the investigator planning an observational study,

we do not live in that well-ordered world.

An observational study may begin with an opportunity, an arbitrary, capricious,

chaotic disruption of the ordered world of everyday. The investigator may ask:

How can this disruption be put to use? Is there a pair of scientific theories that on

an average day do not yield conflicting predictions, but today, just because of this

disruption, do yield conflicting predictions? In Chapter 2, randomness was found

to be useful. Following Richard Sennett [93], we may ask: Is disorder useful?

Questions

I. Does a low level of ambient light cause auto accidents? It would not do to com-

pare shoppers driving at 11:00 am, commuters driving at dusk, party-goers driving

home at 3:00 am; their rates of accidents might differ for reasons other than the dif-

ference in ambient light. It would not do to compare the rates of accidents at 5:00

pm in Helsinki and Tel Aviv, because a difference in ambient light is one difference

among many others. What would you compare?

II. If murderers, rapists, and armed robbers condemned to death were not executed,

would they do greater injury to other inmates and prison staff than is done by others

incarcerated for violent crimes? What would you compare?

III. At present in the United States, married couples pay taxes jointly on the sum of

their incomes, where the total income matters, but the division of income between

husband and wife does not. Also, the tax rates are progressive, with higher tax rates

at higher incomes. Under such a system, if a husband and wife have very different

incomes, the tax disincentives to work may be quite different than if they were not

married. It is natural to ask: What effect does joint taxation have on the labor supply

of husbands and wives? How would you study the effects of joint taxation on labor

supply given that the whole country is subject to joint taxation?

IV. Does growing up in a poor neighborhood depress later adult earnings? The

question asks for a separation of the effects of the neighborhood from any attributes

of the individual’s own family circumstances. What would you compare?

Solutions

I. You are looking for a change in ambient light with no other consequential change.

When does that happen? It happens twice a year with the switch into and out of day-

light savings time. John Sullivan and Michael Flannagan [102] looked at change

in fatal auto accident rates at dawn and dusk in the weeks before and after the dis-

continuity in ambient light produced by the switch into and out of daylight savings

time.
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Does increased or reduced sleep affect auto accident rates? In a different use of

the change into or out of daylight savings time, Mats Lambe and Peter Cummings

[51] looked at Mondays before and after the switch, noting that on the Monday

immediately after the switch, people often have added or subtracted an hour of sleep.

The use of daylight savings time to vary either ambient light or sleep duration

is an example of a discontinuity design, in which a treatment shifts abruptly and

discontinuously on some dimension, here time, while the sources of bias that are of

greatest concern are likely to shift gradually and continuously, so the bias in esti-

mating the treatment effect is small near the discontinuity. Donald Thistlethwaite

and Donald Campbell [105] were the first to see discontinuities as opportunities for

observational studies; see also [11, 12, 15, 25, 34, 46].

II. Generally, it is not easy to study the behavior that a person would have exhib-

ited had they not been executed. In the case of Furman v. Georgia in 1972, the

U.S. Supreme Court found that the then current methods of implementing the death

penalty were ‘cruel and unusual’ and therefore in violation of the U.S. Constitu-

tion, invalidating the death sentences of more than 600 prisoners facing execution.

Marquart and Sorensen [56] looked at 47 Texas inmates whose sentences were com-

muted to life imprisonment, examining their behavior from 1973 to 1986, compared

with a cohort of similar violent offenders not on death row.

Supreme Court decisions are not infrequently seen as opportunities; e.g., [60].

For present purposes, it makes little difference whether we view the Supreme Court

as capricious in striking down legislation or legislators as capricious in ignoring the

strictures of the Constitution; not wisdom, but sharp abrupt change is sought.

III. Today, the U.S. tax code is well-ordered in the limited sense that the whole

country is subject to joint taxation, but it was not always so. Prior to the Revenue

Act of 1948, married couples paid joint taxes on their combined incomes in states

with community property laws and separate taxes on their individual incomes in

states without such laws. Sara LaLumia [50] compared the change in the labor

supplied by husbands and wives, from before the Revenue Act of 1948 to after, in

states with and without community property laws.

IV. The public housing program in Toronto assigned families to locations based

on vacancies at the time a family reached the top of the waiting list, and Philip

Oreopoulos [62] used this relatively haphazard arrangement to study neighborhood

effects on adult earnings. He wrote:

This paper is the first to examine the effects of the neighborhood on the long-run labor
market outcomes of adults who were assigned as children to different residential housing
projects in Toronto . . . All families in the Toronto program were assigned to various housing
projects throughout the city at the time they reach the top of the waiting list . . . [F]amilies
cannot specify a preference . . . The Toronto housing program also permits comparison
across a wide variety of subsidized housing projects . . . [some located] in central downtown,
while others are in middle-income areas in the suburbs.

The Toronto housing program is an opportunity to the extent that position on a wait-

ing list predicts earnings later in life only because it affects the assigned neighbor-

hood. The Toronto housing program is an opportunity to the extent that something



116 5 Opportunities, Devices, and Instruments

consequential (your neighborhood) was determined by something inconsequential

(your position on a waiting list).

5.2 Devices

5.2.1 Disambiguation

In his President’s Address to the Royal Society of Medicine, Sir Austin Bradford

Hill [38] asked:

Our observations reveal an association between two variables, perfectly clear-cut and be-
yond what we would care to attribute to the play of chance. What aspects of that association
should we especially consider before deciding that the most likely interpretation of it is cau-
sation?

Association does not imply causation: an association between treatment and out-

come is ambiguous, possibly an effect caused by the treatment, possibly a bias from

comparing people who are not comparable despite looking comparable. ‘Disam-

biguate’ is a word with an ugly sound but the right attitude. Ambiguity is opposed,

perhaps ultimately defeated, by activity specifically targeted at resolving ambigu-

ity.1 Devices enlarge the set of considered associations with a view to disambiguat-

ing the association between treatment and outcome. Donald Campbell’s paper [18]

of 1957 was one of the first to systematically consider the role of devices.

5.2.2 Multiple control groups

In the absence of random assignment, the mere fact that controls escaped treatment

is prima facie evidence that they are not comparable to treated subjects. How did

they escape treatment? Perhaps the controls were denied treatment, or declined

the offer of treatment, or lived too far away to receive treatment, or were studied

before treatment became available. Depending upon the context, these reasons for

escaping treatment may appear consequential or innocuous. How might one obtain

relevant evidence to supplement mere appearances?

If there are several ways to escape treatment, then several control groups are pos-

sible. Direct evidence about bias from unmeasured covariates is sometimes avail-

able, depending upon the context, by using more than one control group in an ob-

servational study. For instance, one control group might consist of people who

declined treatment and another control group of people who were denied treatment.

For example, in 2005, Majan Bilban and Cvetka Jakopin [14] asked whether lead

and zinc miners exposed to radon gas and heavy metals were suffering from ex-

1 Citing Bentham, the Oxford English Dictionary writes: “‘disambiguate’: verb, to remove ambi-
guity from.”
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Table 5.1 Comparison of micronuclei frequency among lead-zinc miners and two control groups.
The two-sample unpooled t-statistics are given together with the standard errors (SE) of the means.

Group Label n Mean SE t vs LP t vs SR

Local population LP 57 6.005 0.377 − −0.98
Slovene residents SR 61 6.400 0.143 0.98 −

Mine workers MW 67 14.456 0.479 13.87 16.13

cess levels of genetic damage. They compared 70 Slovene lead-zinc miners at one

mine with two control groups, one consisting of local residents close to the mine,

the other consisting of other Slovene residents who lived at a considerable distance

from the mine. The mine itself was a source of lead pollution in the local environ-

ment. Bilban and Jakopin looked at several standard measures in genetic toxicology,

including the frequency of micronuclei. In this assay [29], a blood sample is drawn

and blood lymphocytes are cultured. In a normal cell division, the genetic mate-

rial in one cell divides to become the genetic material in the two nuclei of two new

separate cells. If this process does not go well, each new cell may not have a sin-

gle nucleus, but may have bits of genetic material scattered in several micronuclei.

The frequency of micronuclei (MN) is the measure of genetic damage; specifically,

Bilban and Jakopin looked at 500 binuclear cells per person and recorded the total

number of micronuclei in the 500 cells.

Table 5.1 displays Bilban and Jakopin’s [14, Table IV] data for micronuclei

among miners and the two control groups. It is clear that the miners have higher fre-

quencies of micronuclei than both control groups, which do not differ greatly from

each other.2 Another example using two control groups is discussed in §11.3.

The advantages and limitations of multiple control groups may be developed in

formal statistical terms, but several issues are fairly clear without formalities. First,

if two control groups have differing outcomes after adjustment for observed covari-

ates, then that cannot be due to an effect caused by the treatment, and it must indicate

that at least one and perhaps both control groups are not suitable as control groups,

perhaps that they differ with respect to unmeasured covariates. If the two control

groups differ from each other with respect to relevant unmeasured covariates, then

at least one of the two control groups must differ from the treated group with respect

to these covariates.

Second, two control groups can be useful only if they differ in some useful way.

If having two control groups were of value merely because there are two instead

2 The analysis as I have done it in Table 5.1 is unproblematic because the situation is so dramatic,
with t’s either above 10 or below 1. In less dramatic situations, this analysis is not appropriate,
for several reasons. First, a more powerful test for effect would use both control groups at once.
Second, Table 5.1 performs several tests with no effort to control the rate of misstatements by
these tests. Third, Table 5.1 takes the absence of a difference between the two control groups as
supporting their comparability, but the failure to reject a null hypothesis is not evidence in favor
of that hypothesis. For instance, the two control groups might not differ significantly because
of limited power, or else they might differ significantly but the differences might be too small to
invalidate their usefulness in the main comparison with the treated group. These issues will be
discussed with greater care in §19.3.
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of one, then any one control group could be divided in half at random to produce

two groups, but of course that would provide no new information about unmeasured

covariates. The two control groups in Table 5.1 help to indicate that there is noth-

ing special about the region immediately around the mine; only miners, not local

residents, have elevated MN levels. Donald Campbell [19] argued that it is wise

to select two control groups so they differ with respect to a covariate that, though

unmeasured, is known to differ substantially in the two groups. Similar outcomes in

two such control groups provide evidence that imbalances in the unmeasured covari-

ate are not responsible for treatment-vs-control differences in outcomes; see [69, 71]

for discussion of this in terms of the power and unbiasedness of tests for bias from

unmeasured covariates. Following M. Bitterman, Campbell refers to this as ‘control

by systematic variation:’ the unmeasured covariate is systematically varied without

producing substantial variation in the outcome.

Third, similar outcomes in two control groups do not ensure that treatment-

versus-control comparisons are unbiased. The two control groups may both be bi-

ased in the same way. For instance, if a willingness to work in a lead-zinc mine is

associated with a general lack of concern about health hazards, one might discover

that miners are more prone to tolerate other health hazards, say cigarette smoke

and excessive alcohol, than are other Slovenes living near or far from the mine. A

comparison of two control groups may have considerable power to detect certain

specific biases — biases from covariates that have been systematically varied —

and virtually no power to detect other biases — biases that are present in a similar

way in both control groups [69, 71]. This is a very simple case of a general issue

discussed carefully by Dylan Small [96].

5.2.3 Coherence among several outcomes

Austin Bradford Hill [38] in the quotation in §5.2.1 argued that there were aspects

of the observed association that might aid in distinguishing an actual treatment ef-

fect from mere failure to adjust for some covariate that was not measured. Section

5.2.2 considered multiple control groups. In §3.4, it was seen that studies vary

in their sensitivity to bias from unmeasured covariates: small biases, measured by

Γ , could explain the observed association between treatment and outcome in some

studies, but only large biases do so in other studies. So the degree of sensitivity

to unmeasured biases is another aspect of the observed association that is relevant

to distinguishing treatment effects and biases. Are there additional aspects to con-

sider?

Table 5.2 displays data for the fifth grade for four of the 86 pairs of Israeli schools

in Figure 1.1 from Angrist and Lavy’s [3] study of academic test performance and

class size manipulated by Maimonides’ rule. Recall from §1.3 that schools were

paired for the percentage of disadvantaged students in the school, x, and the out-

comes were the average math and verbal test scores for the fifth grade. The mid-

dle portion of Table 5.2 shows Maimonides’ rule in imperfect operation. School
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Table 5.2 Four of the 86 pairs of two Israeli schools in Angrist and Lavy’s study of test perfor-
mance and class size manipulated using Maimonides’ rule. Pair j = 3 violated Maimonides’ rule,
dividing the cohort for school j = 2 which had a cohort size of 40.

Pair School Percentage Cohort Size Number of Class Average Average
i j Disadvantaged x Classes Size Math Score Verbal Score

1 1 9 46 2 23.0 72.1 81.1
1 2 8 40 1 40.0 63.1 79.4

2 1 1 45 2 22.5 78.5 85.5
2 2 1 32 1 32.0 68.1 75.7

3 1 0 47 2 23.5 78.1 80.0
3 2 0 40 2 20.0 64.4 80.4

4 1 1 45 2 22.5 76.4 82.9
4 2 1 33 1 33.0 67.0 84.0

(i, j) = (1,1) had 46 students in the fifth grade and was divided to form two classes

with an average size of 23, while school (i, j) = (1,2) had 40 students in the fifth

grade and was not divided, yielding one class with 40 students. Pair i = 3 violates

Maimonides’ rule because the cohort of size 40 in school (i, j) = (3,2) was divided.

Table 5.2 suggests several questions. The first question, discussed in the current

section, concerns ‘coherence.’3 As is often the case, the most compelling argument

in support of the importance of ‘coherence’ comes from considering ‘incoherence.’

Suppose that larger cohorts divided into smaller classes had decidedly superior re-

sults in mathematics when compared with smaller cohorts taught in larger classes,

but also decidedly inferior results in the verbal test. That result would be incoherent.

Faced with an incoherent result of this sort, the investigator would be hard-pressed

to argue that smaller classes produce superior academic achievement. In fact, Fig-

ure 1.1 suggests gains in both math and verbal test scores, a coherent result. If

incoherence presents a substantial obstacle to a claim that the treatment caused its

ostensible effects, then the absence of incoherence — that is, coherence — should

entail some strengthening of that claim. Can this intuition be formalized?

Recall from §2.4.1 the hypothesis of an additive treatment effect. If indeed the

treatment had additive effects, τmath on the math test, τverb on the verbal test, then a

claim that smaller class sizes improve test performance is the claim that τmath ≥ 0

and τverb ≥ 0 with at least one strict inequality. To say that smaller classes cause

a decisive improvement in both mathematics and verbal test performance is to say

that both τmath and τverb are substantially positive. A gain in math and a loss in

verbal test performance, τmath > 0 and τverb < 0, is not logically impossible, but it

would not be compatible with the anticipated benefit from smaller class sizes. The

policy question is whether smaller classes confer benefits commensurate with their

unambiguously higher costs, and for that the relevant question is whether both τmath
and τverb are substantially positive. Viewed geometrically, a gain in mathematics

3 Hill [38] used the attractive term ‘coherence’ but did not give it a precise meaning. Campbell
[20] used the term ‘multiple operationalism’ in a more technical sense, one that is quite consistent
with the discussion in the current section. Trochim [106] uses the term ‘pattern matching’ in a
similar way. Reynolds and West [66] present a compelling application.
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is half of the line, τmath > 0, but a gain in both mathematics and verbal scores is a

quarter of the plane, (τmath,τverb) > (0,0), so the latter is a more focused hypothesis.

In the previous paragraph I have made an argument that a relevant treatment

effect has a certain specific form. You may or may not have found that argument

compelling. No matter. For present purposes, the issue is not whether the argument

in the previous paragraph is compelling to you in this particular case, but rather

that any claim of coherence or incoherence depends, explicitly or implicitly, on

an argument of this sort. A claim is made that an actual treatment effect, or a

policy-relevant treatment effect, or a useful treatment effect must have a certain

form. Coherence then means a pattern of observed associations compatible with

this anticipated form, and incoherence means a pattern of observed associations

incompatible with this form. Claims of coherence or incoherence are arguable to

the extent that the anticipated form of treatment effect is arguable.

A simple way to look for an increase in both math and verbal scores is to add

together the two signed rank statistics for the math and verbal scores;4 this is one

instance of the ‘coherent signed rank statistic’ [76] and [81, §9]. Although discussed

in technical terms in §17.2, the intuition behind the coherent signed rank statistic is

clear without technical details. If larger cohorts divided in half tend to have better

math and verbal scores than smaller cohorts, both signed rank statistics will tend to

be large, and the coherent statistic will be extremely large. If gains in math scores

are offset by losses in verbal scores, the sum of the two signed rank statistics will

not be especially large.

We may conduct a sensitivity analysis for the coherent signed rank statistic. See

[76] and [81, §9]. The intuition here is that a coherent result will be judged less

sensitive to unobserved bias if the coherent signed rank statistic is used, whereas

an incoherent result will be more sensitive to unobserved bias. Section 17.2 will

develop some of the formalities that justify this intuition. The computations are

very similar in form to those in §3.5 and equally simple to perform; see [76] and

[81, §9].

Table 5.3 shows the sensitivity analysis for the signed rank statistic applied to

the math score alone, to the verbal score alone, and to the coherent signed rank

statistic that combines them. Table 5.3 presents the upper bound on the one-sided

P-value for testing the null hypothesis of no treatment effect against an increase in

test performance. The lower bound on the P-value is highly significant in all cases

and is not presented. The math score becomes sensitive to unobserved bias at about

Γ = 1.45, the verbal score at a little more than Γ = 1.55 and the coherent statistic

at about Γ = 1.70. In brief, a noticeably larger bias, Γ , would need to be present to

explain away the coherent pattern of associations than would be needed to explain

4 In an obvious way, in adding the two signed rank statistics, one is committing oneself to a par-
ticular direction of effect for the two outcomes. If one anticipated gains in math scores together
with declines in verbal scores, one might replace the verbal score by their negation before sum-
ming the signed rank statistics. Because the two outcomes are ranked separately, approximately
equal weight is being given to each of the outcomes. The coherent signed rank statistic may be
used with more than two oriented outcomes. It may also be adjusted to include varied doses of
treatment [76].
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Table 5.3 Sensitivity analysis and coherence in Angrist and Lavy’s study of academic test perfor-
mance and class size manipulated by Maimonides’ rule. The table gives the upper bound on the
one-sided P-value for the math test score, the verbal test score and their coherent combination.
In this instance, a larger bias, say Γ = 1.7, is needed to explain away the coherent association,
whereas the association with the math test score could be explained by Γ = 1.45.

Γ Math Verbal Coherent

1.00 0.0012 0.00037 0.00018
1.40 0.043 0.020 0.011
1.45 0.057 0.027 0.015
1.55 0.092 0.047 0.026
1.65 0.138 0.075 0.043
1.70 0.164 0.092 0.054

away the ostensible effect on either math or verbal scores taken in isolation. See

§19.4 for further discussion of this analysis.

The results in Table 5.3 for Israeli schools are more sensitive to unobserved biases

than the results in Table 3.2 for welders. That is an unambiguous fact clearly visible

in the two sets of data. However, the contexts are different, and the contexts are

relevant to thinking about what biases are plausible. Angrist and Lavy [3] worked

hard to prevent unmeasured biases: the treated and control schools in Figure 1.1 and

Table 5.2 were selected to be similar in terms of percentage disadvantaged, x, and to

differ slightly in fifth grade cohort size on opposite sides of Maimonides’ cutpoint

of 40 students. Could this comparison omit a covariate u strongly predictive of

both math and verbal test performance and about 1.7 times more common among

schools with a slightly larger fifth grade cohort? Certainly, that remains a logical

possibility, but Angrist and Lavy’s results in Figure 1.1 are not extremely fragile

given the magnitude of bias that seems plausible here.

5.2.4 Known effects

Unaffected outcomes or control outcomes

In §5.2.3, coherence referred to the possibility that the treatment was thought to

affect several outcomes in known directions. It may happen, however, that we think

a treatment will affect one outcome and not affect another, and we wish to exploit

the anticipated absence of effect to provide information about unmeasured biases

[57, 66, 67, 70, 71, 110, 25]. A control group is a group of subjects known to be

unaffected by the treatment; by analogy, an outcome known to be unaffected by

the treatment is sometimes called a ‘control outcome’ or a ‘control construct.’ A

control outcome is sometimes linked to Hill’s [38] notion of the ‘specificity’ of a
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treatment effect [70, 110].5 In particular, McKillip [57] argues that under some

circumstances, a control outcome might suffice in the absence of a control group.

An argument involving a control outcome appeared in §4.3 in the study by Win-

temute and colleagues [112] of the effects in California of the introduction of a law

in 1991 denying handguns to individuals convicted of violent misdemeanors. Recall

that they compared individuals who had convictions for violent misdemeanors and

who applied to purchase a handgun in either 1989-1990, before the law, or 1991,

after the law had taken effect. Also, recall that they found lower rates of gun and

violent crime when the law was in effect. Is this an effect caused by the law? Over

time, there could be shifts in crime rates with, say, shifts in demographics or eco-

nomic conditions. It is not clear how or why restrictions on handgun purchases

would affect nonviolent crimes. Wintemute et al. [112] also looked at rates of non-

violent and nongun crime, finding little change in these rates following the change

in law. In their study, where an effect is plausible, treatment and outcome are asso-

ciated; where an effect is not particularly plausible, treatment and outcome are not

associated.

In a similar manner, Sadik Khuder and colleagues [49] study the impact of a

smoking ban in workplaces and in public areas on the rate of hospital admission

for coronary heart disease. As a control outcome, they used admissions for non-

smoking related diseases.

Although the role of known effects may be developed in formal terms, the main

issues are fairly clear without technical detail. To be useful, an unaffected outcome

must have certain properties. If an unaffected outcome were useful merely because

it is unaffected, then such an outcome could always be created artificially using

random numbers; however, that could not provide insight into unmeasured biases.

To be useful, an unaffected outcome must be associated with some unmeasured

covariate. Plausibly, trends in nonviolent crime or nongun crime are associated

with general trends in lawless behavior, and therefore are useful in distinguishing

an effect of the law from a general increase or decrease in crime. It is not difficult

to show that an unaffected outcome can provide a consistent and unbiased test6 of

5 Specificity of a treatment effect in Hill’s sense [38] is sometimes understood as referring to
the number of outcomes associated with the treatment, but more recent work has emphasized the
absence of associations with outcomes the treatment is not expected to affect [70, 110].
6 Consistency and unbiasedness are two concepts of minimal competence for a test of a null hy-
pothesis H0 against an alternative hypothesis HA. Consistency says the test would work if the
sample size were large enough. Unbiasedness says the test is oriented in the correct direction in
samples of all sizes. One would be hard pressed to say the test is actually a test of H0 against HA
if consistency and unbiasedness failed in a material way. To be a 5% level test of H0, the chance
of a P-value less than 0.05 must be at most 5% when H0 is true. The power of a test of a null hy-
pothesis, H0, against an alternative hypothesis, HA, is the probability that H0 will be rejected when
HA is true. If the test is performed at the 5% level, then the power of the test is the probability of
a P-value less than or equal to 0.05 when H0 is false and HA is true instead. We would like the
power to be high. The test is consistent against HA if the power increases to 1 as the sample size
increases — that is, rejection of H0 in favor of HA is nearly certain if HA is true and the sample size
is large enough. The test is an unbiased test of H0 against HA if the power is at least equal to the
level whenever HA is true. If the test is performed at the 5% level, then it is unbiased against HA if
the power is at least 5% when HA is true.
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imbalance in an unmeasured covariate with which it is associated; see [70, 71] and

[81, §6]. A substantial imbalance in an unmeasured covariate may yield only a

faint echo in an unaffected outcome if the association between them is weak.7 An

unaffected outcome may guide the scope of a sensitivity analysis [74].

Bias of known direction

Claims to know the direction of the bias induced by an unmeasured covariate are

common in discussions of the findings of observational studies. To the extent that

such claims are warranted, they may disambiguate certain associations between

treatment and outcome.

Did adherence to the gold standard lengthen the Great Depression? Building

upon work by Milton Friedman and Anna Schwartz [30] about the United States,

studies by E.U. Choudhri and L.A. Kochin [22] and B. Eichengreen and J. Sachs

[26] compared nations that were not on the gold standard, that left the gold standard

at various times, or that remained on the gold standard. Discussing these studies,

Benjamin Bernanke [13] wrote:

[B]y 1935 countries that had left gold relatively early had largely recovered from the De-
pression, while Gold Block countries remained at low levels of output and employment. . . .
If choices of exchange-rate regime were random, these results would leave little doubt . . .
Of course, in practice the decision about whether to leave the gold standard was endoge-
nous to a degree . . . In fact, these results are very unlikely to be spurious . . . [A]ny bias
created by endogeneity of the decision to leave gold would appear to go the wrong way,
as it were, to explain the facts: The presumption is that economically weaker countries, or
those suffering the deepest depressions, would be the first to devalue or abandon gold. Yet
the evidence is that countries leaving gold recovered substantially more rapidly and vigor-
ously than those who did not. Hence, any correction for endogeneity . . . should tend to
strengthen the association of economic expansion and the abandonment of gold.

Bernanke’s claim is typical of claims to know the direction of a particular bias. The

claim is not put forward in the language of absolute certainty. Rather the claim is put

forward as a clarification of the logical and yet somewhat implausible consequences

of the claim that the association between treatment and outcome was produced by

a bias of a particular kind. To assert the claimed bias is to assert also its necessary

but implausible implications.

A fairly risky but sometimes compelling study design exploits a claim to know

that the most plausible bias runs counter to the claimed effects of the treatment.

In this design, two groups are compared that are known to be incomparable, but

incomparable in a direction that would tend to mask an actual effect rather than

create a spurious one. The logic behind this design is valid: if the bias runs counter

to the anticipated effect, and the bias is ignored, inferences about the effect will be

conservative, so the bias will not lead to spurious rejection of no effect in favor of

the anticipated effect; see [70, 71] and [81, §6]. Nonetheless, the design is risky

7 More precisely, the Kullback-Leibler information in the unaffected outcome is never greater, and
is typically much smaller, than the information in the unmeasured covariate itself [70].
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because a bias in one direction combined with an effect in the other may cancel, so

an actual effect is missed. Moreover, the claim to know the direction of the bias

may be disputed.

Does disability insurance discourage work? In one study exploiting unmeasured

biases of known direction, John Bound [16] compared successful and unsuccess-

ful applicants for U.S. Social Security disability insurance. His premise was that

successful applicants were often more severely disabled than unsuccessful appli-

cants, that is, that the U.S. Social Security Administration was employing some

reasonable criteria in sorting the applications into two piles. In this case, the incen-

tive to not work was given to individuals who were, presumably, less able to work.

Presumably, the difference in work behavior between successful and unsuccessful

applicants overstates the effect of the incentive, because it combines the impact of

the incentive and greater disability. In fact, Bound [16] found that relatively few

of the unsuccessful applicants returned to work, and on that basis claimed that the

incentive effects were not extremely large.

Do laws that prevent handgun purchases by convicted felons prevent violent

crimes? What would be a suitable control group for comparison with convicted

felons? Mona Wright, Garen Wintemute, and Frederick Rivara [113] conducted a

study exploiting a bias of known direction. They compared convicted felons whose

attempt to purchase a handgun was denied with persons arrested for felonies but not

convicted whose purchase was permitted. Presumably, some of those arrested but

not convicted were innocent, so presumably the group of purchasers in their study

contains fewer individuals who have previously committed felony offenses. Though

the most plausible bias works in the opposite direction, Wright et al. found that, ad-

justing for age, purchasers were 13% more likely than denied felons to be arrested

for gun crimes in the following three years [113, relative risk 1.13 in Table 1].

5.2.5 Doses of treatment

Does a dose-response relationship strengthen causal inference?

Much has been written about doses of treatment and their relationship to claims of

cause and effect. Many such claims contradict other related claims, or appear to.

Section 17.3 will attempt to sort out some of these claims in formal terms. Here,

some of the claims are mentioned and an example (guided by §17.3) is presented.

(A different aspect of doses is discussed in §11.3.)

The most familiar claim is due to Austin Bradford Hill in the paper quoted pre-

viously. Hill [38, page 298] wrote:

[I]f the association is one which can reveal a biological gradient, or dose-response curve,
then we should look most carefully for such evidence. For instance, the fact that the death
rate from cancer of the lung rises linearly with the number of cigarettes smoked daily, adds
a very great deal to the simpler evidence that cigarette smokers have a higher death rate than
non-smokers.
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Hill’s claim is often disputed. Kenneth Rothman [90, page 18] wrote:

Some causal associations, however, show no apparent trend of effect with dose; an example
is the association between DES and adenocarcinoma of the vagina . . . Associations that do
show a dose-response trend are not necessarily causal; confounding can result in such a
trend between a noncausal risk factor and disease if the confounding factor itself demon-
strates a biologic gradient in its relation with disease.

In a subtle reinterpretation of Hill’s notion of dose and response, Noel Weiss [109,

page 488] says much the same:

[O]ne or more confounding factors can be related closely enough to both exposure and
disease to give rise to [a dose response relationship] in the absence of cause and effect.

These remarks speak of a dose-response relationship as something that is present

or absent, with contributions to the strength of evidence that are correspondingly

present or absent. Is this the best way to speak about either a dose-response re-

lationship or the strength of evidence? We might ask: would an analysis that took

account of doses of treatment exhibit less sensitivity to unmeasured biases? The an-

swer is accessible by analytical means in any one study [83], and the answer varies

from one study to the next. Hill makes a positive reference to smoking and can-

cer of the lung, and Rothman makes a negative reference to DES and cancer of the

vagina, but the existence of both positive and negative examples is consistent with

the notion that doses sometimes reduce sensitivity to unobserved biases.

Cochran [24] argued that observational studies should be patterned after simple

experiments, and the good, standard advice about clinical trials is to compare two

treatments that are as different as possible; see Peto, Pike, Armitage, Breslow, Cox,

Howard, Mantel, McPherson, Peto, and Smith [64, page 590]. Of course, this entails

widely separated doses with no attempt to discover a graduated continuum of dose

and response. Is a graduated continuum the relevant issue? Or is it simply important

to anticipate negligible effects among treated subjects receiving negligible doses?

The issue turns out to be quite unambiguous; see §17.3 and [84].

Doses may be suspect in one sense or another. In Angrist and Lavy’s [3] study

of class size and educational test performance, cohort size was thought to be hap-

hazard, but class size — the dose of treatment — was thought to be haphazard only

to the extent that it was determined by cohort size using Maimonides’ rule. The

distinction between treated and control may be free of error, while the dose magni-

tudes may be subject to errors of measurement [86, 98]. In both instances, suspect

doses require instruments if bias is to be avoided; see §5.3.

It is time to consider an example.

Genetic damage from paint and paint thinners

Professional painters are exposed to a variety of potential hazards in paint and paint

thinners, including organic solvents and lead. Do such exposures cause genetic

damage? Pinto, Ceballos, Garcı́a and colleagues [65] compared male professional

painters in Yucatan, Mexico, with male clerks, matched for age, with respect to the
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Fig. 5.1 Micronuclei in 22 male painters and 22 male controls matched for age plotted against
log2(years) where years is the number of years of employment as a painter for the painter in each
matched pair. The two curves are lowess smooths. The vertical line is at the median of 4 years or
log2(years) = 2.

frequency of micronuclei in 3000 oral epithelial cells scraped from the cheek. See

§5.2.2 for a discussion of the micronucleus assay. The painters were public build-

ing painters who worked without masks or gloves, and the dose di of their expo-

sure8 is the number of years of employment as a painter, recorded on a logarithmic

scale, specifically log2 (years), so log2

(
2k

)
= k, and in particular, log2 (4) = 2 and

log2 (32) = 5. Pinto et al. [65]’s data appear in Table 5.4 and Figure 5.1. Obviously,

age and years as a painter are highly correlated, but the controls are closely matched

8 When F was introduced in Chapter 2, treatment was applied at a single dose, and so doses were
not mentioned. In general, if there are fixed doses, one dose di for each pair i, then the doses are
also part of F . Because previous discussions involving F had a single dose, we may adopt the
new definition that includes doses in F without altering the content of those previous discussions.
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Table 5.4 Micronnuclei per 1000 cells in 22 male painters and 22 male clerks matched for age.
For painters, the number of years worked as a painter is recorded, along with its logarithm to the
base of 2. Pairs are sorted by increasing years. A line separates painters with less than four years
of work as a painter.

Pair Painter Control Years Painter Control
Age Age Painting log2(years) Micronuclei Micronuclei

1 18 18 1.6 0.68 0.32 0.00
2 20 20 1.6 0.68 0.00 0.00
3 40 39 1.6 0.68 0.00 0.00
4 29 29 1.8 0.85 0.32 0.32
5 20 18 2.0 1.00 0.00 0.65
6 26 27 2.0 1.00 0.00 0.00
7 23 23 3.0 1.58 0.95 0.00
8 30 30 3.0 1.58 0.00 0.62
9 31 31 3.5 1.81 0.33 1.96

10 52 51 3.6 1.85 1.99 0.00

11 22 22 4.0 2.00 0.99 0.33
12 47 47 4.0 2.00 1.54 0.00
13 40 39 4.6 2.20 0.33 0.00
14 22 22 4.7 2.23 0.66 0.00
15 23 23 5.0 2.32 0.00 0.00
16 42 42 5.0 2.32 1.63 0.66
17 35 36 8.0 3.00 0.65 0.00
18 48 49 8.0 3.00 1.64 0.64
19 60 58 8.6 3.10 4.84 0.00
20 62 64 11.0 3.46 5.35 1.30
21 41 40 25.0 4.64 1.99 1.33
22 60 63 40.0 5.32 2.89 0.32

for age. In Figure 5.1, painters have higher frequencies of micronuclei, and the

difference between painters and matched controls increases with log2 (years).
Recall from §2.3.3 that Wilcoxon’s signed rank statistic is T = ∑I

i=1 sgn(Yi) · qi
where sgn(a) = 1 if a > 0, sgn(a) = 0 if a ≤ 0, and qi is the rank of |Yi|. The dose-

weighted signed rank statistic [76, 83, 108] with doses di, i = 1, . . . , I, is similar

except it weights the pairs i by the doses di, Tdose = ∑I
i=1 sgn(Yi) · qi · di. An alter-

native statistic is the signed rank statistic applied to the subset of pairs with large

doses, say di ≥ d̃, that is,

Thigh = ∑
{i:di≥d̃}

sgn(Yi) ·qi. (5.1)

In the example, d̃ is set at the median dose, here, four years or d̃ = log2 (4) = 2; see

the vertical line in Figure 5.1. The sensitivity analysis for these statistics is easy to

perform and closely parallels the sensitivity analysis for the signed rank statistic in

§3.5; see [76, 83].

Table 5.5 asks whether the dose-response pattern in Figure 5.1 reduced sensitiv-

ity to bias from failure to adjust for an unmeasured covariate ui j. In this instance,

weighting by doses, Tdose, is marginally less sensitive to unmeasured bias than ig-



128 5 Opportunities, Devices, and Instruments

Table 5.5 Did a dose-response relationship reduce sensitivity to unmeasured covariates? Tests
of the null hypothesis of no treatment effect on micronuclei frequency in 22 male painters and
22 male clerks matched for age. Comparison of the upper bounds on the one-sided P-value us-
ing Wilcoxon’s signed rank statistic, the dose-weighted signed rank statistic, and the signed rank
statistic applied to high dose pairs. The dose, di, is log2(years). The signed rank statistic applied to
the high-dose pairs used 12 of the 22 pairs in which the painter had worked for at least four years
as a painter, di = log2(years) ≥ 2, discarding ten pairs.

Ignoring Weighting Using only the 12
Γ doses, T by doses, Tdose high-dose pairs, Thigh

1 0.0032 0.0025 0.0012
2 0.064 0.038 0.016
2.5 0.12 0.067 0.028
3.3 0.22 0.12 0.048

noring doses, T , but using only the 12 pairs with high doses, Thigh, is substantially

less sensitive to unmeasured bias. Specifically, a bias of Γ = 2 could just explain the

association between professional painting and micronuclei frequency if that associ-

ation is measured ignoring doses using Wilcoxon’s signed rank statistic, T , because

the upper bound on the one-sided P-value is 0.064. A bias of Γ = 2.5 could just

explain the association between treatment and response if the dose-weighted signed

rank statistic, Tdose, is used. In contrast, even a bias of Γ = 3.3 could not explain

the high levels of micronuclei in the 12 pairs with at least four years of work as a

painter, because the upper bound on the one-sided significance level is 0.048.

A dose-response relationship reduces sensitivity to bias from unmeasured covari-

ates in some studies but not in others [83]. A mere upward trend in a plot or table

does not decide the issue, whereas Table 5.5 is decisive. The relative performance

of T , Tdose, and Thigh are examined further in §17.3 and [88]; see also [84].

5.2.6 Differential effects and generic biases

What are differential effects?

If there are two treatments, say A and B, each of which may be applied or withheld,

then there is a 2×2 factorial arrangement of treatments in four cells. Extending the

notation of Chapter 3, person � falls in one of four cells: (i) neither A nor B (ZA� = 0,

ZB� = 0), (ii) A but not B, (ZA� = 1, ZB� = 0), (iii) B but not A, (ZA� = 0, ZB� = 1),

and (iv) both A and B, (ZA� = 1, ZB� = 1). If subjects � were randomized to the cells

of this 2× 2 design, with ZA� and ZB� independently determined by the flips of a

fair coin, then there are several comparisons or contrasts that may be examined, and

because randomization would prevent bias in all such comparisons, the choice of

comparison would reflect only our interests or considerations of parsimony. When

randomization is not used, the situation is different. Depending upon the context,
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it may happen that certain comparisons are less susceptible than others to certain

types of biases.

The differential effect [87] of the two treatments is the effect of giving one treat-

ment in lieu of the other. It is a comparison of two of the cells of the 2×2 factorial

design, but not one of the most familiar comparisons. Specifically, the differential

effect compares cells (ii) and (iii) above, that is, A but not B, (ZA� = 1, ZB� = 0) ver-

sus B but not A, (ZA� = 0, ZB� = 1). In a randomized experiment, there is no more

interest in this comparison than in other comparisons. In an observational study, it

may happen that an unmeasured bias that promotes A also promotes B, and in this

case the differential effect may be less biased, or even unbiased, when other factorial

contrasts are severely biased.

Whether the differential effect is of interest will depend upon the context. Obvi-

ously, the differential effect of A versus B is not the effect of A versus not-A; it may

happen that A and B have substantial but similar effects, so their differential effect is

small; in this case, the differential effect of A versus B reveals little about the effect

of A. In other cases, the differential effect of A versus B may reveal quite a bit about

the effect A versus not-A.

Examples of differential effects in observational studies

The study by Leonard Evans [14] in §1.4 is a skillful and fairly compelling use of

differential effects to disambiguate treatment effects and unmeasured biases. Table

1.1 describes fatal accidents in which precisely one person in the front seat wore

seat belts and precisely one of these two people died. There are, of course, many

fatal accidents in which both people in the front seat wore seat belts and many oth-

ers in which neither person wore seat belts. In other words, Table 1.1 describes

the differential comparison, belted-driver-with-unbelted-passenger versus unbelted-

driver-with-belted-passenger, which comprises two cells of a 2× 2 factorial. As

discussed in §1.4, the worry is that wearing seat belts is a precaution that may be

accompanied by other precautions, driving at slower speeds or driving at a greater

distance from the car ahead. A comparison that used the other cells of the 2× 2

factorial — twice belted or twice unbelted — might be extremely biased, with use

of seat belts taking the credit for cautious driving that occurred in unmeasured ways.

In contrast, Table 1.1 compares two people in the same car, in the same accident,

one belted, the other not, with the unbelted person at greater risk regardless of po-

sition. In a strict sense, Table 1.1 refers to the differential effect of belting with

an unbelted companion, and that effect might be different from, say, belting with a

belted companion: an unbelted companion may be hurled about the car and become

a hazard to others. And yet, in this context, the beneficial differential effect of belt-

ing is strongly suggestive of a beneficial main effect of belting, and the differential

effect is plausibly less affected by unmeasured biases.

Does regular use of nonsteroidal anti-inflammatory drugs (NSAIDs), such as the

pain reliever ibuprofen, reduce the risk of Alzheimer disease? Several studies had

found a negative association, but in a review of the subject, in ’t Veld et al. [47] raised
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Table 5.6 Attributes of the mothers who used marijuana, crack, neither or both in the U.S. National
Institute on Drug Abuse’s study of live births in the District of Columbia. Mothers who used either
marijuana or crack but not both are more similar to each other than either group is to mothers who
used neither drug.

Neither Marijuana Crack Both
Number of Babies 931 11 39 5

Cigarette use during pregnancy (%) 22 100 92 100
Alcohol use during pregnancy (%) 23 64 74 100

Late or no prenatal care (%) 10 27 48 40
Less than high school education (%) 23 54 49 60

Married (%) 34 0 3 0
Did not want to get pregnant (%) 32 46 59 80

the possibility that people who are in the early stages of cognitive impairment might

be less aware of pain or less active in seeking treatment for pain, thereby depressing

their use of pain relievers. That is, perhaps the early stages of Alzheimer disease

cause a reduction in the use of NSAIDs, rather than NSAIDs reducing the risk of

Alzheimer disease. James Anthony and colleagues [6] addressed this possibility in

the following way. Acetaminophen is a pain reliever that is not an NSAID. An-

thony et al. [6, Table 2] found that the risk of Alzheimer disease among users of just

NSAID pain relievers was about half that of users of just analgesic compounds that

were not NSAIDs. A generic tendency to be less aware of pain could explain a neg-

ative association between Alzheimer disease and NSAIDs, but it does not explain

the differential association that a preference for NSAIDs over other pain relievers is

negatively associated with Alzheimer disease. Plausibly, Alzheimer disease causes

people to be passive in the face of pain, but it is far less plausible that Alzheimer

disease causes people to reach for acetaminophen rather than ibuprofen. The differ-

ential effect of acetaminophen versus ibuprofen is not plausibly affected by certain

biases that plausibly affect the main effect of ibuprofen.

In practical cases it is not possible to demonstrate that differential effects are less

affected than main effects by certain unobserved biases, precisely because the biases

are not observed. It is possible, in an impractical way, to illustrate this phenomenon

by pretending for a moment that certain observed covariates are not observed. Table

5.6 compares four groups of mothers in the National Institute on Drug Abuse [61]

study of babies born alive in eight hospitals in Washington, D.C. None of these

mothers reported using heroin during pregnancy, and the mothers are classified by

whether they used marijuana, crack, neither or both during pregnancy. In terms of

several variables, such as cigarette and alcohol use and prenatal care, mothers who

used either drug are more similar to each other than they are to mothers who used

neither drug. The differential effect of marijuana versus cocaine on the health of

newborn babies may or may not be of interest; that depends upon the context. What

Table 5.6 suggests is that this differential effect is likely to be less biased than either

main effect formed by comparing with mothers who abstained from narcotics; see

[87] for further discussion.
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What are generic biases?

A ‘generic unobserved bias’ is one that promotes the use of both treatments [87].

The following definition from [87] makes this precise.

Definition 5.1. There is only generic unobserved bias in the assignment of two treat-

ments, A and B, if

Pr(ZA� = 1, ZB� = 0 | rT �, rC�, x�, u�)
Pr(ZA� = 0, ZB� = 1 | rT �, rC�, x�, u�)

= ϑ (x�) , � = 1, . . . ,L, (5.2)

for some (typically unknown) function ϑ (x�).

Condition (5.2) says that the odds of receiving treatment A in lieu of treatment

B may depend on observed covariates, x�, but not on (rT �, rC�, u�). Condition

(5.2) is considerably weaker than the naı̈ve model’s condition (3.5). That is, (5.2)

may be true when quantities such as Pr(ZA� = 1 | rT �, rC�, x�, u�) do depend upon

(rT �, rC�, u�). For instance, in [6], (5.2) says that the odds of taking acetaminophen

rather than ibuprofen does not depend upon the unobservable (rT �, rC�, u�), but the

chance of taking ibuprofen at all may depend upon (rT �, rC�, u�). In brief, (5.2) may

be true when the naı̈ve model is false.

It is possible to show [87] that a generic bias of the form (5.2) does not bias

the differential effect of treatment A versus treatment B, although it may bias the

main effects of A and of B. Specifically, suppose (5.2) is true with 0 < ϑ (x�) < ∞,

and I matched pairs are formed, matching exactly for x�, in such a way that each

pair contains one subject who received treatment A but not B and one subject who

received treatment B but not A. Then the distribution of assignments to A in lieu of

B within these matched pairs is the randomization distribution in Chapter 2; see [87]

for proof. If (5.2) is false, then it is possible to conduct a sensitivity analysis that

is concerned only with the degree of violation of (5.2) and not with other violations

of the naı̈ve model, and this sensitivity analysis closely resembles the sensitivity

analysis in Chapter 3; see [87].

5.3 Instruments

What is an instrument?

An instrument is a random nudge to accept a treatment, where the nudge may or

may not induce acceptance of the treatment, and the nudge can affect the outcome

only if it does succeed in inducing acceptance of the treatment. Paul Holland [40]

offered the ‘encouragement design’ as a prototype of an instrument; see also the im-

portant paper by Joshua Angrist, Guido Imbens, and Donald Rubin [2]. In a paired,

randomized encouragement design, individuals are paired based on measured pre-

treatment covariates, and for each pair, a coin is flipped to decide which member of
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the pair will be encouraged to accept the treatment. In an encouragement design,

the experimenter hopes that encouraged individuals will accept the treatment and

individuals who are not encouraged will decline the treatment; however, some in-

dividuals may in fact decline the treatment despite encouragement, and others may

take the treatment in the absence of encouragement. A typical context would be

encouragement to diet or exercise, or other similar settings in which a voluntary

change in behavior is essential to the treatment.

There is, however, more to an instrument than randomly assigned encourage-

ment. The encouragement itself must have no effect on the outcome besides its

effect on acceptance of the treatment. This is often called the ‘exclusion restric-

tion.’ Consider encouragement to exercise with weight loss as an outcome. To be

an instrument, randomized encouragement to exercise must affect weight loss only

by inducing exercise. Suppose you are indeed randomly selected and strongly en-

couraged to exercise. At the end of each week, you are told yet again that you are a

failure and embarrassment for not exercising during the week, but despite this, you

will not exercise; instead, with all that good ‘encouragement,’ you fall into a deep

depression, stop eating, and your weight drops. In this case, encouragement to ex-

ercise is not an instrument for exercise: it changed your weight, but not by inducing

you to exercise.

Violations of the exclusion restriction are no small matter. If violation of the

exclusion restriction is ignored in the exercise example, your weight loss will be

attributed to exercise, though it was produced by depression instead.

Instruments are rare, but valuable when they exist.

Example: Noncompliance in a double-blind randomized trial

Randomized encouragement to accept either an active drug or a double-blind

placebo is the experimental design that most closely approximates an instrument.

In this case, encouragement is actually randomized. Also, because of the double-

blind placebo, neither the subject nor the investigator knows what the subject is

being encouraged to do. In this case, there are few opportunities for encouragement

to affect a clinical outcome without shifting the amount of active drug consumed;

that is, the exclusion restriction is likely to be satisfied. Even this situation is im-

perfect to the extent that side effects of the active drug alert the investigator or the

subject to the identity of the treatment.

An example is from Jeffrey Silber and colleagues’ [95] randomized, double-blind

clinical trial of the drug enalapril to protect the hearts of children who had received

an anthracycline as part of cancer chemotherapy. Briefly, this is the ‘AAA trial’ for

the ‘ACE-inhibitor after anthracycline randomized trial.’ Anthracyclines are fairly

effective at curing certain childhood cancers, but they may damage a child’s heart.

The study focused on children, teens mostly, whose cancer appeared to have been

cured, but who showed signs of cardiac decline. The AAA trial randomized 135

children to enalapril or a double-blind placebo and measured cardiac function over

several years. Although the children were encouraged to take a specific dose of
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drug or placebo, some children took less than that dose. It is likely that neither the

child, nor the child’s parents, nor the attending physician knew whether the child

was taking less than a full dose of enalapril or less than a full dose of placebo

[95], so it is likely that any effect of encouragement on cardiac function is a conse-

quence of biological effects of the quantity of enalapril consumed. In this context,

randomized encouragement is an instrument for the amount of enalapril actually

consumed. Because it is an instrument, it provides a principled solution to the prob-

lem of noncompliance, that is, a principled answer to the question: How effective is

the prescribed dose of drug on subjects willing to take that dose, despite the refusal

of some subjects to take the prescribed dose? An instrumental variable analysis

of noncompliance in the AAA trial is discussed by Robert Greevy, Jeffrey Silber,

Avital Cnaan, and me [33].

Example: Maimonides’ rule

Recall from §1.3 and §5.2.3 the study by Angrist and Lavy [3] of academic test

performance and class size manipulated by Maimonides’ rule. In that study, small

variations in the size of the fifth grade cohort often produced large variations in class

size for cohorts whose size was close to the cutpoint of 40 students; see Figure 1.1.

In Figure 1.1, some schools had class sizes in defiance of Maimonides’ rule; there

is some noncompliance. Focus on schools with cohort sizes near 40, that is, the

schools in Figure 1.1. In this case, small variations in cohort size are presumably

haphazard, while class size, not cohort size, is presumably what affects academic

performance. If these two presumptions were actually correct for the schools in

Figure 1.1, then whether or not the cohort size exceeds 40 is an instrument for class

size. In Table 5.2, in pair #3, there is noncompliance: in violation of Maimonides’

rule, both schools in this pair had two small classes.

Notation for an instrument in a paired encouragement design

In a paired, randomized encouragement design, one person in pair i is picked at ran-

dom and encouraged, denoted Zi j = 1; the other person in the pair is not encouraged,

denoted Zi j = 0, so Zi1 + Zi2 = 1. The jth subject in pair i has two potential doses

of treatment, dose dTi j if encouraged to accept the treatment, Zi j = 1, or dose dCi j if

not encouraged to accept the treatment, Zi j = 0. We observed either dTi j if Zi j = 1

or dCi j if Zi j = 0, but the pair
(
dTi j,dCi j

)
is not jointly observed for any subject i j.

The dose of treatment actually received is dTi j if Zi j = 1 or dCi j if Zi j = 0, so it is

Di j = Zi j dTi j +(1−Zi j) dCi j in either case. The doses may be continuous, ordinal,

or binary.9 In Angrist and Lavy’s [3] study, Di j is the observed average class size,

so D11 = 23 and D12 = 40 for the first pair in Table 5.2.

9 As in Note 8, when F was defined in Chapter 2, the potential doses
(
dTi j,dCi j

)
were always

equal to (1,0) and so were not mentioned. In general, if there are potential doses,
(
dTi j,dCi j

)
,

then they are part of F . Because previous discussions involving F had a single dose, we may
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In Silber’s AAA trial [33, 95], while on-study, a child assigned to placebo,

Zi j = 0, took no enalapril, dCi j = 0, and a compliant child assigned to enalapril,

Zi j = 1, took the full assigned dose of enalapril, dTi j = 1; however, many chil-

dren were somewhat noncompliant and took somewhat less than the full dose, so

dTi j < 1 for many children i j. The decision by the experimenter to assign a child

to enalapril or placebo, Zi j, is randomized. The decision by the child to be compli-

ant,
(
dTi j = 1,dCi j = 0

)
, or not compliant,

(
dTi j < 1,dCi j = 0

)
, is the child’s deci-

sion, doubtless influenced by the child’s parents. Quite possibly, compliant children,(
dTi j = 1,dCi j = 0

)
, differ from noncompliant children,

(
dTi j < 1,dCi j = 0

)
. Most

of the children in the experiment were teens, newly engaging or rejecting sports,

alcohol, tobacco and narcotics. Perhaps compliant and noncompliant children are

equally likely to smoke or engage in binge drinking, but perhaps not. Randomiza-

tion has ensured that encouraged children are similar to unencouraged children, that

the assignment to enalapril or placebo is equitable, but there is nothing to ensure

that compliant children are comparable to less compliant children.

The paired randomized experiment in Chapter 2 is the special case in which en-

couragement is always perfectly decisive for a binary dose. Specifically, the paired

randomized experiment is the special case with
(
dTi j,dCi j

)
= (1,0) for all i and j,

so Di j = Zi j. In other words, people take the full dose of treatment, Di j = 1, if

encouraged to do so, Zi j = 1, and they take none of the treatment, Di j = 0, if not

encouraged to accept the treatment, Zi j = 0.

An instrument is said to be ‘strong’ if dTi j is much larger than dCi j for most or all

individuals i j; in this case, encouragement strongly shifts the dose received by most

subjects. Figure 1.1 depicts a strong instrument: in many schools, average class size

shifted decisively downward when enrollment passed 40 students. An instrument

is said to be ‘weak’ if dTi j is close to or equal to dCi j for most or all individuals i j;
in this case, most individuals ignore encouragement. The most popular method of

analysis using an instrument, namely two-stage least squares, tends to give incorrect

inferences when an instrument is weak [17]: confidence intervals that claim 95%

coverage may cover only 85% of the time. The confidence intervals and tests using

an instrument in this book do not have this problem [45]: 95% intervals cover 95%

of the time with weak and strong instruments.

An ‘intention-to-treat analysis’ compares the encouraged group, Zi j = 1, to the

unencouraged group, Zi j = 0, ignoring compliance behavior. It compares the in-

tended treated group to the intended control group, ignoring actual treatment. The

advantage of such an analysis is that it is fully justified by the random assignment

of encouragement, Zi j; that is, the groups being compared are comparable. The dis-

advantage is that ‘intention-to-treat analysis’ estimates the effect of encouragement

to accept the treatment, not the effect of the treatment itself. Both effects are inter-

esting, but they can be quite different. Quitting smoking might be highly beneficial

to your health, but difficult to do. Encouragement to quit smoking might be highly

ineffective, because most people do not comply by quitting, but quitting itself might

be highly effective. Both effects are important — the effects of encouragement to

adopt the new definition that includes doses in F without altering the content of those previous
discussions.
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quit, the effects of quitting — but they are different things. In Silber’s AAA trial

[33, 95], if enalapril is beneficial, then enalapril consumed is likely to be more ef-

fective than enalapril in the bottle, and the intention-to-treat analysis estimates an

idiosyncratic mixture of these two effects. Despite its limitations, and because of

its strengths, the intention-to-treat analysis is one of the basic analyses that should

be reported in any randomized trial with noncompliance. The analyses in Table 5.3

in §5.2.3 were intention-to-treat analyses: they ignored actual class size, Di j, which

sometimes violated Maimonides’ rule. Is there a principled way to take account of

noncompliance?

The hypothesis that effect is proportional to dose

One hypothesis that satisfies the exclusion restriction asserts that the effect of en-

couragement, Zi j, on the response,
(
rTi j,rCi j

)
, is proportional to its effect on the

dose,
(
dTi j,dCi j

)
:

rTi j − rCi j = β
(
dTi j −dCi j

)
for i = 1, . . . , I, j = 1,2. (5.3)

In (5.3), if encouragement Zi j does not affect your dose, dTi j = dCi j, then it does

not affect your response, rTi j = rCi j. For instance, in Silber’s AAA trial [33, 95],

(5.3) implies that if assignment to enalapril, Zi j = 1, does not actually induce a

child to take enalapril, so dTi j = dCi j = 0, then it does not affect cardiac function,

rTi j − rCi j = 0. In Silber’s AAA trial, a compliant child has
(
dTi j,dCi j

)
= (1,0),

so (5.3) would imply that such a child has rTi j − rCi j = β (1−0) = β , and β is the

effect of the full dose, dTi j = 1, for a compliant child. Similarly, for a less than fully

compliant child who would take half the assigned dose, dTi j = 1
2 , the hypothesis

(5.3) implies an effect on cardiac function of rTi j − rCi j = β
(

1
2 −0

)
= β/2.

In Angrist and Lavy’s [3] study, hypothesis (5.3) asserts that cohort size mat-

ters for test performance
(
rTi j,rCi j

)
in direct proportion to its impact on class size,(

dTi j,dCi j
)
. Expressed differently, we expect passing the cutpoint of 40 students to

matter in pair i = 1 of Table 5.2, but not much in pair i = 3. In (5.3), β is the point

gain in test performance, rTi j − rCi j, caused by a change in class size of dTi j −dCi j,

and Figure 1.1 suggests β is negative, with a decrease in class size increasing per-

formance.

Inference about β

In an elementary but useful way, (5.3) may be rearranged as

rTi j −βdTi j = rCi j −βdCi j = ai j, say, for i = 1, . . . , I, j = 1,2. (5.4)

Suppose that we wish to test the hypothesis H0 : β = β0 in (5.3). From this hypoth-

esis and the observable data, we may calculate the adjusted response, Ri j −β0Di j.

If the hypothesis H0 : β = β0 were true, then Ri j −β0Di j = rTi j −βdTi j if the jth
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subject in pair i is encouraged, Zi j = 1, and Ri j −β0Di j = rCi j −βdCi j if this subject

is not encouraged, so that in either case Ri j −β0Di j = ai j using (5.4).10 That is, if

H0 : rTi j − rCi j = β0

(
dTi j −dCi j

)
, i = 1, . . . , I, j = 1,2, were true, the adjusted re-

sponses, Ri j −β0Di j = ai j, would satisfy the null hypothesis of no treatment effect.

In light of this, the hypothesis H0 : β = β0 in (5.3) may be tested in a random-

ized encouragement design by calculating a statistic, such as Wilcoxon’s signed

rank statistic T , from the adjusted responses, and comparing T with its usual ran-

domization distribution in §2.3.3; see [75]. Specifically, the signed rank statistic

is computed from the encouraged (Zi j = 1) minus unencouraged (Zi j = 0) differ-

ence in adjusted responses, Y (β0)
i = (Zi1 −Zi2){(Ri1 −β0Di1)− (Ri2 −β0Di2)}. If

H0 : β = β0 in (5.3) is true, then Y (β0)
i = (Zi1 −Zi2)(ai1 −ai2) is ±|ai1 −ai2|; more-

over, if H0 : β = β0 is true and encouragement, Zi j, is randomized, then Y (β0)
i is

ai1 −ai2 or −(ai1 −ai2) each with probability 1
2 , so that, in particular, Y (β0)

i is sym-

metrically distributed about zero. Notice that this reasoning is exactly parallel to

§2.4; only the form of the hypothesis has changed [33, 45, 75, 78, 97].

The hypothesis H0 : β = 0 in (5.3) is the hypothesis H0 : rTi j = rCi j for i = 1, . . . , I,

j = 1,2; that is, H0 : β = 0 in (5.3) is Fisher’s sharp null hypothesis of no treatment

effect. To reject either hypothesis is to reject the other: it is the same hypothesis,

tested using the same test statistic, computed in the same way, compared with the

same null distribution, yielding identical P-values. Because these two hypotheses

are the same, the intention-to-treat analysis will reject Fisher’s hypothesis of no

treatment effect if and only if the instrumental variable (IV) analysis rejects H0 : β =
0. As developed here, the IV analysis cannot find a treatment effect if the intention-

to-treat analysis does not find one; indeed, they yield identical significance levels in

testing the hypothesis of no effect.

Also, in strict parallel with §2.4, a 1−α confidence set for β is obtained by

testing every hypothesis H0 : β = β0 and retaining for the confidence set the values

not rejected by the test at level α; then, a 1−α confidence interval is the shortest

interval containing the confidence set. This confidence set has the correct coverage

rate even if the instrument is weak [45, 75]. If the instrument is extremely weak, the

interval may compensate by becoming longer, and in extreme cases it may become

infinite in length. A long confidence interval is a warning that the instrument is

providing little information about the effect caused by the treatment. Better warned

than misled.

Finally, in strict parallel with §2.4, a point estimate β̂ of β may be obtained by the

method of Hodges and Lehmann; that is, by equating T computed from Ri j −β0Di j

to its null expectation, I (I +1)/4, and solving the equation for the estimate, β̂ .

The sensitivity of IV inferences to departures from randomly assigned encour-

agement applies the method of §3.4 to T when computed from the adjusted re-

10 Review Note 9. If the hypothesis H0 : rTi j −rCi j = β0

(
dTi j −dCi j

)
is true, then Ri j −β0Di j = ai j

is fixed, not varying with Zi j . In other words, because the
(
rTi j,rCi j,dTi j,dCi j

)
’s are part of F , if

H0 is true, then β0 =
(
rTi j − rCi j

)
/
(
dTi j −dCi j

)
is determined by F , so using (5.4), the quantity

ai j may be calculated from F .
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sponses Ri j −β0Di j; see [75, 78, 97]. Weak instruments are invariably sensitive to

small departures from random assignment of encouragement [97].

Example: IV analysis for Maimonides’ rule

In Angrist and Lavy’s [3] study of academic test performance and class size manip-

ulated by Maimonides’ rule, the hypothesis H0 : β = β0 in (5.3) with β0 = −0.1 for

the math test asserts that a one-student increase in class size produces a decrease of
1
10 point in the average math score. At the cutpoint of 40 students, Maimonides’

rule reduces the average class size by about 20 students, so if H0 : β = −0.1 were

true, that reduction would increase average math test scores by about 2 points. Is

that hypothesis plausible?

To test this hypothesis, apply Wilcoxon’s signed rank test to

Y (β0)
i = (Zi1 −Zi2){(Ri1 −β0Di1)− (Ri2 −β0Di2)} (5.5)

with β0 = −0.1. For instance, in Table 5.2, in pair i = 1,

Y (−0.1)
1 = (Z11 −Z12){(R11 −β0D11)− (R12 −β0D12)} (5.6)

= (1−0) [{72.1− (−0.1) ·23.0}−{63.1− (−0.1) ·40.0}] = 7.3. (5.7)

Applying Wilcoxon’s signed rank test to the I = 86 adjusted differences, Y (−0.1)
i ,

yields a one-sided P-value of 0.00909, suggesting that β < β0 = −0.1, and yields a

two-sided P-value of 2×0.00909 = 0.01818. In Figure 1.1, if cohort size were an

instrument for class size — that is, if cohort size were random and influenced math

scores only by influencing class size through (5.3) — then it would be quite clear

that a one-student increase in class size depresses average math scores by more than
1

10 of a point.

A confidence interval is built by inverting the hypothesis test; see §2.4. Test-

ing every hypothesis H0 : β = β0 in (5.3) in this way, retaining those not re-

jected by the two-sided 0.05 level test, yields the 95% confidence interval for β of

[−0.812, −0.151]. For instance, the one-sided P-value for testing H0 : β =−0.1515

is 0.0252, so this hypothesis is barely not rejected in a two-sided, 0.05 level test,

whereas the one-sided P-value for testing H0 : β = −1.51 is 0.0249, so this hypoth-

esis is barely rejected. Under Maimonides’ rule, for a 20 student increase in class

size as the cohort size goes from 41 to 40, the confidence interval for the change in

average math scores 20β is 20× [−0.812, −0.151] or [−16.24, −3.02] points.

A point estimate is obtained from the test by the method of Hodges and Lehmann;

see §2.4. With I = 86 pairs of schools, the null expectation of Wilcoxon’s signed

rank statistic T is I (I +1)/4 = 86(86+1)/4 = 1870.5. If T is computed from

Y (−0.4518)
i , it yields T = 1871, a little too high, but if T is computed from Y (−0.4519)

i ,

it yields T = 1870, a little too low, so upon rounding to three digits, the Hodges-
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Lehmann point estimate β̂ of β in (5.3) is β̂ = −0.452 or 20β̂ = −9.04 math score

points for a 20 student increase in class size.

If cohort size were truly an instrument for class size and if (5.3) were true as well,

then Y (β )
i would be symmetric about zero. Figure 5.2 plots the ‘residuals,’ that is

the differences in test performance adjusted for the estimated effect of class size,

Y

(
β̂

)
i = Y (−0.452)

i . The residuals Y

(
β̂

)
i do not deviate noticeably from symmetry

about zero.
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Fig. 5.2 IV residuals of math test scores, Y (β0)
i with β0 = −0.452, in I = 86 pairs of two Israeli

schools. If cohort size were in fact an instrument for class size in these schools, and if β =−0.452,
then these residuals would be symmetric about zero. The residuals look approximately symmetric
about zero, with a mean of −0.03.

As discussed in §5.2.3, for the 86 pairs of schools in Figure 1.1 with fifth grade

cohorts between 30 and 50, cohort size may not be completely random, so that

cohort size is not actually an instrument for class size. Because of the nature of the
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comparison, very large biases may seem implausible, but no matter how carefully

a nonrandomized comparison is structured, it is never possible to completely rule

out the possibility of small biases. As in §3.4 and §5.2.3, a sensitivity analysis may

be conducted; see [75, 78] and [81, §5]. In fact, the math test results in Table 5.3

are the sensitivity analysis for the hypothesis H0 : β = 0. For Γ = 1.1 or Γ = 1.2,

the maximum one sided P-values for testing H0 : β =−0.1 are, respectively, 0.0238

and 0.0508. For Γ ≥ 1, there is an interval
[
β̂min, β̂max

]
of possible point estimates

of β where, as we have seen, for Γ = 1, the single estimate is β̂ = β̂min = β̂max =
−0.452. As Γ increases, β̂min decreases and β̂max increases. For Γ = 1.83, β̂max =
−0.1, whereas for Γ = 2.21, β̂max = 0. In brief, from Table 5.3, rejection of no

effect of class size is insensitive to small biases, Γ ≤ 1.4, and a point estimate of no

effect, β̂max = 0, requires Γ = 2.21. Again, the qualitative conclusions reached by

Angrist and Lavy [3] are not extremely fragile; small deviations from a truly random

instrument would not alter their qualitative conclusions.

When and why are instruments valuable?

At first glance, the use of instruments seems unattractive. A natural experiment

seeks a consequential treatment to which people are exposed in a haphazard way.

In contrast, an instrument requires both a haphazard exposure and additionally the

exclusion restriction — that is, the exposure must affect the outcome only by af-

fecting the treatment. If a natural experiment rests on one doubtful assumption, a

study using an instrument rests on two doubtful assumptions. At first glance, the

step towards instruments seems to be a step in the wrong direction.

This first impression is reinforced by a second. In reading the scientific literature,

many claimed instruments seem implausible as instruments, perhaps because they

are clearly not random, perhaps because the exclusion restriction seems implausible,

or perhaps because the authors treat these central issues in a glib and superficial

manner. The examples from Angrist and Lavy [3] and Silber and colleagues [33, 95]

are atypical in that they are at least plausible as instruments.

Given these two impressions, why seek instruments? When are they particu-

larly valuable? When are they not needed? Instruments are of greatest value when

any straightforward comparison of treated and control subjects is almost inevitably

affected by the same bias, a bias that will recur whenever and wherever a straight-

forward comparison is made [45, §1]. A typical example is the effect of additional

education on earnings. Almost inevitably, students who obtain post-secondary de-

grees have performed well in school during the ages of compulsory education, have

greater motivation, better standardized test scores, typically greater financial re-

sources, and so on, than students who leave school at an earlier stage. Repeatedly

finding that people with more education earn more does little to isolate the effects

actually caused by education; that is, the biases replicate with the same consistency

that — perhaps with greater consistency than — the effects replicate [79]. In such a

situation, it may be possible to find haphazard nudges that, at the margin, enable or
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discourage additional education, such as discontinuities in admission or aid criteria,

proximity to affordable education, shifts in the cost or availability of aid. These

nudges may be biased in various ways, but there may be no reason for them to be

consistently biased in the same direction, so similar estimates of effect from studies

subject to different potential biases gradually reduce ambiguity about what part is

effect and what part is bias [79]. In this vein, David Card [21] surveys the many var-

ied techniques used to estimate the economic returns actually caused by additional

education.

5.4 Summary

Although structured by competing theories that make conflicting predictions, obser-

vational studies are built from opportunities, devices, and instruments.

Opportunities are special circumstances in which competing theories may be

contrasted with unusual clarity. In these circumstances, the theories make sharply

different predictions and the most common or plausible unmeasured biases are re-

duced or absent.

The association between a treatment and an outcome is ambiguous when treat-

ments are not assigned at random. The association may be produced by an effect

caused by the treatment or by a comparison of people who are not truly comparable.

Devices are the tools of disambiguation, the active effort to reduce ambiguity.

Certain treatments are consistently assigned in the same biased way, so that

straightforward comparisons of treated and control groups inevitably reproduce the

same bias. There is no direct opportunity to separate the bias from the treatment ef-

fect. In these cases, it may be possible to find haphazard nudges towards treatment,

pushes that tilt but do not control treatment assignment. To the extent that these

nudges are assigned at random and affect outcomes only through acceptance of the

treatment, they form instruments that may permit the isolation of treatment effects.

Instruments are rare, but useful when they exist.

5.5 Further Reading

Part III of this book and Chapters 6 through 9 of [81] are ‘further reading’ for

this chapter. Part III discusses ‘design sensitivity’ which measures the degree to

which different designs or data generating processes produce results that are in-

sensitive to unmeasured biases. In contrast, Chapters 6 through 8 of [81] discuss

the circumstances under which known effects or multiple control groups can detect

unmeasured biases, presenting technical results about these topics, while Chapter

9 of [81] discusses some technical aspects of coherence; alternatively, for articles

covering similar material, see [69, 70, 71, 72, 76]. Multiple control groups are dis-

cussed in [9, 10, 19, 41, 53, 63, 69, 71] and [81, §8]; see also §11.3 and §19.3.
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Known effects are discussed in [57, 66, 70, 71, 110, 25] and [81, §6]. Differential

effects and generic biases are discussed in [87] where further results and examples

may be found; see also the related, interesting but different design used by Rahul

Roychoudhuri and colleagues [91]. The view of instruments as a bridge between

randomized experiments and observational studies is developed in various ways in

[2, 7, 8, 28, 33, 31]. The link between instruments and randomization inference is

developed in [33, 45, 75, 78, 82]. General discussions of ‘opportunities’ are found

in [4, 35, 58, 77, 89, 92, 103, 107]. Lotteries often present ‘opportunities;’ see, for

instance, [5, 8, 39, 43].
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Chapter 6
Transparency

Abstract Transparency means making evidence evident. An observational study

that is not transparent may be overwhelming or intimidating, but it is unlikely to be

convincing. Several aspects of transparency are briefly discussed.

The beliefs we have most warrant for, have no safeguard to rest on, but a standing invitation
to the whole world to prove them unfounded. If the challenge is not accepted, or is accepted
and the attempt fails, we are far enough from certainty still; but we have done the best the
existing state of human reason admits of. . . ˙ This is the amount of certainty attainable by a
fallible being, and this is the sole way of attaining it.

John Stuart Mill [4, page 21]

The objectivity of all science, including mathematics, is inseparably linked with its criticiz-
ability.

Karl R. Popper [6, page 137]

Transparency means making evidence evident. An experiment, and by analogy

an observational study, is not a private experience, not the source of some private

conviction. In the absence of transparency, evidence, argument, and conclusions

are not fully available for critical evaluation. Critical discussion, the standing invi-

tation to undermine evidence or argument, is, for John Stuart Mill, the sole safeguard

of our most warranted beliefs. For Karl Popper, critical discussion is inseparably

linked with the objectivity of science and mathematics. To the extent that trans-

parency is needed for critical discussion, transparency is no small issue.

David Cox [2, page 8] writes:

An important aspect of analysis, difficult to achieve with complex methods, is transparency.
That is, in principle, the pathway between the data and the conclusions should be as clear
as is feasible. This is partly for the self-education of the analyst and also is for protection
against errors. . . . It is also important for presenting conclusions. . . . Transparency strongly
encourages the use of the simplest methods that will be adequate.
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See also Cox [1, page 11].

In addition to the “use of the simplest methods that will be adequate,” trans-

parency is aided by the following considerations. Introducing a felicitous phrase,

Mervyn Susser [8, page 74] writes: “A main object of research design is thus to

simplify the conditions of observation.” In a chapter with that title, Susser [8, Chap-

ter 7] discusses: (i) limiting observations to the relevant segment of the population

to “isolate the hypothetical causal variable and permit study of its effects alone” [8,

page 74], (ii) “selecting suitable situations” [8, page 76], and (iii) matching to re-

move bias from observed covariates. Concerning (i), see also Joffe and Colditz [3],

who use the term ‘restriction.’ In discussing the design of clinical trials, Richard

Peto et al. [5, page 590] write: “A positive result is more likely, and a null result

is more informative, if the main comparison is of only 2 treatments, these being as

different as possible.”

Modularity aids transparency. If a study addresses several issues, each poten-

tially contentious, but the study is composed of separable, simple modular com-

ponents, then there is the realistic prospect that the scope of contention will be

constructively focused. Modularity limits leakage: controversy remains contained

within the region of contention. Here are three modular questions that arise in most

observational studies. Do the treated and untreated populations overlap sufficiently

with respect to observed covariates to permit the construction of a comparable con-

trol group, or do the populations need to be restricted before such a comparison is

attempted? Has matching succeeded in balancing observed covariates, so matched

treated and control groups are comparable with respect to these observed covariates?

Is it plausible that differing outcomes in treated and control groups are produced by

imbalances in a specific unmeasured covariate? If these questions are separated and

addressed one at a time, the first two questions may be settled with little contro-

versy before engaging the inevitably more contentious third question. If the three

questions are addressed simultaneously in one grand analysis, little conviction or

consensus may develop even about the first two questions.

To Cox’s good list of reasons for seeking transparency, I would add one more [7,

Chapter 12]. If smaller issues are permitted to become unnecessarily complex, then

the analysis may collapse under the weight of these complexities before engaging

larger issues. In observational studies, if the adjustment for observed covariates be-

comes unnecessarily complex, as sometimes happens, then the analysis may never

engage the fundamental issue, namely possible biases from covariates that were not

measured. Like a good card trick, unnecessarily complex adjustments for observed

covariates may distract attention from the fundamental issue in observational stud-

ies, but they are unlikely to shed much light on it.

An empirical study that is not transparent may be published or cited, but it is less

likely to undergo serious critical discussion and therefore less likely to receive the

implicit endorsement of surviving such discussion largely unscathed. Conversely,

if critical discussion of a transparent study reveals potential ambiguities or alterna-

tive interpretations, that discussion may stimulate a replication that eliminates the

ambiguities (§4.5). If a study has unambiguous faults, they are more likely to be
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discovered if the study is transparent, and hence there is greater reason to trust the

conclusions of a transparent study when no such faults are identified.
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Chapter 7
A Matched Observational Study

Abstract As a prelude to several chapters describing the construction of a matched

control group, the current chapter presents an example of a matched observational

study as it might (and did) appear in a scientific journal. When reporting a matched

observational study, the matching methods are described very briefly in the Methods
section. In more detail, the Results section presents tables or figures showing that

the matching has been effective in balancing certain observed covariates, so that

treated and control groups are comparable with respect to these specific variables.

The Results section then compares outcomes in treated and control groups. Because

matching has arranged matters to compare ostensibly comparable groups, the com-

parison of outcomes is often both simpler in form and more detailed in content than

it might be if separate adjustments were required for each aspect of each outcome.

Treated and control groups that appear comparable in terms of a specific list of mea-

sured covariates – groups that are ostensibly comparable – may nonetheless differ

in terms of covariates that were not measured. Though not discussed in the current

chapter, the important issue of unmeasured covariates in this example is discussed

in Part III.

7.1 Is More Chemotherapy More Effective?

Jeffrey Silber, Dan Polsky, Richard Ross, Orit Even-Shoshan, Sandy Schwartz, Ka-

trina Armstrong, Tom Randall, and I [6, 8] asked how the intensity of chemother-

apy for ovarian cancer affected patient outcomes. We thought that greater intensity

might prolong survival, perhaps at the cost of increased toxicity. What evidence

bears on this question?

There is a basic difficulty in studying the intended effects of medical treat-

ments outside of randomized controlled clinical trials [9]. In virtually all areas

of medicine, most of the variation in treatment occurs in thoughtful and deliberate

response to variation in the health, prognosis or wishes of patients. That is, treat-

ment assignment is very far from being determined ‘at random.’ Ovarian cancer is
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unusual in this regard because there is a meaningful source of variation in treat-

ment that is not a response to the patient. Chemotherapy for ovarian cancer is pro-

vided by two distinct specialties, namely medical oncologists (MOs), who provide

chemotherapy for cancers of all kinds, and gynecologic oncologists (GOs), who pri-

marily treat cancers of the ovary, uterus and cervix. Medical oncologists typically

have a residency in internal medicine, followed by a fellowship emphasizing the ad-

ministration of chemotherapy and the management of its side effects. Gynecologic

oncologists typically complete a residency in obstetrics and gynecology, followed

by a fellowship in gynecologic oncology, that includes training in surgical oncol-

ogy and chemotherapy administration for gynecologic cancers. Unlike gynecologic

oncologists, who are trained in surgery, medical oncologists are almost invariably

not surgeons, so medical oncologists provide chemotherapy after someone else has

performed surgery. We anticipated, as turned out to be the case, that MOs would

use chemotherapy more intensively than GOs, both at the time of initial diagnosis

and several years later if the cancer has spread from its site of origin. Is the greater

intensity of chemotherapy found in the practice of MOs of benefit to patients?

The study was based on data that linked the Surveillance, Epidemiology and End

Results (SEER) program of the U.S. National Cancer Institute to Medicare claims.

The SEER data are collected at SEER sites in the United States, where some SEER

sites are cities (e.g., Detroit) and others are states (e.g., New Mexico). The SEER

data include clinical stage and tumor grade. The study used data on women older

than 65 with ovarian cancer who were diagnosed between 1991 and 1999 and had

appropriate surgery and at least some chemotherapy; see [8] for details. There were

344 such women who received chemotherapy from a GO, and 2011 such women

who received chemotherapy from an MO.

7.2 Matching for Observed Covariates

We matched each GO patient to an MO patient, producing 344 matched pairs of two

similar patients. Table 7.1 describes several of the covariates used in the matching.

Was the matching successful in producing GO and MO groups that were reasonably

comparable in terms of observed covariates?

The first group of variables in Table 7.1 describes the type of surgeon. Gyneco-

logic oncologists are specialists in surgery for gynecologic cancers, but surgery is

often performed by gynecologists or general surgeons. Not surprisingly, this vari-

able is substantially out of balance before matching: a patient who has surgery per-

formed by a GO is more likely to have chemotherapy provided by a GO. After

matching, the distributions of surgeon types are almost identical.

Clinical stage is usually thought to be the most important predictor of survival

in ovarian cancer. Perhaps because there is no particular reason for patients to seek

chemotherapy from an MO or a GO, stage was not greatly out of balance before

matching. For stage, the balance after matching is quite close.
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Table 7.1 Comparability at baseline for patients with ovarian cancer: all 344 patients of a gyneco-
logic oncologist (GO), 344 matched patients of a medical oncologist (MO), and all 2011 patients of
medical oncologists. Values are in percent, unless labeled as means. Also included in the matching,
but not in this table, were additional comorbid conditions, including anemia, angina, arrhythmia,
asthma, coagulation disorder, electrolyte abnormality, hepatic dysfunction, hyperthyroidism, pe-
ripheral vascular disease, and rheumatoid arthritis. Notice that surgeon type, SEER site, and year
of diagnosis were substantially out of balance prior to matching, but were in reasonable balance
after matching.

GO matched-MO all-MO
n = 344 n = 344 n = 2,011

Surgeon GO 76 75 33
Type Gyn 15 16 39

General 8 8 28

Stage I 9 9 9
II 11 9 9

III 51 53 47
IV 26 26 31

Missing 3 2 3

Tumor 1 5 4 4
Grade 2 16 13 17

3 52 55 47
4 9 8 11

Missing 18 20 21

Demographics Age, mean 72.2 72.2 72.8
White 91 94 94
Black 8 5 3

Selected COPD 15 12 13
Comorbid Hypertension 48 46 42

Conditions Diabetes 11 8 8
CHF 2 2 4

SEER Site Connecticut 18 18 15
Detroit 26 26 12

Iowa 17 17 17
New Mexico 7 7 3

Seattle 9 9 16
Atlanta 9 9 7

Los Angeles 12 12 19
San Francisco 1 1 9

Year of Diagnosis 1991 4 4 9
1992 7 7 14
1993 10 9 14
1994 11 11 12
1995 11 13 12
1996 10 9 12
1997 16 15 10
1998 13 15 9
1999 18 17 9

Propensity Score ê(x), mean 0.23 0.21 0.14
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In fact, whenever possible, we matched exactly for surgeon type and stage. This

means that, whenever possible, a stage III patient whose surgery was performed by

a gynecologist was paired with a stage III patient whose surgery was performed

by a gynecologist. As seen in the marginal distributions in Table 7.1, this was not

always possible. Naive intuition suggests that one should match exactly for every

variable, but a moment’s thought reveals this to be impossible. If there were just

30 binary variables, there would be 230 or about a billion types of patients, so it

is highly unlikely that one would find exact matches on all 30 variables for almost

all of the patients. Nonetheless, the balance on the covariates in Table 7.1 is quite

good, even though, unlike stage and surgeon type, most variables in Table 7.1 are

not exactly matched. Section 9.1 will discuss covariate balance in greater detail. In

practice, exact matching, if used at all, is reserved for one or two critically important

variables.

Surgeon type and clinical stage are connected. A surgeon who is trained specif-

ically in cancer surgery, such as a GO, is likely to combine an effort at curative

surgery with extensive node sampling. In consequence, a cancer surgeon may find

more cancer than a general surgeon, and may assign a patient to a higher clinical

stage [2]. That is, a patient who is classified as stage II by a general surgeon might

have been classified as stage III by a GO. The very meaning of one variable, clinical

stage, depends upon another variable, surgeon type. However, because almost all

of the pairs are matched exactly for stage and surgeon type, in almost all pairs, the

two patients received the same stage from the same category of surgeon.

Tumor grade, demographics, and selected comorbid conditions are seen to be

reasonably well balanced, and the same is true for other comorbid conditions men-

tioned in the caption of Table 7.1. Comorbid conditions matter both because they

may pose a direct risk to the patient’s survival and may also complicate and limit

the administration of chemotherapy.

Gynecologic oncologists are unevenly spread through the United States, and the

profession has been growing over time. For this reason, before matching, both

SEER site and year of diagnosis were often quite different for the patients of GOs

and MOs. For patients of GOs at SEER sites, 26% were in Detroit and only 1%

in San Francisco, while for all MO patients, 12% were in Detroit and 9% in San

Francisco. Expressed in terms of odds ratios, a woman is almost 20 times as likely

to be treated by a GO in Detroit than in San Francisco. Although ovarian can-

cer is, presumably, much the same disease in Detroit and San Francisco, there are

differences in wealth, demographics, and health services that might affect patient

outcomes. After matching, the distributions of SEER sites are the same. Similarly,

GO patients were more likely to have been diagnosed recently, simply because there

are more GOs recently. Although ovarian cancer itself may not have changed much

through the 1990s, the chemotherapies did improve [3], so a substantial imbalance

in year of diagnosis would compare patients who received different drugs. After

matching, the proportion of patients diagnosed in three time intervals, 1991–1992,

1993–1996, and 1997–1999, were identical, with only small imbalances for indi-

vidual years inside these intervals. In fact, although this is not visible in Table 7.1,

the joint behavior of the three time intervals and the SEER site is exactly balanced;
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Table 7.2 Weeks with chemotherapy, in year 1 and in years 1 through 5, for 344 matched pairs.
Values are the mean, quartiles, minimum, and maximum. Two-sided P-values are from Wilcoxon’s
signed rank test.

Period Group Mean Min 25% 50% 75% Max P-value

Year 1 GO 6.63 1 5 6 8 19 0.0022
Year 1 MO 7.74 1 5 6 10 42

Years 1-5 GO 12.07 1 5 9 16 70 0.00045
Years 1-5 MO 16.47 1 6 11 21 103

for instance, the number of GO patients in 1991–1992 from Iowa equals the number

of matched MO patients in 1991–1992 from Iowa. The balance on SEER site and

year of diagnosis was obtained using “fine balance” [5, 6], a technique discussed in

Chapter 10.

The large imbalances before matching in surgeon type, year of diagnosis, and

SEER site, and the much smaller imbalances before matching in clinical stage,

grade and comorbid conditions are somewhat encouraging. They hint at the pos-

sibility that the chemotherapy provider type reflects the relative availability of MOs

and GOs more than it reflects attributes of the patient’s disease. In any event, the

measured covariates are reasonably well balanced after matching.

The final variable in Table 7.1 is the propensity score. It is an estimate of the con-

ditional probability of receiving chemotherapy from a GO rather than an MO given

the observed covariates. Propensity scores are a basic tool when matching on many

variables [4]. Propensity scores were discussed conceptually in §3.3, and their role

in multivariate matching is discussed further in Chapter 8. In Table 7.1, the mean

propensity score is fairly similar in the two matched groups; indeed, the balance on

many covariates is produced by balancing the propensity score; see (3.10).

7.3 Outcomes in Matched Pairs

As anticipated, many MOs often used chemotherapy more intensely than did GOs,

both in the first year following diagnosis and in the first five years following diag-

nosis; see Table 7.2 and Figure 7.1. The difference at the medians is not large, but

it is quite noticeable at the upper quartiles. Was greater intensity of treatment by

MOs beneficial?

Despite a difference in intensity, survival was virtually identical for the patients

of MOs and GOs; see Table 7.3. The standard test comparing paired censored sur-

vival times is the Prentice-Wilcoxon test [7]; it gives a two-sided P-value of 0.45.

Table 7.3 also lists the number of patients at risk at the beginning of each of the

first five years, that is, the number of patients alive and uncensored at the start of

the year. The number of patients at risk is also very similar for matched patients of

MOs and GOs.
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Fig. 7.1 Chemotherapy and toxicity in 344 pairs of patients with ovarian cancer, one treated by a
GO, the other by an MO.

Patients of MOs had more weeks of toxicity than did patients of GOs; see Table

7.4 and Figure 7.1. In Table 7.4, both in year 1 and in years 1 to 5, the upper

quartiles for MO patients are double those for GO patients.

The difference in intensity was associated with the difference in toxicity; see

Figure 7.2. In Figure 7.2, the 344 matched pair differences in toxicity weeks, MO-

minus-GO, are plotted against the 344 matched pair differences in chemotherapy

weeks. Points project horizontally into the marginal boxplot of the differences in

toxicity weeks. The curve is a lowess smooth [1, pages 168–180] as implemented

in the statistical package R. Kendall’s rank correlation between toxicity differences

and chemotherapy differences is 0.39 and is significantly different from zero, with

a two-sided significance level less than 10−10.

In brief, it appears that MOs often treated more intensively than GOs, often with

more toxicity, but survival was no different.
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Table 7.3 Survival and number at risk in 344 matched pairs of one GO patient and one MO patient.
The two-sided P-value of 0.45 is from the Prentice-Wilcoxon test [7] comparing paired survival
times.

GO Patients MO Patients

Median (Years) 3.04 2.98
95% CI [2.50, 3.40] [2.69, 3.67]

1 Year Survival % 86.6 87.5
95% CI [83.0, 90.2] [84.0, 90.1]

2 Year Survival % 64.8 66.9
95% CI [59.8, 69.9] [61.9, 71.8]

5 Year Survival % 35.1 34.2
95% CI [30.0, 40.2] [29.2, 39.3]

Number at Risk Year 0 344 344
Number at Risk Year 1 298 301
Number at Risk Year 2 223 230
Number at Risk Year 3 173 172
Number at Risk Year 4 133 128

Table 7.4 Weeks with chemotherapy-associated toxicity, in year 1 and in years 1 through 5, for
344 matched pairs. Values are the mean, quartiles, minimum, and maximum. Two-sided P-values
are from Wilcoxon’s signed rank test. Chemotherapy-associated toxicity refers to inpatient or out-
patient diagnoses for anemia, neutropenia, thrombocytopenia, diarrhea, dehydration or mucositis,
and neuropathy.

Period Group Mean Min 25% 50% 75% Max P-value

Year 1 GO 3.61 0 0 2 5 26 0.00000089
Year 1 MO 6.67 0 1 3 10 51

Years 1-5 GO 8.89 0 1 5 11 111 0.000000026
Years 1-5 MO 16.29 0 2 7 22 136

An obvious question is whether the patterns exhibited in Tables 7.2-7.4 and Fig-

ures 7.1 and 7.2 could be the result not of differences in intensity of chemotherapy

applied to similar patients, but rather of unmeasured pretreatment differences be-

tween the patients themselves. Table 7.1 showed that, prior to matching, many

covariates were substantially out of balance in the GO and MO groups. It is cer-

tainly possible that some other covariate, a covariate that was not measured, was

also out of balance before matching, and because that variable was not controlled

by matching, it is certainly possible that the variable is still out of balance in Tables

7.2–7.4 and Figures 7.1 and 7.2. This concern is central to Part III, where there will

be further analysis of the ovarian data.

7.4 Summary

This chapter is an introduction to Part II. A matched comparison has been presented

as it might be, and was, presented in a scientific journal [8], with little reference to

the procedures used to construct the matched sample [6]. Matching procedures are
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Fig. 7.2 Matched pair differences, MO−GO, in toxicity plotted against differences in chemother-
apy. The curve is a lowess smooth.

the focus of Part II. The current chapter has made three basic points. First, match-

ing on many observed covariates is often feasible; see Table 7.1. Second, the reader

may examine the degree to which matched groups are comparable with respect to

observed covariates, as well as which covariates are not among the observed covari-

ates, without getting involved in the procedures used to construct the matched sam-

ple; again, see Table 7.1. Finally, straightforward analyses sufficed to take a close

look at several outcomes — here, survival, chemotherapy, toxicity in Tables 7.2-7.4

and Figures 7.1-7.2 — because those analyses compared two matched groups that

looked similar prior to treatment with respect to observed covariates. More pre-

cisely, analyses conducted under the naı̈ve model for treatment assignment (§3.3)

are straightforward. The possibility that the naı̈ve model is not true is taken up in

Part III.
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7.5 Further Reading

The remainder of Part II is further reading for this chapter. The ovarian cancer study

is discussed in detail by Jeffrey Silber and colleagues [6, 8].
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Chapter 8
Basic Tools of Multivariate Matching

Abstract The basic tools of multivariate matching are introduced, including the

propensity score, distance matrices, calipers imposed using a penalty function, op-

timal matching, matching with multiple controls and full matching. The tools are

illustrated with a tiny example from genetic toxicology (n = 46), an example that is

so small that one can keep track of individuals as they are matched using different

techniques.

8.1 A Small Example

The mechanics of matching are best illustrated with a very small example, not be-

cause such an example is representative but because it is possible to inspect the

details of what goes on. The example considered here has 47 subjects and three

covariates. Typical examples have many more subjects and many more covariates.

Welders are exposed to chromium and nickel, substances that can cause inappro-

priate links between DNA and proteins, which in turn may disrupt gene expression

or interfere with replication of DNA. Costa, Zhitkovich, and Toniolo [10] mea-

sured DNA-protein cross-links in samples of white blood cells from 21 railroad arc

welders exposed to chromium and nickel and 26 unexposed controls. All 47 sub-

jects were male. In their data in Table 8.1, there are three covariates, namely age,

race and current smoking behavior. The response is a measure of DNA-protein

cross-links.

Summary measures describing the covariates appear at the bottom of Table 8.1.

The welders are about five years younger than the controls on average, have rela-

tively fewer African Americans, and more smokers. For what it is worth, the differ-

ence in age between welders and controls is significant as judged by the t-test, with

a t of −2.25 and a two-sided significance level of 0.03. The two binary variables

yield t’s of −0.94 for race and 1.2 for smoking, and are neither significant by that

standard nor by Fisher’s exact test for a 2× 2 table. In an experiment, random as-

signment leads to the expectation that one covariate in 20 will exhibit an imbalance

163P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
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Table 8.1 Unmatched data for 21 railroad arc welders and 26 potential controls. Covariates are
age, race (C=Caucasian , AA=African American), current smoker (Y=yes, N=no). Response is
DPC = DNA-protein cross-links in percent in white blood cells. All 47 subjects are male.

Welders Controls

ID Age Race Smoker DPC ID Age Race Smoker DPC

1 38 C N 1.77 1 48 AA N 1.08
2 44 C N 1.02 2 63 C N 1.09
3 39 C Y 1.44 3 44 C Y 1.10
4 33 AA Y 0.65 4 40 C N 1.10
5 35 C Y 2.08 5 50 C N 0.93
6 39 C Y 0.61 6 52 C N 1.11
7 27 C N 2.86 7 56 C N 0.98
8 43 C Y 4.19 8 47 C N 2.20
9 39 C Y 4.88 9 38 C N 0.88

10 43 AA N 1.08 10 34 C N 1.55
11 41 C Y 2.03 11 42 C N 0.55
12 36 C N 2.81 12 36 C Y 1.04
13 35 C N 0.94 13 41 C N 1.66
14 37 C N 1.43 14 41 AA Y 1.49
15 39 C Y 1.25 15 31 AA Y 1.36
16 34 C N 2.97 16 56 AA Y 1.02
17 35 C Y 1.01 17 51 AA N 0.99
18 53 C N 2.07 18 36 C Y 0.65
19 38 C Y 1.15 19 44 C N 0.42
20 37 C N 1.07 20 35 C N 2.33
21 38 C Y 1.63 21 34 C Y 0.97

22 39 C Y 0.62
23 45 C N 1.02
24 42 C N 1.78
25 30 C N 0.95
26 35 C Y 1.59

Mean AA Smoker Mean AA Smoker
Age % % Age % %

38 10 52 43 19 35

that is statistically significant at the 0.05 level, at least when the comparison is based

on an appropriate randomization test, such as Fisher’s exact test. 1

A pair matching would form 21 pairs of a welder and a control, discarding five

potential controls, in the process altering the marginal distribution of the three co-

variates in the control group. Pair matching is, perhaps, not the most attractive

method in this particular example. In part, the removal of five controls can have

only a moderate impact on the distribution of covariates. In part, in such a small

example, it is not entirely comfortable to discard five controls. Then again, the old-

est control, #2, is 63 years old, which is ten years older than the oldest welder, #18,

1 Cochran [8] discusses the relationship between the magnitude of a t-statistic for covariate im-
balance and the coverage rate of a confidence interval for a treatment effect when no adjustment
is made for the covariate. He concludes that problems begin to occur before the conventional
0.05 level of significance is reached, and that attention should be given to covariates exhibiting a
t-statistic of 1.5 in absolute value.
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Table 8.2 Limitations of pair matching for age in the welder data. Even the 21 youngest of the
26 controls are, on average, slightly older than the welders, so even a pair matching that focused
exclusively on one covariate, age, could not entirely eliminate the age difference. The discrepancy
is not large in this example but can be large in some studies. Other forms of matching besides pair
matching can make further progress.

Mean Min Q1 Median Q3 Max

All 26 Controls 42.7 30 36 42 48 63
21 Youngest Controls 39.6 30 35 40 44 50

21 Welders 38.2 27 35 38 39 53

and at least 19 years older than all other welders; arguably, some controls are not

suitable for comparison.

As Rubin [38] observes, there is a definite limit to what pair matching can ac-

complish. In many cases, what is needed falls well within this attainable limit; in

other cases it does not. Importantly, to a large extent, this limit is not shared by more

flexible matching strategies, such as ‘full matching’ [35]. One can see the limits of

pair matching in Table 8.2. The mean age of the 21 welders is 38.2 years, while

the mean age of the 26 controls is 42.7 years. Even if the only consideration were

reducing the mean age in the control group, in this example, pair matching will fall

slightly short of the goal, because the mean age of the 21 youngest of the 26 con-

trols is 39.6 years. In parallel, for smoking, 11 of the 21 welders are smokers, while

only 9 of the 26 potential controls are smokers, so pair matching can at most select

all nine smoking controls, and cannot perfectly balance smoking. Moreover, the 21

youngest controls include only eight of the nine smokers. Furthermore, although

pair matching can eliminate the imbalance in race, if it does this, it cannot use all

nine smoking controls. The discrepancies are not large, and hence are perhaps tol-

erable in this example, but in other studies, a matching strategy more flexible than

pair matching may be needed.

Before matching, there are L = 47 subjects in Table 8.1, � = 1,2, . . . ,L. In

the example, for subject �, the observed covariate, x�, is three-dimensional, x� =
(x�1,x�2,x�3)

T , where (i) x�1 is the age of subject �, (ii) x�2 encodes race, x�2 = 1 if �
is African American, x�2 = 0 if � is Caucasian, (iii) x�3 encodes smoking, x�3 = 1 if �
is a current smoker, x�3 = 0 otherwise. For instance, x1 = (38,0,0)T . The variable

Z� distinguishes treated subjects from potential controls: Z� = 1 for a treated subject,

here a welder; Z� = 0 for a potential control.

8.2 Propensity Score

As discussed in §3.3, the propensity score is the conditional probability of exposure

to treatment given the observed covariates, e(x) = Pr(Z = 1 | x). The propensity

score is defined in terms of the observed covariates, x, even though there is in-

variably concern about other covariates that were not measured. Properties of the

propensity score are discussed in §3.3 and [30, 31, 33, 36].
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In the simplest randomized experiment, with treatments assigned by independent

flips of a fair coin, the propensity score is e(x) = Pr(Z = 1 | x) = 1
2 for all values of

the covariate x. In this case, the covariate x is not useful in predicting the treatment

that a subject will receive. In such a completely randomized experiment, smokers

are just as likely as nonsmokers to receive the treatment — the chance is 1
2 for

smokers and 1
2 for nonsmokers — so smokers tend to show up in the treated group

just about as often as they do in the control group, and any difference in smoking

frequency is due to chance, the flip of a coin that assigned one subject to treatment,

another to control.

Brief examination of Table 8.1 suggested that at least age, x1, and possibly race

and smoking, x2 and x3, could be used to predict treatment assignment Z, so that the

propensity score is not constant. Saying that welders tend to be somewhat younger

than controls is much the same as saying that the chance of being a welder is lower

for someone who is older, that is, e(x) is lower when x1 is higher.

If two subjects have the same propensity score, e(x), they may have different

values of x. For instance, a younger nonsmoker and an older smoker might have the

same propensity score, e(x), because welders are often younger smokers. Imagine

that we have two individuals, a welder and a control, with the same propensity score

e(x) but different covariates x. Although these two individuals differ in terms of x,

this difference in x will not be helpful in guessing which one is the welder, because

e(x) is the same. If subjects were matched for e(x), they may be mismatched for x,

but the mismatches in x will be due to chance and will tend to balance, particularly

in large samples. If young nonsmokers and old smokers have the same propensity

score, then a match on the propensity score may pair a young nonsmoking welder to

an old smoking control, but it will do this about as often as it pairs an old smoking

welder to a young nonsmoking control.

In brief, matching on e(x) tends to balance x; see (3.10) in §3.3 or [30]. More

precisely, treatment assignment Z is conditionally independent of observed covari-

ates x given the propensity score e(x). Moreover, the propensity score is the coars-

est function of x with this balancing property, so if the propensity score e(x) is

not balanced, then the observed covariates x will continue to be useful in predict-

ing treatment Z. Expressed differently, ignoring chance imbalances, as we might in

sufficiently large samples, balancing the propensity score e(x) is sufficient to bal-

ance the observed covariates x but also necessary to balance x. It is important to

understand that this is a true statement about observed covariates x, and only about

observed covariates, whether or not treatment assignment also depends on covari-

ates that were not measured. On the negative side, success in balancing the observed

covariates, x, provides no assurance that unmeasured covariates are balanced. On

the positive side, balancing observed covariates — comparing groups that, at least,

look comparable in terms of the observed x — is a discrete task that can be success-

fully completed without reference to possible imbalances in covariates that were

not measured. For the men in Table 8.1, imagine that having a father who worked

as a welder is associated with a much higher chance that the son also will work as

a welder, so father’s occupation is an unmeasured covariate that could be used to

predict treatment Z; then success in matching on the propensity score e(x) would
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Table 8.3 Estimated propensity scores ê(x) for 21 railroad arc welders and 26 potential controls.
Covariates are age, race (C=Caucasian, AA=African American), current smoker (Y=yes, N=no).

Welders Controls

ID Age Race Smoker ê(x) ID Age Race Smoker ê(x)
1 38 C N 0.46 1 48 AA N 0.14
2 44 C N 0.34 2 63 C N 0.09
3 39 C Y 0.57 3 44 C Y 0.47
4 33 AA Y 0.51 4 40 C N 0.42
5 35 C Y 0.65 5 50 C N 0.23
6 39 C Y 0.57 6 52 C N 0.20
7 27 C N 0.68 7 56 C N 0.15
8 43 C Y 0.49 8 47 C N 0.28
9 39 C Y 0.57 9 38 C N 0.46
10 43 AA N 0.20 10 34 C N 0.54
11 41 C Y 0.53 11 42 C N 0.38
12 36 C N 0.50 12 36 C Y 0.64
13 35 C N 0.52 13 41 C N 0.40
14 37 C N 0.48 14 41 AA Y 0.35
15 39 C Y 0.57 15 31 AA Y 0.55
16 34 C N 0.54 16 56 AA Y 0.13
17 35 C Y 0.65 17 51 AA N 0.12
18 53 C N 0.19 18 36 C Y 0.64
19 38 C Y 0.60 19 44 C N 0.34
20 37 C N 0.48 20 35 C N 0.52
21 38 C Y 0.60 21 34 C Y 0.67

22 39 C Y 0.57
23 45 C N 0.32
24 42 C N 0.38
25 30 C N 0.63
26 35 C Y 0.65

Mean AA Smoker Mean Mean AA Smoker Mean
Age % % ê(x) Age % % ê(x)
38 10 52 0.51 43 19 35 0.39

tend to balance age, race and smoking, but there is no reason to expect it to balance

father’s occupation. In short, (i) matching on e(x) is often practical even when

there are many covariates in x because e(x) is a single variable, (ii) matching on

e(x) tends to balance all of x, and (iii) failure to balance e(x) implies that x is not

balanced.

The propensity score is unknown, but it can be estimated from the data at hand.

In the example, the propensity score is estimated by a linear logit model

log

{
e(x�)

1− e(x�)

}
= ζ0 +ζ1 x�1 +ζ2 x�2 +ζ3 x�3, (8.1)

and the fitted values ê(x�) from this model are the estimates of the propensity score.

The estimates of the propensity score, ê(x�), are displayed in Table 8.3. Control #2,

a 63-year-old, Caucasian nonsmoker, has ê(x�) = 0.09, only a 9% estimated chance

of being a welder. In contrast, control #12, a 36-year-old smoker, has ê(x�) = 0.64,
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a 64% chance of being a welder, so this control actually has covariates that are

atypical of controls and more typical of welders. Welders #10 and #18 have similar

estimated propensity scores ê(x�) but different patterns of covariates x�.

The limitations of pair matching, illustrated for age in §8.1, apply with any vari-

able, including the propensity score. The mean of the 21 largest ê(x)’s in the con-

trol group is 0.46, somewhat less than the mean of ê(x) in the treated group, namely

0.51, so no pair matching can completely close that gap.

8.3 Distance Matrices

In its simplest form, a distance matrix is a table with one row for each treated subject

and one column for each potential control. For the welder data in Table 8.3, the

distance matrix would have 21 rows and 26 columns; it would be 21×26. The value

in row i and column j of the table is the ‘distance’ between the ith treated subject

and the jth potential control. This ‘distance’ is a nonnegative number2 or infinity,

∞, which measures the similarity of two individuals in terms of their covariates x.

Two individuals with the same value of x would have distance zero. An infinite

distance in row i and column j is used to forbid matching the ith treated subject to

the jth potential control.

For the welder data in Table 8.3, Table 8.4 displays all 21 rows and the first 6 of

26 columns on one such distance matrix. The distance is the squared difference in

the estimated propensity score, ê(x). The first welder has ê(x) = 0.46 and the first

control has ê(x) = 0.14, so the distance in the first row and first column of Table

8.4 is (0.46−0.14)2 = 0.10. If the only concern were to obtain close matches on

ê(x), then this might be a reasonable distance. The disadvantage is that two controls

with the same propensity score, ê(x), may have different patterns of covariates, x,

and this is ignored in Table 8.4. For example, in the first row and third and fourth

columns of Table 8.4, the distance is zero to two decimal places. Looking back at

Table 8.3, the distances between welder #1 and potential controls #3 and #4 are,

respectively, (0.46−0.47)2 = 0.0001 and (0.46−0.42)2 = 0.0016, so control #3 is

ever so slightly closer to welder #1. However, in terms of the details of x, control

#4 looks to be the better match, a nonsmoker with a two-year difference in age, as

opposed to control #3, a smoker with a six-year difference in age. Because younger

smokers are more common in the welder group, the propensity score is indifferent

between a younger nonsmoker and an older smoker, but the details of x suggest that

control #4 is a better match for welder #1 than is control #4.

An alternative distance [32] insists that individuals be close on the propensity

score, ê(x), but once this is achieved, the details of x affect the distance. With a

caliper of width w, if two individuals, say k and �, have propensity scores that differ

by more than w — that is, if |ê(xk)− ê(x�)| > w — then the distance between these

2 The distance need not be, and typically is not, a distance in the sense that the word is used in
metric space topology: it need not satisfy the triangle inequality.
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Table 8.4 Squared differences in propensity scores between welders and controls. Rows are the
21 welders and columns are for the first 6 of 26 potential controls.

Welder Control 1 Control 2 Control 3 Control 4 Control 5 Control 6

1 0.10 0.13 0.00 0.00 0.05 0.06
2 0.04 0.06 0.02 0.01 0.01 0.02
3 0.19 0.23 0.01 0.02 0.12 0.14
4 0.13 0.18 0.00 0.01 0.08 0.09
5 0.26 0.32 0.03 0.06 0.18 0.20
6 0.19 0.23 0.01 0.02 0.12 0.14
7 0.29 0.35 0.05 0.07 0.20 0.23
8 0.12 0.16 0.00 0.01 0.07 0.08
9 0.19 0.23 0.01 0.02 0.12 0.14

10 0.00 0.01 0.07 0.05 0.00 0.00
11 0.15 0.19 0.00 0.01 0.09 0.11
12 0.13 0.17 0.00 0.01 0.07 0.09
13 0.14 0.19 0.00 0.01 0.08 0.10
14 0.11 0.15 0.00 0.00 0.06 0.08
15 0.19 0.23 0.01 0.02 0.12 0.14
16 0.16 0.20 0.01 0.02 0.10 0.11
17 0.26 0.32 0.03 0.06 0.18 0.20
18 0.00 0.01 0.08 0.05 0.00 0.00
19 0.20 0.25 0.02 0.03 0.13 0.15
20 0.11 0.15 0.00 0.00 0.06 0.08
21 0.20 0.25 0.02 0.03 0.13 0.15

individuals is set to ∞, whereas, if |ê(xk)− ê(x�)| ≤ w, the distance is a measure

of proximity of xk and x�. The caliper width, w, is often taken as a multiple of the

standard deviation of the propensity score, ê(x), so that by varying the multiplier,

one can vary the relative importance given to ê(x) and x. In Table 8.3, the standard

deviation of ê(x) is 0.172. Tables 8.5 and 8.6 illustrate two distance matrices using a

caliper on the propensity score, in which the caliper is half of the standard deviation

of the propensity score, or 0.172/2 = 0.086.

In problems of practical size, a caliper of 20% of the standard deviation of the

propensity score is more common, and even that may be too large. A reasonable

strategy is to start with a caliper width of 20% of the standard deviation of the

propensity score, adjusting the caliper if needed to obtain balance on the propensity

score.

In both Tables 8.5 and 8.6, welder #1 has a propensity score that differs from

potential controls #1 and #2 by more than 0.086 in absolute value, so the distance

is infinite. There is a finite distance between welder #1 and potential controls #3

and #4, because their propensity scores are close, but in both Tables 8.5 and 8.6,

the distance is much smaller for potential control #4, because this control is closer

to welder #1 in age and smoking behavior. Control #2, who is 63 years old, is at

infinite distance from all 21 welders. Experience [32] and simulation [13] suggest

that matching on the propensity score ê(x) alone often suffices to balance the dis-

tribution of covariates, but the individual pairs may be quite different in terms of

x, as in the case of welder #1 and potential control #3; whereas, minimum distance



170 8 Basic Tools of Multivariate Matching

Table 8.5 Mahalanobis distances within propensity score calipers. Rows are the 21 welders and
columns are for the first 6 of 26 potential controls. An ∞ signifies that the caliper is violated.

Welder Control 1 Control 2 Control 3 Control 4 Control 5 Control 6

1 ∞ ∞ 6.15 0.08 ∞ ∞
2 ∞ ∞ ∞ 0.33 ∞ ∞
3 ∞ ∞ ∞ ∞ ∞ ∞
4 ∞ ∞ 12.29 ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ ∞ ∞ ∞
7 ∞ ∞ ∞ ∞ ∞ ∞
8 ∞ ∞ 0.02 5.09 ∞ ∞
9 ∞ ∞ ∞ ∞ ∞ ∞

10 0.51 ∞ ∞ ∞ 10.20 11.17
11 ∞ ∞ 0.18 ∞ ∞ ∞
12 ∞ ∞ 7.06 0.33 ∞ ∞
13 ∞ ∞ 7.57 ∞ ∞ ∞
14 ∞ ∞ 6.58 0.18 ∞ ∞
15 ∞ ∞ ∞ ∞ ∞ ∞
16 ∞ ∞ 8.13 ∞ ∞ ∞
17 ∞ ∞ ∞ ∞ ∞ ∞
18 9.41 ∞ ∞ ∞ 0.18 0.02
19 ∞ ∞ ∞ ∞ ∞ ∞
20 ∞ ∞ 6.58 0.18 ∞ ∞
21 ∞ ∞ ∞ ∞ ∞ ∞

matching within sufficiently narrow propensity score calipers also tends to balance

the distribution of covariates but confers the added benefit of closer individual pairs,

as in the case of welder #1 and potential control #4.

In Table 8.5, within the caliper, the distance is the Mahalanobis distance [24, 39],

which generalizes to several variables the familiar notion of measuring distance

in units of the standard deviation. Speaking very informally, in the Mahalanobis

distance, a difference of one standard deviation counts the same for each covariate

in x. Even as an informal description, this is not quite correct. The Mahalanobis

distance takes account of the correlations among variables. If one covariate in x
were weight in pounds rounded to the nearest pound and another were weight in

kilograms rounded to the nearest kilogram, then the Mahalanobis distance would

come very close to counting those two covariates as a single covariate because of

their high correlation.

If Σ̂ is the sample covariance matrix of x, then the estimated Mahalanobis dis-

tance [24, 39] between xk and x� is (xk −x�)
T Σ̂−1 (xk −x�). In the welder data in

Table 8.3, x� = (x�1,x�2,x�3)
T where x�1 is age, x�2 is a binary indicator of race, and

x�3 is a binary indicator of smoking, and the sample variance covariance matrix is

Σ̂ =

⎡
⎣ 54.04 0.39 −0.94

0.39 0.13 0.02

−0.94 0.02 0.25

⎤
⎦ (8.2)

with inverse
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Σ̂−1 =

⎡
⎣ 0.021 −0.077 0.084

−0.077 8.127 −1.009

0.084 −1.009 4.407

⎤
⎦ . (8.3)

The Mahalanobis distance was originally developed for use with multivariate

Normal data, and for data of that type it works fine. With data that are not Normal,

the Mahalanobis distance can exhibit some rather odd behavior. If one covariate

contains extreme outliers or has a long-tailed distribution, its standard deviation

will be inflated, and the Mahalanobis distance will tend to ignore that covariate

in matching. With binary indicators, the variance is largest for events that occur

about half the time, and it is smallest for events with probabilities near zero and

one. In consequence, the Mahalanobis distance gives greater weight to binary vari-

ables with probabilities near zero or one than to binary variables with probabilities

closer to one half. In the welder data, two individuals with the same age and race

but different smoking behavior have a Mahalanobis distance of 4.407, whereas two

individuals with the same age and smoking behavior but different race have a Maha-

lanobis distance of 8.127, so a mismatch on race is counted as almost twice as bad

as a mismatch on smoking. Two people who differed by 20 years in age with the

same race and smoking would have a Mahalanobis distance of 0.021×202 = 8.4, so

a difference in race counts about as much as a 20-year difference in age. In a differ-

ent context, if there were binary indicators for the states of the United States, then

the Mahalanobis distance would regard matching for Wyoming as vastly more im-

portant than matching for California, simply because fewer people live in Wyoming.

In many contexts, rare binary covariates are not of overriding importance, and out-

liers do not make a covariate unimportant, so the Mahalanobis distance may not be

appropriate with covariates of this kind.

A simple alternative to the Mahalanobis distance (i) replaces each of the covari-

ates, one at a time, by its ranks, with average ranks for ties, (ii) premultiplies and

postmultiplies the covariance matrix of the ranks by a diagonal matrix whose di-

agonal elements are the ratios of the standard deviation of untied ranks, 1, . . . ,L,

to the standard deviations of the tied ranks of the covariates, and (iii) computes

the Mahalanobis distance using the ranks and this adjusted covariance matrix. Call

this the ‘rank-based Mahalanobis distance.’ Step (i) limits the influence of outliers.

After step (ii) is complete, the adjusted covariance matrix has a constant diagonal.

Step (ii) prevents heavily tied covariates, such as rare binary variables, from having

increased influence due to reduced variance. In the welder data, two individuals

with the same age and race but different smoking behavior have a rank-based Ma-

halanobis distance of 3.2, whereas two individuals with the same age and smoking

behavior but different race have a rank-based Mahalanobis distance of 3.1, so a

mismatch on race is counted as about equal to a mismatch on smoking.

Tables 8.5 and 8.6 contrast the Mahalanobis distance and the rank-based Maha-

lanobis distance for the welder data. In both tables, in row #18 and column #1,

there is the distance between a 53-year-old, Caucasian, nonsmoking welder and a

48-year-old, African American, nonsmoking control. In Table 8.5, the distance is

9.41, while in Table 8.6 the distance is 3.33. In fact, the four largest finite distances
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Table 8.6 Rank-based Mahalanobis distances within propensity score calipers. Rows are the 21
welders and columns are for the first 6 of 26 potential controls. An ∞ signifies that the caliper is
violated.

Welder Control 1 Control 2 Control 3 Control 4 Control 5 Control 6

1 ∞ ∞ 5.98 0.33 ∞ ∞
2 ∞ ∞ ∞ 0.47 ∞ ∞
3 ∞ ∞ ∞ ∞ ∞ ∞
4 ∞ ∞ 10.43 ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ ∞ ∞ ∞
7 ∞ ∞ ∞ ∞ ∞ ∞
8 ∞ ∞ 0.04 3.92 ∞ ∞
9 ∞ ∞ ∞ ∞ ∞ ∞

10 0.25 ∞ ∞ ∞ 3.72 4.01
11 ∞ ∞ 0.28 ∞ ∞ ∞
12 ∞ ∞ 7.61 0.98 ∞ ∞
13 ∞ ∞ 9.02 ∞ ∞ ∞
14 ∞ ∞ 6.83 0.64 ∞ ∞
15 ∞ ∞ ∞ ∞ ∞ ∞
16 ∞ ∞ 10.61 ∞ ∞ ∞
17 ∞ ∞ ∞ ∞ ∞ ∞
18 3.33 ∞ ∞ ∞ 0.05 0.01
19 ∞ ∞ ∞ ∞ ∞ ∞
20 ∞ ∞ 6.83 0.64 ∞ ∞
21 ∞ ∞ ∞ ∞ ∞ ∞

in Table 8.5 are the four distances between Caucasians and African Americans,

whereas race and smoking are about equally important in Table 8.6.

In short, a sturdy choice for a distance is the rank-based Mahalanobis distance

within calipers on the propensity score, with the caliper width w adjusted to ensure

good balance on the propensity score.

8.4 Optimal Pair Matching

An ‘optimal pair matching’ pairs each treated subject with a different control to

minimize the total distance within matched pairs [34]. In the welder data in Table

8.3, this means forming 21 pairs using 21 different controls from the 26 potential

controls so that the sum of the 21 distances within pairs is minimized. The problem

is not trivial because the closest control to one treated subject may also be the closest

control to another treated subject. For instance, in Table 8.4, many treated subjects

are close to potential control #3, but control #3 will be paired to only one of them.

As seen in Table 8.7, a best-first or greedy algorithm will not generally find an

optimal pair matching.

Finding an optimal pair matching is known as the ‘assignment problem’ and was

solved by Kuhn [22] in 1955. One of the fastest algorithms for the assignment

problem was proposed by Bertsekas [4], who offers free Fortran code at his website
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Table 8.7 A small example showing that a greedy algorithm, or a best-first algorithm, does not
solve the optimal matching problem. A greedy algorithm would pair treated #1 with control #1,
and then would be forced to pair treated #2 with control #2 for a total distance of 0+1000, but it is
possible to obtain a match with a total distance of 0.01+0.01.

Control 1 Control 2

Treated 1 0.00 0.01
Treated 2 0.01 1000.00

Table 8.8 Optimal pair match using the squared difference in the propensity score. Covariates
are age, race (C=Caucasian , AA=African American), current smoker (Y=yes, N=no), and the
estimated propensity score ê(x).

Welders Matched Controls

Pair Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 45 C N 0.32
2 44 C N 0.34 47 C N 0.28
3 39 C Y 0.57 39 C Y 0.57
4 33 AA Y 0.51 41 C N 0.40
5 35 C Y 0.65 34 C Y 0.67
6 39 C Y 0.57 31 AA Y 0.55
7 27 C N 0.68 35 C Y 0.65
8 43 C Y 0.49 41 AA Y 0.35
9 39 C Y 0.57 34 C N 0.54
10 43 AA N 0.20 50 C N 0.23
11 41 C Y 0.53 44 C Y 0.47
12 36 C N 0.50 42 C N 0.38
13 35 C N 0.52 40 C N 0.42
14 37 C N 0.48 44 C N 0.34
15 39 C Y 0.57 35 C N 0.52
16 34 C N 0.54 38 C N 0.46
17 35 C Y 0.65 36 C Y 0.64
18 53 C N 0.19 52 C N 0.20
19 38 C Y 0.60 36 C Y 0.64
20 37 C N 0.48 42 C N 0.38
21 38 C Y 0.60 30 C N 0.63

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 40 10 38 0.46

at MIT. Hansen’s [16] pairmatch function in his optmatch package makes

Bertsekas’ code available from inside the statistical package R; see [28] for free

access to R, and see [25] for a general textbook about R. Dell’Amico and Toth

[11] provide a recent review of the literature on the assignment problem. A Fortran

implementation of Kuhn’s Hungarian Method is available from the Association for

Computing Machinery (ACM) as implemented by Carpaneto and Toth [7]. The

SAS program proc assign also solves the assignment problem.

For the welder data, Table 8.8 displays an optimal match using the propensity

score distances in Table 8.4. As the discussion in §8.3 led us to expect, the marginal

means at the bottom of Table 8.8 are fairly well balanced, but the individual pairs

are often not matched for race or smoking.
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Table 8.9 Optimal pair match using the Mahalanobis distance within propensity score calipers.
The caliper is half the standard deviation of the propensity score, or 0.172/2 = 0.086. Covari-
ates are age, race (C=caucasian , AA=African American), current smoker (Y=yes, N=no) and the
estimated propensity score ê(x).

Welders Matched Controls

Pair Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 44 C N 0.34
2 44 C N 0.34 47 C N 0.28
3 39 C Y 0.57 36 C Y 0.64
4 33 AA Y 0.51 41 AA Y 0.35
5 35 C Y 0.65 35 C Y 0.65
6 39 C Y 0.57 39 C Y 0.57
7 27 C N 0.68 30 C N 0.63
8 43 C Y 0.49 45 C N 0.32
9 39 C Y 0.57 36 C Y 0.64
10 43 AA N 0.20 48 AA N 0.14
11 41 C Y 0.53 44 C Y 0.47
12 36 C N 0.50 41 C N 0.40
13 35 C N 0.52 40 C N 0.42
14 37 C N 0.48 42 C N 0.38
15 39 C Y 0.57 35 C N 0.52
16 34 C N 0.54 38 C N 0.46
17 35 C Y 0.65 34 C Y 0.67
18 53 C N 0.19 52 C N 0.20
19 38 C Y 0.60 34 C N 0.54
20 37 C N 0.48 42 C N 0.38
21 38 C Y 0.60 31 AA Y 0.55

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 40 14 38 0.45

Although it is not obvious from Tables 8.3, 8.5, and 8.6, because of competi-

tion for controls, there is no pair matching in which the caliper on the propensity

score, |ê(xk)− ê(x�)| ≤ w with w = 0.086, is respected for all 21 matched pairs.

This is true because of competition among welders for the same controls, despite

the fact that each welder has a propensity score within w = 0.086 of at least one

potential control. For this reason, the infinities in Tables 8.5 and 8.6 are not used;

they are replaced by the addition of a ‘penalty function,’ which exacts a large but

finite penalty for violations of the constraint; see, for instance, [2, pages 372–373]

or [21, Chapter 6]. The penalty used here is 1000×max(0, |ê(xk)− ê(x�)|−w),
so if |ê(xk)− ê(x�)| ≤ w then the penalty is zero, but if |ê(xk)− ê(x�)| > w then

the penalty is 1000× (|ê(xk)− ê(x�)|−w). For instance, the penalty for match-

ing welder #1 to potential control #1 is 1000× (|.4587−0.1437|−0.0860) = 229.

This penalty is added to the Mahalanobis distance or rank-based Mahalanobis dis-

tance for the corresponding pair. Optimal matching will try to avoid the penalties

by respecting the caliper, but when that is not possible, it will prefer to match so the

caliper is only slightly violated for a few matched pairs.

Table 8.9 displays the optimal match using the Mahalanobis distances within

propensity score calipers from Table 8.5. Again, the calipers are implemented not
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Table 8.10 Optimal pair match using the rank-based Mahalanobis distance within propensity score
calipers. The caliper is half the standard deviation of the propensity score, or 0.172/2 = 0.086.
Covariates are age, race (C=Caucasian , AA=African American), current smoker (Y=yes, N=no),
and the estimated propensity score ê(x).

Welders Matched Controls

Pair Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 44 C N 0.34
2 44 C N 0.34 47 C N 0.28
3 39 C Y 0.57 36 C Y 0.64
4 33 AA Y 0.51 41 AA Y 0.35
5 35 C Y 0.65 35 C Y 0.65
6 39 C Y 0.57 39 C Y 0.57
7 27 C N 0.68 30 C N 0.63
8 43 C Y 0.49 45 C N 0.32
9 39 C Y 0.57 35 C N 0.52
10 43 AA N 0.20 48 AA N 0.14
11 41 C Y 0.53 44 C Y 0.47
12 36 C N 0.50 41 C N 0.40
13 35 C N 0.52 40 C N 0.42
14 37 C N 0.48 42 C N 0.38
15 39 C Y 0.57 36 C Y 0.64
16 34 C N 0.54 38 C N 0.46
17 35 C Y 0.65 34 C Y 0.67
18 53 C N 0.19 52 C N 0.20
19 38 C Y 0.60 31 AA Y 0.55
20 37 C N 0.48 42 C N 0.38
21 38 C Y 0.60 34 C N 0.54

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 40 14 38 0.45

with ∞’s but rather with a penalty function. Table 8.10 is similar, except the optimal

match uses the rank-based Mahalanobis distance within propensity score calipers in

Table 8.6, again using the penalty function to implement the calipers. The matches

in Table 8.9 and Table 8.10 are similar to each other and better than Table 8.8 in the

specific sense that inside individual pairs the matched individuals are closer.

8.5 Optimal Matching with Multiple Controls

In matching with multiple controls, each treated subject is matched to at least one,

and possibly more than one, control. To match in a fixed ratio is to match each

treated subject to the same number of controls; for instance, pair matching in §8.4

matches in a ratio of 1-to-1, while matching each treated subject to two controls is

matching in a ratio of 1-to-2. To match in a variable ratio is to allow the number of

controls to vary from one treated subject to another. In the welder data in Table 8.3,

there are too few potential controls to match in a 1-to-2 fixed ratio, but it is possible

to match with multiple controls in a variable ratio, and in particular to use all of the
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controls. The decision to match in fixed or variable ratio is a substantial one that

affects both the quality of the matching and the analysis and presentation of results.

These issues are sketched at the end of this section, following a variable match for

the welder data.

Imagine for a moment that there were 42 or more potential controls in the welder

data in Table 8.3; then it would be possible to match in a fixed 1-to-2 ratio, producing

21 matched sets, each containing one welder and two controls, where all 42 controls

are different. An optimal matching with a fixed ratio of 1-to-2 would minimize the

sum of the distances within matched sets between treated subjects and their matched

controls, or the sum of 42 distances. Similar considerations apply to matching in a

fixed ratio of 1-to-3, 1-to-4, and so on.

Matching with a variable number of controls is slightly more complex. The

optimization algorithm decides not only who is matched to whom, but also how

many controls to assign to each treated subject. So matching with a variable number

of controls has more choices to make, but these choices must be constrained in some

reasonable way to avoid trivial results. If all the distances were positive, and no

constraints were imposed, the minimum distance matching with variable numbers

of controls would always be a pair matching. A simple constraint is to insist that a

certain number of controls be used. For instance, in the welder data, one might insist

that all 26 controls be used. Alternatively, one might insist that 23 controls be used,

which would permit, but not require, the algorithm to discard the three potential

controls who are older than all of the welders. An attractive feature of fixing the

total number of controls is that the total distance is then a sum of a fixed number of

distances. In addition to constraining the total number of controls, a different type

of constraint permits a treated subject to have, say, at least one but at most three

controls. Given some set of constraints on the matching, an optimal matching with

variable controls minimizes the total distance between treated subjects and controls

inside matched sets.

For the welder data, Table 8.11 is an optimal matching with variable controls,

using all 26 controls, based on the Mahalanobis distances with propensity score

calipers. The calipers again use the penalty function in §8.4. The match consists

of 19 pairs, one welder matched to three controls, and one welder matched to four

controls. Matched set #10 consists of older African Americans. Matched set #18

consists of older Caucasian nonsmokers. Both groups were overrepresented in the

control group. As might be expected from the discussion in §8.3, a variable match

using the rank-based Mahalanobis distance (not shown) is generally similar, but

gives about equal emphasis to race and smoking, as opposed to the emphasis on

race in Table 8.11.

In a matched pair, a welder is compared with his matched control. For instance,

in matched pair #1 in Table 8.11, the welder is 38 years old, the matched control is

44 years old, and the difference in age is 38− 44 = −6 years. In matched set #10,

the welder is compared with the average of the three matched controls. In this way,

the comparison in matched set #10 is just slightly less variable than it would be if

one of the three controls were used and the other two were discarded. For instance,

in set #10, the welder is 43 years old, the three matched controls have average age
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Table 8.11 Optimal match with multiple controls using the Mahalanobis distance within propen-
sity score calipers. The caliper is half the standard deviation of the propensity score, or 0.172/2 =
0.086. Covariates are age, race (C=caucasian, AA=African American), current smoker (Y=yes,
N=no) and the estimated propensity score ê(x).

Welders Matched Controls

Matched Set Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 44 C N 0.34

2 44 C N 0.34 47 C N 0.28

3 39 C Y 0.57 36 C Y 0.64

4 33 AA Y 0.51 41 AA Y 0.35

5 35 C Y 0.65 35 C Y 0.65

6 39 C Y 0.57 36 C Y 0.64

7 27 C N 0.68 30 C N 0.63

8 43 C Y 0.49 45 C N 0.32

9 39 C Y 0.57 35 C N 0.52

10 43 AA N 0.20 51 AA N 0.12
10 56 AA Y 0.13
10 48 AA N 0.14

11 41 C Y 0.53 44 C Y 0.47

12 36 C N 0.50 41 C N 0.40

13 35 C N 0.52 40 C N 0.42

14 37 C N 0.48 42 C N 0.38

15 39 C Y 0.57 39 C Y 0.57

16 34 C N 0.54 38 C N 0.46

17 35 C Y 0.65 34 C Y 0.67

18 53 C N 0.19 63 C N 0.09
18 56 C N 0.15
18 52 C N 0.20
18 50 C N 0.23

19 38 C Y 0.60 34 C N 0.54

20 37 C N 0.48 42 C N 0.38

21 38 C Y 0.60 31 AA Y 0.55

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 40 14 40 0.45

(51+56+48)/3 = 51.7, so the difference in age in that set is 43− 51.7 = −8.67

years. Similarly, in set #18, the welder is 53 years old, the four matched controls

have average age (63+56+52+50)/4 = 55.25, so the difference in age in that

set is 53− 55.25 = −2.25 years. The ‘average difference in age’ is the average

of these 21 differences. Similarly, the ‘average age’ in the control group is the

average of these 21 average ages of controls. Implicitly, the control in matched set

#1 counts as one person, but each of the controls in matched set #10 counts as 1
3 of

a person. In this way, although all controls are used, they are weighted to describe

a younger, more Caucasian population with more smokers, that is, a population like

the 21 welders. Weighted in this way, the mean age among the matched controls

is 40, about two years older than the mean age of 38 for the welders. The same

process is applied to a binary variable, such as smoking, to obtain a 40% smoking

rate among controls. Although all controls are used in Table 8.11, the balance in
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the covariate means is similar to pair matching in §8.4 which discarded five controls.

This process of weighting is known as ‘direct adjustment,’ and it is one of the basic

differences between matching with a fixed ratio and matching with a variable ratio.3

When matching with a fixed ratio — for instance, with pair matching in §8.4 —

each matched control has the same weight.

The principal advantage of matching in a fixed ratio, such as 1-to-3 matching,

is that summary statistics, including those that might be displayed in graphs, may

be computed from treated and control groups in the usual way, without using direct

adjustment to give unequal weights to observations. For instance, one might dis-

play boxplots or Kaplan-Meier survival curves for treated and control groups. This

advantage will weigh heavily when potential controls are abundant and the biases

that must be removed are not large. A smaller issue is statistical efficiency, which in

nominal terms, though often not in practical terms, slightly favors matching in fixed

ratio over matching with a variable ratio [26].

There are several advantages to matching with a variable ratio [26, 34]. First,

the matched sets will be more closely matched, in the following precise sense. If

one finds the minimum distance match with, say, an average of three controls per

treated subject and two to four controls for each treated subject, the total distance

within matched sets will never be larger, and will typically be quite a bit smaller,

than in fixed ratio matching with three controls.4 This is visible in Table 8.11:

the two welders with low propensity scores were matched to the seven controls

with low propensity scores, and trying to allocate these seven more evenly among

welders would have produced a larger mismatch on these propensity scores. Sec-

ond, matching in fixed ratio requires the number of controls to be an integer multiple

of the number of treated subjects, and this restriction may be inconvenient or unde-

sirable for any of a variety of reasons; for instance, for the welder data in Table

8.3, the only possible matching in fixed ratio is pair matching. Third, just as §8.1

discussed definite limits to what can be accomplished with pair matching, there are

also definite limits to what can be accomplished by matching with multiple controls,

but these limits are better when matching with a variable ratio [26].

Finding an optimal match with variable controls is equivalent to solving a par-

ticular minimum-cost flow problem in a network [34]. In the statistical package R,

Hansen’s [16] fullmatch function in his optmatch package will determine an

optimal match with variable controls from a distance matrix by setting his parame-

ter min.controls to equal 1 rather than its default value of 0; the user will often

3 Direct adjustment can be applied to pretty much anything, not just means and proportions. In
particular, an empirical distribution function is little more than a sequence of proportions, and it
is clear how to apply direct adjustment to proportions. From the weighted empirical distribution
function, pretty much anything else can be computed; for instance, medians and quartiles. In [17],
medians and quartiles from directly adjusted empirical distribution functions are used to construct
directly adjusted boxplots. In the weighted empirical distribution function, the 44-year-old control
in matched set #1 has mass 1/21, whereas the 63-year-old control in matched set #18 has mass
1/(4×21).
4 This is true because, when the number of controls matched is the same, optimal matching with
variable controls solves a less constrained optimization problem than matching with a fixed ratio,
yet the two problems have the same objective function, so the optimum is never worse.
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Table 8.12 A distance matrix showing that the best full matching can be much better than the best
pair matching or the best matching with variable controls. The best full matching is (1,a,b) and
(2,3,c) with a distance of 0.01 + 0.01 + 0.01 + 0.01 = 0.04. A best pair matching is (1,a), (2,b),
(3,c), with a distance of 0.01+1000.00+0.01 = 1000.02. Because the number of potential controls
equals the number of treated subjects, every matching with variable controls is a pair matching, so
variable matching can do no better than pair matching.

Control a Control b Control c

Treated 1 0.01 0.01 1000.00
Treated 2 1000.00 1000.00 0.01
Treated 3 1000.00 1000.00 0.01

wish to adjust the parameter max.controls, which limits the number of con-

trols matched to each treated subject, and the parameter omit.fraction which

determines the number of controls to use. An alternative approach is to use the as-

signment algorithm in §8.4 but with an altered and enlarged distance matrix [27]; for

instance, this can be done with proc assign in SAS. For a textbook discussion

of network optimization, see [1, 5, 9].

Statistical analysis is not difficult when matching with multiple controls, whether

in fixed or variable ratios; see [23, pages 132–145], [12, pages 384–387] or [37,

pages 135–139]. For an illustration, in [17, 18], a study of gang violence among

teenage boys is analyzed twice, first as a study matched with a fixed ratio of 1-

to-2, and second as a study with two strata matched separately, one matched with

between two and seven controls and an average of five controls, the other matched

with between one and six controls with an average of three controls.

8.6 Optimal Full Matching

In matching with a variable number of controls in §8.5, a treated subject could be

matched to one or more controls. In full matching, the reverse situation is permitted

as well: one control may be matched to several treated subjects [35]. Table 8.12

shows that full matching can be vastly better than pair matching or matching with

a variable number of controls. Because full matching includes as special cases all

of the matching procedures considered in §8.4-§8.5, the optimal full matching will

produce matched sets that are at least as close as these procedures.

Table 8.13 is an optimal full match for the welder data in Table 8.3, using all 26

controls, and the Mahalanobis distance within propensity score calipers, with the

calipers implemented using the penalty function in §8.4. Matched set #1 is a pair.

Matched set #2 has one welder and seven controls. Matched set #3 has one control

and seven welders. Within each matched set, the welders and controls look similar.

As in matching with variable controls, summary statistics for the control group

in full matching must be directly adjusted. In parallel with §8.5, the welder in

matched set #2 is compared with the average of the seven controls, so these controls

implicitly have weight 1
7 . In matched set #3, each of the seven welders is compared
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Table 8.13 Optimal full match using Mahalanobis distance within propensity score calipers. The
caliper is half the standard deviation of the propensity score, or 0.172/2 = 0.086. Covariates are
age, race (C=Caucasian, AA=African American), current smoker (Y=yes, N=no), and the esti-
mated propensity score ê(x).

Welders Matched Controls

Matched Set Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 40 C N 0.42

2 44 C N 0.34 47 C N 0.28
2 45 C N 0.32
2 44 C N 0.34
2 41 AA Y 0.35
2 42 C N 0.38
2 42 C N 0.38
2 41 C N 0.40

3 41 C Y 0.53 39 C Y 0.57
3 39 C Y 0.57
3 39 C Y 0.57
3 39 C Y 0.57
3 39 C Y 0.57
3 38 C Y 0.60
3 38 C Y 0.60

4 33 AA Y 0.51 31 AA Y 0.55

5 35 C Y 0.65 35 C Y 0.65
5 34 C Y 0.67

6 27 C N 0.68 30 C N 0.63

7 43 C Y 0.49 44 C Y 0.47

8 43 AA N 0.20 51 AA N 0.12
8 56 AA Y 0.13
8 48 AA N 0.14

9 36 C N 0.50 35 C N 0.52
9 35 C N 0.52

10 37 C N 0.48 38 C N 0.46
10 37 C N 0.48

11 34 C N 0.54 34 C N 0.54

12 35 C Y 0.65 36 C Y 0.64
12 36 C Y 0.64

13 53 C N 0.19 63 C N 0.09
13 56 C N 0.15
13 52 C N 0.20
13 50 C N 0.23

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 39 10 55 0.50

with the same control, so this control implicitly has weight 7. As seen at the bottom

of Table 8.13, after weighting or direct adjustment, the means in the control group

are quite similar to the means in the welder group.

Although the matched sets in Table 8.13 are quite homogeneous, the quite un-

equal set sizes can lead to some inefficiency. Tables 8.14 and 8.15 are two of many

possible variations on the same theme. In Table 8.14, the matched sets can be pairs

or triples, and only 21 of the 26 controls are used, in parallel pair matchings in §8.4.
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Table 8.14 Optimal full match with sets of size 2 or 3 and 21 controls using the Mahalanobis
distance within propensity score calipers. The caliper is half the standard deviation of the propen-
sity score, or 0.172/2 = 0.086. Covariates are age, race (C=Caucasian, AA=African American),
current smoker (Y=yes, N=no) and the estimated propensity score ê(x).

Welders Matched Controls

Matched Set Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 42 C N 0.38
1 42 C N 0.38

2 44 C N 0.34 45 C N 0.32
2 44 C N 0.34

3 39 C Y 0.57 36 C Y 0.64
3 38 C Y 0.60

4 33 AA Y 0.51 31 AA Y 0.55

5 35 C Y 0.65 35 C Y 0.65

6 39 C Y 0.57 39 C Y 0.57
6 39 C Y 0.57

7 27 C N 0.68 30 C N 0.63

8 43 C Y 0.49 44 C Y 0.47
8 41 C Y 0.53

9 43 AA N 0.20 51 AA N 0.12
9 48 AA N 0.14

10 36 C N 0.50 35 C N 0.52
10 35 C N 0.52

11 37 C N 0.48 41 C N 0.40
11 38 C N 0.46

12 39 C Y 0.57 36 C Y 0.64
12 38 C Y 0.60

13 34 C N 0.54 34 C N 0.54

14 35 C Y 0.65 34 C Y 0.67

15 53 C N 0.19 56 C N 0.15
15 52 C N 0.20

16 37 C N 0.48 40 C N 0.42

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 39 10 52 0.50

In Table 8.15, all 26 controls are used, with at most two welders or at most three

controls in any matched set. In Tables 8.14 and 8.15, welders and controls in the

same matched set are reasonably similar, and the (weighted) means in the control

group are closer to the welder means than for the several pair matchings in §8.4.

In one specific sense, an optimal full matching is an optimal design for an ob-

servational study [35]. Specifically, define a stratification to be a partitioning of the

subjects into groups or strata based on the covariates with the one requirement that

each stratum must contain at least one treated subject and at least one control. The

quality of a stratification might reasonably be judged by a weighted average of all

the within strata distances between treated subjects and controls. For instance, if a

stratum contained two treated subjects and three controls, then the average distance

between the treated and control subjects in this stratum is an average of the 6 = 2×3

distances between two treated and three control subjects. The stratum-specific av-
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Table 8.15 Optimal full match using all 26 controls with sets containing at most two welders and at
most three controls, using the Mahalanobis distance within propensity score calipers. The caliper
is half the standard deviation of the propensity score, or 0.172/2 = 0.086. Covariates are age,
race (C=Caucasian, AA=African American), current smoker (Y=yes, N=no), and the estimated
propensity score ê(x).

Welders Matched Controls

Matched Set Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 44 C N 0.34
1 41 AA Y 0.35
1 42 C N 0.38

2 44 C N 0.34 50 C N 0.23
2 47 C N 0.28
2 45 C N 0.32

3 39 C Y 0.57 36 C Y 0.64
3 39 C Y 0.57

4 33 AA Y 0.51 31 AA Y 0.55

5 35 C Y 0.65 34 C Y 0.67

6 27 C N 0.68 30 C N 0.63

7 43 C Y 0.49 44 C Y 0.47
7 41 C Y 0.53

8 39 C Y 0.57 39 C Y 0.57
8 39 C Y 0.57

9 43 AA N 0.20 51 AA N 0.12
9 56 AA Y 0.13
9 48 AA N 0.14

10 36 C N 0.50 35 C N 0.52
10 35 C N 0.52

11 37 C N 0.48 42 C N 0.38
11 38 C N 0.46

12 34 C N 0.54 34 C N 0.54

13 35 C Y 0.65 35 C Y 0.65

14 53 C N 0.19 63 C N 0.09
14 56 C N 0.15
14 52 C N 0.20

15 38 C Y 0.60 36 C Y 0.64
15 38 C Y 0.60

16 37 C N 0.48 41 C N 0.40
16 40 C N 0.42

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 39 11 56 0.50

erage distances are combined into a single number, specifically a weighted average

distance, perhaps weighting by the number of treated subjects (here 2) or the total

number of subjects (here 5 = 2+3) or the number of control subjects (here 3). No

matter which of these weightings is used, no matter what distance is used, there is

always a full matching that minimizes this weighted average distance [35]. More-

over, with continuous covariates and reasonable distance functions, with probability

1, only a full matching will minimize the weighted average distance [35]. Stated
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informally but briefly, a stratification that makes treated subjects and controls as

similar as possible is always a full matching.5

An optimal full match can be found as a minimum cost flow problem in a network

[35, 15]. In the statistical package R, starting with a distance matrix, Hansen’s

[16] fullmatch function in his optmatch package will find an optimal full

matching. In SAS, proc netflow can find an optimal full matching, although

it requires quite a bit of coaxing. Bertsekas [5] provides Fortran code for network

optimization at his web page at MIT; this code is called by Hansen’s optmatch
package in R. Implementation in R is illustrated in Chapter 13.

8.7 Efficiency

Efficiency is a secondary concern in observational studies; the primary concern is

biases that do not diminish as the sample size increases [8]. If there is a bias of fixed

size, then as the sample size increases it quickly dominates the mean square error,6

so one has a highly efficient estimate of the wrong answer. Despite its secondary

role, there is an important fact about efficiency with multiple controls that deserves

close attention.

Imagine that we will match in fixed ratio, k controls matched to each treated

subject in each of I matched sets. Imagine further that the situation satisfies the as-

sumptions associated with the paired t-test. That is: (i) each matched set has a pair

parameter that is eliminated by differencing, (ii) there is an additive treatment effect,

τ , (iii) beyond the pair effect, there are independent Normally distributed errors with

expectation zero, constant variance ω2. If the matching were perfect, exactly con-

trolling all bias from observed and unobserved covariates, then the treated-minus-

control difference in means is unbiased for τ with variance (1+1/k)ω2/I. Table

8.16 displays the variance multiplier, (1+1/k), for several choices of k. Matching

with k = 2 substantially reduces the variance of the mean difference, from 2 to 1.5,

taking it halfway to k = ∞. The gains after that are much smaller, from 1.5 to 1.25

by going from k = 2 to k = 4, from 1.1 to 1 by going from k = 10 to k = ∞. See [18]

for informal presentation of related results. Detailed efficiency results are found in

[17, 26].

There is abundant evidence from theory [26] and from case studies [45] suggest-

ing that Table 8.16 exaggerates the gain from additional controls. The reason is

simple: the best k = 2 controls will be more closely matched for observed covari-

ates than the best k = 10 controls, and the quality of the match affects both bias and

5 Although the proofs of these claims require some attention to detail, the underlying technique
may be described briefly. Specifically, if a stratification is not a full match, then some stratum
can be subdivided without increasing, and possibly decreasing, its average distance. Subdividing
repeatedly terminates in a full match.
6 There is a sense in which Pitman’s asymptotic relative efficiency isn’t well-defined (or isn’t
meaningful) when there is a bias whose magnitude does not diminish with increasing sample size.
See Chapter 15 where this subject is developed in a precise sense.
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Table 8.16 Variance ratio 1 + 1/k when matching k controls to each treated subject. Here, k = ∞
is only slightly better than k = 6, which is slightly better than k = 4.

Number of Controls 1 2 4 6 10 ∞
Variance Multiplier 2 1.50 1.25 1.17 1.10 1

variance. The premise of Table 8.16 is that the quality of the match does not change

as more controls are used, and that premise is false.

If large numbers of close potential controls are available without cost, use of

k = 2 controls is definitely worthwhile, and k = 4 or k = 6 may yield some further

improvement. In a precise, quantifiable sense, the issue of design sensitivity in Part

III is far more important than using every available control, and the considerations

discussed there will often encourage use of some controls and not others; see in

particular Chapter 15 and §17.3.

8.8 Summary

Matching on one variable, the propensity score, tends to produce treated and control

groups that, in aggregate, are balanced with respect to observed covariates; however,

individual pairs that are close on the propensity score may differ widely on specific

covariates. To form closer pairs, a distance is used that penalizes large differences

on the propensity score, and then finds individual pairs that are as close as possible.

Pairs or matched sets are constructed using an optimization algorithm. Matching

with variable controls and full matching combine elements of matching with ele-

ments of direct adjustment. Full matching can often produce closer matches than

pair matching.

8.9 Further Reading

Matching for propensity scores is discussed in [30, 32]. Optimal matching is dis-

cussed in [34]. Matching with variable controls is discussed in [26], where it is

shown that matching with variable controls can remove more bias than matching in

fixed ratio. The optimality of full matching is proved in [35]. See the paper by Ben

Hansen and Stephanie Olsen Klopfer [15] for the best algorithmic results on full

matching. For examples of optimal pair matching, see [41, 43, 44]; for matching

in fixed ratio, see [45, 18]; for variable matching, see [17], and for full matching,

see the papers by Ben Hansen [14], Elizabeth Stuart and K.M. Green [46] , and

Ruth Heller, Elisabetta Manduchi, and Dylan Small [19]. For a detailed result on

the statistical efficiency of alternative designs, see the appendix of [17].
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Chapter 9
Various Practical Issues in Matching

Abstract Having constructed a matched control group, one must check that it is sat-

isfactory, in the sense of balancing the observed covariates. If some covariates are

not balanced, then adjustments are made to bring them into balance. Three adjust-

ments are almost exact matching, exact matching, and the use of small penalties.

Exact matching has a special role in extremely large problems, where it can be used

to accelerate computation. Matching when some covariates have missing values is

discussed.

9.1 Checking Covariate Balance

Although a table such as Table 7.1 in Chapter 7 may suffice to describe covariate

balance in a scientific paper [15], somewhat more is typically needed when con-

structing a matched sample. Checks on covariate balance in matching are informal

diagnostics, not unlike residuals in a regression. They aid in thinking about whether

the treated and control groups overlap sufficiently to be matched, and whether the

match currently under consideration has achieved reasonable balance or whether

some refinements are required. The study of ovarian cancer [15] in Chapter 7 is

used to illustrate.

One common measure of covariate imbalance is a slightly unusual version of

an absolute standardized difference in means [12]. The numerator of the standard-

ized difference is simply the treated-minus-control difference in covariate means

or proportions, and it is computed before and after matching. The first variable,

surgeon-type-GO, in Table 7.1 is a binary indicator, which is 1 if a GO performed

the surgery and is 0 if someone else performed the surgery. Before matching,

the difference in means is 0.76 − 0.33 = 0.43, or 43%, and after matching it is

0.76− 0.75 = 0.01 or 1%. Write xtk, xck, xcmk for the means of covariate k in, re-

spectively, the treated group, the control group before matching, and the matched

control group, so xt1 = 0.76, xc1 = 0.33, and xcmk = 0.75 for the first covariate in

Table 7.1. It is the denominator that is just slightly unusual in two ways. First, the

187P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
DOI 10.1007/978-1-4419-1213-8_9, © Springer Science+Business Media, LLC 2010 
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denominator always describes the standard deviation before matching, even when

measuring imbalance after matching. We are asking whether the means or propor-

tions are close; we do not want the answer to be hidden by a simultaneous change in

the standard deviation. Second, the standard deviation before matching is calculated

in a way that gives equal weight to the standard deviation in the treated and control

groups before matching. In many problems, the potential control group is much

larger than the treated group, but we do not want to give much more weight to the

standard deviation in the control group. Write stk and sck for the standard deviations

of covariate k in the treated group and in the control group before matching. The

pooled standard deviation for covariate k is
√(

s2
tk + s2

ck

)
/2. The absolute standard-

ized difference before matching is sdbk = |xtk − xck|/
√(

s2
tk + s2

ck

)
/2 and the abso-

lute standardized difference after matching is sdmk = |xtk − xcmk|/
√(

s2
tk + s2

ck

)
/2;

notice that they are identical except that xcmk replaces xck. For the first covariate

in Table 7.1, surgeon-type-GO, the absolute standardized difference is 0.95 before

matching and 0.02 after matching, that is, almost a full standard deviation before

matching, and about 2% of a standard deviation after matching.

The boxplots in Figure 9.1 display 67 absolute standardized differences before

and after matching. The list of 67 covariates is slightly redundant; for instance, all

three categories of surgeon type appear as three binary variables, even though the

value of one of these variables is determined by the values of the other two. The

imbalances before matching are quite large: there are four covariates with differ-

ences of more than half a standard deviation. After matching, the median absolute

standardized difference is 0.03 or 3% of a standard deviation, and the maximum is

0.14. In fact, because fine balancing was used to construct this matched sample, 18

of the 67 absolute standardized differences equal zero exactly.

The principal advantage of an absolute standardized difference over an unstan-

dardized difference, say xtk − xcmk, is that variables on different scales, such as age

and hypertension, can be plotted in a single graph for quick inspection. The disad-

vantage is that a covariate such as age means more in terms of years than in terms

of standard deviations. In practice, it is helpful to examine an unstandardized table

such as Table 7.1 in addition to graphs of standardized differences.

In matching with variable controls, as in §8.5, or in full matching, as in §8.6,

the mean in the matched control group, xcmk, is a weighted mean, as described in

§8.5 and §8.6. Then the absolute standardized difference is computed using this

weighted mean, |xtk − xcmk|/
√(

s2
tk + s2

ck

)
/2.

It might seem desirable that all of the absolute standardized differences equal

zero, but this would not happen even in a completely randomized experiment. How

does the imbalance in the boxplots in Figure 9.1 compare with the imbalance ex-

pected in a completely randomized experiment?

Imagine a completely randomized experiment. This means that 688 unmatched

patients are randomly divided into two groups, each with 344 patients. If a random-

ization test were applied to one covariate to compare the distribution of the covariate

in these randomly formed groups, it would produce a P-value less than or equal to
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0.05 with probability 0.05; in fact, it would produce a P-value less than or equal to

α with probability α for every α between zero and one.1 Fisher’s exact test for a

2×2 table is one such randomization test, and Wilcoxon’s rank sum test is another.

With 688 patients, it suffices to use the large sample approximations to these tests.
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Fig. 9.1 Balance checks for 67 covariates in the study of ovarian cancer. The boxplots show ab-
solute values of standardized differences in means between the GO and MO groups. The quantile-
quantile plot compares the 67 two-sample P-values with the uniform distribution, with the line of
equality. The boxplot shows that the imbalances in covariates were greatly reduced by match-
ing, while the quantile-quantile plot shows the imbalance on observed covariates after matching
is somewhat better than expected for a completely randomized experiment with patients randomly
assigned to GO or MO. Balance on observed covariates does not imply balance on covariates that
were not observed.

1 This statement is not exactly correct, owing to the discreteness of a randomization distribution,
but it is close enough.
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The quantile-quantile plot in Figure 9.1 compares the 67 two-sample P-values

with the uniform distribution. A quantile-quantile plot compares the quantiles in a

sample with the quantiles in a probability distribution to see how they compare [2,

pages 143–149]. If the sample looks like the distribution, the points will fall close

to the line of equality. In Figure 9.1 the points fall above the line of equality. This

means that the two-sample p-values for the 688 patients tend to be larger than they

would be if they came from the uniform distribution. In other words, matching on

these 67 covariates has produced more balance on these 67 covariates than we would

have expected if we had not matched these patients, but instead had assigned them

to treatment or control at random. Of course, randomization has the key benefit that

it tends to balance variables that were not measured, whereas matching can only be

expected to balance observed covariates.

9.2 Almost Exact Matching

If there are a few covariates of overriding importance, each taking just a few values,

then one may wish to match exactly on these covariates whenever this is possible.

For instance, in Table 7.1, for reasons discussed in §7.2, an effort was made to

match exactly on both surgeon type and stage, although this was not possible in

every instance. The procedure is similar to the use of penalties in §8.4. If subjects

k and � do not have the same values on these few key covariates, then a substantial

penalty is added to the distance between them as recorded in the distance matrix.

If the penalty is large enough, optimal matching will avoid the penalties whenever

possible, and when avoiding all of the penalties is not possible, it will minimize the

number of matches that incur the penalty. That is, if an exact match is possible, one

will be produced; if not, the match will be as close to exact as possible. In either

case, once the match is as exact as possible, the best such match is selected using

other considerations represented in the distance matrix. The approach is flexible: it

may be used with pair matching (§8.4), matching with variable controls (§8.5), or

full matching (§8.6).

Obviously, as the distance matrix increasingly emphasizes these key covariates,

it also de-emphasizes the other covariates, perhaps resulting in poor matches on the

other covariates. This is the principal disadvantage of all methods that emphasize

exact matching: gains in one area are paid for by losses in another, and sometimes

the price is high. In contrast, methods that emphasize balancing covariates, such as

propensity scores (§8.2) and fine balance (Chapter 10), may produce gains in one

area without losses in another.

To illustrate, in the welder data in Table 8.3, there were 11 smokers among the

21 welders and 9 smokers among the 26 potential controls. In pair matching, an

exact match on smoking is not possible: at most 9 of the 11 smoking welders can be

matched to smoking controls. In fact, none of the three pair matches in Tables 8.8-

8.10 had used all nine smoking controls. Table 9.1 is an optimal pair match using the

Mahalanobis distance within propensity score calipers with almost exact matching
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Table 9.1 Optimal pair match using the Mahalanobis distance within propensity score calipers
with almost exact matching for smoking. The caliper is half the standard deviation of the propen-
sity score, or 0.172/2 = 0.086. Covariates are age, race (C=Caucasian , AA=African American),
current smoker (Y=yes, N=no), and the estimated propensity score ê(x).

Welders Matched Controls

Pair Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 44 C N 0.34
2 44 C N 0.34 45 C N 0.32
3 39 C Y 0.57 36 C Y 0.64
4 33 AA Y 0.51 41 AA Y 0.35
5 35 C Y 0.65 35 C Y 0.65
6 39 C Y 0.57 39 C Y 0.57
7 27 C N 0.68 30 C N 0.63
8 43 C Y 0.49 56 AA Y 0.13
9 39 C Y 0.57 36 C Y 0.64
10 43 AA N 0.20 48 AA N 0.14
11 41 C Y 0.53 44 C Y 0.47
12 36 C N 0.50 41 C N 0.40
13 35 C N 0.52 40 C N 0.42
14 37 C N 0.48 42 C N 0.38
15 39 C Y 0.57 35 C N 0.52
16 34 C N 0.54 38 C N 0.46
17 35 C Y 0.65 34 C Y 0.67
18 53 C N 0.19 52 C N 0.20
19 38 C Y 0.60 34 C N 0.54
20 37 C N 0.48 42 C N 0.38
21 38 C Y 0.60 31 AA Y 0.55

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 40 19 43 0.45

for smoking. Specifically, the distance matrix for the match in Table 8.5 was used;

however, if there was a mismatch on smoking between a welder and a potential

control, a penalty was added to the distance between them. This penalty, 5322, was

ten times the largest distance in the previous distance matrix used for Table 8.5,

where the previous distance matrix already contained penalties to implement the

caliper on the propensity score, as described in §8.4.

In Table 9.1, all nine smoking controls are used, unlike Tables 8.8–8.10. Each

of the nine smoking controls is matched to a welder who smokes. Inevitably, two

smoking welders are matched to nonsmoking controls; they are #15 and #19. In the

means at the bottom of Table 9.1, the balance on smoking is slightly better than in

Tables 8.8–8.10, but the balance on race is worse.

Almost exact matching is sometimes useful when there is interest in estimating

the treatment effect separately in several subgroups, say for smokers and nonsmok-

ers in Table 9.1. For the ovarian cancer study in Chapter 7, in [15, Table 5], results

were reported separately for the 263 pairs in which both patients had stage III or

stage IV cancer. Because the matching was ‘almost exact’ for stage, only 10 of 344

pairs had a stage III or IV cancer matched to another stage or missing stage, and so

could not be used straightforwardly in such a subgroup analysis.
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Table 9.2 Is exact matching feasible in the welder data? The 2x2 contingency tables show that
exact matching is feasible for race, but not for smoking. Covariates are race (C=Caucasian,
AA=African American), and current smoker (Y=yes, N=no)

.

Smoker Nonsmoker

Welder 11 10
Potential Control 9 17

AA C

Welder 2 19
Potential Control 5 21

Almost exact matching adds large penalties to a distance matrix when treated and

control subjects differ on a key covariate. Sometimes a covariate is uncomfortably

out of balance but not of overriding importance. In this case, small penalties for

mismatches are sometimes used. There is, at present, little theory to guide the use

of small penalties; nonetheless, they often work. The Mahalanobis distance between

two randomly selected individuals from a single multivariate Normal population has

expectation equal to twice the number of covariates, so adding a penalty of 2 to a

Mahalanobis distance may be viewed informally as doubling the importance of that

one covariate.

9.3 Exact Matching

Almost exact matching, as in §9.2, will result in an exact match whenever one

is available, so for many purposes a separate discussion of exact matching is not

needed. Nonetheless, there are computational reasons to distinguish exact and al-

most exact matching.

A simple contingency table will indicate whether an exact match is possible. For

the welder data, Table 9.2 shows that exact matching is feasible for race (because

5 ≥ 2 and 21 ≥ 19) but not feasible for smoking (because 9 < 11), although ‘almost

exact matching’ is feasible for smoking, as illustrated in §9.2.

When feasible, an exact match can be found by subdividing the matching prob-

lem into several smaller problems and piecing the answers together. For instance,

knowing from Table 9.2 that an exact match for race is feasible, the match can be

divided into two separate problems, namely matching the two African American

welders and matching the 19 Caucasian welders.

In small problems, there is no advantage to such a subdivision, but in extremely

large matching problems, there can be a useful reduction in computational effort,

both in required memory storage and in speed of computation. For instance, suppose

that there is a nominal covariate with five categories, each containing m treated

subjects and n potential controls, so that there are 5m + 5n subjects in total. A

distance matrix for all 5m+5n subjects is 5m×5n with 25mn entries, whereas each

of the five subdivided matching problems has a distance matrix that is m× n with

mn entries, so it is 1/25th as large. The worst-case time bound for the assignment
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problem grows as the cube of the number of subjects [4, page 147], here 5m + 5n,

so the reduction to a problem of size m + n is expected to substantially accelerate

computation.

If a critically important covariate is continuous, it may enter the matching in two

versions, one continuous, the other discrete. For instance, a nominal variable can be

formed by cutting at quantiles of the continuous variable, and this nominal variable

may be used to subdivide the problem for exact matching. The only reasons to do

this is to save computer memory or accelerate computation. Within each subdivi-

sion, the continuous variable may be used in a distance, such as the Mahalanobis

distance, or with a caliper, as described in §8.4.

A large sample size should be a luxury, not a hindrance. To enjoy that luxury

when matching, consider exact matching on one or two important covariates, subdi-

viding the matching problem into several smaller problems.

9.4 Missing Covariate Values

A covariate has missing values if it is recorded for many people but not for some

people. The pattern of missing data refers to which values are missing and which

values are present, so you observe the pattern of missing data, though you do not

observe the missing values. The constant worry with missing values is that what you

cannot see may differ in important ways from what you can see. If a manuscript

is missing certain words, it makes all the difference whether the manuscript was

damaged by rain or edited by a censor. If edited by a censor, and if you know what

motivates the censor, then the fact that a word is missing speaks volumes about

what the word must have been, even though you still do not know the word. If a

high school student reports his mother’s level of education in a survey but not his

father’s, you might wonder whether he ever met his father. The pattern of missing

data may or may not say something about the values that are missing, but knowing

the pattern does not tell you the missing values.

The propensity score e(x) is the conditional probability of treatment given the

observed covariates, e(x) = Pr(Z = 1 | x), and matching on e(x) tends to balance

x; see §3.3 or [10, Theorems 1 and 2]. If a coordinate of x is sometimes miss-

ing, think of that coordinate as being a number if it is not missing or * if it is

missing. When some covariates have missing values, the propensity score remains

well-defined: it refers to the conditional probability of treatment given x, that is

e(x) = Pr(Z = 1 | x), where now some of the coordinates may equal *. It only

takes a moment to review the proof of the balancing property of the propensity

score to realize that the proof cares not a bit whether the coordinates of x take only

numeric values or sometimes take the value *; see [11, Appendix B] for an explicit

and detailed discussion. This says something useful, but alas something less than

one might hope. It says that matching on e(x) will tend to balance the observed

covariates and the pattern of missing covariates; however, the missing values them-
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selves may or may not be balanced. The subject is easiest to discuss in the context

of an example, which will happen in §13.4.

The usual way to estimate e(x) when some covariates are missing is to (i) append

indicator variables for the pattern of missing data, (ii) for each covariate, plug in an

arbitrary but fixed value for each *, and (iii) fit a logit model with these variables,

taking the fitted probabilities from the model as the estimates ê(x). It is not difficult

to verify that the presence of the missing value indicators means that the arbitrary

values in step (ii) do not affect ê(x), though they do affect the coefficients of the

model.2 Such a logit model is a specific parametric form for a conditional probabil-

ity e(x) = Pr(Z = 1 | x) relating two observed quantities, namely Z and x with its

*’s. As is always true with any such model, it may or may not correctly represent

the form of Pr(Z = 1 | x) — perhaps there should be an interaction linking the miss-

ing value indicator for variable #7 with the indicator for variable #19 — however,

the issues here are no different from any other attempt to model a conditional prob-

ability of one observable given another. Again, see [11, Appendix B] for additional

detail.

Further discussion is aided by an example; see §13.4.

9.5 Further Reading

For further discussion of checks on covariate balance, see the brief discussion in

Cochran’s paper [3], and the longer discussions in the papers by Ben Hansen and

Jake Bowers [5], Ben Hansen [6], Kosuke Imai, Gary King, and Elizabeth Stuart

[7] , and Sue Marcus and colleagues [9]. Propensity scores with missing data are

discussed in [11, Appendix B]. The use of penalty functions in optimization is fairly

standard; see [1, 8].
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Chapter 10
Fine Balance

Abstract Fine balance means constraining a match to balance a nominal variable,

without restricting who is matched to whom, when matching to minimize a distance

between treated and control subjects. It may be applied to: (i) a nominal variable

with many levels that is difficult to balance using propensity scores, (ii) a rare bi-

nary variable that is difficult to control using a distance, or (iii) the interaction of

several nominal variables. The fine balance constraint and the distance can empha-

size different covariates. When exact balance is unobtainable, fine balance can be

used to obtain a specific pattern of imbalances.

10.1 What Is Fine Balance?

Fine balance is a constraint on an optimal matching that forces a nominal variable

to be balanced [5, 6]. Fine balance is explicitly aimed at covariate balance, and it

makes no effort to match exactly for this nominal variable. The pairing can focus

on other covariates with the knowledge that this nominal variable will be balanced.

In the study of ovarian cancer in Chapter 7 and [7], the eight SEER sites

and three intervals 1991–1992, 1993–1996, and 1997–1999 for year of diagnosis

were finely balanced, as was their 24 = 8×3 category interaction. In other words,

the number of patients diagnosed in 1991–1992 in Connecticut, for instance, was

exactly the same for GO patients and the matched control group of MO patients,

although these patients were not typically matched to each other. As you may recall

from Table 7.1, SEER site and year of diagnosis were substantially out of balance

prior to matching, but they are not usually viewed as extremely important by clini-

cians. For this reason, the distance and various penalties used in this match sought

individual pairs with the same clinical stage from the same surgeon type with similar

propensity scores, and paid no explicit attention to SEER site, yet the fine balance

constraint ensured SEER site was balanced in aggregate.

Propensity scores use probability to balance covariates [4], appealing to the law

of large numbers [2, Chapter 10]; in effect, if a coin is flipped sufficiently often,

197P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
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the number of heads tends to balance the number of tails. Although they work well

in many contexts, propensity scores may not balance covariates when the number

of trials (or flips) is effectively small. For instance, if the data record little or no

information about income, education, pollution, and so on, but do record postal zip

code, then one might think to match for zip code as a proxy for various unmeasured

variables. In many contexts, there will be only a handful of people from any one zip

code, so matching exactly for Zip Code will yield poor matches for other covariates;

moreover, the law of large numbers is of no help. In such a context, fine balancing

can balance zip code, without matching people from the same zip code to one an-

other. Similar considerations apply if there are several binary covariates in which

one category is rarely seen; these can be combined into one nominal variable with

several rare levels and one common level, and this amalgamated covariate can be

finely balanced. More generally, if several important nominal variables are thought

to interact with each other, fine balancing may be used to exactly balance the many

categories formed from their interaction (i.e., their direct product).

10.2 Constructing an Exactly Balanced Control Group

As in Chapter 8, fine balance is best understood with the aid of a small example.

For the welder data [1] in Chapter 8, it was clear from Tables 8.3 and 9.2 that it was

possible to balance race but not smoking. Section 10.2 finds a match that finely bal-

ances race, while §10.3 finds a match that controls the nature of the joint imbalance

in race and smoking.

In Tables 8.3 and 9.2, among the potential controls, there are five African Amer-

icans where two are needed for balance, and there are 21 Caucasians, where 19 are

needed for balance, so three African Americans and two Caucasians must be re-

moved to obtain balance. This is done by expanding the distance matrix, adding

five rows. Table 10.1 adds five rows to Table 8.5, which recorded the Mahalanobis

distances within propensity score calipers for the first 6 of 26 potential controls.

The five extra rows are E1 to E5, making the distance matrix square, 26×26. The

first two of these extra rows, E1 and E2, will take away two Caucasians, while the

last three of the extra rows, E3, E4, and E5, will take away three African Ameri-

cans. Because control #1 in column 1 of Table 10.1 is African American, he is at

infinite distance from the two Caucasian extras and at zero distance from the three

African American extras. Because controls #2–#6 in columns 2 to 6 of Table 10.1

are Caucasian, they are at zero distance from the two Caucasian extras and at infi-

nite distance from the three African American extras. A similar pattern occurs in

the remaining 20 columns of the distance matrix.

With a distance matrix patterned as in Table 10.1, an optimal match is found, and

the extras and their matched controls are discarded. To avoid the infinite distances,

three African American and two Caucasian controls must be matched to the extras,

and the match that remains is balanced.
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Table 10.1 Mahalanobis distances within propensity score calipers with extra rows to finely bal-
ance race. Rows are the 21 welders plus five extras (E), and columns are for the first 6 of 26
potential controls. An ∞ signifies that the caliper is violated.

Welder Control 1 Control 2 Control 3 Control 4 Control 5 Control 6

1 ∞ ∞ 6.15 0.08 ∞ ∞
2 ∞ ∞ ∞ 0.33 ∞ ∞
3 ∞ ∞ ∞ ∞ ∞ ∞
4 ∞ ∞ 12.29 ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ ∞ ∞ ∞
7 ∞ ∞ ∞ ∞ ∞ ∞
8 ∞ ∞ 0.02 5.09 ∞ ∞
9 ∞ ∞ ∞ ∞ ∞ ∞

10 0.51 ∞ ∞ ∞ 10.20 11.17
11 ∞ ∞ 0.18 ∞ ∞ ∞
12 ∞ ∞ 7.06 0.33 ∞ ∞
13 ∞ ∞ 7.57 ∞ ∞ ∞
14 ∞ ∞ 6.58 0.18 ∞ ∞
15 ∞ ∞ ∞ ∞ ∞ ∞
16 ∞ ∞ 8.13 ∞ ∞ ∞
17 ∞ ∞ ∞ ∞ ∞ ∞
18 9.41 ∞ ∞ ∞ 0.18 0.02
19 ∞ ∞ ∞ ∞ ∞ ∞
20 ∞ ∞ 6.58 0.18 ∞ ∞
21 ∞ ∞ ∞ ∞ ∞ ∞
E1 ∞ 0 0 0 0 0
E2 ∞ 0 0 0 0 0
E3 0 ∞ ∞ ∞ ∞ ∞
E4 0 ∞ ∞ ∞ ∞ ∞
E5 0 ∞ ∞ ∞ ∞ ∞

Table 10.2 displays the minimum distance finely balanced match. Race is per-

fectly balanced, but the pairs are not exactly matched for race. In one sense, Table

10.2 is a slight improvement over Table 8.9 because the control group means for

age and smoking are the same, while the means for race and the propensity score

are slightly closer to the welder means. Notice that the finely balanced match se-

lected two African American smokers, even though a nonsmoker was available as a

control for pair #10.

The general procedure is essentially the same. If there is a nominal covariate

for which balance is required, then (i) cross-tabulate that covariate with treatment,

as in Table 9.2; (ii) determine the number of controls that must be removed from

each category of the covariate to achieve balance; (iii) add one row for each control

that must be removed, with zero distance to its own category and infinite distance

to other categories; (iv) find an optimal match for this new, square distance matrix;

(v) discard the extra rows and their matched controls. The nominal covariate that is

balanced may be formed by combining several other nominal covariates or intervals

that cut a continuous variable.
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Table 10.2 Optimal pair match using the Mahalanobis distance within propensity score calipers,
with fine balance for race. This match is constrained to balance race. The caliper is half the standard
deviation of the propensity score, or 0.172/2 = 0.086. Covariates are age, race (C=Caucasian ,
AA=African American), current smoker (Y=yes, N=no), and the estimated propensity score ê(x).

Welders Matched Controls

Pair Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 44 C N 0.34
2 44 C N 0.34 47 C N 0.28
3 39 C Y 0.57 36 C Y 0.64
4 33 AA Y 0.51 41 AA Y 0.35
5 35 C Y 0.65 35 C Y 0.65
6 39 C Y 0.57 36 C Y 0.64
7 27 C N 0.68 30 C N 0.63
8 43 C Y 0.49 45 C N 0.32
9 39 C Y 0.57 39 C Y 0.57
10 43 AA N 0.20 50 C N 0.23
11 41 C Y 0.53 44 C Y 0.47
12 36 C N 0.50 41 C N 0.40
13 35 C N 0.52 40 C N 0.42
14 37 C N 0.48 42 C N 0.38
15 39 C Y 0.57 35 C N 0.52
16 34 C N 0.54 38 C N 0.46
17 35 C Y 0.65 34 C Y 0.67
18 53 C N 0.19 52 C N 0.20
19 38 C Y 0.60 34 C N 0.54
20 37 C N 0.48 42 C N 0.38
21 38 C Y 0.60 31 AA Y 0.55

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 40 10 38 0.46

To match two controls to each treated subject with fine balance, stack two copies

of the distance matrix, one on top of the other, and then add extras as before to

remove imbalances in the nominal covariate. In this way, the number of columns

or controls does not change, but each treated subject is represented twice, once in

each of two rows. In an optimal match, one control is paired with the first copy

of a treated subject and a different control is paired with the second copy, yielding

a 2-to-1 match. (Obviously, this cannot be done with the welder data, because at

least 42 potential controls are needed, and only 26 are available.) The procedure for

k-to-1 finely balanced matching is similar, but with k copies of the distance matrix

rather than two. If needed, a precise algorithmic description is given in [6, §4.2].

It is easy to prove that a minimum distance match with this enlarged distance

matrix is a minimum distance match subject to the fine balance constraint, and that

the minimum distance match has infinite total distance if and only if the latter prob-

lem is infeasible [6, Proposition 1]. In particular, in the statistical package R, the

pairmatch function in Hansen’s [3] optmatch package may be used, whereas

in SAS proc assign may be used. Alternatively, the minimum distance finely

balanced match may be determined directly as a minimum-cost flow in a network

[5, §3.2].
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Table 10.3 Table of treatment groups by (race × smoking) for the welder data, with race as
C=caucasian , AA=African American, and current smoker coded as Y=yes or N=no.

Smoker Yes Yes No No
Race AA C AA C Total

Welder 1 10 1 9 21
Control 3 6 2 15 26

10.3 Controlling Imbalance When Exact Balance Is Not Feasible

When exact balance is not possible, the fine balance procedure can be used to obtain

any specified, possible imbalance. The procedure is essentially the same as in §10.2,

except that one must choose an acceptable imbalance from those that are possible.

Table 10.3 displays the options for race and smoking in the welder data. The

obstacle to balance on the joint distribution of these two variables is a deficit of

smoking, Caucasian controls: there are six, where ten are needed. That is, from

the four categories given by the columns of Table 10.3, we would like to select

controls with frequencies (1,10,1,9) to agree with the welder group, but the sec-

ond entry is limited to six, so for a pair match some other entries must increase

to compensate. One attractive choice is (3,6,0,12), because this choice uses all

nine smoking controls, where 11 would be needed for balance, and is only slightly

imbalanced for race, with three African Americans where two would produce bal-

ance on race. This choice presumes that smoking is more important than race, as

is likely in genetic toxicology, and it provides no information about a treatment-by-

race-by-smoking interaction. In any event, for this purely illustrative example, the

important point that is fine balance can produce any specified possible imbalance,

such as (3,6,0,12).
To produce the imbalance (3,6,0,12), one notices that: no controls are to be

removed from the first two columns of Table 10.3, two are to be removed from the

third column, and three are to be removed from the fourth column. So five rows

are added to Table 8.5, two at zero distance from nonsmoking African Americans,

three at zero distance from nonsmoking Caucasians, with the other entries set to ∞;

see Table 10.4. The first control in Table 8.3 is an African American nonsmoker,

and so in column 1 of Table 10.4, he is at zero distance from both of the first two

extra rows. The second control in Table 8.3 is a Caucasian nonsmoker, and so, in

column 2 of Table 10.4, he is at zero distance from the last three extra rows. The

third control in Table 8.3 is a Caucasian smoker, and cannot be eliminated, and so,

in column 3 of Table 10.4, he is at infinite distance from all five rows. As in §10.2,

one finds an optimal pair matching in the extended square 26× 26 distance matrix

and discards the extras and their matched controls.

Table 10.5 is the result. It achieves the prescribed imbalance, (3,6,0,12), and

subject to that constraint it minimizes the distance among all pair matchings. No-

table in Table 10.5 is the use of all nine smoking controls without a large imbal-

ance in race. This was produced by matching welder #10, a nonsmoking African



202 10 Fine Balance

Table 10.4 Mahalanobis distances within propensity score calipers with extra rows to finely bal-
ance race and smoking. Rows are the 21 welders plus five extras (E), and columns are for the first
6 of 26 potential controls. An ∞ signifies that the caliper is violated.

Welder Control 1 Control 2 Control 3 Control 4 Control 5 Control 6

1 ∞ ∞ 6.15 0.08 ∞ ∞
2 ∞ ∞ ∞ 0.33 ∞ ∞
3 ∞ ∞ ∞ ∞ ∞ ∞
4 ∞ ∞ 12.29 ∞ ∞ ∞
5 ∞ ∞ ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ ∞ ∞ ∞
7 ∞ ∞ ∞ ∞ ∞ ∞
8 ∞ ∞ 0.02 5.09 ∞ ∞
9 ∞ ∞ ∞ ∞ ∞ ∞

10 0.51 ∞ ∞ ∞ 10.20 11.17
11 ∞ ∞ 0.18 ∞ ∞ ∞
12 ∞ ∞ 7.06 0.33 ∞ ∞
13 ∞ ∞ 7.57 ∞ ∞ ∞
14 ∞ ∞ 6.58 0.18 ∞ ∞
15 ∞ ∞ ∞ ∞ ∞ ∞
16 ∞ ∞ 8.13 ∞ ∞ ∞
17 ∞ ∞ ∞ ∞ ∞ ∞
18 9.41 ∞ ∞ ∞ 0.18 0.02
19 ∞ ∞ ∞ ∞ ∞ ∞
20 ∞ ∞ 6.58 0.18 ∞ ∞
21 ∞ ∞ ∞ ∞ ∞ ∞
E1 0 ∞ ∞ ∞ ∞ ∞
E2 0 ∞ ∞ ∞ ∞ ∞
E3 ∞ 0 ∞ 0 0 0
E4 ∞ 0 ∞ 0 0 0
E5 ∞ 0 ∞ 0 0 0

American, to a smoker, even though a nonsmoking African American control was

available.

In Tables 8.5, 10.1 and 10.4, it was convenient for display to use ∞ to indicate

the penalties. In computation, large numerical penalties are used. Table 10.6 shows

the numerical penalties used in producing the match in Table 10.5. Recall that

the caliper on the propensity score in Chapter 8 imposed no penalty if the caliper

was respected, a small penalty for small violations of the caliper, and a dramatic

penalty for large violations of the caliper; this is seen in the first 21 rows of Table

10.6. The caliper on the propensity score was 0.086, and control #2 in Table 8.3,

with ê(x) = 0.09, violated the caliper for all 21 welders. For welders #10 and #18,

with ê(x) = 0.20 and ê(x) = 0.19, respectively, the violation is not large, and the

penalties in column 2 and rows 10 and 18 of Table 10.6 are not extremely large. To

give greater emphasis to the fine balance constraint than to the calipers, the penalties

for the extra rows in Table 10.6 are five times the largest distance in the first 21 rows

and 26 columns.
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Table 10.5 Optimal pair match using the Mahalanobis distance within propensity score calipers,
with fine balance for race and smoking. The caliper is half the standard deviation of the propensity
score, or 0.172/2 = 0.086. Covariates are age, race (C=Caucasian , AA=African American), cur-
rent smoker (Y=yes, N=no), and the estimated propensity score ê(x). This match is constrained to
use all three AA smokers, all six C smokers, neither AA nonsmoker, and 12 C nonsmokers.

Welders Matched Controls

Pair Age Race Smoker ê(x) Age Race Smoker ê(x)
1 38 C N 0.46 44 C N 0.34
2 44 C N 0.34 47 C N 0.28
3 39 C Y 0.57 36 C Y 0.64
4 33 AA Y 0.51 41 AA Y 0.35
5 35 C Y 0.65 35 C Y 0.65
6 39 C Y 0.57 36 C Y 0.64
7 27 C N 0.68 30 C N 0.63
8 43 C Y 0.49 45 C N 0.32
9 39 C Y 0.57 35 C N 0.52
10 43 AA N 0.20 56 AA Y 0.13
11 41 C Y 0.53 44 C Y 0.47
12 36 C N 0.50 41 C N 0.40
13 35 C N 0.52 40 C N 0.42
14 37 C N 0.48 42 C N 0.38
15 39 C Y 0.57 39 C Y 0.57
16 34 C N 0.54 38 C N 0.46
17 35 C Y 0.65 34 C Y 0.67
18 53 C N 0.19 52 C N 0.20
19 38 C Y 0.60 31 AA Y 0.55
20 37 C N 0.48 42 C N 0.38
21 38 C Y 0.60 34 C N 0.54

mean %AA %Y mean mean %AA %Y mean
38 10 52 0.51 40 14 43 0.45

10.4 Fine Balance and Exact Matching

Fine balance can produce exact balance on a nominal covariate without matching

exactly for that covariate. Nonetheless, the two techniques may be combined. In

parallel with §9.3, this is one way to implement fine balance in extremely large

matching problems: the problem is divided into a few smaller problems.

In fact, this was done in the study of ovarian cancer in Chapter 7 and [7]. Three

separate matches were constructed, one for each of the three intervals 1991–1992,

1993–1996, and 1997–1999 of year of diagnosis, with fine balance for SEER sites.

We did this not primarily for computational reasons but because we had originally

envisioned an additional analysis, not reported in [7], that would have compared

the speed with which GOs and MOs adopted new chemotherapies for ovarian can-

cer. The three time intervals 1991–1992, 1993–1996, and 1997–1999 correspond

with innovations in chemotherapy for ovarian cancer, and for that analysis it would

have been convenient to have pairs matched for the time interval. That is, in each

pair, the same chemotherapies would have been available, so it would make sense

to ask who used what. Although the matching procedure worked well, we never
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Table 10.6 Mahalanobis distances within propensity score calipers with extra rows to finely bal-
ance race and smoking. Rows are the 21 welders plus five extras (E), and columns are for the first
6 of 26 potential controls. This table displays the numerical penalties rather than ∞’s.

Welder Control 1 Control 2 Control 3 Control 4 Control 5 Control 6

1 237.66 293.68 6.15 0.08 141.69 171.85
2 115.36 166.78 50.06 0.33 17.98 47.65
3 358.16 408.89 20.23 75.94 259.61 289.35
4 287.20 361.09 12.29 18.96 206.61 237.16
5 439.02 492.83 101.71 156.10 341.41 371.48
6 358.16 408.89 20.23 75.94 259.61 289.35
7 467.74 532.22 141.84 184.10 374.36 405.42
8 273.83 321.48 0.02 5.09 174.33 203.74
9 358.16 408.89 20.23 75.94 259.61 289.35

10 0.51 45.85 193.46 134.45 10.20 11.17
11 316.15 365.34 0.18 34.28 217.12 246.70
12 280.67 338.23 7.06 0.33 185.17 215.50
13 302.27 360.61 7.57 20.03 207.01 237.42
14 259.11 315.90 6.58 0.18 163.37 193.61
15 358.16 408.89 20.23 75.94 259.61 289.35
16 323.84 382.94 8.13 41.42 228.81 259.30
17 439.02 492.83 101.71 156.10 341.41 371.48
18 9.41 15.61 196.03 142.97 0.18 0.02
19 378.88 430.37 41.10 96.48 280.55 310.38
20 259.11 315.90 6.58 0.18 163.37 193.61
21 378.88 430.37 41.10 96.48 280.55 310.38

E1 0 2661.08 2661.08 2661.08 2661.08 2661.08
E2 0 2661.08 2661.08 2661.08 2661.08 2661.08
E3 2661.08 0 2661.08 0 0 0
E4 2661.08 0 2661.08 0 0 0
E5 2661.08 0 2661.08 0 0 0

determined whether GOs or MOs were quicker in adopting new chemotherapies.

Instead, we determined that GOs and MOs are both much quicker in adopting new

chemotherapies than Medicare is in creating a code for new chemotherapies.

10.5 Further Reading

Matching with fine balance is discussed in detail in [6]. The network algorithm

in [5, §3.2] will be of interest primarily to programmers because it can be more

efficient in its use of space than the procedure described here and in [6].
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Chapter 11
Matching Without Groups

Abstract Optimal matching without groups, or optimal nonbipartite matching, of-

fers many additional options for matched designs in both observational studies and

experiments. One starts with a square, symmetric distance matrix with one row

and one column for each subject recording the distance between any two subjects.

Then the subjects are divided into pairs to minimize the total distance within pairs.

The method may be used to match with doses of treatment, or with multiple con-

trol groups, or as an aid to risk-set matching. An extended discussion of Card and

Krueger’s study of the minimum wage is used to illustrate.

11.1 Matching Without Groups: Nonbipartite Matching

What is nonbipartite matching?

In previous chapters, treated subjects were matched to controls. That is, there were

two groups, treated and control, which existed before the matching began, and mem-

bers of these two groups were placed in pairs or sets to minimize the distance be-

tween treated and control subjects in the same pair or set. The optimization algo-

rithm solved the so-called assignment problem or bipartite matching problem, where

‘bipartite’ makes reference to ‘two parts.’ A different optimization problem begins

with a single group and divides it into pairs to minimize the distance between paired

units; this is called by the awkward name ‘nonbipartite’ matching. For textbook dis-

cussions of the contrast between these two matching problems, see [5, Chapter 5]

or [21, Chapter 11]. Nonbipartite matching is highly flexible, and it substantially

enlarges the collection of matched designs for observational studies.

In Chapter 8, the distance matrix had one row for each treated subject and one

column for each potential control. In contrast, in nonbipartite matching, the distance

matrix is square, with one row and one column for every subject. Table 11.1 is a

small, artificial example with six subjects, so it is 6× 6. The distance matrix is

symmetric because the distance from k to � in row k and column � is the same as the
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Table 11.1 A 6 × 6 distance matrix for nonbipartite matching for six units. Unlike treatment-
control matching, every unit appears as both a row and a column of this distance matrix. The
optimal nonbipartite matching (1,2), (3,6), (4,5) is shown in bold with a minimum total distance
of 106+25+34 = 165.

ID 1 2 3 4 5 6

1 0 106 119 231 110 101
2 106 0 207 126 192 68
3 119 207 0 156 247 25
4 231 126 156 0 34 67
5 110 192 247 34 0 212
6 101 68 25 67 212 0

distance from � to k in row � and column k. Every subject is at zero distance from

itself, but of course a subject cannot be paired with itself.

In Table 11.1, an optimal nonbipartite match would pair the six units into three

pairs to minimize the total distance within pairs. The optimal match is shown in

bold type: it is (1,2), (3,6), and (4,5) for a total distance of 106 + 25 + 34 = 165.

Notice that subject 1 is closer to subject 6 than to subject 2, but if 1 were matched to

6, then the match for 3 would be much worse. Optimal nonbipartite matching may

be done in the statistical package R.1

Treatment-control matching using an algorithm for nonbipartite matching

Generally, one should not use a nonbipartite matching algorithm to perform bipar-

tite matching because the former requires a larger distance matrix and is somewhat

slower. Nonetheless, it is instructive to do it once. Imagine that the first three sub-

jects in Table 11.1 were treated and the last three were controls. To force treated

subjects to be matched to controls, infinite distances are placed among treated sub-

jects and among controls, as in Table 11.2. An optimal nonbipartite match in Table

11.2 avoids the infinite distances and pairs (1,5), (2,4), and (3,6), so treated subjects

1

Fortran code by Derigs [9] has been made available inside R by Bo Lu [19] through a function
nonbimatch(n,d), where d is the vector form of an n×n symmetric matrix of nonnegative
integer distances.

> dm
1 2 3 4 5 6

1 0 106 119 231 110 101
2 106 0 207 126 192 68
3 119 207 0 156 247 25
4 231 126 156 0 34 67
5 110 192 247 34 0 212
6 101 68 25 67 212 0
> nonbimatch(6,as.vector(dm))
[1] 2 1 6 5 4 3
This says that unit 1 is paired with unit 2, unit 2 is paired with unit 1, unit 3 is paired with unit

6, unit 4 is paired with unit 5, unit 5 is paired with unit 4, and unit 6 is paired with unit 3.
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Table 11.2 Using nonbipartite matching to perform treatment-versus-control matching (or bi-
partite matching). Subjects 1, 2, and 3 are treated, and infinite distances prevent them from
being matched to each other. Subjects 4, 5, and 6 are controls, and infinite distances prevent
them from being matched to each other. The optimal match is (1,5), (2,4), (3,6) with distance
110 + 126 + 25 = 261. Use of a bipartite matching algorithm would have required only a 3× 3
distance matrix and be expected to run somewhat more quickly.

ID 1 2 3 4 5 6

1 0 ∞ ∞ 231 110 101
2 ∞ 0 ∞ 126 192 68
3 ∞ ∞ 0 156 247 25
4 231 126 156 0 ∞ ∞
5 110 192 247 ∞ 0 ∞
6 101 68 25 ∞ ∞ 0

are paired with controls. In this sense, nonbipartite matching is a generalization of

bipartite matching. Of course, the bipartite matching could have been performed

with a 3×3 distance matrix rather than the 6×6 distance matrix in Table 11.2.

11.1.1 Matching with doses

Suppose that we do not have treated subjects and controls but rather individuals

who received various doses of treatment. In this case, we might wish to form pairs

of individuals who are similar in terms of covariates but quite different in terms of

doses. As an illustration, imagine that the six individuals 1, 2, . . . , 6 in Table 11.1

received the treatment at doses 1, 2, . . . , 6, respectively. In this case, we might wish

to match so that pairs differ in dose by at least 2; this would preclude matching 1

with 2, for instance.

In Table 11.3, an infinite distance appears whenever two subjects have doses that

differ by less than 2. Unlike Table 11.1, the infinite distances constrain who may

be matched to whom. Unlike Table 11.2, these constraints are not the sort that can

be addressed with a bipartite matching algorithm; that is, the pattern of ∞’s in Table

11.3 does not divide the six units into two nonoverlapping groups. The optimal

match in Table 11.3 pairs (1,5), (2,4), and (3,6): that is, this minimizes the distance

subject to the constraint that pairs differ in doses by at least 2.

A practical example of matching with doses was given by Bo Lu, Elaine Zanutto,

Robert Hornik, and me [17] in a study of a national media campaign against drug

abuse. The dose was the degree of exposure to the media campaign. Another prac-

tical example is discussed in §11.3.
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Table 11.3 A 6× 6 distance matrix for matching with doses of treatment. For simplicity in this
artificial illustration, the doses equal the ID numbers, and the requirement is that paired individuals
have doses that differ by at least 2. Where the dose difference is less than 2, the distance is set to
∞. The optimal match is (1,5), (2,4), (3.6).

ID 1 2 3 4 5 6

1 0 ∞ 119 231 110 101
2 ∞ 0 ∞ 126 192 68
3 119 ∞ 0 ∞ 247 25
4 231 126 ∞ 0 ∞ 67
5 110 192 247 ∞ 0 ∞
6 101 68 25 67 ∞ 0

Table 11.4 A 6× 6 distance matrix for matching with three groups. Subjects 1 and 2 are in the
same group, as are subjects 3 and 4 and subjects 5 and 6. Because subjects in the same group cannot
be matched to one another, there is an infinite distance between them. The optimal match is (1,3),
(2,6), (4,5) with a total distance of 119+68+34 = 221. This is a very small balanced incomplete
block design in the sense that every group is paired with every other group exactly once.

ID 1 2 3 4 5 6

1 0 ∞ 119 231 110 101
2 ∞ 0 207 126 192 68
3 119 207 0 ∞ 247 25
4 231 126 ∞ 0 34 67
5 110 192 247 34 0 ∞
6 101 68 25 67 ∞ 0

11.1.2 Matching with several groups

Suppose that we do not have a treated and control group but rather several groups.

In this case, we might wish to pair similar individuals from different groups. For

instance, in Table 11.1, suppose that subjects 1 and 2 are in one group, 3 and 4 are

in a second group, and 5 and 6 are in a third group. In Table 11.4, individuals in the

same group are at infinite distance from one another. The optimal match is (1,3),

(2,6), and (4,5). In the optimal match, each individual is paired with an individual

from another group to minimize the distance within matched pairs.

The optimal match in Table 11.4 has an additional property. In a balanced in-

complete block design, each pair of treatment groups appears together in the same

block with the same frequency; see [4, Chapter 11] or [7, §4.2]. The optimal match

in Table 11.4 is a very small balanced incomplete block design in the sense that each

of the three groups is paired with each of the other groups exactly once. There is a

certain equity to a balanced incomplete block design: the number of pairs offering

a direct comparison of two groups is the same for every pair of two groups. Bo

Lu and I [18] showed how, with three groups, a balanced incomplete block design

may be constructed using optimal nonbipartite matching. See [18] for a practical

example, and see §11.2 for a few specifics.
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Table 11.5 Matching with an odd number of subjects. With five subjects, a sink is added at zero
distance to all subjects. One subject is paired with the sink and discarded. In this case, the optimal
match is (1,2), (4,5), (3,6) with a distance of 106+34+0 = 140 and subject 3 is discarded.

ID 1 2 3 4 5 sink

1 0 106 119 231 110 0
2 106 0 207 126 192 0
3 119 207 0 156 247 0
4 231 126 156 0 34 0
5 110 192 247 34 0 0

sink 0 0 0 0 0 0

11.2 Some Practical Aspects of Matching Without Groups

An odd number of subjects

An odd number of subjects cannot be paired. Suppose that we had only the first five

subjects in Table 11.1. Then only two pairs may be constructed, with one individual

discarded. The best choice of a subject to discard is the one who will make the

remaining pairs as close as possible. Beginning with the 5× 5 distance matrix for

the first five subjects, a ‘sink’ is added at zero distance from all five subjects, making

a 6× 6 distance matrix; see Table 11.5. When optimal nonbipartite matching is

applied to this 6×6 distance matrix, one subject is paired to the sink and discarded.

Because any one subject may be discarded at a cost of 0, the matching discards the

subject who most improves the total distance for the remaining four subjects within

two pairs.

Discarding some subjects

Closer matches may be obtained by discarding some subjects. This is done by in-

troducing one ‘sink’ for each subject to be discarded. The sinks are at zero distance

from each subject and at infinite distance from one another. The infinite distances

prevent sinks from being matched to each other. Optimal nonbipartite matching

discards and pairs subjects to minimize the distance within the pairs that remain.

The process is illustrated in Table 11.6. Two sinks remove two subjects to form

two pairs. As seen in this small example, discarding the subjects who are most

difficult to match can leave behind closely matched pairs.

When there are several groups, as in Table 11.4, one may wish to discard a spe-

cific number of subjects from each group, perhaps two subjects from group one,

seven subjects from group two, etc. To do this, one introduces sinks in the specified

numbers that are at zero distance from the specified groups and at infinite distance

from other groups. To discard two subjects from group one, two sinks are introduced

at zero distance from subjects in group one and at infinite distance from subjects in

other groups. As always, sinks are at infinite distance from one another. In this
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Table 11.6 Optimal choice of two pairs from six subjects discarding two subjects. The 8×8 dis-
tance matrix introduces two sinks at zero distance from each subject and at infinite distance from
each other. Two subjects are matched to sinks and discarded. The optimal match is (1,8), (2,7),
(3,6), (4,5) with a distance of 0+0+25+34 = 59. Subjects 1 and 2 discarded.

ID 1 2 3 4 5 6 sink sink

1 0 106 119 231 110 101 0 0
2 106 0 207 126 192 68 0 0
3 119 207 0 156 247 25 0 0
4 231 126 156 0 34 67 0 0
5 110 192 247 34 0 212 0 0
6 101 68 25 67 212 0 0 0

sink 0 0 0 0 0 0 0 ∞
sink 0 0 0 0 0 0 ∞ 0

way, the required subjects in each group are paired with sinks and discarded, and

the pairs that remain are as close as possible; see [18] for a proof and an example.

Balanced incomplete block designs with three groups

The procedure indicated in Table 11.4 and discussed in §11.1 suffices to form

matched pairs from several groups. In general, the groups will be paired to min-

imize the distance within pairs, and the pairing may be far from balanced. For

instance, group one might always be paired with group two, while group three is

always paired with group four. Whether an unbalanced comparison is undesirable

depends upon the context; it may be sensible given the distribution of covariates in

the various groups.

In some contexts, one may prefer to force some degree of balance, or even to have

a balanced incomplete block design, in which every group is paired equally often

with every other group. With three groups, it is possible to control the number of

subjects from one group who are paired to subjects from another group, within the

limits of arithmetic. Indeed, with the three groups, by simple algebra, the number

of subjects used from each group determines the number of subjects in one group

paired with another group; see [18, Expression (2.1)]. For instance, in the example

in [18, §3.2], 56 subjects were retained in each of three groups, which produced a

balanced incomplete block design of minimum distance with 28 pairs of group one

with group two, 28 pairs of group one with group three, and 28 pairs of group two

with group three.

Propensity scores for several groups

There are several generalizations of the propensity score for use with doses or with

several groups. These generalizations depend upon additional assumptions and

yield a variety of properties. One generalization uses an ordinal logit model for

ordered doses, and matching on the linear portion of this score tends to balance ob-
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served covariates when the model is correct; see [15, page 331]. Scores of this form

have been used in nonbipartite matching [17, §2.3]. Another generalization uses

several binary logit models as a device for weighting observations [14]. Multivari-

ate models yielding multidimensional scores are also possible; see [15, page 331]

and [13].

11.3 Matching with Doses and Two Control Groups

11.3.1 Does the minimum wage reduce employment?

The example uses data from David Card and Alan Krueger’s [2, 3] study of the

effects on employment of increasing the minimum wage; see also §4.5. It is often

said by economists that minimum wage laws harm the people the laws are intended

to benefit. For instance, in 1946, George Stigler [26] wrote:

Each worker receives the value of his marginal product under competition. If a minimum
wage is effective, it must therefore have one of two effects: first, workers whose services
are worth less than the minimum wage are discharged . . . ; or, second the productivity of
low-efficiency workers is increased.

After arguing that the second effect is not plausible, Stigler continues: “The higher

the minimum wage, the greater will be the number of covered workers who are

discharged.” To my mind, Stigler is discussing a ‘reason for an effect,’ in the sense

of §4.6, rather than presenting direct evidence of an effect. For a modern textbook

discussion of the minimum wage, see Pierre Cahuc and André Zylberberg [1, §12.1].

In one of the many empirical studies of the effects of the minimum wage on

employment, Card and Krueger [2] looked at changes in employment at fast food

restaurants, such as Burger King and Kentucky Fried Chicken, in the adjacent U.S.

states of New Jersey and Pennsylvania after New Jersey increased its state mini-

mum wage from $4.25 to $5.05 per hour on 1 April 1992. Did the increase in the

minimum wage in New Jersey reduce employment at fast food restaurants?

The increase in the minimum wage in New Jersey from $4.25 to $5.05 is expected

to have its largest effect on New Jersey restaurants whose starting wage before the

increase was at or near the old minimum, namely $4.25, with little or no effect on

restaurants in Pennsylvania where the minimum wage did not increase, and with

reduced effect on restaurants in New Jersey having a higher starting wage before

the increase. For instance, a New Jersey restaurant paying $4.25 an hour before the

increase would need to raise its starting wage by $0.80 whereas one paying $4.75

an hour would comply with the new law by raising its wage by $0.30; presumably,

the latter restaurant is less affected by the law. The theory that the minimum wage

depresses employment then yields two predictions, one about a comparison of New

Jersey and Pennsylvania, the other about a comparison within New Jersey.
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11.3.2 Optimal matching to form two independent comparisons

There are 351 restaurants with both starting wages and employment data both before

and after the wage increase. They will be divided into 175 pairs of two restaurants,

discarding one restaurant, where 351 = 2×175+1. In 65 pairs, there is one Penn-

sylvania restaurant and one New Jersey restaurant. In the remaining 110 pairs, there

are two New Jersey restaurants, one with a low starting wage before the increase,

the other with a high starting wage before the increase.

The matching used a 351× 351 distance matrix comparing every restaurant to

every other restaurant. The distances were a combination of distances on covariates

and penalties to force an appropriate comparison. There were five covariates: three

binary indicators to distinguish the four restaurant chains (BK = Burger King, KFC

= Kentucky Fried Chicken, RR = Roy Rogers, W = Wendy’s), a binary indicator

of whether or not the restaurant was company owned, and the number of hours the

restaurant was open each day.2 The rank based Mahalanobis distance was calculated

from these five covariates; see §8.3.

A 66×66 submatrix of the 351×351 distance matrix refers to distances among

Pennsylvania restaurants. We do not wish to match Pennsylvania restaurants to one

another, so the entries in this 66× 66 submatrix were increased by adding a large

number, specifically 20 times the largest of the covariate distances, m = 37.44, or

20×37.44 = 748.8. Any sufficiently large penalty would suffice.

If we match a Pennsylvania restaurant to a New Jersey restaurant, we would like

the two matched restaurants to have similar starting wages before the wage increase.

A caliper of $0.20 was used, and it was implemented with a penalty function; see

§8.4. Specifically, if a New Jersey restaurant k and a Pennsylvania restaurant � had

starting wages before the increase of wk and w�, respectively, then the distance be-

tween them was increased by adding the penalty 100×m×max(0, |wk −w�|−0.2).
If |wk −w�| ≤ $0.20, the penalty is zero. If |wk −w�| = $0.21, the penalty is

|wk −w�| = 100× 37.44× 0.01 = 37.4, whereas if |wk −w�| = $0.25, the penalty

is 100×37.44×0.05 = 187.2. As discussed in §8.4, the advantage of a graduated

penalty function over a single large penalty is that slight violations of the penalty

2 Card and Krueger’s [2, 3] data are at http://www.irs.princeton.edu/links/.
Restaurants were interviewed twice, once in February 1992, before New Jersey increased
its minimum wage, and once in November 1992, after New Jersey increased its minimum
wage. Card and Krueger define full-time equivalent employment as the number of managers
plus the number of full-time employees plus half the number of part-time employees, which
is NMGRS+EMPFT+EMPPT/2 in their first interview and NMGRS2+EMPFT2+EMPPT2/2
in the second, and the change in employment is the difference between these two quanti-
ties, November−minus−February. The price of a full meal refers to the sum of the price
of a soda, fries and an entree, or PSODA+PFRY+PENTREE in the first interview and
PSODA2+PFRY2+PENTREE2 in the second, and the change in price is the difference of these
two quantities. The starting wage before the increase in the minimum wage is WAGE ST from the
first interview. Other variables used are the restaurant chain (CHAIN), whether the restaurant was
company-owned (CO OWNED), and hours open (HRSOPEN). There are 410 restaurants, but the
analysis here uses the 351 restaurants with complete data on employment and starting wage. The
variable SHEET is Card and Krueger’s identification number for a restaurant.
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Table 11.7 Distance matrix for 6 restaurants. Covariates are: (i) Chain = restaurant chain (BK =
Burger King, KFC = Kentucky Fried Chicken, RR = Roy Rogers, W = Wendy’s); CO = company
owned (Yes, No); and HRS = number of hours open per day. Other variables are State (NJ = New
Jersey, PA = Pennsylvania); Wage = starting wage before the wage increase in dollars per hour;
and Sheet = Card and Krueger’s identification number. The last six columns contain the distances
between these six restaurants.

Chain CO HRS State Wage Sheet 301 310 477 434 208 253

KFC Yes 10.5 NJ 5.00 301 - 7.4 2067.6 2065.5 233.5 698.0
W No 11.5 NJ 4.25 310 7.4 - 7.3 4.7 254.8 6.4
BK No 16.5 PA 4.25 477 2067.6 7.3 - 749.5 641.2 1583.1
BK No 16.0 PA 4.25 434 2065.5 4.7 749.5 - 642.5 1579.7
RR Yes 17.0 NJ 4.62 208 233.5 254.8 641.2 642.5 - 475.7
RR Yes 13.0 NJ 4.87 253 698.0 6.4 1583.1 1579.7 475.7 -

are preferred to large violations. When the matching was completed, among the

65 matched pairs of a restaurant in New Jersey with a restaurant in Pennsylvania,

the median difference, wk −w�, NJ−minus−PA, was $0.00, the median absolute

difference, |wk −w�| was $0.00, the mean absolute difference was $0.07, and the

maximum absolute difference was $0.25, so the $0.20 caliper was violated a few

times, but not by much.

If we match a New Jersey restaurant to another New Jersey restaurant, we would

like the two matched restaurants to have had very different starting wages before the

increase. This too was implemented using a penalty function, with a penalty for a

difference less than $0.50. For two New Jersey restaurants, k and �, with starting

wages before the increase of wk and w�, the distance between them was increased by

adding the penalty 50×max(0,0.5−|wk −w�|). If |wk −w�| ≥ $0.50, the penalty

is zero, but if |wk −w�|= $0.40, the penalty is 187.2. When the matching was com-

pleted, among the 110 pairs of a high-wage and a low-wage New Jersey restaurant,

the high−minus−low differences in starting wages before the increase ranged from

$0.25 to $1.50, with a mean of $0.58 and a median of $0.50.

The left side of Table 11.7 shows the baseline information for six of the 351

restaurants, while the right side of Table 11.7 shows the 6 × 6 portion of the

351×351 distance matrix for these six restaurants. Restaurants with Sheet or iden-

tification numbers 301 and 310 are at a distance of 7.4, with no penalties applied,

because they are two New Jersey restaurants with very different starting wages be-

fore the increase; however, they are not close on the covariates because one is a KFC,

the other a Wendy’s, one is company owned and the other is not. A large penalty

prevents restaurants 301 and 477 from being matched because one is in New Jersey,

the other in Pennsylvania, and their starting wages differ by $0.80. And so on.

An odd number of restaurants cannot be paired. The 351×351 distance matrix

is increased in size to 352×352 by adding a row and column of zeros. The added

‘sink’ is at a distance of zero from all actual restaurants. One restaurant — the one

restaurant that is hardest to match — is matched to the sink for a cost of zero, and

the remaining 350 restaurants are paired into 175 pairs. If 51 sinks were added

instead of one sink, with zero distances between restaurants and sinks and infinite

distances between one sink and another, then optimal nonbipartite matching would
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Table 11.8 Balance on one covariate, hours open per day, in All 175 pairs of a more affected and
a less affected restaurant, in 65 NJ-vs.-PA pairs, and in 110 NJ-vs.-NJ pairs. In addition to this
one covariate, the pairs were also matched for restaurant chain, with 88% matched exactly, and
for company owned, with 93% matched exactly. The NJ-vs.-PA pairs had similar starting wages
before the increase in the NJ minimum wage. The NJ-vs.-NJ pairs had quite different starting
wages before the increase, the less affected restaurant having a higher starting wage.

Group Type Minimum Lower Quartile Median Upper Quartile Maximum

More Affected All 7.0 11.5 15.5 16.0 24.0
Less Affected All 8.0 12.0 16.0 16.5 24.0

More Affected NJ-vs.-PA 7.0 11.5 16.0 16.5 19.0
Less Affected NJ-vs.-PA 8.0 12.0 16.0 16.5 24.0

More Affected NJ-vs.-NJ 10.0 11.5 15.0 16.0 24.0
Less Affected NJ-vs.-NJ 9.5 12.0 15.0 16.0 24.0

Table 11.9 Comparison of starting wages in New Jersey, before the increase in the minimum wage,
for the 110 pairs of a low-wage (more affected) restaurant and a high-wage (less affected) restau-
rant. The minimum wage was increased to $5.05, so the less affected restaurants were, on average,
forced to raise the starting wage by $0.14, while the more affected restaurants were, on average,
forced to raise the starting wage by $0.72. If raising the minimum wage reduces employment, one
would expect it to have a larger effect on the more affected restaurants.

Group Type Mean Min Lower Quartile Median Upper Quartile Max

More Affected NJ-vs.-NJ 4.33 4.25 4.25 4.25 4.5 4.50
Less Affected NJ-vs.-NJ 4.91 4.50 4.75 4.83 5.0 5.75

Difference NJ-vs.-NJ 0.58 0.24 0.50 0.58 0.50 1.25

pair 51 restaurants with sinks, leaving 300 restaurants to be paired with each other

to form 150 pairs. Use of additional sinks would discard some restaurants, which

would be unfortunate, but it would produce closer matches on the pairs that remain.

In the current example, one sink was used and one restaurant was discarded.3

The optimal nonbipartite matching algorithm was applied to the 352× 352 dis-

tance matrix to pair the restaurants to minimize the total distance within pairs. Im-

plicitly, the algorithm decides: (i) which one restaurant to discard, (ii) which New

Jersey restaurants should be paired with Pennsylvania restaurants and which should

be paired with other New Jersey restaurants, (iii) which individual restaurants should

be paired.

For the optimal match, Table 11.8 describes the covariates. In Table 11.8, ‘more

affected’ refers to the New Jersey restaurant in a NJ-vs.-PA pair, and it refers to the

restaurant with the lower starting wage before the increase in a NJ-vs.-NJ pair. Of

course, ‘less affected’ refers to the other restaurant in the same pair. In 88% of the

pairs, the restaurants were the same restaurant chain, and in 93% of the pairs, they

were the same in terms of company ownership. In addition, the distribution of hours

open was similar, as seen in Table 11.8.

For the optimal match, Figure 11.1 and Table 11.9 show the distribution of start-

ing wages before the wage increase. As was intended, the distribution of starting

3 As it turned out, the discarded restaurant was a company-owned Pennsylvania KFC open 10
hours per day and paying a starting wage before the increase of $5.25. It was Sheet #481.
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Fig. 11.1 Starting wages in dollars per hour in February 1992, before New Jersey increased its
minimum wage on April 1, 1992. In the 65 pairs of a New Jersey (NJ) and a Pennsylvania (PA)
restaurant, restaurants were matched to have similar starting wages, restaurant chains, company
ownership, and hours open in February 1992. In the 110 pairs of two New Jersey restaurants, the
matching selected one restaurant with a low starting wage and another with a high starting wage,
so the low-wage restaurant was required to raise wages by a larger amount to comply with the new
NJ minimum wage. The horizontal dashed lines are at the old minimum wage of $4.25 and the
new minimum wage of $5.05.

wages was quite similar in the 65 NJ-vs.-PA pairs, and it was very different in the

110 NJ-vs.-NJ pairs. On average, the more affected restaurant in a NJ-vs.-NJ pair

would have to raise the starting wage by $0.73 to comply with the increase in the

minimum wage to $5.05, whereas the less affected restaurant would need an increase

of just $0.14.
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Fig. 11.2 Change in full-time-equivalent employment (FTE), after−minus−before, from before
the increase in New Jersey’s minimum wage to after the increase. If increasing the minimum wage
tended to decrease employment at fast-food restaurants, one might reasonably expect to see larger
declines in employment in the 65 New Jersey restaurants in the 65 NJ-vs.-PA pairs and in the 110
lower-wage New Jersey restaurants in the 110 NJ-vs.-NJ pairs; however, there is no sign of this.

11.3.3 Difference in change in employment with 2 control groups

Did the increase in New Jersey’s minimum wage reduce employment in more

affected restaurants in the 175 pairs? The outcome is the change in full-time-

equivalent employment (FTE) following the wage increase, after−minus−before.

In the discussion that follows, a ‘worker’ or an ‘employee’ refers to one FTE worker,

even if that means two people each working half time. The typical restaurant had

about 20 workers. A change of −1 means one less worker in a restaurant after the

wage increase. Table 11.10 and Figure 11.2 display the distribution of changes. A

few of the changes look implausibly large, whether positive or negative, perhaps
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Table 11.10 Change in full-time-equivalent employment, after-minus-before, in All 175 pairs of
a more affected and a less affected restaurant, in 65 NJ-vs.-PA pairs, and in 110 NJ-vs.-NJ pairs.
The NJ-vs.-PA pairs had similar starting wages before the increase in the NJ minimum wage. The
NJ-vs.-NJ pairs had quite different starting wages before the increase, the less affected restaurant
having a higher starting wage.

Group Type Minimum Lower Quartile Median Upper Quartile Maximum

More Affected All −20.0 −3.0 0.0 4.2 28.0
Less Affected All −41.5 −5.0 0.0 4.0 23.5

More Affected NJ-vs.-PA −18.5 −4.0 0.5 4.0 15.5
Less Affected NJ-vs.-PA −41.5 −7.0 −0.5 4.0 22.8

More Affected NJ-vs.-NJ −20.0 −2.2 0.0 4.4 28.0
Less Affected NJ-vs.-NJ −34.0 −3.5 1.0 4.0 23.5

Table 11.11 Difference-in-differences estimates for FTE employment and the price of a full meal.
The matched pair difference in after-minus-before changes is examined using Wilcoxon’s signed
rank test and the associated Hodges-Lehmann point estimate and confidence interval. The point
estimates suggest an increase, not the predicted decrease, in employment in more affected restau-
rants, but none of the differences in employment is significantly different from zero at the 0.05
level. There is slight evidence for an increase in the price of a full meal, but it, too, is not signifi-
cantly different from zero at the 0.05 level, and the magnitude of the increase in price is estimated
to be less than 5 cents.

Outcome Type HL-estimate 95% CI P-value

Employment All 1.00 [−0.62, 2.63] 0.22
Employment NJ-vs.-PA 1.25 [−1.38, 4.25] 0.40
Employment NJ-vs.-NJ 0.88 [−1.00, 2.87] 0.38

Price All 0.040 [−0.005, 0.085] 0.07
Price NJ-vs.-PA 0.025 [−0.045, 0.115] 0.47
Price NJ-vs.-NJ 0.045 [−0.005, 0.105] 0.08

due to some form of measurement error, but most values are plausible. The median

change in both more and less affected restaurants was zero.

Table 11.11 compares the changes in more versus less affected restaurants. These

are differences-in-differences: matched pair differences, more-minus-less affected

restaurants, in the change, after-minus-before. The upper half of Table 11.11 refers

to employment and the lower half to the price of a full meal, meaning soda, fries,

and entree. Inferences use Wilcoxon’s signed rank test, the associated confidence

interval for an additive effect, and the Hodges-Lehmann point estimate of an additive

effect; see Chapter 2. Although Stigler [26] predicted that increases in the minimum

wage reduce employment, the point estimates for employment in Table 11.11 are

positive, not negative, and none is significantly different from zero at the 0.05 level.

In the ‘All’ pairs comparison, a 1-employee decline falls outside the 95% confidence

interval. There is slight evidence of a small increase in prices in more affected

restaurants, but the point estimate is less than five cents, and it is not significantly

different from zero at the 0.05 level.
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11.4 Further Reading

Statistical uses and applications of optimal nonbipartite matching are discussed

in [11, 17, 18, 19, 23, 24, 25]. As these references indicate, Bo Lu has played

an important role in advancing the use of nonbipartite matching in statistics; see

[11, 17, 18, 19] and Note 1. The specific method in §11.3 illustrates both matching

with doses [17] and matching with two control groups [18]. Optimal nonbipartite

matching is also useful in ‘risk-set’ matching which is discussed in Chapter 12 and

in [16, 19, 24, 25]. Nonbipartite matching permits matching before randomiza-

tion in randomized experiments [11]. Tapered matching is discussed by Shoshana

Daniel and colleagues [8]; it has been used for research into the causes of disparities.

Jack Edmonds [10] developed some of the results used in algorithms for optimal

nonbipartite matching. See [21, §11.3] and [5, §5.3] for textbook discussions and

[6] for a survey article. Ulrich Derigs [9] provides an implementation in Fortran

that Bo Lu [19] has made accessible from within the statistical package R. An

implementation in C is also available [6].

Section 11.3 uses data and ideas from the fine study by Card and Krueger [2].
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Chapter 12
Risk-Set Matching

Abstract When a treatment may be given at various times, it is important to form

matched pairs or sets in which subjects are similar prior to treatment but avoid

matching on events that were subsequent to treatment. This is done using risk-set

matching, in which a newly treated subject at time t is matched to one or more con-

trols who are not yet treated at time t based on covariate information describing

subjects prior to time t.

12.1 Does Cardiac Transplantation Prolong Life?

In the late 1960s and early 1970s, heart transplantation was a new surgical pro-

cedure. In 1972, Mitchell Gail [5] published a brief but influential and insightful

critique of two empirical studies from that time that evaluated cardiac transplan-

tation. Hearts were not immediately available for transplantation; a candidate for

a heart had to wait until one became available. In “Does cardiac transplantation

prolong life? A reassessment,” Gail wrote:

Two recent reports of experience with cardiac transplantation conclude that this procedure
appears to prolong life . . . [however] the observed differences can be explained in terms
of probable selection bias. . . . In both [studies] the patient is assigned to the nontransplant
group by default. That is, a potential transplant recipient becomes a member of the non-
transplant group because no suitable donor becomes available before the potential recipient
dies . . . [T]his assignment method biases the results in favor to the transplanted group.
[5, page 815] . . . [T]he survival time of the nontransplanted group is shorter than would
have been observed with a random assignment method, because the method used assigns an
unfair proportion of the sicker patients to this group . . . [and] the survival time of the trans-
planted group is longer than would have been observed with a random assignment method
for two reasons. First, an unfairly large number of good risk patients have been assigned to
this group, introducing a bias. Second, the patients in this group are guaranteed (by defi-
nition) to have survived at least until a donor was available, and this grace period has been
implicitly added into the survival time of the transplanted group. [5, page 816]

223P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
DOI 10.1007/978-1-4419-1213-8_12, © Springer Science+Business Media, LLC 2010 
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If you die early, before a heart becomes available, you are a ‘control.’ If you sur-

vive long enough for a heart to become available for you, then you become a treated

subject. In an experiment, exclusion criteria are applied before random treatment

assignment, ensuring that the same exclusion criteria are applied to treated and con-

trol groups (§1.2.5), but here, dying early causes you to be included in the control

group and excluded from the treatment group. The term “immortal time bias” has

sometimes been used to describe this situation [20]; see also [17].

The difficulty is created by the delay, waiting for a suitable heart. Gail then

suggested a design for a randomized experiment that removes this difficulty. When

a heart becomes available, the two living individuals most compatible with that heart

are identified, paired, and then one is selected at random to receive it, the other

becoming a control, with survival measured from that date of randomization [5,

page 817]. This randomized experiment addresses the problem that hearts are not

immediately available, yet creates an appropriate randomized control group, one

that could be used in randomization inference.

A similar but slightly different randomized experiment would begin as Gail’s

hypothetical experiment begins, pairing individuals when a heart becomes available,

assigning the heart at random to one member of the pair; however, unlike Gail’s

experiment, the control, who did not receive the newly available heart, would remain

eligible to receive a suitable heart if one became available at a later time.

In general, this slightly different experiment would estimate the effect of delay,

that is, the effect of treating now as opposed to waiting and possibly treating later.

There are contexts, common in medicine, in which this is the practical choice: treat

now or wait and see; there is the option of treating later if treatment is delayed.

Is treating immediately advantageous? Does it improve outcomes? Or is waiting

better? Would delay lead to a better decision about who to treat? Would delay

eliminate unnecessary treatment without harming outcomes? Or is treatment in-

evitable? If treatment is inevitable, is delay pointless or harmful? A randomized

experiment of this form could answer such questions. Risk set matching creates an

observational study analogous to this randomized experiment.

12.2 Risk-Set Matching in a Study of Surgery for Interstitial
Cystitis

Interstitial cystitis (IC) is a chronic urologic disorder characterized by bladder pain

and irritative voiding, similar to the symptoms of urinary tract infection but without

evidence of infection. In an effort to better understand the disorder and its treat-

ment, the National Institute of Diabetes, Digestive and Kidney Diseases created the

Interstitial Cystitis Data Base (ICDB) [15]. In [9], Paul Li, Kathleen Propert, and I

proposed risk-set matching as a method for studying the effects of a surgical inter-

vention, cystoscopy and hydrodistention, on symptoms of interstitial cystitis using

data from the ICDB. Aspects of this study are described here.
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To enter the ICDB, a patient must have symptoms of IC for at least the previous

six months. Patients are evaluated upon entry into the ICDB and at approximately

three month intervals thereafter. Three quantities were measured regularly: pain and

urgency, both recorded on scale of 0 to 9, where higher numbers indicate greater in-

tensity; and nocturnal frequency of voiding. Periodically, an additional patient was

treated with the surgical procedure, cystoscopy and hydrodistention. For brevity

in what follows, cystoscopy and hydrodistention is described as ‘surgery’ or ‘the

treatment.’

Patients were not selected at random for surgery. Presumably, a patient who

finds current symptoms to be intolerable is more likely to opt for surgery. This

presents a problem. One cannot reasonably compare all patients in the ICDB who

received surgery with all those who did not, because to know that a patient never

received surgery is to have reason to suspect the patient’s symptoms never became

intolerable. Implicitly, to know that a patient never received surgery is to know a

bit about the patient’s entire course of symptoms. We would like to create pairs

of patients who were similar up to the moment that one of them received surgery,

but without any knowledge of their subsequent symptoms. Matching should make

pairs comparable prior to treatment; what happens later is an outcome. Therefore, a

new surgical patient is paired with a control patient with similar symptoms up to the

point of surgery for the surgical patient; however, this control may receive surgery

at a later time. This paired comparison estimates the effect of surgery now versus

delaying surgery into the indefinite future, with the possibility that surgery will never

be performed. It estimates the effect of the choice that patients and surgeons keep

facing.

Whenever a patient received surgery, that patient was paired with a patient who

had not yet received surgery but who had similar symptoms at baseline, upon entry

into the ICDB, and also at the time of surgery for the surgical patient. Based on

their symptoms at baseline and just prior to surgery, it would have been difficult

to guess which patient would receive surgery because their symptoms at that time

were similar. By definition, this control patient did not receive surgery in the three

month recording interval following surgery for the treated patient, but the control

might have surgery at any time thereafter.1

Figure 12.1 depicts both the baseline symptoms used for matching and the same

symptoms six months after the date of surgery for the surgical patient. In Figure

12.1, baseline refers to the time of entry into the ICDB, time 0 months refers to

the time just prior to surgery for the surgical patient, and 3 months refers to three

months after surgery. For instance, if a patient was treated surgically nine months

after entry into the ICDB, then for the pair that includes this patient, time 0 is nine

months after entry into the ICDB, and time 3 months is 12 months after entry into

the ICDB for both patients. In Figure 12.1, the matching appears to have been suc-

cessful in the specific sense that surgical patients and their matched risk-set controls

1 The matching algorithm used a distance as in §8.3, but with an important change. The distance
between a patient who received surgery at time t and a patient who had not yet received surgery at
time t was computed from the covariates for these two patients up to time t, without reference to
information obtained after time t.
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Fig. 12.1 Frequency, urgency, and pain at baseline, at treatment, and three months after treatment
for treated patients and their matched not-yet-treated risk-set controls.

had similar distributions of symptoms at baseline and prior to the surgical patient’s

date of surgery. There is a very slight uptick in the distribution of pain prior to

surgery, but matching has ensured that the uptick is present for both surgical pa-

tients and matched controls. Indeed, the symptoms of the two matched individuals

were similar over time. Specifically, the correlations between the symptoms of the

two matched individuals were high: at baseline, for frequency, pain, and urgency,

the Spearman rank correlations were, respectively, 0.92, 0.94, and 0.87, whereas at

time 0 they were 0.92, 0.91 and 0.92.

In Figure 12.1, pain and urgency scores improved three months after surgery for

surgical patients, but they improved by just about the same amount for matched

controls. In Figure 12.1, frequency improved somewhat for surgical patients but

not for controls.
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Fig. 12.2 Treated-minus-control difference in changes in frequency, urgency and pain.

Figure 12.2 sharpens this comparison. For each of the three symptoms, fre-

quency, pain, and urgency, for each patient, the change is computed between the

measurement at three months and the average of the measurements at baseline and

at time zero. Figure 12.2 depicts the treated-minus-control matched pair difference

in these differences. For pain and urgency, the median difference in the changes is

zero, suggesting little effect of surgery. For frequency, the median difference in the

changes is −0.75, a fairly small change. Table 12.1 applies Wilcoxon’s signed rank

test to the matched pair differences in changes, where the difference in frequency is

significantly different from zero at the 0.05 level.
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Table 12.1 Inferences about the matched pair differences in changes in IC symptoms. The two-
sided P-value is from Wilcoxon’s signed rank test and tests the null hypothesis that the differences
are symmetric about zero. Associated with the signed rank test is the Hodges-Lehmann (HL) point
estimate of the center of symmetry and the 95% confidence interval (CI) formed by inverting the
test.

Frequency Pain Urgency

P-value 0.004 0.688 0.249
HL-estimate −0.50 0.00 −0.50
95% CI [−1.00, 0.00) [−0.50, 0.75] [−1.0, 0.25]

12.3 Maturity at Discharge from a Neonatal Intensive Care Unit

A premature baby is kept in the neonatal intensive care unit (NICU) until it has ma-

tured sufficiently to go home [1]. Once babies have matured sufficiently to go home,

they typically stay a few more days, just to be sure, and the number of days included

in these ‘few more days’ can vary considerably from one baby to the next. Recently,

Jeffrey Silber, Scott Lorch, Barbara Medoff-Cooper, Susan Bakewell-Sachs, Andrea

Millman, Lanyu Mi, Orit Even-Shoshan, Gabriel Escobar, and I asked [18, 19]: Does

a longer stay in the NICU after maturity benefit the babies who receive it?

We looked at 1402 premature infants born in five hospitals of the Northern Cal-

ifornia Kaiser-Permanente Medical Care Program between 1998 and 2002. The

relevant age for a premature baby is not age from birth but rather postmenstrual age

or PMA, and gestational age refers to the age at birth. All 1402 babies in this study

were born with a gestational age of 34 weeks or less and were discharged from the

hospital alive. Using risk-set matching [9, 10], we divided the 1402 babies into 701

pairs of two babies, an ‘early baby’ and a ‘late baby,’ in such a way that the two

babies were similar on the day, the PMA, that the early baby was discharged, but

the late baby stayed a few more days.2 As anticipated, the late baby was not only

older on its day of discharge but also heavier and had maintained various measures

of maturity for a longer period of time. Did the late baby benefit from a few more

days to grow older, heavier, and more mature inside the NICU? Or would the quite

substantial cost of those extra days be better spent improving outpatient services for

such babies?

The matching balanced the variables in Table 12.2. In Table 12.2, the first three

groups of variables do not vary with time. In consequence, their values are the same

in the last two columns of Table 12.2. The first group of covariates describes the

babies at birth. On average, they were 31 weeks old at birth and weighed about 1.7

kilograms (3.75 pounds). The second group of variables describes the baby’s history

of significant health problems. The third group of covariates describes mom.

The fourth group of variables measures maturity, so they do vary with time; they

differ in the last two columns of Table 12.2. Aspects of maturity include: (i) mainte-

nance of body temperature, (ii) coordinated sucking, (iii) sustained weight gain, and

(iv) maturity of cardiorespiratory function. Six dimensions of maturity were scored

2 The matching was an optimal nonbipartite matching; see Chapter 11.
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Table 12.2 Balance on fixed and time-dependent covariates after risk-set matching for 1402 pre-
mature babies in 701 matched pairs. Matching ensured that paired babies were similar on the day
the early baby was discharged home from the neonatal intensive care unit, but the late baby was
more mature (older, heavier) on the later day of discharge for the late baby. Of course, the fixed
covariates are the same on both days; only the time-dependent covariates change.

Covariate Covariate Early Baby at Late Baby at Late Baby at
Group Early Baby Early Baby Late Baby

Discharge Discharge Discharge

Number of Babies 701 701 701

Baby at Gestational Age (weeks) at birth 31.1 31.1 31.1
Birth Weight at birth (grams) 1669 1686 1686

(fixed) SNAP-II 20 to 59 0.15 0.13 0.13
SNAP-II 10 to 19 0.18 0.20 0.20
SNAP-II 0 to 9 0.67 0.67 0.67

Male Sex 0.51 0.52 0.52

Baby’s Bronchopulmonary Dysplasia 0.09 0.11 0.11
Health Necrotizing Enterocolitis 0.01 0.01 0.01
History Retinopathy Stage ≥ 2 0.06 0.06 0.06
(fixed) Intraventricular Hemorrhage ≥ 3 0.02 0.01 0.01

Mom Maternal Age (years) 29.9 30.3 30.3
(fixed) Marital Status Single 0.24 0.24 0.24

Other children = 0 0.40 0.37 0.37
Other children = 1 0.34 0.37 0.37
Other children ≥ 2 0.26 0.26 0.26

Income $ 59,517 59,460 59,460
White Race 0.47 0.48 0.48

Black 0.10 0.09 0.09
Asian 0.20 0.23 0.23

Hispanic 0.22 0.18 0.18

Baby’s Time Postmenstrual Age (days) 247.4 247.4 250.9
Dependent Propensity to discharge 0.67 0.64 1.33
Variables Apnea smoothed score 0.04 0.05 0.03

Brady smoothed score 0.06 0.07 0.04
Methyl smoothed score 0.04 0.03 0.02
Oxygen smoothed score 0.11 0.11 0.07
Gavage smoothed score 0.22 0.23 0.10

Incubator smoothed score 0.15 0.15 0.08
Combined maturity score 0.62 0.63 0.34

Current weight 2153 2148 2231
Current weight < 1700 grams 0.02 0.03 0.01

1700 ≤ weight < 1800 0.06 0.06 0.02
Current weight ≥ 1800 grams 0.92 0.91 0.97

daily as binary variables, 1 indicating that this dimension had not yet been achieved,

and 0 indicating that it had been achieved. In almost all cases, babies had six zeros

on their day of discharge, so the relevant question is how long the baby had a zero

score before discharge. We measured this by applying exponential smoothing [2] to

the binary variables, so that the smoothed scores were between 0 and 1, and a score

near 0 indicated that the baby had achieved and maintained a zero score for quite

a few days. In Table 12.2, these are the Apnea, Brady, Methyl, Oxygen, Gavage
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Table 12.3 Absolute difference in covariate means in units of the standard deviation for 20 fixed
covariates and 13 time-dependent covariates. For the time-dependent covariates, two values are
reported, one comparing the babies on the day the early baby was discharged, the other comparing
the babies on their own days of discharge. The babies are quite similar on the day the early baby was
discharged, but quite different on the day of their own discharge. On their own day of discharge,
three of 13 variables had absolute standardized differences above 0.6, namely the time-dependent
propensity score, the combined maturity score, and the smoothed gavage score.

Quantile min 25% 50% 75% max

Fixed 0.00 0.01 0.04 0.06 0.09
Time-Dependent at Early Discharge 0.00 0.01 0.02 0.06 0.09
Time-Dependent at Own Discharge 0.09 0.16 0.19 0.34 0.75

and Incubator smoothed scores; notice that these are similar on the day the early

baby went home, but somewhat closer to zero for the late baby on the day the late

baby went home. Another time-dependent covariate is the baby’s current weight,

which is recorded in several forms in Table 12.2; the late baby went home weigh-

ing about 100 grams more. Also, there is the baby’s current age or PMA; the late

baby was about 3.5 days older at discharge. The time-dependent propensity score

[9, 10] was based on Cox’s [3] proportional hazards model using both the fixed and

time-dependent variables; it is the linear portion or log-hazard of discharge from the

model, and it varies from day to day.

Table 12.3 summarizes Table 12.2 in terms of standardized differences; see §9.1.

For the covariates in Table 12.2, absolute standardized differences in means are

displayed in Table 12.3. Although the babies were similar on the day the early

baby was discharged, the late baby was substantially more mature on its own day

of discharge. For three time-dependent variables, the difference is more than 0.6

standard deviations.

A detailed analysis of outcomes appears in [18, 19]; see also §18.2 and §19.6.

Here, it suffices to say that the early and late babies had similar experiences after

discharge, so there was little indication of benefit or harm from the extra days in the

NICU. Of course, the extra days were quite expensive.

The matching was implemented as follows. As noted, the proportional hazards

model contributed a time-dependent propensity score [9, 10]. Then a 1402×1402

distance matrix was computed comparing the babies to one another. If the baby in

row i and the baby in column j were discharged on the same day (the same PMA),

then the distance between them was infinite. Otherwise, one baby was discharged

earlier than the other, and the distance in row i and column j describes both babies on

the day the earlier baby was discharged. The distance used a penalty to implement

a caliper on the time-dependent propensity score (§8.4) and a Mahalanobis distance

using the current values of the time-dependent covariates, with small penalties to

improve balance on recalcitrant variables. Optimal nonbipartite matching was ap-

plied to this distance matrix to divide the 1402 babies into 701 pairs so that the

total distance within pairs was minimized; see Chapter 11. The computations used

Fortran code developed by Derigs [4] that Lu [10] has made available inside R.
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12.4 Joining a Gang at Age 14

Is joining a gang at age 14 a major turning point in a boy’s life? Does it initi-

ate a life of violence, a violent career? Amelia Haviland, Daniel Nagin, Richard

Tremblay, and I [8] examined this question using data from the Montréal Longitu-

dinal Study of Boys [21], which followed a cohort of boys in kindergarten in 1984

through 1995 when their average age was 17. The boys were from 53 schools in

low socioeconomic areas of Montréal, Canada, and all were white, born in Canada

to French-speaking parents. The data in the study are based on assessments by par-

ents, teachers, peers, self-reports, and records from schools and the juvenile court.

Violence was scored as a weighted count of violent incidents [8, page 425]. It should

be mentioned at the outset that Montréal is not one of earth’s most violent places,

and the boys we studied were not the most violent boys in the Montréal Longitudinal

Study; see [8] for a detailed description of the group under study.

The study looked at boys who had not joined a gang prior to age 14 and who

were not part of a small group of exceptional boys with very high and consistent

violence prior to age 14. Among these boys, 59 joined a gang at age 14. The 59

joiners were quite different from the typical boy in this group prior to age 14: they

were more violent prior to age 14, less popular, more aggressive, more oppositional,

more sexually active, and their mothers were younger. Each joiner (J) was matched

to two controls (C) from the same group who did not join a gang at age 14. In the

59 matched sets, the 59 joiners did not differ greatly from the 2×59 = 118 matched

controls in terms of the covariates. The matching used the techniques described

in Chapter 8 together with Nagin’s [24] latent trajectory groups fitted to violence

prior to age 14. This is the simplest form of risk-set matching because the risk-set

is defined at a single time, namely age 14.

Figure 12.3 depicts the results at various ages for joiners (J) and their matched

controls (C). The upper portion of the figure depicts violence, while the lower por-

tion depicts gang membership. By definition of the study group, none of these boys

were in gangs at ages 12 and 13, and all of the joiners and none of the matched

controls were in gangs at age 14. Because of the matching, the boys were similar

in terms of violence at ages 12 and 13. For joiners, there is a step up in violence at

age 14 that is smaller at age 15 and is no longer significantly different from zero at

ages 16 and 17. Most of the joiners had quit the gang by age 15, and a few of the

controls had joined. By ages 16 and 17, the difference in the percentage of gang

membership between joiners and controls is quite small. Only four of 59 joiners

were in gangs in all four years, ages 14–17.

In this cohort, joining a gang at age 14 does not appear to launch a violent career:

most joiners soon quit without a permanent elevation in violence, and controls often

subsequently joined and quit gangs. Appearances suggest that joining a gang has

highly transient effects. A conclusion of this sort is possible only if individuals

who were similar at a certain point in time are followed forward through time; that

is, the groups are not defined by what happened to individuals subsequently. One

could imagine an analysis that sliced boys into boy-years, counting a boy as a gang

member in years of membership and as a control in other years, but such an analysis
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Fig. 12.3 Gang violence and gang membership for 59 boys who joined gangs for the first time at
age 14 and for two risk-set controls who had not joined gangs through age 14.

could easily miss the highly transient nature of gang membership in the lives of

intact boys.

12.5 Some Theory

The theory of risk-set matching is not difficult and is developed in about four pages

in [9, §4]. A brief, informal sketch of this theory follows.

You are waiting for an event to occur, but you do not know when it will occur.

In the most common medical applications, the event is death, but in risk-set match-

ing, the event is the start of treatment, perhaps surgery, or discharge from a neonatal

intensive care unit, or joining a gang. At any moment, given that the event has not
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yet occurred, there is a small chance it will occur in the next moment. Given that

you are alive reading this sentence, there is a small chance you will not live to read

its last word. These small chances, divided by the length of the moment, are called

hazards.3 If an event has not yet occurred, up to the current instant, for both of two

people, and those two people have the same hazard of this event, and if the event

occurs for exactly one of them, then each of the two people has an equal chance, 1
2 ,

of being the recipient of this event. This logic, expanded in various ways, underlies

much of what is done with hazards, including much of Cox’s proportional hazards

model [3]. Suppose that two people are identical up to a certain time with regard

to certain measured time-varying covariates, such as pain in §12.2, and suppose that

the hazard of treatment depends only on these measured covariates, and suppose,

finally, that exactly one of them is treated in the next moment; then they each have

equal chance, 1
2 , of treatment, not unlike the ‘slightly different experiment’ dis-

cussed at the end of §12.1. That ‘slightly different randomized experiment’ is built

in an unusual way, but the essential properties of its randomization inferences are

about the same as those in Chapter 2. Under the suppositions just mentioned, exact

risk-set matching for time-varying covariates recreates the randomization distribu-

tion of treatment assignments in the ‘slightly different randomized experiment;’ in

essence, it recreates the naive model of Chapter 3. The supposition that we have

measured all of the covariates that affect the hazard of treatment is no small sup-

position; indeed, it is not especially plausible. We might imagine that there is an

unmeasured time varying-covariate that affects the hazard of treatment and that was

not controlled by risk-set matching for the observed covariates. With only a little

structure, it is possible to show that matching for the observed time-varying covari-

ates then reproduces the sensitivity analysis model of Chapter 3. In other words,

risk-set matching for measured covariates brings us back to the two simple models

of Chapter 3. Again, the technical details are not difficult and are developed in a

few pages in [9, §4].

12.6 Further Reading

Cardiac transplantation has advanced since the 1970s, but Mitchell Gail’s [5] short

paper is of continuing methodological interest. Risk set matching refers to match-

ing from the set of people who are at risk of receiving the treatment. The theory

of risk-set matching is related to hazard models, such as David Cox’s [3] propor-

tional hazards model, where a time-varying hazard of treatment acts in a manner

similar to the propensity score; the theory is discussed in [9, §4]. Bo Lu [10] de-

velops the balancing properties of time-dependent propensity scores, and studies

their use in conjunction with nonbipartite matching. Sue Marcus, Juned Siddique,

3 This is actually a calculus notion: the moments of time grow in number while becoming shorter
and shorter in duration, so the chance that anything happens in such a short interval is shrinking,
but the time interval is shrinking as well, so perhaps the ratio, the hazard, tends to a limit; if so, the
limit is the instantaneous hazard function at a specific time.
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Tom Ten Have, Robert Gibbons, Liz Stuart, and Sharon-Lise Normand [11] discuss

balancing covariates in longitudinal studies. In risk-set matching, sensitivity of

conclusions to bias from unmeasured time-varying covariates is discussed in [9].

The examples in §12.2–§12.4 are discussed in greater detail in [8, 9, 18, 19]. An

alternative approach to matching in the Montréal Longitudinal Study of Boys is dis-

cussed in [7], where many more controls are used by matching a variable number of

controls to each joiner; see also §8.5. Paul Nieuwbeerta, Daniel Nagin, and Arjan

Blokland [14] used risk-set matching in a study of the possible effects of first im-

prisonment on the development of a criminal career. Wei Wu, Stephen West, and

Jan Hughes [24] study the effects of retention in first grade by matching retained

students to students who appeared to be similar at the end of first grade but were

promoted to second grade, following them forward for several years. Jamie Robins

and colleagues [16] have developed a general approach to treatments that evolve

over time; see the book by Mark van der Laan and Jamie Robins [22] for detailed

discussion of this approach.
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Chapter 13
Matching in R

Abstract The statistical package R is used to construct several matched samples

from one data set. The focus is on the mechanics of using R, not on the design of

observational studies. The process is made tangible by describing it in detail, closely

inspecting intermediate results; however, essentially, three steps are involved, (i) cre-

ating a distance matrix, (ii) adding a propensity score caliper to the distance matrix,

and (iii) finding an optimal match. One appendix contains a short introduction to R.

A second appendix contains short R functions used to create distance matrices used

in matching.

13.1 R

Multivariate matching is easy to do in the statistical package R, as is illustrated in

the current chapter. It is convenient to use one data set to illustrate various types of

matching. For that reason, and for that reason only, four matched samples will be

constructed from Susan Dynarski’s [9] fine study of the termination in 1982 of the

Social Security Student Benefit Program, which provided tuition assistance to the

children of deceased Social Security beneficiaries; this study was discussed in §1.5.

The construction of one of the four matched samples is presented in step-by-step

detail. Outcomes are briefly compared in §13.8, but the focus is on constructing

matched control groups in R. The chapter is structured to illustrate various aspects

of R, not to produce a recommended analysis for Dynarski’s [9] study.

The favorite statistical package of research statisticians, R is distributed free at

http://cran.r-project.org/ by the Comprehensive R Archive Network

(CRAN). Although there is also free documentation at that webpage, beginners

often find a book helpful, e.g., [15]. See the first appendix to this chapter for a brief

introduction to R.

Matching is easy in R, largely due to the efforts of Ben Hansen [11], who cre-

ated an R function, fullmatch, to do optimal matching from Fortan code created

237P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
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by Demetri Bertsekas [3, 4]. To use fullmatch, you will need to install the

optmatch package; see the first appendix.

Statistical methodology changes slowly, but software changes rapidly. This

chapter is intended to give a sense of matching in R, but R changes constantly, so

you should look inside R for updates and new developments.

13.2 Data

The first match, the only one considered in detail, concerns seniors in the period

1979–1981, when the Social Security Student Benefit Program was still in opera-

tion; see the left half of Figure 1.2. During this period, a child of a deceased Social

Security beneficiary might receive a substantial tuition benefit from the program.

Eight covariates are used in the match.1 They are: family income (faminc),

income missing (incmiss), black, hispanic, the Armed Forces Qualifications Test

(afqtpct), mother’s education (edm), mother’s education missing (edmissm)

and gender (female);2 these are contained in Xb with 2820 rows and eight

columns. The treatment indicator zb is a vector with a 1 for a senior whose fa-

ther is deceased and 0 for other seniors. The first 20 of 2820 rows of the treatment

indicator, zb and covariates Xb are displayed in Table 13.1. In R, a variable such

as faminc in a data.frame such as Xb is referred to as Xb$faminc.

Mother’s education but not father’s education was used because one group was

defined by a deceased father. The AFQT is the only educational measure among the

covariates. The AFQT was missing for less than 2% of subjects, and these subjects

are not used in the matching. With this restriction,3 there are 131 high school seniors

with deceased fathers and 2689 other high school seniors in the 1979–1981 cohort,

before the Social Security Student Benefit Program ended in 1982; see Table 13.2.

Also, 131+2689 = 2820. In consequence, R finds:

1 Dynarski [9, Table 2] presents two analyses, one with no covariates, the other with many more
covariates, obtaining similar estimates of effect from both analyses. That is a reasonable approach
in the context of her paper. In constructing a matched control group in this chapter, I have omitted
a few of the covariates that Dynarski used, including ‘single-parent household’ and ‘father attended
college,’ from a comparison involving a group defined by a deceased father. In general, if one wants
to present parallel analyses with and without adjustment for a particular covariate, say ‘single-
parent household,’ then one should not match on that covariate, but should control for it in one of
the parallel analyses using analytical techniques; e.g., §18.2 or [10, 23, 28, 29] and [27, §3.6].
2 In detail, the covariates used in the match are (i) faminc: family income in units of $10,000; (ii)
incmiss: income missing (incmiss=1 if family income is missing, incmiss=0 otherwise);
(iii) black (black=1 if black, black=0 otherwise), (iv) hispanic (hispanic=1 if his-
panic, hispanic=0 otherwise), (v) afqtpct: Armed Forces Qualifcations Test (AFQT), (vi)
edmissm: mother’s education missing (edmissm=1 if missing, edmissm=0 otherwise), (vii)
edm: mother’s education (edm=1 for less than high school, edm=2 for high school, edm=3 for
some college, edm=4 for BA degree or more), (viii) female (female=1 for female, female=0
for male).
3 Because of this restriction, the counts of seniors in various groups are slightly different than in
[9].
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Table 13.1 For the first 20 people in the 1979–1981 cohort, the treatment zb and the eight covari-
ates Xb are listed. Here, zb is 1 if the father is deceased, and zb is 0 otherwise. In R, this table is
displayed by cbind(zb,Xb)[1:20,], which instructs R to bind the vector zb and the matrix
Xb as columns, and to display rows 1 to 20 and all columns. The id numbers (actually rownames
in R) are not consecutive because zb and Xb contain only the 1979–1981 cohort, before the can-
cellation of the Social Security Student Benefit Program in 1982. As discussed in Chapter 9, when
missing value indicators are used in matching (here incmiss and edmissm), the missing values
in the variables themselves are arbitrary. Here, faminc is set to 2 when incmiss is 1 indicating
that faminc is missing, and edm is set to 0 when edmissm is 1 indicating that edm is missing.
Had different values been filled in, the matching would have been the same.

id zb faminc incmiss black hisp afqtpct edmissm edm female
1 0 5.3 0 0 0 71.9 0 2 0
2 0 2.5 0 0 0 95.2 0 2 1
4 0 9.5 0 0 0 95.8 0 2 1
5 0 0.4 0 0 0 90.6 0 2 1
6 0 10.4 0 0 0 81.8 0 2 0
7 0 6.3 0 0 0 97.9 0 4 0
10 1 3.2 0 0 0 61.9 0 2 1
11 0 9.5 0 0 0 20.4 0 2 1
12 0 2.7 0 0 0 57.2 0 1 0
14 0 2.0 1 0 0 8.3 0 1 1
15 0 7.1 0 0 0 50.9 0 2 1
16 0 7.8 0 0 0 71.1 0 2 1
17 0 12.5 0 0 0 74.9 0 2 0
18 0 2.0 1 0 0 98.4 0 2 1
21 0 9.4 0 0 0 98.7 0 4 1
23 0 2.0 1 0 0 99.7 0 4 0
24 0 2.0 1 0 0 73.3 0 3 1
29 0 2.0 1 1 0 1.8 0 1 0
31 0 2.0 1 0 0 42.9 0 2 1
34 1 2.6 0 0 0 99.6 0 2 0

Table 13.2 Frequency table showing the number of seniors available and the number used in
matching. In 1979–1981 and 1982–1983, seniors whose fathers were deceased are matched to
ten seniors whose fathers were not deceased, yielding, respectively, 131 and 54 matched sets of 11
seniors each. Also, 1038 pairs of seniors whose fathers are not deceased are found, with one from
1979–1981 and the other from 1982–1983. Among seniors with deceased fathers, a variable match
is also found, using all 54+131 seniors, with 54 matched sets containing one senior in 1982–1983
and between 1 and 4 seniors in 1979–1981.

1979–1981 1982–1983 Matched 1979–1981

Father Deceased (FD) 131 54 131
Father Not Deceased (FND) 2689 1038 1038
Matched FND (10 controls) 1310 540
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> length(zb)
[1] 2820

> dim(Xb)
[1] 2820 8

> sum(zb)
[1] 131

> sum(1-zb)
[1] 2689

The 131 seniors with deceased fathers will each be matched to 10 controls whose

fathers were not deceased.

13.3 Propensity Score

The propensity score is estimated using a logit model. In R, logit models are fitted

using the metaphor of generalized linear models [16]; however, if logit models are

familiar and generalized linear models are unfamiliar, then you may think of this

as R’s syntax for logit regression because it is the same logit regression. In R, the

estimated propensity scores are the fitted probabilities of a deceased father given

the eight covariates, and one obtains these as the $fitted.values in a gener-

alized linear model glm with the family=binomial. Specifically, the vector p
contains the 2820 estimated propensity scores, ê(x�), � = 1,2, . . . ,2820:

> p<-glm(zb˜Xb$faminc+Xb$incmiss+Xb$black+Xb$hisp
+Xb$afqtpct+Xb$edmissm+Xb$edm+Xb$female,
family=binomial)$fitted.values

It is reasonable to work to improve this model, perhaps including interaction

terms or transformations or polynomials or whatnot, but this chapter will take a

rather minimal approach, seeking an acceptable match in a few simple steps.

Figure 13.1 displays the estimated propensity scores for the 131 seniors with de-

ceased fathers and the other 2689 high school seniors. The difference between the

two distributions is substantial: (i) the standardized difference in means (§9.1) of

ê(x�) is 0.67, or 2
3 of a standard deviation, and (ii) in Figure 13.1, the median ê(x�)

in the treated group is about equal to the upper quartile among potential controls.

Nonetheless, the distributions in Figure 13.1 overlap substantially, so matching ap-

pears to be possible.

13.4 Covariates with Missing Values

Missing covariate values are discussed in §9.4; please review that discussion. The

situation with missing covariate values is a common source of misunderstanding.
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Fig. 13.1 Estimated propensity scores for 131 seniors with deceased fathers and 2689 other seniors
in the 1979–1981 cohort, before the Social Security Student Benefit Program was eliminated.

As in §9.4, missing covariate values are filled-in with an arbitrary but fixed num-

ber; then, missing value indicators are appended as additional covariates; see Table

13.1 and the logit model for the propensity score in §13.3. If the missing values

for family income, faminc, or mother’s education, edm, had been filled in with

different constants, the estimated propensity scores ê(x�) would have been the same

because of the presence of the missing value indicators, incmiss and edmissm.

The coefficients in the logit model would change if different values had been used,

but they change to compensate for the change in the filled-in values, keeping ê(x�)
unchanged.4 To prevent round-off error in the computer’s arithmetic work, it makes

sense to fill in values that are not wild — a family income of −9999 is not recom-

4 Technically, the fitted probabilities in logit regression are invariant under affine transformations
of the predictors.
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Table 13.3 First five rows and columns of the 131× 2689 distance matrix using the rank-based
Mahalanobis distance. Notice that the 131 rows and 2689 columns are labeled with distinct num-
bers � = 1,2, . . . ,2820 = 131+2689.

� Control 1 Control 2 Control 3 Control 4 Control 5

Treated 7 3.86 2.61 5.06 6.86 6.72
Treated 20 3.47 3.03 7.58 6.23 5.82
Treated 108 9.60 19.47 20.02 24.62 13.03
Treated 126 6.81 8.05 12.93 10.74 9.88
Treated 145 8.70 15.09 17.74 18.86 12.37

mended — but aside from round-off error, the value filled in does not matter. To

emphasize, the missing values are still missing. The propensity score is estimat-

ing the probability that a senior will have a deceased father when that senior has

certain specific measured covariates and a specific pattern of missing covariates; it

is not guessing what the missing covariate values might be. That is, the propen-

sity score is estimating a particular conditional probability about observable events,

because the patterns of missing data (but not the missing values themselves) are

observable. Matching or stratifying on this particular conditional probability relat-

ing observables tends to balance those observables, that is, the observed covariates

and the pattern of missing data, but there is no basis for expecting it to balance the

missing values [21, Appendix]. Specifically, a successful match should produce

a similar distribution of observed family incomes (faminc, when incmiss=0)

in treated and control groups and a similar percent of seniors with missing family

incomes (incmiss=1); however, whether or not the missing incomes themselves

(faminc, when incmiss=1) are similar is not known. With regard to missing co-

variates, the propensity score succeeds in its ambitions only because its ambitions

are quite limited, namely balancing observable quantities.

13.5 Distance Matrix

The distance matrix is constructed in two steps. The first step computes the rank-

based Mahalanobis distance in §8.3. The function smahal(·,·), which is given

in the second appendix to this chapter, creates the 131×2689 distance matrix. The

first five rows and columns of dmat are given in Table 13.3.

> dmat<-smahal(zb,Xb)
> dim(dmat)

[1] 131 2689

The second step adds the caliper on the propensity score in §8.4. The function

addcaliper(·,·,·), which is given in the second appendix to this chapter, takes

dmat and adds a penalty when the propensity scores differ by more than 0.2 times

the standard deviation of ê(x). In the welder data in Chapter 8, the caliper was set at

0.5 times the standard deviation of ê(x), but aside from very small problems, a value
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Table 13.4 First five rows and columns of the 131×2689 distance matrix after adding the propen-
sity score calipers. The caliper was at 0.2×sd(ê(x)). Only two of these 25 entries were unaffected
by the caliper.

� Control 1 Control 2 Control 3 Control 4 Control 5

Treated 7 18.60 20.64 42.04 79.91 46.10
Treated 20 46.32 3.03 72.66 51.18 73.30
Treated 108 82.94 47.40 115.60 39.07 111.01
Treated 126 57.81 13.64 86.16 47.54 85.51
Treated 145 8.70 54.51 33.32 113.31 30.34

of 0.1 to 0.25 is more common. The result is a new 131×2689 distance matrix. The

first five rows and columns of the revised dmat are given in Table 13.4. Among

these 25 entries, only two respected the caliper and did not incur a penalty.

> dmat<-addcaliper(dmat,zb,p)
> dim(dmat)

[1] 131 2689

13.6 Constructing the Match

From the distance matrix, dmat, the match is obtained using Hansen’s [11] fullmatch
function in his optmatch package. After optmatch is installed, you must load

it, either using the packages menu or with the command

> library(optmatch)

We wish to match ten controls to each senior with a deceased father. The

fullmatch function needs to know the distance matrix, here dmat, the mini-

mum number of controls, here 10, the maximum number of controls, here 10, and

the fraction of controls to omit, here (2689− 10× 131)/2689 = 0.51283. That is,

matching 10-to-1 means 10×131 will be used, omitting 2689−10×131, which is

51%.

> 2689-10*131
[1] 1379

> 1379/2689
[1] 0.51283

With these quantities determined, we do the match:

> m<-fullmatch(dmat,min.controls=10,max.controls=10,
omit.fraction=1379/2689)

After a few seconds, R places the match in m. There is an entry in m for each of

the 2820 seniors.

> length(m)
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[1] 2820

The first ten entries in m are

> m[1:10]
m.34 m.10 m.01 m.87 m.02 m.26 m.1 m.03 m.17 m.117

This says that the first senior of the 2820 seniors is in matched set #34 and the

second senior is in matched set #10. The third senior was one of the 1379 unmatched

controls; this is the meaning of the zero in m.01. The fourth senior is in matched

set #87, the fifth is unmatched, and so on. The function matched(·) indicates

who is matched. The first ten entries of matched(m) are

> matched(m)[1:10]
TRUE TRUE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE

which says, again, that the first two seniors were matched but the third was not,

and so on. There are 1441 matched seniors, where 1441 = 131× 11, because the

131 seniors with deceased fathers were each matched to ten controls, making 131

matched sets each of size 11.

> sum(matched(m))
[1] 1441

> 1441/11
[1] 131

The first three matched sets are in Table 13.5. The first match consists of 11

female high school seniors, neither black nor hispanic, whose mothers had a high

school education, with family incomes between $30,000 and $40,000, mostly with

test scores between 59% and 77%. In the second matched set, incomes were lower

but test scores were higher. And so on.

Having constructed the match, the remaining work is done with standard R func-

tions.

13.7 Checking Covariate Balance

Three other matches were constructed: a 10-to-1 match for the period 1982–1983,

after the Social Security Student Benefit Program had ended, a 1-to-1 match of

seniors with fathers who were not deceased in 1982–1983 and in 1979–1981,

and a variable match (§8.5) for all seniors whose fathers were deceased, with 54

matched sets containing one senior from 1982–1983 and between one and four se-

niors from 1979–1981; see Table 13.2. In producing the variable match, the call to

fullmatch set min.controls=1, max.controls=4, omit.fraction=0,

which says that all 131 potential controls are to be used. The small variable-match

is included for illustration.
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Table 13.5 The first three of 131 matched sets, each set containing one treated subject and ten
matched controls.

id set zb faminc incmiss black hisp afqtpct edmissm edm female
10 1380 1 3.22 0 0 0 61.92 0 2 1

350 1380 0 3.56 0 0 0 59.58 0 2 1
365 1380 0 3.60 0 0 0 61.24 0 2 1
465 1380 0 3.56 0 0 0 56.37 0 2 1
518 1380 0 3.79 0 0 0 67.01 0 2 1
550 1380 0 3.79 0 0 0 63.50 0 2 1

1294 1380 0 3.56 0 0 0 67.31 0 2 1
2072 1380 0 3.79 0 0 0 64.98 0 2 1
2082 1380 0 3.79 0 0 0 63.62 0 2 1
2183 1380 0 3.97 0 0 0 76.52 0 2 1
3965 1380 0 3.76 0 0 0 72.58 0 2 1

396 1381 1 2.37 0 0 0 88.51 0 2 1
2 1381 0 2.46 0 0 0 95.16 0 2 1

147 1381 0 2.27 0 0 0 77.09 0 2 1
537 1381 0 2.60 0 0 0 95.96 0 2 1
933 1381 0 2.85 0 0 0 96.11 0 2 1
974 1381 0 1.90 0 0 0 99.60 0 3 1
987 1381 0 2.13 0 0 0 81.18 0 2 1

1947 1381 0 2.05 0 0 0 91.45 0 3 1
2124 1381 0 2.30 0 0 0 72.40 0 2 1
2618 1381 0 2.21 0 0 0 68.92 0 2 1
3975 1381 0 2.37 0 0 0 90.74 0 2 1

3051 1382 1 3.41 0 0 1 62.87 0 1 0
606 1382 0 4.18 0 0 1 81.74 0 1 0
664 1382 0 4.39 0 0 1 91.57 0 1 0
884 1382 0 2.85 0 0 1 48.77 0 1 0
995 1382 0 3.13 0 0 1 55.12 0 1 0

1008 1382 0 3.32 0 0 1 51.61 0 1 0
1399 1382 0 3.44 0 0 1 90.02 0 2 0
2908 1382 0 3.80 0 0 1 80.28 0 1 0
3262 1382 0 3.79 0 0 1 57.28 0 1 0
3400 1382 0 2.93 0 0 1 80.88 0 2 0
3624 1382 0 3.32 0 0 1 74.08 0 1 1

Table 13.6 and Figure 13.1 display the imbalance in the eight covariates and

the propensity score in these four comparisons, before and after matching. For the

variable match, the means in the control group are weighted; see §8.5.

The four pairs of two groups were quite different before matching but were much

closer after matching. The family income of seniors with deceased fathers was

lower, they were more often black, and their mothers had less education. Between

1979–1981 and 1982–1983, AFQT test scores decline. The imbalances are much

smaller after matching.
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Table 13.6 Balance on covariates before and after matching for four matched comparisons. FD
= father deceased and FND = father not deceased. For covariate k, xtk is the mean in the first
group in the comparison, xck is the mean in the second group in the comparison, and xmck is the
mean in the matched comparison group formed from the second group. As in Chapter 9, sdbk is
the standardized difference in means before matching and sdmk is the standardized difference in
means after matching; they have the same denominator but different numerators. The largest of 36
standardized differences before matching was 0.80, compared with 0.19 after matching.

13.8 College Outcomes

A treatment effect should enhance college attendance in the one group that received

an incentive to attend, namely seniors in 1979–1981 whose fathers were deceased.

If the other groups differ substantially from each other after matching for observed

covariates, then this cannot be an effect of the treatment, and must indicate that

matching has failed to render the groups comparable [5, 20, 26] and [30, Chapter 5].

Table 13.7 compares three measures of college attendance in four matched com-

parisons. In Table 13.7, the Mantel-Haenszel test and odds ratio are reported [10,

§13.3] and percentages in the variable match are weighted see §8.5.

In 1979–1981, when the Social Security Student Benefit Program provided tu-

ition aid to students of a deceased Social Security beneficiary, seniors with deceased

fathers were more likely to attend college and complete one year of college than

were matched controls, with an odds ratio of about 1.65, but there is no sign of

this in 1982–1983 after the program ended. Among seniors whose fathers were not

deceased, college outcomes were slightly but not significantly better in 1982–1983

than among matched controls in 1979–1981. Seniors with deceased fathers in 1982–

1983 (n = 54) and their variably matched seniors with deceased fathers in 1979–

Comparison set ê(x) faminc incmiss black hisp afqtpct edmissm edm female

1979–1981 xtk 0.07 2.78 0.15 0.35 0.15 49.58 0.08 1.62 0.49

FD vs. FND xcmk 0.06 2.77 0.15 0.34 0.15 49.10 0.04 1.61 0.50

xck 0.05 4.58 0.19 0.29 0.15 52.39 0.04 1.91 0.50

131 sets sdbk 0.67 0.71 0.11 0.13 0.02 0.10 0.19 0.33 0.03

10-to-1 sdmk 0.09 0.00 0.00 0.02 0.03 0.02 0.19 0.02 0.02

1982–1983 xtk 0.08 2.31 0.30 0.46 0.15 37.41 0.04 1.56 0.46

FD vs. FND xmck 0.07 2.53 0.33 0.41 0.13 39.13 0.03 1.62 0.49

xck 0.05 4.31 0.24 0.30 0.16 43.81 0.06 1.83 0.47

54 sets sdbk 0.76 0.80 0.12 0.35 0.04 0.22 0.11 0.34 0.02

10-to-1 sdmk 0.18 0.09 0.08 0.11 0.06 0.06 0.03 0.07 0.05

FND xtk 0.30 4.31 0.24 0.30 0.16 43.81 0.06 1.83 0.47

1982–1983 xcmk 0.30 4.33 0.24 0.29 0.15 44.06 0.05 1.81 0.47

vs 1979–1981 xck 0.27 4.58 0.19 0.29 0.15 52.39 0.04 1.91 0.50

1038 sdbk 0.37 0.09 0.12 0.01 0.03 0.30 0.10 0.09 0.06

pairs sdmk 0.02 0.01 0.00 0.01 0.02 0.01 0.05 0.03 0.00

FD xtk 0.35 2.31 0.30 0.46 0.15 37.41 0.04 1.56 0.46

1982–1983 xcmk 0.33 2.49 0.25 0.43 0.15 38.55 0.06 1.65 0.43

vs 1979–1981 xck 0.27 2.78 0.15 0.35 0.15 49.58 0.08 1.62 0.49

54 sets sdbk 0.67 0.24 0.35 0.23 0.01 0.43 0.20 0.09 0.05

variable sdmk 0.16 0.09 0.12 0.07 0.00 0.04 0.12 0.12 0.06
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Fig. 13.2 Standardized differences in covariate means before and after matching in three matched
comparisons. Each boxplot displays standardized differences in means, for the nine covariates and
the propensity score.

1981 (n = 131) did not differ significantly on any outcome, but the sample size is

small, and the point estimates are not incompatible with reduced college attendance

in 1982–1983, when the tuition benefit was withdrawn. There was no indication of

a difference in completion of four years of college for any comparison.

13.9 Further Reading

Susan Dynarski’s [9] fine study is very much worth reading. The reanalysis pre-

sented here was intended just to illustrate many aspects of matching in R, not as a

recommended analysis for a study of this form. Because of the several sample sizes
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Table 13.7 College outcomes by age 23: attended, completed a year, and completed four years.
In matched groups, the table gives percentages, the Mantel-Haenszel odds ratio, and the two-sided
P-value from the Mantel-Haenszel test. Percents for the variable match are weighted.

Outcome Comparison Group 1 % Group 2 % MH–odds ratio p-value

Attend College 1979–1981: FD vs. FND 53 43 1.67 0.019
1982–1983: FD vs. FND 35 37 0.90 0.853

FND: 1982–1983 vs. 1979–1981 43 39 1.21 0.070
FD: 1982–1983 vs. 1979–1981 35 46 0.63 0.264

Complete Any 1979–1981: FD vs. FND 50 40 1.65 0.022
College 1982–1983: FD vs. FND 31 34 0.87 0.798

FND: 1982–1983 vs. 1979–1981 40 37 1.20 0.100
FD: 1982–1983 vs. 1979–1981 31 36 0.81 0.369

Complete 1979–1981: FD vs. FND 15 14 1.03 0.915
4 Years 1982–1983: FD vs. FND 09 12 0.70 0.630

FND: 1982–1983 vs. 1979–1981 14 13 1.13 0.460
FD: 1982–1983 vs. 1979–1981 9 12 0.88 0.805

in Dynarski’s [9] study, several different forms of matching could be used with one

data set.

Ben Hansen’s fullmatch function is well described in Hansen [11]. Docu-

mentation about R is available at http://cran.r-project.org/. See also

[13]. Four good books about R, in order of increasing difficulty, are [8, 15, 1, 7].

If you want to know what fullmatch is doing, see [12, 24, 25], but if you re-
ally want to know what fullmatch is doing, see [3, 4]. If you plan to use proc
assign in SAS, see [17].

13.10 Appendix: A Brief Introduction to R

This chapter is not intended to teach R, although I do teach it in the classroom. My

impression is that R is easy to learn, and the only obstacle is that, in a world of

menu-driven software, R is not menu-driven, so you need to know keywords. Once

you know a few keywords, it is easy to learn more, but the first 20 minutes with

R can cause heart palpitations in people who are easily frustrated. You install R
by going to the website http://cran.r-project.org/ and following the

instructions. Once R is installed, the following comments may help with those first

twenty minutes.

You find keywords with apropos. For instance, if you were looking for

Wilcoxon’s signed rank test, you might type

> apropos("wilc")
and get back

[1] "dwilcox" "pairwise.wilcox.test" "pwilcox"
[4] "qwilcox" "rwilcox" "wilcox.test"
Here, wilcox.test looks promising, so you type

> help(wilcox.test)
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and receive instructions about Wilcoxon’s test.

If you’d like to mess around with any old data, type

> help(data)
and

> data()
where, yes, there is nothing inside the ().

Some keywords to learn early include data.frame, NA, ls, rm, summary,

plot, and boxplot. For instance, type

> help(data.frame)
Speaking informally, a data.frame is an object that resides in your workspace
and contains data with variables as columns and subjects as rows. Missing values

are coded as NA. When you use an R function, you should check its help to see

what it does with NA’s; here, you will find the solution to many otherwise mysterious

events. If you type ls(), then you will see a list of the objects in your current

workspace. Keep a tidy workspace. Remove an unwanted object named

unwanted with rm(unwanted). R is not Windows: it will not ask you “Are

you absolutely sure you want to discard unwanted forever?” Save copies of any-

thing that is important using SAVE WORKSPACE on the file menu. Save different

research projects in different workspace’s. The command summary(object)
provides an appropriate description for many different types of object.

A key feature of R is that you can download packages from the Web. You can

search the Web using help.search. For instance,

> help.search("match")
produces lots of things, some of them related to the current chapter, whereas

help.search("fullmatch")
guides you to Ben Hansen’s [11] fullmatch function, which is used in the current

chapter.

To use a package from the Web, you must install it, which is most easily done

using the packagesmenu, clicking on install package(s). For the current

chapter, you will want to install Hansen’s [11] optmatch package, then type

> library(optmatch)
> help(fullmatch)
and you are good to go.

At some point, you will want to use R with your own data. A basic command is

read.table, so type

> help(read.table)
When reading data from files created by other statistical packages, a helpful package

is foreign. For instance, to read a stata file, install foreign, and type

> library(foreign)
> help(read.dta)

To read a SAS file, install foreign, and type

> library(foreign)
> help(read.xport)

Although read.table is the basic command and read.dta is an exten-

sion, reading a file that has already been formatted – say, reading a stata file
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with read.dta – often turns out to be easier than reading a numeric file with

read.table, where you may have more details to attend to.

Most of the data sets that inhabit R that are listed by data() are not obser-

vational studies. The web page for Jeffrey Woodridge’s nice book [31] includes

stata files for several interesting observational studies published in economics

journals. David Card and Alan Krueger have made the data from their study [6] of

the minimum wage data available at http://www.irs.princeton.edu/.

Several versions of the NSW experiment in Chapter 2 are available in downloadable

packages in R, but you need to identify each version with a different paper from the

large literature spawned by Robert LaLonde’s [14] study. The data from Angrist

and Lavy’s study [2] are available from Joshua Angrist on his webpage at MIT.

13.11 Appendix: R Functions for Distance Matrices

This appendix contains several simple R functions that do the arithmetic involved in

creating a distance matrix or adding a penalty. The functions perform a few steps

of vector arithmetic. In all of these functions, z is a vector of length(z)=n
with z[i]=1 for treated and z[i]=0 for control, X is an n×k matrix of co-

variates, dmat is a distance matrix created by mahal or smahal, p is a vector

of length(p)=n typically containing a propensity score, and f is a vector of

length(f)=n with a few values used in almost exact matching.

The function mahal creates a distance matrix using the Mahalanobis distance;

see §8.3. It requires that the MASS package has been installed.

> mahal
function(z,X){
X<-as.matrix(X)
n<-dim(X)[1]
rownames(X)<-1:n
k<-dim(X)[2]
m<-sum(z)
cv<-cov(X)
out<-matrix(NA,m,n-m)
Xc<-X[z==0,]
Xt<-X[z==1,]
rownames(out)<-rownames(X)[z==1]
colnames(out)<-rownames(X)[z==0]
library(MASS)
icov<-ginv(cv)
for (i in 1:m) {
out[i,]<-mahalanobis(Xc,Xt[i,],icov,inverted=T)}

out
}
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The function smahal creates a distance matrix using the rank-based Maha-

lanobis distance; see §8.3. It requires the MASS package has been installed.

> smahal
function(z,X){
# Rank based Mahalanobis distance.
X<-as.matrix(X)
n<-dim(X)[1]
rownames(X)<-1:n
k<-dim(X)[2]
m<-sum(z)
for (j in 1:k) X[,j]<-rank(X[,j])
cv<-cov(X)
vuntied<-var(1:n)
rat<-sqrt(vuntied/diag(cv))
cv<-diag(rat)%*%cv%*%diag(rat)
out<-matrix(NA,m,n-m)
Xc<-X[z==0,]
Xt<-X[z==1,]
rownames(out)<-rownames(X)[z==1]
colnames(out)<-rownames(X)[z==0]
library(MASS)
icov<-ginv(cv)
for (i in 1:m) {
out[i,]<-mahalanobis(Xc,Xt[i,],icov,inverted=T)}

out
}
The function addcaliper adds a penalty to a distance matrix dmat for vi-

olations of the caliper on p; see §8.4 for discussion of this penalty function. The

default caliper width is 0.2*sd(p). The magnitude of the penalty is penalty
multiplied by the magnitude of the violation, where penalty is set to 1000 by

default.

> addcaliper
function(dmat,z,p,caliper=0.2,penalty=1000){
sdp<-sd(p)
adif<-abs(outer(p[z==1],p[z==0],"-"))
adif<-(adif-(caliper*sdp))*(adif>(caliper*sdp))
dmat<-dmat+adif*penalty
dmat

}
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The function addalmostexact adds a penalty to a distance matrix dmat
for failure to match exactly on f; see §9.2. The magnitude of the penalty is mult
multiplied by the largest value in dmat.

> addalmostexact
function(dmat,z,f,mult=10){
penalty<-mult*max(dmat)
mismatch<-outer(f[z==1],f[z==0],"!=")
dmat<-dmat+mismatch*penalty
dmat

}
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Part III
Design Sensitivity



Chapter 14
The Power of a Sensitivity Analysis and Its Limit

Abstract In an experiment, power and sample size calculations anticipate the out-

come of a statistical test that will be performed when the experimental data are

available for analysis. In parallel, in an observational study, the power of a sensitiv-

ity analysis anticipates the outcome of a sensitivity analysis that will be performed

when the observational data are available for analysis. In both cases, it is imagined

that the data will be generated by a particular model or distribution, and the out-

come of the test or sensitivity analysis is anticipated for data from that model. Cal-

culations of this sort guide many of the decisions made in designing a randomized

clinical trial, and similar calculations may usefully guide the design of an observa-

tional study. In experiments, the power in large samples is used to judge the relative

efficiency of competing statistical procedures. In parallel, the power in large sam-

ples of a sensitivity analysis is used to judge the ability of design features, such as

those in Chapter 5, to distinguish treatment effects from bias due to unmeasured co-

variates. As the sample size increases, the limit of the power of a sensitivity analysis

is a step function with a single step down from power 1 to power 0, where the step

occurs at a value Γ̃ of Γ called the design sensitivity. The design sensitivity is a

basic tool for comparing alternative designs for an observational study.

14.1 The Power of a Test in a Randomized Experiment

What is the power of a test?

The power of a statistical test anticipates the judgment that the test will issue when

the test is put to use. Conceptually, the power of a test is the probability that the

test will recognize that a false null hypothesis is indeed false and reject it. If the

test will reject the null hypothesis when the P-value is less than or equal to, say, the

conventional 0.05 level, then the power of the test is the probability that the P-value

will be less than or equal to 0.05 when the null hypothesis is indeed false.
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If the test is a valid test of its null hypothesis, and if the null hypothesis were

true, the probability that the P-value would be less than or equal to 0.05 is itself less

than or equal to 0.05. This is the defining property of a valid test or P-value. The

P-value is unlikely to be less than or equal to 0.05 if the null hypothesis is true —

it happens in only one experiment in 20. Having defined a test so that rejection of

a true null hypothesis is improbable, we now want to make rejection of a false null

hypothesis highly probable; that is, we would like to have a powerful test.

The power of a test depends upon many things. First and foremost, it depends

upon what is true. If the null hypothesis is false, something else is true instead. If

the null hypothesis is false but barely so, the power is likely to be little better than

chance, 0.05. If the null hypothesis is far from the truth, the power is likely to be

much higher. The power depends also upon the sample size, the duration of follow-

up, the specifics of the experimental design, and the procedures used in statistical

analysis.

Power is a basic tool in designing a randomized experiment. How many patients

are needed? Well, calculate the power with 100, 200 and 300 patients. Is it better

to study the survival of 200 patients for five years or 300 patients for three years?

Calculate the power in each situation. The new treatment is expensive and difficult

to apply. To reduce cost, the experimenter is considering randomizing one-third of

the patients to treatment and two-thirds to control. Will this design be substantially

inferior to randomizing half the patients to treatment and half to control? Calculate

the power for both designs. There are two ways to measure the response, one pre-

cise but expensive, the other imprecise but inexpensive. If the inexpensive device is

used, the money saved will permit a larger sample size. For fixed total cost, which

is better, more precision with fewer patients, or less precision with more patients?

Calculate the power in both situations. With 20 schools, it would be convenient to

randomly assign ten schools to treatment, the rest to control, and to use the same

treatment for the hundreds of students in each school. Is that a terrible idea? Would

it be vastly better to randomize the many hundreds of students as individuals? Cal-

culate the power for the two designs.

Power is also a basic tool in evaluating the statistical methods that are used to

analyze the results of a randomized experiment. Faced with the same data from

the same statistical models, two different tests will typically have different power.

The power of two different tests in a variety of circumstances is often the basis for

choosing which test to use. The t-test has slightly better power than the Wilcoxon

test for data from a Normal distribution, but substantially inferior power for distri-

butions with longer tails, which is a basic reason that the Wilcoxon test is preferred;

its power is robust.

The remainder of this section briefly reviews the idea of power and its compu-

tation for Wilcoxon’s signed rank statistic when used in a randomized experiment.

The concept of power is important throughout Part III. The details of the computa-

tion of power are relevant to the details of the discussion in Part III, but the concepts

of Part III should be accessible if the concept of power is clear.
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A pep talk about statistical power

Design sensitivity and the power of a sensitivity analysis are simple but useful exten-

sions of two other concepts, namely sensitivity analysis and the power of a statistical

test. The concept of a sensitivity analysis was introduced in §3.4 and §3.5, and this

might be a good moment to take a second look at those sections. The power of a

statistical test will be very familiar to some readers and less so to others. If power

is very familiar, please skip the next few paragraphs, continuing with the subsection

“Computing power in a randomized experiment: The two steps.”

For people to whom statistical power is less familiar, let me mention a common

source of discomfort and misunderstanding. In testing a null hypothesis, we ten-

tatively suppose that the null hypothesis is true, simply to push through the logic

of hypothesis testing. That is, we say, ‘suppose the null hypothesis were true.’ If

it were true, what is the chance of data as inconsistent with the null hypothesis as

the data we observed? That chance is the P-value, and if the P-value is small, then

we begin to doubt the supposition that the null hypothesis is true. That is the logic

of hypothesis testing. In computing the power, we suppose that the null hypothesis

isn’t true after all, and we ask about the probability of a small P-value when the null

hypothesis is false. This second question, the one about power, can seem perfectly

reasonable at one moment and incoherent the next, not unlike certain unstable op-

tical illusions. The reason is that a power calculation supposes two contradictory

things — that the null hypothesis is true and that it isn’t — and that can seem rea-

sonable if the suppositions occur at different levels and incoherent if they collapse

into a single contradictory supposition.

Rather than talk about power, let’s talk about fishing. Suppose that I go fishing

in a lake, but suppose there are no fish in the lake. Will I catch any fish? One

perfectly reasonable answer is ‘no’: if there are no fish in the lake, I won’t catch

any fish. Another answer is: if I supposed there were no fish in the lake, I would

not go fishing in that lake; perhaps I would fish in some other lake, and then yes,

perhaps I would catch a fish. The first answer was willing to suppose a situation in

which I supposed something false, namely it supposed that I supposed there were

fish in the lake, hence went fishing in the lake, but my supposition was false. In the

second answer, the two levels of supposing have collapsed into one, and the idea

of going fishing in a lake with no fish seems incoherent. The fish-in-lake situation

is clear enough, but add some technical concepts, a few Greek symbols, a little

jargon, and suppositional collapse can seem quite puzzling. In a power calculation,

I suppose the null hypothesis is false, but I also suppose that I am ignorant of the

fact that it is false, so I test it, and in my ignorance, in the process of testing the

null hypothesis, I suppose it to be true. To think about the possibility of error, I

must make suppositions at two levels: I must suppose something is true, and I must

suppose that I can be ignorant of that truth. If the concept of power ever feels

incoherent, go back to fish in a lake. In our ignorance, we scientists spend a lot of

time fishing in lakes with no fish, and you need to get the basic concepts down.

In an analogous way, when in §14.2 we compute the power of a sensitivity analy-

sis, we suppose that there is a treatment effect and there is no bias from unmeasured
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covariates, but we are ignorant of these facts, so we perform a sensitivity analysis

when an omniscient investigator would not.1 Again, there is the danger of mis-

understanding from suppositional collapse. The sensitivity analysis entertains the

possibility of no treatment effect and a bias of magnitude Γ , for several values of

Γ , but the power of the sensitivity analysis is computed under the supposition of a

treatment effect and no bias. The power of a sensitivity analysis asks: If the treat-

ment worked, and there was no bias from unobserved covariates, then how would

the sensitivity analysis turn out? This is parallel to the power of a test of no effect

in a randomized experiment that asks: If the treatment worked, then how would the

test of no effect turn out?

Think about what you want a sensitivity analysis to do. In an observational study,

if you are looking at a treatment effect without bias, then you will not know this from

the data, but you want the sensitivity analysis to report that the ostensible effects of

the treatment are highly insensitive to unobserved bias. Perhaps that will happen,

perhaps not. The power of the sensitivity analysis is the probability that it will

happen when, indeed, there is a treatment effect without bias. Again, it is important

to avoid suppositional collapse. You are imagining that the world is a certain way,

but you are ignorant of this, and you are performing a statistical analysis, in this

case a sensitivity analysis, in a state of ignorance. You want to know: Under what

circumstances will a sensitivity analysis do what you want it to do? Under what

circumstances will the analysis sort things out correctly?

Formulas for power are needed to produce numerical results and to prove asser-

tions. If you are okay with formulas, then that is fine, but if not, take the assertions

and numerical results as true, focus on conceptual issues, and move on quickly to

Chapter 15 rather than getting bogged down here with a formula. For instance, right

now, look ahead to Figure 14.1 and realize that this figure is intelligible without ref-

erence to the technical material that precedes and produces it. Figure 14.1 says that,

in a randomized experiment, the power is greater if the treatment effect is larger

(τ = 1/2 rather than τ = 1/4), and the power increases to 1 as the sample size I
increases. Figure 14.1 captures the way we think about randomized experiments.

Figures 14.2 and 14.3 are also intelligible without reference to the technical material

that precedes and produces them; look at them now. Figures 14.2 and 14.3 capture

the key difference between power in a randomized experiment and power in an ob-

servational study. Figures 14.2 and 14.3 say that the power of a sensitivity analysis

increases to 1 as the sample size I increases for small values of Γ and decreases

to 0 for large values of Γ , the dividing point being a quantity, Γ̃ , called the design

sensitivity (which is Γ̃ = 3.171 in Figure 14.2). Here, Γ is an aspect of your analysis

and Γ̃ is an aspect of the world; they cannot coexist at the same suppositional level.

1 The omniscient investigator would not test hypotheses. Then again, the omniscient investigator
would not run a laboratory or collect data. So, the omniscient investigator would be unable to
publish, and would be denied tenure. The omniscient investigator would protest the denial of
tenure on the grounds that the university routinely grants tenure to investigators who remain fallible
despite their expensive laboratories. The omniscient investigator would end up in an asylum. Be
content that you are not an omniscient investigator, and instead try to objectively and publicly
control the probability of error.
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If you understand Figures 14.1–14.3, then you understand most of the concepts of

this chapter, even if you do not know how to produce these figures.

Computing power in a randomized experiment: The two steps

The power of Wilcoxon’s signed rank statistic, T , in a randomized experiment is

computed in two steps. First, for a particular α , conventionally α = 0.05, one finds

the critical value, ζα , such that the chance that T ≥ ζα if the null hypothesis is true is

α .2 The null hypothesis would be rejected in a one-sided 0.05 level test if T ≥ ζ0.05

because the one-sided P-value would be less than or equal to 0.05. Second, one

computes the power as the probability that T ≥ ζα when the null hypothesis is false

and something else is true instead. The power is then the probability of rejecting the

null hypothesis with a P-value less than or equal to 0.05 when the null hypothesis

is, in fact, false.

Step 1: Determining the critical value assuming the null hypothesis is true

Consider the first step, the behavior of Wilcoxon’s signed rank statistic, T , in a

paired randomized experiment with I pairs when the null hypothesis of no treatment

effect is true. It is convenient to assume there are no ties.3 Recall from §2.3.3 that

if the null hypothesis of no effect is true, then the expectation and variance of T are

given by

E (T | F ,Z ) =
I (I +1)

4
, (14.1)

var(T | F ,Z ) =
I (I +1)(2I +1)

24
, (14.2)

and, after subtracting the expectation and dividing by the standard deviation, the

distribution of T is well approximated by the standard Normal distribution if the

2 This statement is correct in concept, but it omits a small technical detail. The distribution of
Wilcoxon’s statistic, T , is discrete, so its distribution attaches dollops of probability to the possible
integer values of T , namely 0, 1, . . . , I (I +1)/2. In consequence, there may be no value ζ0.05 such
that Pr(T ≥ ζ0.05|F ,Z ) = 0.05. In consequence, the best feasible value, ζ0.05, is used, that is, the
smallest value such that Pr(T ≥ ζ0.05|F ,Z ) ≤ 0.05 when the null hypothesis is true. With this
value, ζ0.05, the probability of rejection of a true hypothesis is less than or equal to 0.05 — that is,
the test has level 0.05 — but the probability of false rejection may be slightly below 0.05 — that is,
the test has size slightly less than 0.05. In moderately large samples, I, the dollops of probability at
integer values of T are very small, so this technical detail may be ignored for conceptual purposes.
When an appeal is made to the central limit theorem as I → ∞ to justify an approximate Normal
null distribution for T , the technical detail disappears.
3 Power will be computed for various continuous distributions of the responses, such as a Normal
distribution, and for continuous distributions ties never occur; that is, the probability of a tie is
zero. As has been seen several times, ties are a minor inconvenience, easy to address in practice,
but they tend to clutter theoretical arguments. As is typically done, ties are assumed absent until a
circumstance arises in which it actually becomes important to address the issue.
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number of pairs I is moderately large, that is, the standardized deviate converges in

distribution to the standard Normal distribution,

T −E (T | F ,Z )√
var(T | F ,Z )

−→ N (0,1) as I → ∞ ; (14.3)

see Lehmann [3, §3.2]. Recall also that the standard Normal cumulative distribution

function is denoted Φ (·) and its inverse, the quantile function, is denoted Φ−1 (·),
so that, for instance, Φ (1.65) = 0.95 and Φ−1 (0.95) = 1.65.

With I = 100 pairs, compute E (T | F ,Z ) = I (I +1)/4 as 100(100+1)/4 =
2525, var(T | F ,Z ) = I (I +1)(2I +1)/24 as 100(100+1)(2×100+1)/24 =
84587.5. Using (14.3) to approximate the probability that T ≥ 3005, we calculate

(3005−2525)/
√

84587.5 = 1.65, and Pr(T ≥ 3005| F ,Z ) .= 1−Φ (1.65) = 1−
0.95 = 0.05. In §2.3.3, computations along these lines yielded approximate one-

sided P-values for Wilcoxon’s statistic. More generally, under the null hypothesis

H0, for any fixed ζ ,

Pr(T ≥ ζ | F ,Z ) .= 1−Φ

{
ζ −E (T | F ,Z )√

var(T | F ,Z )

}
. (14.4)

The Normal approximation works increasingly well as the sample size increases,

I → ∞; however, I = 100 is quite adequate for most practical uses of (14.4).

For power calculations, we do not want the realized P-value computed in §2.3.3

from (14.4), but rather the quantile, ζα , of the distribution of T that corresponds

with a P-value less than or equal to α , conventionally α = 0.05. Rearranging (14.4)

yields Pr(T ≥ ζα | F ,Z ) .= α if

ζα
.= E (T | F ,Z )+Φ−1 (1−α)

√
var(T | F ,Z ). (14.5)

For instance, with I = 100 pairs and α = 0.05, Φ−1 (1−0.05) = 1.645, so the

critical value ζ0.05 is computed as approximately 2525 + 1.645
√

84587.5 = 3005.

Of course, (14.4) and (14.5) agree that Pr(T ≥ 3005| F ,Z ) .= 0.05 for I = 100

pairs, but (14.5) reverses the computation in (14.4) determining ζα from α . With

I = 100 pairs in a randomized experiment, we would reject the null hypothesis of

no treatment effect in a one-sided α = 0.05 level test if T turned out to be at least

ζ0.05 = 3005.

Wilcoxon’s signed rank statistic T has the convenient property that the quantiles

ζα of its null distribution are determined by α and I without reference to F . See the

discussion of ‘distribution free’ statistics in §2.3.3. In particular, the approximation

(14.5) is computed from α and I using the standard Normal distribution Φ (·) and

(14.1) and (14.2).



14.1 The Power of a Test in a Randomized Experiment 263

Step 2: Determining the power assuming the null hypothesis is false

Consider now the second step, determining the power as the probability that T ≥ ζα
when the null hypothesis is false. If the null hypothesis is false, then something

else is true, and the power depends upon what is, in fact, true. One way to proceed

would be to specify in detail what is true, that is to specify F , in particular to specify

the responses,
(
rTi j,rCi j

)
, each subject i j would exhibit under treatment and under

control. This specification would permit the calculation of the conditional power

given F , that is, the conditional probability that T ≥ ζα given F ,Z . Somewhat

more precisely, the conditional power is Pr(T ≥ ζα | F ,Z ) for some specific F
for which there is a nonzero treatment effect. Computing the conditional power for

I = 100 pairs of two subjects would entail specifying
(
rTi j,rCi j

)
for two hundred

individuals, which sounds like a thankless task. Instead, we imagine that F was

generated by a stochastic model, and compute the unconditional power — invari-

ably just called ‘the power’ — as the probability that T ≥ ζα for all random F ’s

generated by this model. That is, the (unconditional) power for Wilcoxon’s statistic

is Pr(T ≥ ζα | Z ) which is the expectation of Pr(T ≥ ζα | F ,Z ) over the specified

model generating F ’s.

In principle, with a sufficiently fast computer, the problem of computing the

power is now ‘solved.’ That is, (i) simulate an F from the specified model, (ii)

randomize treatments in the I pairs, (iii) compute Wilcoxon’s T from the treated-

minus-control differences in observed responses, Yi, (iv) score a 1 if T ≥ ζα , score

a 0 if T < ζα , and (v) repeat steps (i)–(iv) many times, estimating the power as the

proportion of 1’s. In practice, it is often helpful to work a little harder and obtain an

expression for the power, Pr(T ≥ ζα | Z ).

A simple case: constant effect with random errors

This definition of power is quite flexible, and its flexibility is put to use in later

chapters, but to make things tangible, consider the simplest nontrivial case, though

nonetheless an important case. In the simplest case, the treated-minus-control dif-

ferences in observed responses, Yi = (Zi1 −Zi2)(Ri1 −Ri2), are independent and

identically distributed (iid) observations drawn from a distribution F (·). For in-

stance, a simple model to generate F has differences in responses to control,

rCi1 − rCi2, that are iid observations from a Normal distribution with expectation

0 and variance ω2 — that is, rCi1 − rCi2 ∼iid N
(
0,ω2

)
— and an additive constant

treatment effect, rTi j− rCi j = τ for all i j. Then, in a randomized experiment, the

treated-minus-control difference in observed responses, Yi = (Zi1 −Zi2)(Ri1 −Ri2),
is Yi = τ + (Zi1 −Zi2)(rCi1 − rCi2), where given F and Z , the quantity Zi1 − Zi2
is ±1 with equal probabilities, so Yi ∼iid N

(
τ,ω2

)
. The power in this case is the

chance that T ≥ ζα when Wilcoxon’s signed rank statistic is computed from I inde-

pendent observations drawn from N
(
τ,ω2

)
.

When computing the power for differences Yi that are sampled independently

from a continuous distribution F (·), Lehmann [3, §4.2] gives an approximation to
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the power of Wilcoxon’s signed rank statistic, T . The approximation appeals to the

central limit theorem twice as the sample size I increases, I → ∞, once to obtain the

critical value ζα in step 1 as has already been done, and the second time to approx-

imate the behavior of T when the null hypothesis is false. For Yi ∼iid F (·), define

p = Pr(Yi > 0), p
′
1 = Pr(Yi +Yi′ > 0) and p

′
2 = Pr(Yi +Yi′ > 0 and Yi +Yi′′ > 0) with

i < i′ < i′′. Then Lehmann shows that the expectation μF of Wilcoxon’s T when the

null hypothesis is false and the Yi are sampled independently from F (·) is

μF =
I (I −1) p

′
1

2
+ I p , (14.6)

the variance of T is

σ2
F = I (I −1)(I −2)

(
p
′
2 − p

′
1

2
)

(14.7)

+
I (I −1)

2

{
2
(

p− p
′
1

)2
+3p

′
1

(
1− p

′
1

)}
+ I p(1− p) , (14.8)

and that the central limit theorem yields approximate power as Pr(T ≥ ζα | Z ) .=
1−Φ {(ζα −μF)/σF}.4

The required quantities p, p
′
1, and p

′
2 are determined by the distribution F (·).

For the Normal distribution, p and p
′
1 have simple expressions, while p

′
2 may be

obtained by numerical integration or simulation. For any F (·), it is easy to estimate

p, p
′
1, and p

′
2 very precisely by simulating one very large sample of Yi’s drawn from

F (·).5
For instance, if Yi ∼iid N

(
τ,ω2

)
with τ = 1

4 and ω = 1 (or more generally

with τ/ω = 1
4 ), then p = 0.599, p

′
1 = 0.638, p

′
2 = 0.482. For I = 100, we found

earlier that ζ0.05
.= 3005. For I = 100 pairs, μF = 3217.16, σ2

F = 76400.5, and

Pr(T ≥ ζα | Z ) .= 1−Φ {(ζα −μF)/σF} = 0.78. In other words, if the null hy-

pothesis of no effect is false in a randomized experiment in such a way that the

treated-minus-control differences in observed outcomes are Normal with expec-

tation equal to one quarter of their standard deviation, then the probability that

the null hypothesis will be rejected at the 0.05 level in a one-sided test is about

78% when there are 100 pairs. In the same way, with τ = 1
2 and ω = 1 (or more

generally with τ/ω = 1
2 ) and I = 100 pairs, μF = 3834.67, σ2

F = 57041.2, and

Pr(T ≥ ζα | Z ) .= 1−Φ {(ζα −μF)/σF} = 0.999.

Figure 14.1 plots the power of Wilcoxon’s test for Yi ∼iid N (τ,1) with τ = 1
4 or

τ = 1
2 for I = 20, . . .200 pairs. With I = 50 pairs, the power is above 95% if the

4 This is expression (4.28) in Lehmann [3, §4.2] except for the exclusion of the continuity correc-
tion.
5 The probability p

′
1 = Pr(Yi +Yi′ > 0) will turn out to be the most important of the three probabili-

ties. Notice that in (14.6), the quantity p
′
1 dominates the expectation of T , because p

′
1 is multiplied

by I (I +1)/2 while p is multiplied by I, so in large samples, as I → ∞, the dominant role is played

by p
′
1. Looking back to §2.5, we see that p

′
1 is the expectation of HI for I = {i, i′}. As seen in

§2.5, the quantity HI is highly interpretable, and the interpretation carries over to p
′
1.
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effect is larger, τ = 1
2 , but the power is a coin toss, about 50%, if the effect is smaller,

τ = 1
4 .

14.2 Power of a Sensitivity Analysis in an Observational Study

What is the power of a sensitivity analysis?

As seen in Chapter 2, if Wilcoxon’s signed rank test is used to test the null hypoth-

esis of no treatment effect in a randomized experiment, it yields a single P-value

because we know the distribution of treatment assignments that was created by the

random assignment of treatments. As seen in Chapter 3, in an observational study,

randomization is not used to assign treatments, so this single P-value lacks a jus-

tification or warrant; it would be valid under the naı̈ve model, but naı̈veté is not

justification for an inference. Recall from §3.4 and §3.5 that for any given magni-

tude Γ ≥ 1 of departure from random assignment in (3.13), an interval [Pmin, Pmax]
of possible P-values may be determined; see Table 3.2. The study is judged sen-

sitive to unmeasured biases of magnitude Γ if the corresponding Pmin is small and

Pmax is large, for instance Pmin ≤ 0.01 and Pmax > 0.05. In Table 3.2, the study by

Werfel et al. [9] was highly insensitive to unmeasured biases, specifically insensitive

to biases of magnitude Γ = 4 but sensitive to Γ = 5.

If an observational study were actually free from unmeasured biases — if the

naı̈ve model (3.5)–(3.8) of §3.3 were true — then we would not know this from

the observable data. We might see that the treated-minus-control differences in

observed responses, Yi, were typically positive, but we would be uncertain whether

this reflected an effect caused by the treatment or some bias in the way treatments

Fig. 14.1 Approximate power
of Wilcoxon’s signed rank
test, T , in a paired random-
ized experiment when the
treatment has an additive
constant effect τ and the
treated-minus-control differ-
ences in observed responses
Yi are independently sampled
from a Normal distribution,
N(τ,1), with expectation τ
and variance 1, for samples of
size I = 20,21, . . . ,200 pairs.
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were assigned or a combination of the two. The best we could hope to say in this

favorable situation is that the treatment appears to work and that this appearance

is highly insensitive to unmeasured biases, that is, only a very large value of Γ
could produce this appearance from bias alone. Speaking informally, the power of

a sensitivity analysis is the probability that our hopes will be realized.

Somewhat more precisely, define the ‘favorable situation’ as a treatment that ac-

tually causes meaningful effects in an observational study that is free of unmeasured

biases. Specifically, in the favorable situation, the null hypothesis of no effect is

false, and not merely false but the treatment effect is large enough to be interesting

and substantively important. Also, in the favorable situation, the study is free of

unmeasured biases, people who look comparable are comparable, in the sense that

(3.5)–(3.8) are true. That is, the treated-minus-control differences in responses, Yi,

are not centered at zero because the treatment worked in the absence of bias. If we

were in the favorable situation, we would not know it from the observable data. It is

in this favorable situation that we would like to report a high degree of insensitivity

to unmeasured biases.

In testing the null hypothesis of no treatment effect at level α , conventionally

α = 0.05, rejection of the null hypothesis is insensitive to a bias of magnitude Γ if

Pmax ≤ α; see, again, the example in Table 3.2. In the favorable situation, the power

of a sensitivity analysis conducted with a specified α and Γ is the probability that

Pmax ≤ α . That is, if the treatment had an effect and there is no unmeasured bias,

then the power of the sensitivity analysis for specified α and Γ is the probability

that we will be able to say that a bias of magnitude Γ would not lead to acceptance

of the null hypothesis of no effect when tested at level α . In Table 3.2, it was found

that Pmax ≤ 0.05 for Γ = 4; the power is the probability of such an event computed

before the data are examined. For Γ = 1, this is the power of a test of no effect in a

randomized experiment as computed in §14.1.

Computing the power of a sensitivity analysis: The two steps

As in §14.1, the computations leading to the power of a sensitivity analysis are

done in two steps. As in §14.1, the first step is to compute a critical value, now

ζΓ ,α , so that Pr(T ≥ ζΓ ,α | F ,Z ) ≤ α for all treatment assignment probabilities

that satisfy (3.16)–(3.18) when the null hypothesis of no treatment effect is true.6 If

we observed T ≥ ζΓ ,α , then we would report that the upper bound on the one-sided

P-value for testing no effect is at most α for all biases of magnitude at most Γ ; see

again Table 3.2. The second step is to compute the probability that T ≥ ζΓ ,α in the

‘favorable situation’ in which the treatment has an effect and there is actually no

bias from unmeasured covariates. It is in this favorable situation that we hope to

report a high degree of insensitivity to unmeasured bias, and if T ≥ ζΓ ,α then we

will be able to report that rejection of the null hypothesis is insensitive to a bias of

magnitude Γ .

6 To be precise, we seek the smallest ζΓ ,α such that Pr(T ≥ ζΓ ,α | F ,Z ) ≤ α .
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As in §14.1, the computation of the critical value is little more than a rearrange-

ment of the computation of the P-value for a one-sided test. Specifically, rearrang-

ing the computation (3.23) in §3.5 yields

ζΓ ,α
.= E

(
T
∣∣∣F ,Z

)
+Φ−1 (1−α)

√
var

(
T
∣∣∣F ,Z

)
(14.9)

so that using (3.19) and (3.20) yields

ζΓ ,α
.=

Γ
1+Γ

· I (I +1)
2

+Φ−1 (1−α)

√
Γ

(1+Γ )2

I (I +1)(2I +1)
6

. (14.10)

For Γ = 1 in a randomized experiment, expressions (14.9) and (14.10) reduce to

(14.5).

Continuing the numerical illustration from §14.1, with I = 100 pairs, α = 0.05,

and Γ = 2, the critical value ζ2,0.05 is approximately

2

1+2
· 100(100+1)

2
+1.645

√
2

(1+2)2

100(100+1)(2 ·100+1)
6

(14.11)

or ζ2,0.05 = 3817.7, which is noticeably higher than ζ0.05 = ζ1,0.05
.= 3005 for a ran-

domized experiment Γ = 1 in §14.1. In words, with I = 100 pairs, if T ≥ 3817.7
then the maximum possible P-value is ≤ 0.05 for all treatment assignment proba-

bilities that satisfy (3.16)–(3.18) with Γ = 2. This completes the first step.

Step 2: Determining the power when the null hypothesis is false and there is
no unobserved bias

Again, we wish to compute the power of the sensitivity analysis — the chance that

T ≥ ζΓ ,α — in the favorable situation in which there is no bias from unmeasured

covariates and the treatment has an effect. It is in this situation that we hope to report

that the treatment appears to work and the appearance is insensitive to moderately

large biases.

More precisely, the naı̈ve model (3.5)–(3.8) is assumed to hold, or equivalently

(3.16)–(3.18) holds with Γ = 1, and the data F were generated by a stochastic

model with a treatment effect, and we wish to determine Pr(T ≥ ζΓ ,α | Z ) aver-

aging Pr(T ≥ ζΓ ,α | F , Z ) over the model that generates F . This is, of course,

identical to the second step in §14.1 for a randomized experiment except the critical

value, ζΓ ,α , has changed. In consequence, the second step is performed in the same

way as in §14.1 with the new critical value. As in §14.1, the second step may in

general be performed by simulating many sets of data F from the model, determin-

ing the proportion with T ≥ ζΓ ,α , and in particular cases the power of the sensitivity

analysis may be determined analytically.
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Fig. 14.2 Approximate power
of a sensitivity analysis when
there is no bias from un-
measured covariates, the
treatment has an additive con-
stant effect τ = 0.5 and the
treated-minus-control differ-
ences in observed responses
Yi are independently sampled
from a Normal distribution,
N(τ,1), with expectation τ
and variance 1, for samples
of size I = 20,21, . . . ,2000
pairs. The several curves give
the power for several values
of Γ . The power tends to 1 as
I increases for Γ < 3.171 and
it tends to 0 for Γ > 3.171.
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Continuing the numerical example, if Yi ∼iid N
(
τ,ω2

)
, i = 1, . . . , I = 100 with

τ = 1
2 and ω = 1 then as in §14.1, μF = 3834.67, σ2

F = 57041.2. To com-

pute Pr(T ≥ ζΓ ,α | Z ) for Γ = 2 and α = 0.05, we find in the first step that

ζ2,0.05 = 3817.7. In the second step, we approximate Pr(T ≥ ζΓ ,α | Z ) by 1 −
Φ {(ζΓ ,α −μF)/σF} which is 1 − Φ

{
(3817.7−3834.67)/

√
57041.2

}
= 0.528.

If the treatment had an effect of τ = 1
2 and there is no bias from unobserved covari-

ates, there is a 53% chance that a sensitivity analysis will yield an upper bound on

the P-value that is at most 0.05 when performed with Γ = 2. This contrasts with

99.9% power in a randomized experiment, Γ = 1, as calculated in §14.1.

A first look at the power of a sensitivity analysis

Figure 14.2 shows the power in the ‘favorable situation’ with Yi ∼iid N
(

1
2 ,1

)
, i =

1, . . . , I for I = 20, 21, . . . , 2000 and for Γ = 1, 1.5, 2, 2.5, 3, 3.5. Again, the

‘favorable situation’ is characterized by a treatment effect without bias, so it is the

situation where we hope to report insensitivity to small and moderate unmeasured

biases. The rather special case in Figure 14.2 illustrates several general properties of

the power of a sensitivity analysis. The power is higher in a randomized experiment,

where Γ is known to equal 1, because there is no need to take account of bias

from nonrandom treatment assignment. The power degrades as Γ increases. The

most striking feature of Figure 14.2 is that the power is increasing in the sample

size I for small Γ but is decreasing in I for Γ = 3.5. There is, in fact, a value,

Γ̃ , such that the power Pr(T ≥ ζΓ ,α | Z ) tends to 1 as I → ∞ for all Γ < Γ̃ and

Pr(T ≥ ζΓ ,α | Z ) tends to 0 as I → ∞ for all Γ > Γ̃ . In the situation in Figure 14.2,

the design sensitivity is Γ̃ = 3.171. Because 3 < Γ̃ = 3.171, the power for Γ = 3

will eventually rise to 1 as I →∞ even though it has not yet reached 30% at I = 2000
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in Figure 14.2. In a sufficiently large sample, I, the ‘favorable situation’ with Yi ∼iid
N
(

1
2 ,1

)
, i = 1, . . . , I can be distinguished from bias of magnitude Γ < Γ̃ = 3.171,

but not from biases of magnitude Γ > Γ̃ = 3.171. Think of this statement as the

quantitative replacement for the statement ‘association does not imply causation.’ In

the ‘favorable situation’ with Yi ∼iid N
(

1
2 ,1

)
, i = 1, . . . , I, the association between

treatment Z and response Y can be distinguished from biases less than Γ̃ but not

from biases greater than Γ̃ .

It is time to consider the design sensitivity, Γ̃ , in greater detail.

14.3 Design Sensitivity

A first look at design sensitivity

In many simple settings, the power of a sensitivity analysis tends to 1 as the sample

size I increases if the analysis is performed with a sufficiently small value of Γ , but

the power tends to 0 if the analysis is performed with a sufficiently large value of Γ .

The switch occurs at a value, Γ̃ , called the design sensitivity [5]. In the situation

in Figure 14.2, the design sensitivity was Γ̃ = 3.171. It would be natural to seek a

design that results in a larger design sensitivity and to avoid designs that result in

a smaller design sensitivity. It would be natural to appraise the performance of the

methods in Chapter 5 in terms of their impact on design sensitivity.

Figure 14.2 plotted the power as a function of the sample size for several values

of Γ . Although such a plot resembles the familiar plot of power for a randomized

experiment (e.g., Figure 14.1), it is actually less instructive than plotting the power

as a function of Γ for several sample sizes I. Figure 14.3 plots power against Γ for

samples of size I = 200, 2000, 20000 in the ‘favorable situation’ in which there is a

treatment effect but no unmeasured bias, with Yi ∼iid N (τ,1), i = 1, . . . , I, for τ = 1
2

and τ = 1.

The first thing to notice about Figure 14.3 is that, as the sample size I increases,

the power viewed as a function of Γ is tending to a step function with a single step

down from power 1 to power 0, with the step located at the design sensitivity, Γ̃ .

For τ = 1
2 , the step is at Γ̃ = 3.171, whereas for τ = 1 the step is at Γ̃ = 11.715.

For all sample sizes, I, there is negligible power for Γ > Γ̃ .

The six power curves in Figure 14.3 refer to three sample sizes, I = 200, 2000,

20000, and two design sensitivities, Γ̃ = 3.171 (for τ = 1
2 ) and Γ̃ = 11.715 (for τ =

1). In this specific 3×2 array of power curves, the difference in design sensitivities

matters more than the difference in sample sizes, although sample size does have a

substantial effect on power. For instance, at Γ = 5, the power is close to 1 for I =
200 pairs with τ = 1 but the power is close to zero with I = 20000 pairs and τ = 1

2 . A

bias of magnitude Γ = 5 could explain the observed association between treatment

and outcome if τ = 1
2 no matter how large the sample size becomes, whereas a mere

I = 200 pairs could eliminate bias of magnitude Γ = 5 as a plausible explanation
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Fig. 14.3 Approximate power of a sensitivity analysis when there is no bias from unmeasured
covariates, the treatment has an additive constant effect τ and the treated-minus-control differences
in observed responses Yi are independently sampled from a Normal distribution, N(τ,1), with
expectation τ and variance 1, for samples of size I = 200, 2000, and 20000 pairs. The solid vertical
line is at the design sensitivity, Γ̃ . The power tends to 1 as I increases for Γ < Γ̃ and tends to 0 for
Γ > Γ̃ . The power is computed for a 0.05 level test, and the horizontal dotted line is at 0.05.

if τ = 1. A smaller study with a larger effect (I = 200, τ = 1) is very likely to be

less sensitive to unmeasured bias than a vastly larger study with a smaller effect

(I = 20000, τ = 1
2 ). It is often asserted that, in observational studies, biases from

unmeasured covariates constitute a greater source of uncertainty than does a limited

sample size, and Figure 14.3 is one quantitative expression of this assertion.
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A formula for design sensitivity

Design sensitivity is a general concept applicable to many statistics, not just Wilcoxon’s

signed rank statistic, and to many sampling situations, not just matched pairs [5].

However, in the case of Wilcoxon’s signed rank statistic for matched pairs, there is

a simple explicit formula for the design sensitivity [1, 8], which is given in Propo-

sition 14.1. Notice that this explicit form uses the quantity p
′
1 = Pr(Yi +Yi′ > 0),

which was encountered in §14.1 in connection with Lehmann’s formula for the ap-

proximate power of Wilcoxon’s signed rank statistic when applied in a randomized

experiment.7

Proposition 14.1. In I pairs matched exactly for observed covariates, xi j , suppose
that the treated-minus-control matched pair differences in outcomes, Yi, i = 1, . . . , I,
are independently sampled from a distribution F (·) and there is no bias from un-
measured covariates in the sense that treatments are actually assigned by the naı̈ve
model (3.5)–(3.8). For a sensitivity analysis applied to Wilcoxon’s signed rank
statistic T in a one-tailed α-level test of no effect with α > 0, the power of the
sensitivity analysis Pr(T ≥ ζΓ ,α | Z ) satisfies

Pr(T ≥ ζΓ ,α | Z ) → 1 as I → ∞ for Γ < Γ̃ (14.12)

and
Pr(T ≥ ζΓ ,α | Z ) → 0 as I → ∞ for Γ > Γ̃ , (14.13)

where

Γ̃ =
p
′
1

1− p′
1

with p
′
1 = Pr(Yi +Yi′ > 0) , i �= i′. (14.14)

The proof is given in the appendix to this chapter.

Computing design sensitivity with additive effects and iid errors

If the Yi, i = 1, . . . , I, are independently sampled from a distribution F (·), then it

is always easy to determine p
′
1 = Pr(Yi +Yi′ > 0), i �= i′, and hence also Γ̃ , by

simulation. In the case of an additive effect τ with Normal or Cauchy errors,

explicit formulas are available. Recall that Φ (·) is the standard Normal cumula-

tive distribution, N (0,1), and write ϒ (·) for the cumulative Cauchy distribution.

As in [3, pages 166–167], if Yi ∼iid N
(
τ,ω2

)
then (Yi − τ)/ω ∼iid N (0,1) and

(Yi +Yi′ −2τ)/
√

2ω2 ∼ N (0,1), so

Pr(Yi +Yi′ > 0) = Pr

(
Yi +Yi′ −2τ

ω
√

2
>

−2τ
ω
√

2

)
= Φ

(√
2

τ
ω

)
. (14.15)

7 See also Note 5 in §14.1.
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For instance, if Yi ∼iid N
(

1
2 ,1

)
, as in Figures 14.2 and 14.3, then Pr(Yi +Yi′ > 0) =

Φ
(√

2 · 1
2

)
= 0.76025 and Γ̃ = 0.76025/(1−0.76025) = 3.171. If (Yi − τ)/ω ∼

ϒ (·), then {(Yi − τ)/ω +(Yi′ − τ)/ω}/2 ∼ϒ (·), so

Pr(Yi +Yi′ > 0) = Pr

(
Yi +Yi′

2
> 0

)
= Pr

(
Yi +Yi′ −2τ

2ω
>

−2τ
2ω

)
= ϒ

( τ
ω

)
.

(14.16)

For instance, if Yi − 1
2 ∼ ϒ (·), then Pr(Yi +Yi′ > 0) = ϒ

(
1
2

)
= 0.64758 and Γ̃ =

0.64758/(1−0.64758) = 1.838.

14.4 Summary

As seen in Figure 14.3 and Proposition 14.1, no matter how large the sample size I
becomes, a study will be sensitive to bias of magnitude Γ if Γ > Γ̃ where Γ̃ is the

design sensitivity. More precisely, when testing the null hypothesis of no effect, the

power of a sensitivity analysis will tend to 1 as I → ∞ for all Γ < Γ̃ and to 0 for

all Γ > Γ̃ . In this sense, Γ̃ measures the limit of the ability of a particular study

design to distinguish a treatment effect from a bias due to failure to control for an

unmeasured covariate ui j. For this reason, the design sensitivity Γ̃ is a natural nu-

merical measure for comparing design strategies that hope to distinguish treatment

effects from unmeasured biases, such as the strategies discussed in Chapter 5. The

remainder of Part III will make such comparisons.

14.5 Further Reading

The remainder of Part III is further reading for this chapter. Design sensitivity was

introduced in [5] and is developed further in [1, 6, 7, 8].

Appendix: Technical Remarks and Proof of Proposition 14.1

This appendix contains a proof of Proposition 14.1 in §14.3. The formula and proof

[1, 8] for Wilcoxon’s signed rank statistic are a special case of a general result [5,

§3] with the attractive feature that the design sensitivity Γ̃ has an explicit closed

form (14.14).

The approximate power is Pr(T ≥ ζΓ ,α | Z ) .= 1−Φ {(ζΓ ,α −μF)/σF}, where

μF is the expectation of T in the ‘favorable situation.’ An intuitive, heuristic deriva-

tion [5, 8] uses the notion that if ζΓ ,α > μF , then in large samples, as I → ∞, the

signed rank statistic T eventually will be less than ζΓ ,α , whereas if ζΓ ,α < μF then

T will eventually be greater than ζΓ ,α . So the heuristic equates ζΓ ,α in (14.10) and
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μF in (14.6) and solves for Γ . It is slightly better to equate ζΓ ,α/μF to 1, let I → ∞,

ignore terms that are small compared with I2, and solve for Γ ,

ζΓ ,α

μF

.=

Γ I(I+1)
2(1+Γ ) +Φ−1 (1−α)

√
Γ I(I+1)(2I+1)

6(1+Γ )2

I (I −1) p′
1/2+ I p

(14.17)

.=
Γ

p′
1 (1+Γ )

, (14.18)

where 1 = Γ /
{

p
′
1 (1+Γ )

}
has solution Γ̃ = p

′
1/
(

1− p
′
1

)
as in (14.14). The

heuristic is attractive because it uses only the expectation μF of T in the favorable

situation, so the calculation is simple. Alas, the heuristic is ‘heuristic’ precisely be-

cause the power depends on (ζΓ ,α −μF)/σF , not on ζΓ ,α −μF , and the heuristic ig-

nores σF , hoping that things will work out. Indeed, things do work out, as the proof

that follows demonstrates [1]. The general result in [5, §3] shows that the heuristic

calculation works quite generally, but the proof that follows is self-contained and

does not depend upon the general result.

Proof. For large I, the power, Pr(T ≥ ζΓ ,α | Z ), is approximately equal to 1 −
Φ {(ζΓ ,α −μF)/σF}, so the power tends to 1 as I → ∞ if (ζΓ ,α −μF)/σF →−∞
and the power tends to 0 as I → ∞ if (ζΓ ,α −μF)/σF → ∞. Write κ = Γ /(1+Γ ).
Using the expressions for μF and σ2

F from (14.6) and (14.7) in §14.1 and the expres-

sion for ζΓ ,α from (14.10) in §14.2 yields

ζΓ ,α −μF

σF
= (14.19)

κI (I +1)/2+Φ−1 (1−α)
√

κ (1−κ) I (I +1)(2I +1)/6− I (I −1) p
′
1/2− I p√

I (I −1)(I −2)
(

p′
2 − p′

1

2
)

+ I(I−1)
2

{
2
(

p− p′
1

)2 +3p′
1

(
1− p′

1

)}
+ I p(1− p)

.

(14.20)

Expression (14.20) looks untidy at first. Notice however that every term in the nu-

merator and denominator of (14.20) involves I, and I → ∞. So divide the numerator

and denominator of (14.20) by I
√

I, and let I → ∞. The last term in the numerator,

−I p, becomes −I p/
(
I
√

I
)→ 0 as I → ∞, whereas the first term in the numerator,

κI (I +1)/2, becomes κI (I +1)/
(
2I
√

I
) ≈ √

Iκ/2 in the sense that their ratio is

tending to 1 as I → ∞. Continuing in this way, we find that

ζΓ ,α −μF

σF
≈

√
I
(

κ − p
′
1

)
2

√
p′

2 − p′
1

2
as I → ∞, (14.21)

in the sense that the ratio of the left and right sides of (14.21) tends to 1 as I → ∞
provided κ �= p

′
1. If κ > p

′
1, then (14.21) tends to ∞ as I → ∞, so the power tends to
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0. If κ < p
′
1 then (14.21) tends to −∞ as I → ∞, so the power tends to 1. Moreover,

κ = Γ /(1+Γ ) > p
′
1 if and only if Γ > p

′
1/
(

1− p
′
1

)
.
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Chapter 15
Heterogeneity and Causality

Abstract Before R.A. Fisher introduced randomized experimentation, the literature

on causal inference emphasized reduction of heterogeneity of experimental units.

To what extent is heterogeneity relevant to causal claims in observational studies

when random assignment of treatments is unethical or infeasible?

15.1 J.S. Mill and R.A. Fisher: Reducing Heterogeneity or
Introducing Random Assignment

In his System of Logic: Principles of Evidence and Methods of Scientific Inves-
tigation, John Stuart Mill [11] proposed “four methods of experimental inquiry,”

including the “method of difference”:

If an instance in which the phenomenon . . . occurs and an instance in which it does not . . .
have every circumstance save one in common . . . [then] the circumstance [in] which alone
the two instances differ is the . . . cause or a necessary part of the cause . . . [Mill wanted]
“two instances . . . exactly similar in all circumstances except the one” [under study] [11,
III, §8]

Notice Mill’s emphasis on a complete absence of heterogeneity: “have every circum-

stance save one in common;” that is, on treated and control units that are identical

but for the treatment. In the modern biology laboratory, nearly identical, geneti-

cally engineered mice are compared under treatment and control; this is a modern

expression of Mill’s ‘method of difference.’ It is clear from the quote that Mill

believed, rightly or wrongly, that heterogeneity of experimental units is directly rel-

evant to causal claims, and does not refer simply to reducing the standard error of

an estimate.

Ronald Fisher [3, Chapter 2] took a starkly different view. In 1935, in Chapter

2 of his Design of Experiments, Fisher introduced randomized experimentation for

the first time in book form, discussing his famous experiment of the lady tasting tea.

Fisher was directly critical of the ‘method of difference’:

275P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
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It is not sufficient remedy to insist that “all the cups must be exactly alike” in every respect
except that to be tested. For this is a totally impossible requirement in our example, and
equally in all other forms of experimentation . . . These are only examples of the differences
probably present; it would be impossible to present an exhaustive list of such possible dif-
ferences . . . because [they] . . . are always strictly innumerable. When any such cause is
named, it is usually perceived that, by increased labor and expense, it could be largely elim-
inated. Too frequently it is assumed that such refinements constitute improvements to the
experiment . . . [3, page 18]

In the first omission, “. . . ,” in this quote, Fisher discussed the many ways two cups

of tea may differ.

Fisher is, of course, engaged in an enormously important task: he is introduc-

ing the logic of randomized experimentation to a broad audience for the first time.

Moreover, it would be reasonable to say that Fisher was correct and Mill was wrong

in certain critical respects. In a randomized clinical trial conducted in a hospital,

the patients are heterogeneous and not much can be done about it. There is no

opportunity to replace the hospital’s patients by genetically engineered, nearly iden-

tical patients. And yet it is possible to randomly assign treatments to heterogeneous

patients and draw valid causal inferences in just the manner that Fisher advocated.

Despite this, one senses that there is at least something that is sensible in Mill’s

method of difference, something that is sensible in the fanatical efforts of the basic

science laboratory to eliminate heterogeneity, in the use of nearly identical mice.

One senses that Fisher, in his understandable enthusiasm for his new method, has

gone just a tad too far in his criticism of Mill’s drive to eliminate heterogeneity.

Indeed, the issue may be particularly relevant in observational studies where random

assignment of treatments is either unethical or infeasible.

Some care is required in discussing heterogeneity. Heterogeneity is itself het-

erogeneous; there are several kinds of heterogeneity. In the biology laboratory, it is

often wise to use several different strains or species of genetically engineered, nearly

identical laboratory animals, making sure that each strain or species is equally repre-

sented in treated and control groups, to verify that any conclusion is not a peculiarity

of a single strain. It is uncontrolled rather than controlled heterogeneity that is the

target for reduction or elimination. Controlled heterogeneity has numerous uses.1

See Paul Holland’s [8] essay “Statistics and causal inference” for further con-

trasts of the views of Mill and Fisher.

1 Recall the related discussion of Bitterman’s concept of “control by systematic variation” in
§5.2.2, where some factor is demonstrated to be irrelevant by systematically varying that factor.
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15.2 A Larger, More Heterogeneous Study Versus a Smaller,
Less Heterogeneous Study

Large I or small σ : Which is better?

To explore the issue raised in §15.1, consider the following simple situation. There

are I matched pairs in an observational study with treated-minus-control differences

in outcomes Yi, i = 1, . . . , I. Because it is an observational study, not a randomized

experiment, we cannot assume that matching for observed covariates has removed

all bias from nonrandom assignment — we cannot assume the naı̈ve model of Chap-

ter 3, and will report a sensitivity analysis. Although we cannot know this from the

observed data, the situation is, in fact, the ‘favorable situation,’ in which there is

a treatment effect and the matching has succeeded in removing bias, so the naı̈ve

model is correct and treatment assignment is effectively randomized within matched

pairs; see §14.2. In this favorable situation, the investigator hopes to report that the

treatment appears to be effective and that appearance is insensitive to small and

moderate biases. Indeed, the situation is simpler still: the treatment has an additive,

constant effect, τ = rTi j − rCi j, so that Yi = τ +(2Zi1 −1)(rCi1 − rCi2); see §2.4.1.

Moreover, the rCi1 − rCi2 are independent and identically distributed observations

drawn from a continuous distribution symmetric about zero; see §14.1. Because

this is the favorable situation, 2Zi1 −1 =±1, each with probability 1
2 independently

of rCi1 − rCi2, so Yi − τ itself has this same continuous distribution symmetric about

zero.

The investigator faces a choice between a larger study with more heterogeneous

responses or a smaller study with less heterogeneous responses, both in the ‘favor-

able situation.’ In §15.1, Mill would have advocated the smaller, less heterogeneous

study. Is there any merit to Mill’s claim? The heterogeneity here refers to hetero-

geneity that remains after matching for observed covariates, that is, heterogeneity

within pairs; heterogeneity between pairs is not at issue. Specifically, the investi-

gator faces the following admittedly stylized choice: observe either 4I pairs with

additive effect τ and (rCi1 − rCi2)/ω ∼ F (·), where F (·) is a continuous distribu-

tion symmetric about zero, or alternatively observe I pairs with additive effect τ
and (rCi1 − rCi2)/(ω/2) ∼ F (·). In words, the choice is between 4I pairs with dis-

persion ω or I pairs with dispersion ω/2. The choice is stylized in the following

sense. If F (·) were the standard Normal distribution, then the sample mean differ-

ence, Y = (1/I)∑I
i=1 Yi, would be Normally distributed Y ∼ N

{
τ, ω2/(4I)

}
with

expectation τ and variance ω2/(4I) in both the larger, more heterogeneous study

and the smaller less heterogeneous study. If ω were known in a randomized ex-

periment, the larger more heterogenous study and the smaller less heterogeneous

study would barely be worth distinguishing, because the sufficient statistic, Y , has

the same distribution in both studies.

Of course, this is not a randomized experiment. Does that matter for this choice?

If so, how does it matter?
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A simulated example

Figure 15.1 depicts a simulated example of the choice between a smaller, less het-

erogeneous study (SL) with Yi ∼ N
{

τ, (ω/2)2
}

for i = 1, . . . , I = 100, and a larger,

more heterogeneous study (LM) with Yi ∼ N
{

τ, ω2
}

for i = 1, . . . , I = 400. In Fig-

ure 15.1, τ = 1/2, ω = 1. The boxplots for SL and LM have 100 and 400 pairs,

respectively.

If SL and LM were analyzed as if they were randomized experiments, the infer-

ences would be very similar. In SL, the mean difference is Y = 0.487 with estimated

standard error 0.054, while in LM the mean difference is Y = 0.485 with estimated

standard error 0.049; however, the true standard error is 0.05 in both SL and LM.

Using Wilcoxon’s signed rank statistic to test the null hypothesis of no effect yields

a very small P-value in both SL and LM, less than 10−10. The Hodges-Lehmann

point estimate τ̂ of τ is τ̂ = 0.485 for SL and τ̂ = 0.489 for LM. The 95% confidence

interval from the randomization distribution of Wilcoxon’s statistic is [0.374, 0.600]
from SL and [0.390, 0.587] from LM. If the choice were between two randomized

experiments with the distributions SL and LM yielding Figure 15.1, there would be

little reason to prefer one over the other.

Suppose, however, that SL and LM came from observational studies, so the be-

havior of the Yi might reflect either a treatment effect or an unmeasured bias or a

combination of the two. How sensitive are the conclusions from SL and LM to

departures from the naı̈ve model (3.5)-(3.8) that underlies the inferences in the pre-

vious paragraph?

Fig. 15.1 A simulated exam-
ple of the choice between a
smaller, less heterogeneous
study (SL) and a larger, more
heterogeneous study (LM). In
SL there are I = 100 indepen-
dent matched pair differences,
Yi, that are Normal with ex-
pectation τ and standard
deviation ω = 1/2. In LM
there are I = 400 independent
matched pair differences, Yi,
that are Normal with expecta-
tion τ and standard deviation
ω = 1. The horizontal dotted
line is at 1/2.
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Table 15.1 Sensitivity analysis for the larger, more heterogeneous study (LM) and the smaller, less
heterogeneous study (SL). Upper bounds on the one-sided P-value from Wilcoxon’s signed rank
test when testing the null hypothesis of no treatment effect are given. Although the randomization
inferences are similar (Γ = 1), the smaller, less heterogeneous study is much less sensitive to bias
from unmeasured covariates (Γ ≥ 3).

Γ 1 2 3 4 5

LM < 10−10 0.00046 0.39 0.97 1.00

SL < 10−10 0.000016 0.0021 0.022 0.083

Table 15.2 Sensitivity analysis for the larger more heterogeneous study (LM) and the smaller
less heterogeneous study (SL). For Γ = 1, the table gives the value of the Hodges-Lehmann point
estimate τ̂ of the treatment effect, τ . For Γ = 2, the table gives the interval of possible point
estimates, [τ̂min, τ̂max], and the length of that interval, τ̂max − τ̂min. For a bias of magnitude Γ = 2,
the range of possible point estimates is much longer for the larger, more heterogeneous study than
for the smaller, less heterogeneous study.

Γ = 1 Γ = 2 Γ = 2
τ̂ [τ̂min, τ̂max] τ̂max − τ̂min

LM 0.489 [0.19, 0.79] 0.60
SL 0.485 [0.32, 0.66] 0.34

Table 15.1 displays two sensitivity analyses, one for LM, the other for SL, giving

the upper bound on the one-sided P-value for testing the hypothesis of no treatment

effect using Wilcoxon’s signed rank statistic; see §3.4. As noted above, the random-

ization inferences (Γ = 1) are quite similar for LM and SL. In sharp contrast, the

smaller, less heterogeneous study, SL, is much less sensitive to bias from an unmea-

sured covariate. A bias of Γ = 3 could produce a boxplot similar to the LM boxplot

in Figure 15.1 (the upper bound on the P-value is 0.39), but a bias of Γ = 3 is very

unlikely to produce the boxplot for SL (the upper bound on the P-value is 0.0021).

To put this in context, SL is just slightly more sensitive to unmeasured bias than

Hammond’s [5] study of heavy smoking as a cause of lung cancer (see [14, §4]),

one of the least sensitive observational studies, whereas LM is much more sensitive.

In parallel with Table 3.4, Table 15.2 displays two sensitivity analyses, one for

LM, the other for SL, giving the interval of possible point estimates, [τ̂min, τ̂max],
of the treatment effect τ . For Γ = 1, the interval is a point, namely the Hodges-

Lehmann point estimate, τ̂min = τ̂max = τ̂ , and it is about the same for LM and SL.

For Γ = 2, the interval for LM, namely [0.19, 0.79], is considerably longer than the

interval for SL, namely [0.32, 0.66].
In Tables 15.1 and 15.2, the smaller, less heterogeneous study is better than the

larger, more heterogeneous study, better in the sense of being less sensitive to un-

measured biases. It is important to keep in mind that Figure 15.1 depicts two ‘fa-

vorable situations,’ that is, treatment effects without unmeasured biases. Because

these are observational studies, the investigator does not know when she is in the

‘favorable situation,’ and so she cannot assert that Figure 15.1 depicts effects, not

biases. The investigator can, however, assert that a bias of magnitude Γ = 4 is too

small to explain away as unmeasured bias the ostensible effect in the smaller, less
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Table 15.3 Power of a sensitivity analysis for a larger, more heterogeneous study (LM, 4I pairs,
ω = 1), and a smaller, less heterogeneous study, (SL, I pairs, ω = 1/2), with the same additive,
constant treatment effect, τ = 1/2, in the favorable situation with {rCi1 − rCi2}/ω ∼iid F(.). The
power is similar when Γ = 1, but is higher for SL when Γ is larger.

Study Distribution Number Dispersion Power
F (·) of Pairs ω Γ = 1 Γ = 1.5 Γ = 2

LM Normal 120 1 1.00 0.96 0.60

SL Normal 30 1
2 1.00 1.00 0.96

LM Logistic 120 1 0.93 0.31 0.04

SL Logistic 30 1
2 0.93 0.61 0.32

LM Cauchy 200 1 0.98 0.32 0.02

SL Cauchy 50 1
2 0.95 0.60 0.28

heterogeneous study, but could not assert this about the larger, more heterogeneous

study.

Power comparisons with Normal, logistic and Cauchy errors

Table 15.3 contrasts the larger, more heterogeneous study (LM) and the smaller, less

heterogeneous study (SL) in terms of the power of the sensitivity analysis. Table

15.3 refers to a one-sided, 0.05 level test of the null hypothesis of no treatment

effect. The power is the probability that the upper bound on the one-sided P-value

is at most 0.05. The power is calculated as in §14.2.

The power of the randomization test (Γ = 1) is similar for LM and SL, but for

larger Γ , particularly for Γ = 2, the power is higher for the smaller, less heteroge-

neous study (SL). The pattern seen in Table 15.1 is not a peculiarity of one simula-

tion; rather, it is the anticipated pattern based on a comparison of the powers of LM

and SL.

Design sensitivity

Proposition 14.1 and expressions (14.15) and (14.16) may be used to determine the

design sensitivity Γ̃ of the larger, more heterogeneous study (LM) and the smaller,

less heterogeneous study (SL) as

Γ̃ =
Φ
(√

2 τ
ω

)
1−Φ

(√
2 τ

ω

) (15.1)

for Normal errors and as

Γ̃ =
ϒ
( τ

ω
)

1−ϒ
( τ

ω
) (15.2)
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for Cauchy errors. For Normal errors with τ = 1/2, the designs LM (ω = 1) and SL

(ω = 1/2) have design sensitivities Γ̃ of 3.171 and 11.715, respectively. In light of

this, the power of both designs with Normal errors tends to 1 as I → ∞ for the values

of Γ in Table 15.3, but for Γ = 5 the power of LM would tend to 0 while the power

of SL would tend to 1. In parallel, for Cauchy errors with τ = 1/2, the designs LM

(ω = 1) and SL (ω = 1/2) have design sensitivities Γ̃ of 1.838 and 3, respectively.

In light of this, with Cauchy errors, for Γ = 2 in Table 15.3, the power of SL tends

to 1 as I → ∞ while the power of LM tends to 0.

15.3 Heterogeneity and the Sensitivity of Point Estimates

In the current chapter, the treatment has an additive constant effect, τ = rTi j − rCi j,

and in a randomized experiment, the Hodges-Lehmann estimate τ̂ is a consistent es-

timate of τ . For a given deviation Γ from randomized treatment assignment, Tables

3.4 and 15.2 displayed the interval of possible Hodges-Lehmann point estimates

[τ̂min, τ̂max] of τ , where τ̂min = τ̂max = τ̂ for Γ = 1; see §3.5 and [13]. As the sample

size increases, I → ∞, the endpoints of this interval converge in probability to the

endpoints of a fixed interval, [τmin, τmax]; this interval reflects the uncertainty about

τ that is due to a potential bias of magnitude Γ when there is no longer any sampling

uncertainty.

In the ‘favorable situation,’ with errors having Normal Φ (·) or Cauchy ϒ (·) cu-

mulative distributions, the following proposition gives the form of this limiting in-

terval. See [16, Appendix] for proof of Proposition 15.1.2

Proposition 15.1. If (Di − τ)/ω ∼iid Φ (·) then [τmin, τmax] is τ ±ω Φ−1 (κ)/
√

2,
where κ = Γ /(1+Γ ). If (Di − τ)/ω ∼iid ϒ (·) then [τmin, τmax] is τ ±ωϒ−1 (κ).

Proposition 15.1 is consistent with Mill’s view that heterogeneity of experimen-

tal units, ω , is directly relevant to causal claims. In Proposition 15.1, there is no

sampling variability, because Proposition 15.1 refers to the limit as I → ∞. The

uncertainty addressed in Proposition 15.1 is quantified by the length of the limiting

interval, τmax − τmin, and despite the absence of sampling variability, the length of

that interval is directly proportional to ω .

Proposition 15.1 does not contradict Fisher’s view, but it does emphasize that this

view is applicable only when biases from nonrandom treatment assignment have

been avoided by randomization. Reducing heterogeneity ω and increasing sample

2 Although the proof has a few details, it is simple in concept. The lower endpoint τ̂min of the
interval of possible point estimates is obtained by equating Wilcoxon’s signed rank statistic T
computed from Yi − τ0, say Tτ0

, to the maximum null expectation of T , namely E
(

T
∣∣∣F ,Z

)
=

Γ I (I +1)/{2(1+Γ )} from (3.19) and solving the equation for τ̂min. Dividing the equation by
I (I +1)/2 yields the equivalent equation 2Tτ0

/{I (I +1)} = Γ /(1+Γ ). If (Yi − τ)/ω ∼ Φ (·)
or (Yi − τ)/ω ∼ϒ (·) then as I → ∞, the left side of the equation, 2Tτ0

/{I (I +1)}, converges in
probability to a function of (τ − τ0)/ω , and the rest of the proof is detail devoted to showing that
equation can be solved to give the solutions in the statement of Proposition 15.1.
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size I compete for resources in a randomized experiment because bias is known to

have been avoided, so the analysis can be conducted with Γ = 1. More precisely,

in Proposition 15.1, if it were known that Γ = 1, then κ = 1/2, so Φ−1 (κ)/
√

2 =
Φ−1 (1/2)/

√
2 = 0 and ϒ−1 (κ) = ϒ−1 (1/2) = 0, and the length of the limiting

interval is τmax − τmin = 0 for every value of ω .

The length of the interval is also affected by the magnitude of potential bias,

Γ , though κ = Γ /(1+Γ ). The two components determine the length τmax − τmin

of the limiting interval in a multiplicative manner; for the Normal, τmax − τmin =
2ω Φ−1 (κ)/

√
2. A given magnitude Γ of deviation from a randomized experi-

ment does more harm when the units are more heterogeneous, that is, when ω is

larger. If you were deceptively trying to bias a randomized trial by covertly tilting

the treatment assignment probabilities by a magnitude of Γ in (3.16)-(3.18), then

you could do more harm if the units were the heterogeneous patients in a clinical

trial than if they were the homogeneous genetically engineered mice in a laboratory

experiment.

In the ‘favorable situation’ in an observational study, increasing the sample size

I reduces the standard error, but it does not materially reduce sensitivity to unmea-

sured biases. In contrast, in this situation, reducing the heterogeneity of experimen-

tal units, ω , reduces both the standard error and sensitivity to unmeasured biases.

In an observational study, LM and SL of Figure 15.1 are not at all the same: SL is

much better.

15.4 Examples of Efforts to Reduce Heterogeneity

Twins

What are the economic returns to additional education? You cannot compare the

mid-life earnings of surgeons and high school dropouts — they differed in the mid-

dle of high school before the dropout left school. Not in every case, but typically, the

child who went on to become a surgeon was receiving better grades and standard-

ized test scores in high school, was more strongly motivated for school studies, had

better educated, wealthier parents, and not inconceivably differed in some relevant

genes. You would like to compare two children of the same parents with differ-

ent education growing up at the same time in the same home with the same genes.

Ashenfelter and Rouse [1] compared the earnings of identical twins with differing

education, estimating about a 9% increase in earnings per year of additional educa-

tion.

The use of twins is the canonical example of trading sample size for reduced

heterogeneity. Twin pairs are quite heterogeneous between pairs and in several

important respects fairly homogeneous within pairs, so the use of twins reflects the

type of heterogeneity discussed in this chapter.
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Road hazards

What permanent features of a road affect the risk of collisions with roadside ob-

jects? Road hazards are a fairly small part of accident risk. Also relevant are: the

driver’s sobriety, skill and risk tolerance; ambient light; the weather — ice, snow,

rain and fog; safety equipment — use of seat belts, quality and condition of brakes,

tires, air bags, traction and stability control devices. These factors are related. The

risk-averse driver will drive near the legal speed limit, but will also invest in safety

devices and wear seat belts. In the rain or snow, one drives on the highway to work

but not on the dirt road to the picnic area, so weather and road hazards vary to-

gether. Sobriety is more common at noon than at midnight, so sobriety and ambient

light vary together. You would like to compare different road hazards with the same

driver, in the same car, in the same weather, with the same ambient light, in the same

state of sobriety, with seat belts in the same state of use. Is this possible?

Using a simple, clever study design, Wright and Robertson [22] did just that.

They compared 300 fatal roadside collisions in Georgia in 1974–1975 to 300 nonac-

cidents involving the same driver, in the same car, in the same ambient light, and so

on. The nonaccidents occurred one mile back from the crash site, a location passed

without incident by the driver just moments before the crash. At crash sites, Wright

and Robertson found a substantial excess of roads that curved more than 6 degrees

with downhill gradients of greater than 2%. (Technically, this is a ‘case-crossover’

study of the type proposed by Malcolm Maclure [10], except that it is defined by ge-

ography rather than time; see also the ‘case-specular’ design of Sander Greenland

[4].)

The genetically engineered mice of microeconomics

Many businesses that provide products or services over large regions adopt a strat-

egy known as ‘replication’ in which nearly identical outlets are reproduced at high

speed in diverse locations [21]. Starbucks and Tesco are two of the many such

businesses. This strategy confers various benefits to businesses that use it, but it

also creates nearly identical copies of a business in locations that may have adopted

different regulations, taxes or other policies. For instance, Card and Kreuger’s [2]

study of the minimum wage and employment compared Burger Kings in New Jer-

sey to Burger Kings in Pennsylvania, KFCs in New Jersey to KFCs in Pennsylvania,

etc., and in this way eliminated one of several sources of extraneous variation be-

tween the two states; see §4.5 and §11.3 for further discussion of this study.

Motorcycle helmets

Do helmets reduce the risk of death in motorcycle crashes? Crashes occur at differ-

ent speeds with different forces, and neither speeds nor forces are likely to be mea-

sured. Motorcyclists hit different objects — pedestrians or Hummers — in dense or
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light traffic, with emergency services near or far away. One would like to compare

two people, one with a helmet, the other without, on the same type of motorcycle,

driving at the same speed, crashing into the same object, in the same traffic, with

equal proximity to medical aid. Is that possible?

It is when two people ride one motorcycle, one with a helmet, the other without.

Norvell and Cummings [12] looked at such crashes, finding about 40% lower risk

associated with helmet use.

15.5 Summary

In a randomized experiment, an unbiased estimate of treatment effect is available,

so increasing the sample size, I, or reducing the unit heterogeneity, ω , both serve

to reduce the standard error of an unbiased estimate. The situation is strikingly

different in an observational study. In the ‘favorable situation’ in an observational

study, the treatment is effective and there are no unmeasured biases. If the favor-

able situation arose, the investigator would not know it, and at best would hope to

report that the treatment appears to be effective and that appearance is insensitive

to small and moderate biases. In this situation, reducing heterogeneity, even purely

random heterogeneity, ω , confers benefits that cannot be obtained by increasing the

sample size, I. Specifically, reducing heterogeneity reduces sensitivity to unmea-

sured biases. Several cleverly designed studies have illustrated efforts to reduce

heterogeneity.

15.6 Further Reading

This chapter is based on [16], where additional discussion may be found.
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Chapter 16
Uncommon but Dramatic Responses to
Treatment

Abstract Large effects in moderate to large studies are typically insensitive to small

and moderate unobserved biases, but the concept of a ‘large effect’ is vague. What

if most subjects are not much affected by treatment, but a small fraction, perhaps

10% or 20% of subjects, are strongly affected? On average, such an effect may be

small, but not at all small for the affected fraction. Is such an effect insensitive to

small and moderate unobserved biases?

16.1 Large Effects, Now and Then

Are large but rare effects insensitive to unmeasured biases?

In §2.5, in the National Supported Work Experiment, depicted in Figure 2.1, many

men appear to have received little or no benefit from the treatment, but the few men

with high earnings were fairly consistently in the treated group. In §2.5, if pairs

of men were examined two at a time (i.e., four men), then 61% of the time, the

man with the highest aligned earnings was a treated man, where 50% is expected

by chance, but if pairs were examined 20 at a time (i.e., 40 men), 86% of the time

the man with the highest aligned earnings was a treated man, where again 50% is

expected by chance. Big gains in earnings are consistently in the treated group.

A similar pattern is seen for toxicity in Chapter 7 in Figure 7.1 in connection

with Jeffrey Silber et al.’s [14] study of intensity of chemotherapy in I = 344 pairs

of women with ovarian cancer: the median level of toxicity is not very different

in the MO and GO groups, but high levels are more common in the MO group. If

pairs of women are examined two at a time (i.e., 4 women), then in 65% of pairs, the

woman with the highest aligned toxicity was treated by an MO, but if we look at 20

pairs at a time (i.e., 40 women), then 90% of the time, the woman with the highest

aligned toxicity was treated by an MO. Figure 16.1 depicts the distribution of the

MO-minus-GO differences, Yi, in toxicity. In Figure 7.1 and Figure 16.1, it appears

287P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
DOI 10.1007/978-1-4419-1213-8_16, © Springer Science+Business Media, LLC 2010 
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Fig. 16.1 Boxplot and density estimate of the MO-GO difference Yi in weeks with toxicity in year
1 for I = 344 pairs of women with ovarian cancer; see Chapter 7 and [14]. The vertical dotted line
is at zero difference. The density estimate uses the default settings in R.

that many MOs and GOs treat with similar intensity producing similar toxicity, but

a fraction of MOs treat more intensively producing more toxicity.

In these cases, the hypothesis of a constant effect, τ = rTi j − rCi j for all i, j,
does not look plausible. As discussed in §2.5, a more plausible hypothesis is that

rTi j − rCi j is zero or small for many subjects i, j, but rTi j − rCi j is large for some

subjects i, j. David Salsburg [11] argued that effects of this sort are fairly common,

are often important, and that we tend to miss them because our methodology tends

to focus on typical effects, but in this context large effects do occur but are not

typical. The question addressed in the current chapter is whether an effect of this

kind is highly sensitive to unmeasured biases. In both Figure 2.1 and Figure 7.1,

the typical difference in outcomes is not large, yet the distributions of outcomes are

quite different.
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Review of §2.5: Measuring large but uncommon effects

Building upon certain technical results by Eric Lehmann [2, (6.1)], David Salsburg

[11] and William Conover and Salsburg [1] made a strong argument that, in the

comparison of unmatched treated and control groups, the pattern of large, uncom-

mon effects is not properly associated with ‘transformations’ or ‘outliers’ or other

similar concepts of data analysis, because the pattern may be seen in the ranks: the

extremely high ranks are consistently in the treated group. In outline in §2.5 and in

detail in [7], it was found that the highly interpretable rank scores, q̃i in (2.8), pro-

posed by W. Robert Stephenson [15] approximate the locally optimal rank scores

of Conover and Salsburg [1]. For example, the statement about 20 pairs of men

in the first paragraph of this Chapter was obtained in §2.5 by an interpretation of

Stephenson’s ranks.

Fig. 16.2 Stephenson’s
ranks q̃i from (2.8) for
m = 2,5,10,20 and for the
I = 344 matched pairs in
Silber et al.’s [14] study of
intensity of chemotherapy for
ovarian cancer; see Chapter 7.
Wilcoxon’s ranks are essen-
tially the same as m = 2. For
m = 5, the smallest 100 or so
|Yi| are almost ignored. For
m = 20, the smallest 300 or so
|Yi| are almost ignored.
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Recall that Stephenson’s ranks score pairs m at a time, and are essentially the

same as Wilcoxon’s ranks for m = 2; see §2.5. For I = 344 matched pairs, as in

Silber et al.’s [8, 14] study in Chapter 7, Figure 16.2 depicts Stephenson’s ranks, q̃i
in (2.8), sorted into increasing order and scaled to be between 0 and 1 as q̃i/max q̃ j,

for m = 2, 5, 10, 20. With m = 20, one looks at 20 pairs simultaneously, counting

a ‘success’ if the largest of the 40 aligned responses in the 20 pairs is the response

of a treated subject. For m = 10 in Figure 16.2, Stephenson’s q̃i largely ignore the

smallest 200 of the 344 absolute differences in responses |Yi|, judging the treatment

effect by the remaining 144 pairs. Salsburg and Conover suggested the equivalent

of m = 5 for the applications that they discussed.
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16.2 Two Examples

Chemotherapy intensity and toxicity in ovarian cancer

Table 16.1 compares four sensitivity analyses for the ovarian cancer study [8, 14]

in Chapter 7. The four sensitivity analyses are each conducted using Stephenson’s

[15] signed rank test, with four values of m, that is, with the absolute ranks in Figure

16.2. Wilcoxon’s ranks are similar to Stephenson’s ranks with m = 2. The ranks

with m = 20 are concerned with the largest aligned response of 40 women in 20

pairs, so that they emphasize the fairly high levels of toxicity experienced by some

women.

Table 16.1 reports upper bounds on the one-sided P-value testing the null hy-

pothesis of no treatment effect. Wilcoxon’s statistic (m = 2) becomes sensitive to a

bias of magnitude Γ = 1.5, but Stephenson’s statistic with m = 20 is insensitive to a

bias of magnitude Γ = 3.5. In this one example, the degree of sensitivity to bias is

strongly affected by whether the analysis emphasizes typical effects or less common

but larger effects. Small biases could not produce the large but uncommon effects

in Figure 16.1.

Table 16.1 Using Stephenson’s statistic with several values of m, upper bounds are given on the
one-sided P-value testing the null hypothesis of no treatment effect in the ovarian cancer data of
Chapter 7 and [14]. For m = 2, Stephenson’s ranks closely resemble Wilcoxon’s ranks, but for
larger values of m, Stephenson’s ranks place greater emphasis on large |Yi|’s. In this instance, the
results are much less sensitive with m = 20 than with m = 2.

Γ m = 2 m = 5 m = 10 m = 20

1 9.0×10−7 5.2×10−9 1.1×10−8 1.1×10−6

1.5 0.051 0.00017 0.000024 0.00019
2 0.71 0.016 0.0010 0.0020
2.5 0.14 0.0087 0.0081
3 0.035 0.021
3.5 0.088 0.041

The calculations to produce Table 16.1 closely parallel the calculations for

Wilcoxon’s signed rank statistic, except that Stephenson’s ranks, q̃i, are used in

place of Wilcoxon’s ranks, qi. The null expectation and variance of Stephenson’s

statistic T̃ = ∑sgn(Yi) q̃i are bounded by expressions (3.25)-(3.26) with q̃i in place

of qi, and the standardized deviates are compared to the Normal distribution in par-

allel with (3.23).

DNA adducts among aluminum production workers

Bernadette Schoket, David Phillips, Alan Hewer, and István Vincze [13] compared

DNA adducts in the lymphocytes of aluminum production workers and unexposed

controls. Figure 16.3 shows 25 matched pairs of an aluminum production worker



16.2 Two Examples 291

● ●

●●●
●

● ●●●●
●

●●●
●
●●

●

●● ●

●

●

●

0 1 2 3 4 5 6

0
1

2
3

4
5

6

DNA adducts for Controls

D
N

A
 a

dd
uc

ts
 fo

r 
A

lu
m

in
um

 W
or

ke
rs

●

0 1 2 3 4 5 6

DNA adducts for Controls

●

0
1

2
3

4
5

6

D
N

A
 a

dd
uc

ts
 fo

r 
A

lu
m

in
um

 W
or

ke
rs

Fig. 16.3 DNA adducts per 108 nucleotides for 25 aluminum production workers and 25 controls
matched for age and cigarettes-per-day [13]. The central plot is a quantile-quantile plot that ignores
the pairing. The dotted line is the x = y line. There appears to be little or no difference at lower
quantiles, with a sharp rise at upper quantiles.

and a control matched for age and cigarettes smoked per day. The noticeable feature

of Figure 16.3 is that there appears to be little or no difference in DNA adducts at

lower quantiles, with a substantial divergence at upper quantiles.1

Table 16.2 displays two sensitivity analyses using Stephenson’s signed rank

statistic, one with m = 2 which is similar to Wilcoxon’s statistic, and one with m = 5.

(With just I = 25 pairs, it does not seem reasonable to compare m = 20 pairs at a

time to determine the largest aligned response.) The table displays upper bounds

on the one-sided P-value for testing the null hypothesis of no treatment effect. As

Figure 16.3 might lead us to anticipate, the results are less sensitive for m = 5 than

for m = 2.

1 The paired data for the 25 pairs are listed in [7].
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Table 16.2 Upper bounds on the one-sided P-values from Stephenson’s test for m = 2 and m = 5
for the 25 pairs of an aluminum production worker and a matched control depicted in Figure 16.3.
The results are less sensitive to bias for m = 5, presumably because the difference in the distribution
of DNA adducts is apparent only at upper quantiles.

Γ m = 2 m = 5

1 0.0076 0.0078
1.5 0.054 0.030
1.8 0.10 0.048
2 0.14 0.061

16.3 Properties of a Paired Version of Salsburg’s Model

David Salsburg [11] proposed a model for treatment effects in unmatched groups in

which a fraction 0 ≤ λ ≤ 1 of the treated subjects experience a substantial treatment

effect and the rest experience no effect at all. The following model is a slight modi-

fication for matched pairs of Salsburg’s model for unmatched groups. Each pair i is

characterized by a fixed pair parameter, ηi, which accounts for dependence within

pairs, and is eliminated when matched pair differences Yi are calculated. Then the

rCi j −ηi are sampled from a continuous distribution G(·) with density g(·), and the

rTi j −ηi are sampled from (1−λ )G(·)+λ {G(·)}ν where 0 ≤ λ ≤ 1 and ν ≥ 2 is

a positive integer. Responses from distinct subjects are mutually independent.2

The model has a simple interpretation. The model says, in effect, that a frac-

tion, 1− λ , of treated subjects experience no treatment effect — their responses

are sampled from G(·) which is the distribution of responses to control. A frac-

tion λ of treated subjects do experience an effect. Instead of having a response

drawn from G(·), the affected fraction have a response rTi j − ηi drawn from

{G(·)}ν = G(·)× ·· · ×G(·). If you sampled ν independent rCi j −ηi’s from the

distribution G(·) and took the maximum of these, that maximum would have the

distribution {G(·)}ν . As intuition suggests, {G(·)}ν is a ‘larger’ distribution3 than

G(·) in the sense that {G(r)}ν ≤ G(r) for all r, because ν ≥ 2; that is, the chance,

namely {G(r)}ν , that the maximum of ν independent observations from G(·) is

less than r is less than or equal to the chance, namely G(r), that one observation

from G(·) is less than r, and this is true for all r. Figure 16.4 depicts the two prob-

ability densities that are mixed with weights λ and 1−λ to form the density of the

2 The density of rTi j −ηi is (1−λ ) g(r)+ λ ν g(r) {G(r)}ν−1. In the favorable situation, treat-
ment assignment Zi1 −Zi2 is ±1 with probability 1/2 independently of (rCi1,rTi1,rCi2,rTi2), and
Yi = (Zi1 −Zi2)(Ri1 −Ri2) is distributed as the difference of two independent observations, one
drawn from (1−λ )G(·)+ λ {G(·)}ν and the other drawn from G(·). The matched pair differ-
ence Yi has probability density∫

g(r)
[
(1−λ ) g(r + y)+λ ν g(r + y) {G(r + y)}ν−1

]
dr

which is easy to evaluate by numerical integration. In the calculations presented graphically, G(·)
is the standard Normal cumulative distribution Φ (·).
3 It is stochastically larger; see Note 15 in Chapter 3.
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treated response, rTi j −ηi, for ν = 20, when G(·) is the standard Normal cumula-

tive distribution G(·) = Φ (·). In Figure 16.4, a fraction 1−λ of treated subjects

have a response rTi j −ηi drawn from the standard Normal density φ (r), the dashed

curve, and a fraction λ of treated subjects have a response rTi j −ηi drawn from the

the density ν φ (r) Φ (r)ν−1 of the maximum of ν = 20 independent observations

from a standard Normal distribution, the solid curve. The treated-minus-control

difference Yi in pair i is the difference of a treated response rTi j −ηi formed from

this mixture and a control response rCi j −ηi independently drawn from the standard

Normal density φ (r).
In the unmatched two sample problem, Eric Lehmann [2, (6.1)] studied this

model for ν = 2 showing that Wilcoxon’s ranks, with m = 2, perform well for small

λ in large samples. William Conover and David Salsburg [1] showed that for gen-

eral ν , ranks similar to Stephenson’s ranks perform well if m = ν for small λ in

large samples.4

With G(·) equal to the standard Normal distribution, G(·) = Φ (·), Figure 16.5

depicts the distribution of matched pair differences, Yi, under Salsburg’s model with

λ = 0.2 and ν = 50. For comparison, Figure 16.5 also displays a Normal distri-

bution with the same expectation and variance. Visually, the distinction between

the two distributions is quite subtle: Salsburg’s model has a slight skew to the right,

with an expectation slightly to the right of its mode. Conceptually, the distributions

are very different. In Salsburg’s model, 1−λ = 80% of treated subjects experience

no treatment effect: their treated responses, rTi j −ηi, are sampled from the same

Normal distribution as responses to control, rCi j −ηi. In Salsburg’s model, only

λ = 20% of treated subjects experience a nonzero effect, and their responses are the

maximum of ν = 20 independent observations from a Normal distribution, rather

than one observation from a Normal distribution. In Figure 16.4, the affected group

had a much higher distribution of responses, but this is twice hidden in Figure 16.5,

once because only a fraction λ of treated subjects experienced a treatment effect,

and a second time by the need to compare treated subjects to controls to eliminate

ηi by differencing to form the matched pair difference, Yi. Figure 16.6 is similar to

Figure 16.5, except λ = 0.1 and ν = 1000; here, the difference is more noticeable,

but still quite subtle. Compare Figure 16.6 to the estimated density in Figure 16.1.

Are the effects in Figures 16.5 and 16.6 highly sensitive to unmeasured biases?

On the one hand, the affected group in Figure 16.4 is strongly affected. On the other

hand, that strong effect is twice hidden in the observable distribution of Yi in Figure

16.5. In Tables 16.1 and 16.2, effects were judged fairly sensitive by Wilcoxon’s

statistic (m = 2), which emphasizes typical effects, but were noticeably less sensitive

4 Somewhat more precisely, Conover and Salsburg found the locally most powerful rank test for
fixed ν as λ → 0 for the two-sample problem as the sample size increased. It is shown in [7]
that these locally most powerful ranks are almost the same as Stephenson’s [15] ranks in large
samples, although the latter are easier to interpret in terms of the magnitude of the treatment effect.
Stephenson and Ghosh [16] discuss the use of Stephenson’s ranks in the unmatched two sample
problem. The two sample model comparing (1−λ )G(·)+λ {G(·)}ν and G(·) is an instance of a
‘Lehmann alternative’ in the sense that the distribution of the ranks depends upon ν and λ but not
on G(·); see [2]. Reference [7] is not restricted to matched pairs, but in the current book, only the
paired case is discussed.
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Fig. 16.4 The two densities that are mixed in Salsburg’s model to form the distribution of rTi j −ηi,
with ν = 20. The dashed density function is the standard Normal density. The solid density function
is the density of the maximum of ν = 20 independent observations from the standard Normal
distribution.

to bias when Stephenson’s statistic was used with larger values of m. Is the pattern

in Tables 16.1 and 16.2 something that can be expected under Salsburg’s model?

16.4 Design Sensitivity for Uncommon but Dramatic Effects

Design sensitivity of Stephenson’s test

To answer this question, the design sensitivity Γ̃ of Stephenson’s [15] test is deter-

mined in general. Then Γ̃ is calculated for Salsburg’s model.
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Fig. 16.5 Salsburg’s model
(solid line) for the matched
pair difference Yi with λ = 0.2
and ν = 50 in the treated
group. For comparison, a
Normal density (dashed line)
of Yi with the same expecta-
tion and variance is plotted.
The vertical dotted line is at
their shared expectation.
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Fig. 16.6 Salsburg’s model
(solid line) for the matched
pair difference Yi with λ = 0.1
and ν = 1000 in the treated
group. For comparison, a Nor-
mal density (dashed line) of
Yi with the same expectation
and variance is plotted. The
vertical dotted line is at their
shared expectation.
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As in Chapter 14, the favorable situation is assumed, so there is a treatment ef-

fect without unmeasured biases, and therefore one hopes to report that rejection of

the null hypothesis of no treatment effect is insensitive to small and moderate un-

measured biases. Therefore, suppose that the Yi are independent observations from

some continuous distribution H (·) and there are no unmeasured biases, in the sense

that treatments were assigned by the naı̈ve model (3.5)-(3.8).

Consider m independent observations Yi drawn from H (·). One of these m ob-

servations, say Y�, has the largest value of |Yi|; that is, |Y�| = max1≤i≤m |Yi|. Define
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p̃m as the probability that the one Y� among these m with the largest value of |Yi| is

positive, Y� > 0.

The first thing to notice about p̃m is that we have already made extensive use of p̃2

in Chapter 14 because p̃2 = p
′
1 = Pr(Yi +Yi′ > 0); that is, for i �= i′, the sign of Yi +Yi′

is determined by Yi if |Yi| > |Yi′ | and by Yi′ if |Yi| < |Yi′ |. Indeed, by Proposition

14.1, the design sensitivity Γ̃ of Wilcoxon’s statistic (m = 2) is, p
′
1/
(

1− p
′
1

)
=

p̃2/(1− p̃2). The second thing to notice about p̃m is that it can be easily calculated

by simulation for any distribution H (·).
The following proposition generalizes Proposition 14.1.

Proposition 16.1. In I pairs matched exactly for observed covariates, xi j , suppose
that the treated-minus-control matched pair differences in outcomes, Yi, i = 1, . . . , I,
are independently sampled from a distribution H (·) and there is no bias from un-
measured covariates in the sense that treatments are actually assigned by the naı̈ve
model (3.5)-(3.8). A sensitivity analysis is performed using Stephenson’s signed
rank statistic T̃ with a specific value of m and Γ . The power of this sensitivity anal-
ysis for one-tailed α-level test of no effect with α > 0 tends to 1 as I → ∞ for Γ < Γ̃
and the power tends to 0 for Γ > Γ̃ where

Γ̃ =
p̃m

1− p̃m
. (16.1)

The proof of Proposition 16.1 is similar to the proof of Proposition 14.1 in Chap-

ter 14 and is given in detail in [9] and is sketched in the appendix to this chapter.

Design sensitivity of Stephenson’s test under Salsburg’s model

Table 16.3 reports design sensitivities Γ̃ for Stephenson’s [15] signed rank statistic

when applied to the paired version of Salsburg’s [11] model. In Table 16.3, either

λ = 10% or λ = 20% of treated subjects are affected by the treatment, receiving

either the maximum of ν = 50 or ν = 1000 independent responses from the control

distribution G(·), with G(·) equal to either the Normal or Cauchy distributions. The

densities of two of these distributions were shown in Figures 16.5 and 16.6.

If only a small fraction of treated subjects respond to treatment, then the use of

Wilcoxon’s ranks (m = 2) is a mistake. In this case, much larger values of the design

sensitivity Γ̃ are obtained by using a test that focuses attention on large values of

|Yi|. This conclusion is specific to the situation in which many treated subjects are

unaffected by treatment and a small fraction are strongly affected.

16.5 Summary

A treatment may affect some subjects and not others. In this case, the typical ef-

fect may be small, despite large effects for some subjects. Conventional statisti-
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Table 16.3 Design sensitivity of Stephenson’s test based on subsets of m pairs for Salsburg’s model
in which only a fraction λ of treated subjects are affected by the treatment, having a response that
is the maximum of ν observations from the distribution of responses to control, G(.), for G(.) equal
to the Normal or Cauchy distributions.

Normal Normal Cauchy Cauchy
λ = 0.2, ν = 50 λ = 0.1, ν = 1000 λ = 0.2, ν = 50 λ = 0.1, ν = 1000

m = 2 1.8 1.4 2.0 1.5
m = 5 2.6 2.0 3.3 2.3

m = 10 3.4 3.0 4.7 4.4
m = 20 4.4 4.9 5.7 11.5

cal methods look for typical treatment effects and may miss dramatic effects for a

small subset of affected subjects. The issue arises in both randomized clinical trials

[1, 11, 12] and observational studies [7, 9]. When the treatment has an effect of

this form in an observational study, an analysis focused on detecting such an effect,

for instance using Stephenson’s [15] test, may be substanially less sensitive to un-

measured bias than an analysis focused on typical effects. The issue is relevant to

planning statistical analyses as discussed in Part IV.

16.6 Further Reading

This chapter is built from components found in papers by Eric Lehmann [2, (6.1)],

W. Robert Stephenson [15], David Salsburg [11, 12, 1], and William Conover [1];

see also [7, 9] for discussion of the use of these components in observational studies.

An alternative approach emphasizes the possibility that the magnitude of the

treatment effect rTi j − rCi j is not constant but rather increasing in rCi j — a so-called

dilated treatment effect — and estimates the effect at different quantiles of rCi j; see

[3, 5, §5]. With a dilated treatment effect, the effect at upper quantiles may be less

sensitive to bias than the effect at lower quantiles.

16.7 Appendix: Sketch of the Proof of Proposition 16.1

As in the proof of Proposition 14.1 in Chapter 14, there are two versions of the

proof. One version uses the heuristic and appeals to the general fact from [6, §3]

that the heuristic works quite generally. The other version is complete as it stands

and parallels the proof in Chapter 14. In either case, one starts with the observation

from Stephenson [15] that in the favorable situation a scaled version of T̃ converges

in probability to p̃m, specifically

m!(I −m)!
I!

T̃ → p̃m.
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One then checks that under the sensitivity analysis model, the maximum null ex-

pectation of T̃ after scaling in the same way equals Γ /(1+Γ ). Equating p̃m =
Γ /(1+Γ ) and solving completes the heuristic derivation. If no appeal is made

to [6, §3], the detailed proof must again verify that if p̃m �= Γ /(1+Γ ) then the

difference in expectations overwhelms the variance terms as I → ∞.
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Chapter 17
Anticipated Patterns of Response

Abstract Design sensitivity is used to quantify the effectiveness of devices dis-

cussed in Chapter 5. Several of those devices anticipate a particular pattern of re-

sults, perhaps coherence among several outcomes, or a dose-response relationship.

To what extent do these considerations reduce sensitivity to unmeasured biases?

17.1 Using Design Sensitivity to Evaluate Devices

In §5.2, several devices used to study unmeasured biases made reference to an an-

ticipated pattern of responses. In §5.2.3, it was anticipated that several outcomes

would be affected in a similar way, the pattern of coherence. In §5.2.5, it was an-

ticipated that larger doses of treatment would yield larger responses, the pattern of

dose-response. If such a pattern is anticipated, and if the anticipation is realized in

the observed data, will the sensitivity to unmeasured biases be reduced? This did

occur in particular examples in Tables 5.3 and 5.5. Under what circumstance should

similar results be expected?

17.2 Coherence

Notation with several responses

In §5.2.3, the coherent signed rank statistic ([5] and [6, §9]) was simply the sum

of the several signed rank statistics for several outcomes oriented in the anticipated

direction. For instance, in Table 5.3, the signed rank statistics for the Math and

Verbal test scores were added together, creating a statistic that would react strongly

to improvements in both Math and Verbal scores, and weakly to, say, an increase in

Math scores together with a decline in Verbal scores.
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The coherent signed rank statistic so defined has advantages in analysis: the sep-

arate ranking of each outcome is one robust method for standardizing the outcomes,

giving about equal weight to each of the outcomes. In studying design sensitivity

for coherence, it is easiest if a slightly different statistic is used: Wilcoxon’s signed

rank statistic is applied to a weighted combination of the outcomes. In the first ap-

proach, weights are applied to the separate signed rank statistics, while in the second

approach a single signed rank statistic is computed from a weighted combination of

the outcomes. If the second approach is adopted, then in the multivariate Normal

situation, there is an explicit formula for the design sensitivity for given weights,

an explicit formula for the optimal weights, and so on. In analysis, data are not

typically multivariate Normal, and the second approach leaves the investigator with

the task of finding an appropriate, robust standardization of the outcomes. It is pos-

sible to compute the design sensitivity for both approaches, but the first approach

requires some unenlightening Monte Carlo work; however, when this is done, simi-

lar results are found for both approaches. Ruth Heller, Dylan Small and I [2] looked

at both approaches in quite a bit of detail; see also [8]. Here, a few of the simpler

results from [2] are presented, and the reader may turn to [2] and [8] for additional

approaches and numerical results.1

Instead of a single observed response Ri j from the jth person in pair i, that person

now has M observed responses, Ri j =
(
Ri j1, . . . ,Ri jM

)T
. In Table 5.3, M = 2, and

Ri j1 was the Math score, while Ri j2 was the Verbal score. Wilcoxon’s signed rank

statistic will be applied to a weighted combination of the responses, ∑M
m=1 λm Ri jm,

where the weights λm are selected before the data are collected. More precisely,

Wilcoxon’s signed rank statistic, T , is computed from the treated-minus-control dif-

ference in combined responses,

Yi = (Zi1 −Zi2)

(
M

∑
m=1

λm Ri1m −
M

∑
m=1

λm Ri2m

)
(17.1)

=
M

∑
m=1

λm Yim (17.2)

where

Yim = (Zi1 −Zi2)(Ri1m −Ri2m) . (17.3)

1 Why are simpler results available if the signed rank statistic is applied to a weighted combination
of results, rather than applying weights to several signed rank statistics? As discussed in §2.3.3,
the signed rank statistic is distribution-free; that is, its null distribution can be determined before
any data are collected. In contrast, the coherent signed rank statistic is a randomization test in a
randomized experiment, but, like the sample mean in Chapter 2, it is not distribution-free: its ran-
domization distribution depends upon features of the observed data. When thinking about design,
with no data on hand, it is convenient that the null distribution of the test statistic is known and does
not depend upon the data you do not have. On the other hand, in principle, the design sensitivity
is well defined in either case, but more Monte Carlo work may be needed to determine its value.
See [2] for some comparisons.
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Again, this differs slightly from Table 5.3 where weights λ1 = 1 and λ2 = 1 were

applied to two signed rank statistics, one computed from Ri j1, the other from Ri j2.

Responses with a multivariate Normal distribution

As in Chapter 14, design sensitivity is computed in the ‘favorable situation’ in which

there is a treatment effect and no bias from unmeasured covariates. It is in the

favorable situation that we hope to report that rejection of the hypothesis of no

effect is insensitive to unmeasured biases.

The results are particularly simple for multivariate Normal Ri j.
2 The multi-

variate Normal distribution may be defined in various equivalent ways, but one

definition is that ∑M
m=1 λm Ri jm has some Normal distribution for every choice of

weights, λ = (λ1, . . . ,λM)T . In particular, it is assumed that each response Ri jm is

affected by an additive treatment effect τm, so Ri jm = rCi jm +Zi j τm, with the expecta-

tions, variances, covariances and correlations among the Yim’s given by E (Yim) = τm,

var(Yim) = ω2
m, cov(Yim,Yim′) = ωmm′ and corr(Yim,Yim′) = ρmm′ = ωmm′/(ωm ωm′),

so ω2
m = ωmm. The covariance matrix Ω is an M×M array with ωmm′ in row m and

column m′. In this case, Yi = ∑M
m=1 λm Yim is Normally distributed with expectation

μλ = ∑M
m=1 λm τm and variance ω2

λ = ∑M
m=1 ∑M

m′=1 λm λm′ωmm′ . Wilcoxon’s signed

rank statistic is calculated from the Yi.

The situation is now the same as in Chapter 14, and the design sensitivity is

Γ̃ =
p
′
1

1− p′
1

(17.4)

where, for i �= i′,

p
′
1 = Pr(Yi +Yi′ > 0) = Pr

⎛
⎝Yi +Yi′ −2μλ√

2ω2
λ

>
−2μλ√

2ω2
λ

⎞
⎠= Φ

(√
2μλ
ωλ

)
. (17.5)

Moreover, the optimal value, say λopt , of λ with the largest design sensitivity Γ̃opt
is given by a simple formula involving the inverse of the covariance matrix, say Ω ;

specifically, λopt is any vector proportional to Ω−1τ where τ = (τ1, . . . ,τM)T ; see

[2].3

2 A good reference for basic facts about the multivariate Normal distribution and associated matrix
manipulations is C.R. Rao’s text [4].
3 The proportionality constant cancels in (17.5). If λopt = Ω−1τ is replaced by 2λopt , then both
μλ and ωλ are multiplied by 2, and (17.5) is unchanged. For this reason, it is often attractive to
multiply λopt by a constant so that the values are easy to consider. Where possible, λopt is given
as a vector of integers.
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Table 17.1 Design sensitivity with bivariate Normal outcomes and an additive treatment effect.
Four design sensitivities are given: for optimal weights, for outcome 1 alone, for outcome 2 alone,
and for equal weights. The optimal weights are also given.

Case Standard Correlation Effects Optimal Optimal Outcome Outcome Equal
Deviation Weights 1 2 Weights

(ω1, ω2) ρ12 (τ1, τ2) λopt Γ̃opt Γ̃1 Γ̃2 Γ̃=
A (1, 1) 0 (0.5, 0.5) (1, 1) 5.3 3.2 3.2 5.3
B (1, 1) 0.25 (0.5, 0.5) (1, 1) 4.4 3.2 3.2 4.4
C (1, 1) 0.5 (0.5, 0.5) (1, 1) 3.8 3.2 3.2 3.8
D (1, 0.5) 0 (0.5, 0.5) (1, 4) 16.6 3.2 11.7 8.7
E (1, 0.5) 0.25 (0.5, 0.5) (1, 7) 12.9 3.2 11.7 7.1
F (1, 0.5) 0.5 (0.5, 0.5) (0, 1) 11.7 3.2 11.7 6.0
G (1, 1) 0 (0.75, 0.25) (3, 1) 6.6 5.9 1.8 5.3
H (1, 1) 0.25 (0.75, 0.25) (11, 1) 6.0 5.9 1.8 4.4
I (1, 1) 0.5 (0.75, 0.25) (5, −1) 6.1 5.9 1.8 3.8

Numerical results for bivariate Normal responses

Table 17.1 computes the design sensitivities for bivariate Normal responses (M = 2),

with an additive treatment effect (τ1, τ2), standard deviations (ω1, ω2) and correla-

tion ρ12; see also [2, 8] where M > 2 and other cases are considered. The table

calculates four design sensitivities: (i) Γ̃1 and Γ̃2 are the design sensitivities for the

two outcomes Yi1 and Yi2 used alone; (ii) Γ̃= is the design sensitivity with equal

weights, λ = (1,1), analogous to the coherent signed rank statistic used in Table

5.3; (iii) Γ̃opt is the optimal design sensitivity and λopt are the weights that produce

the optimal design sensitivity. It should be kept in mind that the investigator does

not know λopt , and so the investigator can hope to get closer to Γ̃opt in one way or

another, but is unlikely to reach Γ̃opt .

In cases A–C, the effects (τ1, τ2) and standard deviations (ω1, ω2) are equal for

the two outcomes and the optimal weights are equal, so Γ̃1 = Γ̃2 ≤ Γ̃opt = Γ̃=. The

advantage of using both outcomes with equal weights is substantial for uncorrelated

outcomes, ρ12 = 0, and the advantage disappears as ρ12 → 1.

Cases D–F resemble the situation in Chapter 15 in that the effects are equal, τ1 =
τ2, but the standard deviation of Yi2 is half that of Yi1; here, however, the investigator

does not have to choose one outcome with a change in sample size, but can use

both outcomes with the full sample size. In these cases, Γ̃1 ≤ Γ̃= ≤ Γ̃2 ≤ Γ̃opt and

Γ̃2 = Γ̃opt for ρ12 = 1
2 . The optimal procedure does not use the first outcome when

ρ12 = 1
2 .

Cases G–I have equal standard deviations but unequal effects, τ1 = 3
4 , τ2 = 1

4 , so

τ1 + τ2 is the same as in cases A–C, but τ1 is larger. In these cases, Γ̃2 ≤ Γ̃= ≤ Γ̃1 ≤
Γ̃opt , and the optimal procedure attaches negative weight to Yi2 for ρ12 = 1

2 .

By definition, Γ̃opt is always the largest design sensitivity. In all the cases con-

sidered in A–I, equal weights were better than the inferior of the two outcomes,

min
(

Γ̃1, Γ̃2

)
≤ Γ̃=. Equal weights, Γ̃=, were sometimes better and sometimes worse
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than the better of the two outcomes, that is, max
(

Γ̃1, Γ̃2

)
. The optimal weights, Γ̃opt ,

were sometimes much better than the second best alternative, max
(

Γ̃1, Γ̃2, Γ̃=

)
, and

sometimes no better. The design sensitivities vary considerably in cases A-I, from

1.8 to 16.6, so knowing which circumstance will arise and how to adapt the analysis

to that circumstance will materially affect the design sensitivity.

Cases A–I in Table 17.1 have various practical implications. In favorable circum-

stances, a coherent statistic with equal weights can yield materially less sensitivity

to unmeasured covariates than an analysis that focuses on a single outcome; how-

ever, not all circumstances are favorable in this sense. Similar results in [2] show

that, in favorable circumstances, the gains in Γ̃ from using an equally weighted co-

herent statistic can increase substantially with additional outcomes, M > 2, and that

the sturdier, more practical coherent signed rank statistic (§5.2.3, [5] and [6, §9])

exhibits performance similar to the simpler but less practical statistic evaluated in

Table 17.1. At the same time, in Table 17.1, the optimal weights diminish the impor-

tance of an outcome that is either unstable (i.e., larger ω) or only slightly affected

(i.e., smaller τ), perhaps ignoring such an outcome with zero weight, or perhaps

even attaching negative weight to such an outcome; see Chapter 15 for a different

but related phenomenon. Finally, the substantial variability in design sensitivities in

cases A–I, from 1.8 to 16.6, suggests that a correct plan for analysis may materially

affect the sensitivity of results to unmeasured biases, so time and resources should

be allocated to planning the analysis; see §18.1 and [2] for one practical approach

based on split samples.

17.3 Doses

Recall from §5.2.5 that there are conflicting claims in the literature about whether or

not dose-response relationships are important in appraising evidence about effects

caused by a treatment. Also, recall the example in Table 5.5 in which doses did

seem to reduce sensitivity to unmeasured biases. Calculations of design sensitivity

in the current section will shed light on the various conflicting claims. In these

calculations, the Yi will be drawn from a continuous distribution, so ties do not

occur.

Another way to write a signed rank statistic

Wilcoxon’s signed rank statistic is T = ∑I
i=1 sgn(Yi) qi, where qi is the rank of |Yi|,

and the dose-weighted signed rank statistic [5, 7, 13] is Tdose = ∑I
i=1 sgn(Yi) qi di,

where di > 0 is the dose of treatment applied to the treated subject in pair i.4 In cal-

culating the design sensitivity, Γ̃ , it is helpful to express T and Tdose in an equivalent

4 Recall Note 8 of §5.2.5.



304 17 Anticipated Patterns of Response

but slightly different form. The reason for this is that the expectation of Tdose will

be needed in the ‘favorable situation,’ and the expectation has a simple form when

Tdose is written in a different form.

Write

Wik =
{

1 if |Yi| ≥ |Yk| and Yi > 0

0 otherwise.
(17.6)

It takes only a moment to realize that the dose-weighted signed rank statistic, Tdose =
∑I

i=1 sgn(Yi) qi di, is equal to ∑I
i=1 ∑I

k=1 diWik.5 When all of the doses, di, equal 1,

this simplifies to say that Wilcoxon’s signed rank statistic T = ∑I
i=1 sgn(Yi) qi equals

∑I
i=1 ∑I

k=1 Wik. The advantage of writing Tdose in this way is that it yields a simple

formula for E (Tdose), namely E (Tdose) = ∑I
i=1 ∑I

k=1 E (diWik).
Another similar quantity, Vik, is also needed. Write

Vik =
{

1 if |Yi| ≥ |Yk|
0 otherwise.

(17.7)

Unlike Wik in (17.6), the quantity Vik ignores the sign of Yi. In takes only another

moment to realize that qi = ∑I
k=1 Vik and di qi = ∑I

k=1 diVik.6 Obviously, Wik ≤Vik.

The favorable situation with doses

As in Chapter 14, we ask: Will we be in a position to report that the conclusions are

insensitive to unmeasured bias when, indeed, the treatment did have an effect and

there was no bias from unmeasured covariates? It is in this situation that we hope to

report that the results are insensitive to small and moderate biases. In other words,

it is assumed that subjects who look comparable in terms of observed covariates,

xi j, are indeed comparable, so the naı̈ve model (3.5)-(3.8) is correct. In addition,

a model is needed in which there is a treatment effect. Two such models will be

considered, one a special case of the other more general case.

In the general case of the ‘favorable situation,’ there are L ≥ 1 possible positive

doses, δ1, . . . ,δL. Of course, L = 1 represents the situation ‘without doses’ in the

sense that every treated subject receives the same dose. The I doses di for the I
matched pairs are independently sampled from the L possible doses, δ1, . . . ,δL with

probabilities Pr(di = δ�) = ϕ� for � = 1, . . . ,L; in effect, the doses are determined by

sampling a multinomial distribution with L categories. Conditionally given that di =
δ�, the treated-minus-control difference in observed responses is Yi = τ� + εi where

εi are independently sampled from a continuous distribution F� (·) that is symmetric

5 To see this, compare di sgn(Yi) qi to ∑I
k=1 di Wik. If Yi ≤ 0, then sgn(Yi) = 0 so di sgn(Yi) qi = 0,

but also di Wik = 0 for every k, so 0 = ∑I
k=1 di Wik. If Yi > 0, then sgn(Yi) = 1, so di sgn(Yi) qi = di qi

is di times the rank qi of |Yi|. Also di ∑I
k=1 Wik is di times the number of |Yk| such that |Yi| ≥ |Yk|,

which is, of course, just di times the rank qi of |Yi|. So for every i, di sgn(Yi) qi = ∑I
k=1 di Wik. This

shows that Tdose = ∑I
i=1 ∑I

k=1 diWik. If you set di = 1 for all i, then this becomes T = ∑I
i=1 ∑I

k=1 Wik.

6 As in the previous footnote, ∑I
k=1 Vik is the number of |Yk| that are less than or equal to |Yi|, which

is just the rank qi of |Yi|.
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about zero. That is, for each fixed dose, the ‘favorable situation’ is the same as

in Chapter 14, namely an additive constant treatment effect τ� with independent,

identically distributed symmetric, continuous errors, εi; in particular, with L = 1

dose, the situation is identical to that in Chapter 14. The new element is that the

size of the treatment effect, τ�, may vary with the dose, di = δ�, and so may the

error distribution, F� (·). The model as just described first samples doses, di = δ�,

then samples outcome differences, Yi, conditionally given doses, but this implies

a joint sampling scheme in which the dose outcome pairs (di,Yi) are independent,

identically distributed bivariate measurements (iid).

In this general model, two quantities, Ψ and Λ , will now be defined that are

important for the design sensitivity, Γ̃ . Pick an i and a k with i �= k. Because

the bivariate (di,Yi) are iid, it makes no difference which i and k are used, pro-

vided they are different. Define Ψ = E (diWik) and Λ = E (diVik), where Wik is

defined in (17.6) and Vik is defined in (17.7). For specified δ1, . . . ,δL, τ1, . . . ,τL, and

F1 (·) , . . . ,FL (.), the quantities Ψ and Λ are well defined; for instance, they could

be determined by Monte Carlo.7 Because diWik ≤ diVik, it follows that Ψ ≤ Λ ;

moreover, if Pr(Yi > 0) < 1 then Ψ < Λ .

In addition to this general model, it is helpful to have a more tangible, more

specific model to permit tabulation of a few numerical results. In this model, the

doses are δ1 = 1, δ2 = 2, . . . , δL = L, and they have equal probabilities, ϕ� = 1/L
for � = 1, . . . ,L. Then the expected and median dose are both (L+1)/2. Also,

the effect is linear in the dose, τ� = βδ� and the error distribution F� (·) is the same

F (·) for all �. The median treatment effect is then β (L+1)/2, and this is also

the expected treatment effect if F (·) has finite expectation. If the median effect,

β (L+1)/2, is held fixed, we may ask: Is it better to have more dose categories,

L? If you could choose between a somewhat larger median effect, β (L+1)/2,

with L = 1 dose category, or a somewhat smaller median effect, β (L+1)/2, with

several dose categories (larger L), which would be the better choice? How, if at all,

does the sample size, I, affect these choices? Before looking at numerical results,

in speculating about these questions, one might look again at the example in Table

5.5.

A formula for the design sensitivity with doses

The following proposition gives the design sensitivity of the dose weighted signed

rank statistic Tdose. The proof is in the appendix to this chapter. Recall that Λ ≥Ψ
with equality if and only if Pr(Yi > 0) = 1.

Proposition 17.1. Suppose that (i) doses di in the I pairs are independently sam-
pled from a discrete distribution with L ≥ 1 possible positive doses, δ1, . . . ,δL with

7 You can write Ψ or Λ as a weighted sum over the L2 possible dose combinations in pairs i
and k, and in simple situations the individual terms in this sum either have closed forms or can
be evaluated numerically. For some details, see [10]. These forumlas are an aid to numerical
computation, but they provide no insights, so they are not presented here.
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Pr(di = δ�) = ϕ�, � = 1, . . . ,L; (ii) there is no bias from unmeasured covariates in
the sense that conditions (3.5)-(3.8) are true, (iii) conditionally given that di = δ�,
the treated-minus-control difference in observed responses is Yi = τ� + εi where εi
are independently sampled from a continuous distribution F� (·) which is symmet-
ric about zero. Then, as I → ∞, the power of a sensitivity analysis using the dose
weighted signed rank statistic, Tdose, tends to 1 for Γ < Γ̃ and to 0 for Γ > Γ̃ where

Γ̃ =
Ψ

Λ −Ψ
, (17.8)

Ψ = E (diWik), and Λ = E (diVik) with i �= k.

Proposition 17.1 generalizes Proposition 14.1 of Chapter 14 in the following

sense. Consider the case of a single dose, L = 1, with di = 1 for all i. With such a

single dose, the dose-weighted signed rank statistic Tdose equals Wilcoxon’s signed

rank statistic T . In this case, Λ = 1/2 and Ψ = p
′
1/2 = Pr(Yi +Yk > 0)/2; so Propo-

sition 17.1 implies Proposition 14.1 when there is a single dose.8

Recall that Λ ≥Ψ with equality if and only if Pr(Yi > 0) = 1; in this case, cor-

rectly, Γ̃ = ∞ in (17.8).

Numerical evaluation of the design sensitivity

Table 17.2 provides numerical values of the design sensitivity Γ̃ from (17.8) in the

case of L equally probable, equally spaced integer doses, δ1 = 1, . . . , δL = L, effect

τ� = β δ� at dose δ� with errors that are Normal, logistic, or Cauchy. The median

treatment effect is β (L+1)/2.

In cases A through D in Table 17.2, the median treatment effect is β (L+1)/2 =
1/2, but the number of dose levels varies from 1 in case A to 9 in case D. That is,

the dose and the effect are constant at 1/2 in case A, but the doses range from 1 to 9

in case D, with a median effect of 1/2, and effects that vary from 1/10 at dose 1 to

9/10 at dose 9. The dose-weighted signed rank statistic, Tdose, gives greater weight

to pairs with larger doses, but in case A it equals Wilcoxon’s signed rank statistic

because there is only one dose. With the median dose fixed, there is some advantage

to having several dose levels, but the advantage is not extremely large.

In cases E through G, there is a single dose, with a slightly larger median effect.

A single dose with a median effect of 0.60 is comparable in terms of design sen-

sitivity to L = 5 doses with a median effect of 0.50. A single dose with a median

effect of 0.75 or 0.83 in cases F and G produces larger design sensitivities Γ̃ than

are found in cases A–D. Faced with a choice between a single larger dose or a con-

8 To see this, assume that di = 1 for every i. Observe that with continuously distributed Yi, there
is zero probability that |Yi| = |Yk| with i �= k. Because Yi and Yk are two independent observations
from the same continuous distribution, Pr(|Yi| > |Yk|) = Pr(|Yi| < |Yk|) = 1/2. Therefore, because
di = 1, Λ = E (diVik) = E (Vik) = 1/2. Also, Yi +Yk > 0 can occur in two mutually exclusive ways,
either |Yi| > |Yk| and Yi > 0 or |Yk| > |Yi| and Yk > 0, and each of these possibilities has the same

probability, namely E (Wik) = E (Wki) which equals Ψ if di = dk = 1. This shows Ψ = p
′
1/2.
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Table 17.2 Design sensitivity with doses. There are L equally probable, equally spaced, integer
doses, δ1 = 1, . . ., δL = L and the effect is proportional to dose with slope β , so the median effect
is β (L+1)/2. The table gives the design sensitivity for the signed rank statistic with doses, which
reduces to Wilcoxon’s signed rank statistic when there is only one dose, L = 1.

Case L β β (L+1)/2 Normal Logistic Cauchy

A 1 1/2 0.50 3.2 2.0 1.8
B 3 1/4 0.50 3.8 2.2 2.0
C 5 1/6 0.50 4.0 2.2 2.1
D 9 1/10 0.50 4.2 2.3 2.1
E 1 3/5 0.60 4.0 2.2 2.0
F 1 3/4 0.75 5.9 2.7 2.4
G 1 5/6 0.83 7.4 3.1 2.6

Table 17.3 Design sensitivity with doses, discarding pairs with doses below the median dose.
Initially, there are L equally probable, equally spaced, integer doses, with L odd, δ1 = 1, . . ., δL = L
and the effect is proportional to dose with slope β . Unlike Table 17.2, pairs with doses strictly
below (L + 1)/2 are discarded, so the median dose for the remaining pairs is (3L + 1)/4 and the
median effect in these pairs is β (3L + 1)/4. The table gives the design sensitivity for the signed
rank statistic with doses applied to the pairs that are not discarded.

Case L β β (3L+1)/4 Normal Logistic Cauchy

H 3 1/4 0.625 4.5 2.4 2.2
I 5 1/6 0.667 5.0 2.5 2.3
J 9 1/10 0.700 5.5 2.7 2.3

tinuum of doses with a smaller median dose, the former would be preferred. This

addresses one of the controversies in §5.2.5.

It is important to realize that cases E through G are entirely practical. An in-

vestigator in case B could, in effect, switch to case F by using only the high-dose

pairs, those with dose δ3 = 3, because in that dose category, the median effect is

βδ3 = (1/4)× 3 = 0.75. In parallel, an investigator in case C could, in effect,

switch to case G by using only the high-dose pairs, those with δ3 = 5, because in

that dose category, the median effect is βδ5 = (1/6)×5 = 0.83. Discarding the low

dose pairs would decrease the sample size, but an increase in design sensitivity is

often more important in a sensitivity analysis, as has been seen in various contexts,

including Table 5.5 and Chapter 15.

Table 17.3 considers the design sensitivity that would result in cases B, C, and

D of Table 17.2 if pairs with doses below the median were discarded, and Tdose

were applied to the remaining pairs. The increases in design sensitivity, Γ̃ , are

moderate for Normal errors, somewhat noticeable for logistic errors, and negligible

for Cauchy errors.

Tables 17.2 and 17.3 refer to a dose that affects the magnitude of the effect. Not

all doses do this. In one context, years of exposure may be unimportant, and yes-

terday’s dose may be all-important. In another context, the dose a decade ago may

matter, but yesterday’s dose may be inconsequential for today’s response. Doses

may be measured with substantial errors, so that an indirect use of doses is supe-
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Table 17.4 High, lower and mixed dose pairs in Angrist and Lavy’s study of class size manipulated
by Maimonides’ rule. The table describes matched pair differences, larger-cohort-minus-smaller-
cohort. The tabled values are trimeans, a robust location estimate that is twice the median plus the
quartiles divided by four.

86 High-Dose Pairs 49 Lower-Dose Pairs 135 Mixed-Dose Pairs

Class Size −10.88 −5.33 −7.38
Math Test 3.97 3.47 3.66
Verbal Test 2.98 1.45 2.55

rior to their direct incorporation in a test statistic [9, 12]. The wrong dose may be

measured or the right one may be measured poorly.

Arguably, Tables 17.2 and 17.3 speak not to the value of doses taken in isolation,

but rather to the value of treated subjects who experienced only small effects when

treatment effects are heterogeneous. When doses are actually indicative of the mag-

nitude of the effect, they serve to identify treated subjects who will experience small

effects. Here and in Chapter 16, design sensitivity is greater if little weight is given

to subjects experiencing negligible effects.

17.4 Example: Maimonides’ Rule

Recall from §1.3 and §5.2.3 the study by Angrist and Lavy [1] of class size manip-

ulated by Maimonides’ rule. So far, the discussion has considered only the 86 pairs

in Figure 1.1 in which a school with between 41 and 50 students in the fifth grade

was paired with a school with between 31 and 40 students in fifth grade. These are

the ‘high-dose’ pairs, in that adherence to Maimonides’ rule would cut a class of

40 students into two classes of average size 20.5 if one additional student enrolled.

In Figure 1.1, adherence to Maimonides’ rule is imperfect, so the typical reduction

in class size is smaller than 20 students. Table 17.4 considers the addition of 49

more pairs, for schools with between 70 and 90 students in the fifth grade. These

are the ‘lower-dose’ pairs, in that adherence to Maimonides’ rule would cut two

classes of 40 students into three classes of average size 27 if one additional stu-

dent enrolled. Table 17.4 gives the typical difference in class size and test scores in

matched pairs, larger-cohort-minus-smaller-cohort, for the 86 ‘high-dose’ pairs, the

49 ‘lower-dose’ pairs, and the 135 ‘mixed-dose’ pairs formed by pooling the pairs,

135 = 86 + 49. In Table 17.4, the typical difference in class size is larger for the

‘high-dose’ pairs, −10.9 students, than for the ‘lower-dose’ pairs, −5.3 students,

and the difference in verbal test scores is also larger.

Table 17.5 compares the sensitivity analysis in Table 5.3 with two additional sen-

sitivity analyses. One analysis uses Wilcoxon’s signed rank statistic and the coher-

ent signed rank statistic applied to the 135 ‘mixed-dose’ pairs. The other analysis

uses the dose-weighted signed rank statistic and the coherent version of that statistic

[5] applied to the 135 ‘mixed-dose’ pairs with doses of 2 and 1 for ‘high-dose’ and

‘lower-dose’ pairs, respectively. In this one example, the coherent statistic using the
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Table 17.5 Sensitivity analysis and coherence in Angrist and Lavy’s study of academic test per-
formance and class size manipulated by Maimonides’ rule. The table gives upper bounds on the
one-sided P-values. The sensitivity analysis from Table 5.3 in §5.2.3 is the analysis for the 86
‘high-dose’ pairs. The remaining analyses add 49 ‘lower-dose’ pairs to make 135 ‘mixed-dose’
pairs. One analysis uses the signed rank statistic giving all pairs equal weights. The other analysis
gives the ‘high-dose’ pairs twice the weight of the ‘lower-dose’ pairs. At Γ = 1.65, the only upper
bound that is < 0.05 is for coherence with the 86 ‘high-dose’ pairs.

86 High-Dose Pairs 135 Mixed Dose Pairs 135 Dose-Weighted Pairs
Γ Math Verbal Coherent Math Verbal Coherent Math Verbal Coherent

1.00 0.0012 0.00037 0.00018 0.00034 0.00023 0.000081 0.00034 0.00014 0.000050
1.45 0.057 0.027 0.015 0.058 0.046 0.015 0.049 0.029 0.013
1.65 0.138 0.075 0.043 0.170 0.142 0.078 0.145 0.096 0.051

86 ‘high-dose’ pairs is marginally less sensitive than the other analyses to departures

from random treatment assignment. One should not make too much of individual

examples, such as Tables 5.5 and 17.5; however, the results in those tables are not

incompatible with the theoretical results about design sensitivity in this chapter.

17.5 Further Reading

Coherence and doses were discussed in Chapter 5, where general references may

be found. The relationship between design sensitivity and coherence is discussed

in [2, 8, 10]. The relationship between design sensitivity and doses is discussed in

[8, 10]. Closely related issues are discussed in [5, 7] and [6, §9]. An alternative

formulation of coherence is given by K. Joreskog and Arthur Goldberger [3]. Dose

errors are discussed in [9, 12]. Christopher Wild [14] surveys the many types of

doses that arise in modern cancer epidemiology. The proof in the appendix is from

[10].

17.6 Appendix: Proof of Proposition 17.1

Proof. Define Ψ1 = E (diWii) and Λ1 = E (diVii) = E (di). In the favorable situation

in the statement of Proposition 17.1, the expectation of Tdose is

E (Tdose) = E

(
I

∑
i=1

I

∑
k=1

diWik

)
=

I

∑
i=1

E (diWii)+
I

∑
i=1

∑
k �=i

E (diWik)

= IΨ1 + I (I −1)Ψ .

In the sensitivity analysis for Tdose, the upper bound on the one-sided P-value is

obtained by comparing Tdose to the distribution of the sum, TΓ ,dose, of I independent

random variables, i = 1, . . . , I, taking the value di qi with probability θ = Γ /(1+Γ )
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and the value 0 with probability 1−θ , so E
(

TΓ ,dose

∣∣∣F)
= θ ∑I

i=1 di qi; see [5, 7].

Because di qi = ∑I
k=1 diVik,

E
(

TΓ ,dose

∣∣∣F ,Z
)

= θ
I

∑
i=1

di qi = θ
I

∑
i=1

I

∑
k=1

diVik,

so that

E
(

TΓ ,dose

)
= E

{
E
(

TΓ

∣∣∣F ,Z
)}

= θ
I

∑
i=1

I

∑
k=1

E (diVik)

= θ {IΛ1 + I (I −1)Λ} .

Using the result in [8, §3], the design sensitivity, Γ̃ , is the limit, as I → ∞, of the

solutions to E (Tdose) = E
(

TΓ ,dose

)
, or equivalently to

Γ
1+Γ

=
IΨ1 + I (I −1)Ψ
IΛ1 + I (I −1)Λ

, (17.9)

where the right side of (17.9) tends to Ψ/Λ as I → ∞, yielding (17.8).
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Part IV
Planning Analysis



Chapter 18
After Matching, Before Analysis

Abstract Three design tasks may usefully follow matching and precede planning of

the analysis. Splitting the sample of I pairs into a small planning sample and a large

analysis sample may aid in planning the analysis in a manner that increases the de-

sign sensitivity. If there will be analytic adjustments for some unmatched variables,

it is prudent to check that the matched samples exhibit sufficient overlap on un-

matched variables to permit analytic adjustments. Quantitative analysis of matched

samples may usefully be combined with qualitative examination and narrative de-

scription of a few closely matched pairs.

18.1 Split Samples and Design Sensitivity

In Chapters 14–17, the sensitivity of the design of an observational study to un-

measured biases, Γ̃ , was found to depend upon many things: unit heterogeneity,

coherence among outcomes, doses, uncommon but dramatic responses to treatment,

the strength of instrumental variables, among others. In some contexts, these con-

siderations may be difficult to evaluate during design, prior to the examination of

outcomes. An interesting option with good properties entails splitting the sample

at random into a small planning sample and a large analysis sample, making some

design decisions based on the planning sample, applying those decisions in the anal-

ysis sample. This section discusses the matter in brief outline based upon a paper

by Ruth Heller, Dylan Small, and me [14].

Sample splitting is most familiar from cross-validation [31]. In cross-validation,

a sample is split, usually at random, and a prediction is developed in one portion and

tested in the other. Often the process is repeated with many random splits in an effort

to develop an honest appraisal of the performance of some method of prediction.

Less familiar is the use of sample splitting to decide what question to ask, which

hypothesis to test. David Cox [6] examined the use of split samples as an alternative

to corrections for multiple testing in randomized experiments, such as corrections

based on the Bonferroni inequality. Instead of testing many hypotheses, the sample

315P.R. Rosenbaum, Design of Observational Studies, Springer Series in Statistics,  
DOI 10.1007/978-1-4419-1213-8_18, © Springer Science+Business Media, LLC 2010 
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is split, the first portion used to select a promising hypothesis, the second portion

used to test that one hypothesis. In randomized experiments, Cox found that split-

ting was slightly inferior in terms of power to corrections for multiple testing in

simple stylized settings. Cox noted the flexibility of splitting, which permits confir-

mation of unanticipated exploratory findings.

Sample splitting has much better properties in observational studies than in ran-

domized experiments, outperforming, for example, the Bonferroni inequality [14].

In an idealized randomized experiment, there is no bias from unmeasured covari-

ates, and the power of a conventional test is properly the focus of concern. In

contrast, in an observational study, bias from failure to adjust for an unmeasured

covariate is an ever-present worry, and the power of a sensitivity analysis is the rel-

evant concern. As seen in Chapter 14, in favorable situations in which there is an

effect but no unmeasured bias, as the sample size I increases, I → ∞, the power of a

sensitivity analysis tends to 1 for all Γ < Γ̃ and to 0 for all Γ > Γ̃ , where Γ̃ is the

design sensitivity [21]. Again, the design sensitivity Γ̃ depends upon many aspects

of the design; see Chapters 14–17 and [21, 22, 23, 30]. Suppose that one could

exchange a portion of the sample, say (1−ρ) I observations with 0 < ρ < 1, for

a larger design sensitivity, say Γ̃ ∗ > Γ̃ , in the remaining portion. That is, suppose

that a ‘planning sample’ of, say, 10% = (1−ρ) of the observations led to better

decisions about design, which in turn raised the design sensitivity, from Γ̃ to Γ̃ ∗, in

the remaining 90%, the ‘analysis sample.’ If the sample size, I, is large, this is a

wonderful swap. After all, as I → ∞, without the split, the power is tending to zero

for Γ in the interval
(

Γ̃ , Γ̃ ∗
)

, whereas with the split the power is tending to one

on the same interval. Admittedly, this is a limiting argument about a large sample,

but as intuition might suggest and detailed calculations in [14] confirm, it does not

take a very large sample size I for a larger design sensitivity, Γ̃ ∗ instead of Γ̃ , to

overwhelm a small reduction in sample size, to ρ I from I.

The discussion in the previous paragraph presumed that a planning sample of size

(1−ρ) I could raise the design sensitivity in the analysis sample of size ρ I. This

presumption has two aspects, both more important than the loss of (1−ρ) I obser-

vations. The first aspect is that there must be design decisions that would increase

Γ̃ if those decisions were correctly made. Concerning the first aspect, Chapters

14–17 offer some hope but no guarantees. The second aspect is that the planning

sample must be large enough to lead to correct decisions about design when there

are correct decisions to be made. Numerical results relevant to the second aspect are

given in [14]. In several cases, (1−ρ) I = 100 planning observations with ρ I = 900

analysis observations worked extremely well; see [14] for specifics and detailed rec-

ommendations. Arguably, one needs a planning sample of size (1−ρ) I adequate

to make correct design decisions if there are substantial gains in design sensitivity to

be had, with little to be gained by increasing the size of the planning sample beyond

that.

The practical example in [14] seemed too small to hope for much. There were

only I = 36 pairs, with (1−ρ) I = 6 used for planning and ρI = 30 used for anal-

ysis. As an illustration, that analysis was repeated with 30 independent splits. In
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every one of the 30 splits, the six planning observations correctly guided the one im-

portant design decision that materially affected the sensitivity to unmeasured biases.

That is too much to expect in general from six observations, but in larger studies,

sample splitting has much to offer.

18.2 Are Analytic Adjustments Feasible?

In an observational study, matching sets up certain comparisons, sets up a certain

analogous experiment: it builds adjustments for observed covariates into the design

of an observational study. In Mervyn Susser’s phrase, matching “simplifies the

conditions of observation,” aiding transparency (see Chapter 6).

Adjustments built into the design cannot be easily removed later. Under certain

circumstances, one may plan two analyses, one with an adjustment for a certain

variable, the other without that adjustment. In this case, the variable is not controlled

by matching but is controlled in the statistical analysis. An aspect of the design

of an observational study entails verifying that both analyses are feasible. This

means checking that an unmatched variable exhibits sufficient overlap in treated and

control groups that analytical adjustments are an interpolation, not an extrapolation

or a fabrication.

Typically, one leaves unmatched a variable of ambiguous status. In that way, dif-

ferent analyses may assign the variable different roles [4]. If a concomitant variable

is not truly a covariate, if it may have been affected by the treatment, then an adjust-

ment for it may introduce a bias that would not otherwise have been present [15].

That said, a variable may have an ambiguous status, perhaps slightly affected by the

treatment, but plausibly standing in as a surrogate for an important covariate that

was not measured. For instance, two studies in 1982, by James Coleman, Thomas

Hoffer, and Sally Kilgore [5] and Arthur Goldberger and Glen Cain [13], asked

whether Catholic and other private high schools did more than public schools to in-

crease the cognitive test performance of their students. Important covariates in this

context are cognitive test scores before high school, but these were not available.

Both studies make various comparisons of sophomore and senior test scores, with

the view that sophomore test scores, though possibly affected by public-vs.-private

schooling, might serve in one way or another as a proxy for the unmeasured covari-

ates of test scores prior to high school. An important variable with an ambiguous

status does not necessarily imply an ambiguous conclusion: perhaps the conclusion

is unchanged by changing the status of the variable. If a variable of ambiguous

status is left unmatched, analyses may examine issues of this sort.

Another type of variable of ambiguous status exhibits ‘seemingly innocuous con-

founding.’ That is, the covariate predicts a substantial fraction of the variation in

treatment assignment, but seems fairly innocuous, without obvious importance to

the outcomes under study. At the same time that the treatment is observed to be

confounded with something innocuous, it may also be confounded with unmea-

sured covariates that are not innocuous. In certain circumstances, the innocuous
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confounding — the devil you know, in the words of the proverb — may seem less

worrisome than confounding with unmeasured covariates — the devil you don’t.1

Should ‘seemingly innocuous confounding’ be removed? Perhaps. Perhaps it is

not innocuous, and only seems so. And yet, if all the innocuous confounding is

removed, then perhaps the haphazard aspect of treatment assignment is removed as

well, and the remaining aspects of treatment assignment are governed by biases from

relevant unmeasured covariates. Again, when a variable has an ambiguous status,

conclusions may be firmer if shown to be untouched by this ambiguity. Consider

an example.

Recall from §12.3 the study by Jeffrey Silber and colleagues [24, 29] of slightly

earlier or slightly later discharges of 1402 premature infants from five neonatal in-

tensive care units (NICUs) in the Northern California Kaiser-Permanente Medical

Care Program between 1998 and 2002. The babies were paired into 701 pairs so

that the two babies looked similar in terms of measured (time-dependent) covariates

on the day the first baby, the early baby, was discharged, while the other baby, the

late baby, stayed in the NICU for a few more days, growing older and more mature.

Some of the variation in discharge day seems to have been governed by the day of

the week: reach maturity on Thursday and you go home on Friday; reach maturity on

Saturday and you go home on Tuesday, or so it appeared. There were five hospitals

in the Northern California Kaiser-Permanente Medical Care Program that provided

data for this study, and hence five NICUs, one at each hospital. Some of the variation

in discharge day seems to reflect styles of practice at the different NICUs: some are

faster than others. You could make a case, of course, that these sources of variation

are not innocuous. You could make a case that the baby discharged Friday morning

was judged healthier by the attending neonatologist than the baby held until Tues-

day, observed covariates to the contrary not withstanding. Although these were all

Kaiser-Permanente moms in hospitals run by Kaiser-Permanente, you could make

a case that the moms at certain hospitals or the hospitals themselves were not really

the same. Counter to this, you could make a case that the variation in discharge day

predicted by the identity of the NICU or the day of the week is less worrisome than

unexplained variation. Should we speculate and argue, or should we look and see?

Let’s look and see.

Table 18.1 shows the distribution of the 701 pairs of two babies at the five NICUs.

The table counts pairs, not babies, so the total count is 701 pairs, not 1402 babies.

Of the 701 pairs, 233 fall on the diagonal: the early and late baby are in the same

NICU. Some NICUs discharge earlier than others: NICU C contributed more late

babies than early babies, while NICU D did the opposite. On the other hand, despite

the trend, there are many early babies from NICU C, specifically 95, and many late

babies from NICU D, specifically 89. The variation between NICUs in discharge

rate accounts for part but not all of the variation in discharge day; therefore, the

variation due to the NICU can be removed analytically. In this way, we will see the

situation both with innocuous confounding and without.

1 Erasmus: “Nota res mala optima (an evil thing known is best)” [8, #85, page 123].
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Table 18.1 Pairs classified by the neonatal intensive care unit (NICU, A–E) of the early baby and
the late baby for 701 matched pairs. The table counts pairs, so the total count is 701. NICU C had
161 late babies and 95 early babies, for a Late/Early ratio of 161/95 = 1.69, while NICU D had 89
late babies and 165 early babies, for a Late/Early ratio of 89/165 = 0.54. Percentages are rounded.

Late Baby Late/Early
Early Baby A B C D E Total Percent Ratio

A 18 23 31 13 29 114 16 0.79
B 20 65 24 17 36 162 23 0.93
C 10 19 30 12 24 95 14 1.69
D 26 24 41 36 38 165 24 0.54
E 16 19 35 11 84 165 24 1.28

Total 90 150 161 89 211 701
Percent % 13 21 23 13 30 100

Table 18.1 is part of the design. There is no information about outcomes in Table

18.1. The pattern in Table 18.1 reveals that it is safe to leave NICU unmatched;

within these 701 pairs matched for many characteristics of baby and mom, there is

enough overlap in the NICUs to permit adjustments. We may perform two analyses,

one that ignores the NICU, viewing the NICU as an innocent source of variation in

the day of discharge, the other analysis removing entirely the variation in discharge

day that can be predicted from the NICU. Deciding whether to match for the NICU

is part of the design, and Table 18.1 is part of that decision.

As will be discussed in detail in §19.6, one of the outcomes in Silber et al.’s

[24, 29] study concerned sick-baby services in an interval approximately six months

long following the discharge of the late baby, when both babies were home. Did

early discharge prompt a greater need for sick-baby services after discharge? Well-

baby services, such as checkups, were not included. Sick-baby costs include both

minor events with minor costs, and major events, such as readmission to the NICU,

with enormous costs. Services were converted to dollar amounts according to a

fixed schedule, so that babies who received the same services had the same dollar

score for those services. Here, postdischarge sick-baby cost is serving as a measure

of the severity of the health problem, for which it is not a bad proxy. See §19.6 and

[24, 29] for specifics and additional outcomes.

Table 18.2 is a letter value display [32] of the 701 matched pair differences, late-

minus-early, in postdischarge sick baby costs. Five deaths are recorded as infinite

costs, three among the early babies, two among the late babies; see §19.6 and [29]

for more about the deaths. The median difference in cost is $5 and the average of

the quartiles is $32. The distribution is extremely long-tailed relative to the Normal

distribution, as is seen from the pseudo-spreads in Table 18.2, which would be ap-

proximately constant for a very large sample from a Normal distribution. There is

no sign of increased postdischarge costs for early babies.

One analysis ignores the NICU. It allows the variation in practice style at differ-

ent NICUs to influence the day of discharge. A baby who happened to be born in

NICU C might stay a few extra days, and one born in NICU D may be discharged a

few days early. For two babies with the same matched covariates in §12.3, this anal-
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Table 18.2 Letter value display of difference in postdischarge sick-baby costs in dollars in 701
pairs of a late and an early baby. The difference is late-minus-early. Various quantiles are displayed,
together with their averages (the mids), differences (the spreads), and the ratio of the spreads to
the corresponding spreads of the standard Normal distribution. Five deaths are recorded as infinite
costs, three among the early babies, two among the late babies; see §19.6 for detailed discussion
of the deaths.

Quantile % ‘Letter’ Lower Upper Mid Spread Pseudo-spread

50 1/2 5 5 5 0
25 1/4 −223 287 32 510 378

12.5 1/8 −1063 2313 625 3376 1467
6.25 1/16 −4089 4956 433 9045 2948
3.125 1/32 −9893 12944 1526 22836 6130

ysis views the NICU as irrelevant to outcomes except to the extent that it accelerates

or retards discharge. Ignoring the NICU, procedures associated with Wilcoxon’s

signed rank statistic (§2.4) give a point estimate of an additive effect τ of $17 and a

95% confidence interval of [−$20, $56]; see §19.6 for additional analyses ignoring

the NICU, including a sensitivity analysis.

The analysis using Wilcoxon’s statistic viewed all 2701 possible treatment as-

signments in the 701 pairs as equally probable. Table 18.1 suggests they are not

equally probable; rather, they are predictable using the NICU. For instance, look

at row D and column C of Table 18.1 in comparison with row C and column D.

In those two cells of Table 18.1 are 41 + 12 = 53 pairs of two babies, one born at

NICU ‘C,’ the other at NICU ‘D.’ In those 53 pairs, the odds that the early baby

is at NICU D are estimated at 41/12 = 3.4 to 1. The alternative analysis ([17] and

[20, §3]) does not consider all 2701 possible treatment assignments, but rather a sub-

set of treatment assignments that exhibits the same imbalance as observed in Table

18.1. For instance, in the 53 pairs with one baby at NICU C and another at NICU

D, Wilcoxon’s statistic considers all 253 = 9×1015 possible treatment assignments

as equally probable and uses them all, but the alternative procedure considers only

the 53!/(41!12!) = 2.7× 1011 treatment assignments that keep 12 early babies in

NICU C and 41 late babies in NICU ‘C.’ For the 233 pairs on the diagonal in Ta-

ble 18.1, all possible treatment assignments are considered, but for the off-diagonal

pairs, the observed imbalance is preserved. The distribution of Wilcoxon’s statis-

tic, or any other statistic, is compared to this restricted or conditional permutation

distribution.2

The alternative analysis that adjusts for the NICU yields a point estimate of an

additive effect τ of −$6 and a 95% confidence interval of [−$36, $53]. Some of

the variation in day of discharge can be predicted from the NICU, a seemingly

2 When is this analysis appropriate? Suppose the NICUs are included among the observed covari-
ates and after including the NICUs, (3.5)–(3.8) is then true. Suppose further that the NICUs enter
the propensity score as additive constants on the logit scale. Then the conditioning just described
eliminates the additive NICU parameters, leaving behind a known distribution of treatment assign-
ments that gives the remaining assigments equal probabilities. The distribution of the Wilcoxon
statistic is then approximated using its easily computed moments. See [17] and [20, §3] for the
paired case, as here, and see [16, 19] and [20, §3] for the general case.
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innocuous form of confounding. Two analyses were performed, one that ignored

the predictable variation, the other that removed the predictable variation. The two

analyses produce similar inferences about τ . Although the status of the NICU is

ambiguous, the conclusion is less so. Indeed the pair of analyses provides some

reassurance: different sources of variation in the day of discharge produce similar

estimates of the effect of slightly delayed discharge.

Is it safe to leave a covariate unmatched? Will analytic adjustments be feasible

for that covariate? Is there sufficient overlap on an unmatched covariate? Will ana-

lytic adjustments require an interpolation, not an extrapolation or a fabrication? In

the design of an observational study, a table such as Table 18.1 recording treatment

assignment and unmatched covariates provides answers to these questions.

Tapered matching

An alternative to leaving an ambiguous covariate unmatched is to construct matched

triples, one treated subject and two controls, so that one control is matched for the

covariate and the other is not. This ensures that both analyses are feasible, and pro-

vides a formal test as to whether their answers differ, as well as a confidence state-

ment about the magnitude of the difference. The matching is implemented using

‘optimal tapered matching’, as discussed by Shoshana Daniel, Katrina Armstrong,

Jeffrey Silber, and me [7]. In optimal tapered matching, a single control group is

optimally partitioned into two types of controls and optimally matched to treated

subjects. The procedure is easy to implement. A distance matrix is computed be-

tween each treated subject and each control, ignoring the ambiguous covariate, with

one row for each treated subject and one column for each control, as in Chapter 8. A

second distance matrix is computed between each treated subject and each control

including the ambiguous covariate in the distances. These two distance matrices

are stacked, one on top of the other, so the number of rows is doubled but the num-

ber of columns is unchanged. An optimal pair match is determined for this stacked

distance matrix. Each control is then used at most once, but each treated subject is

used twice. In this way, each treated subject is paired with two controls, one close

in terms of the first distance, the other close in terms of the second distance, and

the two control groups do not overlap, so they may be compared using conventional

methods, such as Wilcoxon’s signed rank test. The procedure is not restricted to

matched triples, and may use more than one control from either group, or may have

more than two control groups. Tapered matching was originally developed in con-

nection with research on disparities, where the concept of a covariate is inherently

ambiguous. The paper [7] discusses an example in detail, demonstrates a certain

optimal property of the procedure, and discusses some of the subtleties involved in

the choice of distance.
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18.3 Matching and Thick Description

Matching and thick description

Matching compares groups of treated and control subjects, often pairs of treated and

control subjects, who look comparable in terms measured covariates xi j. A constant

worry is that subjects who look comparable may not be comparable, that they look

comparable only because important distinctions are omitted in the observed covari-

ates xi j, distinctions that are to be found only in unobserved covariates ui j for which

subjects are not matched.

In matching, people remain intact as people. In contrast, in model-based adjust-

ments, the people themselves disappear or recede into the background to be replaced

by features of a model. Where there were once people, there are now parameters in

a model. A relatively neglected but potentially important aspect of matching is the

possibility of taking a close look at a few well-matched pairs of people, providing

a narrative account of these pairs.3 That is, one might provide a ‘thick description’

of a small subset of pairs. Jeffrey Silber and I tried this in a study of mortality af-

ter surgery in the Medicare population in Pennsylvania, and the current section is a

brief summary of the resulting paper [18].

It is a staple of professional education — in medicine, in business, in law — that

a narrative account of a few well-chosen cases is often enlightening and instructive.

For instance, in this spirit, the New England Journal of Medicine often publishes

its “Case Reports from the Massachusetts General Hospital”; see also the essay by

Jan Vandenbroucke [33]. The professions do not believe that broad generalizations

can be warranted by examination of a few cases; rather, they believe that to be-

come acquainted with generalizations without engaging particular cases to which

those generalizations are supposed to apply is to run the risk of developing a fairly

scholastic perspective.

In certain social sciences, there is a division of labor, with some investigators,

sometimes called ‘qualitative researchers,’ creating narrative accounts from a few

cases, and other investigators, sometimes called ‘quantitative researchers,’ creat-

ing analyses from data describing many people. Matching provides a framework

within which qualitative and quantitative research can usefully interact within a sin-

gle investigation. A narrative account of a few pairs could go hand in hand with a

statistical analysis of many pairs.

3 As has been discussed several times, modern matching methods try to balance high-dimensional
observed covariates in treated and control groups, viewing close individual matched pairs as a
secondary concern. In light of this, treated and control groups may be balanced with respect to
observed covariates using many pairs that are not individually close on observed covariates. The
methodology discussed in the current section is most appropriate for the subset of matched pairs
in which the individual pairs are closely matched. Typically, there will be many such pairs, even
if many other pairs contribute to covariate balance without being closely matched as pairs with
respect to covariates. If a distance, such as the Mahalanobis distance, is used in matching (see
Chapter 8), then a closely matched pair will be recognizable by a small distance within the pair.



18.3 Matching and Thick Description 323

What is thick description?

The term ‘thick description’ was introduced by a philosopher, Gilbert Ryle [25,

page 479], and was made popular by an anthropologist, Clifford Geertz [11]; see [18,

pages 221-222] for quotes from Ryle and Geertz that give a brief sense of the nature

of their concerns. The aim of thick description according to Geertz [12, page 152] is

“to render obscure matters intelligibly by providing them with an informing context”

[12, p. 152]. The importance of an informing context is conveyed by the following

passage by Howard Becker [2, page 58]:

[I]f we don’t find out from people what meanings they are actually giving to things, we will
still talk about those meanings. In that case, we will, of necessity, invent them, reasoning
that the people we are writing about must have meant this or that, or they would not have
done the things they did. But it is inevitably epistemologically dangerous to guess at what
could be observed directly. The danger is that we will guess wrong, that what looks reason-
able to us will not be what looked reasonable to them. This happens all the time, largely
because we are not those people and do not live in their circumstances.

It is quite easy to misinterpret data from a large electronic data set [10]. The

attempt to create a narrative account of a few cases may serve to test interpretations

of data and the concepts in which those interpretations are cast. An example follows.

Example: Mortality after surgery

Silber and colleagues’ [26, 27, 28] study of mortality after surgery used (inexpen-

sive) administrative data to create a matched sample from the Medicare popula-

tion in Pennsylvania, which was followed by (expensive) chart abstraction for the

matched sample. In this study, deaths shortly following surgery were matched to

ostensibly similar survivors based on administrative data from Medicare. Although

the best data would come from chart abstraction for the matched sample, it was im-

portant to have a reasonable match based on administrative data, so that charts for

suitable patients would be abstracted.

In [18], a preliminary matched sample was constructed, and Medicare records

for a handful of well-matched pairs were contrasted with far more detailed informa-

tion in the hospital chart. The preliminary match looked reasonable in terms of the

measured variables from Medicare’s administrative records. However, even though

only a few cases were examined, it was immediately clear from chart data that the

initial match was not adequate and that many definitions that we created to interpret

the administrative records required revision. Many of the mistakes we unearthed

were obvious mistakes when viewed from the step-by-step narrative perspective of

a hospital chart, but were not obvious from the perspective of computerized admin-

istrative records, or at least not obvious to us.

For instance, we generally wanted to avoid matching on events that were subse-

quent to surgery, because these might be outcomes of surgery or of subsequent care.

Although that principle is sound, our initial use of it was mechanical and thought-

less. For instance, if surgery reveals that a patient has metastatic cancer, that cancer



324 18 After Matching, Before Analysis

existed prior to the surgery that discovered it. Metastatic cancer is, of course, im-

portant to the patient’s prognosis and to proper interpretation of the care the patient

subsequently received. In light of this, we changed our definitions related to cancer

and several other medical conditions that could not have begun during a hospital

stay. No one would make this mistake faced with a narrative account describing an

individual patient, but it is less obvious in computerized administrative records, and

it might not be easily discerned from the coefficients of a model. If some mistakes

are difficult to make when a situation is viewed from a narrative perspective, then

that constitutes a good reason for expending the time and effort required to view the

situation from a narrative perspective.

We also redefined “died shortly after surgery.” One of the examined charts de-

scribed a patient who had ‘survived after surgery’ by our original definition, but

after a long stay had died without leaving the hospital. This case prompted us to re-

examine the administrative data, only to discover that the fate of this one patient was

sufficiently common to merit a different definition of “died shortly after surgery.”

For additional examples and further discussion, see [18]. The example in [18] is

a fairly limited use of matching in conjunction with narrative description, but exten-

sive use is possible. For three compelling examples of extended narrative accounts

(without matching), see [1, 3, 9].

18.4 Further Reading

Section 18.1 is a brief outline of a paper by Ruth Heller, Dylan Small and me [14].

The method of adjustment in §18.2 is from [17]. Although the method is described

correctly and in detail in [17], there is a misstatement of one of the assumptions,

which is corrected in [20, §3] and in Note 2 of the current chapter. The method of

§18.2 is the simplest case of a general method discussed in [16, 19]. Section 18.3

is derived from a paper with Jeffrey Silber [18] that contains further discussion and

additional references. The literature on thick description, ethnography, and quali-

tative research is vast. The books by Lonnie Athens [1], Charles Bosk [3] and Sue

Estroff [9] are fine examples of ethnography touching upon criminology, surgery,

and psychiatry, and the volume containing Becker’s essay [2] contains many other

interesting essays as well.
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Chapter 19
Planning the Analysis

Abstract “Make your theories elaborate” in observational studies, argued R.A.

Fisher, so that the many predictions of such a theory may disambiguate the asso-

ciation between treatment and outcome. How should one plan the analysis of an

observational study to check the predictions of an elaborate theory?

19.1 Plans Enable

A randomized clinical trial follows a protocol that describes the design of the trial

and a plan for its analysis. The plan for analysis will identify a primary endpoint

or outcome, possibly secondary endpoints, describe the comparisons that will be

made, and so forth. The plan for a clinical trial is reviewed by a funding agency

and, for large important trials, the plan may be published before the trial begins. In

this sense, the plan is a public plan. There is no barrier to planning the analysis of

an observational study, and there is much to gain from planning.

Plans enable. In all aspects of life, much can be done with a plan that cannot be

done without one.

A study that follows a public plan is more convincing than a study that emerges

ambiguously from a fog of data. A public plan is subject to public scrutiny before

the study begins, so criticism that would otherwise surface after the fact arises before

the fact, perhaps leading to a better study more resistant to legitimate criticism. If

there is a public plan, and if the critic raises no objection to the plan, then criticism

that could have been raised to the plan rings hollow when raised for the first time

after a particular conclusion is announced.

A planned analysis is more transparent than an unplanned analysis. As discussed

in Chapter 6, transparency means making evidence evident. If there is a public plan

for analysis, then the investigators either followed their plan or they deviated from

it. If they deviated from the plan, they will be obligated to explain and justify the

deviation. Perhaps the deviation will be judged appropriate, perhaps more appro-
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priate in light of events than adherence to the plan. No matter. What was done and

why it was done are open to view.

Without a plan, an analysis will first use the methods that are most familiar, most

ready to hand, then suffer a disorganized retreat to appropriate methods when un-

foreseen but foreseeable dilemmas arise. Even if appropriate methods are ultimately

used, such an analysis looks like what it is: a dubious circular meander around data,

methods, and conclusions. Here is a common example. We are all more familiar

with tests and confidence intervals for differences than with tests and intervals for

near equivalence, although there is sound, straightforward, standard methodology

available for both tasks [6]. Meandering through a data set, we therefore apply tests

for difference indiscriminately, then remember that tests for difference make a mud-

dle of attempts to demonstrate near equivalence, then retreat to appropriate methods

in a manner that rarely convinces us, much less anyone else. And yet a moment’s

thought before the fact would have revealed that to provide evidence for a certain

conclusion means finding a difference here and near equivalence there. A moment’s

thought before the fact is readily available; it just takes a moment’s thought. This

dilemma is not in the data but in the absence of a plan.1

A plan does not preclude unplanned analyses. A plan distinguishes planned and

unplanned analyses.2

Admittedly, you cannot plan an ornate and delicate analysis. You can plan the

analysis of a randomized trial because randomization has done the heavy lifting

of ensuring that comparable people are compared; ornate analysis is not needed.

You can plan the analysis of an observational study if matching in the design has

done the heavy lifting of ensuring that ostensibly comparable people are compared;

ornate adjustments of outcomes for observed covariates are not essential.3 Properly

performed, matching is done without examining outcomes; it is, therefore, part of

design. To say that you cannot plan an ornate and delicate analysis is to offer a

telling argument against ornate and delicate analyses.

Novelty and originality may be acceptable in a plan, but soundness, not novelty

or originality, is the mark of excellence in a planned analysis. The analysis of a

standard design may follow a standard plan.

1 See, for instance, Note 2 in Chapter 5, where I deliberately did the meandering analysis I intend
to correct in the current chapter.
2 John Tukey: “We do not dare either give up exploratory data analysis or make it our sole interest”
[36, page 72]. “We often forget how science and engineering function. Ideas come from previous
exploration more often than from lightning strokes. Important questions can demand the most
careful planning for confirmatory analysis” [35, page 23].
3 By ‘ostensibly comparable,’ I mean comparable in terms of measured covariates, x, leaving open
the question of whether people who look comparable in terms of x are actually comparable in terms
of unmeasured covariates u. ‘Ostensibly comparable’ is an abbreviation.
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19.2 Elaborate Theories

R.A. Fisher’s Advice

In his paper, “The planning of observational studies of human populations,” William

Cochran [9, §5] wrote:

About 20 years ago, when asked in a meeting what can be done in observational studies to
clarify the step from association to causation, Sir Ronald Fisher replied: ‘Make your theories
elaborate.’ The reply puzzled me at first, since by Occam’s razor, the advice usually given
is to make theories as simple as is consistent with known data. What Sir Ronald meant, as
subsequent discussion showed, was that when constructing a causal hypothesis one should
envisage as many different consequences of its truth as possible, and plan observational
studies to discover whether each of these consequences is found to hold.. . . [T]his multi-
phasic attack is one of the most potent weapons in observational studies.

Fisher’s advice fits closely with the devices in §5.2 that disambiguate causal asso-

ciations [26], and with the reduction in sensitivity to unmeasured biases that may

follow from an anticipated pattern of treatment effects in Chapter 17. In Fisher’s

advice, the temporal order is important: one envisions consequences of a causal hy-

pothesis and then plans the study to discover whether the consequences hold. There

is no value in an elaborate theory built after the fact to fit unanticipated patterns in

the data.

A simple example, discussed in §5.2.2 and §11.3, is the use of two control groups.

If the treatment is the cause of its ostensible effects, the anticipated pattern with two

control groups is clear: the treated group differs substantially from the two control

groups, which do not differ substantially from each other. The prediction here is for

two substantial differences and one near equivalence. What plan is appropriate for

the analysis?

A second simple example discussed in § 5.2.3 and §17.2 concerns coherence of

two outcomes, for instance an increase in both math and verbal test scores associated

with smaller class sizes prompted by Maimonides’ rule. There is the hypothesis of a

coherent association and hypotheses about two outcomes. What plan is appropriate

for the analysis?

What should a planned analysis accomplish?

An elaborate theory makes an elaborate prediction, and in Chapter 17 it was seen

that certain forms of compatibility with an elaborate theory may make the study

less sensitive to unmeasured biases. The investigator hopes that the use of two

control groups rather than one, or the search for coherence among two outcomes,

will enlarge what can legitimately be said, not diminish it, but there are pitfalls for

the unwary.

In the first instance, the data may confirm part of the elaborate theory, refute

another part, with a third part left in an ambiguous state. A binary ‘confirm’ or

‘otherwise’ is not appropriate. The evaluation of an elaborate theory will, therefore,
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involve more than one comparison. If several comparisons are made using statistical

procedures, then each comparison runs a risk of error, with the resulting possibility

that a series of small risks of error accumulate to a risk of error that is no longer

small. If a correction for multiple testing were made to control this accumulation

of error, say using the Bonferroni inequality, then the investigator might discover,

to her shock and dismay, that if she had used the first control group alone, it would

have had outcomes significantly different from the treated group, and if she had

used the second control group alone, it too would have had outcomes significantly

different from the treated group, but because she used both control groups and did

two tests, neither difference is significant after correcting for multiple testing. This,

too, is not appropriate.

Moreover, if the elaborate theory makes predictions of near equivalence, and if

tests for difference are performed where tests for near equivalence are needed, then

successes may be misclassified as failures and failures as successes. In a large study,

two control groups might have nearly equivalent outcomes, yet differ significantly;

this is a success that might be mistaken for a failure. Conversely, two control groups

may have outcomes that do not differ significantly, and yet because of low power

may provide no evidence that the outcomes are similar in the two groups; this is a

failure that might be mistaken for a success. A test for near equivalence is one that

can reject substantial inequivalence.

So a plan for analysis must do several things. To be a legitimate statistical analy-

sis at all, it must control, in some appropriate sense, the risk of incorrect inferences.

It must do this while making several comparisons, resulting in a graduated assess-

ment of compatibility with the elaborate theory, rather than a simple ‘yes’ or ‘no’.

If some comparisons have priority over others, then the analysis should respect that

priority: the most important comparisons should come first, in some sense, and not

be hindered by added interest in other comparisons, as seemed to be the case above

in connection with the Bonferroni inequality.

To be credible in their respective roles, an elaborate theory and priorities for

its assessment must appear in a plan that precedes examination of outcomes. The

elaborate theory is intended to make predictions, but it isn’t making predictions if it

is built to fit the data that will be used to assess those predictions. Priorities can aid

in controlling the risk of incorrect inferences only if they shape the analysis rather

than being shaped by it.

19.3 Three Simple Plans with Two Control Groups

The simplest plan for analysis with two control groups

To examine the logic of the simplest plan in a practical case, consider again Table

5.1 from the study by Bilban and Jakopin [7] of genetic damage among lead-zinc

miners compared with two control groups. This simplest plan is, in fact, too simple
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even for this most basic situation. Better plans will be considered soon. The focus,

for the moment, is on the logic of the plan, not yet on finding a good plan.

Let us imagine that Bilban and Jakopin originally planned to use one control

group, say the Slovene residents far from the mine. Let us imagine further that they

added the second control group of local residents near the mine who were not miners

in response to concerns that pollution in the area of the mine, not the mine itself,

might be responsible for greater genetic damage among miners. This second control

group is a reasonable response to that specific concern. Finally, let us suppose that

they wanted to give priority to the first of these two control groups.

Consider the following analytic plan. Test the hypothesis of equality of micronu-

clei frequencies among miners and the first control group, say at level 0.05. If that

hypothesis is not rejected, stop. If that hypothesis is rejected, declare it rejected

and test the second hypothesis of equality of micronuclei frequencies among min-

ers and the second control group, also at level 0.05, declaring it rejected or not as

appropriate.

Admittedly, as analytic plans go, this is not much of a plan. It does nothing to

investigate the magnitude of the effect, which is surely important, and it does noth-

ing to appraise the comparability of the two control groups, which is also important.

The issue of sensitivity to unmeasured biases is not mentioned. This plan, such as it

is, does not plan much. Perhaps what it plans is less important than what it ignores.

No matter. The plan exemplifies a certain principle in the simplest possible setting.

In Table 5.1 from [7], the first test yields a t-statistic of 16.13, the second a t-
statistic of 13.87. If the distributions of micronuclei were independent and Normal

with expectations μt , μc1 and μc2 and standard deviations ωt , ωc1, and ωc2 in the

treated group and the two control groups, with c1 referring to Slovene residents and

c2 referring to local residents, then, at the 0.05 level, the plan would reject the first

hypothesis, then test and reject the second.4

Notice first that, under this plan, the addition of a second control group costs

the investigators nothing. If the hypothesis of no difference between miners and

the first control group would have been rejected without the second control group,

it would also be rejected by this plan in the presence of the second control group.

So the situation is different from correcting for multiple testing using the Bonferroni

inequality as described above. The second control group may allow more to be said,

but less will not be said.

The second thing to notice is that the plan controls the probability of at least one

false rejection in two tests provided the two separate tests do their separate jobs of

controlling the probability of a false rejection. It is important to understand what is

being claimed, then why the claim is true. The claim is that if each test has level

4 In Table 5.1, it appears that ωt , ωc1, and ωc2 are not equal, so a pooled standard deviation is not
used, and the ‘t-statistics’ are not actually distributed with a t-distribution. Because the degrees of
freedom are fairly large, the separate standard errors are used, and the ‘t-statistics’ are compared
with the standard Normal distribution, both here and in all calculations from Table 5.1. Although
this is an imperfect approach, the largest imperfection in my analysis is in assuming the data are
Normal merely because only means and standard deviations were reported. This example is being
used to illustrate certain concepts while minimizing incidentals unrelated to those concepts.
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0.05, falsely rejecting one time in 20, then the two-step plan tests two hypotheses but

makes at least one false rejection with probability at most 0.05. It is like buying two

lottery tickets rather than one without increasing your chance of winning, though not

quite like that. Something has prevented an accumulation of risk of false rejection.

What is that something? Consider the logic.

There are two null hypotheses, H0 and H̃0. To be specific, the one sided null

hypotheses are H0 : μt ≤ μc1 and H̃0 : μt ≤ μc2. Here, H0 refers to the first control

group and H̃0 refers to the second, but it doesn’t really matter what they refer to;

they could be any two hypotheses about anything. The plan is to test H0, and only

if H0 is rejected to test H̃0. Consider the cases, one at a time. If H0 and H̃0 are both

false, then you cannot falsely reject anything, so there is no risk of false rejection;

any rejection is a correct rejection. If H0 is false but H̃0 is true, then you cannot

falsely reject H0, so to falsely reject anything you have to, among other things,

falsely reject H̃0, but the chance of this is at most 0.05. If H0 and H̃0 are both true,

then you commit a false rejection if and only if you reject H0, and the chance of this

is at most 0.05. So no matter which case is true, the chance of falsely rejecting at

least one true hypothesis is at most 0.05.5

This first bit of logic ramifies in many useful directions [3, 15, 17, 29]. This logic

is discussed explicitly in the context of clinical trials by Gary Koch and S.A. Gansky

[17] and Peter Bauer [3], but appears to have been understood 20 years earlier by

Ruth Marcus, Eric Peritz, and K. R. Gabriel [22], who were doing something related

but subtler. The logic also has links to multiparameter tests [5, 18, 20] and has been

combined in an interesting way with the Bonferroni inequality [14, §3].

There is a second piece to the logic.

A symmetric plan for analysis with two control groups

An awkward feature of the first plan is that the investigators had to give priority to

one of the control groups. Can the two control groups be viewed symmetrically?

Consider a second plan. Test at level 0.05 the hypothesis that H0 : μt ≤
(μc1 + μc2)/2, which says that the expected level of micronuclei in the treated group

is no higher than in the average of the two control groups. If H0 is not rejected, stop.

If H0 is rejected, declare it rejected and test at the 0.05 level both H0 : μt ≤ μc1 and

H̃0 : μt ≤ μc2, rejecting neither, either, or both as appropriate.

5 In his PhD thesis, Frank Yoon [38] improves upon this plan in a sensible way. Suppose that
we can specify a ‘meaningful difference’ (sometimes called a ‘clinically significant difference’)
of τmf ≥ 0. The notion is that a difference smaller than τmf may exist but be too small to merit

attention. Yoon suggests testing H(τ)
0 : μt − τ ≤ μc1 in order [29] at level α for τ ∈ (−∞, τmf],

stopping with the smallest H(τ)
0 that is not rejected, say τnr, declaring with 1−α confidence that

μt − μc1 ≥ τnr; however, if all τ ∈ (−∞, τmf] are rejected, declaring with 1−α confidence that

μt −μc1 ≥ τmf and continuing to test H̃(τ)
0 : μt −τ ≤ μc2, in order at level α for τ ∈ (−∞, τmf], with

a parallel interpretation. His method tries to establish a meaningful difference for the first control
group and, if that is successful, tries to establish a meaningful difference for the second control
group. See Yoon [38] for detailed discussion with an example.
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This second plan is little better than the first, but it does exemplify a second

piece of the logic in the simplest case. Here, the two control groups are handled

symmetrically, and if the control groups are similar, there is likely to be more power

in testing H0 than in testing either H0 or H̃0, because in testing H0 all the controls

are used at once.

If each of the tests is done with level 0.05, then the chance of at least one false

rejection is at most 0.05, even though three tests may be performed. To see this,

consider the possible cases. If H0 is true, then you falsely reject at least one true

hypothesis if and only if you reject H0, and the chance of this is at most 0.05. Now

suppose H0 is false. Then you cannot falsely reject H0; any rejection of H0 is a

correct rejection. Moreover, if H0 is false, then μt > (μc1 + μc2)/2, so H0 : μt ≤ μc1

and H̃0 : μt ≤ μc2 cannot both be true; either H0 or H̃0, or both, are false. If both H0

and H̃0 are false, then a false rejection is impossible. If exactly one of H0 and H̃0

is true, then to falsely reject at least one hypothesis you must falsely reject that one

true hypothesis, and the chance of this is at most 0.05.

In Table 5.1 from the study by Bilban and Jakopin [7], the hypothesis H0 is tested

by estimating the contrast 1×μt −
(

1
2

)×μc1 −
(

1
2

)×μc2 as 8.25 using the sample

means in place of the population means, with estimated standard error

0.519 =

√
(12) ·0.479+

(
−1

2

)2

·0.143+
(
−1

2

)2

·0.377, (19.1)

yielding a ‘t-statistic’ of 8.25/0.519 = 15.9, so H0 is rejected, and both H0 and H̃0

are tested, with t-statistics of 16.1 and 13.9 as in Table 5.1, so all three hypotheses

are rejected.

Where the first plan added a second control group at no cost, the second plan

may confer a gain, because the sample size is increased in the first step by using

both control groups at once. Perhaps H0 will be rejected when neither H0 nor H̃0

is rejected. If the treated group is judged to produce responses that, on average, are

higher than the two control groups, then the investigation continues by testing the

two control groups one at a time.

The first bit of logic concerned testing hypotheses in an order of priority. The

second bit of logic, which was just illustrated, concerned the possibility that some

hypotheses preclude one another, so in testing several hypotheses you may know

that they cannot all be true simultaneously, even though you do not know which one

is true. The second bit of logic is used in building confidence intervals: then you

test infinitely many hypotheses, but only one hypothesis is true, so no correction for

multiple testing is needed. The second bit of logic shows up in a certain form in

two methods for testing several hypotheses, specifically the method of Ruth Marcus,

Eric Peritz, and K.R. Gabriel [22] and the method of Julliet Popper Shaffer [32] , to-

gether with a large literature developing from these two papers. In the specific form

used above to compare two control groups, H0 and H̃0 do not preclude one another,

but they do preclude one another if H0 is false, and in this case
〈

H0,
{

H0, H̃0

}〉
is called a ‘sequentially exclusive partition’ of the three hypotheses, H0, H0, H̃0, in
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the sense that a set of hypotheses in the sequence, here
{

H0, H̃0

}
, contains at most

one true hypothesis if all previous hypotheses in the sequence, here H0, are false;

see [29].

Before developing a serious plan for an analysis with two control groups, one

more bit of logic is needed, this time about equivalence tests.

Are the two control groups nearly equivalent?

The current section is concerned with demonstrating that the two control groups are

nearly equivalent in their responses, that is, with an equivalence test [6]. To assert

that the two control groups are close in their responses is to assert that |μc1 −μc2|
is small, say |μc1 −μc2| < δ , for some specified δ > 0. To reject the hypothesis

that H(δ )
�= : |μc1 −μc2| ≥ δ is to provide a basis for asserting |μc1 −μc2| < δ ; that

is, to reject the hypothesis H(δ )
�= of inequivalence is to be in a position to assert

equivalence, |μc1 −μc2|< δ . Moreover, H(δ )
�= : |μc1 −μc2| ≥ δ is true if either

←−H (δ )
0 :

μc1 − μc2 ≤ −δ or
−→H (δ )

0 : μc1 − μc2 ≥ δ is true; that is, H(δ )
�= is the union of two

hypotheses [5, 20], and the set comprised of these two hypotheses,
{←−H (δ )

0 ,
−→H (δ )

0

}
,

is exclusive in the sense that at most one of the two hypotheses is true [29].

Suppose that we adopt the plan of testing both
←−H (δ )

0 and
−→H (δ )

0 in one-sided, 0.05

level tests, rejecting each hypothesis if the corresponding P-value is less than 0.05,

rejecting H(δ )
�= if both

←−H (δ )
0 and

−→H (δ )
0 are rejected. In brief, two tests are performed,

each at level 0.05, with four possible outcomes: (i) no rejections, (ii) reject
←−H (δ )

0 but

not
−→H (δ )

0 , (iii) reject
−→H (δ )

0 but not
←−H (δ )

0 , (iv) reject
←−H (δ )

0 ,
−→H (δ )

0 , and H(δ )
�= . What

is the chance of falsely rejecting at least one true hypothesis? The chance is at

most 0.05. To see this, recall that
{←−H (δ )

0 ,
−→H (δ )

0

}
is exclusive: at most one of

←−H (δ )
0

and
−→H (δ )

0 is true. If neither
←−H (δ )

0 nor
−→H (δ )

0 is true, then there is no true hypothesis to

falsely reject, and the chance of a false rejection is zero. If
←−H (δ )

0 is true, then
−→H (δ )

0 is

false, and a false rejection occurs if and only if
←−H (δ )

0 is rejected, which happens with

probability at most 0.05. If
−→H (δ )

0 is true, then
←−H (δ )

0 is false, and a false rejection

occurs if and only if
−→H (δ )

0 is rejected, which happens with probability at most 0.05.

With δ = 2 in Table 5.1 from [7], two ‘t-statistics’ are computed as

←−t =
(6.400−6.005)+2√

0.1432 +0.3772
= 5.9 and −→t =

(6.400−6.005)−2√
0.1432 +0.3772

= −4.0, (19.2)

where
←−H (δ )

0 : μc1 − μc2 ≤ −δ is rejected for large values of ←−t and
−→H (δ )

0 : μc1 −
μc2 ≥ δ is rejected for small values of −→t . Here, both ←−t ≥ 1.65 and −→t ≤ −1.65,

where Φ (−1.65) = 0.05 and 1−Φ (1.65) = 0.05 give the approximate one-sided
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critical values from the Normal distribution. So we are in a position to assert that

|μc1 −μc2| < δ = 2 having rejected the two alternatives to this assertion.

How should one define equivalence? That is, how should one pick a δ? In fact,

there is no need to pick a single δ . Start with δ = ∞, which corresponds with ←−t = ∞
and −→t = −∞, continuing to test smaller values of δ until a value δ ∗ is encountered

such that either
←−H (δ )

0 or
−→H (δ )

0 is not rejected; then assert with 95% confidence that

|μc1 −μc2| ≤ δ ∗. In Table 5.1, δ ∗ = 1.06, so with 95% confidence, the frequency

of micronuclei in the two control groups differs by at most 1.06.

The reasoning here closely parallels the reasoning behind the TOST, or two-one-

sided tests procedure for equivalence testing [6, 31, 37] and the associated confi-

dence interval [2, 16].6 It is also closely related to the intersection-union principle;

see [5, 6].

An elementary plan for analysis with two control groups

With two control groups, an elementary plan for analysis follows. The plan is stated

in terms of rejection at the conventional level α = 0.05, but any level α may be used

instead.

Step 1: Test H0 : μt ≤ (μc1 + μc2)/2. If the P-value is greater than 0.05, stop;

otherwise, reject H0 and perform Step 2.

Step 2: Test both H0 : μt ≤ μc1 and H̃0 : μt ≤ μc2, rejecting H0 if its P-value is at

most 0.05, rejecting H̃0 if its P-value is at most 0.05. If either P-value is above

0.05, stop. If both P-values are at most 0.05, perform Step 3.

Step 3: Starting with δ = ∞ and proceeding to smaller values of δ , test both
←−H (δ )

0 : μc1 − μc2 ≤ −δ and
−→H (δ )

0 : μc1 − μc2 ≥ δ . If the P-value for
←−H (δ )

0 is at

most 0.05, reject
←−H (δ )

0 , and if the P-value for
−→H (δ )

0 is at most 0.05, reject
−→H (δ )

0 .

If either P-value is greater than 0.05, stop testing and assert with 95% confidence

that |μc1 −μc2| ≤ δ . If both P-values are at most 0.05, then continue testing

smaller values of δ .

This three step plan may reach a variety of conclusions. It may decide that there

is insufficient evidence to reject H0, so that even when combining the sample sizes

from the two control groups, the treated group cannot be confidently asserted to have

higher responses than the average of the two control groups. If H0 is rejected in Step

6 Alternatively, if somewhat unconventionally, one may view this as testing hypotheses in order

[29] with an infinite sequentially exclusive partition of hypotheses,
{←−H (δ )

0 ,
−→H (δ )

0

}
, δ ∈ (0,∞) ,

where
{←−H (δ )

0 ,
−→H (δ )

0

}
is ‘before’

{
←−H (δ ′)

0 ,
−→H (δ ′)

0

}
if δ > δ ′. Notice this ordering: extreme hy-

potheses are tested first. This slightly unconventional view has two advantages in the current
discussion. First, it allows equivalence tests to be embedded in other forms of sequentially exclu-
sive partitions without requiring a separate formalism. This will be done in a moment. Second,

for a single δ , it permits rejection of either
←−H (δ )

0 or
−→H (δ )

0 when both hypotheses cannot be rejected,
something that is not always explicitly stated in discussions of TOST.
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1, then with 95% confidence one may assert μt > (μc1 + μc2)/2. In Step 2, neither,

either, or both of H0 and H̃0 may be rejected; that is, one may be confident that

the treated group has higher responses than neither control group, than one control

group but not the other, or than both control groups. If H0 and H̃0 are both rejected

in Step 2, then Step 3 provides a confidence statement for the degree of equivalence

of the outcomes in the two control groups.

As we have already seen, when applied to Table 5.1 from [7], the three step

procedure rejects H0, rejects both H0 and H̃0, and rejects both
←−H (δ )

0 and
−→H (δ )

0 for

all δ > 1.06. With 95% confidence, the procedure asserts that the treated responses

are above the responses in both control groups and the two control group means

differ by |μc1 −μc2| ≤ 1.06.

The chance that this three-step procedure tests and falsely rejects at least one

true hypothesis is at most 0.05. Perhaps this is intuitive now, having previously

considered the steps in isolation, one at a time. A proof of a general kind is given

in the appendix to this chapter. It uses the simple fact that〈
H0,

{
H0, H̃0

}
,
{←−H (δ )

0 ,
−→H (δ )

0

}
, δ ∈ (0,∞)

〉
(19.3)

is a sequentially exclusive partition of hypotheses, with
{←−H (δ )

0 ,
−→H (δ )

0

}
placed be-

fore

{←−H (δ ′)
0 ,

−→H (δ ′)
0

}
whenever δ > δ ′; that is, as one proceeds forward in this

sequence of sets of hypotheses, at most one hypothesis in a set is true when all

the hypotheses in earlier sets are false. This is true because if H0 is false, then at

most one hypothesis in
{

H0, H̃0

}
is true, and for all δ , at most one hypothesis in{←−H (δ )

0 ,
−→H (δ )

0

}
is true. Intuitively, in the three-step procedure, whenever two hy-

potheses are tested at once, at most one of them is true, so you are taking only one

0.05 chance, not two 0.05 chances, of a false rejection.

An alternative plan for analysis with two control groups

A weakness of the analysis plan just described is that it might reject H0 : μt ≤ μc1 and

H̃0 : μt ≤ μc2 in Step 2, even though the treated group is close to one of the control

groups, in the sense that μt −max(μc1, μc2) is small, and the two control groups

are far apart, in the sense that max(μc1, μc2)−min(μc1, μc2) is large. One might

reasonably argue that a difference between the control groups is problematic unless

it is a small difference compared with the difference between the treated group and

both control groups. We are not so interested in whether the difference between

the two control groups is significantly different from zero, but rather whether the

magnitude of bias needed to explain any difference between the control groups is

far smaller than the magnitude of bias needed to explain the difference between the

treated group and both control groups. More precisely, for some fixed number, τ ,

one might wish to assert
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(μt − τ)−max(μc1, μc2) > max(μc1, μc2)−min(μc1, μc2) (19.4)

and one would have grounds for asserting this if one had rejected the hypothesis

H(τ)
� : (μt − τ)−max(μc1, μc2) ≤ max(μc1, μc2)−min(μc1, μc2) . (19.5)

For instance, rejection at level 0.05 of H(τ)
� with τ = 0 asserts with 95% confidence

that the treated mean, μt , exceeds the means, μc1 and μc2, in both control groups by

more than the control groups differ from each other.

The following procedure from [29] tests H(τ)
� .

Step 1a: Test H(τ)
0 : (μt − τ)≤ (μc1 + μc2)/2. If the P-value is greater than 0.05,

stop; otherwise, reject H(τ)
0 and perform Step 2.

Step 2a: Test both H(τ)
0 : (μt − τ) ≤ μc1 and H̃(τ)

0 : μt − τ ≤ μc2, rejecting H(τ)
0 if

its P-value is at most 0.05, rejecting H̃(τ)
0 if its P-value is at most 0.05. If either

P-value is above 0.05, stop. If both P-values are at most 0.05, perform Step 3.

Step 3a: Test both H(τ)
� : (μt − τ)− μc1 ≤ μc1 − μc2 and H(τ)

� : (μt − τ)− μc2 ≤
μc2 − μc1, rejecting H(τ)

� if its P-value is at most 0.05 and rejecting H(τ)
� if its

P-value is at most 0.05. If either P-value is above 0.05, stop. Otherwise, if both

P-values are at most 0.05, reject H(τ)
� .

For τ = 0, Steps 1a and 2a are the same as Steps 1 and 2, so the conclusions about

H0, H0, and H̃0 are the same. In Step 3a, two cases need to be distinguished, namely

max(μc1, μc2) = μc1 and max(μc1, μc2) = μc2. If max(μc1, μc2) = μc1, then H(τ)
�

and H(τ)
� are the same. Conversely, if max(μc1, μc2) = μc2, then H(τ)

� and H(τ)
� are

the same. Therefore, H(τ)
� is false if both H(τ)

� and H(τ)
� are false; so, in Step 3a, H(τ)

�
is rejected if both H(τ)

� and H(τ)
� are rejected.

In Table 5.1 from the study by Bilban and Jakopin [7], the five hypotheses in

Steps 1a–3a are each tested by a contrast in group means. For instance, in Step

1a, H(τ)
0 is the hypothesis that 1× μt −

(
1
2

)× μc1 −
(

1
2

)× μc2 ≤ τ , and in Step 3a,

H(τ)
� is the hypothesis that 1× μt − 2× μc1 + 1× μc2 ≤ τ . As before, for τ = 0,

in Step 1a, the ‘t-statistic’ for H(τ)
0 is 15.9, so H(τ)

0 is rejected at the 0.05 level,

and the procedure continues to Step 2a. Had H(τ)
0 not been rejected, the procedure

would have stopped in Step 1a. In Step 2a, the ‘t-statistics’ for H(τ)
0 and H̃(τ)

0 are,

respectively, 16.1 and 13.8, so H(τ)
0 and H̃(τ)

0 are both rejected at the 0.05 level and

the procedure continues to Step 3a. Had either H(τ)
0 or H̃(τ)

0 not been rejected, the

procedure would have stopped in Step 2a. In Step 3a, the ‘t-statistics’ for H(τ)
� and

H(τ)
� are, respectively 11.4 and 9.8, so both H(τ)

� and H(τ)
� are rejected, and hence

H(τ)
� is rejected. Therefore, we may assert with 95% confidence that the treated

group mean exceeds both of the control group means by more than the control group

means differ from each other. After considering the properties of this procedure,

other values of τ will be evaluated.
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In Steps 1a, 2a, and 3a, the chance of testing and rejecting at least one true hy-

pothesis is at most 0.05. The reasoning here closely parallels what has been done

before, except there are more steps of the same kind. The details of the reason-

ing constitute the remainder of this somewhat long, slightly technical paragraph,

which you may skip if that is your preference. The general argument is given more

concisely in the appendix to this chapter. First, we check that the sequence of hy-

potheses has the needed structure. The sequence of sets of hypotheses〈
H(τ)

0 ,
{

H(τ)
0 , H̃(τ)

0

}
,
{

H(τ)
� , H(τ)

�

}〉
(19.6)

is a sequentially exclusive partition in the sense that: (i) if H(τ)
0 is false, then at

most one hypothesis in
{

H(τ)
0 , H̃(τ)

0

}
is true, and (ii) if H(τ)

0 , H(τ)
0 , H̃(τ)

0 are all false,

then at most one hypothesis in
{

H(τ)
� , H(τ)

�

}
is true. To see this, note first that

part (i) follows from the same reasoning used for H0, H0, and H̃0. For part (ii), if

H(τ)
0 : (μt − τ) ≤ μc1 and H̃(τ)

0 : μt − τ ≤ μc2 are both false, then (μt − τ)− μc1 >
0 and (μt − τ)− μc2 > 0, but either μc1 − μc2 ≤ 0 or μc2 − μc1 ≤ 0, so at most

one of the following two hypotheses is true H(τ)
� : (μt − τ)− μc1 ≤ μc1 − μc2 and

H(τ)
� : (μt − τ)− μc2 ≤ μc2 − μc1. Next, we verify the claim about the probability

of at least one false rejection. There is, of course, a general pattern here, in which

a sequentially exclusive partition of hypotheses, tested in an order such as Steps

1a–3a, will falsely reject a true hypothesis with probability at most 0.05. This is

demonstrated in general in [29] and in the appendix to this chapter, but let us do

one last particular case, namely Steps 1a-3a. If H(τ)
0 is true, then a false rejection

occurs if and only if H(τ)
0 is rejected, which happens with probability at most 0.05.

So suppose H(τ)
0 is false; then either H(τ)

0 or H̃(τ)
0 , or both, are false. If exactly one

of H(τ)
0 or H̃(τ)

0 is true, then at least one false rejection occurs if and only if that one

true hypothesis is rejected, which happens with probability at most 0.05. If both

H(τ)
0 and H̃(τ)

0 are false, then a false rejection cannot occur at Step 2a. So suppose

H(τ)
0 , H(τ)

0 and H̃(τ)
0 are false; then either H(τ)

� or H(τ)
� , or both, are false. If both

are false, a false rejection is not possible. If exactly one of H(τ)
� or H(τ)

� is true,

then a false rejection occurs if and only if that one true hypothesis is rejected, which

happens with probability at most 0.05.

There is no need to select a value of τ . Rather, apply Steps 1a–3a repeatedly,

beginning with τ = −∞, considering larger and larger values of τ , until for the first

time at τ∗ the procedure stops because one of the hypotheses has not been rejected.

Then declare with 95% confidence that

(μt − τ∗)−max(μc1, μc2) > max(μc1, μc2)−min(μc1, μc2) . (19.7)

In Table 5.1, the first acceptance occurs at τ∗ = 6.56 when H(τ)
� is just barely not

rejected in Step 3a with a ‘t-statistic’ of 1.64. In words, with 95% confidence, the
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mean level of micronuclei in the treated group exceeds both control group means by

at least 6.56 more than the two control groups differ from each other.

Another example is discussed in [29]. There, unlike Table 5.1, the two control

groups differ significantly from each other, but with 95% confidence, the difference

between the treated group and both control groups is substantially larger than the

difference between the two control groups.

Summary

In this section, several plans have been considered for the analysis of a study with

a treated group and two control groups. Some of the plans were too primitive for

practical use and were simply illustrations of general principles. Other plans are

suitable for a primary analysis. With two control groups, the ‘elaborate theory’ pre-

dicts that the treated group will differ substantially from the control groups, which

do not differ substantially from each other. The ‘elaborate theory’ predicts a differ-

ence here and equivalence there, and the plan uses both tests for difference and for

equivalence at appropriate steps. The plan tests the most important elements of the

predictions first, without a correction for multiple testing; then, it continues to try to

establish the less important elements of the prediction. The planned analysis may

yield confirmation of some predictions and not others, and may provide quantitative

statements that have some resemblance to confidence intervals.

The current section has considered the simplest of study designs without a sen-

sitivity analysis. Sensitivity analyses with multiple control groups are possible, but

they would take us a little far afield; see [27, §8]. The next section will plan a

sensitivity analysis for coherence between two outcomes.

19.4 Sensitivity Analysis for Two Outcomes and Coherence

In §5.2.3 and §17.2, it was found that coherence among several outcomes has the po-

tential to reduce sensitivity to departures from random treatment assignment. With

two outcomes, what is a suitable plan for analysis?

In Table 5.3, Angrist and Lavy’s study of the effects of class size on test per-

formance was found to be somewhat less sensitive for the coherent combination of

math and verbal test scores than for either score alone. The general results in §17.2

suggested that this is to be expected with two outcomes that are similarly affected

by treatment but imperfectly correlated.

In our initial examination of Table 5.3, there was no plan for analysis. Three tests

were done for two outcomes. Are there problems of multiple testing, of increased

risk of false positives from performing several tests?

Suppose that there are two outcomes, say
(
rTi j,rCi j

)
and

(
r̃Ti j, r̃Ci j

)
, with cor-

responding treated-minus-control matched pair differences Yi and Ỹi, say the math

and verbal test scores in §5.2.3. The null hypothesis of no treatment effect for the
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first outcome says H0 : rTi j = rCi j, for all i, j, and the null hypothesis of no treat-

ment effect for the second outcome is parallel, H̃0 : r̃Ti j = r̃Ci j, for all i, j. Write H0

for the hypothesis that is the conjunction of these two hypotheses, H0 and H̃0, or in

logical notation, H0 ∧ H̃0, which says neither outcome was affected. Consider the

following plan.

Step 1b: Test H0 using the coherent signed rank test. If the P-value is above 0.05,

stop and do not reject H0. If the P-value is at most 0.05, reject H0 and perform

Step 2b.

Step 2b: Test both H0 and H̃0 using Wilcoxon’s signed rank test, rejecting H0 if

its P-value is at most 0.05, rejecting H̃0 if its P-value is at most 0.05.

If the three separate P-values do their separate jobs of falsely rejecting a true hy-

pothesis with probability at most 0.05, then the chance that the three-step procedure

falsely rejects at least one true hypothesis is at most 0.05. The reasoning is parallel

to that in §19.3. If H0 is false, it must be the case that either H0 or H̃0, or both, are

false. That is,
〈

H0,
{

H0, H̃0

}〉
is a sequentially exclusive partition of hypotheses;

if H0 is false, there is at most one true hypothesis in
{

H0, H̃0

}
. If H0 is true, then

at least one true hypothesis is rejected if and only if H0 is rejected in Step 1b, and

this happens with probability at most 0.05. If H0 is false, then either H0 or H̃0 is

false, so at most one true hypothesis is tested in Steps 1b and 2b, and the chance

of falsely rejecting that one true hypothesis is at most 0.05. See [19] for a closely

related procedure.

The sensitivity analysis uses the upper bounds on the P-values in Steps 1b and

2b. The appendix to this chapter and [30] discuss why this procedure works.

In Table 5.3, the two-step procedure rejects H0, H0, and H̃0 for Γ ≤ 1.4. For

Γ = 1.55, it rejects H0 and H̃0, but not H0. For Γ = 1.65, it rejects H0 but not H0 nor

H̃0. In other words, the coherent association using both outcomes is marginally less

sensitive to deviations from random assignment than either outcome alone. In this

instance, the plan consisting of Steps 1b and 2b would have supported our previous

interpretation of Table 5.3, while addressing any concern about testing more than

one hypothesis. The general results in §17.2 provide some guidance about when H0

will be less sensitive to bias than H0 or H̃0.

If instead a Bonferroni adjustment had been made for three tests, none of the

hypotheses would have been rejected at Γ = 1.55. If the coherent test were not

used, and Wilcoxon’s statistic were applied twice, once to H0 and once to H̃0, with

a Bonferroni adjustment, then neither H0 nor H̃0 would be rejected for Γ ≥ 1.45.7

For discussion of sensitivity analysis adjusted by the Bonferroni inequality, see [12]

and [30, §4.5].

7 With two tests at Γ = 1.4, H̃0 is rejected but H0 is not using the Bonferroni adjustment, but both
H̃0 and H0 are rejected using Holm’s [13] procedure.
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Table 19.1 Pain scores for surgical patients and controls in I = 100 matched pairs. The change is
pain at three months minus the average at entry and baseline, and the difference in changes refers
to the treated-minus-control difference in these changes.

Label Group Time Minimum Lower Median Upper Maximum Mean
Quartile Quartile

a Treated Entry 0 2.0 5 6.0 9 4.28
b Treated Baseline 0 3.0 5 6.0 9 4.38
c Treated 3 Months After Surgery 0 1.8 3 5.0 9 3.55

d Control Entry 0 2.0 5 6.0 8 4.31
e Control Baseline 0 2.8 5 6.0 9 4.34
f Control 3 Months Later 0 2.0 3 5.0 8 3.39

Difference in Changes −7 −2.0 0 2.5 8 0.16

19.5 Sensitivity Analysis for Tests of Equivalence

The absence of a treatment effect may be an important finding. See, for instance, the

book Costs, Risks and Benefits of Surgery edited by John Bunker, Benjamin Barnes,

and Frederic Mosteller [8] and the developments that flowed from it [24].

The absence of a treatment effect may be an important finding, but its importance

may be missed if it is described as a ‘null result’ with a P-value testing for differ-

ence above 0.05. Lacking evidence of an effect is not at all the same as possessing

evidence that the effect is not large, yet a P-value above 0.05 in a test for difference

is consistent with both of these situations. It is not possible to demonstrate a total

absence of effect, but it is possible to demonstrate that the effect is not large using

an equivalence test in a large randomized trial. In an observational study, there are

added uncertainties because treatments were not randomly assigned. Nonetheless,

in an observational study, one may find that the evidence that the effect is not large

is insensitive to small or moderate biases from nonrandom treatment assignment.

To illustrate sensitivity analysis for an equivalence test, consider again the ex-

ample in §12.2 and Table 12.1 concerning the effects of a surgical intervention,

cystoscopy and hydrodistention, on symptoms of interstitial cystitis (IC), a chronic

urologic disorder characterized by bladder pain and irritative voiding [21, 25]. In

Table 12.1, the surgical treatment was estimated to have no effect on the nine-point

pain score. How sensitive is this ostensible absence of effect to unmeasured biases

from nonrandom treatment assignment?

Recall that pairs were formed using risk-set matching, matching at entry into

the database and at baseline just prior to surgery for the surgical patients. Table

19.1 presents the pain scores in detail.8 The surgically treated and control patients

look similar in terms of pain at entry and prior to surgery for the surgical patient,

and both groups look slightly and equally improved three months later. For the

I = 100 pairs of two patients in Table 19.1, there are 400 ‘pretreatment’ pain scores,

merging ‘entry’ and ‘baseline’ scores; these have a mean of 4.3, a median of 5, a

standard deviation of 2.2, and a median absolute deviation from the median of 2. Is

8 In [21], there is a sensitivity analysis for equivalence using all three outcomes at once in a coher-
ent test. Here, only pain is considered.
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Table 19.2 Sensitivity analysis for an equivalence test for the effect of surgery on pain scores in
the IC data. The table gives upper bounds on P-values. For an effect of 2 or more in either direction
to be plausible, the magnitude of bias would need to exceed Γ = 2.4, and that magnitude of bias
would only be able to mask an increase of 2 units in pain, not a decrease of 2 units in pain, caused
by surgery. To mask a decrease of 2 units in pain caused by surgery, the bias would need to exceed
Γ = 3.

Γ ←−H (2)
0

−→H (2)
0 H(2)

�=
1 4.9×10−9 1.8×10−7 1.8×10−7

2 0.0012 0.0098 0.0098
2.4 0.0081 0.048 0.048
2.7 0.022 0.11 0.11
3 0.049 0.19 0.19

it plausible that the effect of surgery is 2 units or more, but this is hidden from view

in Table 12.1 because of bias in the assignment of patients to surgery or control?

The equivalence test applies Wilcoxon’s signed rank statistic to test hypotheses

about an additive treatment effect, rTi j −rCi j = τ , with the null hypotheses asserting

an effect that is not small, H(ς)
�= : |τ| ≥ ς , where ς > 0 is set at 2 in this example;

then, rejecting H(ς)
�= provides a basis for asserting with confidence that |τ| < ς . The

hypothesis of inequivalence, H(ς)
�= , is the union of two exclusive hypotheses,

←−H (ς)
0 :

τ ≤−ς or
−→H (ς)

0 : τ ≥ ς . As a consequence, as in §19.3 and [2, 5, 6, 16, 29, 31, 37],
←−H (ς)

0 and
−→H (ς)

0 are each tested without a correction for multiple testing, and H(ς)
�= is

rejected if both
←−H (ς)

0 and
−→H (ς)

0 are rejected. The sensitivity analysis for H(ς)
�= is

then assembled from two standard sensitivity analyses, one for
←−H (ς)

0 : τ ≤ −ς , the

other for
−→H (ς)

0 : τ ≥ ς ; see [30] for a proof.

Table 19.2 is the sensitivity analysis for the equivalence test with ς = 2. How

much bias would need to be present for a moderately large treatment effect to appear

as if it were no effect? More precisely: How much bias, Γ , would need to be present

to produce the ostensible absence of effect in Table 12.1 if the treatment effect were

2 or more, |τ| ≥ ς = 2? Table 19.2 gives upper bounds on P-values for the given

values of Γ .9 To mask an effect that is at least |τ| ≥ 2 units on the pain scale, the

9 The upper bound on the P-value for
←−H (ς)

0 : τ ≤−2 is obtained by calculating Wilcoxon’s signed

rank statistic T from Yi +2 to test
−→H (ς)

0 : τ = −2 against τ > −2 as in §3.5, rejecting if T is large.

The upper bound on the P-value for
−→H (2)

0 : τ ≥ 2 is obtained by calculating Wilcoxon’s signed rank

statistic T from Yi − 2 to test
−→H (ς)

0 : τ = 2 against τ < 2 as in §3.5, rejecting if T is small. The

P-value for testing H(2)
�= : |τ| ≥ 2 is the maximum of these two upper bounds; see [30] for a proof.

The proof shows that the upper bound on the P-value for testing H(2)
�= : |τ| ≥ 2 is exactly equal to

the maximum of the two separate P-values. As in Note 6 of this chapter, because
←−H (ς)

0 and
−→H (ς)

0

are exclusive, we can test both hypotheses at level α and yet take only an α risk of at least one

false rejection. In consequence, we may reject either
←−H (ς)

0 or
−→H (ς)

0 even when we cannot reject
both; see [29] and the appendix to this chapter.
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bias would need to be Γ > 2.4, and to mask a reduction in pain of at least τ ≤−2,

the bias would need to be Γ > 3. If the surgical procedure actually reduces pain by

2 units or more, the bias masking this effect would have to be fairly large.

19.6 Sensitivity Analysis for Equivalence and Difference

A planned analysis may seek to demonstrate a predicted positive difference for one

outcome and predicted near equivalence for another, that is, an alternative hypoth-

esis of superiority for one outcome and near equivalence for another [2, 34]. The

demonstration would occur if a hypothesis of equality or inequivalence is rejected.10

A prediction of this sort arose in §12.3. In the study [30, 33] in §12.3 and §18.2

of early or late discharge of premature babies from the neonatal intensive care unit

(NICU), there were 701 pairs of an early baby and a late baby who were similar on

the day the early baby was discharged, although the late baby stayed in the hospital

a few more days. Were the extra days in the NICU of benefit to the late babies?

The six months after the discharge of the early baby were divided into two in-

tervals. During the first interval, the early baby was discharged home and the late

baby was in the NICU. During the second interval, both babies had been discharged

home. In [30, 33], health services provided to healthy babies (e.g., check-ups) were

set aside, and two outcomes in [30, 33] converted emergency and sick-baby health

services into a dollar amount, one for the first interval, the other for the second

interval. Because services were converted by schedule into costs, two babies who

received the same services were coded as having the same costs; there is no variation

in costs for the same service.

Let us devote a moment’s thought to what patterns of outcomes might be seen

and what they might mean. During the first interval, the late baby is in the NICU

receiving hospital (or sick-baby) services, but the baby may be doing fine, growing

older, chubbier, more mature, better able to face the world. During the first inter-

val, the early baby is discharged home, so any emergency or sick-baby services are

a sign that something has gone wrong, and if the dollar amount is very high, then

something has gone very wrong, say a readmission through the emergency room.

During the second interval, both babies are home, so sick-baby costs mean some-

thing has gone wrong. It is, therefore, important to distinguish the first and second

intervals: for the late baby in the first interval, cost could be money and nothing

more; elsewhere, cost is a sign that something has gone wrong. If substantial costs

were at all common for the early babies in the first interval, this would suggest that

10 This is a form of Roger Berger’s [5] intersection-union test, in that one tests the disjunction of
two hypotheses, H1 ∨H2, in an effort to demonstrate a conjunction, (∼ H1)∧ (∼ H2). Here, H1 is
equality or inferiority for one outcome and H2 is inequivalence for another outcome, so superiority
and equivalence is (∼ H1)∧ (∼ H2). In an intersection-union test, H1 ∨H2 is rejected at level α
if H1 and H2 are rejected at level α; see [5, 20]. Intersection-union tests may be done in order,
possibly rejecting H1 when H2 is not rejected, and a sensitivity analysis may be constructed from
sensitivity analyses for the separate tests of H1 and H2; see the appendix to this chapter.
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the early discharges were premature. If early babies had higher second-period costs,

this too might suggest the early discharges were premature. If the later baby had

consistently higher first period costs and second-period costs were nearly equiva-

lent, then the cost of retaining the late baby might plausibly have been better spent

in some other way, such as enhanced outpatient services for the babies. The analysis

uses late-baby-minus-early-baby differences in costs for the first and second period.

The study concerned babies discharged alive. There were five deaths in the six

months after discharge among these 1402 babies, or a rate of 3.6 per thousand babies

per six months. In the United States as a whole in 2004, the first year mortality rate

was 6.8 per thousand. These numbers are not comparable in several respects; one

refers to six months, the other to a year; one refers to premature babies, the other to

all babies; one refers to postdischarge mortality, the other includes deaths prior to

discharge. For purposes of analysis, deaths were coded as infinite costs, that is, as

the worst outcome [28]. There were three deaths (0.4%) among the early babies and

two (0.3%) among the late babies. See [30, §2.1] for detailed discussion.

The Hodges-Lehmann point estimates (§2.4.3) of the typical difference in costs,

late-baby minus early-baby, were $4,940 in the first period and $17 in the sec-

ond period, with 95% confidence intervals for an additive effect under the naı̈ve

model for treatment assignment (§12.5) of [$4,485, $5,103] in the first period and

[−$20, $56] in the second period. Similar results were found using Stephenson’s

test (§2.5, §16.1) which emphasizes consistent results in the extreme tails; see [30,

Table 2]. All but 8/701 (1.1%) of early babies had less than $300 of costs in the

first period, and those 8 had costs in the range $1,422 to $9,574. About 6% of late

babies had first period costs above $9,556, but again the meaning of first period cost

is different for early and late babies. The second period costs were typically low in

both groups, with some extremely high costs, and no sign that late babies had lower

second period costs; see [30, Table 1 and Figure 1].

Is the pattern of difference in the first period and equivalence in the second sen-

sitive to unmeasured bias? The hypothesis is formulated in terms of additive effects

τ1 in period 1 and τ2 in period 2. Inequivalence was defined as |τ2| ≥ $500, largely

based on the thought that if you can be cured for less than $500 in the United States,

then you can’t be very sick. Recall that the Hodges-Lehmann estimate of the typi-

cal cost of a delayed discharge is about $5000, and $500 is 1/10 of that. The plan

is to test for a difference in the first period, and if one is found, to test for equiva-

lence in the second. Formally, the testing plan uses Wilcoxon’s signed rank statistic

to test H0 : τ1 ≤ 0, and if this hypothesis is rejected, the statistic is used to test

H0 : |τ2| ≥ $500. For each test separately, there is a sensitivity analysis, as in §3.5

and §19.5, and the upper bound on the P-value for testing τ1 ≤ 0 or |τ2| ≥ $500

— that is, for testing H0 : τ1 ≤ 0∨ |τ2| ≥ $500 — is the maximum of the upper

bounds of the P-values for testing H0 : τ1 ≤ 0 and H0 : |τ2| ≥ $500 separately, and,

as in §19.5, the hypothesis H0 : |τ2| ≥ $500 unpacks as either H0 : τ2 ≤ −$500 or

H0 : τ2 ≥ $500.11

11 This is true because the sequence of hypotheses 〈H1,{H2,H2}〉 is a sequentially exclusive parti-
tion with H1 asserting τ1 ≤ 0, H2 asserting τ2 ≤−500, and H3 asserting τ2 ≥ 500 because {H2,H2}
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Table 19.3 Sensitivity analysis for difference in first period costs (τ1) and equivalence of second
period costs (τ2).

Γ H0 : τ1 ≤ 0 H0 : τ2 ≤−$500 H0 : τ2 ≥ $500 H0 : τ1 ≤ 0∨|τ2| ≥ $500

1 0.00001 0.00001 0.00001 0.00001
2 0.00001 0.00001 0.0020 0.0020

2.25 0.00001 0.00001 0.049 0.049
2.5 0.00001 0.00042 0.28 0.28
3 0.00001 0.056 0.90 0.90

Table 19.3 is the sensitivity analysis [30, Table 3]. Because H0 : τ1 ≤ 0 is rejected

at the 0.05 level for each Γ in Table 19.3, the test plan continues and tests both

H0 : τ2 ≤−$500 and H0 : τ2 ≥ $500. For Γ ≤ 2.25, all three hypotheses are rejected

at the 0.05 level, so H0 : τ1 ≤ 0∨ |τ2| ≥ $500 is rejected; that is, late discharge

raised first period costs, but did not much affect second period costs. At Γ = 2.5,

it is plausible that late discharge increased second period costs by $500, but not

plausible it reduced them by $500. At Γ = 3, either an increase or a decrease of

$500 is plausible. It appears that late discharge raised first period costs, without a

compensating reduction in second period costs, and a small bias from nonrandom

treatment assignment could not have created this appearance.

19.7 Summary

To disambiguate an association between treatment and response, Fisher advised

“make your theories elaborate;” see §19.2 and [9, 26]. How should one plan the

analysis of an observational study to evaluate the predictions of an elaborate the-

ory? The plan should enlarge what can be said, not diminish it, yet control the

frequency of false inferences. This is done by giving priority in the analysis to the

evaluation of certain predictions, placing other predictions in a secondary role. The

plan should distinguish predictions of a difference from predictions of near equiv-

alence. This is implemented with appropriate use of equivalence tests and similar

methods. The plan should permit a sensitivity analysis, because in an observational

study it is never possible to be certain that adjustments for observed covariates have

eliminated bias from covariates that were not measured.

19.8 Further Reading

Fisher’s striking phrase “make your theories elaborate” has often been noted [9, 10,

11, 26].

is exclusive. In fact, the three hypotheses may be tested in order, so H1 may be rejected when H2

and H3 are not. See the appendix to the chapter for specifics.
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There is a large literature about planning the analysis of clinical trials, and it

provides some useful guidance for observational studies, where some of the issues

are the same and others are quite different. In particular, the confirmation, or par-

tial confirmation, of an elaborate theory plays no role in a randomized experiment,

where treatment assignment is known to be randomized.

The paper by Gary Koch and Stuart Gansky [17] is a gentle introduction to the

clinical trials literature, whereas the review paper by Roger Berger and Jason Hsu

[6] is a somewhat more technical discussion emphasizing tests of equivalence; see

also the fine papers by Peter Bauer and colleagues [1, 2, 3]. The clinical trials litera-

ture quickly becomes technical and terse, so the serious reader will want to become

acquainted with some of the early papers that shaped what came later, particularly

the papers on ‘closed testing’ by Ruth Marcus, Eric Peritz, and K.R. Gabriel [22],

the intersection-union principle of Roger Berger [5], the device introduced by Jul-

liet Popper Shaffer [32], and the false discovery rate of Yoav Benjamini and Yosef

Hochberg [4]. Erich Lehmann’s early paper [20] illuminates several issues and

is of continuing interest. Two potentially important ideas that have received less

attention are found in papers by Jason Hsu and Roger Berger [15] and Gerhard

Hommel and Siegfried Kropf [14, §3]. Specifically, in [15], a multiple test proce-

dure concludes with a confidence statement about a parameter, while in [14, §3] an

ordered testing procedure continues past a few acceptances with the aid of a mild

application of the Bonferroni inequality.

Less has been written about planning the analysis of an observational study. Is-

sues in the current chapter are discussed in greater detail in [29, 30].

19.9 Appendix: Testing Hypotheses in Order

This chapter has considered several plans for testing one of Fisher’s ‘elaborate the-

ories’ in a sequence of steps. These steps permit partial or total confirmation of the

‘elaborate theory.’ The investigator may select the first step in this sequence on the

basis of importance, priority, conjecture, or whim. The first step in the sequence is

an ordinary test done at level α as it might have been done without a plan for analy-

sis, so in this rather specific sense, the subsequent steps cost the investigator nothing

because the conclusion of the first step is the same. In brief, ambition in testing an

‘elaborate theory’ is not penalized; at worst, the result is the partial confirmation

that would have been obtained anyway in the single first test.

In addition, these plans permitted a sensitivity analysis to be performed using the

upper bounds on the P-values for the component tests; one applies the steps to the

upper bounds. In other words, if you know how to do a sensitivity analysis for each

step, then you know how to do a sensitivity analysis for the entire plan.

This appendix states and proves a result from [29], which then permits the state-

ment of another result from [30]. The first result concerns conventional testing of

a plan, while the second result concerns sensitivity analysis of the testing of a plan.

Although the first result is tailored for use with an elaborate theory in an observa-
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tional study, it has many analogues and precedents from the literature on multiple

testing [2, 14, 15, 17, 22, 32], equivalence testing [2, 6, 16, 31, 37], and multiparam-

eter testing [5, 18, 20] in experiments. The second result takes more space to prove

[30], so the proof is not reproduced here, but some discussion of it here is needed.

What is a sequentially exclusive partition of a sequence of hypotheses?

We have a collection of hypotheses, Ht for t ∈ T , where T is a set of indices (or

names) for the hypotheses. The set T is totally ordered (like a dictionary or tele-

phone directory), and we write t ≺ t ′ if t is before t ′ in T . To say that T is totally

ordered is to say that it is always clear who is before whom: that is, if t ∈ T and

t ′ ∈ T with t �= t ′ then either t ≺ t ′ or t ′ ≺ t (and never both t ≺ t ′ and t ′ ≺ t). The

order ≺ will partially determine which hypotheses are tested first, although other

considerations will enter as well. Using numerical inequality, <, in place of ≺, five

possible sets T are: T = {1,2, . . . ,k}, T = {1,2, . . .}, T = {. . . , −1, 0, 1, 2, . . .},

T = [0, ∞), and the positive rational numbers T ={a/b : a,b ∈ {1,2, . . .}}. Other

important totally ordered sets use the lexical order on a product of sets, as in the dic-

tionary or telephone directory, where names are organized by first letter, then within

first letter by second letter, and so on. The lexical order on T = {1,2, . . . ,k}×[0, ∞)
says that infinitely many hypotheses (1,a) ∈ T with a ∈ [0, ∞) come before (2,0).
The lexical order on T = [0, ∞)×{1,2, . . . ,k} is very different: the k hypotheses

(0,a) ∈ T come before all the rest. In §19.3, there were several orders that com-

bined discrete and continuous aspects, testing one or two hypotheses, then building

an interval estimate, or testing several hypotheses for infinitely many values of a

parameter.

One assumption is made about the hypotheses, Ht for t ∈ T , namely the ‘struc-

ture assumption.’ In practical terms, it is an innocuous assumption, but interestingly

it seems to be needed nonetheless. A person disinclined to attend to innocuous as-

sumptions might skip this paragraph. (While walking down a city street, a person

disinclined to attend to innocuous assumptions might fall through a manhole whose

cover is missing.) The structure assumption says: either all hypotheses Ht for t ∈T
are false or else there is a first true hypothesis. Stated precisely, either Ht is false for

all t ∈T or else there exists a t ′ ∈T such that Ht ′ is true and Ht is false for all t ≺ t ′.
It takes a moment’s thought to realize that the structure assumption is indeed an as-

sumption: it might be false. For instance, let T ={a/b : a,b ∈ {1,2, . . .}} be the

positive rational numbers ordered by inequality, <. Let Ht be the ‘hypothesis’ that

the circumference of a circle is less than or equal to t times its diameter. Then Ht is

false for t < π and is true for t > π , but there is not a first rational number t > π , so

the structure assumption is false in this case. In this case, the structure assumption

would be true if the positive rational numbers, T ={a/b : a,b ∈ {1,2, . . .}}, were

replaced by the positive real numbers, T =(0,∞). The structure assumption seems

to be a reminder that statistical inference needs the real numbers, and should avoid

topological games involving things like the rational numbers; however, as far as I

can see, the structure assumption is innocuous in practice because it is not an as-
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sumption about the world itself. Without further mention, the structure assumption

is assumed to be true.

We are headed for a definition of a sequentially exclusive partition of hypotheses,

a term that has been used informally at several points in this chapter. First we need

to define an interval in T and then a partition of T into disjoint intervals.

It is natural to speak of an interval in T . A nonempty subset I ⊆ T is an

interval if, for any t, t ′, t ′′ ∈ T with t ≺ t ′ ≺ t ′′, it follows that t, t ′′ ∈ I implies

t ′ ∈I . For example, in T = {1,2, . . . ,20}, the sets I = {2} and I = {17,18,19}
are intervals, but {2,4,6} is not an interval. In T = {1,2, . . . ,k}× [0, ∞) with the

lexical order, the set {2}× [7, ∞)
⋃{3}× [0, 1] is an interval.

Disjoint intervals are ordered by their contents. If I1 ⊆ T and I2 ⊆ T are

disjoint intervals, so I1 ∩I2 = /0, then write I1 ≺ I2 if t ≺ t ′ for all t ∈ I1 and

t ′ ∈ I2. For instance, in T = {1,2, . . . ,20}, we have {2,3} ≺ {6,7,8}. Write

t ≺ I if {t} ≺ I and I ≺ t if I ≺ {t}. For instance, in T = {1,2, . . . ,20}, we

have 2 ≺ {6,7,8}.

A partition of T into disjoint intervals is a representation of T as the union of

disjoint intervals Iλ , indexed by a set Λ , that is, T =
⋃

λ∈Λ Iλ with Iλ ∩Iλ ′ = /0

for λ ,λ ′ ∈ Λ with λ �= λ ′. In T = {1,2, . . . ,20}, with Λ = {a,b,c}, one partition

of T into disjoint intervals is T =
⋃

λ∈Λ Iλ where Ia = {1,2, . . . ,9}, Ib = {10},

Ic = {11,12, . . . ,20}. Because the intervals, Iλ , λ ∈ Λ , are disjoint, they are

ordered; so write λ ≺ λ ′ if Iλ ≺ Iλ ′ , and for t ∈ T , write t ≺ λ if t ≺ Iλ or

λ ≺ t if Iλ ≺ t. For instance, in the partition of T = {1,2, . . . ,20} just mentioned,

Ia ≺ Ic and 7 ≺ Ic.

A set S ⊆ T of hypotheses is exclusive if at most one of the hypotheses Ht ,

t ∈ S , is true. For instance, if θ is a real parameter, then the set of hypotheses

{Ht : t ∈ (−∞,∞)} would be exclusive if Ht were Ht : θ = t, but the same set would

not be exclusive if the Ht were Ht : θ ≤ t; in the first case, distinct hypotheses

contradict each other but in the second case they do not. The words ‘at most one’

are important: the set of hypotheses {Ht : t ∈ (12, 17)} with Ht : θ = t is exclusive

even if there is no reason to think θ is between 12 and 17.

Now, we can define a sequentially exclusive partition of hypotheses. A partition

of T into disjoint intervals, T =
⋃

λ∈Λ Iλ , is a sequentially exclusive partition

if each interval Iλ , λ ∈ Λ , would be exclusive if all hypotheses in earlier inter-

vals were false; that is, at most one hypothesis Ht , t ∈ Iλ , is true whenever all

hypotheses, Ht ′ , t ′ ≺ Iλ , are false. For instance, with T = {1,2,3}, the partition

T = {1}∪{2,3} is a sequentially exclusive partition if at most one of H2 and H3 is

true whenever H1 is false; see §19.3 for several examples. Notice that {2,3} need

not be exclusive if H1 is true.

A sequentially exclusive partition always exists, namely the partition T =⋃
t∈T {t}. This is so because a set containing a single hypothesis is always ex-

clusive; it contains at most one true hypothesis.
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Testing hypotheses in order

In the following testing plan, T =
⋃

λ∈Λ Iλ is a sequentially exclusive parti-

tion, and for each hypothesis, Ht , t ∈ T , there is a valid P-value, pt , such that

Pr(pt ≤ α) ≤ α for all α ∈ [0,1] if Ht is true. Fix an α , conventionally α = 0.05.

Testing plan. If ps ≤ α for all s ∈ Iλ for all λ ≺ ω , then reject all hypotheses

Ht , t ∈ Iω , with pt ≤ α .

This testing plan is, in fact, the general form of the plan used throughout this

chapter. For the partition T =
⋃

t∈T {t}, the testing plan says to reject all hy-

potheses prior to the first acceptance and stop. In general, with T =
⋃

λ∈Λ Iλ ,

the procedure stops with the first interval Iω that contains at least one hypothesis

t ′ ∈ Iω with pt ′ > α; however, all hypotheses t ∈ Iω are tested, and all of those

with pt ≤ α are rejected. Particular cases of Proposition 19.1 have been discussed

throughout this chapter.

Proposition 19.1. [29] If the testing plan is applied to a sequentially exclusive par-
tition of hypotheses, Ht , t ∈ T =

⋃
λ∈Λ Iλ , where Pr(pt ≤ α) ≤ α if Ht is true,

then the probability that the plan tests and rejects at least one true hypothesis is at
most α .

Proof. Let W be the event that the testing plan tests and rejects at least one true

hypothesis. If all hypotheses, Ht , t ∈ T , are false, then there is nothing to prove;

in particular, Pr(W ) = 0. Otherwise, let Hv be the first true hypothesis, let Rv be

the event that the testing plan tests and rejects Hv, and let Iω be the unique interval

that contains v. Then Ht is false for all t ≺Iω . This implies that Hv is the only true

hypothesis in Iω , because T =
⋃

λ∈Λ Iλ is sequentially exclusive. It follows that

the plan tests and rejects at least one true hypothesis if and only if it tests and rejects

Hv, so W = Rv, and Pr(W ) = Pr(Rv) ≤ α .

Sensitivity analysis for testing in order

In §3.5, a sensitivity analysis was performed in which an upper bound, say Pt,max,

was found for the one-sided P-value when testing a single hypothesis, say Ht ; see

Table 3.2. This upper bound, Pt,max, was the largest P-value that could be produced

for a given magnitude Γ of deviation from random treatment assignment in (3.13).

That bound was sharp, in the sense that there was some set of treatment assignment

probabilities πi j satisfying (3.16)–(3.18) for which the bound Pt,max was the correct

P-value.

Suppose that we have a sequence of such bounds, Pt,max, for a sequence of hy-

potheses, Ht , t ∈ T , where T =
⋃

λ∈Λ Iλ is a sequentially exclusive partition of

hypotheses. Suppose that the testing plan were applied using the bounds in place of

the unknown, actual P-values. What would happen? In fact, this was done several

times in this chapter.
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It is possible to show the following [30, Proposition 1]. First, if (3.13) is true for

a given value of Γ ≥ 1, the chance that the testing plan tests and rejects at least one

true hypothesis is at most α . Second, this bound is sharp: there are treatment as-

signment probabilities πi j satisfying (3.16)–(3.18) for which the testing plan would

terminate with acceptance of the same hypothesis, Hv, in the proof of Proposition

19.1. In other words, if the testing plan were used once for every set of treatment

assignment probabilities πi j satisfying (3.16)–(3.18), then a hypothesis Ht would be

rejected in all of these analyses if and only if it is rejected in the one analysis that

uses the individual bounds in place of the actual P-values.

The sharpness of the bound is actually somewhat surprising. The reason it is

surprising is that the treatment assignment probabilities πi j that produce Pt,max are

not generally the same as the πi j’s that produce Pt ′,max for t �= t ′, so there may be no

treatment assignment probabilities satisfying (3.16)–(3.18) that produce both Pt,max

and Pt ′,max. You can have Pt,max or you can have Pt ′,max, but there is no assurance

that you can have both Pt,max and Pt ′,max, even though the proposal is to plug them

both into the testing plan as if they could coexist. If the Bonferroni inequality is

used with Pt,max and Pt ′,max, then the result is conservative, not sharp [30, §4.5]: it

can happen that min
(
Pt,max, Pt ′,max

)
> α/2, while the minimum of the two P-values

for testing Ht and Ht ′ is less than α/2 for all treatment assignment probabilities πi j
satisfying (3.16)–(3.18). Speaking informally, the bound is sharp for the testing plan

because the plan stops with a single P-value; see [30, Proposition 1] for a precise

statement.

The results in [29, 30] are general; they are not restricted to matched pairs.
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Summary: Key Elements of Design

In an observational study, competing theories should make conflicting predic-
tions. Many studies dissipate before they begin from a simple lack of focus. The

study is intended to settle something, or at least take a step towards settling some-

thing, and for that, there needs to be something definite to settle and some prospect

of and means for settling it; see Chapter 4. Some pairs of theories rarely yield con-

flicting predictions, so one may search for unusual opportunities to contrast them;

see §5.1.

An observational study should be structured to resemble a simple experiment.
A typical structure is the comparison of a treated and a control group that looked

comparable prior to treatment in terms of observed covariates. An experiment is an

unusual situation. In a carefully controlled experiment, one of the rarest of things

happens: the effects caused by treatments are seen with clarity. Each step away from

the experimental template is a step closer to the edge of an abyss; see §1.2 and §12.1.

Adjustments for observed covariates should be simple, transparent, and con-
vincing. The major source of uncertainty about the conclusions of an observational

study comes from the possible failure to control for covariates that were not mea-

sured. This possibility is raised in virtually every observational study. If you think

this possibility will not be raised in evaluating your study, then you are kidding

yourself. There is little hope of addressing this major source of uncertainty if the

study becomes bogged down in unnecessarily complex, obscure, or unconvincing

adjustments for observed covariates. One simple, transparent, and convincing way

to adjust for observed covariates is to compare a treated and a control group with

similar distributions of the observed covariates. Such a control group may often be

constructed with the aid of multivariate matching; see Part II.

The most plausible alternatives to a treatment effect should be anticipated and
addressed. In an observational study, it is not possible to address every conceiv-

able alternative to a treatment effect. It is often possible to anticipate several plau-

sible objections to a claim that a comparison of matched treated and control groups

estimates the effects of the treatment. Such an objection claims that the comparison
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is ambiguous, that it could estimate a treatment effect or it could be distorted by

some specific form of bias. With a specific form of bias in mind, design elements

can often be added, such as two control groups or unaffected outcomes, that resolve

specific ambiguities; see §5.2.

The analysis should address possible biases from unmeasured covariates. Typ-

ically, the analysis should include a sensitivity analysis of one form or another; see

Chapter 3. A sensitivity analysis asks: how much bias from unmeasured covariates –

what magnitude of deviation from random assignment – would need to be present to

qualitatively alter the conclusions suggested by the naı̈ve, straightforward compari-

son of matched treated and control groups? The degree of sensitivity to unmeasured

bias is a fact of the matter, something that is determined without ambiguity from the

data at hand. Whether or not biases of this magnitude are present remains a matter

of reasoned conjecture and responsible debate, but that debate is now informed and

constrained by the facts of the matter. A P-value does not rule out the possibility that

bad luck produced the observed results; rather, it objectively measures how much

bad luck would be required to produce the observed results. A sensitivity analysis

does not rule out the possibility that unmeasured bias produced the observed re-

sults; rather, it objectively measures how much unmeasured bias would be required

to produce the observed results.

To the extent possible, observational studies should be designed to be insensitive
to biases from unmeasured covariates. To do this, one must know what makes

some designs (or data generating processes) sensitive to unmeasured biases and

others insensitive. With this knowledge, when faced with a choice, an insensitive

design may be chosen. Many factors strongly affect design sensitivity; see Part III.

There should be a plan for a primary analysis. A randomized controlled trial

invariably has a protocol detailing a plan for a primary analysis. An observational

study also needs such a plan. With design elements intended to resolve otherwise

ambiguous comparisons, the study design anticipates one of a few patterns of re-

sults, what R.A. Fisher called an ‘elaborate theory’; see §19.2. The typical elaborate

theory predicts a difference here, near equivalence there, the absence of a trend here,

a discontinuity there. For instance, an elaborate theory might predict much higher re-

sponses in the treated group than in two control groups, with the two control groups

differing negligibly from each other. A planned primary analysis will attempt to ex-

amine, possibly confirm, the predictions of an elaborate theory; see Chapter 19. The

predictions of an elaborate theory are predictions only if they precede examination

of the outcomes; there is no value in an elaborate theory constructed after the fact to

accommodate a particular set of data. Therefore, the analysis of an elaborate theory

must be a planned analysis. Planning may be aided by sample splitting; see §18.1.

A plan for a primary analysis does not preclude unplanned exploratory analyses;

rather, it distinguishes planned and unplanned analyses.



Solutions to Common Problems

The matching problem is too large. If a matching problem is too large, divide it

into several smaller problems by exact matching for one or more important covari-

ates; see §9.3.

Treated and control groups are too far apart to match. Before trying to solve

this problem, make sure the problem is real. Compare boxplots of the propensity

scores for treated and control groups. If the boxplots cover much the same range,

but some covariates or the propensity score are poorly balanced, consider: (i) tight-

ening the caliper on the propensity score so that, for example, the penalty engages

at 10% of the standard deviation rather than 20% (see §8.4), (ii) use penalties to im-

prove balance on one or two stubborn covariates (see §9.2), or (iii) try full matching

(see §8.6). Otherwise, if the boxplots exhibit large regions with little or no overlap,

consider redefining the study population using a few key covariates (see §3.6). For

an example of redefining the study population, see [2].

Treated and control groups overlap, but at some values of x there are too few
controls even for 1-to-1 matching. Try full matching; see §8.6.

People are treated at different times. How do I match? Consider risk-set match-

ing; see Chapter 12.

I want to match for a variable with many categories, but there are not enough
people in the categories to permit a close match. Try matching with fine balance;

see Chapter 10.

I have two control groups. How do I match? There are several options. One ap-

proach is to form matched triples by matching one treated group twice, once to one

control group, then to the other. Another approach forms matched pairs in an ‘in-

complete block’ design. See Chapter 11. A different problem is to split one control

group to form two for a specific purpose; see the discussion of tapered matching in

§18.2.

My propensity score model does a poor job of predicting treatment assignment.
Not a problem. In a large, completely randomized experiment, a propensity score

355
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model would have great difficulty predicting treatment assignments from covariates

precisely because treatment assignment is random and does not depend upon the

covariates. The propensity score is intended to fix a specific problem, namely im-

balances in observed covariates. If your study does not have that problem, then that

is just fine.

How do I judge whether my model for the propensity score is a good model?
The propensity score has various uses, and the answer to this question depends upon

how the propensity score will be used. In this book, propensity scores are used for

matching. When used for matching, propensity scores are a means to an end, namely

matched pairs or sets that balance observed covariates. When you have matched

pairs or sets that balance observed covariates, the matching for observed covariates

is done, and attention shifts to potential bias from unmeasured covariates. In light

of this, judging the propensity score model when used in matching is essentially the

same task as judging whether the matching has balanced observed covariates; see

§9.1.

How do I select covariates to use in the propensity score? This question inverts

the means and the end. The proper question is: Which covariates do you wish to

balance by matching on the propensity score?

There is a covariate that strongly predicts treatment assignment Z but seems
unlikely to matter much for the response R. What should I do? Read about

‘seemingly innocuous confounding,’ analytical adjustments, and tapered matching

in §18.2.

There is a variable that is subsequent to treatment assignment and may have
been affected by the treatment, so it is not a covariate, but I feel I should adjust
for it anyway. Although this is sometimes reasonable, think long and hard before

you do this. If you adjust for a concomitant variable that has been affected by the

treatment, you may introduce a bias that would not otherwise have been present; see

[5]. If in doubt, it may be best to leave such a variable unmatched, so that analyses

with and without analytical adjustments for it are possible; see §18.2. One alterna-

tive is to both match and not match for such a variable; see the discussion of tapered

matching in §18.2.

I have matched with a variable ratio of controls to treated subjects, and now
I want a boxplot. It is not difficult to do, but at the time I write this, current soft-

ware does not do it, so a few steps are needed. Essentially, you need to compute a

weighted empirical distribution function, compute the quantiles from it, and make a

boxplot using those quantiles. The R function ‘bxp’ will help: it will draw boxplots

from quantiles you give it. See Note 3 in Chapter 8. The resulting boxplots look like

ordinary boxplots, but they are weighted to reflect the variable numbers of controls.

Examples are found in [2].

Should I match with a fixed or a variable ratio of controls to treated subjects?
The choice is discussed in §8.5. The previous solution, about the boxplot, illustrates

the biggest disadvantage of matching with variable controls; simple, straightforward
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tasks require special programming effort. Opposed to this, theory strongly suggests

that matching with variable controls is an efficient way to produce closer matches;

see [4].

People say that a specific unobserved covariate u is strongly related to the out-
come, rC, but I doubt it. To show that a specific unobserved covariate u is not

strongly related to the outcome rC, find two control groups that differ markedly in

terms of the unobserved u, and show that outcomes do not greatly differ in these two

control groups. See §5.2.2 and §19.3.

People say that a specific unobserved covariate u is strongly related to treat-
ment assignment Z, but I doubt it. To show that a specific unobserved covariate

u is not strongly related to treatment assignment, Z, find an outcome known to be

unaffected by the treatment that is highly correlated with u, and show that this un-

affected outcome has a similar distribution in treated (Z = 1) and control (Z = 0)

groups. See §5.2.4.

I would like to perform a sensitivity analysis, but I do not have matched pairs.
It’s not difficult. See [6, Chapter 4]. A quick and easy approach for matching with

multiple controls uses the stratified Wilcoxon rank sum statistic and Table 1 in [1].

For matched sets with one to four controls (ni equal to two to five in that table),

and for Γ equal to one to four, the Table gives the calculations needed for one

matched set; these contributions are summed to produce the sensitivity analysis.

For any rank statistic, say the aligned rank statistic, the general calculations in [1,

§3] are easy to perform in R or with a spreadsheet. An alternative approach with

multiple controls uses an m-test [7]. Also, [7, §5] discusses sensitivity analysis with

covariance adjustment in matching with multiple controls.

I would like to perform a sensitivity analysis, but my outcomes are binary.
Again, it is not difficult. See [6, Chapter 4]. That chapter also discusses outcomes

that are censored survival times.

How do I interpret the parameter Γ ? The parameter Γ is convenient in that it

is a single parameter that can refer to a wide variety of situations. The resulting

sensitivity analysis is one-dimensional: just one parameter varies. The sensitivity

bounds implicitly refer to an unobserved covariate u that is strongly related to the

response, rC, and that has a controlled relationship with the treatment, Z, the control

being provided by the value of Γ . Sometimes, that situation is not the one under

discussion, because a very strong relationship between u and rC isn’t plausible. It is

possible to reexpress the one-parameter analysis in terms of two parameters, where

one parameter controls the relationship between the unobserved covariate u and the

response rC and the other controls the relationship between u and the treatment, Z.

It is the same one-dimensional sensitivity analysis, with no new computations, but

now with a two-dimensional interpretation; see [8].

I am worried that my findings will be sensitive to small unmeasured biases.
Review Chapters 14–17 to see what issues affect the sensitivity of conclusions to
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unmeasured biases. Consider sample splitting to guide design decisions that affect

design sensitivity; see §18.1 and [3].

I have doses of treatment, but I am not sure whether they are any good. Split

the sample and find out; see §18.1 and [3]. Similar advice applies to many other

design decisions.

The treatment that interests me is known to be assigned in a very biased fash-
ion. Instead of studying the effect of that treatment, consider studying its differen-

tial effect compared with other treatments affected by the same biases; see §5.2.6.

This may help in some circumstances.

There have been several studies of the treatment that interests me, but none is
convincing. Is it possible to study the treatment again, this time removing one of

the several problems that made previous studies unconvincing? See §4.5.

The same problems inevitably occur whenever efforts are made to study the
treatment that interests me. Why is the treatment thought to work? What reasons

are given? Why is there doubt about the effects of the treatment? What reasons

are given? Can an empirical study shed light on whether these reasons are valid?

Perhaps the reasons can be supported or refuted, even though direct investigation of

the effects is difficult. See §4.6.

I am disappointed by my ‘null result.’ Do you possess evidence for the absence

of a large effect? That might be an important finding; see §19.5. Or do you lack

evidence about the magnitude of the effect? That is disappointing, but it is a common

occurrence, one that happens now and then to everyone.
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Symbols

|A| If A is a finite set, |A| is the number of elements in A.

x Observed covariates for any one person. See §2.1.2.

x� Observed covariates for person �, � = 1, . . . ,L. The � subscript is used to

denote people before they are matched. The � subscript is used in the same

way with Z, R, rT , rC, and u. See §3.1.

xi j Observed covariates for person j, in pair i, i = 1,2, . . . , I, j = 1,2. The i j
subscripts are used to denote people after they are arranged into matched

pairs. The i j subscripts are used in the same way with Z, R, rT , rC, and u.

See §2.1.2.

Z Treatment indicator, Z = 1 if treated, Z = 0 if control. See §2.1.2.

Z Treatment indicators for the 2I subjects in the I matched pairs, Z =
(Z11,Z12,Z21, . . . ,ZI2)T . See §2.1.2.

e(x) Propensity score, e(x) = Pr(Z = 1 | x). See §8.2.

(rT ,rC) For any one person, rT is the response the person would exhibit under

treatment, and rC is the response this same person would exhibit under

control. See §2.2.1.

(rT ,rC) Vectors rT = (rT 11,rT 12, . . . ,rT I2)T and rC = (rC11,rC12, . . . ,rCI2)T of po-

tential responses for all 2I subjects in I pairs. See §2.2.1.

R Observed response, that is, R = rT if Z = 1 and R = rC if Z = 0, so R =
ZrT +(1−Z)rC. See §2.1.2.

R Observed responses for the 2I subjects in the I matched pairs, R =
(R11,R12, . . . ,RI2)T . See §2.1.2.

sgn sgn(a) = 1 if a > 0 and sgn(a) = 0 otherwise. Not to be confused with its

sibling sign. See §2.3.3.

sign sign(a) = 1 if a > 0, sign(a) = 0 if a = 0, sign(a) = −1 if a < 0. Not to

be confused with its sibling sgn. See §2.9.

si si = 1 if |Yi| > 0 and si = 0 if |Yi| = 0. See §2.3.3.

u An unobserved covariate. See §2.1.2.
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u Unobserved covariates for the 2I subjects in the I matched pairs, u =
(u11,u12, . . . ,uI2)T . See §2.1.2.

Yi Treated-minus-control difference in observed responses within pair i, that

is, Yi = (Zi1 −Zi2)(Ri1 −Ri2). See §2.1.2.

Y Treated-minus-control differences in observed responses for I pairs, Y =
(Y1,Y2, . . . ,YI)T . See §2.1.2.

F The values of (rT , rC, x, u) for all subjects. Notice that these quantities do

not change when Z changes, whereas R does change when Z changes. In

this specific sense, F is fixed in Fisher’s theory of randomization infer-

ence. See §2.2.1. In simple experiments, the dose of treatment is the same

for every treated subject, and so doses are not explicitly mentioned when

F is first defined in §2.2.1. However, if there are doses di that vary by pair

i, as in §5.2.5, or that vary by individual, (dTi j,dCi j), as in §5.3, then these

doses are also part of F . In a strict sense, the doses are always present in

F , but when the doses are constant there is no need to mention them.

Z The set containing the 2I possible values of z = (z11,z12, . . . ,zI2)T of Z. So

z ∈ Z if zi j = 0 or zi j = 1 with zi1 + zi2 = 1. In conditional probabilities,

conditioning on Z means conditioning on the event Z ∈ Z . See §2.2.3.

di The dose at which the treatment is given in pair i. See the discussion of

dose-response in §5.2.5.

(dTi j,dCi j) For person j in pair i, dTi j is the dose of treatment this person would

accept if assigned to treatment, Zi j = 1, and dCi j is the dose of treatment

this person would accept if assigned to control, Zi j = 0. See the discussion

of instrumental variables in §5.3.

Di j For person j in pair i, Di j is the dose actually received, Di j = Zi jdTi j +
(1−Zi j)dCi j. See the discussion of instrumental variables in §5.3.

Γ Sensitivity parameter in a sensitivity analysis. Two subjects with the same

observed covariates may differ in their odds of treatment by at most a

factor of Γ . The parameter Γ is a key element in the ‘second model’ for

an observational study in Chapter 3.

Pmin and Pmax Interval of possible P-values in a sensitivity analysis. See §3.5,

specifically Table 3.2.

Γ̃ Design sensitivity. In the favorable situation, the power of a sensitivity

analysis tends to 1 as the sample size increases if Γ < Γ̃ and the power

tends to 0 if Γ > Γ̃ . See Chapter 14.



Acronyms

AAA ACE-inhibitor after anthracycline randomized trial. See §5.3.

AFDC Aid to Families with Dependent Children, a Federally funded public as-

sistance program in the United States

CI Confidence interval.

FARS Fatal Accident Reporting System. FARS records information about fatal

road accidents in the United States

FTE Full time equivalent employment.

GO Gynecologic oncologist.

HL Hodges-Lehmann point estimate.

IC Interstitial cystitis, a urologic disorder.

iid Independent and identically distributed. See §14.1.

IV Instrumental variable.

ICDB Interstitial Cystitis Data Base.

Medicare U.S. government program providing health care to people over the age

of 65.

MN Micronuclei, a common measure in genetic toxicology.

MO Medical oncologist.

NSAID Nonsteroidal anti-inflammatory drug.

NICU Neonatal intensive care unit.

NJ New Jersey, a state in the United States.

NSW National Supported Work Demonstration, a randomized experiment eval-

uating a program intended to aid the transition to employment.

PA Pennsylvania, a state in the United States.

PMA Postmenstrual age, a proxy for age from conception.

R A statistical software package. http://cran.r-project.org/. R
is distributed free.

SAS A statistical software package. http://www.sas.com/.

SEER Surveillance, Epidemiology and End Results Program of the U.S. National

Cancer Institute. http://seer.cancer.gov/.

sib-TDT Sibship transmission disequilibrium test.

stata A statistical software package. http://www.stata.com/.
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TDT Transmission disequilibrium test.

TOST Two-one-sided tests procedure for equivalence testing.
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Bonferroni inequality If A and B are two events, then the probability of the

event ‘A or B’ is at most the sum of the probabilities of A and of B; that is,

Pr(A∪B) ≤ Pr(A)+Pr(B). The inequality applies also with more than two events.

The Bonferroni inequality is used in many different ways, but it shows up in this

book in connection with testing more than one hypothesis. If there are two hypothe-

ses, where A is the event of falsely rejecting the first hypothesis, and B is the event

of falsely rejecting the second hypothesis, then the chance of falsely rejecting at

least one hypothesis is at most Pr(A)+ Pr(B). In particular, if each test is done at

level 0.025, then the chance of at least one false rejection in two tests is at most

0.025 + 0.025 = 0.05. This use of the Bonferroni inequality is attractive because it

is simple and very general; however, there are methods that are only slightly more

complex and equally general but better; see Holm, S.: A simple sequentially rejec-

tive multiple test procedure, Scand J Statist 6, 65–70 (1979).

boxplot A boxplot is a graph that looks like a transistor. Figure 1.1 contains several

boxplots. The box contains half the observations. The box has a middle line at the

median and it ends at the upper and lower quartiles. One-quarter of the observations

are inside the box above the median, and one-quarter of the observations are inside

the box below the median. One-quarter of the observations are above the box, and

one-quarter of the observations are below the box. Extreme observations appear as

individual points. Boxplots were invented by John Tukey. See Cleveland, W.W.:

Elements of Graphing Data, Summit, NJ: Hobart Press, pp. 139–143.

censored If a patient was diagnosed two years ago and is alive today, then this

patient’s survival time from diagnosis is censored at two years. This means that

we know the patient’s total survival after diagnosis is at least two years, but we do

not know the actual survival time. Typically, some survival times are censored and

others are known or uncensored. Given a choice, you’d rather be censored.

close match A pair is closely matched for a covariate if the two individuals in the

pair have very similar values of that covariate. It is generally very difficult to obtain

363



364 Glossary of Statistical Terms

a close match on many covariates at the same time. See also ‘covariate balance’ for

a very different notion.

consistent estimate A consistent estimate is one that gets it right if the sample

size is large enough. An estimator θ̂ is a consistent estimate of a parameter θ if

θ̂ converges in probability to θ as the sample size increases. See ‘convergence in

probability’ in this glossary.

consistent test A consistent test is one that gets it right if the sample size is large

enough. A test of a null hypothesis H0 is consistent against an alternative hypothesis

HA if the power of the test tends to one as the sample size increases when HA is true.

convergence in distribution Convergence in distribution formalizes the notion that

a random variable, say ξI , almost has a certain distribution. Typically in this book, ξI
is a statistic computed from a sample of size I — for instance, a standardized version

of Wilcoxon’s signed rank statistic, T — and the convergence occurs as the sample

size I increases. In this book, the approximating distribution is always the standard

Normal distribution, Φ(.) and, to be tangible, this glossary will define convergence

in distribution to the standard Normal distribution. Slightly more detail is needed to

define convergence in distribution in general. A sequence of random variables, ξI ,

I = 1,2, . . ., converges in distribution to the standard Normal distribution, Φ(.), if

limPr(ξI ≤ c) = Φ(c) for all c, the limit being taken as the sample size I increases.

convergence in probability Convergence in probability formalizes the notion that

a random variable, say ξI , is almost a certain constant. Typically in this book, ξI is a

statistic computed from a sample of size I — for instance, Wilcoxon’s signed rank

statistic, T , divided by I(I +1)/2 — and the convergence occurs as the sample size I
increases. A sequence of random variables, ξI , I = 1,2, . . ., converges in probability

to the real number a if Pr(|ξI −a| > ε) tends to 0 as I increases for all ε > 0.

covariate A covariate is a variable measured prior to treatment assignment, and

hence prior to treatment. Because it is measured prior to treatment assignment and

prior to treatment, it cannot be affected by treatment. Therefore, a covariate exists

in a single version, say x, because an individual has the same value of a covariate

whether assigned to treatment or to control. In contrast, an outcome may be affected

by the treatment, so an outcome exists in two versions, one seen under treatment,

rT , the other seen under control, rC. See §2.1.2.

covariate balance If the distributions of covariates are similar in treated and con-

trol groups, then there is covariate balance. For instance, if age is one covariate,

then age is balanced if the distribution of ages for treated subjects is similar to the

distribution of ages for controls. Covariate balance is a property of the treated and

control groups taken as two whole groups, not a property of an individual matched

pair or set. See also the entry for ‘close match’ for a very different notion. Random-

ization tends to balance both observed and unobserved covariates. Matching on the

propensity score tends to balance observed covariates but not unobserved covariates.
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efficiency Speaking informally, a statistical procedure is efficient if it makes the

best possible use of the available sample size, producing the shortest confidence

intervals, the smallest standard errors, the most powerful test, and so on. One pro-

cedure, say A, is more efficient than another procedure, say B, if A can accomplish

with, say, 50 observations what B needs 52 observations to accomplish. Understand-

ably, efficiency is a major concern in randomized controlled clinical trials, in part

because each observation is expensive and time-consuming, and in part because

additional observations entail treating additional patients, perhaps with a treatment

that the trial itself will find to be an inferior treatment. Efficiency is not the central

concern in observational studies because a limited sample size is not the princi-

pal source of uncertainty. Bias of fixed size, not the standard error, is the principal

source of uncertainty in nonrandomized studies. Many observational studies would

not become more compelling if the sample size were increased. In addition, in some

observational studies, large samples are available from extant data.

exclusion restriction The exclusion restriction arises in the definition of an instru-

ment in §5.3. Randomized encouragement to accept a treatment is an instrument for

the treatment only if encouragement affects the outcome only to the extent that it

affects acceptance of the treatment; this is the exclusion restriction.

favorable situation In the favorable situation, an observational study is free of

bias from unmeasured covariates, but the investigator does not know this, and there

is actually a treatment effect, but the investigator does not know this either. The in-

vestigator sees that the treated-minus-control matched pair differences in outcomes,

Yi, tend to be positive, but does not know that they tend to be positive because of a

treatment effect, not because of some uncontrolled bias. It is in this favorable situ-

ation that the investigator would like to report that the treatment appears to have an

effect and that appearance is highly insensitive to unmeasured biases. See §14.2.

full matching In a full matching, a matched set may contain one treated subject

and one or more controls, or one control and one or more treated subjects. It is

the ‘optimal form’ of stratification in that it makes subjects in the same stratum as

similar as possible. See §8.6.

instrument, instrumental variable, IV An instrument (or instrumental variable or

IV) is a randomized nudge or encouragement to accept the treatment that affects the

outcome only to the extent that it affects acceptance of the treatment. See §5.3.

level α test A statistical test has level α if, in the worst case, it rejects a true hy-

pothesis with probability at most α , that is, if the supremum over true hypotheses

of the probability of rejection is less than or equal to α . Compare the level of a test

with the size α of a test as defined later in the glossary. In typical use, the level

of the test is a promise about the test’s performance and the size is a fact about its

performance, where the achieved fact may be better than the promised performance.

Suppose that a randomization test, such as Wilcoxon’s signed rank test, is applied in

a paired randomized experiment, as in Chapter 2, and the null hypothesis is rejected

if the P-value is less than or equal to 0.05. Then the test will have level α = 0.05.
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However, if |Z | is not divisible by 20, then the size of the test will be a little smaller

than 0.05. In this case, one is advertising false rejections of true hypotheses at a

5% rate, but the rate is a tad better, a bit lower, than 5%. See E.L. Lehmann’s book

Testing Statistical Hypotheses, New York: John Wiley (1959).

logit model, logistic regression If p is the probability of an event, then p/(1− p)
is the odds of the event, and log(p/(1− p)) is the logit or log-odds. If you were to

build a linear model for p in terms of predictors, then the model might produce fitted

probabilities below 0 or above 1. If the logit is linear in predictors, the probabilities

stay between 0 and 1. Linear logit or logistic models assert that logits of probabilities

are linear in predictors. The models are typically fitted by the method of maximum

likelihood. In this book, logit models are used to estimate propensity scores, but

propensity scores can be estimated in other ways, and logit models have other uses.

Logit models have many attractive technical properties; see D. Cox and E. Snell,

Analysis of Binary Data, New York: Chapman and Hall/CRC (1989).

lowess Locally weighted scatterplot smoother. Lowess draws a curve through the

points of a scatter plot. Figure 7.2 displays a lowess smooth. The curve is estimated

locally, in the sense that, at a given value of x, the closest points (x,y) to x are given

the greatest weight. Lowess was invented by William Cleveland. See Cleveland,

W.W.: Elements of Graphing Data, Summit, NJ: Hobart Press, pp. 168–180.

marginal distribution The distribution of one random variable is its marginal dis-

tribution. The term marginal distribution is typically used when there are several

random variables in the current discussion and the speaker wishes to emphasize that

the distribution is for one random variable, ignoring the others. The situation is sim-

ilar to that of the fellow who was delighted to learn that he had been speaking prose

all his life.

Monte Carlo By tradition, algorithms that use random numbers are named for

cities where people gamble. For example, there is Monte Carlo integration and there

are Las Vegas algorithms. Monte Carlo integration means finding the value of an in-

tegral using random numbers. Typically, in statistical work, the integral is the expec-

tation of a random variable. In this case, the Monte Carlo algorithm samples many

independent copies of the random variable and takes their average. People some-

times use the terms Monte Carlo and simulation as if they meant the same thing, but

that is not correct. Monte Carlo evaluates integrals, whereas simulation may be used

for various purposes. Monte Carlo is a substitute for numerical integration, and as

such it should be carried through to be accurate to several significant figures, so the

value of the integral is known for practical purposes. When someone says that such

and such can be determined by Monte Carlo, the implication is that it may not be

worth the time to go into further mathematical details because a child could do it.

Perhaps a child with a network of supercomputers.

ostensibly comparable ‘Ostensibly comparable’ means comparable in terms of

measured covariates, x, leaving open the question of whether people who look com-

parable in terms of x are actually comparable in terms of unmeasured covariates u.
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To say that treated and control groups are ostensibly comparable after matching is

to say that matching has done its job, has controlled for x, without presuming that

this matching suffices for causal inference; it is to say that step one is complete and

step two is pending.

outcome An outcome is a variable measured after treatment. Because it is mea-

sured after treatment, it can be affected by treatment. Therefore, an outcome exists

in two versions, one seen under treatment, rT , the other seen under control, rC. In

contrast, a covariate measured prior to treatment assignment exists in a single ver-

sion, say x, because an individual has the same value of a covariate whether assigned

to treatment or to control. See §2.2.1.

power (of a test) The power of a test is the probability that the test will reject

the null hypothesis when the null hypothesis is false. You would like the power to

be high. If the test rejects when the P-value is less than 0.05, then the power of

the test is the chance that the P-value is less than 0.05 when the null hypothesis is

false. The power depends upon many things. In particular, the power depends upon

what is true. If the null hypothesis is false, then something else is true. For instance,

consider the power of a test of the null hypothesis that the treatment has no effect,

where the test rejects when the P-value is less than 0.05. If the actual treatment

effect is very small, the power may be only 0.06, but if the actual treatment effect is

very large, the power may be 0.99. In other words, there may be only a 6% chance of

rejecting the null hypothesis if the treatment effect is very small, but a 99% chance

of rejection if the effect is very large. (Remember, if you test a true null hypothesis

and reject when the P-value is less than 0.05, then you typically run a 5% chance of

rejecting the true null hypothesis; so, 6% power is no reason for pride.) The power

also depends upon the sample size. Typically, the power is larger when the sample

size is larger.

propensity score The propensity score is the conditional probability of assignment

to treatment given the observed covariates. See §3.3.

quantile-quantile plot, or qq-plot A plot of the quantiles of one distribution

against the quantiles of another. Figure 9.1 includes a quantile-quantile plot. For

instance, the lower quartile of one distribution is plotted against the lower quar-

tile of the other, and similarly for the medians, upper quartiles, and other quan-

tiles. Quantile-quantile plots, or qq-plots, were invented by Martin Wilk and Ram

Gnanadesikan. See Cleveland, W.W.: Elements of Graphing Data, Summit, NJ: Ho-

bart Press, pp. 143–149.

sensitivity analysis In an observational study, the naı̈ve model says that people

who look comparable are comparable; that is, people who look the same in terms of

observed covariates do not differ in consequential ways in terms of covariates that

were not measured; see §3.3. A sensitivity analysis in an observational study asks

how the conclusions of the study might change if people who looked comparable

were actually somewhat different; see §3.4. More generally, a sensitivity analysis

asks how a conclusion that depends upon assumptions might change if those as-
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sumptions are relaxed. Performing several analyses of the same data set is not a

sensitivity analysis; see Note 11 of Chapter 3.

size α test A statistical test has size α if, in the worst case, it rejects a true hy-

pothesis with probability α , that is, if the supremum over true hypotheses of the

probability of rejection is equal to α . Compare this with a level α test. See E.L.

Lehmann’s book Testing Statistical Hypotheses, New York: John Wiley (1959).

unbiased estimate An unbiased estimate is one that is right on average. An es-

timator θ̂ is an unbiased estimate of a parameter θ if the expectation of θ̂ equals

θ .

unbiased test Speaking informally, a test is unbiased if it is more likely to reject

false hypotheses than to reject true hypotheses. An α level test is unbiased against

a set of alternative hypotheses if the power of the test against these alternatives is at

least α . See ‘level α test’ in this glossary.

uncensored See censored.



Some Books

Abstract The books listed here discuss aspects of causal inference in observational

studies or experiments.
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